* linux-nat.c (linux_nat_wait): Adjust.
[deliverable/binutils-gdb.git] / gdb / rs6000-nat.c
1 /* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "inferior.h"
24 #include "target.h"
25 #include "gdbcore.h"
26 #include "xcoffsolib.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "libbfd.h" /* For bfd_default_set_arch_mach (FIXME) */
30 #include "bfd.h"
31 #include "exceptions.h"
32 #include "gdb-stabs.h"
33 #include "regcache.h"
34 #include "arch-utils.h"
35 #include "inf-ptrace.h"
36 #include "ppc-tdep.h"
37 #include "rs6000-tdep.h"
38 #include "exec.h"
39 #include "observer.h"
40
41 #include <sys/ptrace.h>
42 #include <sys/reg.h>
43
44 #include <sys/param.h>
45 #include <sys/dir.h>
46 #include <sys/user.h>
47 #include <signal.h>
48 #include <sys/ioctl.h>
49 #include <fcntl.h>
50 #include <errno.h>
51
52 #include <a.out.h>
53 #include <sys/file.h>
54 #include "gdb_stat.h"
55 #include <sys/core.h>
56 #define __LDINFO_PTRACE32__ /* for __ld_info32 */
57 #define __LDINFO_PTRACE64__ /* for __ld_info64 */
58 #include <sys/ldr.h>
59 #include <sys/systemcfg.h>
60
61 /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
62 debugging 32-bit and 64-bit processes. Define a typedef and macros for
63 accessing fields in the appropriate structures. */
64
65 /* In 32-bit compilation mode (which is the only mode from which ptrace()
66 works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
67
68 #ifdef __ld_info32
69 # define ARCH3264
70 #endif
71
72 /* Return whether the current architecture is 64-bit. */
73
74 #ifndef ARCH3264
75 # define ARCH64() 0
76 #else
77 # define ARCH64() (register_size (current_gdbarch, 0) == 8)
78 #endif
79
80 /* Union of 32-bit and 64-bit versions of ld_info. */
81
82 typedef union {
83 #ifndef ARCH3264
84 struct ld_info l32;
85 struct ld_info l64;
86 #else
87 struct __ld_info32 l32;
88 struct __ld_info64 l64;
89 #endif
90 } LdInfo;
91
92 /* If compiling with 32-bit and 64-bit debugging capability (e.g. AIX 4.x),
93 declare and initialize a variable named VAR suitable for use as the arch64
94 parameter to the various LDI_*() macros. */
95
96 #ifndef ARCH3264
97 # define ARCH64_DECL(var)
98 #else
99 # define ARCH64_DECL(var) int var = ARCH64 ()
100 #endif
101
102 /* Return LDI's FIELD for a 64-bit process if ARCH64 and for a 32-bit process
103 otherwise. This technique only works for FIELDs with the same data type in
104 32-bit and 64-bit versions of ld_info. */
105
106 #ifndef ARCH3264
107 # define LDI_FIELD(ldi, arch64, field) (ldi)->l32.ldinfo_##field
108 #else
109 # define LDI_FIELD(ldi, arch64, field) \
110 (arch64 ? (ldi)->l64.ldinfo_##field : (ldi)->l32.ldinfo_##field)
111 #endif
112
113 /* Return various LDI fields for a 64-bit process if ARCH64 and for a 32-bit
114 process otherwise. */
115
116 #define LDI_NEXT(ldi, arch64) LDI_FIELD(ldi, arch64, next)
117 #define LDI_FD(ldi, arch64) LDI_FIELD(ldi, arch64, fd)
118 #define LDI_FILENAME(ldi, arch64) LDI_FIELD(ldi, arch64, filename)
119
120 extern struct vmap *map_vmap (bfd * bf, bfd * arch);
121
122 static void vmap_exec (void);
123
124 static void vmap_ldinfo (LdInfo *);
125
126 static struct vmap *add_vmap (LdInfo *);
127
128 static int objfile_symbol_add (void *);
129
130 static void vmap_symtab (struct vmap *);
131
132 static void exec_one_dummy_insn (struct gdbarch *);
133
134 extern void fixup_breakpoints (CORE_ADDR low, CORE_ADDR high, CORE_ADDR delta);
135
136 /* Given REGNO, a gdb register number, return the corresponding
137 number suitable for use as a ptrace() parameter. Return -1 if
138 there's no suitable mapping. Also, set the int pointed to by
139 ISFLOAT to indicate whether REGNO is a floating point register. */
140
141 static int
142 regmap (struct gdbarch *gdbarch, int regno, int *isfloat)
143 {
144 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
145
146 *isfloat = 0;
147 if (tdep->ppc_gp0_regnum <= regno
148 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
149 return regno;
150 else if (tdep->ppc_fp0_regnum >= 0
151 && tdep->ppc_fp0_regnum <= regno
152 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
153 {
154 *isfloat = 1;
155 return regno - tdep->ppc_fp0_regnum + FPR0;
156 }
157 else if (regno == gdbarch_pc_regnum (gdbarch))
158 return IAR;
159 else if (regno == tdep->ppc_ps_regnum)
160 return MSR;
161 else if (regno == tdep->ppc_cr_regnum)
162 return CR;
163 else if (regno == tdep->ppc_lr_regnum)
164 return LR;
165 else if (regno == tdep->ppc_ctr_regnum)
166 return CTR;
167 else if (regno == tdep->ppc_xer_regnum)
168 return XER;
169 else if (tdep->ppc_fpscr_regnum >= 0
170 && regno == tdep->ppc_fpscr_regnum)
171 return FPSCR;
172 else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum)
173 return MQ;
174 else
175 return -1;
176 }
177
178 /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
179
180 static int
181 rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf)
182 {
183 int ret = ptrace (req, id, (int *)addr, data, buf);
184 #if 0
185 printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
186 req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
187 #endif
188 return ret;
189 }
190
191 /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
192
193 static int
194 rs6000_ptrace64 (int req, int id, long long addr, int data, void *buf)
195 {
196 #ifdef ARCH3264
197 int ret = ptracex (req, id, addr, data, buf);
198 #else
199 int ret = 0;
200 #endif
201 #if 0
202 printf ("rs6000_ptrace64 (%d, %d, 0x%llx, %08x, 0x%x) = 0x%x\n",
203 req, id, addr, data, (unsigned int)buf, ret);
204 #endif
205 return ret;
206 }
207
208 /* Fetch register REGNO from the inferior. */
209
210 static void
211 fetch_register (struct regcache *regcache, int regno)
212 {
213 struct gdbarch *gdbarch = get_regcache_arch (regcache);
214 int addr[MAX_REGISTER_SIZE];
215 int nr, isfloat;
216
217 /* Retrieved values may be -1, so infer errors from errno. */
218 errno = 0;
219
220 nr = regmap (gdbarch, regno, &isfloat);
221
222 /* Floating-point registers. */
223 if (isfloat)
224 rs6000_ptrace32 (PT_READ_FPR, PIDGET (inferior_ptid), addr, nr, 0);
225
226 /* Bogus register number. */
227 else if (nr < 0)
228 {
229 if (regno >= gdbarch_num_regs (gdbarch))
230 fprintf_unfiltered (gdb_stderr,
231 "gdb error: register no %d not implemented.\n",
232 regno);
233 return;
234 }
235
236 /* Fixed-point registers. */
237 else
238 {
239 if (!ARCH64 ())
240 *addr = rs6000_ptrace32 (PT_READ_GPR, PIDGET (inferior_ptid), (int *)nr, 0, 0);
241 else
242 {
243 /* PT_READ_GPR requires the buffer parameter to point to long long,
244 even if the register is really only 32 bits. */
245 long long buf;
246 rs6000_ptrace64 (PT_READ_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
247 if (register_size (gdbarch, regno) == 8)
248 memcpy (addr, &buf, 8);
249 else
250 *addr = buf;
251 }
252 }
253
254 if (!errno)
255 regcache_raw_supply (regcache, regno, (char *) addr);
256 else
257 {
258 #if 0
259 /* FIXME: this happens 3 times at the start of each 64-bit program. */
260 perror ("ptrace read");
261 #endif
262 errno = 0;
263 }
264 }
265
266 /* Store register REGNO back into the inferior. */
267
268 static void
269 store_register (const struct regcache *regcache, int regno)
270 {
271 struct gdbarch *gdbarch = get_regcache_arch (regcache);
272 int addr[MAX_REGISTER_SIZE];
273 int nr, isfloat;
274
275 /* Fetch the register's value from the register cache. */
276 regcache_raw_collect (regcache, regno, addr);
277
278 /* -1 can be a successful return value, so infer errors from errno. */
279 errno = 0;
280
281 nr = regmap (gdbarch, regno, &isfloat);
282
283 /* Floating-point registers. */
284 if (isfloat)
285 rs6000_ptrace32 (PT_WRITE_FPR, PIDGET (inferior_ptid), addr, nr, 0);
286
287 /* Bogus register number. */
288 else if (nr < 0)
289 {
290 if (regno >= gdbarch_num_regs (gdbarch))
291 fprintf_unfiltered (gdb_stderr,
292 "gdb error: register no %d not implemented.\n",
293 regno);
294 }
295
296 /* Fixed-point registers. */
297 else
298 {
299 if (regno == gdbarch_sp_regnum (gdbarch))
300 /* Execute one dummy instruction (which is a breakpoint) in inferior
301 process to give kernel a chance to do internal housekeeping.
302 Otherwise the following ptrace(2) calls will mess up user stack
303 since kernel will get confused about the bottom of the stack
304 (%sp). */
305 exec_one_dummy_insn (gdbarch);
306
307 /* The PT_WRITE_GPR operation is rather odd. For 32-bit inferiors,
308 the register's value is passed by value, but for 64-bit inferiors,
309 the address of a buffer containing the value is passed. */
310 if (!ARCH64 ())
311 rs6000_ptrace32 (PT_WRITE_GPR, PIDGET (inferior_ptid), (int *)nr, *addr, 0);
312 else
313 {
314 /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
315 area, even if the register is really only 32 bits. */
316 long long buf;
317 if (register_size (gdbarch, regno) == 8)
318 memcpy (&buf, addr, 8);
319 else
320 buf = *addr;
321 rs6000_ptrace64 (PT_WRITE_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
322 }
323 }
324
325 if (errno)
326 {
327 perror ("ptrace write");
328 errno = 0;
329 }
330 }
331
332 /* Read from the inferior all registers if REGNO == -1 and just register
333 REGNO otherwise. */
334
335 static void
336 rs6000_fetch_inferior_registers (struct regcache *regcache, int regno)
337 {
338 struct gdbarch *gdbarch = get_regcache_arch (regcache);
339 if (regno != -1)
340 fetch_register (regcache, regno);
341
342 else
343 {
344 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
345
346 /* Read 32 general purpose registers. */
347 for (regno = tdep->ppc_gp0_regnum;
348 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
349 regno++)
350 {
351 fetch_register (regcache, regno);
352 }
353
354 /* Read general purpose floating point registers. */
355 if (tdep->ppc_fp0_regnum >= 0)
356 for (regno = 0; regno < ppc_num_fprs; regno++)
357 fetch_register (regcache, tdep->ppc_fp0_regnum + regno);
358
359 /* Read special registers. */
360 fetch_register (regcache, gdbarch_pc_regnum (gdbarch));
361 fetch_register (regcache, tdep->ppc_ps_regnum);
362 fetch_register (regcache, tdep->ppc_cr_regnum);
363 fetch_register (regcache, tdep->ppc_lr_regnum);
364 fetch_register (regcache, tdep->ppc_ctr_regnum);
365 fetch_register (regcache, tdep->ppc_xer_regnum);
366 if (tdep->ppc_fpscr_regnum >= 0)
367 fetch_register (regcache, tdep->ppc_fpscr_regnum);
368 if (tdep->ppc_mq_regnum >= 0)
369 fetch_register (regcache, tdep->ppc_mq_regnum);
370 }
371 }
372
373 /* Store our register values back into the inferior.
374 If REGNO is -1, do this for all registers.
375 Otherwise, REGNO specifies which register (so we can save time). */
376
377 static void
378 rs6000_store_inferior_registers (struct regcache *regcache, int regno)
379 {
380 struct gdbarch *gdbarch = get_regcache_arch (regcache);
381 if (regno != -1)
382 store_register (regcache, regno);
383
384 else
385 {
386 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
387
388 /* Write general purpose registers first. */
389 for (regno = tdep->ppc_gp0_regnum;
390 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
391 regno++)
392 {
393 store_register (regcache, regno);
394 }
395
396 /* Write floating point registers. */
397 if (tdep->ppc_fp0_regnum >= 0)
398 for (regno = 0; regno < ppc_num_fprs; regno++)
399 store_register (regcache, tdep->ppc_fp0_regnum + regno);
400
401 /* Write special registers. */
402 store_register (regcache, gdbarch_pc_regnum (gdbarch));
403 store_register (regcache, tdep->ppc_ps_regnum);
404 store_register (regcache, tdep->ppc_cr_regnum);
405 store_register (regcache, tdep->ppc_lr_regnum);
406 store_register (regcache, tdep->ppc_ctr_regnum);
407 store_register (regcache, tdep->ppc_xer_regnum);
408 if (tdep->ppc_fpscr_regnum >= 0)
409 store_register (regcache, tdep->ppc_fpscr_regnum);
410 if (tdep->ppc_mq_regnum >= 0)
411 store_register (regcache, tdep->ppc_mq_regnum);
412 }
413 }
414
415
416 /* Attempt a transfer all LEN bytes starting at OFFSET between the
417 inferior's OBJECT:ANNEX space and GDB's READBUF/WRITEBUF buffer.
418 Return the number of bytes actually transferred. */
419
420 static LONGEST
421 rs6000_xfer_partial (struct target_ops *ops, enum target_object object,
422 const char *annex, gdb_byte *readbuf,
423 const gdb_byte *writebuf,
424 ULONGEST offset, LONGEST len)
425 {
426 pid_t pid = ptid_get_pid (inferior_ptid);
427 int arch64 = ARCH64 ();
428
429 switch (object)
430 {
431 case TARGET_OBJECT_MEMORY:
432 {
433 union
434 {
435 PTRACE_TYPE_RET word;
436 gdb_byte byte[sizeof (PTRACE_TYPE_RET)];
437 } buffer;
438 ULONGEST rounded_offset;
439 LONGEST partial_len;
440
441 /* Round the start offset down to the next long word
442 boundary. */
443 rounded_offset = offset & -(ULONGEST) sizeof (PTRACE_TYPE_RET);
444
445 /* Since ptrace will transfer a single word starting at that
446 rounded_offset the partial_len needs to be adjusted down to
447 that (remember this function only does a single transfer).
448 Should the required length be even less, adjust it down
449 again. */
450 partial_len = (rounded_offset + sizeof (PTRACE_TYPE_RET)) - offset;
451 if (partial_len > len)
452 partial_len = len;
453
454 if (writebuf)
455 {
456 /* If OFFSET:PARTIAL_LEN is smaller than
457 ROUNDED_OFFSET:WORDSIZE then a read/modify write will
458 be needed. Read in the entire word. */
459 if (rounded_offset < offset
460 || (offset + partial_len
461 < rounded_offset + sizeof (PTRACE_TYPE_RET)))
462 {
463 /* Need part of initial word -- fetch it. */
464 if (arch64)
465 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
466 rounded_offset, 0, NULL);
467 else
468 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
469 (int *)(uintptr_t)rounded_offset,
470 0, NULL);
471 }
472
473 /* Copy data to be written over corresponding part of
474 buffer. */
475 memcpy (buffer.byte + (offset - rounded_offset),
476 writebuf, partial_len);
477
478 errno = 0;
479 if (arch64)
480 rs6000_ptrace64 (PT_WRITE_D, pid,
481 rounded_offset, buffer.word, NULL);
482 else
483 rs6000_ptrace32 (PT_WRITE_D, pid,
484 (int *)(uintptr_t)rounded_offset, buffer.word, NULL);
485 if (errno)
486 return 0;
487 }
488
489 if (readbuf)
490 {
491 errno = 0;
492 if (arch64)
493 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
494 rounded_offset, 0, NULL);
495 else
496 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
497 (int *)(uintptr_t)rounded_offset,
498 0, NULL);
499 if (errno)
500 return 0;
501
502 /* Copy appropriate bytes out of the buffer. */
503 memcpy (readbuf, buffer.byte + (offset - rounded_offset),
504 partial_len);
505 }
506
507 return partial_len;
508 }
509
510 default:
511 return -1;
512 }
513 }
514
515 /* Wait for the child specified by PTID to do something. Return the
516 process ID of the child, or MINUS_ONE_PTID in case of error; store
517 the status in *OURSTATUS. */
518
519 static ptid_t
520 rs6000_wait (struct target_ops *ops,
521 ptid_t ptid, struct target_waitstatus *ourstatus)
522 {
523 pid_t pid;
524 int status, save_errno;
525
526 do
527 {
528 set_sigint_trap ();
529
530 do
531 {
532 pid = waitpid (ptid_get_pid (ptid), &status, 0);
533 save_errno = errno;
534 }
535 while (pid == -1 && errno == EINTR);
536
537 clear_sigint_trap ();
538
539 if (pid == -1)
540 {
541 fprintf_unfiltered (gdb_stderr,
542 _("Child process unexpectedly missing: %s.\n"),
543 safe_strerror (save_errno));
544
545 /* Claim it exited with unknown signal. */
546 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
547 ourstatus->value.sig = TARGET_SIGNAL_UNKNOWN;
548 return inferior_ptid;
549 }
550
551 /* Ignore terminated detached child processes. */
552 if (!WIFSTOPPED (status) && pid != ptid_get_pid (inferior_ptid))
553 pid = -1;
554 }
555 while (pid == -1);
556
557 /* AIX has a couple of strange returns from wait(). */
558
559 /* stop after load" status. */
560 if (status == 0x57c)
561 ourstatus->kind = TARGET_WAITKIND_LOADED;
562 /* signal 0. I have no idea why wait(2) returns with this status word. */
563 else if (status == 0x7f)
564 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
565 /* A normal waitstatus. Let the usual macros deal with it. */
566 else
567 store_waitstatus (ourstatus, status);
568
569 return pid_to_ptid (pid);
570 }
571
572 /* Execute one dummy breakpoint instruction. This way we give the kernel
573 a chance to do some housekeeping and update inferior's internal data,
574 including u_area. */
575
576 static void
577 exec_one_dummy_insn (struct gdbarch *gdbarch)
578 {
579 #define DUMMY_INSN_ADDR AIX_TEXT_SEGMENT_BASE+0x200
580
581 int ret, status, pid;
582 CORE_ADDR prev_pc;
583 void *bp;
584
585 /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We
586 assume that this address will never be executed again by the real
587 code. */
588
589 bp = deprecated_insert_raw_breakpoint (DUMMY_INSN_ADDR);
590
591 /* You might think this could be done with a single ptrace call, and
592 you'd be correct for just about every platform I've ever worked
593 on. However, rs6000-ibm-aix4.1.3 seems to have screwed this up --
594 the inferior never hits the breakpoint (it's also worth noting
595 powerpc-ibm-aix4.1.3 works correctly). */
596 prev_pc = read_pc ();
597 write_pc (DUMMY_INSN_ADDR);
598 if (ARCH64 ())
599 ret = rs6000_ptrace64 (PT_CONTINUE, PIDGET (inferior_ptid), 1, 0, NULL);
600 else
601 ret = rs6000_ptrace32 (PT_CONTINUE, PIDGET (inferior_ptid), (int *)1, 0, NULL);
602
603 if (ret != 0)
604 perror ("pt_continue");
605
606 do
607 {
608 pid = wait (&status);
609 }
610 while (pid != PIDGET (inferior_ptid));
611
612 write_pc (prev_pc);
613 deprecated_remove_raw_breakpoint (bp);
614 }
615 \f
616
617 /* Copy information about text and data sections from LDI to VP for a 64-bit
618 process if ARCH64 and for a 32-bit process otherwise. */
619
620 static void
621 vmap_secs (struct vmap *vp, LdInfo *ldi, int arch64)
622 {
623 if (arch64)
624 {
625 vp->tstart = (CORE_ADDR) ldi->l64.ldinfo_textorg;
626 vp->tend = vp->tstart + ldi->l64.ldinfo_textsize;
627 vp->dstart = (CORE_ADDR) ldi->l64.ldinfo_dataorg;
628 vp->dend = vp->dstart + ldi->l64.ldinfo_datasize;
629 }
630 else
631 {
632 vp->tstart = (unsigned long) ldi->l32.ldinfo_textorg;
633 vp->tend = vp->tstart + ldi->l32.ldinfo_textsize;
634 vp->dstart = (unsigned long) ldi->l32.ldinfo_dataorg;
635 vp->dend = vp->dstart + ldi->l32.ldinfo_datasize;
636 }
637
638 /* The run time loader maps the file header in addition to the text
639 section and returns a pointer to the header in ldinfo_textorg.
640 Adjust the text start address to point to the real start address
641 of the text section. */
642 vp->tstart += vp->toffs;
643 }
644
645 /* handle symbol translation on vmapping */
646
647 static void
648 vmap_symtab (struct vmap *vp)
649 {
650 struct objfile *objfile;
651 struct section_offsets *new_offsets;
652 int i;
653
654 objfile = vp->objfile;
655 if (objfile == NULL)
656 {
657 /* OK, it's not an objfile we opened ourselves.
658 Currently, that can only happen with the exec file, so
659 relocate the symbols for the symfile. */
660 if (symfile_objfile == NULL)
661 return;
662 objfile = symfile_objfile;
663 }
664 else if (!vp->loaded)
665 /* If symbols are not yet loaded, offsets are not yet valid. */
666 return;
667
668 new_offsets =
669 (struct section_offsets *)
670 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
671
672 for (i = 0; i < objfile->num_sections; ++i)
673 new_offsets->offsets[i] = ANOFFSET (objfile->section_offsets, i);
674
675 /* The symbols in the object file are linked to the VMA of the section,
676 relocate them VMA relative. */
677 new_offsets->offsets[SECT_OFF_TEXT (objfile)] = vp->tstart - vp->tvma;
678 new_offsets->offsets[SECT_OFF_DATA (objfile)] = vp->dstart - vp->dvma;
679 new_offsets->offsets[SECT_OFF_BSS (objfile)] = vp->dstart - vp->dvma;
680
681 objfile_relocate (objfile, new_offsets);
682 }
683 \f
684 /* Add symbols for an objfile. */
685
686 static int
687 objfile_symbol_add (void *arg)
688 {
689 struct objfile *obj = (struct objfile *) arg;
690
691 syms_from_objfile (obj, NULL, 0, 0, 0, 0);
692 new_symfile_objfile (obj, 0, 0);
693 return 1;
694 }
695
696 /* Add symbols for a vmap. Return zero upon error. */
697
698 int
699 vmap_add_symbols (struct vmap *vp)
700 {
701 if (catch_errors (objfile_symbol_add, vp->objfile,
702 "Error while reading shared library symbols:\n",
703 RETURN_MASK_ALL))
704 {
705 /* Note this is only done if symbol reading was successful. */
706 vp->loaded = 1;
707 vmap_symtab (vp);
708 return 1;
709 }
710 return 0;
711 }
712
713 /* Add a new vmap entry based on ldinfo() information.
714
715 If ldi->ldinfo_fd is not valid (e.g. this struct ld_info is from a
716 core file), the caller should set it to -1, and we will open the file.
717
718 Return the vmap new entry. */
719
720 static struct vmap *
721 add_vmap (LdInfo *ldi)
722 {
723 bfd *abfd, *last;
724 char *mem, *objname, *filename;
725 struct objfile *obj;
726 struct vmap *vp;
727 int fd;
728 ARCH64_DECL (arch64);
729
730 /* This ldi structure was allocated using alloca() in
731 xcoff_relocate_symtab(). Now we need to have persistent object
732 and member names, so we should save them. */
733
734 filename = LDI_FILENAME (ldi, arch64);
735 mem = filename + strlen (filename) + 1;
736 mem = savestring (mem, strlen (mem));
737 objname = savestring (filename, strlen (filename));
738
739 fd = LDI_FD (ldi, arch64);
740 if (fd < 0)
741 /* Note that this opens it once for every member; a possible
742 enhancement would be to only open it once for every object. */
743 abfd = bfd_openr (objname, gnutarget);
744 else
745 abfd = bfd_fdopenr (objname, gnutarget, fd);
746 if (!abfd)
747 {
748 warning (_("Could not open `%s' as an executable file: %s"),
749 objname, bfd_errmsg (bfd_get_error ()));
750 return NULL;
751 }
752
753 /* make sure we have an object file */
754
755 if (bfd_check_format (abfd, bfd_object))
756 vp = map_vmap (abfd, 0);
757
758 else if (bfd_check_format (abfd, bfd_archive))
759 {
760 last = 0;
761 /* FIXME??? am I tossing BFDs? bfd? */
762 while ((last = bfd_openr_next_archived_file (abfd, last)))
763 if (strcmp (mem, last->filename) == 0)
764 break;
765
766 if (!last)
767 {
768 warning (_("\"%s\": member \"%s\" missing."), objname, mem);
769 bfd_close (abfd);
770 return NULL;
771 }
772
773 if (!bfd_check_format (last, bfd_object))
774 {
775 warning (_("\"%s\": member \"%s\" not in executable format: %s."),
776 objname, mem, bfd_errmsg (bfd_get_error ()));
777 bfd_close (last);
778 bfd_close (abfd);
779 return NULL;
780 }
781
782 vp = map_vmap (last, abfd);
783 }
784 else
785 {
786 warning (_("\"%s\": not in executable format: %s."),
787 objname, bfd_errmsg (bfd_get_error ()));
788 bfd_close (abfd);
789 return NULL;
790 }
791 obj = allocate_objfile (vp->bfd, 0);
792 vp->objfile = obj;
793
794 /* Always add symbols for the main objfile. */
795 if (vp == vmap || auto_solib_add)
796 vmap_add_symbols (vp);
797 return vp;
798 }
799 \f
800 /* update VMAP info with ldinfo() information
801 Input is ptr to ldinfo() results. */
802
803 static void
804 vmap_ldinfo (LdInfo *ldi)
805 {
806 struct stat ii, vi;
807 struct vmap *vp;
808 int got_one, retried;
809 int got_exec_file = 0;
810 uint next;
811 int arch64 = ARCH64 ();
812
813 /* For each *ldi, see if we have a corresponding *vp.
814 If so, update the mapping, and symbol table.
815 If not, add an entry and symbol table. */
816
817 do
818 {
819 char *name = LDI_FILENAME (ldi, arch64);
820 char *memb = name + strlen (name) + 1;
821 int fd = LDI_FD (ldi, arch64);
822
823 retried = 0;
824
825 if (fstat (fd, &ii) < 0)
826 {
827 /* The kernel sets ld_info to -1, if the process is still using the
828 object, and the object is removed. Keep the symbol info for the
829 removed object and issue a warning. */
830 warning (_("%s (fd=%d) has disappeared, keeping its symbols"),
831 name, fd);
832 continue;
833 }
834 retry:
835 for (got_one = 0, vp = vmap; vp; vp = vp->nxt)
836 {
837 struct objfile *objfile;
838
839 /* First try to find a `vp', which is the same as in ldinfo.
840 If not the same, just continue and grep the next `vp'. If same,
841 relocate its tstart, tend, dstart, dend values. If no such `vp'
842 found, get out of this for loop, add this ldi entry as a new vmap
843 (add_vmap) and come back, find its `vp' and so on... */
844
845 /* The filenames are not always sufficient to match on. */
846
847 if ((name[0] == '/' && strcmp (name, vp->name) != 0)
848 || (memb[0] && strcmp (memb, vp->member) != 0))
849 continue;
850
851 /* See if we are referring to the same file.
852 We have to check objfile->obfd, symfile.c:reread_symbols might
853 have updated the obfd after a change. */
854 objfile = vp->objfile == NULL ? symfile_objfile : vp->objfile;
855 if (objfile == NULL
856 || objfile->obfd == NULL
857 || bfd_stat (objfile->obfd, &vi) < 0)
858 {
859 warning (_("Unable to stat %s, keeping its symbols"), name);
860 continue;
861 }
862
863 if (ii.st_dev != vi.st_dev || ii.st_ino != vi.st_ino)
864 continue;
865
866 if (!retried)
867 close (fd);
868
869 ++got_one;
870
871 /* Found a corresponding VMAP. Remap! */
872
873 vmap_secs (vp, ldi, arch64);
874
875 /* The objfile is only NULL for the exec file. */
876 if (vp->objfile == NULL)
877 got_exec_file = 1;
878
879 /* relocate symbol table(s). */
880 vmap_symtab (vp);
881
882 /* Announce new object files. Doing this after symbol relocation
883 makes aix-thread.c's job easier. */
884 if (vp->objfile)
885 observer_notify_new_objfile (vp->objfile);
886
887 /* There may be more, so we don't break out of the loop. */
888 }
889
890 /* if there was no matching *vp, we must perforce create the sucker(s) */
891 if (!got_one && !retried)
892 {
893 add_vmap (ldi);
894 ++retried;
895 goto retry;
896 }
897 }
898 while ((next = LDI_NEXT (ldi, arch64))
899 && (ldi = (void *) (next + (char *) ldi)));
900
901 /* If we don't find the symfile_objfile anywhere in the ldinfo, it
902 is unlikely that the symbol file is relocated to the proper
903 address. And we might have attached to a process which is
904 running a different copy of the same executable. */
905 if (symfile_objfile != NULL && !got_exec_file)
906 {
907 warning (_("Symbol file %s\nis not mapped; discarding it.\n\
908 If in fact that file has symbols which the mapped files listed by\n\
909 \"info files\" lack, you can load symbols with the \"symbol-file\" or\n\
910 \"add-symbol-file\" commands (note that you must take care of relocating\n\
911 symbols to the proper address)."),
912 symfile_objfile->name);
913 free_objfile (symfile_objfile);
914 symfile_objfile = NULL;
915 }
916 breakpoint_re_set ();
917 }
918 \f
919 /* As well as symbol tables, exec_sections need relocation. After
920 the inferior process' termination, there will be a relocated symbol
921 table exist with no corresponding inferior process. At that time, we
922 need to use `exec' bfd, rather than the inferior process's memory space
923 to look up symbols.
924
925 `exec_sections' need to be relocated only once, as long as the exec
926 file remains unchanged.
927 */
928
929 static void
930 vmap_exec (void)
931 {
932 static bfd *execbfd;
933 int i;
934
935 if (execbfd == exec_bfd)
936 return;
937
938 execbfd = exec_bfd;
939
940 if (!vmap || !exec_ops.to_sections)
941 error (_("vmap_exec: vmap or exec_ops.to_sections == 0."));
942
943 for (i = 0; &exec_ops.to_sections[i] < exec_ops.to_sections_end; i++)
944 {
945 if (strcmp (".text", exec_ops.to_sections[i].the_bfd_section->name) == 0)
946 {
947 exec_ops.to_sections[i].addr += vmap->tstart - vmap->tvma;
948 exec_ops.to_sections[i].endaddr += vmap->tstart - vmap->tvma;
949 }
950 else if (strcmp (".data",
951 exec_ops.to_sections[i].the_bfd_section->name) == 0)
952 {
953 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
954 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
955 }
956 else if (strcmp (".bss",
957 exec_ops.to_sections[i].the_bfd_section->name) == 0)
958 {
959 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
960 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
961 }
962 }
963 }
964
965 /* Set the current architecture from the host running GDB. Called when
966 starting a child process. */
967
968 static void (*super_create_inferior) (struct target_ops *,char *exec_file,
969 char *allargs, char **env, int from_tty);
970 static void
971 rs6000_create_inferior (struct target_ops * ops, char *exec_file,
972 char *allargs, char **env, int from_tty)
973 {
974 enum bfd_architecture arch;
975 unsigned long mach;
976 bfd abfd;
977 struct gdbarch_info info;
978
979 super_create_inferior (ops, exec_file, allargs, env, from_tty);
980
981 if (__power_rs ())
982 {
983 arch = bfd_arch_rs6000;
984 mach = bfd_mach_rs6k;
985 }
986 else
987 {
988 arch = bfd_arch_powerpc;
989 mach = bfd_mach_ppc;
990 }
991
992 /* FIXME: schauer/2002-02-25:
993 We don't know if we are executing a 32 or 64 bit executable,
994 and have no way to pass the proper word size to rs6000_gdbarch_init.
995 So we have to avoid switching to a new architecture, if the architecture
996 matches already.
997 Blindly calling rs6000_gdbarch_init used to work in older versions of
998 GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to
999 determine the wordsize. */
1000 if (exec_bfd)
1001 {
1002 const struct bfd_arch_info *exec_bfd_arch_info;
1003
1004 exec_bfd_arch_info = bfd_get_arch_info (exec_bfd);
1005 if (arch == exec_bfd_arch_info->arch)
1006 return;
1007 }
1008
1009 bfd_default_set_arch_mach (&abfd, arch, mach);
1010
1011 gdbarch_info_init (&info);
1012 info.bfd_arch_info = bfd_get_arch_info (&abfd);
1013 info.abfd = exec_bfd;
1014
1015 if (!gdbarch_update_p (info))
1016 internal_error (__FILE__, __LINE__,
1017 _("rs6000_create_inferior: failed to select architecture"));
1018 }
1019
1020 \f
1021 /* xcoff_relocate_symtab - hook for symbol table relocation.
1022
1023 This is only applicable to live processes, and is a no-op when
1024 debugging a core file. */
1025
1026 void
1027 xcoff_relocate_symtab (unsigned int pid)
1028 {
1029 int load_segs = 64; /* number of load segments */
1030 int rc;
1031 LdInfo *ldi = NULL;
1032 int arch64 = ARCH64 ();
1033 int ldisize = arch64 ? sizeof (ldi->l64) : sizeof (ldi->l32);
1034 int size;
1035
1036 if (ptid_equal (inferior_ptid, null_ptid))
1037 return;
1038
1039 do
1040 {
1041 size = load_segs * ldisize;
1042 ldi = (void *) xrealloc (ldi, size);
1043
1044 #if 0
1045 /* According to my humble theory, AIX has some timing problems and
1046 when the user stack grows, kernel doesn't update stack info in time
1047 and ptrace calls step on user stack. That is why we sleep here a
1048 little, and give kernel to update its internals. */
1049 usleep (36000);
1050 #endif
1051
1052 if (arch64)
1053 rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, size, NULL);
1054 else
1055 rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi, size, NULL);
1056
1057 if (rc == -1)
1058 {
1059 if (errno == ENOMEM)
1060 load_segs *= 2;
1061 else
1062 perror_with_name (_("ptrace ldinfo"));
1063 }
1064 else
1065 {
1066 vmap_ldinfo (ldi);
1067 vmap_exec (); /* relocate the exec and core sections as well. */
1068 }
1069 } while (rc == -1);
1070 if (ldi)
1071 xfree (ldi);
1072 }
1073 \f
1074 /* Core file stuff. */
1075
1076 /* Relocate symtabs and read in shared library info, based on symbols
1077 from the core file. */
1078
1079 void
1080 xcoff_relocate_core (struct target_ops *target)
1081 {
1082 struct bfd_section *ldinfo_sec;
1083 int offset = 0;
1084 LdInfo *ldi;
1085 struct vmap *vp;
1086 int arch64 = ARCH64 ();
1087
1088 /* Size of a struct ld_info except for the variable-length filename. */
1089 int nonfilesz = (int)LDI_FILENAME ((LdInfo *)0, arch64);
1090
1091 /* Allocated size of buffer. */
1092 int buffer_size = nonfilesz;
1093 char *buffer = xmalloc (buffer_size);
1094 struct cleanup *old = make_cleanup (free_current_contents, &buffer);
1095
1096 ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
1097 if (ldinfo_sec == NULL)
1098 {
1099 bfd_err:
1100 fprintf_filtered (gdb_stderr, "Couldn't get ldinfo from core file: %s\n",
1101 bfd_errmsg (bfd_get_error ()));
1102 do_cleanups (old);
1103 return;
1104 }
1105 do
1106 {
1107 int i;
1108 int names_found = 0;
1109
1110 /* Read in everything but the name. */
1111 if (bfd_get_section_contents (core_bfd, ldinfo_sec, buffer,
1112 offset, nonfilesz) == 0)
1113 goto bfd_err;
1114
1115 /* Now the name. */
1116 i = nonfilesz;
1117 do
1118 {
1119 if (i == buffer_size)
1120 {
1121 buffer_size *= 2;
1122 buffer = xrealloc (buffer, buffer_size);
1123 }
1124 if (bfd_get_section_contents (core_bfd, ldinfo_sec, &buffer[i],
1125 offset + i, 1) == 0)
1126 goto bfd_err;
1127 if (buffer[i++] == '\0')
1128 ++names_found;
1129 }
1130 while (names_found < 2);
1131
1132 ldi = (LdInfo *) buffer;
1133
1134 /* Can't use a file descriptor from the core file; need to open it. */
1135 if (arch64)
1136 ldi->l64.ldinfo_fd = -1;
1137 else
1138 ldi->l32.ldinfo_fd = -1;
1139
1140 /* The first ldinfo is for the exec file, allocated elsewhere. */
1141 if (offset == 0 && vmap != NULL)
1142 vp = vmap;
1143 else
1144 vp = add_vmap (ldi);
1145
1146 /* Process next shared library upon error. */
1147 offset += LDI_NEXT (ldi, arch64);
1148 if (vp == NULL)
1149 continue;
1150
1151 vmap_secs (vp, ldi, arch64);
1152
1153 /* Unless this is the exec file,
1154 add our sections to the section table for the core target. */
1155 if (vp != vmap)
1156 {
1157 struct section_table *stp;
1158
1159 target_resize_to_sections (target, 2);
1160 stp = target->to_sections_end - 2;
1161
1162 stp->bfd = vp->bfd;
1163 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".text");
1164 stp->addr = vp->tstart;
1165 stp->endaddr = vp->tend;
1166 stp++;
1167
1168 stp->bfd = vp->bfd;
1169 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".data");
1170 stp->addr = vp->dstart;
1171 stp->endaddr = vp->dend;
1172 }
1173
1174 vmap_symtab (vp);
1175
1176 if (vp != vmap && vp->objfile)
1177 observer_notify_new_objfile (vp->objfile);
1178 }
1179 while (LDI_NEXT (ldi, arch64) != 0);
1180 vmap_exec ();
1181 breakpoint_re_set ();
1182 do_cleanups (old);
1183 }
1184 \f
1185 /* Under AIX, we have to pass the correct TOC pointer to a function
1186 when calling functions in the inferior.
1187 We try to find the relative toc offset of the objfile containing PC
1188 and add the current load address of the data segment from the vmap. */
1189
1190 static CORE_ADDR
1191 find_toc_address (CORE_ADDR pc)
1192 {
1193 struct vmap *vp;
1194 extern CORE_ADDR get_toc_offset (struct objfile *); /* xcoffread.c */
1195
1196 for (vp = vmap; vp; vp = vp->nxt)
1197 {
1198 if (pc >= vp->tstart && pc < vp->tend)
1199 {
1200 /* vp->objfile is only NULL for the exec file. */
1201 return vp->dstart + get_toc_offset (vp->objfile == NULL
1202 ? symfile_objfile
1203 : vp->objfile);
1204 }
1205 }
1206 error (_("Unable to find TOC entry for pc %s."), hex_string (pc));
1207 }
1208 \f
1209
1210 void
1211 _initialize_rs6000_nat (void)
1212 {
1213 struct target_ops *t;
1214
1215 t = inf_ptrace_target ();
1216 t->to_fetch_registers = rs6000_fetch_inferior_registers;
1217 t->to_store_registers = rs6000_store_inferior_registers;
1218 t->to_xfer_partial = rs6000_xfer_partial;
1219
1220 super_create_inferior = t->to_create_inferior;
1221 t->to_create_inferior = rs6000_create_inferior;
1222
1223 t->to_wait = rs6000_wait;
1224
1225 add_target (t);
1226
1227 /* Initialize hook in rs6000-tdep.c for determining the TOC address
1228 when calling functions in the inferior. */
1229 rs6000_find_toc_address_hook = find_toc_address;
1230 }
This page took 0.087997 seconds and 5 git commands to generate.