2007-06-18 Markus Deuling <deuling@de.ibm.com>
[deliverable/binutils-gdb.git] / gdb / rs6000-nat.c
1 /* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "inferior.h"
26 #include "target.h"
27 #include "gdbcore.h"
28 #include "xcoffsolib.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "libbfd.h" /* For bfd_default_set_arch_mach (FIXME) */
32 #include "bfd.h"
33 #include "exceptions.h"
34 #include "gdb-stabs.h"
35 #include "regcache.h"
36 #include "arch-utils.h"
37 #include "inf-ptrace.h"
38 #include "ppc-tdep.h"
39 #include "rs6000-tdep.h"
40 #include "exec.h"
41 #include "gdb_stdint.h"
42 #include "observer.h"
43
44 #include <sys/ptrace.h>
45 #include <sys/reg.h>
46
47 #include <sys/param.h>
48 #include <sys/dir.h>
49 #include <sys/user.h>
50 #include <signal.h>
51 #include <sys/ioctl.h>
52 #include <fcntl.h>
53 #include <errno.h>
54
55 #include <a.out.h>
56 #include <sys/file.h>
57 #include "gdb_stat.h"
58 #include <sys/core.h>
59 #define __LDINFO_PTRACE32__ /* for __ld_info32 */
60 #define __LDINFO_PTRACE64__ /* for __ld_info64 */
61 #include <sys/ldr.h>
62 #include <sys/systemcfg.h>
63
64 /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
65 debugging 32-bit and 64-bit processes. Define a typedef and macros for
66 accessing fields in the appropriate structures. */
67
68 /* In 32-bit compilation mode (which is the only mode from which ptrace()
69 works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
70
71 #ifdef __ld_info32
72 # define ARCH3264
73 #endif
74
75 /* Return whether the current architecture is 64-bit. */
76
77 #ifndef ARCH3264
78 # define ARCH64() 0
79 #else
80 # define ARCH64() (register_size (current_gdbarch, 0) == 8)
81 #endif
82
83 /* Union of 32-bit and 64-bit versions of ld_info. */
84
85 typedef union {
86 #ifndef ARCH3264
87 struct ld_info l32;
88 struct ld_info l64;
89 #else
90 struct __ld_info32 l32;
91 struct __ld_info64 l64;
92 #endif
93 } LdInfo;
94
95 /* If compiling with 32-bit and 64-bit debugging capability (e.g. AIX 4.x),
96 declare and initialize a variable named VAR suitable for use as the arch64
97 parameter to the various LDI_*() macros. */
98
99 #ifndef ARCH3264
100 # define ARCH64_DECL(var)
101 #else
102 # define ARCH64_DECL(var) int var = ARCH64 ()
103 #endif
104
105 /* Return LDI's FIELD for a 64-bit process if ARCH64 and for a 32-bit process
106 otherwise. This technique only works for FIELDs with the same data type in
107 32-bit and 64-bit versions of ld_info. */
108
109 #ifndef ARCH3264
110 # define LDI_FIELD(ldi, arch64, field) (ldi)->l32.ldinfo_##field
111 #else
112 # define LDI_FIELD(ldi, arch64, field) \
113 (arch64 ? (ldi)->l64.ldinfo_##field : (ldi)->l32.ldinfo_##field)
114 #endif
115
116 /* Return various LDI fields for a 64-bit process if ARCH64 and for a 32-bit
117 process otherwise. */
118
119 #define LDI_NEXT(ldi, arch64) LDI_FIELD(ldi, arch64, next)
120 #define LDI_FD(ldi, arch64) LDI_FIELD(ldi, arch64, fd)
121 #define LDI_FILENAME(ldi, arch64) LDI_FIELD(ldi, arch64, filename)
122
123 extern struct vmap *map_vmap (bfd * bf, bfd * arch);
124
125 static void vmap_exec (void);
126
127 static void vmap_ldinfo (LdInfo *);
128
129 static struct vmap *add_vmap (LdInfo *);
130
131 static int objfile_symbol_add (void *);
132
133 static void vmap_symtab (struct vmap *);
134
135 static void exec_one_dummy_insn (void);
136
137 extern void fixup_breakpoints (CORE_ADDR low, CORE_ADDR high, CORE_ADDR delta);
138
139 /* Given REGNO, a gdb register number, return the corresponding
140 number suitable for use as a ptrace() parameter. Return -1 if
141 there's no suitable mapping. Also, set the int pointed to by
142 ISFLOAT to indicate whether REGNO is a floating point register. */
143
144 static int
145 regmap (int regno, int *isfloat)
146 {
147 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
148
149 *isfloat = 0;
150 if (tdep->ppc_gp0_regnum <= regno
151 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
152 return regno;
153 else if (tdep->ppc_fp0_regnum >= 0
154 && tdep->ppc_fp0_regnum <= regno
155 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
156 {
157 *isfloat = 1;
158 return regno - tdep->ppc_fp0_regnum + FPR0;
159 }
160 else if (regno == gdbarch_pc_regnum (current_gdbarch))
161 return IAR;
162 else if (regno == tdep->ppc_ps_regnum)
163 return MSR;
164 else if (regno == tdep->ppc_cr_regnum)
165 return CR;
166 else if (regno == tdep->ppc_lr_regnum)
167 return LR;
168 else if (regno == tdep->ppc_ctr_regnum)
169 return CTR;
170 else if (regno == tdep->ppc_xer_regnum)
171 return XER;
172 else if (tdep->ppc_fpscr_regnum >= 0
173 && regno == tdep->ppc_fpscr_regnum)
174 return FPSCR;
175 else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum)
176 return MQ;
177 else
178 return -1;
179 }
180
181 /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
182
183 static int
184 rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf)
185 {
186 int ret = ptrace (req, id, (int *)addr, data, buf);
187 #if 0
188 printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
189 req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
190 #endif
191 return ret;
192 }
193
194 /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
195
196 static int
197 rs6000_ptrace64 (int req, int id, long long addr, int data, void *buf)
198 {
199 #ifdef ARCH3264
200 int ret = ptracex (req, id, addr, data, buf);
201 #else
202 int ret = 0;
203 #endif
204 #if 0
205 printf ("rs6000_ptrace64 (%d, %d, 0x%llx, %08x, 0x%x) = 0x%x\n",
206 req, id, addr, data, (unsigned int)buf, ret);
207 #endif
208 return ret;
209 }
210
211 /* Fetch register REGNO from the inferior. */
212
213 static void
214 fetch_register (struct regcache *regcache, int regno)
215 {
216 int addr[MAX_REGISTER_SIZE];
217 int nr, isfloat;
218
219 /* Retrieved values may be -1, so infer errors from errno. */
220 errno = 0;
221
222 nr = regmap (regno, &isfloat);
223
224 /* Floating-point registers. */
225 if (isfloat)
226 rs6000_ptrace32 (PT_READ_FPR, PIDGET (inferior_ptid), addr, nr, 0);
227
228 /* Bogus register number. */
229 else if (nr < 0)
230 {
231 if (regno >= gdbarch_num_regs (current_gdbarch))
232 fprintf_unfiltered (gdb_stderr,
233 "gdb error: register no %d not implemented.\n",
234 regno);
235 return;
236 }
237
238 /* Fixed-point registers. */
239 else
240 {
241 if (!ARCH64 ())
242 *addr = rs6000_ptrace32 (PT_READ_GPR, PIDGET (inferior_ptid), (int *)nr, 0, 0);
243 else
244 {
245 /* PT_READ_GPR requires the buffer parameter to point to long long,
246 even if the register is really only 32 bits. */
247 long long buf;
248 rs6000_ptrace64 (PT_READ_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
249 if (register_size (current_gdbarch, regno) == 8)
250 memcpy (addr, &buf, 8);
251 else
252 *addr = buf;
253 }
254 }
255
256 if (!errno)
257 regcache_raw_supply (regcache, regno, (char *) addr);
258 else
259 {
260 #if 0
261 /* FIXME: this happens 3 times at the start of each 64-bit program. */
262 perror ("ptrace read");
263 #endif
264 errno = 0;
265 }
266 }
267
268 /* Store register REGNO back into the inferior. */
269
270 static void
271 store_register (const struct regcache *regcache, int regno)
272 {
273 int addr[MAX_REGISTER_SIZE];
274 int nr, isfloat;
275
276 /* Fetch the register's value from the register cache. */
277 regcache_raw_collect (regcache, regno, addr);
278
279 /* -1 can be a successful return value, so infer errors from errno. */
280 errno = 0;
281
282 nr = regmap (regno, &isfloat);
283
284 /* Floating-point registers. */
285 if (isfloat)
286 rs6000_ptrace32 (PT_WRITE_FPR, PIDGET (inferior_ptid), addr, nr, 0);
287
288 /* Bogus register number. */
289 else if (nr < 0)
290 {
291 if (regno >= gdbarch_num_regs (current_gdbarch))
292 fprintf_unfiltered (gdb_stderr,
293 "gdb error: register no %d not implemented.\n",
294 regno);
295 }
296
297 /* Fixed-point registers. */
298 else
299 {
300 if (regno == gdbarch_sp_regnum (current_gdbarch))
301 /* Execute one dummy instruction (which is a breakpoint) in inferior
302 process to give kernel a chance to do internal housekeeping.
303 Otherwise the following ptrace(2) calls will mess up user stack
304 since kernel will get confused about the bottom of the stack
305 (%sp). */
306 exec_one_dummy_insn ();
307
308 /* The PT_WRITE_GPR operation is rather odd. For 32-bit inferiors,
309 the register's value is passed by value, but for 64-bit inferiors,
310 the address of a buffer containing the value is passed. */
311 if (!ARCH64 ())
312 rs6000_ptrace32 (PT_WRITE_GPR, PIDGET (inferior_ptid), (int *)nr, *addr, 0);
313 else
314 {
315 /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
316 area, even if the register is really only 32 bits. */
317 long long buf;
318 if (register_size (current_gdbarch, regno) == 8)
319 memcpy (&buf, addr, 8);
320 else
321 buf = *addr;
322 rs6000_ptrace64 (PT_WRITE_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
323 }
324 }
325
326 if (errno)
327 {
328 perror ("ptrace write");
329 errno = 0;
330 }
331 }
332
333 /* Read from the inferior all registers if REGNO == -1 and just register
334 REGNO otherwise. */
335
336 static void
337 rs6000_fetch_inferior_registers (struct regcache *regcache, int regno)
338 {
339 if (regno != -1)
340 fetch_register (regcache, regno);
341
342 else
343 {
344 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
345
346 /* Read 32 general purpose registers. */
347 for (regno = tdep->ppc_gp0_regnum;
348 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
349 regno++)
350 {
351 fetch_register (regcache, regno);
352 }
353
354 /* Read general purpose floating point registers. */
355 if (tdep->ppc_fp0_regnum >= 0)
356 for (regno = 0; regno < ppc_num_fprs; regno++)
357 fetch_register (regcache, tdep->ppc_fp0_regnum + regno);
358
359 /* Read special registers. */
360 fetch_register (regcache, gdbarch_pc_regnum (current_gdbarch));
361 fetch_register (regcache, tdep->ppc_ps_regnum);
362 fetch_register (regcache, tdep->ppc_cr_regnum);
363 fetch_register (regcache, tdep->ppc_lr_regnum);
364 fetch_register (regcache, tdep->ppc_ctr_regnum);
365 fetch_register (regcache, tdep->ppc_xer_regnum);
366 if (tdep->ppc_fpscr_regnum >= 0)
367 fetch_register (regcache, tdep->ppc_fpscr_regnum);
368 if (tdep->ppc_mq_regnum >= 0)
369 fetch_register (regcache, tdep->ppc_mq_regnum);
370 }
371 }
372
373 /* Store our register values back into the inferior.
374 If REGNO is -1, do this for all registers.
375 Otherwise, REGNO specifies which register (so we can save time). */
376
377 static void
378 rs6000_store_inferior_registers (struct regcache *regcache, int regno)
379 {
380 if (regno != -1)
381 store_register (regcache, regno);
382
383 else
384 {
385 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
386
387 /* Write general purpose registers first. */
388 for (regno = tdep->ppc_gp0_regnum;
389 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
390 regno++)
391 {
392 store_register (regcache, regno);
393 }
394
395 /* Write floating point registers. */
396 if (tdep->ppc_fp0_regnum >= 0)
397 for (regno = 0; regno < ppc_num_fprs; regno++)
398 store_register (regcache, tdep->ppc_fp0_regnum + regno);
399
400 /* Write special registers. */
401 store_register (regcache, gdbarch_pc_regnum (current_gdbarch));
402 store_register (regcache, tdep->ppc_ps_regnum);
403 store_register (regcache, tdep->ppc_cr_regnum);
404 store_register (regcache, tdep->ppc_lr_regnum);
405 store_register (regcache, tdep->ppc_ctr_regnum);
406 store_register (regcache, tdep->ppc_xer_regnum);
407 if (tdep->ppc_fpscr_regnum >= 0)
408 store_register (regcache, tdep->ppc_fpscr_regnum);
409 if (tdep->ppc_mq_regnum >= 0)
410 store_register (regcache, tdep->ppc_mq_regnum);
411 }
412 }
413
414
415 /* Attempt a transfer all LEN bytes starting at OFFSET between the
416 inferior's OBJECT:ANNEX space and GDB's READBUF/WRITEBUF buffer.
417 Return the number of bytes actually transferred. */
418
419 static LONGEST
420 rs6000_xfer_partial (struct target_ops *ops, enum target_object object,
421 const char *annex, gdb_byte *readbuf,
422 const gdb_byte *writebuf,
423 ULONGEST offset, LONGEST len)
424 {
425 pid_t pid = ptid_get_pid (inferior_ptid);
426 int arch64 = ARCH64 ();
427
428 switch (object)
429 {
430 case TARGET_OBJECT_MEMORY:
431 {
432 union
433 {
434 PTRACE_TYPE_RET word;
435 gdb_byte byte[sizeof (PTRACE_TYPE_RET)];
436 } buffer;
437 ULONGEST rounded_offset;
438 LONGEST partial_len;
439
440 /* Round the start offset down to the next long word
441 boundary. */
442 rounded_offset = offset & -(ULONGEST) sizeof (PTRACE_TYPE_RET);
443
444 /* Since ptrace will transfer a single word starting at that
445 rounded_offset the partial_len needs to be adjusted down to
446 that (remember this function only does a single transfer).
447 Should the required length be even less, adjust it down
448 again. */
449 partial_len = (rounded_offset + sizeof (PTRACE_TYPE_RET)) - offset;
450 if (partial_len > len)
451 partial_len = len;
452
453 if (writebuf)
454 {
455 /* If OFFSET:PARTIAL_LEN is smaller than
456 ROUNDED_OFFSET:WORDSIZE then a read/modify write will
457 be needed. Read in the entire word. */
458 if (rounded_offset < offset
459 || (offset + partial_len
460 < rounded_offset + sizeof (PTRACE_TYPE_RET)))
461 {
462 /* Need part of initial word -- fetch it. */
463 if (arch64)
464 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
465 rounded_offset, 0, NULL);
466 else
467 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
468 (int *)(uintptr_t)rounded_offset,
469 0, NULL);
470 }
471
472 /* Copy data to be written over corresponding part of
473 buffer. */
474 memcpy (buffer.byte + (offset - rounded_offset),
475 writebuf, partial_len);
476
477 errno = 0;
478 if (arch64)
479 rs6000_ptrace64 (PT_WRITE_D, pid,
480 rounded_offset, buffer.word, NULL);
481 else
482 rs6000_ptrace32 (PT_WRITE_D, pid,
483 (int *)(uintptr_t)rounded_offset, buffer.word, NULL);
484 if (errno)
485 return 0;
486 }
487
488 if (readbuf)
489 {
490 errno = 0;
491 if (arch64)
492 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
493 rounded_offset, 0, NULL);
494 else
495 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
496 (int *)(uintptr_t)rounded_offset,
497 0, NULL);
498 if (errno)
499 return 0;
500
501 /* Copy appropriate bytes out of the buffer. */
502 memcpy (readbuf, buffer.byte + (offset - rounded_offset),
503 partial_len);
504 }
505
506 return partial_len;
507 }
508
509 default:
510 return -1;
511 }
512 }
513
514 /* Wait for the child specified by PTID to do something. Return the
515 process ID of the child, or MINUS_ONE_PTID in case of error; store
516 the status in *OURSTATUS. */
517
518 static ptid_t
519 rs6000_wait (ptid_t ptid, struct target_waitstatus *ourstatus)
520 {
521 pid_t pid;
522 int status, save_errno;
523
524 do
525 {
526 set_sigint_trap ();
527 set_sigio_trap ();
528
529 do
530 {
531 pid = waitpid (ptid_get_pid (ptid), &status, 0);
532 save_errno = errno;
533 }
534 while (pid == -1 && errno == EINTR);
535
536 clear_sigio_trap ();
537 clear_sigint_trap ();
538
539 if (pid == -1)
540 {
541 fprintf_unfiltered (gdb_stderr,
542 _("Child process unexpectedly missing: %s.\n"),
543 safe_strerror (save_errno));
544
545 /* Claim it exited with unknown signal. */
546 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
547 ourstatus->value.sig = TARGET_SIGNAL_UNKNOWN;
548 return minus_one_ptid;
549 }
550
551 /* Ignore terminated detached child processes. */
552 if (!WIFSTOPPED (status) && pid != ptid_get_pid (inferior_ptid))
553 pid = -1;
554 }
555 while (pid == -1);
556
557 /* AIX has a couple of strange returns from wait(). */
558
559 /* stop after load" status. */
560 if (status == 0x57c)
561 ourstatus->kind = TARGET_WAITKIND_LOADED;
562 /* signal 0. I have no idea why wait(2) returns with this status word. */
563 else if (status == 0x7f)
564 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
565 /* A normal waitstatus. Let the usual macros deal with it. */
566 else
567 store_waitstatus (ourstatus, status);
568
569 return pid_to_ptid (pid);
570 }
571
572 /* Execute one dummy breakpoint instruction. This way we give the kernel
573 a chance to do some housekeeping and update inferior's internal data,
574 including u_area. */
575
576 static void
577 exec_one_dummy_insn (void)
578 {
579 #define DUMMY_INSN_ADDR gdbarch_tdep (current_gdbarch)->text_segment_base+0x200
580
581 int ret, status, pid;
582 CORE_ADDR prev_pc;
583 void *bp;
584
585 /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We
586 assume that this address will never be executed again by the real
587 code. */
588
589 bp = deprecated_insert_raw_breakpoint (DUMMY_INSN_ADDR);
590
591 /* You might think this could be done with a single ptrace call, and
592 you'd be correct for just about every platform I've ever worked
593 on. However, rs6000-ibm-aix4.1.3 seems to have screwed this up --
594 the inferior never hits the breakpoint (it's also worth noting
595 powerpc-ibm-aix4.1.3 works correctly). */
596 prev_pc = read_pc ();
597 write_pc (DUMMY_INSN_ADDR);
598 if (ARCH64 ())
599 ret = rs6000_ptrace64 (PT_CONTINUE, PIDGET (inferior_ptid), 1, 0, NULL);
600 else
601 ret = rs6000_ptrace32 (PT_CONTINUE, PIDGET (inferior_ptid), (int *)1, 0, NULL);
602
603 if (ret != 0)
604 perror ("pt_continue");
605
606 do
607 {
608 pid = wait (&status);
609 }
610 while (pid != PIDGET (inferior_ptid));
611
612 write_pc (prev_pc);
613 deprecated_remove_raw_breakpoint (bp);
614 }
615 \f
616
617 /* Copy information about text and data sections from LDI to VP for a 64-bit
618 process if ARCH64 and for a 32-bit process otherwise. */
619
620 static void
621 vmap_secs (struct vmap *vp, LdInfo *ldi, int arch64)
622 {
623 if (arch64)
624 {
625 vp->tstart = (CORE_ADDR) ldi->l64.ldinfo_textorg;
626 vp->tend = vp->tstart + ldi->l64.ldinfo_textsize;
627 vp->dstart = (CORE_ADDR) ldi->l64.ldinfo_dataorg;
628 vp->dend = vp->dstart + ldi->l64.ldinfo_datasize;
629 }
630 else
631 {
632 vp->tstart = (unsigned long) ldi->l32.ldinfo_textorg;
633 vp->tend = vp->tstart + ldi->l32.ldinfo_textsize;
634 vp->dstart = (unsigned long) ldi->l32.ldinfo_dataorg;
635 vp->dend = vp->dstart + ldi->l32.ldinfo_datasize;
636 }
637
638 /* The run time loader maps the file header in addition to the text
639 section and returns a pointer to the header in ldinfo_textorg.
640 Adjust the text start address to point to the real start address
641 of the text section. */
642 vp->tstart += vp->toffs;
643 }
644
645 /* handle symbol translation on vmapping */
646
647 static void
648 vmap_symtab (struct vmap *vp)
649 {
650 struct objfile *objfile;
651 struct section_offsets *new_offsets;
652 int i;
653
654 objfile = vp->objfile;
655 if (objfile == NULL)
656 {
657 /* OK, it's not an objfile we opened ourselves.
658 Currently, that can only happen with the exec file, so
659 relocate the symbols for the symfile. */
660 if (symfile_objfile == NULL)
661 return;
662 objfile = symfile_objfile;
663 }
664 else if (!vp->loaded)
665 /* If symbols are not yet loaded, offsets are not yet valid. */
666 return;
667
668 new_offsets =
669 (struct section_offsets *)
670 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
671
672 for (i = 0; i < objfile->num_sections; ++i)
673 new_offsets->offsets[i] = ANOFFSET (objfile->section_offsets, i);
674
675 /* The symbols in the object file are linked to the VMA of the section,
676 relocate them VMA relative. */
677 new_offsets->offsets[SECT_OFF_TEXT (objfile)] = vp->tstart - vp->tvma;
678 new_offsets->offsets[SECT_OFF_DATA (objfile)] = vp->dstart - vp->dvma;
679 new_offsets->offsets[SECT_OFF_BSS (objfile)] = vp->dstart - vp->dvma;
680
681 objfile_relocate (objfile, new_offsets);
682 }
683 \f
684 /* Add symbols for an objfile. */
685
686 static int
687 objfile_symbol_add (void *arg)
688 {
689 struct objfile *obj = (struct objfile *) arg;
690
691 syms_from_objfile (obj, NULL, 0, 0, 0, 0);
692 new_symfile_objfile (obj, 0, 0);
693 return 1;
694 }
695
696 /* Add symbols for a vmap. Return zero upon error. */
697
698 int
699 vmap_add_symbols (struct vmap *vp)
700 {
701 if (catch_errors (objfile_symbol_add, vp->objfile,
702 "Error while reading shared library symbols:\n",
703 RETURN_MASK_ALL))
704 {
705 /* Note this is only done if symbol reading was successful. */
706 vp->loaded = 1;
707 vmap_symtab (vp);
708 return 1;
709 }
710 return 0;
711 }
712
713 /* Add a new vmap entry based on ldinfo() information.
714
715 If ldi->ldinfo_fd is not valid (e.g. this struct ld_info is from a
716 core file), the caller should set it to -1, and we will open the file.
717
718 Return the vmap new entry. */
719
720 static struct vmap *
721 add_vmap (LdInfo *ldi)
722 {
723 bfd *abfd, *last;
724 char *mem, *objname, *filename;
725 struct objfile *obj;
726 struct vmap *vp;
727 int fd;
728 ARCH64_DECL (arch64);
729
730 /* This ldi structure was allocated using alloca() in
731 xcoff_relocate_symtab(). Now we need to have persistent object
732 and member names, so we should save them. */
733
734 filename = LDI_FILENAME (ldi, arch64);
735 mem = filename + strlen (filename) + 1;
736 mem = savestring (mem, strlen (mem));
737 objname = savestring (filename, strlen (filename));
738
739 fd = LDI_FD (ldi, arch64);
740 if (fd < 0)
741 /* Note that this opens it once for every member; a possible
742 enhancement would be to only open it once for every object. */
743 abfd = bfd_openr (objname, gnutarget);
744 else
745 abfd = bfd_fdopenr (objname, gnutarget, fd);
746 if (!abfd)
747 {
748 warning (_("Could not open `%s' as an executable file: %s"),
749 objname, bfd_errmsg (bfd_get_error ()));
750 return NULL;
751 }
752
753 /* make sure we have an object file */
754
755 if (bfd_check_format (abfd, bfd_object))
756 vp = map_vmap (abfd, 0);
757
758 else if (bfd_check_format (abfd, bfd_archive))
759 {
760 last = 0;
761 /* FIXME??? am I tossing BFDs? bfd? */
762 while ((last = bfd_openr_next_archived_file (abfd, last)))
763 if (DEPRECATED_STREQ (mem, last->filename))
764 break;
765
766 if (!last)
767 {
768 warning (_("\"%s\": member \"%s\" missing."), objname, mem);
769 bfd_close (abfd);
770 return NULL;
771 }
772
773 if (!bfd_check_format (last, bfd_object))
774 {
775 warning (_("\"%s\": member \"%s\" not in executable format: %s."),
776 objname, mem, bfd_errmsg (bfd_get_error ()));
777 bfd_close (last);
778 bfd_close (abfd);
779 return NULL;
780 }
781
782 vp = map_vmap (last, abfd);
783 }
784 else
785 {
786 warning (_("\"%s\": not in executable format: %s."),
787 objname, bfd_errmsg (bfd_get_error ()));
788 bfd_close (abfd);
789 return NULL;
790 }
791 obj = allocate_objfile (vp->bfd, 0);
792 vp->objfile = obj;
793
794 /* Always add symbols for the main objfile. */
795 if (vp == vmap || auto_solib_add)
796 vmap_add_symbols (vp);
797 return vp;
798 }
799 \f
800 /* update VMAP info with ldinfo() information
801 Input is ptr to ldinfo() results. */
802
803 static void
804 vmap_ldinfo (LdInfo *ldi)
805 {
806 struct stat ii, vi;
807 struct vmap *vp;
808 int got_one, retried;
809 int got_exec_file = 0;
810 uint next;
811 int arch64 = ARCH64 ();
812
813 /* For each *ldi, see if we have a corresponding *vp.
814 If so, update the mapping, and symbol table.
815 If not, add an entry and symbol table. */
816
817 do
818 {
819 char *name = LDI_FILENAME (ldi, arch64);
820 char *memb = name + strlen (name) + 1;
821 int fd = LDI_FD (ldi, arch64);
822
823 retried = 0;
824
825 if (fstat (fd, &ii) < 0)
826 {
827 /* The kernel sets ld_info to -1, if the process is still using the
828 object, and the object is removed. Keep the symbol info for the
829 removed object and issue a warning. */
830 warning (_("%s (fd=%d) has disappeared, keeping its symbols"),
831 name, fd);
832 continue;
833 }
834 retry:
835 for (got_one = 0, vp = vmap; vp; vp = vp->nxt)
836 {
837 struct objfile *objfile;
838
839 /* First try to find a `vp', which is the same as in ldinfo.
840 If not the same, just continue and grep the next `vp'. If same,
841 relocate its tstart, tend, dstart, dend values. If no such `vp'
842 found, get out of this for loop, add this ldi entry as a new vmap
843 (add_vmap) and come back, find its `vp' and so on... */
844
845 /* The filenames are not always sufficient to match on. */
846
847 if ((name[0] == '/' && !DEPRECATED_STREQ (name, vp->name))
848 || (memb[0] && !DEPRECATED_STREQ (memb, vp->member)))
849 continue;
850
851 /* See if we are referring to the same file.
852 We have to check objfile->obfd, symfile.c:reread_symbols might
853 have updated the obfd after a change. */
854 objfile = vp->objfile == NULL ? symfile_objfile : vp->objfile;
855 if (objfile == NULL
856 || objfile->obfd == NULL
857 || bfd_stat (objfile->obfd, &vi) < 0)
858 {
859 warning (_("Unable to stat %s, keeping its symbols"), name);
860 continue;
861 }
862
863 if (ii.st_dev != vi.st_dev || ii.st_ino != vi.st_ino)
864 continue;
865
866 if (!retried)
867 close (fd);
868
869 ++got_one;
870
871 /* Found a corresponding VMAP. Remap! */
872
873 vmap_secs (vp, ldi, arch64);
874
875 /* The objfile is only NULL for the exec file. */
876 if (vp->objfile == NULL)
877 got_exec_file = 1;
878
879 /* relocate symbol table(s). */
880 vmap_symtab (vp);
881
882 /* Announce new object files. Doing this after symbol relocation
883 makes aix-thread.c's job easier. */
884 if (vp->objfile)
885 observer_notify_new_objfile (vp->objfile);
886
887 /* There may be more, so we don't break out of the loop. */
888 }
889
890 /* if there was no matching *vp, we must perforce create the sucker(s) */
891 if (!got_one && !retried)
892 {
893 add_vmap (ldi);
894 ++retried;
895 goto retry;
896 }
897 }
898 while ((next = LDI_NEXT (ldi, arch64))
899 && (ldi = (void *) (next + (char *) ldi)));
900
901 /* If we don't find the symfile_objfile anywhere in the ldinfo, it
902 is unlikely that the symbol file is relocated to the proper
903 address. And we might have attached to a process which is
904 running a different copy of the same executable. */
905 if (symfile_objfile != NULL && !got_exec_file)
906 {
907 warning (_("Symbol file %s\nis not mapped; discarding it.\n\
908 If in fact that file has symbols which the mapped files listed by\n\
909 \"info files\" lack, you can load symbols with the \"symbol-file\" or\n\
910 \"add-symbol-file\" commands (note that you must take care of relocating\n\
911 symbols to the proper address)."),
912 symfile_objfile->name);
913 free_objfile (symfile_objfile);
914 symfile_objfile = NULL;
915 }
916 breakpoint_re_set ();
917 }
918 \f
919 /* As well as symbol tables, exec_sections need relocation. After
920 the inferior process' termination, there will be a relocated symbol
921 table exist with no corresponding inferior process. At that time, we
922 need to use `exec' bfd, rather than the inferior process's memory space
923 to look up symbols.
924
925 `exec_sections' need to be relocated only once, as long as the exec
926 file remains unchanged.
927 */
928
929 static void
930 vmap_exec (void)
931 {
932 static bfd *execbfd;
933 int i;
934
935 if (execbfd == exec_bfd)
936 return;
937
938 execbfd = exec_bfd;
939
940 if (!vmap || !exec_ops.to_sections)
941 error (_("vmap_exec: vmap or exec_ops.to_sections == 0."));
942
943 for (i = 0; &exec_ops.to_sections[i] < exec_ops.to_sections_end; i++)
944 {
945 if (DEPRECATED_STREQ (".text", exec_ops.to_sections[i].the_bfd_section->name))
946 {
947 exec_ops.to_sections[i].addr += vmap->tstart - vmap->tvma;
948 exec_ops.to_sections[i].endaddr += vmap->tstart - vmap->tvma;
949 }
950 else if (DEPRECATED_STREQ (".data", exec_ops.to_sections[i].the_bfd_section->name))
951 {
952 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
953 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
954 }
955 else if (DEPRECATED_STREQ (".bss", exec_ops.to_sections[i].the_bfd_section->name))
956 {
957 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
958 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
959 }
960 }
961 }
962
963 /* Set the current architecture from the host running GDB. Called when
964 starting a child process. */
965
966 static void (*super_create_inferior) (char *exec_file, char *allargs,
967 char **env, int from_tty);
968 static void
969 rs6000_create_inferior (char *exec_file, char *allargs, char **env, int from_tty)
970 {
971 enum bfd_architecture arch;
972 unsigned long mach;
973 bfd abfd;
974 struct gdbarch_info info;
975
976 super_create_inferior (exec_file, allargs, env, from_tty);
977
978 if (__power_rs ())
979 {
980 arch = bfd_arch_rs6000;
981 mach = bfd_mach_rs6k;
982 }
983 else
984 {
985 arch = bfd_arch_powerpc;
986 mach = bfd_mach_ppc;
987 }
988
989 /* FIXME: schauer/2002-02-25:
990 We don't know if we are executing a 32 or 64 bit executable,
991 and have no way to pass the proper word size to rs6000_gdbarch_init.
992 So we have to avoid switching to a new architecture, if the architecture
993 matches already.
994 Blindly calling rs6000_gdbarch_init used to work in older versions of
995 GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to
996 determine the wordsize. */
997 if (exec_bfd)
998 {
999 const struct bfd_arch_info *exec_bfd_arch_info;
1000
1001 exec_bfd_arch_info = bfd_get_arch_info (exec_bfd);
1002 if (arch == exec_bfd_arch_info->arch)
1003 return;
1004 }
1005
1006 bfd_default_set_arch_mach (&abfd, arch, mach);
1007
1008 gdbarch_info_init (&info);
1009 info.bfd_arch_info = bfd_get_arch_info (&abfd);
1010 info.abfd = exec_bfd;
1011
1012 if (!gdbarch_update_p (info))
1013 internal_error (__FILE__, __LINE__,
1014 _("rs6000_create_inferior: failed to select architecture"));
1015 }
1016
1017 \f
1018 /* xcoff_relocate_symtab - hook for symbol table relocation.
1019
1020 This is only applicable to live processes, and is a no-op when
1021 debugging a core file. */
1022
1023 void
1024 xcoff_relocate_symtab (unsigned int pid)
1025 {
1026 int load_segs = 64; /* number of load segments */
1027 int rc;
1028 LdInfo *ldi = NULL;
1029 int arch64 = ARCH64 ();
1030 int ldisize = arch64 ? sizeof (ldi->l64) : sizeof (ldi->l32);
1031 int size;
1032
1033 if (ptid_equal (inferior_ptid, null_ptid))
1034 return;
1035
1036 do
1037 {
1038 size = load_segs * ldisize;
1039 ldi = (void *) xrealloc (ldi, size);
1040
1041 #if 0
1042 /* According to my humble theory, AIX has some timing problems and
1043 when the user stack grows, kernel doesn't update stack info in time
1044 and ptrace calls step on user stack. That is why we sleep here a
1045 little, and give kernel to update its internals. */
1046 usleep (36000);
1047 #endif
1048
1049 if (arch64)
1050 rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, size, NULL);
1051 else
1052 rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi, size, NULL);
1053
1054 if (rc == -1)
1055 {
1056 if (errno == ENOMEM)
1057 load_segs *= 2;
1058 else
1059 perror_with_name (_("ptrace ldinfo"));
1060 }
1061 else
1062 {
1063 vmap_ldinfo (ldi);
1064 vmap_exec (); /* relocate the exec and core sections as well. */
1065 }
1066 } while (rc == -1);
1067 if (ldi)
1068 xfree (ldi);
1069 }
1070 \f
1071 /* Core file stuff. */
1072
1073 /* Relocate symtabs and read in shared library info, based on symbols
1074 from the core file. */
1075
1076 void
1077 xcoff_relocate_core (struct target_ops *target)
1078 {
1079 struct bfd_section *ldinfo_sec;
1080 int offset = 0;
1081 LdInfo *ldi;
1082 struct vmap *vp;
1083 int arch64 = ARCH64 ();
1084
1085 /* Size of a struct ld_info except for the variable-length filename. */
1086 int nonfilesz = (int)LDI_FILENAME ((LdInfo *)0, arch64);
1087
1088 /* Allocated size of buffer. */
1089 int buffer_size = nonfilesz;
1090 char *buffer = xmalloc (buffer_size);
1091 struct cleanup *old = make_cleanup (free_current_contents, &buffer);
1092
1093 ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
1094 if (ldinfo_sec == NULL)
1095 {
1096 bfd_err:
1097 fprintf_filtered (gdb_stderr, "Couldn't get ldinfo from core file: %s\n",
1098 bfd_errmsg (bfd_get_error ()));
1099 do_cleanups (old);
1100 return;
1101 }
1102 do
1103 {
1104 int i;
1105 int names_found = 0;
1106
1107 /* Read in everything but the name. */
1108 if (bfd_get_section_contents (core_bfd, ldinfo_sec, buffer,
1109 offset, nonfilesz) == 0)
1110 goto bfd_err;
1111
1112 /* Now the name. */
1113 i = nonfilesz;
1114 do
1115 {
1116 if (i == buffer_size)
1117 {
1118 buffer_size *= 2;
1119 buffer = xrealloc (buffer, buffer_size);
1120 }
1121 if (bfd_get_section_contents (core_bfd, ldinfo_sec, &buffer[i],
1122 offset + i, 1) == 0)
1123 goto bfd_err;
1124 if (buffer[i++] == '\0')
1125 ++names_found;
1126 }
1127 while (names_found < 2);
1128
1129 ldi = (LdInfo *) buffer;
1130
1131 /* Can't use a file descriptor from the core file; need to open it. */
1132 if (arch64)
1133 ldi->l64.ldinfo_fd = -1;
1134 else
1135 ldi->l32.ldinfo_fd = -1;
1136
1137 /* The first ldinfo is for the exec file, allocated elsewhere. */
1138 if (offset == 0 && vmap != NULL)
1139 vp = vmap;
1140 else
1141 vp = add_vmap (ldi);
1142
1143 /* Process next shared library upon error. */
1144 offset += LDI_NEXT (ldi, arch64);
1145 if (vp == NULL)
1146 continue;
1147
1148 vmap_secs (vp, ldi, arch64);
1149
1150 /* Unless this is the exec file,
1151 add our sections to the section table for the core target. */
1152 if (vp != vmap)
1153 {
1154 struct section_table *stp;
1155
1156 target_resize_to_sections (target, 2);
1157 stp = target->to_sections_end - 2;
1158
1159 stp->bfd = vp->bfd;
1160 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".text");
1161 stp->addr = vp->tstart;
1162 stp->endaddr = vp->tend;
1163 stp++;
1164
1165 stp->bfd = vp->bfd;
1166 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".data");
1167 stp->addr = vp->dstart;
1168 stp->endaddr = vp->dend;
1169 }
1170
1171 vmap_symtab (vp);
1172
1173 if (vp != vmap && vp->objfile)
1174 observer_notify_new_objfile (vp->objfile);
1175 }
1176 while (LDI_NEXT (ldi, arch64) != 0);
1177 vmap_exec ();
1178 breakpoint_re_set ();
1179 do_cleanups (old);
1180 }
1181 \f
1182 /* Under AIX, we have to pass the correct TOC pointer to a function
1183 when calling functions in the inferior.
1184 We try to find the relative toc offset of the objfile containing PC
1185 and add the current load address of the data segment from the vmap. */
1186
1187 static CORE_ADDR
1188 find_toc_address (CORE_ADDR pc)
1189 {
1190 struct vmap *vp;
1191 extern CORE_ADDR get_toc_offset (struct objfile *); /* xcoffread.c */
1192
1193 for (vp = vmap; vp; vp = vp->nxt)
1194 {
1195 if (pc >= vp->tstart && pc < vp->tend)
1196 {
1197 /* vp->objfile is only NULL for the exec file. */
1198 return vp->dstart + get_toc_offset (vp->objfile == NULL
1199 ? symfile_objfile
1200 : vp->objfile);
1201 }
1202 }
1203 error (_("Unable to find TOC entry for pc %s."), hex_string (pc));
1204 }
1205 \f
1206
1207 void
1208 _initialize_rs6000_nat (void)
1209 {
1210 struct target_ops *t;
1211
1212 t = inf_ptrace_target ();
1213 t->to_fetch_registers = rs6000_fetch_inferior_registers;
1214 t->to_store_registers = rs6000_store_inferior_registers;
1215 t->to_xfer_partial = rs6000_xfer_partial;
1216
1217 super_create_inferior = t->to_create_inferior;
1218 t->to_create_inferior = rs6000_create_inferior;
1219
1220 t->to_wait = rs6000_wait;
1221
1222 add_target (t);
1223
1224 /* Initialize hook in rs6000-tdep.c for determining the TOC address
1225 when calling functions in the inferior. */
1226 rs6000_find_toc_address_hook = find_toc_address;
1227 }
This page took 0.123775 seconds and 5 git commands to generate.