2009-06-16 Paul Pluzhnikov <ppluzhnikov@google.com>
[deliverable/binutils-gdb.git] / gdb / rs6000-nat.c
1 /* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "inferior.h"
24 #include "target.h"
25 #include "gdbcore.h"
26 #include "xcoffsolib.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "libbfd.h" /* For bfd_default_set_arch_mach (FIXME) */
30 #include "bfd.h"
31 #include "exceptions.h"
32 #include "gdb-stabs.h"
33 #include "regcache.h"
34 #include "arch-utils.h"
35 #include "inf-ptrace.h"
36 #include "ppc-tdep.h"
37 #include "rs6000-tdep.h"
38 #include "exec.h"
39 #include "observer.h"
40 #include "xcoffread.h"
41
42 #include <sys/ptrace.h>
43 #include <sys/reg.h>
44
45 #include <sys/param.h>
46 #include <sys/dir.h>
47 #include <sys/user.h>
48 #include <signal.h>
49 #include <sys/ioctl.h>
50 #include <fcntl.h>
51 #include <errno.h>
52
53 #include <a.out.h>
54 #include <sys/file.h>
55 #include "gdb_stat.h"
56 #include <sys/core.h>
57 #define __LDINFO_PTRACE32__ /* for __ld_info32 */
58 #define __LDINFO_PTRACE64__ /* for __ld_info64 */
59 #include <sys/ldr.h>
60 #include <sys/systemcfg.h>
61
62 /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
63 debugging 32-bit and 64-bit processes. Define a typedef and macros for
64 accessing fields in the appropriate structures. */
65
66 /* In 32-bit compilation mode (which is the only mode from which ptrace()
67 works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
68
69 #ifdef __ld_info32
70 # define ARCH3264
71 #endif
72
73 /* Return whether the current architecture is 64-bit. */
74
75 #ifndef ARCH3264
76 # define ARCH64() 0
77 #else
78 # define ARCH64() (register_size (current_gdbarch, 0) == 8)
79 #endif
80
81 /* Union of 32-bit and 64-bit versions of ld_info. */
82
83 typedef union {
84 #ifndef ARCH3264
85 struct ld_info l32;
86 struct ld_info l64;
87 #else
88 struct __ld_info32 l32;
89 struct __ld_info64 l64;
90 #endif
91 } LdInfo;
92
93 /* If compiling with 32-bit and 64-bit debugging capability (e.g. AIX 4.x),
94 declare and initialize a variable named VAR suitable for use as the arch64
95 parameter to the various LDI_*() macros. */
96
97 #ifndef ARCH3264
98 # define ARCH64_DECL(var)
99 #else
100 # define ARCH64_DECL(var) int var = ARCH64 ()
101 #endif
102
103 /* Return LDI's FIELD for a 64-bit process if ARCH64 and for a 32-bit process
104 otherwise. This technique only works for FIELDs with the same data type in
105 32-bit and 64-bit versions of ld_info. */
106
107 #ifndef ARCH3264
108 # define LDI_FIELD(ldi, arch64, field) (ldi)->l32.ldinfo_##field
109 #else
110 # define LDI_FIELD(ldi, arch64, field) \
111 (arch64 ? (ldi)->l64.ldinfo_##field : (ldi)->l32.ldinfo_##field)
112 #endif
113
114 /* Return various LDI fields for a 64-bit process if ARCH64 and for a 32-bit
115 process otherwise. */
116
117 #define LDI_NEXT(ldi, arch64) LDI_FIELD(ldi, arch64, next)
118 #define LDI_FD(ldi, arch64) LDI_FIELD(ldi, arch64, fd)
119 #define LDI_FILENAME(ldi, arch64) LDI_FIELD(ldi, arch64, filename)
120
121 extern struct vmap *map_vmap (bfd * bf, bfd * arch);
122
123 static void vmap_exec (void);
124
125 static void vmap_ldinfo (LdInfo *);
126
127 static struct vmap *add_vmap (LdInfo *);
128
129 static int objfile_symbol_add (void *);
130
131 static void vmap_symtab (struct vmap *);
132
133 static void exec_one_dummy_insn (struct regcache *);
134
135 extern void fixup_breakpoints (CORE_ADDR low, CORE_ADDR high, CORE_ADDR delta);
136
137 /* Given REGNO, a gdb register number, return the corresponding
138 number suitable for use as a ptrace() parameter. Return -1 if
139 there's no suitable mapping. Also, set the int pointed to by
140 ISFLOAT to indicate whether REGNO is a floating point register. */
141
142 static int
143 regmap (struct gdbarch *gdbarch, int regno, int *isfloat)
144 {
145 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
146
147 *isfloat = 0;
148 if (tdep->ppc_gp0_regnum <= regno
149 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
150 return regno;
151 else if (tdep->ppc_fp0_regnum >= 0
152 && tdep->ppc_fp0_regnum <= regno
153 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
154 {
155 *isfloat = 1;
156 return regno - tdep->ppc_fp0_regnum + FPR0;
157 }
158 else if (regno == gdbarch_pc_regnum (gdbarch))
159 return IAR;
160 else if (regno == tdep->ppc_ps_regnum)
161 return MSR;
162 else if (regno == tdep->ppc_cr_regnum)
163 return CR;
164 else if (regno == tdep->ppc_lr_regnum)
165 return LR;
166 else if (regno == tdep->ppc_ctr_regnum)
167 return CTR;
168 else if (regno == tdep->ppc_xer_regnum)
169 return XER;
170 else if (tdep->ppc_fpscr_regnum >= 0
171 && regno == tdep->ppc_fpscr_regnum)
172 return FPSCR;
173 else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum)
174 return MQ;
175 else
176 return -1;
177 }
178
179 /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
180
181 static int
182 rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf)
183 {
184 int ret = ptrace (req, id, (int *)addr, data, buf);
185 #if 0
186 printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
187 req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
188 #endif
189 return ret;
190 }
191
192 /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
193
194 static int
195 rs6000_ptrace64 (int req, int id, long long addr, int data, void *buf)
196 {
197 #ifdef ARCH3264
198 int ret = ptracex (req, id, addr, data, buf);
199 #else
200 int ret = 0;
201 #endif
202 #if 0
203 printf ("rs6000_ptrace64 (%d, %d, 0x%llx, %08x, 0x%x) = 0x%x\n",
204 req, id, addr, data, (unsigned int)buf, ret);
205 #endif
206 return ret;
207 }
208
209 /* Fetch register REGNO from the inferior. */
210
211 static void
212 fetch_register (struct regcache *regcache, int regno)
213 {
214 struct gdbarch *gdbarch = get_regcache_arch (regcache);
215 int addr[MAX_REGISTER_SIZE];
216 int nr, isfloat;
217
218 /* Retrieved values may be -1, so infer errors from errno. */
219 errno = 0;
220
221 nr = regmap (gdbarch, regno, &isfloat);
222
223 /* Floating-point registers. */
224 if (isfloat)
225 rs6000_ptrace32 (PT_READ_FPR, PIDGET (inferior_ptid), addr, nr, 0);
226
227 /* Bogus register number. */
228 else if (nr < 0)
229 {
230 if (regno >= gdbarch_num_regs (gdbarch))
231 fprintf_unfiltered (gdb_stderr,
232 "gdb error: register no %d not implemented.\n",
233 regno);
234 return;
235 }
236
237 /* Fixed-point registers. */
238 else
239 {
240 if (!ARCH64 ())
241 *addr = rs6000_ptrace32 (PT_READ_GPR, PIDGET (inferior_ptid), (int *)nr, 0, 0);
242 else
243 {
244 /* PT_READ_GPR requires the buffer parameter to point to long long,
245 even if the register is really only 32 bits. */
246 long long buf;
247 rs6000_ptrace64 (PT_READ_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
248 if (register_size (gdbarch, regno) == 8)
249 memcpy (addr, &buf, 8);
250 else
251 *addr = buf;
252 }
253 }
254
255 if (!errno)
256 regcache_raw_supply (regcache, regno, (char *) addr);
257 else
258 {
259 #if 0
260 /* FIXME: this happens 3 times at the start of each 64-bit program. */
261 perror ("ptrace read");
262 #endif
263 errno = 0;
264 }
265 }
266
267 /* Store register REGNO back into the inferior. */
268
269 static void
270 store_register (struct regcache *regcache, int regno)
271 {
272 struct gdbarch *gdbarch = get_regcache_arch (regcache);
273 int addr[MAX_REGISTER_SIZE];
274 int nr, isfloat;
275
276 /* Fetch the register's value from the register cache. */
277 regcache_raw_collect (regcache, regno, addr);
278
279 /* -1 can be a successful return value, so infer errors from errno. */
280 errno = 0;
281
282 nr = regmap (gdbarch, regno, &isfloat);
283
284 /* Floating-point registers. */
285 if (isfloat)
286 rs6000_ptrace32 (PT_WRITE_FPR, PIDGET (inferior_ptid), addr, nr, 0);
287
288 /* Bogus register number. */
289 else if (nr < 0)
290 {
291 if (regno >= gdbarch_num_regs (gdbarch))
292 fprintf_unfiltered (gdb_stderr,
293 "gdb error: register no %d not implemented.\n",
294 regno);
295 }
296
297 /* Fixed-point registers. */
298 else
299 {
300 if (regno == gdbarch_sp_regnum (gdbarch))
301 /* Execute one dummy instruction (which is a breakpoint) in inferior
302 process to give kernel a chance to do internal housekeeping.
303 Otherwise the following ptrace(2) calls will mess up user stack
304 since kernel will get confused about the bottom of the stack
305 (%sp). */
306 exec_one_dummy_insn (regcache);
307
308 /* The PT_WRITE_GPR operation is rather odd. For 32-bit inferiors,
309 the register's value is passed by value, but for 64-bit inferiors,
310 the address of a buffer containing the value is passed. */
311 if (!ARCH64 ())
312 rs6000_ptrace32 (PT_WRITE_GPR, PIDGET (inferior_ptid), (int *)nr, *addr, 0);
313 else
314 {
315 /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
316 area, even if the register is really only 32 bits. */
317 long long buf;
318 if (register_size (gdbarch, regno) == 8)
319 memcpy (&buf, addr, 8);
320 else
321 buf = *addr;
322 rs6000_ptrace64 (PT_WRITE_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
323 }
324 }
325
326 if (errno)
327 {
328 perror ("ptrace write");
329 errno = 0;
330 }
331 }
332
333 /* Read from the inferior all registers if REGNO == -1 and just register
334 REGNO otherwise. */
335
336 static void
337 rs6000_fetch_inferior_registers (struct target_ops *ops,
338 struct regcache *regcache, int regno)
339 {
340 struct gdbarch *gdbarch = get_regcache_arch (regcache);
341 if (regno != -1)
342 fetch_register (regcache, regno);
343
344 else
345 {
346 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
347
348 /* Read 32 general purpose registers. */
349 for (regno = tdep->ppc_gp0_regnum;
350 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
351 regno++)
352 {
353 fetch_register (regcache, regno);
354 }
355
356 /* Read general purpose floating point registers. */
357 if (tdep->ppc_fp0_regnum >= 0)
358 for (regno = 0; regno < ppc_num_fprs; regno++)
359 fetch_register (regcache, tdep->ppc_fp0_regnum + regno);
360
361 /* Read special registers. */
362 fetch_register (regcache, gdbarch_pc_regnum (gdbarch));
363 fetch_register (regcache, tdep->ppc_ps_regnum);
364 fetch_register (regcache, tdep->ppc_cr_regnum);
365 fetch_register (regcache, tdep->ppc_lr_regnum);
366 fetch_register (regcache, tdep->ppc_ctr_regnum);
367 fetch_register (regcache, tdep->ppc_xer_regnum);
368 if (tdep->ppc_fpscr_regnum >= 0)
369 fetch_register (regcache, tdep->ppc_fpscr_regnum);
370 if (tdep->ppc_mq_regnum >= 0)
371 fetch_register (regcache, tdep->ppc_mq_regnum);
372 }
373 }
374
375 /* Store our register values back into the inferior.
376 If REGNO is -1, do this for all registers.
377 Otherwise, REGNO specifies which register (so we can save time). */
378
379 static void
380 rs6000_store_inferior_registers (struct target_ops *ops,
381 struct regcache *regcache, int regno)
382 {
383 struct gdbarch *gdbarch = get_regcache_arch (regcache);
384 if (regno != -1)
385 store_register (regcache, regno);
386
387 else
388 {
389 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
390
391 /* Write general purpose registers first. */
392 for (regno = tdep->ppc_gp0_regnum;
393 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
394 regno++)
395 {
396 store_register (regcache, regno);
397 }
398
399 /* Write floating point registers. */
400 if (tdep->ppc_fp0_regnum >= 0)
401 for (regno = 0; regno < ppc_num_fprs; regno++)
402 store_register (regcache, tdep->ppc_fp0_regnum + regno);
403
404 /* Write special registers. */
405 store_register (regcache, gdbarch_pc_regnum (gdbarch));
406 store_register (regcache, tdep->ppc_ps_regnum);
407 store_register (regcache, tdep->ppc_cr_regnum);
408 store_register (regcache, tdep->ppc_lr_regnum);
409 store_register (regcache, tdep->ppc_ctr_regnum);
410 store_register (regcache, tdep->ppc_xer_regnum);
411 if (tdep->ppc_fpscr_regnum >= 0)
412 store_register (regcache, tdep->ppc_fpscr_regnum);
413 if (tdep->ppc_mq_regnum >= 0)
414 store_register (regcache, tdep->ppc_mq_regnum);
415 }
416 }
417
418
419 /* Attempt a transfer all LEN bytes starting at OFFSET between the
420 inferior's OBJECT:ANNEX space and GDB's READBUF/WRITEBUF buffer.
421 Return the number of bytes actually transferred. */
422
423 static LONGEST
424 rs6000_xfer_partial (struct target_ops *ops, enum target_object object,
425 const char *annex, gdb_byte *readbuf,
426 const gdb_byte *writebuf,
427 ULONGEST offset, LONGEST len)
428 {
429 pid_t pid = ptid_get_pid (inferior_ptid);
430 int arch64 = ARCH64 ();
431
432 switch (object)
433 {
434 case TARGET_OBJECT_MEMORY:
435 {
436 union
437 {
438 PTRACE_TYPE_RET word;
439 gdb_byte byte[sizeof (PTRACE_TYPE_RET)];
440 } buffer;
441 ULONGEST rounded_offset;
442 LONGEST partial_len;
443
444 /* Round the start offset down to the next long word
445 boundary. */
446 rounded_offset = offset & -(ULONGEST) sizeof (PTRACE_TYPE_RET);
447
448 /* Since ptrace will transfer a single word starting at that
449 rounded_offset the partial_len needs to be adjusted down to
450 that (remember this function only does a single transfer).
451 Should the required length be even less, adjust it down
452 again. */
453 partial_len = (rounded_offset + sizeof (PTRACE_TYPE_RET)) - offset;
454 if (partial_len > len)
455 partial_len = len;
456
457 if (writebuf)
458 {
459 /* If OFFSET:PARTIAL_LEN is smaller than
460 ROUNDED_OFFSET:WORDSIZE then a read/modify write will
461 be needed. Read in the entire word. */
462 if (rounded_offset < offset
463 || (offset + partial_len
464 < rounded_offset + sizeof (PTRACE_TYPE_RET)))
465 {
466 /* Need part of initial word -- fetch it. */
467 if (arch64)
468 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
469 rounded_offset, 0, NULL);
470 else
471 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
472 (int *)(uintptr_t)rounded_offset,
473 0, NULL);
474 }
475
476 /* Copy data to be written over corresponding part of
477 buffer. */
478 memcpy (buffer.byte + (offset - rounded_offset),
479 writebuf, partial_len);
480
481 errno = 0;
482 if (arch64)
483 rs6000_ptrace64 (PT_WRITE_D, pid,
484 rounded_offset, buffer.word, NULL);
485 else
486 rs6000_ptrace32 (PT_WRITE_D, pid,
487 (int *)(uintptr_t)rounded_offset, buffer.word, NULL);
488 if (errno)
489 return 0;
490 }
491
492 if (readbuf)
493 {
494 errno = 0;
495 if (arch64)
496 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
497 rounded_offset, 0, NULL);
498 else
499 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
500 (int *)(uintptr_t)rounded_offset,
501 0, NULL);
502 if (errno)
503 return 0;
504
505 /* Copy appropriate bytes out of the buffer. */
506 memcpy (readbuf, buffer.byte + (offset - rounded_offset),
507 partial_len);
508 }
509
510 return partial_len;
511 }
512
513 default:
514 return -1;
515 }
516 }
517
518 /* Wait for the child specified by PTID to do something. Return the
519 process ID of the child, or MINUS_ONE_PTID in case of error; store
520 the status in *OURSTATUS. */
521
522 static ptid_t
523 rs6000_wait (struct target_ops *ops,
524 ptid_t ptid, struct target_waitstatus *ourstatus, int options)
525 {
526 pid_t pid;
527 int status, save_errno;
528
529 do
530 {
531 set_sigint_trap ();
532
533 do
534 {
535 pid = waitpid (ptid_get_pid (ptid), &status, 0);
536 save_errno = errno;
537 }
538 while (pid == -1 && errno == EINTR);
539
540 clear_sigint_trap ();
541
542 if (pid == -1)
543 {
544 fprintf_unfiltered (gdb_stderr,
545 _("Child process unexpectedly missing: %s.\n"),
546 safe_strerror (save_errno));
547
548 /* Claim it exited with unknown signal. */
549 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
550 ourstatus->value.sig = TARGET_SIGNAL_UNKNOWN;
551 return inferior_ptid;
552 }
553
554 /* Ignore terminated detached child processes. */
555 if (!WIFSTOPPED (status) && pid != ptid_get_pid (inferior_ptid))
556 pid = -1;
557 }
558 while (pid == -1);
559
560 /* AIX has a couple of strange returns from wait(). */
561
562 /* stop after load" status. */
563 if (status == 0x57c)
564 ourstatus->kind = TARGET_WAITKIND_LOADED;
565 /* signal 0. I have no idea why wait(2) returns with this status word. */
566 else if (status == 0x7f)
567 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
568 /* A normal waitstatus. Let the usual macros deal with it. */
569 else
570 store_waitstatus (ourstatus, status);
571
572 return pid_to_ptid (pid);
573 }
574
575 /* Execute one dummy breakpoint instruction. This way we give the kernel
576 a chance to do some housekeeping and update inferior's internal data,
577 including u_area. */
578
579 static void
580 exec_one_dummy_insn (struct regcache *regcache)
581 {
582 #define DUMMY_INSN_ADDR AIX_TEXT_SEGMENT_BASE+0x200
583
584 int ret, status, pid;
585 CORE_ADDR prev_pc;
586 void *bp;
587
588 /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We
589 assume that this address will never be executed again by the real
590 code. */
591
592 bp = deprecated_insert_raw_breakpoint (DUMMY_INSN_ADDR);
593
594 /* You might think this could be done with a single ptrace call, and
595 you'd be correct for just about every platform I've ever worked
596 on. However, rs6000-ibm-aix4.1.3 seems to have screwed this up --
597 the inferior never hits the breakpoint (it's also worth noting
598 powerpc-ibm-aix4.1.3 works correctly). */
599 prev_pc = regcache_read_pc (regcache);
600 regcache_write_pc (regcache, DUMMY_INSN_ADDR);
601 if (ARCH64 ())
602 ret = rs6000_ptrace64 (PT_CONTINUE, PIDGET (inferior_ptid), 1, 0, NULL);
603 else
604 ret = rs6000_ptrace32 (PT_CONTINUE, PIDGET (inferior_ptid), (int *)1, 0, NULL);
605
606 if (ret != 0)
607 perror ("pt_continue");
608
609 do
610 {
611 pid = wait (&status);
612 }
613 while (pid != PIDGET (inferior_ptid));
614
615 regcache_write_pc (regcache, prev_pc);
616 deprecated_remove_raw_breakpoint (bp);
617 }
618 \f
619
620 /* Copy information about text and data sections from LDI to VP for a 64-bit
621 process if ARCH64 and for a 32-bit process otherwise. */
622
623 static void
624 vmap_secs (struct vmap *vp, LdInfo *ldi, int arch64)
625 {
626 if (arch64)
627 {
628 vp->tstart = (CORE_ADDR) ldi->l64.ldinfo_textorg;
629 vp->tend = vp->tstart + ldi->l64.ldinfo_textsize;
630 vp->dstart = (CORE_ADDR) ldi->l64.ldinfo_dataorg;
631 vp->dend = vp->dstart + ldi->l64.ldinfo_datasize;
632 }
633 else
634 {
635 vp->tstart = (unsigned long) ldi->l32.ldinfo_textorg;
636 vp->tend = vp->tstart + ldi->l32.ldinfo_textsize;
637 vp->dstart = (unsigned long) ldi->l32.ldinfo_dataorg;
638 vp->dend = vp->dstart + ldi->l32.ldinfo_datasize;
639 }
640
641 /* The run time loader maps the file header in addition to the text
642 section and returns a pointer to the header in ldinfo_textorg.
643 Adjust the text start address to point to the real start address
644 of the text section. */
645 vp->tstart += vp->toffs;
646 }
647
648 /* handle symbol translation on vmapping */
649
650 static void
651 vmap_symtab (struct vmap *vp)
652 {
653 struct objfile *objfile;
654 struct section_offsets *new_offsets;
655 int i;
656
657 objfile = vp->objfile;
658 if (objfile == NULL)
659 {
660 /* OK, it's not an objfile we opened ourselves.
661 Currently, that can only happen with the exec file, so
662 relocate the symbols for the symfile. */
663 if (symfile_objfile == NULL)
664 return;
665 objfile = symfile_objfile;
666 }
667 else if (!vp->loaded)
668 /* If symbols are not yet loaded, offsets are not yet valid. */
669 return;
670
671 new_offsets =
672 (struct section_offsets *)
673 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
674
675 for (i = 0; i < objfile->num_sections; ++i)
676 new_offsets->offsets[i] = ANOFFSET (objfile->section_offsets, i);
677
678 /* The symbols in the object file are linked to the VMA of the section,
679 relocate them VMA relative. */
680 new_offsets->offsets[SECT_OFF_TEXT (objfile)] = vp->tstart - vp->tvma;
681 new_offsets->offsets[SECT_OFF_DATA (objfile)] = vp->dstart - vp->dvma;
682 new_offsets->offsets[SECT_OFF_BSS (objfile)] = vp->dstart - vp->dvma;
683
684 objfile_relocate (objfile, new_offsets);
685 }
686 \f
687 /* Add symbols for an objfile. */
688
689 static int
690 objfile_symbol_add (void *arg)
691 {
692 struct objfile *obj = (struct objfile *) arg;
693
694 syms_from_objfile (obj, NULL, 0, 0, 0);
695 new_symfile_objfile (obj, 0);
696 return 1;
697 }
698
699 /* Add symbols for a vmap. Return zero upon error. */
700
701 int
702 vmap_add_symbols (struct vmap *vp)
703 {
704 if (catch_errors (objfile_symbol_add, vp->objfile,
705 "Error while reading shared library symbols:\n",
706 RETURN_MASK_ALL))
707 {
708 /* Note this is only done if symbol reading was successful. */
709 vp->loaded = 1;
710 vmap_symtab (vp);
711 return 1;
712 }
713 return 0;
714 }
715
716 /* Add a new vmap entry based on ldinfo() information.
717
718 If ldi->ldinfo_fd is not valid (e.g. this struct ld_info is from a
719 core file), the caller should set it to -1, and we will open the file.
720
721 Return the vmap new entry. */
722
723 static struct vmap *
724 add_vmap (LdInfo *ldi)
725 {
726 bfd *abfd, *last;
727 char *mem, *objname, *filename;
728 struct objfile *obj;
729 struct vmap *vp;
730 int fd;
731 ARCH64_DECL (arch64);
732
733 /* This ldi structure was allocated using alloca() in
734 xcoff_relocate_symtab(). Now we need to have persistent object
735 and member names, so we should save them. */
736
737 filename = LDI_FILENAME (ldi, arch64);
738 mem = filename + strlen (filename) + 1;
739 mem = xstrdup (mem);
740 objname = xstrdup (filename);
741
742 fd = LDI_FD (ldi, arch64);
743 if (fd < 0)
744 /* Note that this opens it once for every member; a possible
745 enhancement would be to only open it once for every object. */
746 abfd = bfd_openr (objname, gnutarget);
747 else
748 abfd = bfd_fdopenr (objname, gnutarget, fd);
749 if (!abfd)
750 {
751 warning (_("Could not open `%s' as an executable file: %s"),
752 objname, bfd_errmsg (bfd_get_error ()));
753 return NULL;
754 }
755
756 /* make sure we have an object file */
757
758 if (bfd_check_format (abfd, bfd_object))
759 vp = map_vmap (abfd, 0);
760
761 else if (bfd_check_format (abfd, bfd_archive))
762 {
763 last = 0;
764 /* FIXME??? am I tossing BFDs? bfd? */
765 while ((last = bfd_openr_next_archived_file (abfd, last)))
766 if (strcmp (mem, last->filename) == 0)
767 break;
768
769 if (!last)
770 {
771 warning (_("\"%s\": member \"%s\" missing."), objname, mem);
772 bfd_close (abfd);
773 return NULL;
774 }
775
776 if (!bfd_check_format (last, bfd_object))
777 {
778 warning (_("\"%s\": member \"%s\" not in executable format: %s."),
779 objname, mem, bfd_errmsg (bfd_get_error ()));
780 bfd_close (last);
781 bfd_close (abfd);
782 return NULL;
783 }
784
785 vp = map_vmap (last, abfd);
786 }
787 else
788 {
789 warning (_("\"%s\": not in executable format: %s."),
790 objname, bfd_errmsg (bfd_get_error ()));
791 bfd_close (abfd);
792 return NULL;
793 }
794 obj = allocate_objfile (vp->bfd, 0);
795 vp->objfile = obj;
796
797 /* Always add symbols for the main objfile. */
798 if (vp == vmap || auto_solib_add)
799 vmap_add_symbols (vp);
800 return vp;
801 }
802 \f
803 /* update VMAP info with ldinfo() information
804 Input is ptr to ldinfo() results. */
805
806 static void
807 vmap_ldinfo (LdInfo *ldi)
808 {
809 struct stat ii, vi;
810 struct vmap *vp;
811 int got_one, retried;
812 int got_exec_file = 0;
813 uint next;
814 int arch64 = ARCH64 ();
815
816 /* For each *ldi, see if we have a corresponding *vp.
817 If so, update the mapping, and symbol table.
818 If not, add an entry and symbol table. */
819
820 do
821 {
822 char *name = LDI_FILENAME (ldi, arch64);
823 char *memb = name + strlen (name) + 1;
824 int fd = LDI_FD (ldi, arch64);
825
826 retried = 0;
827
828 if (fstat (fd, &ii) < 0)
829 {
830 /* The kernel sets ld_info to -1, if the process is still using the
831 object, and the object is removed. Keep the symbol info for the
832 removed object and issue a warning. */
833 warning (_("%s (fd=%d) has disappeared, keeping its symbols"),
834 name, fd);
835 continue;
836 }
837 retry:
838 for (got_one = 0, vp = vmap; vp; vp = vp->nxt)
839 {
840 struct objfile *objfile;
841
842 /* First try to find a `vp', which is the same as in ldinfo.
843 If not the same, just continue and grep the next `vp'. If same,
844 relocate its tstart, tend, dstart, dend values. If no such `vp'
845 found, get out of this for loop, add this ldi entry as a new vmap
846 (add_vmap) and come back, find its `vp' and so on... */
847
848 /* The filenames are not always sufficient to match on. */
849
850 if ((name[0] == '/' && strcmp (name, vp->name) != 0)
851 || (memb[0] && strcmp (memb, vp->member) != 0))
852 continue;
853
854 /* See if we are referring to the same file.
855 We have to check objfile->obfd, symfile.c:reread_symbols might
856 have updated the obfd after a change. */
857 objfile = vp->objfile == NULL ? symfile_objfile : vp->objfile;
858 if (objfile == NULL
859 || objfile->obfd == NULL
860 || bfd_stat (objfile->obfd, &vi) < 0)
861 {
862 warning (_("Unable to stat %s, keeping its symbols"), name);
863 continue;
864 }
865
866 if (ii.st_dev != vi.st_dev || ii.st_ino != vi.st_ino)
867 continue;
868
869 if (!retried)
870 close (fd);
871
872 ++got_one;
873
874 /* Found a corresponding VMAP. Remap! */
875
876 vmap_secs (vp, ldi, arch64);
877
878 /* The objfile is only NULL for the exec file. */
879 if (vp->objfile == NULL)
880 got_exec_file = 1;
881
882 /* relocate symbol table(s). */
883 vmap_symtab (vp);
884
885 /* Announce new object files. Doing this after symbol relocation
886 makes aix-thread.c's job easier. */
887 if (vp->objfile)
888 observer_notify_new_objfile (vp->objfile);
889
890 /* There may be more, so we don't break out of the loop. */
891 }
892
893 /* if there was no matching *vp, we must perforce create the sucker(s) */
894 if (!got_one && !retried)
895 {
896 add_vmap (ldi);
897 ++retried;
898 goto retry;
899 }
900 }
901 while ((next = LDI_NEXT (ldi, arch64))
902 && (ldi = (void *) (next + (char *) ldi)));
903
904 /* If we don't find the symfile_objfile anywhere in the ldinfo, it
905 is unlikely that the symbol file is relocated to the proper
906 address. And we might have attached to a process which is
907 running a different copy of the same executable. */
908 if (symfile_objfile != NULL && !got_exec_file)
909 {
910 warning (_("Symbol file %s\nis not mapped; discarding it.\n\
911 If in fact that file has symbols which the mapped files listed by\n\
912 \"info files\" lack, you can load symbols with the \"symbol-file\" or\n\
913 \"add-symbol-file\" commands (note that you must take care of relocating\n\
914 symbols to the proper address)."),
915 symfile_objfile->name);
916 free_objfile (symfile_objfile);
917 symfile_objfile = NULL;
918 }
919 breakpoint_re_set ();
920 }
921 \f
922 /* As well as symbol tables, exec_sections need relocation. After
923 the inferior process' termination, there will be a relocated symbol
924 table exist with no corresponding inferior process. At that time, we
925 need to use `exec' bfd, rather than the inferior process's memory space
926 to look up symbols.
927
928 `exec_sections' need to be relocated only once, as long as the exec
929 file remains unchanged.
930 */
931
932 static void
933 vmap_exec (void)
934 {
935 static bfd *execbfd;
936 int i;
937
938 if (execbfd == exec_bfd)
939 return;
940
941 execbfd = exec_bfd;
942
943 if (!vmap || !exec_ops.to_sections)
944 error (_("vmap_exec: vmap or exec_ops.to_sections == 0."));
945
946 for (i = 0; &exec_ops.to_sections[i] < exec_ops.to_sections_end; i++)
947 {
948 if (strcmp (".text", exec_ops.to_sections[i].the_bfd_section->name) == 0)
949 {
950 exec_ops.to_sections[i].addr += vmap->tstart - vmap->tvma;
951 exec_ops.to_sections[i].endaddr += vmap->tstart - vmap->tvma;
952 }
953 else if (strcmp (".data",
954 exec_ops.to_sections[i].the_bfd_section->name) == 0)
955 {
956 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
957 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
958 }
959 else if (strcmp (".bss",
960 exec_ops.to_sections[i].the_bfd_section->name) == 0)
961 {
962 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
963 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
964 }
965 }
966 }
967
968 /* Set the current architecture from the host running GDB. Called when
969 starting a child process. */
970
971 static void (*super_create_inferior) (struct target_ops *,char *exec_file,
972 char *allargs, char **env, int from_tty);
973 static void
974 rs6000_create_inferior (struct target_ops * ops, char *exec_file,
975 char *allargs, char **env, int from_tty)
976 {
977 enum bfd_architecture arch;
978 unsigned long mach;
979 bfd abfd;
980 struct gdbarch_info info;
981
982 super_create_inferior (ops, exec_file, allargs, env, from_tty);
983
984 if (__power_rs ())
985 {
986 arch = bfd_arch_rs6000;
987 mach = bfd_mach_rs6k;
988 }
989 else
990 {
991 arch = bfd_arch_powerpc;
992 mach = bfd_mach_ppc;
993 }
994
995 /* FIXME: schauer/2002-02-25:
996 We don't know if we are executing a 32 or 64 bit executable,
997 and have no way to pass the proper word size to rs6000_gdbarch_init.
998 So we have to avoid switching to a new architecture, if the architecture
999 matches already.
1000 Blindly calling rs6000_gdbarch_init used to work in older versions of
1001 GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to
1002 determine the wordsize. */
1003 if (exec_bfd)
1004 {
1005 const struct bfd_arch_info *exec_bfd_arch_info;
1006
1007 exec_bfd_arch_info = bfd_get_arch_info (exec_bfd);
1008 if (arch == exec_bfd_arch_info->arch)
1009 return;
1010 }
1011
1012 bfd_default_set_arch_mach (&abfd, arch, mach);
1013
1014 gdbarch_info_init (&info);
1015 info.bfd_arch_info = bfd_get_arch_info (&abfd);
1016 info.abfd = exec_bfd;
1017
1018 if (!gdbarch_update_p (info))
1019 internal_error (__FILE__, __LINE__,
1020 _("rs6000_create_inferior: failed to select architecture"));
1021 }
1022
1023 \f
1024 /* xcoff_relocate_symtab - hook for symbol table relocation.
1025
1026 This is only applicable to live processes, and is a no-op when
1027 debugging a core file. */
1028
1029 void
1030 xcoff_relocate_symtab (unsigned int pid)
1031 {
1032 int load_segs = 64; /* number of load segments */
1033 int rc;
1034 LdInfo *ldi = NULL;
1035 int arch64 = ARCH64 ();
1036 int ldisize = arch64 ? sizeof (ldi->l64) : sizeof (ldi->l32);
1037 int size;
1038
1039 /* Nothing to do if we are debugging a core file. */
1040 if (!target_has_execution)
1041 return;
1042
1043 do
1044 {
1045 size = load_segs * ldisize;
1046 ldi = (void *) xrealloc (ldi, size);
1047
1048 #if 0
1049 /* According to my humble theory, AIX has some timing problems and
1050 when the user stack grows, kernel doesn't update stack info in time
1051 and ptrace calls step on user stack. That is why we sleep here a
1052 little, and give kernel to update its internals. */
1053 usleep (36000);
1054 #endif
1055
1056 if (arch64)
1057 rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, size, NULL);
1058 else
1059 rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi, size, NULL);
1060
1061 if (rc == -1)
1062 {
1063 if (errno == ENOMEM)
1064 load_segs *= 2;
1065 else
1066 perror_with_name (_("ptrace ldinfo"));
1067 }
1068 else
1069 {
1070 vmap_ldinfo (ldi);
1071 vmap_exec (); /* relocate the exec and core sections as well. */
1072 }
1073 } while (rc == -1);
1074 if (ldi)
1075 xfree (ldi);
1076 }
1077 \f
1078 /* Core file stuff. */
1079
1080 /* Relocate symtabs and read in shared library info, based on symbols
1081 from the core file. */
1082
1083 void
1084 xcoff_relocate_core (struct target_ops *target)
1085 {
1086 struct bfd_section *ldinfo_sec;
1087 int offset = 0;
1088 LdInfo *ldi;
1089 struct vmap *vp;
1090 int arch64 = ARCH64 ();
1091
1092 /* Size of a struct ld_info except for the variable-length filename. */
1093 int nonfilesz = (int)LDI_FILENAME ((LdInfo *)0, arch64);
1094
1095 /* Allocated size of buffer. */
1096 int buffer_size = nonfilesz;
1097 char *buffer = xmalloc (buffer_size);
1098 struct cleanup *old = make_cleanup (free_current_contents, &buffer);
1099
1100 ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
1101 if (ldinfo_sec == NULL)
1102 {
1103 bfd_err:
1104 fprintf_filtered (gdb_stderr, "Couldn't get ldinfo from core file: %s\n",
1105 bfd_errmsg (bfd_get_error ()));
1106 do_cleanups (old);
1107 return;
1108 }
1109 do
1110 {
1111 int i;
1112 int names_found = 0;
1113
1114 /* Read in everything but the name. */
1115 if (bfd_get_section_contents (core_bfd, ldinfo_sec, buffer,
1116 offset, nonfilesz) == 0)
1117 goto bfd_err;
1118
1119 /* Now the name. */
1120 i = nonfilesz;
1121 do
1122 {
1123 if (i == buffer_size)
1124 {
1125 buffer_size *= 2;
1126 buffer = xrealloc (buffer, buffer_size);
1127 }
1128 if (bfd_get_section_contents (core_bfd, ldinfo_sec, &buffer[i],
1129 offset + i, 1) == 0)
1130 goto bfd_err;
1131 if (buffer[i++] == '\0')
1132 ++names_found;
1133 }
1134 while (names_found < 2);
1135
1136 ldi = (LdInfo *) buffer;
1137
1138 /* Can't use a file descriptor from the core file; need to open it. */
1139 if (arch64)
1140 ldi->l64.ldinfo_fd = -1;
1141 else
1142 ldi->l32.ldinfo_fd = -1;
1143
1144 /* The first ldinfo is for the exec file, allocated elsewhere. */
1145 if (offset == 0 && vmap != NULL)
1146 vp = vmap;
1147 else
1148 vp = add_vmap (ldi);
1149
1150 /* Process next shared library upon error. */
1151 offset += LDI_NEXT (ldi, arch64);
1152 if (vp == NULL)
1153 continue;
1154
1155 vmap_secs (vp, ldi, arch64);
1156
1157 /* Unless this is the exec file,
1158 add our sections to the section table for the core target. */
1159 if (vp != vmap)
1160 {
1161 struct target_section *stp;
1162
1163 stp = deprecated_core_resize_section_table (2);
1164
1165 stp->bfd = vp->bfd;
1166 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".text");
1167 stp->addr = vp->tstart;
1168 stp->endaddr = vp->tend;
1169 stp++;
1170
1171 stp->bfd = vp->bfd;
1172 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".data");
1173 stp->addr = vp->dstart;
1174 stp->endaddr = vp->dend;
1175 }
1176
1177 vmap_symtab (vp);
1178
1179 if (vp != vmap && vp->objfile)
1180 observer_notify_new_objfile (vp->objfile);
1181 }
1182 while (LDI_NEXT (ldi, arch64) != 0);
1183 vmap_exec ();
1184 breakpoint_re_set ();
1185 do_cleanups (old);
1186 }
1187 \f
1188 /* Under AIX, we have to pass the correct TOC pointer to a function
1189 when calling functions in the inferior.
1190 We try to find the relative toc offset of the objfile containing PC
1191 and add the current load address of the data segment from the vmap. */
1192
1193 static CORE_ADDR
1194 find_toc_address (CORE_ADDR pc)
1195 {
1196 struct vmap *vp;
1197
1198 for (vp = vmap; vp; vp = vp->nxt)
1199 {
1200 if (pc >= vp->tstart && pc < vp->tend)
1201 {
1202 /* vp->objfile is only NULL for the exec file. */
1203 return vp->dstart + xcoff_get_toc_offset (vp->objfile == NULL
1204 ? symfile_objfile
1205 : vp->objfile);
1206 }
1207 }
1208 error (_("Unable to find TOC entry for pc %s."), hex_string (pc));
1209 }
1210 \f
1211
1212 void
1213 _initialize_rs6000_nat (void)
1214 {
1215 struct target_ops *t;
1216
1217 t = inf_ptrace_target ();
1218 t->to_fetch_registers = rs6000_fetch_inferior_registers;
1219 t->to_store_registers = rs6000_store_inferior_registers;
1220 t->to_xfer_partial = rs6000_xfer_partial;
1221
1222 super_create_inferior = t->to_create_inferior;
1223 t->to_create_inferior = rs6000_create_inferior;
1224
1225 t->to_wait = rs6000_wait;
1226
1227 add_target (t);
1228
1229 /* Initialize hook in rs6000-tdep.c for determining the TOC address
1230 when calling functions in the inferior. */
1231 rs6000_find_toc_address_hook = find_toc_address;
1232 }
This page took 0.057092 seconds and 5 git commands to generate.