Delete rs6000-nat.c:fixup_breakpoints extern declaration.
[deliverable/binutils-gdb.git] / gdb / rs6000-nat.c
1 /* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "gdbcore.h"
24 #include "xcoffsolib.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "libbfd.h" /* For bfd_default_set_arch_mach (FIXME) */
28 #include "bfd.h"
29 #include "exceptions.h"
30 #include "gdb-stabs.h"
31 #include "regcache.h"
32 #include "arch-utils.h"
33 #include "inf-child.h"
34 #include "inf-ptrace.h"
35 #include "ppc-tdep.h"
36 #include "rs6000-tdep.h"
37 #include "exec.h"
38 #include "observer.h"
39 #include "xcoffread.h"
40
41 #include <sys/ptrace.h>
42 #include <sys/reg.h>
43
44 #include <sys/param.h>
45 #include <sys/dir.h>
46 #include <sys/user.h>
47 #include <signal.h>
48 #include <sys/ioctl.h>
49 #include <fcntl.h>
50 #include <errno.h>
51
52 #include <a.out.h>
53 #include <sys/file.h>
54 #include "gdb_stat.h"
55 #include "gdb_bfd.h"
56 #include <sys/core.h>
57 #define __LDINFO_PTRACE32__ /* for __ld_info32 */
58 #define __LDINFO_PTRACE64__ /* for __ld_info64 */
59 #include <sys/ldr.h>
60 #include <sys/systemcfg.h>
61
62 /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
63 debugging 32-bit and 64-bit processes. Define a typedef and macros for
64 accessing fields in the appropriate structures. */
65
66 /* In 32-bit compilation mode (which is the only mode from which ptrace()
67 works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
68
69 #ifdef __ld_info32
70 # define ARCH3264
71 #endif
72
73 /* Return whether the current architecture is 64-bit. */
74
75 #ifndef ARCH3264
76 # define ARCH64() 0
77 #else
78 # define ARCH64() (register_size (target_gdbarch (), 0) == 8)
79 #endif
80
81 /* Union of 32-bit and 64-bit versions of ld_info. */
82
83 typedef union {
84 #ifndef ARCH3264
85 struct ld_info l32;
86 struct ld_info l64;
87 #else
88 struct __ld_info32 l32;
89 struct __ld_info64 l64;
90 #endif
91 } LdInfo;
92
93 /* If compiling with 32-bit and 64-bit debugging capability (e.g. AIX 4.x),
94 declare and initialize a variable named VAR suitable for use as the arch64
95 parameter to the various LDI_*() macros. */
96
97 #ifndef ARCH3264
98 # define ARCH64_DECL(var)
99 #else
100 # define ARCH64_DECL(var) int var = ARCH64 ()
101 #endif
102
103 /* Return LDI's FIELD for a 64-bit process if ARCH64 and for a 32-bit process
104 otherwise. This technique only works for FIELDs with the same data type in
105 32-bit and 64-bit versions of ld_info. */
106
107 #ifndef ARCH3264
108 # define LDI_FIELD(ldi, arch64, field) (ldi)->l32.ldinfo_##field
109 #else
110 # define LDI_FIELD(ldi, arch64, field) \
111 (arch64 ? (ldi)->l64.ldinfo_##field : (ldi)->l32.ldinfo_##field)
112 #endif
113
114 /* Return various LDI fields for a 64-bit process if ARCH64 and for a 32-bit
115 process otherwise. */
116
117 #define LDI_NEXT(ldi, arch64) LDI_FIELD(ldi, arch64, next)
118 #define LDI_FD(ldi, arch64) LDI_FIELD(ldi, arch64, fd)
119 #define LDI_FILENAME(ldi, arch64) LDI_FIELD(ldi, arch64, filename)
120
121 extern struct vmap *map_vmap (bfd * bf, bfd * arch);
122
123 static void vmap_exec (void);
124
125 static void vmap_ldinfo (LdInfo *);
126
127 static struct vmap *add_vmap (LdInfo *);
128
129 static int objfile_symbol_add (void *);
130
131 static void vmap_symtab (struct vmap *);
132
133 static void exec_one_dummy_insn (struct regcache *);
134
135 /* Given REGNO, a gdb register number, return the corresponding
136 number suitable for use as a ptrace() parameter. Return -1 if
137 there's no suitable mapping. Also, set the int pointed to by
138 ISFLOAT to indicate whether REGNO is a floating point register. */
139
140 static int
141 regmap (struct gdbarch *gdbarch, int regno, int *isfloat)
142 {
143 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
144
145 *isfloat = 0;
146 if (tdep->ppc_gp0_regnum <= regno
147 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
148 return regno;
149 else if (tdep->ppc_fp0_regnum >= 0
150 && tdep->ppc_fp0_regnum <= regno
151 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
152 {
153 *isfloat = 1;
154 return regno - tdep->ppc_fp0_regnum + FPR0;
155 }
156 else if (regno == gdbarch_pc_regnum (gdbarch))
157 return IAR;
158 else if (regno == tdep->ppc_ps_regnum)
159 return MSR;
160 else if (regno == tdep->ppc_cr_regnum)
161 return CR;
162 else if (regno == tdep->ppc_lr_regnum)
163 return LR;
164 else if (regno == tdep->ppc_ctr_regnum)
165 return CTR;
166 else if (regno == tdep->ppc_xer_regnum)
167 return XER;
168 else if (tdep->ppc_fpscr_regnum >= 0
169 && regno == tdep->ppc_fpscr_regnum)
170 return FPSCR;
171 else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum)
172 return MQ;
173 else
174 return -1;
175 }
176
177 /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
178
179 static int
180 rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf)
181 {
182 int ret = ptrace (req, id, (int *)addr, data, buf);
183 #if 0
184 printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
185 req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
186 #endif
187 return ret;
188 }
189
190 /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
191
192 static int
193 rs6000_ptrace64 (int req, int id, long long addr, int data, void *buf)
194 {
195 #ifdef ARCH3264
196 int ret = ptracex (req, id, addr, data, buf);
197 #else
198 int ret = 0;
199 #endif
200 #if 0
201 printf ("rs6000_ptrace64 (%d, %d, %s, %08x, 0x%x) = 0x%x\n",
202 req, id, hex_string (addr), data, (unsigned int)buf, ret);
203 #endif
204 return ret;
205 }
206
207 /* Fetch register REGNO from the inferior. */
208
209 static void
210 fetch_register (struct regcache *regcache, int regno)
211 {
212 struct gdbarch *gdbarch = get_regcache_arch (regcache);
213 int addr[MAX_REGISTER_SIZE];
214 int nr, isfloat;
215
216 /* Retrieved values may be -1, so infer errors from errno. */
217 errno = 0;
218
219 nr = regmap (gdbarch, regno, &isfloat);
220
221 /* Floating-point registers. */
222 if (isfloat)
223 rs6000_ptrace32 (PT_READ_FPR, PIDGET (inferior_ptid), addr, nr, 0);
224
225 /* Bogus register number. */
226 else if (nr < 0)
227 {
228 if (regno >= gdbarch_num_regs (gdbarch))
229 fprintf_unfiltered (gdb_stderr,
230 "gdb error: register no %d not implemented.\n",
231 regno);
232 return;
233 }
234
235 /* Fixed-point registers. */
236 else
237 {
238 if (!ARCH64 ())
239 *addr = rs6000_ptrace32 (PT_READ_GPR, PIDGET (inferior_ptid),
240 (int *) nr, 0, 0);
241 else
242 {
243 /* PT_READ_GPR requires the buffer parameter to point to long long,
244 even if the register is really only 32 bits. */
245 long long buf;
246 rs6000_ptrace64 (PT_READ_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
247 if (register_size (gdbarch, regno) == 8)
248 memcpy (addr, &buf, 8);
249 else
250 *addr = buf;
251 }
252 }
253
254 if (!errno)
255 regcache_raw_supply (regcache, regno, (char *) addr);
256 else
257 {
258 #if 0
259 /* FIXME: this happens 3 times at the start of each 64-bit program. */
260 perror (_("ptrace read"));
261 #endif
262 errno = 0;
263 }
264 }
265
266 /* Store register REGNO back into the inferior. */
267
268 static void
269 store_register (struct regcache *regcache, int regno)
270 {
271 struct gdbarch *gdbarch = get_regcache_arch (regcache);
272 int addr[MAX_REGISTER_SIZE];
273 int nr, isfloat;
274
275 /* Fetch the register's value from the register cache. */
276 regcache_raw_collect (regcache, regno, addr);
277
278 /* -1 can be a successful return value, so infer errors from errno. */
279 errno = 0;
280
281 nr = regmap (gdbarch, regno, &isfloat);
282
283 /* Floating-point registers. */
284 if (isfloat)
285 rs6000_ptrace32 (PT_WRITE_FPR, PIDGET (inferior_ptid), addr, nr, 0);
286
287 /* Bogus register number. */
288 else if (nr < 0)
289 {
290 if (regno >= gdbarch_num_regs (gdbarch))
291 fprintf_unfiltered (gdb_stderr,
292 "gdb error: register no %d not implemented.\n",
293 regno);
294 }
295
296 /* Fixed-point registers. */
297 else
298 {
299 if (regno == gdbarch_sp_regnum (gdbarch))
300 /* Execute one dummy instruction (which is a breakpoint) in inferior
301 process to give kernel a chance to do internal housekeeping.
302 Otherwise the following ptrace(2) calls will mess up user stack
303 since kernel will get confused about the bottom of the stack
304 (%sp). */
305 exec_one_dummy_insn (regcache);
306
307 /* The PT_WRITE_GPR operation is rather odd. For 32-bit inferiors,
308 the register's value is passed by value, but for 64-bit inferiors,
309 the address of a buffer containing the value is passed. */
310 if (!ARCH64 ())
311 rs6000_ptrace32 (PT_WRITE_GPR, PIDGET (inferior_ptid),
312 (int *) nr, *addr, 0);
313 else
314 {
315 /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
316 area, even if the register is really only 32 bits. */
317 long long buf;
318 if (register_size (gdbarch, regno) == 8)
319 memcpy (&buf, addr, 8);
320 else
321 buf = *addr;
322 rs6000_ptrace64 (PT_WRITE_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
323 }
324 }
325
326 if (errno)
327 {
328 perror (_("ptrace write"));
329 errno = 0;
330 }
331 }
332
333 /* Read from the inferior all registers if REGNO == -1 and just register
334 REGNO otherwise. */
335
336 static void
337 rs6000_fetch_inferior_registers (struct target_ops *ops,
338 struct regcache *regcache, int regno)
339 {
340 struct gdbarch *gdbarch = get_regcache_arch (regcache);
341 if (regno != -1)
342 fetch_register (regcache, regno);
343
344 else
345 {
346 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
347
348 /* Read 32 general purpose registers. */
349 for (regno = tdep->ppc_gp0_regnum;
350 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
351 regno++)
352 {
353 fetch_register (regcache, regno);
354 }
355
356 /* Read general purpose floating point registers. */
357 if (tdep->ppc_fp0_regnum >= 0)
358 for (regno = 0; regno < ppc_num_fprs; regno++)
359 fetch_register (regcache, tdep->ppc_fp0_regnum + regno);
360
361 /* Read special registers. */
362 fetch_register (regcache, gdbarch_pc_regnum (gdbarch));
363 fetch_register (regcache, tdep->ppc_ps_regnum);
364 fetch_register (regcache, tdep->ppc_cr_regnum);
365 fetch_register (regcache, tdep->ppc_lr_regnum);
366 fetch_register (regcache, tdep->ppc_ctr_regnum);
367 fetch_register (regcache, tdep->ppc_xer_regnum);
368 if (tdep->ppc_fpscr_regnum >= 0)
369 fetch_register (regcache, tdep->ppc_fpscr_regnum);
370 if (tdep->ppc_mq_regnum >= 0)
371 fetch_register (regcache, tdep->ppc_mq_regnum);
372 }
373 }
374
375 /* Store our register values back into the inferior.
376 If REGNO is -1, do this for all registers.
377 Otherwise, REGNO specifies which register (so we can save time). */
378
379 static void
380 rs6000_store_inferior_registers (struct target_ops *ops,
381 struct regcache *regcache, int regno)
382 {
383 struct gdbarch *gdbarch = get_regcache_arch (regcache);
384 if (regno != -1)
385 store_register (regcache, regno);
386
387 else
388 {
389 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
390
391 /* Write general purpose registers first. */
392 for (regno = tdep->ppc_gp0_regnum;
393 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
394 regno++)
395 {
396 store_register (regcache, regno);
397 }
398
399 /* Write floating point registers. */
400 if (tdep->ppc_fp0_regnum >= 0)
401 for (regno = 0; regno < ppc_num_fprs; regno++)
402 store_register (regcache, tdep->ppc_fp0_regnum + regno);
403
404 /* Write special registers. */
405 store_register (regcache, gdbarch_pc_regnum (gdbarch));
406 store_register (regcache, tdep->ppc_ps_regnum);
407 store_register (regcache, tdep->ppc_cr_regnum);
408 store_register (regcache, tdep->ppc_lr_regnum);
409 store_register (regcache, tdep->ppc_ctr_regnum);
410 store_register (regcache, tdep->ppc_xer_regnum);
411 if (tdep->ppc_fpscr_regnum >= 0)
412 store_register (regcache, tdep->ppc_fpscr_regnum);
413 if (tdep->ppc_mq_regnum >= 0)
414 store_register (regcache, tdep->ppc_mq_regnum);
415 }
416 }
417
418
419 /* Attempt a transfer all LEN bytes starting at OFFSET between the
420 inferior's OBJECT:ANNEX space and GDB's READBUF/WRITEBUF buffer.
421 Return the number of bytes actually transferred. */
422
423 static LONGEST
424 rs6000_xfer_partial (struct target_ops *ops, enum target_object object,
425 const char *annex, gdb_byte *readbuf,
426 const gdb_byte *writebuf,
427 ULONGEST offset, LONGEST len)
428 {
429 pid_t pid = ptid_get_pid (inferior_ptid);
430 int arch64 = ARCH64 ();
431
432 switch (object)
433 {
434 case TARGET_OBJECT_MEMORY:
435 {
436 union
437 {
438 PTRACE_TYPE_RET word;
439 gdb_byte byte[sizeof (PTRACE_TYPE_RET)];
440 } buffer;
441 ULONGEST rounded_offset;
442 LONGEST partial_len;
443
444 /* Round the start offset down to the next long word
445 boundary. */
446 rounded_offset = offset & -(ULONGEST) sizeof (PTRACE_TYPE_RET);
447
448 /* Since ptrace will transfer a single word starting at that
449 rounded_offset the partial_len needs to be adjusted down to
450 that (remember this function only does a single transfer).
451 Should the required length be even less, adjust it down
452 again. */
453 partial_len = (rounded_offset + sizeof (PTRACE_TYPE_RET)) - offset;
454 if (partial_len > len)
455 partial_len = len;
456
457 if (writebuf)
458 {
459 /* If OFFSET:PARTIAL_LEN is smaller than
460 ROUNDED_OFFSET:WORDSIZE then a read/modify write will
461 be needed. Read in the entire word. */
462 if (rounded_offset < offset
463 || (offset + partial_len
464 < rounded_offset + sizeof (PTRACE_TYPE_RET)))
465 {
466 /* Need part of initial word -- fetch it. */
467 if (arch64)
468 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
469 rounded_offset, 0, NULL);
470 else
471 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
472 (int *) (uintptr_t)
473 rounded_offset,
474 0, NULL);
475 }
476
477 /* Copy data to be written over corresponding part of
478 buffer. */
479 memcpy (buffer.byte + (offset - rounded_offset),
480 writebuf, partial_len);
481
482 errno = 0;
483 if (arch64)
484 rs6000_ptrace64 (PT_WRITE_D, pid,
485 rounded_offset, buffer.word, NULL);
486 else
487 rs6000_ptrace32 (PT_WRITE_D, pid,
488 (int *) (uintptr_t) rounded_offset,
489 buffer.word, NULL);
490 if (errno)
491 return 0;
492 }
493
494 if (readbuf)
495 {
496 errno = 0;
497 if (arch64)
498 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
499 rounded_offset, 0, NULL);
500 else
501 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
502 (int *)(uintptr_t)rounded_offset,
503 0, NULL);
504 if (errno)
505 return 0;
506
507 /* Copy appropriate bytes out of the buffer. */
508 memcpy (readbuf, buffer.byte + (offset - rounded_offset),
509 partial_len);
510 }
511
512 return partial_len;
513 }
514
515 default:
516 return -1;
517 }
518 }
519
520 /* Wait for the child specified by PTID to do something. Return the
521 process ID of the child, or MINUS_ONE_PTID in case of error; store
522 the status in *OURSTATUS. */
523
524 static ptid_t
525 rs6000_wait (struct target_ops *ops,
526 ptid_t ptid, struct target_waitstatus *ourstatus, int options)
527 {
528 pid_t pid;
529 int status, save_errno;
530
531 do
532 {
533 set_sigint_trap ();
534
535 do
536 {
537 pid = waitpid (ptid_get_pid (ptid), &status, 0);
538 save_errno = errno;
539 }
540 while (pid == -1 && errno == EINTR);
541
542 clear_sigint_trap ();
543
544 if (pid == -1)
545 {
546 fprintf_unfiltered (gdb_stderr,
547 _("Child process unexpectedly missing: %s.\n"),
548 safe_strerror (save_errno));
549
550 /* Claim it exited with unknown signal. */
551 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
552 ourstatus->value.sig = GDB_SIGNAL_UNKNOWN;
553 return inferior_ptid;
554 }
555
556 /* Ignore terminated detached child processes. */
557 if (!WIFSTOPPED (status) && pid != ptid_get_pid (inferior_ptid))
558 pid = -1;
559 }
560 while (pid == -1);
561
562 /* AIX has a couple of strange returns from wait(). */
563
564 /* stop after load" status. */
565 if (status == 0x57c)
566 ourstatus->kind = TARGET_WAITKIND_LOADED;
567 /* signal 0. I have no idea why wait(2) returns with this status word. */
568 else if (status == 0x7f)
569 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
570 /* A normal waitstatus. Let the usual macros deal with it. */
571 else
572 store_waitstatus (ourstatus, status);
573
574 return pid_to_ptid (pid);
575 }
576
577 /* Execute one dummy breakpoint instruction. This way we give the kernel
578 a chance to do some housekeeping and update inferior's internal data,
579 including u_area. */
580
581 static void
582 exec_one_dummy_insn (struct regcache *regcache)
583 {
584 #define DUMMY_INSN_ADDR AIX_TEXT_SEGMENT_BASE+0x200
585
586 struct gdbarch *gdbarch = get_regcache_arch (regcache);
587 int ret, status, pid;
588 CORE_ADDR prev_pc;
589 void *bp;
590
591 /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We
592 assume that this address will never be executed again by the real
593 code. */
594
595 bp = deprecated_insert_raw_breakpoint (gdbarch, NULL, DUMMY_INSN_ADDR);
596
597 /* You might think this could be done with a single ptrace call, and
598 you'd be correct for just about every platform I've ever worked
599 on. However, rs6000-ibm-aix4.1.3 seems to have screwed this up --
600 the inferior never hits the breakpoint (it's also worth noting
601 powerpc-ibm-aix4.1.3 works correctly). */
602 prev_pc = regcache_read_pc (regcache);
603 regcache_write_pc (regcache, DUMMY_INSN_ADDR);
604 if (ARCH64 ())
605 ret = rs6000_ptrace64 (PT_CONTINUE, PIDGET (inferior_ptid), 1, 0, NULL);
606 else
607 ret = rs6000_ptrace32 (PT_CONTINUE, PIDGET (inferior_ptid),
608 (int *) 1, 0, NULL);
609
610 if (ret != 0)
611 perror (_("pt_continue"));
612
613 do
614 {
615 pid = waitpid (PIDGET (inferior_ptid), &status, 0);
616 }
617 while (pid != PIDGET (inferior_ptid));
618
619 regcache_write_pc (regcache, prev_pc);
620 deprecated_remove_raw_breakpoint (gdbarch, bp);
621 }
622 \f
623
624 /* Copy information about text and data sections from LDI to VP for a 64-bit
625 process if ARCH64 and for a 32-bit process otherwise. */
626
627 static void
628 vmap_secs (struct vmap *vp, LdInfo *ldi, int arch64)
629 {
630 if (arch64)
631 {
632 vp->tstart = (CORE_ADDR) ldi->l64.ldinfo_textorg;
633 vp->tend = vp->tstart + ldi->l64.ldinfo_textsize;
634 vp->dstart = (CORE_ADDR) ldi->l64.ldinfo_dataorg;
635 vp->dend = vp->dstart + ldi->l64.ldinfo_datasize;
636 }
637 else
638 {
639 vp->tstart = (unsigned long) ldi->l32.ldinfo_textorg;
640 vp->tend = vp->tstart + ldi->l32.ldinfo_textsize;
641 vp->dstart = (unsigned long) ldi->l32.ldinfo_dataorg;
642 vp->dend = vp->dstart + ldi->l32.ldinfo_datasize;
643 }
644
645 /* The run time loader maps the file header in addition to the text
646 section and returns a pointer to the header in ldinfo_textorg.
647 Adjust the text start address to point to the real start address
648 of the text section. */
649 vp->tstart += vp->toffs;
650 }
651
652 /* If the .bss section's VMA is set to an address located before
653 the end of the .data section, causing the two sections to overlap,
654 return the overlap in bytes. Otherwise, return zero.
655
656 Motivation:
657
658 The GNU linker sometimes sets the start address of the .bss session
659 before the end of the .data section, making the 2 sections overlap.
660 The loader appears to handle this situation gracefully, by simply
661 loading the bss section right after the end of the .data section.
662
663 This means that the .data and the .bss sections are sometimes
664 no longer relocated by the same amount. The problem is that
665 the ldinfo data does not contain any information regarding
666 the relocation of the .bss section, assuming that it would be
667 identical to the information provided for the .data section
668 (this is what would normally happen if the program was linked
669 correctly).
670
671 GDB therefore needs to detect those cases, and make the corresponding
672 adjustment to the .bss section offset computed from the ldinfo data
673 when necessary. This function returns the adjustment amount (or
674 zero when no adjustment is needed). */
675
676 static CORE_ADDR
677 bss_data_overlap (struct objfile *objfile)
678 {
679 struct obj_section *osect;
680 struct bfd_section *data = NULL;
681 struct bfd_section *bss = NULL;
682
683 /* First, find the .data and .bss sections. */
684 ALL_OBJFILE_OSECTIONS (objfile, osect)
685 {
686 if (strcmp (bfd_section_name (objfile->obfd,
687 osect->the_bfd_section),
688 ".data") == 0)
689 data = osect->the_bfd_section;
690 else if (strcmp (bfd_section_name (objfile->obfd,
691 osect->the_bfd_section),
692 ".bss") == 0)
693 bss = osect->the_bfd_section;
694 }
695
696 /* If either section is not defined, there can be no overlap. */
697 if (data == NULL || bss == NULL)
698 return 0;
699
700 /* Assume the problem only occurs with linkers that place the .bss
701 section after the .data section (the problem has only been
702 observed when using the GNU linker, and the default linker
703 script always places the .data and .bss sections in that order). */
704 if (bfd_section_vma (objfile->obfd, bss)
705 < bfd_section_vma (objfile->obfd, data))
706 return 0;
707
708 if (bfd_section_vma (objfile->obfd, bss)
709 < bfd_section_vma (objfile->obfd, data) + bfd_get_section_size (data))
710 return ((bfd_section_vma (objfile->obfd, data)
711 + bfd_get_section_size (data))
712 - bfd_section_vma (objfile->obfd, bss));
713
714 return 0;
715 }
716
717 /* Handle symbol translation on vmapping. */
718
719 static void
720 vmap_symtab (struct vmap *vp)
721 {
722 struct objfile *objfile;
723 struct section_offsets *new_offsets;
724 int i;
725
726 objfile = vp->objfile;
727 if (objfile == NULL)
728 {
729 /* OK, it's not an objfile we opened ourselves.
730 Currently, that can only happen with the exec file, so
731 relocate the symbols for the symfile. */
732 if (symfile_objfile == NULL)
733 return;
734 objfile = symfile_objfile;
735 }
736 else if (!vp->loaded)
737 /* If symbols are not yet loaded, offsets are not yet valid. */
738 return;
739
740 new_offsets =
741 (struct section_offsets *)
742 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
743
744 for (i = 0; i < objfile->num_sections; ++i)
745 new_offsets->offsets[i] = ANOFFSET (objfile->section_offsets, i);
746
747 /* The symbols in the object file are linked to the VMA of the section,
748 relocate them VMA relative. */
749 new_offsets->offsets[SECT_OFF_TEXT (objfile)] = vp->tstart - vp->tvma;
750 new_offsets->offsets[SECT_OFF_DATA (objfile)] = vp->dstart - vp->dvma;
751 new_offsets->offsets[SECT_OFF_BSS (objfile)] = vp->dstart - vp->dvma;
752
753 /* Perform the same adjustment as the loader if the .data and
754 .bss sections overlap. */
755 new_offsets->offsets[SECT_OFF_BSS (objfile)] += bss_data_overlap (objfile);
756
757 objfile_relocate (objfile, new_offsets);
758 }
759 \f
760 /* Add symbols for an objfile. */
761
762 static int
763 objfile_symbol_add (void *arg)
764 {
765 struct objfile *obj = (struct objfile *) arg;
766
767 syms_from_objfile (obj, NULL, 0, 0, 0);
768 new_symfile_objfile (obj, 0);
769 return 1;
770 }
771
772 /* Add symbols for a vmap. Return zero upon error. */
773
774 int
775 vmap_add_symbols (struct vmap *vp)
776 {
777 if (catch_errors (objfile_symbol_add, vp->objfile,
778 "Error while reading shared library symbols:\n",
779 RETURN_MASK_ALL))
780 {
781 /* Note this is only done if symbol reading was successful. */
782 vp->loaded = 1;
783 vmap_symtab (vp);
784 return 1;
785 }
786 return 0;
787 }
788
789 /* Add a new vmap entry based on ldinfo() information.
790
791 If ldi->ldinfo_fd is not valid (e.g. this struct ld_info is from a
792 core file), the caller should set it to -1, and we will open the file.
793
794 Return the vmap new entry. */
795
796 static struct vmap *
797 add_vmap (LdInfo *ldi)
798 {
799 bfd *abfd, *last;
800 char *mem, *filename;
801 struct objfile *obj;
802 struct vmap *vp;
803 int fd;
804 ARCH64_DECL (arch64);
805
806 /* This ldi structure was allocated using alloca() in
807 xcoff_relocate_symtab(). Now we need to have persistent object
808 and member names, so we should save them. */
809
810 filename = LDI_FILENAME (ldi, arch64);
811 mem = filename + strlen (filename) + 1;
812 mem = xstrdup (mem);
813
814 fd = LDI_FD (ldi, arch64);
815 abfd = gdb_bfd_open (filename, gnutarget, fd < 0 ? -1 : fd);
816 if (!abfd)
817 {
818 warning (_("Could not open `%s' as an executable file: %s"),
819 filename, bfd_errmsg (bfd_get_error ()));
820 return NULL;
821 }
822
823 /* Make sure we have an object file. */
824
825 if (bfd_check_format (abfd, bfd_object))
826 vp = map_vmap (abfd, 0);
827
828 else if (bfd_check_format (abfd, bfd_archive))
829 {
830 last = gdb_bfd_openr_next_archived_file (abfd, NULL);
831 while (last != NULL)
832 {
833 bfd *next;
834
835 if (strcmp (mem, last->filename) == 0)
836 break;
837
838 next = gdb_bfd_openr_next_archived_file (abfd, last);
839 gdb_bfd_unref (last);
840 last = next;
841 }
842
843 if (!last)
844 {
845 warning (_("\"%s\": member \"%s\" missing."), filename, mem);
846 gdb_bfd_unref (abfd);
847 return NULL;
848 }
849
850 if (!bfd_check_format (last, bfd_object))
851 {
852 warning (_("\"%s\": member \"%s\" not in executable format: %s."),
853 filename, mem, bfd_errmsg (bfd_get_error ()));
854 gdb_bfd_unref (last);
855 gdb_bfd_unref (abfd);
856 return NULL;
857 }
858
859 vp = map_vmap (last, abfd);
860 /* map_vmap acquired a reference to LAST, so we can release
861 ours. */
862 gdb_bfd_unref (last);
863 }
864 else
865 {
866 warning (_("\"%s\": not in executable format: %s."),
867 filename, bfd_errmsg (bfd_get_error ()));
868 gdb_bfd_unref (abfd);
869 return NULL;
870 }
871 obj = allocate_objfile (vp->bfd, 0);
872 vp->objfile = obj;
873
874 /* Always add symbols for the main objfile. */
875 if (vp == vmap || auto_solib_add)
876 vmap_add_symbols (vp);
877
878 /* Anything needing a reference to ABFD has already acquired it, so
879 release our local reference. */
880 gdb_bfd_unref (abfd);
881
882 return vp;
883 }
884 \f
885 /* update VMAP info with ldinfo() information
886 Input is ptr to ldinfo() results. */
887
888 static void
889 vmap_ldinfo (LdInfo *ldi)
890 {
891 struct stat ii, vi;
892 struct vmap *vp;
893 int got_one, retried;
894 int got_exec_file = 0;
895 uint next;
896 int arch64 = ARCH64 ();
897
898 /* For each *ldi, see if we have a corresponding *vp.
899 If so, update the mapping, and symbol table.
900 If not, add an entry and symbol table. */
901
902 do
903 {
904 char *name = LDI_FILENAME (ldi, arch64);
905 char *memb = name + strlen (name) + 1;
906 int fd = LDI_FD (ldi, arch64);
907
908 retried = 0;
909
910 if (fstat (fd, &ii) < 0)
911 {
912 /* The kernel sets ld_info to -1, if the process is still using the
913 object, and the object is removed. Keep the symbol info for the
914 removed object and issue a warning. */
915 warning (_("%s (fd=%d) has disappeared, keeping its symbols"),
916 name, fd);
917 continue;
918 }
919 retry:
920 for (got_one = 0, vp = vmap; vp; vp = vp->nxt)
921 {
922 struct objfile *objfile;
923
924 /* First try to find a `vp', which is the same as in ldinfo.
925 If not the same, just continue and grep the next `vp'. If same,
926 relocate its tstart, tend, dstart, dend values. If no such `vp'
927 found, get out of this for loop, add this ldi entry as a new vmap
928 (add_vmap) and come back, find its `vp' and so on... */
929
930 /* The filenames are not always sufficient to match on. */
931
932 if ((name[0] == '/' && strcmp (name, vp->name) != 0)
933 || (memb[0] && strcmp (memb, vp->member) != 0))
934 continue;
935
936 /* See if we are referring to the same file.
937 We have to check objfile->obfd, symfile.c:reread_symbols might
938 have updated the obfd after a change. */
939 objfile = vp->objfile == NULL ? symfile_objfile : vp->objfile;
940 if (objfile == NULL
941 || objfile->obfd == NULL
942 || bfd_stat (objfile->obfd, &vi) < 0)
943 {
944 warning (_("Unable to stat %s, keeping its symbols"), name);
945 continue;
946 }
947
948 if (ii.st_dev != vi.st_dev || ii.st_ino != vi.st_ino)
949 continue;
950
951 if (!retried)
952 close (fd);
953
954 ++got_one;
955
956 /* Found a corresponding VMAP. Remap! */
957
958 vmap_secs (vp, ldi, arch64);
959
960 /* The objfile is only NULL for the exec file. */
961 if (vp->objfile == NULL)
962 got_exec_file = 1;
963
964 /* relocate symbol table(s). */
965 vmap_symtab (vp);
966
967 /* Announce new object files. Doing this after symbol relocation
968 makes aix-thread.c's job easier. */
969 if (vp->objfile)
970 observer_notify_new_objfile (vp->objfile);
971
972 /* There may be more, so we don't break out of the loop. */
973 }
974
975 /* If there was no matching *vp, we must perforce create the
976 sucker(s). */
977 if (!got_one && !retried)
978 {
979 add_vmap (ldi);
980 ++retried;
981 goto retry;
982 }
983 }
984 while ((next = LDI_NEXT (ldi, arch64))
985 && (ldi = (void *) (next + (char *) ldi)));
986
987 /* If we don't find the symfile_objfile anywhere in the ldinfo, it
988 is unlikely that the symbol file is relocated to the proper
989 address. And we might have attached to a process which is
990 running a different copy of the same executable. */
991 if (symfile_objfile != NULL && !got_exec_file)
992 {
993 warning (_("Symbol file %s\nis not mapped; discarding it.\n\
994 If in fact that file has symbols which the mapped files listed by\n\
995 \"info files\" lack, you can load symbols with the \"symbol-file\" or\n\
996 \"add-symbol-file\" commands (note that you must take care of relocating\n\
997 symbols to the proper address)."),
998 symfile_objfile->name);
999 free_objfile (symfile_objfile);
1000 gdb_assert (symfile_objfile == NULL);
1001 }
1002 breakpoint_re_set ();
1003 }
1004 \f
1005 /* As well as symbol tables, exec_sections need relocation. After
1006 the inferior process' termination, there will be a relocated symbol
1007 table exist with no corresponding inferior process. At that time, we
1008 need to use `exec' bfd, rather than the inferior process's memory space
1009 to look up symbols.
1010
1011 `exec_sections' need to be relocated only once, as long as the exec
1012 file remains unchanged. */
1013
1014 static void
1015 vmap_exec (void)
1016 {
1017 static bfd *execbfd;
1018 int i;
1019 struct target_section_table *table = target_get_section_table (&exec_ops);
1020
1021 if (execbfd == exec_bfd)
1022 return;
1023
1024 execbfd = exec_bfd;
1025
1026 if (!vmap || !table->sections)
1027 error (_("vmap_exec: vmap or table->sections == 0."));
1028
1029 for (i = 0; &table->sections[i] < table->sections_end; i++)
1030 {
1031 if (strcmp (".text", table->sections[i].the_bfd_section->name) == 0)
1032 {
1033 table->sections[i].addr += vmap->tstart - vmap->tvma;
1034 table->sections[i].endaddr += vmap->tstart - vmap->tvma;
1035 }
1036 else if (strcmp (".data", table->sections[i].the_bfd_section->name) == 0)
1037 {
1038 table->sections[i].addr += vmap->dstart - vmap->dvma;
1039 table->sections[i].endaddr += vmap->dstart - vmap->dvma;
1040 }
1041 else if (strcmp (".bss", table->sections[i].the_bfd_section->name) == 0)
1042 {
1043 table->sections[i].addr += vmap->dstart - vmap->dvma;
1044 table->sections[i].endaddr += vmap->dstart - vmap->dvma;
1045 }
1046 }
1047 }
1048
1049 /* Set the current architecture from the host running GDB. Called when
1050 starting a child process. */
1051
1052 static void (*super_create_inferior) (struct target_ops *,char *exec_file,
1053 char *allargs, char **env, int from_tty);
1054 static void
1055 rs6000_create_inferior (struct target_ops * ops, char *exec_file,
1056 char *allargs, char **env, int from_tty)
1057 {
1058 enum bfd_architecture arch;
1059 unsigned long mach;
1060 bfd abfd;
1061 struct gdbarch_info info;
1062
1063 super_create_inferior (ops, exec_file, allargs, env, from_tty);
1064
1065 if (__power_rs ())
1066 {
1067 arch = bfd_arch_rs6000;
1068 mach = bfd_mach_rs6k;
1069 }
1070 else
1071 {
1072 arch = bfd_arch_powerpc;
1073 mach = bfd_mach_ppc;
1074 }
1075
1076 /* FIXME: schauer/2002-02-25:
1077 We don't know if we are executing a 32 or 64 bit executable,
1078 and have no way to pass the proper word size to rs6000_gdbarch_init.
1079 So we have to avoid switching to a new architecture, if the architecture
1080 matches already.
1081 Blindly calling rs6000_gdbarch_init used to work in older versions of
1082 GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to
1083 determine the wordsize. */
1084 if (exec_bfd)
1085 {
1086 const struct bfd_arch_info *exec_bfd_arch_info;
1087
1088 exec_bfd_arch_info = bfd_get_arch_info (exec_bfd);
1089 if (arch == exec_bfd_arch_info->arch)
1090 return;
1091 }
1092
1093 bfd_default_set_arch_mach (&abfd, arch, mach);
1094
1095 gdbarch_info_init (&info);
1096 info.bfd_arch_info = bfd_get_arch_info (&abfd);
1097 info.abfd = exec_bfd;
1098
1099 if (!gdbarch_update_p (info))
1100 internal_error (__FILE__, __LINE__,
1101 _("rs6000_create_inferior: failed "
1102 "to select architecture"));
1103 }
1104
1105 \f
1106 /* xcoff_relocate_symtab - hook for symbol table relocation.
1107
1108 This is only applicable to live processes, and is a no-op when
1109 debugging a core file. */
1110
1111 void
1112 xcoff_relocate_symtab (unsigned int pid)
1113 {
1114 int load_segs = 64; /* number of load segments */
1115 int rc;
1116 LdInfo *ldi = NULL;
1117 int arch64 = ARCH64 ();
1118 int ldisize = arch64 ? sizeof (ldi->l64) : sizeof (ldi->l32);
1119 int size;
1120
1121 /* Nothing to do if we are debugging a core file. */
1122 if (!target_has_execution)
1123 return;
1124
1125 do
1126 {
1127 size = load_segs * ldisize;
1128 ldi = (void *) xrealloc (ldi, size);
1129
1130 #if 0
1131 /* According to my humble theory, AIX has some timing problems and
1132 when the user stack grows, kernel doesn't update stack info in time
1133 and ptrace calls step on user stack. That is why we sleep here a
1134 little, and give kernel to update its internals. */
1135 usleep (36000);
1136 #endif
1137
1138 if (arch64)
1139 rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, size, NULL);
1140 else
1141 rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi, size, NULL);
1142
1143 if (rc == -1)
1144 {
1145 if (errno == ENOMEM)
1146 load_segs *= 2;
1147 else
1148 perror_with_name (_("ptrace ldinfo"));
1149 }
1150 else
1151 {
1152 vmap_ldinfo (ldi);
1153 vmap_exec (); /* relocate the exec and core sections as well. */
1154 }
1155 } while (rc == -1);
1156 if (ldi)
1157 xfree (ldi);
1158 }
1159 \f
1160 /* Core file stuff. */
1161
1162 /* Relocate symtabs and read in shared library info, based on symbols
1163 from the core file. */
1164
1165 void
1166 xcoff_relocate_core (struct target_ops *target)
1167 {
1168 struct bfd_section *ldinfo_sec;
1169 int offset = 0;
1170 LdInfo *ldi;
1171 struct vmap *vp;
1172 int arch64 = ARCH64 ();
1173
1174 /* Size of a struct ld_info except for the variable-length filename. */
1175 int nonfilesz = (int)LDI_FILENAME ((LdInfo *)0, arch64);
1176
1177 /* Allocated size of buffer. */
1178 int buffer_size = nonfilesz;
1179 char *buffer = xmalloc (buffer_size);
1180 struct cleanup *old = make_cleanup (free_current_contents, &buffer);
1181
1182 ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
1183 if (ldinfo_sec == NULL)
1184 {
1185 bfd_err:
1186 fprintf_filtered (gdb_stderr, "Couldn't get ldinfo from core file: %s\n",
1187 bfd_errmsg (bfd_get_error ()));
1188 do_cleanups (old);
1189 return;
1190 }
1191 do
1192 {
1193 int i;
1194 int names_found = 0;
1195
1196 /* Read in everything but the name. */
1197 if (bfd_get_section_contents (core_bfd, ldinfo_sec, buffer,
1198 offset, nonfilesz) == 0)
1199 goto bfd_err;
1200
1201 /* Now the name. */
1202 i = nonfilesz;
1203 do
1204 {
1205 if (i == buffer_size)
1206 {
1207 buffer_size *= 2;
1208 buffer = xrealloc (buffer, buffer_size);
1209 }
1210 if (bfd_get_section_contents (core_bfd, ldinfo_sec, &buffer[i],
1211 offset + i, 1) == 0)
1212 goto bfd_err;
1213 if (buffer[i++] == '\0')
1214 ++names_found;
1215 }
1216 while (names_found < 2);
1217
1218 ldi = (LdInfo *) buffer;
1219
1220 /* Can't use a file descriptor from the core file; need to open it. */
1221 if (arch64)
1222 ldi->l64.ldinfo_fd = -1;
1223 else
1224 ldi->l32.ldinfo_fd = -1;
1225
1226 /* The first ldinfo is for the exec file, allocated elsewhere. */
1227 if (offset == 0 && vmap != NULL)
1228 vp = vmap;
1229 else
1230 vp = add_vmap (ldi);
1231
1232 /* Process next shared library upon error. */
1233 offset += LDI_NEXT (ldi, arch64);
1234 if (vp == NULL)
1235 continue;
1236
1237 vmap_secs (vp, ldi, arch64);
1238
1239 /* Unless this is the exec file,
1240 add our sections to the section table for the core target. */
1241 if (vp != vmap)
1242 {
1243 struct target_section *stp;
1244
1245 stp = deprecated_core_resize_section_table (2);
1246
1247 stp->bfd = vp->bfd;
1248 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".text");
1249 stp->addr = vp->tstart;
1250 stp->endaddr = vp->tend;
1251 stp++;
1252
1253 stp->bfd = vp->bfd;
1254 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".data");
1255 stp->addr = vp->dstart;
1256 stp->endaddr = vp->dend;
1257 }
1258
1259 vmap_symtab (vp);
1260
1261 if (vp != vmap && vp->objfile)
1262 observer_notify_new_objfile (vp->objfile);
1263 }
1264 while (LDI_NEXT (ldi, arch64) != 0);
1265 vmap_exec ();
1266 breakpoint_re_set ();
1267 do_cleanups (old);
1268 }
1269 \f
1270 /* Under AIX, we have to pass the correct TOC pointer to a function
1271 when calling functions in the inferior.
1272 We try to find the relative toc offset of the objfile containing PC
1273 and add the current load address of the data segment from the vmap. */
1274
1275 static CORE_ADDR
1276 find_toc_address (CORE_ADDR pc)
1277 {
1278 struct vmap *vp;
1279
1280 for (vp = vmap; vp; vp = vp->nxt)
1281 {
1282 if (pc >= vp->tstart && pc < vp->tend)
1283 {
1284 /* vp->objfile is only NULL for the exec file. */
1285 return vp->dstart + xcoff_get_toc_offset (vp->objfile == NULL
1286 ? symfile_objfile
1287 : vp->objfile);
1288 }
1289 }
1290 error (_("Unable to find TOC entry for pc %s."), hex_string (pc));
1291 }
1292 \f
1293
1294 void _initialize_rs6000_nat (void);
1295
1296 void
1297 _initialize_rs6000_nat (void)
1298 {
1299 struct target_ops *t;
1300
1301 t = inf_ptrace_target ();
1302 t->to_fetch_registers = rs6000_fetch_inferior_registers;
1303 t->to_store_registers = rs6000_store_inferior_registers;
1304 t->to_xfer_partial = rs6000_xfer_partial;
1305
1306 super_create_inferior = t->to_create_inferior;
1307 t->to_create_inferior = rs6000_create_inferior;
1308
1309 t->to_wait = rs6000_wait;
1310
1311 add_target (t);
1312
1313 /* Initialize hook in rs6000-tdep.c for determining the TOC address
1314 when calling functions in the inferior. */
1315 rs6000_find_toc_address_hook = find_toc_address;
1316 }
This page took 0.056934 seconds and 5 git commands to generate.