2008-12-16 Tristan Gingold <gingold@adacore.com>
[deliverable/binutils-gdb.git] / gdb / rs6000-nat.c
1 /* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "inferior.h"
24 #include "target.h"
25 #include "gdbcore.h"
26 #include "xcoffsolib.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "libbfd.h" /* For bfd_default_set_arch_mach (FIXME) */
30 #include "bfd.h"
31 #include "exceptions.h"
32 #include "gdb-stabs.h"
33 #include "regcache.h"
34 #include "arch-utils.h"
35 #include "inf-ptrace.h"
36 #include "ppc-tdep.h"
37 #include "rs6000-tdep.h"
38 #include "exec.h"
39 #include "observer.h"
40
41 #include <sys/ptrace.h>
42 #include <sys/reg.h>
43
44 #include <sys/param.h>
45 #include <sys/dir.h>
46 #include <sys/user.h>
47 #include <signal.h>
48 #include <sys/ioctl.h>
49 #include <fcntl.h>
50 #include <errno.h>
51
52 #include <a.out.h>
53 #include <sys/file.h>
54 #include "gdb_stat.h"
55 #include <sys/core.h>
56 #define __LDINFO_PTRACE32__ /* for __ld_info32 */
57 #define __LDINFO_PTRACE64__ /* for __ld_info64 */
58 #include <sys/ldr.h>
59 #include <sys/systemcfg.h>
60
61 /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
62 debugging 32-bit and 64-bit processes. Define a typedef and macros for
63 accessing fields in the appropriate structures. */
64
65 /* In 32-bit compilation mode (which is the only mode from which ptrace()
66 works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
67
68 #ifdef __ld_info32
69 # define ARCH3264
70 #endif
71
72 /* Return whether the current architecture is 64-bit. */
73
74 #ifndef ARCH3264
75 # define ARCH64() 0
76 #else
77 # define ARCH64() (register_size (current_gdbarch, 0) == 8)
78 #endif
79
80 /* Union of 32-bit and 64-bit versions of ld_info. */
81
82 typedef union {
83 #ifndef ARCH3264
84 struct ld_info l32;
85 struct ld_info l64;
86 #else
87 struct __ld_info32 l32;
88 struct __ld_info64 l64;
89 #endif
90 } LdInfo;
91
92 /* If compiling with 32-bit and 64-bit debugging capability (e.g. AIX 4.x),
93 declare and initialize a variable named VAR suitable for use as the arch64
94 parameter to the various LDI_*() macros. */
95
96 #ifndef ARCH3264
97 # define ARCH64_DECL(var)
98 #else
99 # define ARCH64_DECL(var) int var = ARCH64 ()
100 #endif
101
102 /* Return LDI's FIELD for a 64-bit process if ARCH64 and for a 32-bit process
103 otherwise. This technique only works for FIELDs with the same data type in
104 32-bit and 64-bit versions of ld_info. */
105
106 #ifndef ARCH3264
107 # define LDI_FIELD(ldi, arch64, field) (ldi)->l32.ldinfo_##field
108 #else
109 # define LDI_FIELD(ldi, arch64, field) \
110 (arch64 ? (ldi)->l64.ldinfo_##field : (ldi)->l32.ldinfo_##field)
111 #endif
112
113 /* Return various LDI fields for a 64-bit process if ARCH64 and for a 32-bit
114 process otherwise. */
115
116 #define LDI_NEXT(ldi, arch64) LDI_FIELD(ldi, arch64, next)
117 #define LDI_FD(ldi, arch64) LDI_FIELD(ldi, arch64, fd)
118 #define LDI_FILENAME(ldi, arch64) LDI_FIELD(ldi, arch64, filename)
119
120 extern struct vmap *map_vmap (bfd * bf, bfd * arch);
121
122 static void vmap_exec (void);
123
124 static void vmap_ldinfo (LdInfo *);
125
126 static struct vmap *add_vmap (LdInfo *);
127
128 static int objfile_symbol_add (void *);
129
130 static void vmap_symtab (struct vmap *);
131
132 static void exec_one_dummy_insn (struct gdbarch *);
133
134 extern void fixup_breakpoints (CORE_ADDR low, CORE_ADDR high, CORE_ADDR delta);
135
136 /* Given REGNO, a gdb register number, return the corresponding
137 number suitable for use as a ptrace() parameter. Return -1 if
138 there's no suitable mapping. Also, set the int pointed to by
139 ISFLOAT to indicate whether REGNO is a floating point register. */
140
141 static int
142 regmap (struct gdbarch *gdbarch, int regno, int *isfloat)
143 {
144 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
145
146 *isfloat = 0;
147 if (tdep->ppc_gp0_regnum <= regno
148 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
149 return regno;
150 else if (tdep->ppc_fp0_regnum >= 0
151 && tdep->ppc_fp0_regnum <= regno
152 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
153 {
154 *isfloat = 1;
155 return regno - tdep->ppc_fp0_regnum + FPR0;
156 }
157 else if (regno == gdbarch_pc_regnum (gdbarch))
158 return IAR;
159 else if (regno == tdep->ppc_ps_regnum)
160 return MSR;
161 else if (regno == tdep->ppc_cr_regnum)
162 return CR;
163 else if (regno == tdep->ppc_lr_regnum)
164 return LR;
165 else if (regno == tdep->ppc_ctr_regnum)
166 return CTR;
167 else if (regno == tdep->ppc_xer_regnum)
168 return XER;
169 else if (tdep->ppc_fpscr_regnum >= 0
170 && regno == tdep->ppc_fpscr_regnum)
171 return FPSCR;
172 else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum)
173 return MQ;
174 else
175 return -1;
176 }
177
178 /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
179
180 static int
181 rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf)
182 {
183 int ret = ptrace (req, id, (int *)addr, data, buf);
184 #if 0
185 printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
186 req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
187 #endif
188 return ret;
189 }
190
191 /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
192
193 static int
194 rs6000_ptrace64 (int req, int id, long long addr, int data, void *buf)
195 {
196 #ifdef ARCH3264
197 int ret = ptracex (req, id, addr, data, buf);
198 #else
199 int ret = 0;
200 #endif
201 #if 0
202 printf ("rs6000_ptrace64 (%d, %d, 0x%llx, %08x, 0x%x) = 0x%x\n",
203 req, id, addr, data, (unsigned int)buf, ret);
204 #endif
205 return ret;
206 }
207
208 /* Fetch register REGNO from the inferior. */
209
210 static void
211 fetch_register (struct regcache *regcache, int regno)
212 {
213 struct gdbarch *gdbarch = get_regcache_arch (regcache);
214 int addr[MAX_REGISTER_SIZE];
215 int nr, isfloat;
216
217 /* Retrieved values may be -1, so infer errors from errno. */
218 errno = 0;
219
220 nr = regmap (gdbarch, regno, &isfloat);
221
222 /* Floating-point registers. */
223 if (isfloat)
224 rs6000_ptrace32 (PT_READ_FPR, PIDGET (inferior_ptid), addr, nr, 0);
225
226 /* Bogus register number. */
227 else if (nr < 0)
228 {
229 if (regno >= gdbarch_num_regs (gdbarch))
230 fprintf_unfiltered (gdb_stderr,
231 "gdb error: register no %d not implemented.\n",
232 regno);
233 return;
234 }
235
236 /* Fixed-point registers. */
237 else
238 {
239 if (!ARCH64 ())
240 *addr = rs6000_ptrace32 (PT_READ_GPR, PIDGET (inferior_ptid), (int *)nr, 0, 0);
241 else
242 {
243 /* PT_READ_GPR requires the buffer parameter to point to long long,
244 even if the register is really only 32 bits. */
245 long long buf;
246 rs6000_ptrace64 (PT_READ_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
247 if (register_size (gdbarch, regno) == 8)
248 memcpy (addr, &buf, 8);
249 else
250 *addr = buf;
251 }
252 }
253
254 if (!errno)
255 regcache_raw_supply (regcache, regno, (char *) addr);
256 else
257 {
258 #if 0
259 /* FIXME: this happens 3 times at the start of each 64-bit program. */
260 perror ("ptrace read");
261 #endif
262 errno = 0;
263 }
264 }
265
266 /* Store register REGNO back into the inferior. */
267
268 static void
269 store_register (const struct regcache *regcache, int regno)
270 {
271 struct gdbarch *gdbarch = get_regcache_arch (regcache);
272 int addr[MAX_REGISTER_SIZE];
273 int nr, isfloat;
274
275 /* Fetch the register's value from the register cache. */
276 regcache_raw_collect (regcache, regno, addr);
277
278 /* -1 can be a successful return value, so infer errors from errno. */
279 errno = 0;
280
281 nr = regmap (gdbarch, regno, &isfloat);
282
283 /* Floating-point registers. */
284 if (isfloat)
285 rs6000_ptrace32 (PT_WRITE_FPR, PIDGET (inferior_ptid), addr, nr, 0);
286
287 /* Bogus register number. */
288 else if (nr < 0)
289 {
290 if (regno >= gdbarch_num_regs (gdbarch))
291 fprintf_unfiltered (gdb_stderr,
292 "gdb error: register no %d not implemented.\n",
293 regno);
294 }
295
296 /* Fixed-point registers. */
297 else
298 {
299 if (regno == gdbarch_sp_regnum (gdbarch))
300 /* Execute one dummy instruction (which is a breakpoint) in inferior
301 process to give kernel a chance to do internal housekeeping.
302 Otherwise the following ptrace(2) calls will mess up user stack
303 since kernel will get confused about the bottom of the stack
304 (%sp). */
305 exec_one_dummy_insn (gdbarch);
306
307 /* The PT_WRITE_GPR operation is rather odd. For 32-bit inferiors,
308 the register's value is passed by value, but for 64-bit inferiors,
309 the address of a buffer containing the value is passed. */
310 if (!ARCH64 ())
311 rs6000_ptrace32 (PT_WRITE_GPR, PIDGET (inferior_ptid), (int *)nr, *addr, 0);
312 else
313 {
314 /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
315 area, even if the register is really only 32 bits. */
316 long long buf;
317 if (register_size (gdbarch, regno) == 8)
318 memcpy (&buf, addr, 8);
319 else
320 buf = *addr;
321 rs6000_ptrace64 (PT_WRITE_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
322 }
323 }
324
325 if (errno)
326 {
327 perror ("ptrace write");
328 errno = 0;
329 }
330 }
331
332 /* Read from the inferior all registers if REGNO == -1 and just register
333 REGNO otherwise. */
334
335 static void
336 rs6000_fetch_inferior_registers (struct regcache *regcache, int regno)
337 {
338 struct gdbarch *gdbarch = get_regcache_arch (regcache);
339 if (regno != -1)
340 fetch_register (regcache, regno);
341
342 else
343 {
344 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
345
346 /* Read 32 general purpose registers. */
347 for (regno = tdep->ppc_gp0_regnum;
348 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
349 regno++)
350 {
351 fetch_register (regcache, regno);
352 }
353
354 /* Read general purpose floating point registers. */
355 if (tdep->ppc_fp0_regnum >= 0)
356 for (regno = 0; regno < ppc_num_fprs; regno++)
357 fetch_register (regcache, tdep->ppc_fp0_regnum + regno);
358
359 /* Read special registers. */
360 fetch_register (regcache, gdbarch_pc_regnum (gdbarch));
361 fetch_register (regcache, tdep->ppc_ps_regnum);
362 fetch_register (regcache, tdep->ppc_cr_regnum);
363 fetch_register (regcache, tdep->ppc_lr_regnum);
364 fetch_register (regcache, tdep->ppc_ctr_regnum);
365 fetch_register (regcache, tdep->ppc_xer_regnum);
366 if (tdep->ppc_fpscr_regnum >= 0)
367 fetch_register (regcache, tdep->ppc_fpscr_regnum);
368 if (tdep->ppc_mq_regnum >= 0)
369 fetch_register (regcache, tdep->ppc_mq_regnum);
370 }
371 }
372
373 /* Store our register values back into the inferior.
374 If REGNO is -1, do this for all registers.
375 Otherwise, REGNO specifies which register (so we can save time). */
376
377 static void
378 rs6000_store_inferior_registers (struct regcache *regcache, int regno)
379 {
380 struct gdbarch *gdbarch = get_regcache_arch (regcache);
381 if (regno != -1)
382 store_register (regcache, regno);
383
384 else
385 {
386 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
387
388 /* Write general purpose registers first. */
389 for (regno = tdep->ppc_gp0_regnum;
390 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
391 regno++)
392 {
393 store_register (regcache, regno);
394 }
395
396 /* Write floating point registers. */
397 if (tdep->ppc_fp0_regnum >= 0)
398 for (regno = 0; regno < ppc_num_fprs; regno++)
399 store_register (regcache, tdep->ppc_fp0_regnum + regno);
400
401 /* Write special registers. */
402 store_register (regcache, gdbarch_pc_regnum (gdbarch));
403 store_register (regcache, tdep->ppc_ps_regnum);
404 store_register (regcache, tdep->ppc_cr_regnum);
405 store_register (regcache, tdep->ppc_lr_regnum);
406 store_register (regcache, tdep->ppc_ctr_regnum);
407 store_register (regcache, tdep->ppc_xer_regnum);
408 if (tdep->ppc_fpscr_regnum >= 0)
409 store_register (regcache, tdep->ppc_fpscr_regnum);
410 if (tdep->ppc_mq_regnum >= 0)
411 store_register (regcache, tdep->ppc_mq_regnum);
412 }
413 }
414
415
416 /* Attempt a transfer all LEN bytes starting at OFFSET between the
417 inferior's OBJECT:ANNEX space and GDB's READBUF/WRITEBUF buffer.
418 Return the number of bytes actually transferred. */
419
420 static LONGEST
421 rs6000_xfer_partial (struct target_ops *ops, enum target_object object,
422 const char *annex, gdb_byte *readbuf,
423 const gdb_byte *writebuf,
424 ULONGEST offset, LONGEST len)
425 {
426 pid_t pid = ptid_get_pid (inferior_ptid);
427 int arch64 = ARCH64 ();
428
429 switch (object)
430 {
431 case TARGET_OBJECT_MEMORY:
432 {
433 union
434 {
435 PTRACE_TYPE_RET word;
436 gdb_byte byte[sizeof (PTRACE_TYPE_RET)];
437 } buffer;
438 ULONGEST rounded_offset;
439 LONGEST partial_len;
440
441 /* Round the start offset down to the next long word
442 boundary. */
443 rounded_offset = offset & -(ULONGEST) sizeof (PTRACE_TYPE_RET);
444
445 /* Since ptrace will transfer a single word starting at that
446 rounded_offset the partial_len needs to be adjusted down to
447 that (remember this function only does a single transfer).
448 Should the required length be even less, adjust it down
449 again. */
450 partial_len = (rounded_offset + sizeof (PTRACE_TYPE_RET)) - offset;
451 if (partial_len > len)
452 partial_len = len;
453
454 if (writebuf)
455 {
456 /* If OFFSET:PARTIAL_LEN is smaller than
457 ROUNDED_OFFSET:WORDSIZE then a read/modify write will
458 be needed. Read in the entire word. */
459 if (rounded_offset < offset
460 || (offset + partial_len
461 < rounded_offset + sizeof (PTRACE_TYPE_RET)))
462 {
463 /* Need part of initial word -- fetch it. */
464 if (arch64)
465 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
466 rounded_offset, 0, NULL);
467 else
468 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
469 (int *)(uintptr_t)rounded_offset,
470 0, NULL);
471 }
472
473 /* Copy data to be written over corresponding part of
474 buffer. */
475 memcpy (buffer.byte + (offset - rounded_offset),
476 writebuf, partial_len);
477
478 errno = 0;
479 if (arch64)
480 rs6000_ptrace64 (PT_WRITE_D, pid,
481 rounded_offset, buffer.word, NULL);
482 else
483 rs6000_ptrace32 (PT_WRITE_D, pid,
484 (int *)(uintptr_t)rounded_offset, buffer.word, NULL);
485 if (errno)
486 return 0;
487 }
488
489 if (readbuf)
490 {
491 errno = 0;
492 if (arch64)
493 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
494 rounded_offset, 0, NULL);
495 else
496 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
497 (int *)(uintptr_t)rounded_offset,
498 0, NULL);
499 if (errno)
500 return 0;
501
502 /* Copy appropriate bytes out of the buffer. */
503 memcpy (readbuf, buffer.byte + (offset - rounded_offset),
504 partial_len);
505 }
506
507 return partial_len;
508 }
509
510 default:
511 return -1;
512 }
513 }
514
515 /* Wait for the child specified by PTID to do something. Return the
516 process ID of the child, or MINUS_ONE_PTID in case of error; store
517 the status in *OURSTATUS. */
518
519 static ptid_t
520 rs6000_wait (ptid_t ptid, struct target_waitstatus *ourstatus)
521 {
522 pid_t pid;
523 int status, save_errno;
524
525 do
526 {
527 set_sigint_trap ();
528
529 do
530 {
531 pid = waitpid (ptid_get_pid (ptid), &status, 0);
532 save_errno = errno;
533 }
534 while (pid == -1 && errno == EINTR);
535
536 clear_sigint_trap ();
537
538 if (pid == -1)
539 {
540 fprintf_unfiltered (gdb_stderr,
541 _("Child process unexpectedly missing: %s.\n"),
542 safe_strerror (save_errno));
543
544 /* Claim it exited with unknown signal. */
545 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
546 ourstatus->value.sig = TARGET_SIGNAL_UNKNOWN;
547 return inferior_ptid;
548 }
549
550 /* Ignore terminated detached child processes. */
551 if (!WIFSTOPPED (status) && pid != ptid_get_pid (inferior_ptid))
552 pid = -1;
553 }
554 while (pid == -1);
555
556 /* AIX has a couple of strange returns from wait(). */
557
558 /* stop after load" status. */
559 if (status == 0x57c)
560 ourstatus->kind = TARGET_WAITKIND_LOADED;
561 /* signal 0. I have no idea why wait(2) returns with this status word. */
562 else if (status == 0x7f)
563 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
564 /* A normal waitstatus. Let the usual macros deal with it. */
565 else
566 store_waitstatus (ourstatus, status);
567
568 return pid_to_ptid (pid);
569 }
570
571 /* Execute one dummy breakpoint instruction. This way we give the kernel
572 a chance to do some housekeeping and update inferior's internal data,
573 including u_area. */
574
575 static void
576 exec_one_dummy_insn (struct gdbarch *gdbarch)
577 {
578 #define DUMMY_INSN_ADDR AIX_TEXT_SEGMENT_BASE+0x200
579
580 int ret, status, pid;
581 CORE_ADDR prev_pc;
582 void *bp;
583
584 /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We
585 assume that this address will never be executed again by the real
586 code. */
587
588 bp = deprecated_insert_raw_breakpoint (DUMMY_INSN_ADDR);
589
590 /* You might think this could be done with a single ptrace call, and
591 you'd be correct for just about every platform I've ever worked
592 on. However, rs6000-ibm-aix4.1.3 seems to have screwed this up --
593 the inferior never hits the breakpoint (it's also worth noting
594 powerpc-ibm-aix4.1.3 works correctly). */
595 prev_pc = read_pc ();
596 write_pc (DUMMY_INSN_ADDR);
597 if (ARCH64 ())
598 ret = rs6000_ptrace64 (PT_CONTINUE, PIDGET (inferior_ptid), 1, 0, NULL);
599 else
600 ret = rs6000_ptrace32 (PT_CONTINUE, PIDGET (inferior_ptid), (int *)1, 0, NULL);
601
602 if (ret != 0)
603 perror ("pt_continue");
604
605 do
606 {
607 pid = wait (&status);
608 }
609 while (pid != PIDGET (inferior_ptid));
610
611 write_pc (prev_pc);
612 deprecated_remove_raw_breakpoint (bp);
613 }
614 \f
615
616 /* Copy information about text and data sections from LDI to VP for a 64-bit
617 process if ARCH64 and for a 32-bit process otherwise. */
618
619 static void
620 vmap_secs (struct vmap *vp, LdInfo *ldi, int arch64)
621 {
622 if (arch64)
623 {
624 vp->tstart = (CORE_ADDR) ldi->l64.ldinfo_textorg;
625 vp->tend = vp->tstart + ldi->l64.ldinfo_textsize;
626 vp->dstart = (CORE_ADDR) ldi->l64.ldinfo_dataorg;
627 vp->dend = vp->dstart + ldi->l64.ldinfo_datasize;
628 }
629 else
630 {
631 vp->tstart = (unsigned long) ldi->l32.ldinfo_textorg;
632 vp->tend = vp->tstart + ldi->l32.ldinfo_textsize;
633 vp->dstart = (unsigned long) ldi->l32.ldinfo_dataorg;
634 vp->dend = vp->dstart + ldi->l32.ldinfo_datasize;
635 }
636
637 /* The run time loader maps the file header in addition to the text
638 section and returns a pointer to the header in ldinfo_textorg.
639 Adjust the text start address to point to the real start address
640 of the text section. */
641 vp->tstart += vp->toffs;
642 }
643
644 /* handle symbol translation on vmapping */
645
646 static void
647 vmap_symtab (struct vmap *vp)
648 {
649 struct objfile *objfile;
650 struct section_offsets *new_offsets;
651 int i;
652
653 objfile = vp->objfile;
654 if (objfile == NULL)
655 {
656 /* OK, it's not an objfile we opened ourselves.
657 Currently, that can only happen with the exec file, so
658 relocate the symbols for the symfile. */
659 if (symfile_objfile == NULL)
660 return;
661 objfile = symfile_objfile;
662 }
663 else if (!vp->loaded)
664 /* If symbols are not yet loaded, offsets are not yet valid. */
665 return;
666
667 new_offsets =
668 (struct section_offsets *)
669 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
670
671 for (i = 0; i < objfile->num_sections; ++i)
672 new_offsets->offsets[i] = ANOFFSET (objfile->section_offsets, i);
673
674 /* The symbols in the object file are linked to the VMA of the section,
675 relocate them VMA relative. */
676 new_offsets->offsets[SECT_OFF_TEXT (objfile)] = vp->tstart - vp->tvma;
677 new_offsets->offsets[SECT_OFF_DATA (objfile)] = vp->dstart - vp->dvma;
678 new_offsets->offsets[SECT_OFF_BSS (objfile)] = vp->dstart - vp->dvma;
679
680 objfile_relocate (objfile, new_offsets);
681 }
682 \f
683 /* Add symbols for an objfile. */
684
685 static int
686 objfile_symbol_add (void *arg)
687 {
688 struct objfile *obj = (struct objfile *) arg;
689
690 syms_from_objfile (obj, NULL, 0, 0, 0, 0);
691 new_symfile_objfile (obj, 0, 0);
692 return 1;
693 }
694
695 /* Add symbols for a vmap. Return zero upon error. */
696
697 int
698 vmap_add_symbols (struct vmap *vp)
699 {
700 if (catch_errors (objfile_symbol_add, vp->objfile,
701 "Error while reading shared library symbols:\n",
702 RETURN_MASK_ALL))
703 {
704 /* Note this is only done if symbol reading was successful. */
705 vp->loaded = 1;
706 vmap_symtab (vp);
707 return 1;
708 }
709 return 0;
710 }
711
712 /* Add a new vmap entry based on ldinfo() information.
713
714 If ldi->ldinfo_fd is not valid (e.g. this struct ld_info is from a
715 core file), the caller should set it to -1, and we will open the file.
716
717 Return the vmap new entry. */
718
719 static struct vmap *
720 add_vmap (LdInfo *ldi)
721 {
722 bfd *abfd, *last;
723 char *mem, *objname, *filename;
724 struct objfile *obj;
725 struct vmap *vp;
726 int fd;
727 ARCH64_DECL (arch64);
728
729 /* This ldi structure was allocated using alloca() in
730 xcoff_relocate_symtab(). Now we need to have persistent object
731 and member names, so we should save them. */
732
733 filename = LDI_FILENAME (ldi, arch64);
734 mem = filename + strlen (filename) + 1;
735 mem = savestring (mem, strlen (mem));
736 objname = savestring (filename, strlen (filename));
737
738 fd = LDI_FD (ldi, arch64);
739 if (fd < 0)
740 /* Note that this opens it once for every member; a possible
741 enhancement would be to only open it once for every object. */
742 abfd = bfd_openr (objname, gnutarget);
743 else
744 abfd = bfd_fdopenr (objname, gnutarget, fd);
745 if (!abfd)
746 {
747 warning (_("Could not open `%s' as an executable file: %s"),
748 objname, bfd_errmsg (bfd_get_error ()));
749 return NULL;
750 }
751
752 /* make sure we have an object file */
753
754 if (bfd_check_format (abfd, bfd_object))
755 vp = map_vmap (abfd, 0);
756
757 else if (bfd_check_format (abfd, bfd_archive))
758 {
759 last = 0;
760 /* FIXME??? am I tossing BFDs? bfd? */
761 while ((last = bfd_openr_next_archived_file (abfd, last)))
762 if (strcmp (mem, last->filename) == 0)
763 break;
764
765 if (!last)
766 {
767 warning (_("\"%s\": member \"%s\" missing."), objname, mem);
768 bfd_close (abfd);
769 return NULL;
770 }
771
772 if (!bfd_check_format (last, bfd_object))
773 {
774 warning (_("\"%s\": member \"%s\" not in executable format: %s."),
775 objname, mem, bfd_errmsg (bfd_get_error ()));
776 bfd_close (last);
777 bfd_close (abfd);
778 return NULL;
779 }
780
781 vp = map_vmap (last, abfd);
782 }
783 else
784 {
785 warning (_("\"%s\": not in executable format: %s."),
786 objname, bfd_errmsg (bfd_get_error ()));
787 bfd_close (abfd);
788 return NULL;
789 }
790 obj = allocate_objfile (vp->bfd, 0);
791 vp->objfile = obj;
792
793 /* Always add symbols for the main objfile. */
794 if (vp == vmap || auto_solib_add)
795 vmap_add_symbols (vp);
796 return vp;
797 }
798 \f
799 /* update VMAP info with ldinfo() information
800 Input is ptr to ldinfo() results. */
801
802 static void
803 vmap_ldinfo (LdInfo *ldi)
804 {
805 struct stat ii, vi;
806 struct vmap *vp;
807 int got_one, retried;
808 int got_exec_file = 0;
809 uint next;
810 int arch64 = ARCH64 ();
811
812 /* For each *ldi, see if we have a corresponding *vp.
813 If so, update the mapping, and symbol table.
814 If not, add an entry and symbol table. */
815
816 do
817 {
818 char *name = LDI_FILENAME (ldi, arch64);
819 char *memb = name + strlen (name) + 1;
820 int fd = LDI_FD (ldi, arch64);
821
822 retried = 0;
823
824 if (fstat (fd, &ii) < 0)
825 {
826 /* The kernel sets ld_info to -1, if the process is still using the
827 object, and the object is removed. Keep the symbol info for the
828 removed object and issue a warning. */
829 warning (_("%s (fd=%d) has disappeared, keeping its symbols"),
830 name, fd);
831 continue;
832 }
833 retry:
834 for (got_one = 0, vp = vmap; vp; vp = vp->nxt)
835 {
836 struct objfile *objfile;
837
838 /* First try to find a `vp', which is the same as in ldinfo.
839 If not the same, just continue and grep the next `vp'. If same,
840 relocate its tstart, tend, dstart, dend values. If no such `vp'
841 found, get out of this for loop, add this ldi entry as a new vmap
842 (add_vmap) and come back, find its `vp' and so on... */
843
844 /* The filenames are not always sufficient to match on. */
845
846 if ((name[0] == '/' && strcmp (name, vp->name) != 0)
847 || (memb[0] && strcmp (memb, vp->member) != 0))
848 continue;
849
850 /* See if we are referring to the same file.
851 We have to check objfile->obfd, symfile.c:reread_symbols might
852 have updated the obfd after a change. */
853 objfile = vp->objfile == NULL ? symfile_objfile : vp->objfile;
854 if (objfile == NULL
855 || objfile->obfd == NULL
856 || bfd_stat (objfile->obfd, &vi) < 0)
857 {
858 warning (_("Unable to stat %s, keeping its symbols"), name);
859 continue;
860 }
861
862 if (ii.st_dev != vi.st_dev || ii.st_ino != vi.st_ino)
863 continue;
864
865 if (!retried)
866 close (fd);
867
868 ++got_one;
869
870 /* Found a corresponding VMAP. Remap! */
871
872 vmap_secs (vp, ldi, arch64);
873
874 /* The objfile is only NULL for the exec file. */
875 if (vp->objfile == NULL)
876 got_exec_file = 1;
877
878 /* relocate symbol table(s). */
879 vmap_symtab (vp);
880
881 /* Announce new object files. Doing this after symbol relocation
882 makes aix-thread.c's job easier. */
883 if (vp->objfile)
884 observer_notify_new_objfile (vp->objfile);
885
886 /* There may be more, so we don't break out of the loop. */
887 }
888
889 /* if there was no matching *vp, we must perforce create the sucker(s) */
890 if (!got_one && !retried)
891 {
892 add_vmap (ldi);
893 ++retried;
894 goto retry;
895 }
896 }
897 while ((next = LDI_NEXT (ldi, arch64))
898 && (ldi = (void *) (next + (char *) ldi)));
899
900 /* If we don't find the symfile_objfile anywhere in the ldinfo, it
901 is unlikely that the symbol file is relocated to the proper
902 address. And we might have attached to a process which is
903 running a different copy of the same executable. */
904 if (symfile_objfile != NULL && !got_exec_file)
905 {
906 warning (_("Symbol file %s\nis not mapped; discarding it.\n\
907 If in fact that file has symbols which the mapped files listed by\n\
908 \"info files\" lack, you can load symbols with the \"symbol-file\" or\n\
909 \"add-symbol-file\" commands (note that you must take care of relocating\n\
910 symbols to the proper address)."),
911 symfile_objfile->name);
912 free_objfile (symfile_objfile);
913 symfile_objfile = NULL;
914 }
915 breakpoint_re_set ();
916 }
917 \f
918 /* As well as symbol tables, exec_sections need relocation. After
919 the inferior process' termination, there will be a relocated symbol
920 table exist with no corresponding inferior process. At that time, we
921 need to use `exec' bfd, rather than the inferior process's memory space
922 to look up symbols.
923
924 `exec_sections' need to be relocated only once, as long as the exec
925 file remains unchanged.
926 */
927
928 static void
929 vmap_exec (void)
930 {
931 static bfd *execbfd;
932 int i;
933
934 if (execbfd == exec_bfd)
935 return;
936
937 execbfd = exec_bfd;
938
939 if (!vmap || !exec_ops.to_sections)
940 error (_("vmap_exec: vmap or exec_ops.to_sections == 0."));
941
942 for (i = 0; &exec_ops.to_sections[i] < exec_ops.to_sections_end; i++)
943 {
944 if (strcmp (".text", exec_ops.to_sections[i].the_bfd_section->name) == 0)
945 {
946 exec_ops.to_sections[i].addr += vmap->tstart - vmap->tvma;
947 exec_ops.to_sections[i].endaddr += vmap->tstart - vmap->tvma;
948 }
949 else if (strcmp (".data",
950 exec_ops.to_sections[i].the_bfd_section->name) == 0)
951 {
952 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
953 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
954 }
955 else if (strcmp (".bss",
956 exec_ops.to_sections[i].the_bfd_section->name) == 0)
957 {
958 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
959 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
960 }
961 }
962 }
963
964 /* Set the current architecture from the host running GDB. Called when
965 starting a child process. */
966
967 static void (*super_create_inferior) (struct target_ops *,char *exec_file,
968 char *allargs, char **env, int from_tty);
969 static void
970 rs6000_create_inferior (struct target_ops * ops, char *exec_file,
971 char *allargs, char **env, int from_tty)
972 {
973 enum bfd_architecture arch;
974 unsigned long mach;
975 bfd abfd;
976 struct gdbarch_info info;
977
978 super_create_inferior (ops, exec_file, allargs, env, from_tty);
979
980 if (__power_rs ())
981 {
982 arch = bfd_arch_rs6000;
983 mach = bfd_mach_rs6k;
984 }
985 else
986 {
987 arch = bfd_arch_powerpc;
988 mach = bfd_mach_ppc;
989 }
990
991 /* FIXME: schauer/2002-02-25:
992 We don't know if we are executing a 32 or 64 bit executable,
993 and have no way to pass the proper word size to rs6000_gdbarch_init.
994 So we have to avoid switching to a new architecture, if the architecture
995 matches already.
996 Blindly calling rs6000_gdbarch_init used to work in older versions of
997 GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to
998 determine the wordsize. */
999 if (exec_bfd)
1000 {
1001 const struct bfd_arch_info *exec_bfd_arch_info;
1002
1003 exec_bfd_arch_info = bfd_get_arch_info (exec_bfd);
1004 if (arch == exec_bfd_arch_info->arch)
1005 return;
1006 }
1007
1008 bfd_default_set_arch_mach (&abfd, arch, mach);
1009
1010 gdbarch_info_init (&info);
1011 info.bfd_arch_info = bfd_get_arch_info (&abfd);
1012 info.abfd = exec_bfd;
1013
1014 if (!gdbarch_update_p (info))
1015 internal_error (__FILE__, __LINE__,
1016 _("rs6000_create_inferior: failed to select architecture"));
1017 }
1018
1019 \f
1020 /* xcoff_relocate_symtab - hook for symbol table relocation.
1021
1022 This is only applicable to live processes, and is a no-op when
1023 debugging a core file. */
1024
1025 void
1026 xcoff_relocate_symtab (unsigned int pid)
1027 {
1028 int load_segs = 64; /* number of load segments */
1029 int rc;
1030 LdInfo *ldi = NULL;
1031 int arch64 = ARCH64 ();
1032 int ldisize = arch64 ? sizeof (ldi->l64) : sizeof (ldi->l32);
1033 int size;
1034
1035 if (ptid_equal (inferior_ptid, null_ptid))
1036 return;
1037
1038 do
1039 {
1040 size = load_segs * ldisize;
1041 ldi = (void *) xrealloc (ldi, size);
1042
1043 #if 0
1044 /* According to my humble theory, AIX has some timing problems and
1045 when the user stack grows, kernel doesn't update stack info in time
1046 and ptrace calls step on user stack. That is why we sleep here a
1047 little, and give kernel to update its internals. */
1048 usleep (36000);
1049 #endif
1050
1051 if (arch64)
1052 rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, size, NULL);
1053 else
1054 rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi, size, NULL);
1055
1056 if (rc == -1)
1057 {
1058 if (errno == ENOMEM)
1059 load_segs *= 2;
1060 else
1061 perror_with_name (_("ptrace ldinfo"));
1062 }
1063 else
1064 {
1065 vmap_ldinfo (ldi);
1066 vmap_exec (); /* relocate the exec and core sections as well. */
1067 }
1068 } while (rc == -1);
1069 if (ldi)
1070 xfree (ldi);
1071 }
1072 \f
1073 /* Core file stuff. */
1074
1075 /* Relocate symtabs and read in shared library info, based on symbols
1076 from the core file. */
1077
1078 void
1079 xcoff_relocate_core (struct target_ops *target)
1080 {
1081 struct bfd_section *ldinfo_sec;
1082 int offset = 0;
1083 LdInfo *ldi;
1084 struct vmap *vp;
1085 int arch64 = ARCH64 ();
1086
1087 /* Size of a struct ld_info except for the variable-length filename. */
1088 int nonfilesz = (int)LDI_FILENAME ((LdInfo *)0, arch64);
1089
1090 /* Allocated size of buffer. */
1091 int buffer_size = nonfilesz;
1092 char *buffer = xmalloc (buffer_size);
1093 struct cleanup *old = make_cleanup (free_current_contents, &buffer);
1094
1095 ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
1096 if (ldinfo_sec == NULL)
1097 {
1098 bfd_err:
1099 fprintf_filtered (gdb_stderr, "Couldn't get ldinfo from core file: %s\n",
1100 bfd_errmsg (bfd_get_error ()));
1101 do_cleanups (old);
1102 return;
1103 }
1104 do
1105 {
1106 int i;
1107 int names_found = 0;
1108
1109 /* Read in everything but the name. */
1110 if (bfd_get_section_contents (core_bfd, ldinfo_sec, buffer,
1111 offset, nonfilesz) == 0)
1112 goto bfd_err;
1113
1114 /* Now the name. */
1115 i = nonfilesz;
1116 do
1117 {
1118 if (i == buffer_size)
1119 {
1120 buffer_size *= 2;
1121 buffer = xrealloc (buffer, buffer_size);
1122 }
1123 if (bfd_get_section_contents (core_bfd, ldinfo_sec, &buffer[i],
1124 offset + i, 1) == 0)
1125 goto bfd_err;
1126 if (buffer[i++] == '\0')
1127 ++names_found;
1128 }
1129 while (names_found < 2);
1130
1131 ldi = (LdInfo *) buffer;
1132
1133 /* Can't use a file descriptor from the core file; need to open it. */
1134 if (arch64)
1135 ldi->l64.ldinfo_fd = -1;
1136 else
1137 ldi->l32.ldinfo_fd = -1;
1138
1139 /* The first ldinfo is for the exec file, allocated elsewhere. */
1140 if (offset == 0 && vmap != NULL)
1141 vp = vmap;
1142 else
1143 vp = add_vmap (ldi);
1144
1145 /* Process next shared library upon error. */
1146 offset += LDI_NEXT (ldi, arch64);
1147 if (vp == NULL)
1148 continue;
1149
1150 vmap_secs (vp, ldi, arch64);
1151
1152 /* Unless this is the exec file,
1153 add our sections to the section table for the core target. */
1154 if (vp != vmap)
1155 {
1156 struct section_table *stp;
1157
1158 target_resize_to_sections (target, 2);
1159 stp = target->to_sections_end - 2;
1160
1161 stp->bfd = vp->bfd;
1162 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".text");
1163 stp->addr = vp->tstart;
1164 stp->endaddr = vp->tend;
1165 stp++;
1166
1167 stp->bfd = vp->bfd;
1168 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".data");
1169 stp->addr = vp->dstart;
1170 stp->endaddr = vp->dend;
1171 }
1172
1173 vmap_symtab (vp);
1174
1175 if (vp != vmap && vp->objfile)
1176 observer_notify_new_objfile (vp->objfile);
1177 }
1178 while (LDI_NEXT (ldi, arch64) != 0);
1179 vmap_exec ();
1180 breakpoint_re_set ();
1181 do_cleanups (old);
1182 }
1183 \f
1184 /* Under AIX, we have to pass the correct TOC pointer to a function
1185 when calling functions in the inferior.
1186 We try to find the relative toc offset of the objfile containing PC
1187 and add the current load address of the data segment from the vmap. */
1188
1189 static CORE_ADDR
1190 find_toc_address (CORE_ADDR pc)
1191 {
1192 struct vmap *vp;
1193 extern CORE_ADDR get_toc_offset (struct objfile *); /* xcoffread.c */
1194
1195 for (vp = vmap; vp; vp = vp->nxt)
1196 {
1197 if (pc >= vp->tstart && pc < vp->tend)
1198 {
1199 /* vp->objfile is only NULL for the exec file. */
1200 return vp->dstart + get_toc_offset (vp->objfile == NULL
1201 ? symfile_objfile
1202 : vp->objfile);
1203 }
1204 }
1205 error (_("Unable to find TOC entry for pc %s."), hex_string (pc));
1206 }
1207 \f
1208
1209 void
1210 _initialize_rs6000_nat (void)
1211 {
1212 struct target_ops *t;
1213
1214 t = inf_ptrace_target ();
1215 t->to_fetch_registers = rs6000_fetch_inferior_registers;
1216 t->to_store_registers = rs6000_store_inferior_registers;
1217 t->to_xfer_partial = rs6000_xfer_partial;
1218
1219 super_create_inferior = t->to_create_inferior;
1220 t->to_create_inferior = rs6000_create_inferior;
1221
1222 t->to_wait = rs6000_wait;
1223
1224 add_target (t);
1225
1226 /* Initialize hook in rs6000-tdep.c for determining the TOC address
1227 when calling functions in the inferior. */
1228 rs6000_find_toc_address_hook = find_toc_address;
1229 }
This page took 0.055583 seconds and 5 git commands to generate.