26ae10981e445f58bb6ea48396df2fdecb78ad55
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "inferior.h"
25 #include "symtab.h"
26 #include "target.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "objfiles.h"
30 #include "arch-utils.h"
31 #include "regcache.h"
32 #include "regset.h"
33 #include "doublest.h"
34 #include "value.h"
35 #include "parser-defs.h"
36 #include "osabi.h"
37 #include "infcall.h"
38 #include "sim-regno.h"
39 #include "gdb/sim-ppc.h"
40 #include "reggroups.h"
41 #include "dwarf2-frame.h"
42 #include "target-descriptions.h"
43 #include "user-regs.h"
44
45 #include "libbfd.h" /* for bfd_default_set_arch_mach */
46 #include "coff/internal.h" /* for libcoff.h */
47 #include "libcoff.h" /* for xcoff_data */
48 #include "coff/xcoff.h"
49 #include "libxcoff.h"
50
51 #include "elf-bfd.h"
52 #include "elf/ppc.h"
53
54 #include "solib-svr4.h"
55 #include "ppc-tdep.h"
56
57 #include "gdb_assert.h"
58 #include "dis-asm.h"
59
60 #include "trad-frame.h"
61 #include "frame-unwind.h"
62 #include "frame-base.h"
63
64 #include "features/rs6000/powerpc-32.c"
65 #include "features/rs6000/powerpc-altivec32.c"
66 #include "features/rs6000/powerpc-vsx32.c"
67 #include "features/rs6000/powerpc-403.c"
68 #include "features/rs6000/powerpc-403gc.c"
69 #include "features/rs6000/powerpc-405.c"
70 #include "features/rs6000/powerpc-505.c"
71 #include "features/rs6000/powerpc-601.c"
72 #include "features/rs6000/powerpc-602.c"
73 #include "features/rs6000/powerpc-603.c"
74 #include "features/rs6000/powerpc-604.c"
75 #include "features/rs6000/powerpc-64.c"
76 #include "features/rs6000/powerpc-altivec64.c"
77 #include "features/rs6000/powerpc-vsx64.c"
78 #include "features/rs6000/powerpc-7400.c"
79 #include "features/rs6000/powerpc-750.c"
80 #include "features/rs6000/powerpc-860.c"
81 #include "features/rs6000/powerpc-e500.c"
82 #include "features/rs6000/rs6000.c"
83
84 /* Determine if regnum is an SPE pseudo-register. */
85 #define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
86 && (regnum) >= (tdep)->ppc_ev0_regnum \
87 && (regnum) < (tdep)->ppc_ev0_regnum + 32)
88
89 /* Determine if regnum is a decimal float pseudo-register. */
90 #define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
91 && (regnum) >= (tdep)->ppc_dl0_regnum \
92 && (regnum) < (tdep)->ppc_dl0_regnum + 16)
93
94 /* Determine if regnum is a POWER7 VSX register. */
95 #define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
96 && (regnum) >= (tdep)->ppc_vsr0_regnum \
97 && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
98
99 /* Determine if regnum is a POWER7 Extended FP register. */
100 #define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
101 && (regnum) >= (tdep)->ppc_efpr0_regnum \
102 && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_fprs)
103
104 /* The list of available "set powerpc ..." and "show powerpc ..."
105 commands. */
106 static struct cmd_list_element *setpowerpccmdlist = NULL;
107 static struct cmd_list_element *showpowerpccmdlist = NULL;
108
109 static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
110
111 /* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
112 static const char *powerpc_vector_strings[] =
113 {
114 "auto",
115 "generic",
116 "altivec",
117 "spe",
118 NULL
119 };
120
121 /* A variable that can be configured by the user. */
122 static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
123 static const char *powerpc_vector_abi_string = "auto";
124
125 /* To be used by skip_prologue. */
126
127 struct rs6000_framedata
128 {
129 int offset; /* total size of frame --- the distance
130 by which we decrement sp to allocate
131 the frame */
132 int saved_gpr; /* smallest # of saved gpr */
133 unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
134 int saved_fpr; /* smallest # of saved fpr */
135 int saved_vr; /* smallest # of saved vr */
136 int saved_ev; /* smallest # of saved ev */
137 int alloca_reg; /* alloca register number (frame ptr) */
138 char frameless; /* true if frameless functions. */
139 char nosavedpc; /* true if pc not saved. */
140 char used_bl; /* true if link register clobbered */
141 int gpr_offset; /* offset of saved gprs from prev sp */
142 int fpr_offset; /* offset of saved fprs from prev sp */
143 int vr_offset; /* offset of saved vrs from prev sp */
144 int ev_offset; /* offset of saved evs from prev sp */
145 int lr_offset; /* offset of saved lr */
146 int lr_register; /* register of saved lr, if trustworthy */
147 int cr_offset; /* offset of saved cr */
148 int vrsave_offset; /* offset of saved vrsave register */
149 };
150
151
152 /* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
153 int
154 vsx_register_p (struct gdbarch *gdbarch, int regno)
155 {
156 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
157 if (tdep->ppc_vsr0_regnum < 0)
158 return 0;
159 else
160 return (regno >= tdep->ppc_vsr0_upper_regnum && regno
161 <= tdep->ppc_vsr0_upper_regnum + 31);
162 }
163
164 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
165 int
166 altivec_register_p (struct gdbarch *gdbarch, int regno)
167 {
168 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
169 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
170 return 0;
171 else
172 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
173 }
174
175
176 /* Return true if REGNO is an SPE register, false otherwise. */
177 int
178 spe_register_p (struct gdbarch *gdbarch, int regno)
179 {
180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181
182 /* Is it a reference to EV0 -- EV31, and do we have those? */
183 if (IS_SPE_PSEUDOREG (tdep, regno))
184 return 1;
185
186 /* Is it a reference to one of the raw upper GPR halves? */
187 if (tdep->ppc_ev0_upper_regnum >= 0
188 && tdep->ppc_ev0_upper_regnum <= regno
189 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
190 return 1;
191
192 /* Is it a reference to the 64-bit accumulator, and do we have that? */
193 if (tdep->ppc_acc_regnum >= 0
194 && tdep->ppc_acc_regnum == regno)
195 return 1;
196
197 /* Is it a reference to the SPE floating-point status and control register,
198 and do we have that? */
199 if (tdep->ppc_spefscr_regnum >= 0
200 && tdep->ppc_spefscr_regnum == regno)
201 return 1;
202
203 return 0;
204 }
205
206
207 /* Return non-zero if the architecture described by GDBARCH has
208 floating-point registers (f0 --- f31 and fpscr). */
209 int
210 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
211 {
212 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
213
214 return (tdep->ppc_fp0_regnum >= 0
215 && tdep->ppc_fpscr_regnum >= 0);
216 }
217
218 /* Return non-zero if the architecture described by GDBARCH has
219 VSX registers (vsr0 --- vsr63). */
220 static int
221 ppc_vsx_support_p (struct gdbarch *gdbarch)
222 {
223 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
224
225 return tdep->ppc_vsr0_regnum >= 0;
226 }
227
228 /* Return non-zero if the architecture described by GDBARCH has
229 Altivec registers (vr0 --- vr31, vrsave and vscr). */
230 int
231 ppc_altivec_support_p (struct gdbarch *gdbarch)
232 {
233 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
234
235 return (tdep->ppc_vr0_regnum >= 0
236 && tdep->ppc_vrsave_regnum >= 0);
237 }
238
239 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
240 set it to SIM_REGNO.
241
242 This is a helper function for init_sim_regno_table, constructing
243 the table mapping GDB register numbers to sim register numbers; we
244 initialize every element in that table to -1 before we start
245 filling it in. */
246 static void
247 set_sim_regno (int *table, int gdb_regno, int sim_regno)
248 {
249 /* Make sure we don't try to assign any given GDB register a sim
250 register number more than once. */
251 gdb_assert (table[gdb_regno] == -1);
252 table[gdb_regno] = sim_regno;
253 }
254
255
256 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
257 numbers to simulator register numbers, based on the values placed
258 in the ARCH->tdep->ppc_foo_regnum members. */
259 static void
260 init_sim_regno_table (struct gdbarch *arch)
261 {
262 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
263 int total_regs = gdbarch_num_regs (arch);
264 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
265 int i;
266 static const char *const segment_regs[] = {
267 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
268 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
269 };
270
271 /* Presume that all registers not explicitly mentioned below are
272 unavailable from the sim. */
273 for (i = 0; i < total_regs; i++)
274 sim_regno[i] = -1;
275
276 /* General-purpose registers. */
277 for (i = 0; i < ppc_num_gprs; i++)
278 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
279
280 /* Floating-point registers. */
281 if (tdep->ppc_fp0_regnum >= 0)
282 for (i = 0; i < ppc_num_fprs; i++)
283 set_sim_regno (sim_regno,
284 tdep->ppc_fp0_regnum + i,
285 sim_ppc_f0_regnum + i);
286 if (tdep->ppc_fpscr_regnum >= 0)
287 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
288
289 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
290 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
291 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
292
293 /* Segment registers. */
294 for (i = 0; i < ppc_num_srs; i++)
295 {
296 int gdb_regno;
297
298 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
299 if (gdb_regno >= 0)
300 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
301 }
302
303 /* Altivec registers. */
304 if (tdep->ppc_vr0_regnum >= 0)
305 {
306 for (i = 0; i < ppc_num_vrs; i++)
307 set_sim_regno (sim_regno,
308 tdep->ppc_vr0_regnum + i,
309 sim_ppc_vr0_regnum + i);
310
311 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
312 we can treat this more like the other cases. */
313 set_sim_regno (sim_regno,
314 tdep->ppc_vr0_regnum + ppc_num_vrs,
315 sim_ppc_vscr_regnum);
316 }
317 /* vsave is a special-purpose register, so the code below handles it. */
318
319 /* SPE APU (E500) registers. */
320 if (tdep->ppc_ev0_upper_regnum >= 0)
321 for (i = 0; i < ppc_num_gprs; i++)
322 set_sim_regno (sim_regno,
323 tdep->ppc_ev0_upper_regnum + i,
324 sim_ppc_rh0_regnum + i);
325 if (tdep->ppc_acc_regnum >= 0)
326 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
327 /* spefscr is a special-purpose register, so the code below handles it. */
328
329 #ifdef WITH_SIM
330 /* Now handle all special-purpose registers. Verify that they
331 haven't mistakenly been assigned numbers by any of the above
332 code. */
333 for (i = 0; i < sim_ppc_num_sprs; i++)
334 {
335 const char *spr_name = sim_spr_register_name (i);
336 int gdb_regno = -1;
337
338 if (spr_name != NULL)
339 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
340
341 if (gdb_regno != -1)
342 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
343 }
344 #endif
345
346 /* Drop the initialized array into place. */
347 tdep->sim_regno = sim_regno;
348 }
349
350
351 /* Given a GDB register number REG, return the corresponding SIM
352 register number. */
353 static int
354 rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
355 {
356 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
357 int sim_regno;
358
359 if (tdep->sim_regno == NULL)
360 init_sim_regno_table (gdbarch);
361
362 gdb_assert (0 <= reg
363 && reg <= gdbarch_num_regs (gdbarch)
364 + gdbarch_num_pseudo_regs (gdbarch));
365 sim_regno = tdep->sim_regno[reg];
366
367 if (sim_regno >= 0)
368 return sim_regno;
369 else
370 return LEGACY_SIM_REGNO_IGNORE;
371 }
372
373 \f
374
375 /* Register set support functions. */
376
377 /* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
378 Write the register to REGCACHE. */
379
380 void
381 ppc_supply_reg (struct regcache *regcache, int regnum,
382 const gdb_byte *regs, size_t offset, int regsize)
383 {
384 if (regnum != -1 && offset != -1)
385 {
386 if (regsize > 4)
387 {
388 struct gdbarch *gdbarch = get_regcache_arch (regcache);
389 int gdb_regsize = register_size (gdbarch, regnum);
390 if (gdb_regsize < regsize
391 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
392 offset += regsize - gdb_regsize;
393 }
394 regcache_raw_supply (regcache, regnum, regs + offset);
395 }
396 }
397
398 /* Read register REGNUM from REGCACHE and store to REGS + OFFSET
399 in a field REGSIZE wide. Zero pad as necessary. */
400
401 void
402 ppc_collect_reg (const struct regcache *regcache, int regnum,
403 gdb_byte *regs, size_t offset, int regsize)
404 {
405 if (regnum != -1 && offset != -1)
406 {
407 if (regsize > 4)
408 {
409 struct gdbarch *gdbarch = get_regcache_arch (regcache);
410 int gdb_regsize = register_size (gdbarch, regnum);
411 if (gdb_regsize < regsize)
412 {
413 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
414 {
415 memset (regs + offset, 0, regsize - gdb_regsize);
416 offset += regsize - gdb_regsize;
417 }
418 else
419 memset (regs + offset + regsize - gdb_regsize, 0,
420 regsize - gdb_regsize);
421 }
422 }
423 regcache_raw_collect (regcache, regnum, regs + offset);
424 }
425 }
426
427 static int
428 ppc_greg_offset (struct gdbarch *gdbarch,
429 struct gdbarch_tdep *tdep,
430 const struct ppc_reg_offsets *offsets,
431 int regnum,
432 int *regsize)
433 {
434 *regsize = offsets->gpr_size;
435 if (regnum >= tdep->ppc_gp0_regnum
436 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
437 return (offsets->r0_offset
438 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
439
440 if (regnum == gdbarch_pc_regnum (gdbarch))
441 return offsets->pc_offset;
442
443 if (regnum == tdep->ppc_ps_regnum)
444 return offsets->ps_offset;
445
446 if (regnum == tdep->ppc_lr_regnum)
447 return offsets->lr_offset;
448
449 if (regnum == tdep->ppc_ctr_regnum)
450 return offsets->ctr_offset;
451
452 *regsize = offsets->xr_size;
453 if (regnum == tdep->ppc_cr_regnum)
454 return offsets->cr_offset;
455
456 if (regnum == tdep->ppc_xer_regnum)
457 return offsets->xer_offset;
458
459 if (regnum == tdep->ppc_mq_regnum)
460 return offsets->mq_offset;
461
462 return -1;
463 }
464
465 static int
466 ppc_fpreg_offset (struct gdbarch_tdep *tdep,
467 const struct ppc_reg_offsets *offsets,
468 int regnum)
469 {
470 if (regnum >= tdep->ppc_fp0_regnum
471 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
472 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
473
474 if (regnum == tdep->ppc_fpscr_regnum)
475 return offsets->fpscr_offset;
476
477 return -1;
478 }
479
480 static int
481 ppc_vrreg_offset (struct gdbarch_tdep *tdep,
482 const struct ppc_reg_offsets *offsets,
483 int regnum)
484 {
485 if (regnum >= tdep->ppc_vr0_regnum
486 && regnum < tdep->ppc_vr0_regnum + ppc_num_vrs)
487 return offsets->vr0_offset + (regnum - tdep->ppc_vr0_regnum) * 16;
488
489 if (regnum == tdep->ppc_vrsave_regnum - 1)
490 return offsets->vscr_offset;
491
492 if (regnum == tdep->ppc_vrsave_regnum)
493 return offsets->vrsave_offset;
494
495 return -1;
496 }
497
498 /* Supply register REGNUM in the general-purpose register set REGSET
499 from the buffer specified by GREGS and LEN to register cache
500 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
501
502 void
503 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
504 int regnum, const void *gregs, size_t len)
505 {
506 struct gdbarch *gdbarch = get_regcache_arch (regcache);
507 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
508 const struct ppc_reg_offsets *offsets = regset->descr;
509 size_t offset;
510 int regsize;
511
512 if (regnum == -1)
513 {
514 int i;
515 int gpr_size = offsets->gpr_size;
516
517 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
518 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
519 i++, offset += gpr_size)
520 ppc_supply_reg (regcache, i, gregs, offset, gpr_size);
521
522 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
523 gregs, offsets->pc_offset, gpr_size);
524 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
525 gregs, offsets->ps_offset, gpr_size);
526 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
527 gregs, offsets->lr_offset, gpr_size);
528 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
529 gregs, offsets->ctr_offset, gpr_size);
530 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
531 gregs, offsets->cr_offset, offsets->xr_size);
532 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
533 gregs, offsets->xer_offset, offsets->xr_size);
534 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
535 gregs, offsets->mq_offset, offsets->xr_size);
536 return;
537 }
538
539 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
540 ppc_supply_reg (regcache, regnum, gregs, offset, regsize);
541 }
542
543 /* Supply register REGNUM in the floating-point register set REGSET
544 from the buffer specified by FPREGS and LEN to register cache
545 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
546
547 void
548 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
549 int regnum, const void *fpregs, size_t len)
550 {
551 struct gdbarch *gdbarch = get_regcache_arch (regcache);
552 struct gdbarch_tdep *tdep;
553 const struct ppc_reg_offsets *offsets;
554 size_t offset;
555
556 if (!ppc_floating_point_unit_p (gdbarch))
557 return;
558
559 tdep = gdbarch_tdep (gdbarch);
560 offsets = regset->descr;
561 if (regnum == -1)
562 {
563 int i;
564
565 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
566 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
567 i++, offset += 8)
568 ppc_supply_reg (regcache, i, fpregs, offset, 8);
569
570 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
571 fpregs, offsets->fpscr_offset, offsets->fpscr_size);
572 return;
573 }
574
575 offset = ppc_fpreg_offset (tdep, offsets, regnum);
576 ppc_supply_reg (regcache, regnum, fpregs, offset,
577 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
578 }
579
580 /* Supply register REGNUM in the VSX register set REGSET
581 from the buffer specified by VSXREGS and LEN to register cache
582 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
583
584 void
585 ppc_supply_vsxregset (const struct regset *regset, struct regcache *regcache,
586 int regnum, const void *vsxregs, size_t len)
587 {
588 struct gdbarch *gdbarch = get_regcache_arch (regcache);
589 struct gdbarch_tdep *tdep;
590
591 if (!ppc_vsx_support_p (gdbarch))
592 return;
593
594 tdep = gdbarch_tdep (gdbarch);
595
596 if (regnum == -1)
597 {
598 int i;
599
600 for (i = tdep->ppc_vsr0_upper_regnum;
601 i < tdep->ppc_vsr0_upper_regnum + 32;
602 i++)
603 ppc_supply_reg (regcache, i, vsxregs, 0, 8);
604
605 return;
606 }
607 else
608 ppc_supply_reg (regcache, regnum, vsxregs, 0, 8);
609 }
610
611 /* Supply register REGNUM in the Altivec register set REGSET
612 from the buffer specified by VRREGS and LEN to register cache
613 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
614
615 void
616 ppc_supply_vrregset (const struct regset *regset, struct regcache *regcache,
617 int regnum, const void *vrregs, size_t len)
618 {
619 struct gdbarch *gdbarch = get_regcache_arch (regcache);
620 struct gdbarch_tdep *tdep;
621 const struct ppc_reg_offsets *offsets;
622 size_t offset;
623
624 if (!ppc_altivec_support_p (gdbarch))
625 return;
626
627 tdep = gdbarch_tdep (gdbarch);
628 offsets = regset->descr;
629 if (regnum == -1)
630 {
631 int i;
632
633 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
634 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
635 i++, offset += 16)
636 ppc_supply_reg (regcache, i, vrregs, offset, 16);
637
638 ppc_supply_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
639 vrregs, offsets->vscr_offset, 4);
640
641 ppc_supply_reg (regcache, tdep->ppc_vrsave_regnum,
642 vrregs, offsets->vrsave_offset, 4);
643 return;
644 }
645
646 offset = ppc_vrreg_offset (tdep, offsets, regnum);
647 if (regnum != tdep->ppc_vrsave_regnum
648 && regnum != tdep->ppc_vrsave_regnum - 1)
649 ppc_supply_reg (regcache, regnum, vrregs, offset, 16);
650 else
651 ppc_supply_reg (regcache, regnum,
652 vrregs, offset, 4);
653 }
654
655 /* Collect register REGNUM in the general-purpose register set
656 REGSET from register cache REGCACHE into the buffer specified by
657 GREGS and LEN. If REGNUM is -1, do this for all registers in
658 REGSET. */
659
660 void
661 ppc_collect_gregset (const struct regset *regset,
662 const struct regcache *regcache,
663 int regnum, void *gregs, size_t len)
664 {
665 struct gdbarch *gdbarch = get_regcache_arch (regcache);
666 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
667 const struct ppc_reg_offsets *offsets = regset->descr;
668 size_t offset;
669 int regsize;
670
671 if (regnum == -1)
672 {
673 int i;
674 int gpr_size = offsets->gpr_size;
675
676 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
677 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
678 i++, offset += gpr_size)
679 ppc_collect_reg (regcache, i, gregs, offset, gpr_size);
680
681 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
682 gregs, offsets->pc_offset, gpr_size);
683 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
684 gregs, offsets->ps_offset, gpr_size);
685 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
686 gregs, offsets->lr_offset, gpr_size);
687 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
688 gregs, offsets->ctr_offset, gpr_size);
689 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
690 gregs, offsets->cr_offset, offsets->xr_size);
691 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
692 gregs, offsets->xer_offset, offsets->xr_size);
693 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
694 gregs, offsets->mq_offset, offsets->xr_size);
695 return;
696 }
697
698 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
699 ppc_collect_reg (regcache, regnum, gregs, offset, regsize);
700 }
701
702 /* Collect register REGNUM in the floating-point register set
703 REGSET from register cache REGCACHE into the buffer specified by
704 FPREGS and LEN. If REGNUM is -1, do this for all registers in
705 REGSET. */
706
707 void
708 ppc_collect_fpregset (const struct regset *regset,
709 const struct regcache *regcache,
710 int regnum, void *fpregs, size_t len)
711 {
712 struct gdbarch *gdbarch = get_regcache_arch (regcache);
713 struct gdbarch_tdep *tdep;
714 const struct ppc_reg_offsets *offsets;
715 size_t offset;
716
717 if (!ppc_floating_point_unit_p (gdbarch))
718 return;
719
720 tdep = gdbarch_tdep (gdbarch);
721 offsets = regset->descr;
722 if (regnum == -1)
723 {
724 int i;
725
726 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
727 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
728 i++, offset += 8)
729 ppc_collect_reg (regcache, i, fpregs, offset, 8);
730
731 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
732 fpregs, offsets->fpscr_offset, offsets->fpscr_size);
733 return;
734 }
735
736 offset = ppc_fpreg_offset (tdep, offsets, regnum);
737 ppc_collect_reg (regcache, regnum, fpregs, offset,
738 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
739 }
740
741 /* Collect register REGNUM in the VSX register set
742 REGSET from register cache REGCACHE into the buffer specified by
743 VSXREGS and LEN. If REGNUM is -1, do this for all registers in
744 REGSET. */
745
746 void
747 ppc_collect_vsxregset (const struct regset *regset,
748 const struct regcache *regcache,
749 int regnum, void *vsxregs, size_t len)
750 {
751 struct gdbarch *gdbarch = get_regcache_arch (regcache);
752 struct gdbarch_tdep *tdep;
753
754 if (!ppc_vsx_support_p (gdbarch))
755 return;
756
757 tdep = gdbarch_tdep (gdbarch);
758
759 if (regnum == -1)
760 {
761 int i;
762
763 for (i = tdep->ppc_vsr0_upper_regnum;
764 i < tdep->ppc_vsr0_upper_regnum + 32;
765 i++)
766 ppc_collect_reg (regcache, i, vsxregs, 0, 8);
767
768 return;
769 }
770 else
771 ppc_collect_reg (regcache, regnum, vsxregs, 0, 8);
772 }
773
774
775 /* Collect register REGNUM in the Altivec register set
776 REGSET from register cache REGCACHE into the buffer specified by
777 VRREGS and LEN. If REGNUM is -1, do this for all registers in
778 REGSET. */
779
780 void
781 ppc_collect_vrregset (const struct regset *regset,
782 const struct regcache *regcache,
783 int regnum, void *vrregs, size_t len)
784 {
785 struct gdbarch *gdbarch = get_regcache_arch (regcache);
786 struct gdbarch_tdep *tdep;
787 const struct ppc_reg_offsets *offsets;
788 size_t offset;
789
790 if (!ppc_altivec_support_p (gdbarch))
791 return;
792
793 tdep = gdbarch_tdep (gdbarch);
794 offsets = regset->descr;
795 if (regnum == -1)
796 {
797 int i;
798
799 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
800 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
801 i++, offset += 16)
802 ppc_collect_reg (regcache, i, vrregs, offset, 16);
803
804 ppc_collect_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
805 vrregs, offsets->vscr_offset, 4);
806
807 ppc_collect_reg (regcache, tdep->ppc_vrsave_regnum,
808 vrregs, offsets->vrsave_offset, 4);
809 return;
810 }
811
812 offset = ppc_vrreg_offset (tdep, offsets, regnum);
813 if (regnum != tdep->ppc_vrsave_regnum
814 && regnum != tdep->ppc_vrsave_regnum - 1)
815 ppc_collect_reg (regcache, regnum, vrregs, offset, 16);
816 else
817 ppc_collect_reg (regcache, regnum,
818 vrregs, offset, 4);
819 }
820 \f
821
822 static int
823 insn_changes_sp_or_jumps (unsigned long insn)
824 {
825 int opcode = (insn >> 26) & 0x03f;
826 int sd = (insn >> 21) & 0x01f;
827 int a = (insn >> 16) & 0x01f;
828 int subcode = (insn >> 1) & 0x3ff;
829
830 /* Changes the stack pointer. */
831
832 /* NOTE: There are many ways to change the value of a given register.
833 The ways below are those used when the register is R1, the SP,
834 in a funtion's epilogue. */
835
836 if (opcode == 31 && subcode == 444 && a == 1)
837 return 1; /* mr R1,Rn */
838 if (opcode == 14 && sd == 1)
839 return 1; /* addi R1,Rn,simm */
840 if (opcode == 58 && sd == 1)
841 return 1; /* ld R1,ds(Rn) */
842
843 /* Transfers control. */
844
845 if (opcode == 18)
846 return 1; /* b */
847 if (opcode == 16)
848 return 1; /* bc */
849 if (opcode == 19 && subcode == 16)
850 return 1; /* bclr */
851 if (opcode == 19 && subcode == 528)
852 return 1; /* bcctr */
853
854 return 0;
855 }
856
857 /* Return true if we are in the function's epilogue, i.e. after the
858 instruction that destroyed the function's stack frame.
859
860 1) scan forward from the point of execution:
861 a) If you find an instruction that modifies the stack pointer
862 or transfers control (except a return), execution is not in
863 an epilogue, return.
864 b) Stop scanning if you find a return instruction or reach the
865 end of the function or reach the hard limit for the size of
866 an epilogue.
867 2) scan backward from the point of execution:
868 a) If you find an instruction that modifies the stack pointer,
869 execution *is* in an epilogue, return.
870 b) Stop scanning if you reach an instruction that transfers
871 control or the beginning of the function or reach the hard
872 limit for the size of an epilogue. */
873
874 static int
875 rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
876 {
877 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
878 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
879 bfd_byte insn_buf[PPC_INSN_SIZE];
880 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
881 unsigned long insn;
882 struct frame_info *curfrm;
883
884 /* Find the search limits based on function boundaries and hard limit. */
885
886 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
887 return 0;
888
889 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
890 if (epilogue_start < func_start) epilogue_start = func_start;
891
892 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
893 if (epilogue_end > func_end) epilogue_end = func_end;
894
895 curfrm = get_current_frame ();
896
897 /* Scan forward until next 'blr'. */
898
899 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
900 {
901 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
902 return 0;
903 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
904 if (insn == 0x4e800020)
905 break;
906 /* Assume a bctr is a tail call unless it points strictly within
907 this function. */
908 if (insn == 0x4e800420)
909 {
910 CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
911 tdep->ppc_ctr_regnum);
912 if (ctr > func_start && ctr < func_end)
913 return 0;
914 else
915 break;
916 }
917 if (insn_changes_sp_or_jumps (insn))
918 return 0;
919 }
920
921 /* Scan backward until adjustment to stack pointer (R1). */
922
923 for (scan_pc = pc - PPC_INSN_SIZE;
924 scan_pc >= epilogue_start;
925 scan_pc -= PPC_INSN_SIZE)
926 {
927 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
928 return 0;
929 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
930 if (insn_changes_sp_or_jumps (insn))
931 return 1;
932 }
933
934 return 0;
935 }
936
937 /* Get the ith function argument for the current function. */
938 static CORE_ADDR
939 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
940 struct type *type)
941 {
942 return get_frame_register_unsigned (frame, 3 + argi);
943 }
944
945 /* Sequence of bytes for breakpoint instruction. */
946
947 const static unsigned char *
948 rs6000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
949 int *bp_size)
950 {
951 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
952 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
953 *bp_size = 4;
954 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
955 return big_breakpoint;
956 else
957 return little_breakpoint;
958 }
959
960 /* Instruction masks for displaced stepping. */
961 #define BRANCH_MASK 0xfc000000
962 #define BP_MASK 0xFC0007FE
963 #define B_INSN 0x48000000
964 #define BC_INSN 0x40000000
965 #define BXL_INSN 0x4c000000
966 #define BP_INSN 0x7C000008
967
968 /* Fix up the state of registers and memory after having single-stepped
969 a displaced instruction. */
970 static void
971 ppc_displaced_step_fixup (struct gdbarch *gdbarch,
972 struct displaced_step_closure *closure,
973 CORE_ADDR from, CORE_ADDR to,
974 struct regcache *regs)
975 {
976 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
977 /* Since we use simple_displaced_step_copy_insn, our closure is a
978 copy of the instruction. */
979 ULONGEST insn = extract_unsigned_integer ((gdb_byte *) closure,
980 PPC_INSN_SIZE, byte_order);
981 ULONGEST opcode = 0;
982 /* Offset for non PC-relative instructions. */
983 LONGEST offset = PPC_INSN_SIZE;
984
985 opcode = insn & BRANCH_MASK;
986
987 if (debug_displaced)
988 fprintf_unfiltered (gdb_stdlog,
989 "displaced: (ppc) fixup (%s, %s)\n",
990 paddress (gdbarch, from), paddress (gdbarch, to));
991
992
993 /* Handle PC-relative branch instructions. */
994 if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
995 {
996 ULONGEST current_pc;
997
998 /* Read the current PC value after the instruction has been executed
999 in a displaced location. Calculate the offset to be applied to the
1000 original PC value before the displaced stepping. */
1001 regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1002 &current_pc);
1003 offset = current_pc - to;
1004
1005 if (opcode != BXL_INSN)
1006 {
1007 /* Check for AA bit indicating whether this is an absolute
1008 addressing or PC-relative (1: absolute, 0: relative). */
1009 if (!(insn & 0x2))
1010 {
1011 /* PC-relative addressing is being used in the branch. */
1012 if (debug_displaced)
1013 fprintf_unfiltered
1014 (gdb_stdlog,
1015 "displaced: (ppc) branch instruction: %s\n"
1016 "displaced: (ppc) adjusted PC from %s to %s\n",
1017 paddress (gdbarch, insn), paddress (gdbarch, current_pc),
1018 paddress (gdbarch, from + offset));
1019
1020 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1021 from + offset);
1022 }
1023 }
1024 else
1025 {
1026 /* If we're here, it means we have a branch to LR or CTR. If the
1027 branch was taken, the offset is probably greater than 4 (the next
1028 instruction), so it's safe to assume that an offset of 4 means we
1029 did not take the branch. */
1030 if (offset == PPC_INSN_SIZE)
1031 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1032 from + PPC_INSN_SIZE);
1033 }
1034
1035 /* Check for LK bit indicating whether we should set the link
1036 register to point to the next instruction
1037 (1: Set, 0: Don't set). */
1038 if (insn & 0x1)
1039 {
1040 /* Link register needs to be set to the next instruction's PC. */
1041 regcache_cooked_write_unsigned (regs,
1042 gdbarch_tdep (gdbarch)->ppc_lr_regnum,
1043 from + PPC_INSN_SIZE);
1044 if (debug_displaced)
1045 fprintf_unfiltered (gdb_stdlog,
1046 "displaced: (ppc) adjusted LR to %s\n",
1047 paddress (gdbarch, from + PPC_INSN_SIZE));
1048
1049 }
1050 }
1051 /* Check for breakpoints in the inferior. If we've found one, place the PC
1052 right at the breakpoint instruction. */
1053 else if ((insn & BP_MASK) == BP_INSN)
1054 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
1055 else
1056 /* Handle any other instructions that do not fit in the categories above. */
1057 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1058 from + offset);
1059 }
1060
1061 /* Always use hardware single-stepping to execute the
1062 displaced instruction. */
1063 static int
1064 ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
1065 struct displaced_step_closure *closure)
1066 {
1067 return 1;
1068 }
1069
1070 /* Instruction masks used during single-stepping of atomic sequences. */
1071 #define LWARX_MASK 0xfc0007fe
1072 #define LWARX_INSTRUCTION 0x7c000028
1073 #define LDARX_INSTRUCTION 0x7c0000A8
1074 #define STWCX_MASK 0xfc0007ff
1075 #define STWCX_INSTRUCTION 0x7c00012d
1076 #define STDCX_INSTRUCTION 0x7c0001ad
1077
1078 /* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
1079 instruction and ending with a STWCX/STDCX instruction. If such a sequence
1080 is found, attempt to step through it. A breakpoint is placed at the end of
1081 the sequence. */
1082
1083 int
1084 ppc_deal_with_atomic_sequence (struct frame_info *frame)
1085 {
1086 struct gdbarch *gdbarch = get_frame_arch (frame);
1087 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1088 CORE_ADDR pc = get_frame_pc (frame);
1089 CORE_ADDR breaks[2] = {-1, -1};
1090 CORE_ADDR loc = pc;
1091 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
1092 int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1093 int insn_count;
1094 int index;
1095 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
1096 const int atomic_sequence_length = 16; /* Instruction sequence length. */
1097 int opcode; /* Branch instruction's OPcode. */
1098 int bc_insn_count = 0; /* Conditional branch instruction count. */
1099
1100 /* Assume all atomic sequences start with a lwarx/ldarx instruction. */
1101 if ((insn & LWARX_MASK) != LWARX_INSTRUCTION
1102 && (insn & LWARX_MASK) != LDARX_INSTRUCTION)
1103 return 0;
1104
1105 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1106 instructions. */
1107 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1108 {
1109 loc += PPC_INSN_SIZE;
1110 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1111
1112 /* Assume that there is at most one conditional branch in the atomic
1113 sequence. If a conditional branch is found, put a breakpoint in
1114 its destination address. */
1115 if ((insn & BRANCH_MASK) == BC_INSN)
1116 {
1117 int immediate = ((insn & ~3) << 16) >> 16;
1118 int absolute = ((insn >> 1) & 1);
1119
1120 if (bc_insn_count >= 1)
1121 return 0; /* More than one conditional branch found, fallback
1122 to the standard single-step code. */
1123
1124 if (absolute)
1125 breaks[1] = immediate;
1126 else
1127 breaks[1] = pc + immediate;
1128
1129 bc_insn_count++;
1130 last_breakpoint++;
1131 }
1132
1133 if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
1134 || (insn & STWCX_MASK) == STDCX_INSTRUCTION)
1135 break;
1136 }
1137
1138 /* Assume that the atomic sequence ends with a stwcx/stdcx instruction. */
1139 if ((insn & STWCX_MASK) != STWCX_INSTRUCTION
1140 && (insn & STWCX_MASK) != STDCX_INSTRUCTION)
1141 return 0;
1142
1143 closing_insn = loc;
1144 loc += PPC_INSN_SIZE;
1145 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1146
1147 /* Insert a breakpoint right after the end of the atomic sequence. */
1148 breaks[0] = loc;
1149
1150 /* Check for duplicated breakpoints. Check also for a breakpoint
1151 placed (branch instruction's destination) at the stwcx/stdcx
1152 instruction, this resets the reservation and take us back to the
1153 lwarx/ldarx instruction at the beginning of the atomic sequence. */
1154 if (last_breakpoint && ((breaks[1] == breaks[0])
1155 || (breaks[1] == closing_insn)))
1156 last_breakpoint = 0;
1157
1158 /* Effectively inserts the breakpoints. */
1159 for (index = 0; index <= last_breakpoint; index++)
1160 insert_single_step_breakpoint (gdbarch, breaks[index]);
1161
1162 return 1;
1163 }
1164
1165
1166 #define SIGNED_SHORT(x) \
1167 ((sizeof (short) == 2) \
1168 ? ((int)(short)(x)) \
1169 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1170
1171 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1172
1173 /* Limit the number of skipped non-prologue instructions, as the examining
1174 of the prologue is expensive. */
1175 static int max_skip_non_prologue_insns = 10;
1176
1177 /* Return nonzero if the given instruction OP can be part of the prologue
1178 of a function and saves a parameter on the stack. FRAMEP should be
1179 set if one of the previous instructions in the function has set the
1180 Frame Pointer. */
1181
1182 static int
1183 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1184 {
1185 /* Move parameters from argument registers to temporary register. */
1186 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1187 {
1188 /* Rx must be scratch register r0. */
1189 const int rx_regno = (op >> 16) & 31;
1190 /* Ry: Only r3 - r10 are used for parameter passing. */
1191 const int ry_regno = GET_SRC_REG (op);
1192
1193 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1194 {
1195 *r0_contains_arg = 1;
1196 return 1;
1197 }
1198 else
1199 return 0;
1200 }
1201
1202 /* Save a General Purpose Register on stack. */
1203
1204 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1205 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1206 {
1207 /* Rx: Only r3 - r10 are used for parameter passing. */
1208 const int rx_regno = GET_SRC_REG (op);
1209
1210 return (rx_regno >= 3 && rx_regno <= 10);
1211 }
1212
1213 /* Save a General Purpose Register on stack via the Frame Pointer. */
1214
1215 if (framep &&
1216 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1217 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1218 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1219 {
1220 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1221 However, the compiler sometimes uses r0 to hold an argument. */
1222 const int rx_regno = GET_SRC_REG (op);
1223
1224 return ((rx_regno >= 3 && rx_regno <= 10)
1225 || (rx_regno == 0 && *r0_contains_arg));
1226 }
1227
1228 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1229 {
1230 /* Only f2 - f8 are used for parameter passing. */
1231 const int src_regno = GET_SRC_REG (op);
1232
1233 return (src_regno >= 2 && src_regno <= 8);
1234 }
1235
1236 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1237 {
1238 /* Only f2 - f8 are used for parameter passing. */
1239 const int src_regno = GET_SRC_REG (op);
1240
1241 return (src_regno >= 2 && src_regno <= 8);
1242 }
1243
1244 /* Not an insn that saves a parameter on stack. */
1245 return 0;
1246 }
1247
1248 /* Assuming that INSN is a "bl" instruction located at PC, return
1249 nonzero if the destination of the branch is a "blrl" instruction.
1250
1251 This sequence is sometimes found in certain function prologues.
1252 It allows the function to load the LR register with a value that
1253 they can use to access PIC data using PC-relative offsets. */
1254
1255 static int
1256 bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
1257 {
1258 CORE_ADDR dest;
1259 int immediate;
1260 int absolute;
1261 int dest_insn;
1262
1263 absolute = (int) ((insn >> 1) & 1);
1264 immediate = ((insn & ~3) << 6) >> 6;
1265 if (absolute)
1266 dest = immediate;
1267 else
1268 dest = pc + immediate;
1269
1270 dest_insn = read_memory_integer (dest, 4, byte_order);
1271 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1272 return 1;
1273
1274 return 0;
1275 }
1276
1277 /* Masks for decoding a branch-and-link (bl) instruction.
1278
1279 BL_MASK and BL_INSTRUCTION are used in combination with each other.
1280 The former is anded with the opcode in question; if the result of
1281 this masking operation is equal to BL_INSTRUCTION, then the opcode in
1282 question is a ``bl'' instruction.
1283
1284 BL_DISPLACMENT_MASK is anded with the opcode in order to extract
1285 the branch displacement. */
1286
1287 #define BL_MASK 0xfc000001
1288 #define BL_INSTRUCTION 0x48000001
1289 #define BL_DISPLACEMENT_MASK 0x03fffffc
1290
1291 static unsigned long
1292 rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
1293 {
1294 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1295 gdb_byte buf[4];
1296 unsigned long op;
1297
1298 /* Fetch the instruction and convert it to an integer. */
1299 if (target_read_memory (pc, buf, 4))
1300 return 0;
1301 op = extract_unsigned_integer (buf, 4, byte_order);
1302
1303 return op;
1304 }
1305
1306 /* GCC generates several well-known sequences of instructions at the begining
1307 of each function prologue when compiling with -fstack-check. If one of
1308 such sequences starts at START_PC, then return the address of the
1309 instruction immediately past this sequence. Otherwise, return START_PC. */
1310
1311 static CORE_ADDR
1312 rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
1313 {
1314 CORE_ADDR pc = start_pc;
1315 unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
1316
1317 /* First possible sequence: A small number of probes.
1318 stw 0, -<some immediate>(1)
1319 [repeat this instruction any (small) number of times]
1320 */
1321
1322 if ((op & 0xffff0000) == 0x90010000)
1323 {
1324 while ((op & 0xffff0000) == 0x90010000)
1325 {
1326 pc = pc + 4;
1327 op = rs6000_fetch_instruction (gdbarch, pc);
1328 }
1329 return pc;
1330 }
1331
1332 /* Second sequence: A probing loop.
1333 addi 12,1,-<some immediate>
1334 lis 0,-<some immediate>
1335 [possibly ori 0,0,<some immediate>]
1336 add 0,12,0
1337 cmpw 0,12,0
1338 beq 0,<disp>
1339 addi 12,12,-<some immediate>
1340 stw 0,0(12)
1341 b <disp>
1342 [possibly one last probe: stw 0,<some immediate>(12)]
1343 */
1344
1345 while (1)
1346 {
1347 /* addi 12,1,-<some immediate> */
1348 if ((op & 0xffff0000) != 0x39810000)
1349 break;
1350
1351 /* lis 0,-<some immediate> */
1352 pc = pc + 4;
1353 op = rs6000_fetch_instruction (gdbarch, pc);
1354 if ((op & 0xffff0000) != 0x3c000000)
1355 break;
1356
1357 pc = pc + 4;
1358 op = rs6000_fetch_instruction (gdbarch, pc);
1359 /* [possibly ori 0,0,<some immediate>] */
1360 if ((op & 0xffff0000) == 0x60000000)
1361 {
1362 pc = pc + 4;
1363 op = rs6000_fetch_instruction (gdbarch, pc);
1364 }
1365 /* add 0,12,0 */
1366 if (op != 0x7c0c0214)
1367 break;
1368
1369 /* cmpw 0,12,0 */
1370 pc = pc + 4;
1371 op = rs6000_fetch_instruction (gdbarch, pc);
1372 if (op != 0x7c0c0000)
1373 break;
1374
1375 /* beq 0,<disp> */
1376 pc = pc + 4;
1377 op = rs6000_fetch_instruction (gdbarch, pc);
1378 if ((op & 0xff9f0001) != 0x41820000)
1379 break;
1380
1381 /* addi 12,12,-<some immediate> */
1382 pc = pc + 4;
1383 op = rs6000_fetch_instruction (gdbarch, pc);
1384 if ((op & 0xffff0000) != 0x398c0000)
1385 break;
1386
1387 /* stw 0,0(12) */
1388 pc = pc + 4;
1389 op = rs6000_fetch_instruction (gdbarch, pc);
1390 if (op != 0x900c0000)
1391 break;
1392
1393 /* b <disp> */
1394 pc = pc + 4;
1395 op = rs6000_fetch_instruction (gdbarch, pc);
1396 if ((op & 0xfc000001) != 0x48000000)
1397 break;
1398
1399 /* [possibly one last probe: stw 0,<some immediate>(12)] */
1400 pc = pc + 4;
1401 op = rs6000_fetch_instruction (gdbarch, pc);
1402 if ((op & 0xffff0000) == 0x900c0000)
1403 {
1404 pc = pc + 4;
1405 op = rs6000_fetch_instruction (gdbarch, pc);
1406 }
1407
1408 /* We found a valid stack-check sequence, return the new PC. */
1409 return pc;
1410 }
1411
1412 /* Third sequence: No probe; instead, a comparizon between the stack size
1413 limit (saved in a run-time global variable) and the current stack
1414 pointer:
1415
1416 addi 0,1,-<some immediate>
1417 lis 12,__gnat_stack_limit@ha
1418 lwz 12,__gnat_stack_limit@l(12)
1419 twllt 0,12
1420
1421 or, with a small variant in the case of a bigger stack frame:
1422 addis 0,1,<some immediate>
1423 addic 0,0,-<some immediate>
1424 lis 12,__gnat_stack_limit@ha
1425 lwz 12,__gnat_stack_limit@l(12)
1426 twllt 0,12
1427 */
1428 while (1)
1429 {
1430 /* addi 0,1,-<some immediate> */
1431 if ((op & 0xffff0000) != 0x38010000)
1432 {
1433 /* small stack frame variant not recognized; try the
1434 big stack frame variant: */
1435
1436 /* addis 0,1,<some immediate> */
1437 if ((op & 0xffff0000) != 0x3c010000)
1438 break;
1439
1440 /* addic 0,0,-<some immediate> */
1441 pc = pc + 4;
1442 op = rs6000_fetch_instruction (gdbarch, pc);
1443 if ((op & 0xffff0000) != 0x30000000)
1444 break;
1445 }
1446
1447 /* lis 12,<some immediate> */
1448 pc = pc + 4;
1449 op = rs6000_fetch_instruction (gdbarch, pc);
1450 if ((op & 0xffff0000) != 0x3d800000)
1451 break;
1452
1453 /* lwz 12,<some immediate>(12) */
1454 pc = pc + 4;
1455 op = rs6000_fetch_instruction (gdbarch, pc);
1456 if ((op & 0xffff0000) != 0x818c0000)
1457 break;
1458
1459 /* twllt 0,12 */
1460 pc = pc + 4;
1461 op = rs6000_fetch_instruction (gdbarch, pc);
1462 if ((op & 0xfffffffe) != 0x7c406008)
1463 break;
1464
1465 /* We found a valid stack-check sequence, return the new PC. */
1466 return pc;
1467 }
1468
1469 /* No stack check code in our prologue, return the start_pc. */
1470 return start_pc;
1471 }
1472
1473 /* return pc value after skipping a function prologue and also return
1474 information about a function frame.
1475
1476 in struct rs6000_framedata fdata:
1477 - frameless is TRUE, if function does not have a frame.
1478 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1479 - offset is the initial size of this stack frame --- the amount by
1480 which we decrement the sp to allocate the frame.
1481 - saved_gpr is the number of the first saved gpr.
1482 - saved_fpr is the number of the first saved fpr.
1483 - saved_vr is the number of the first saved vr.
1484 - saved_ev is the number of the first saved ev.
1485 - alloca_reg is the number of the register used for alloca() handling.
1486 Otherwise -1.
1487 - gpr_offset is the offset of the first saved gpr from the previous frame.
1488 - fpr_offset is the offset of the first saved fpr from the previous frame.
1489 - vr_offset is the offset of the first saved vr from the previous frame.
1490 - ev_offset is the offset of the first saved ev from the previous frame.
1491 - lr_offset is the offset of the saved lr
1492 - cr_offset is the offset of the saved cr
1493 - vrsave_offset is the offset of the saved vrsave register
1494 */
1495
1496 static CORE_ADDR
1497 skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1498 struct rs6000_framedata *fdata)
1499 {
1500 CORE_ADDR orig_pc = pc;
1501 CORE_ADDR last_prologue_pc = pc;
1502 CORE_ADDR li_found_pc = 0;
1503 gdb_byte buf[4];
1504 unsigned long op;
1505 long offset = 0;
1506 long vr_saved_offset = 0;
1507 int lr_reg = -1;
1508 int cr_reg = -1;
1509 int vr_reg = -1;
1510 int ev_reg = -1;
1511 long ev_offset = 0;
1512 int vrsave_reg = -1;
1513 int reg;
1514 int framep = 0;
1515 int minimal_toc_loaded = 0;
1516 int prev_insn_was_prologue_insn = 1;
1517 int num_skip_non_prologue_insns = 0;
1518 int r0_contains_arg = 0;
1519 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1520 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1521 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1522
1523 memset (fdata, 0, sizeof (struct rs6000_framedata));
1524 fdata->saved_gpr = -1;
1525 fdata->saved_fpr = -1;
1526 fdata->saved_vr = -1;
1527 fdata->saved_ev = -1;
1528 fdata->alloca_reg = -1;
1529 fdata->frameless = 1;
1530 fdata->nosavedpc = 1;
1531 fdata->lr_register = -1;
1532
1533 pc = rs6000_skip_stack_check (gdbarch, pc);
1534 if (pc >= lim_pc)
1535 pc = lim_pc;
1536
1537 for (;; pc += 4)
1538 {
1539 /* Sometimes it isn't clear if an instruction is a prologue
1540 instruction or not. When we encounter one of these ambiguous
1541 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1542 Otherwise, we'll assume that it really is a prologue instruction. */
1543 if (prev_insn_was_prologue_insn)
1544 last_prologue_pc = pc;
1545
1546 /* Stop scanning if we've hit the limit. */
1547 if (pc >= lim_pc)
1548 break;
1549
1550 prev_insn_was_prologue_insn = 1;
1551
1552 /* Fetch the instruction and convert it to an integer. */
1553 if (target_read_memory (pc, buf, 4))
1554 break;
1555 op = extract_unsigned_integer (buf, 4, byte_order);
1556
1557 if ((op & 0xfc1fffff) == 0x7c0802a6)
1558 { /* mflr Rx */
1559 /* Since shared library / PIC code, which needs to get its
1560 address at runtime, can appear to save more than one link
1561 register vis:
1562
1563 *INDENT-OFF*
1564 stwu r1,-304(r1)
1565 mflr r3
1566 bl 0xff570d0 (blrl)
1567 stw r30,296(r1)
1568 mflr r30
1569 stw r31,300(r1)
1570 stw r3,308(r1);
1571 ...
1572 *INDENT-ON*
1573
1574 remember just the first one, but skip over additional
1575 ones. */
1576 if (lr_reg == -1)
1577 lr_reg = (op & 0x03e00000) >> 21;
1578 if (lr_reg == 0)
1579 r0_contains_arg = 0;
1580 continue;
1581 }
1582 else if ((op & 0xfc1fffff) == 0x7c000026)
1583 { /* mfcr Rx */
1584 cr_reg = (op & 0x03e00000);
1585 if (cr_reg == 0)
1586 r0_contains_arg = 0;
1587 continue;
1588
1589 }
1590 else if ((op & 0xfc1f0000) == 0xd8010000)
1591 { /* stfd Rx,NUM(r1) */
1592 reg = GET_SRC_REG (op);
1593 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1594 {
1595 fdata->saved_fpr = reg;
1596 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1597 }
1598 continue;
1599
1600 }
1601 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1602 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1603 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1604 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1605 {
1606
1607 reg = GET_SRC_REG (op);
1608 if ((op & 0xfc1f0000) == 0xbc010000)
1609 fdata->gpr_mask |= ~((1U << reg) - 1);
1610 else
1611 fdata->gpr_mask |= 1U << reg;
1612 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1613 {
1614 fdata->saved_gpr = reg;
1615 if ((op & 0xfc1f0003) == 0xf8010000)
1616 op &= ~3UL;
1617 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1618 }
1619 continue;
1620
1621 }
1622 else if ((op & 0xffff0000) == 0x60000000)
1623 {
1624 /* nop */
1625 /* Allow nops in the prologue, but do not consider them to
1626 be part of the prologue unless followed by other prologue
1627 instructions. */
1628 prev_insn_was_prologue_insn = 0;
1629 continue;
1630
1631 }
1632 else if ((op & 0xffff0000) == 0x3c000000)
1633 { /* addis 0,0,NUM, used
1634 for >= 32k frames */
1635 fdata->offset = (op & 0x0000ffff) << 16;
1636 fdata->frameless = 0;
1637 r0_contains_arg = 0;
1638 continue;
1639
1640 }
1641 else if ((op & 0xffff0000) == 0x60000000)
1642 { /* ori 0,0,NUM, 2nd ha
1643 lf of >= 32k frames */
1644 fdata->offset |= (op & 0x0000ffff);
1645 fdata->frameless = 0;
1646 r0_contains_arg = 0;
1647 continue;
1648
1649 }
1650 else if (lr_reg >= 0 &&
1651 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1652 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1653 /* stw Rx, NUM(r1) */
1654 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1655 /* stwu Rx, NUM(r1) */
1656 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1657 { /* where Rx == lr */
1658 fdata->lr_offset = offset;
1659 fdata->nosavedpc = 0;
1660 /* Invalidate lr_reg, but don't set it to -1.
1661 That would mean that it had never been set. */
1662 lr_reg = -2;
1663 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1664 (op & 0xfc000000) == 0x90000000) /* stw */
1665 {
1666 /* Does not update r1, so add displacement to lr_offset. */
1667 fdata->lr_offset += SIGNED_SHORT (op);
1668 }
1669 continue;
1670
1671 }
1672 else if (cr_reg >= 0 &&
1673 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1674 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1675 /* stw Rx, NUM(r1) */
1676 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1677 /* stwu Rx, NUM(r1) */
1678 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1679 { /* where Rx == cr */
1680 fdata->cr_offset = offset;
1681 /* Invalidate cr_reg, but don't set it to -1.
1682 That would mean that it had never been set. */
1683 cr_reg = -2;
1684 if ((op & 0xfc000003) == 0xf8000000 ||
1685 (op & 0xfc000000) == 0x90000000)
1686 {
1687 /* Does not update r1, so add displacement to cr_offset. */
1688 fdata->cr_offset += SIGNED_SHORT (op);
1689 }
1690 continue;
1691
1692 }
1693 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1694 {
1695 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1696 prediction bits. If the LR has already been saved, we can
1697 skip it. */
1698 continue;
1699 }
1700 else if (op == 0x48000005)
1701 { /* bl .+4 used in
1702 -mrelocatable */
1703 fdata->used_bl = 1;
1704 continue;
1705
1706 }
1707 else if (op == 0x48000004)
1708 { /* b .+4 (xlc) */
1709 break;
1710
1711 }
1712 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1713 in V.4 -mminimal-toc */
1714 (op & 0xffff0000) == 0x3bde0000)
1715 { /* addi 30,30,foo@l */
1716 continue;
1717
1718 }
1719 else if ((op & 0xfc000001) == 0x48000001)
1720 { /* bl foo,
1721 to save fprs??? */
1722
1723 fdata->frameless = 0;
1724
1725 /* If the return address has already been saved, we can skip
1726 calls to blrl (for PIC). */
1727 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
1728 {
1729 fdata->used_bl = 1;
1730 continue;
1731 }
1732
1733 /* Don't skip over the subroutine call if it is not within
1734 the first three instructions of the prologue and either
1735 we have no line table information or the line info tells
1736 us that the subroutine call is not part of the line
1737 associated with the prologue. */
1738 if ((pc - orig_pc) > 8)
1739 {
1740 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1741 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1742
1743 if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1744 break;
1745 }
1746
1747 op = read_memory_integer (pc + 4, 4, byte_order);
1748
1749 /* At this point, make sure this is not a trampoline
1750 function (a function that simply calls another functions,
1751 and nothing else). If the next is not a nop, this branch
1752 was part of the function prologue. */
1753
1754 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1755 break; /* don't skip over
1756 this branch */
1757
1758 fdata->used_bl = 1;
1759 continue;
1760 }
1761 /* update stack pointer */
1762 else if ((op & 0xfc1f0000) == 0x94010000)
1763 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1764 fdata->frameless = 0;
1765 fdata->offset = SIGNED_SHORT (op);
1766 offset = fdata->offset;
1767 continue;
1768 }
1769 else if ((op & 0xfc1f016a) == 0x7c01016e)
1770 { /* stwux rX,r1,rY */
1771 /* no way to figure out what r1 is going to be */
1772 fdata->frameless = 0;
1773 offset = fdata->offset;
1774 continue;
1775 }
1776 else if ((op & 0xfc1f0003) == 0xf8010001)
1777 { /* stdu rX,NUM(r1) */
1778 fdata->frameless = 0;
1779 fdata->offset = SIGNED_SHORT (op & ~3UL);
1780 offset = fdata->offset;
1781 continue;
1782 }
1783 else if ((op & 0xfc1f016a) == 0x7c01016a)
1784 { /* stdux rX,r1,rY */
1785 /* no way to figure out what r1 is going to be */
1786 fdata->frameless = 0;
1787 offset = fdata->offset;
1788 continue;
1789 }
1790 else if ((op & 0xffff0000) == 0x38210000)
1791 { /* addi r1,r1,SIMM */
1792 fdata->frameless = 0;
1793 fdata->offset += SIGNED_SHORT (op);
1794 offset = fdata->offset;
1795 continue;
1796 }
1797 /* Load up minimal toc pointer. Do not treat an epilogue restore
1798 of r31 as a minimal TOC load. */
1799 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1800 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1801 && !framep
1802 && !minimal_toc_loaded)
1803 {
1804 minimal_toc_loaded = 1;
1805 continue;
1806
1807 /* move parameters from argument registers to local variable
1808 registers */
1809 }
1810 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1811 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1812 (((op >> 21) & 31) <= 10) &&
1813 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
1814 {
1815 continue;
1816
1817 /* store parameters in stack */
1818 }
1819 /* Move parameters from argument registers to temporary register. */
1820 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1821 {
1822 continue;
1823
1824 /* Set up frame pointer */
1825 }
1826 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1827 || op == 0x7c3f0b78)
1828 { /* mr r31, r1 */
1829 fdata->frameless = 0;
1830 framep = 1;
1831 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1832 continue;
1833
1834 /* Another way to set up the frame pointer. */
1835 }
1836 else if ((op & 0xfc1fffff) == 0x38010000)
1837 { /* addi rX, r1, 0x0 */
1838 fdata->frameless = 0;
1839 framep = 1;
1840 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1841 + ((op & ~0x38010000) >> 21));
1842 continue;
1843 }
1844 /* AltiVec related instructions. */
1845 /* Store the vrsave register (spr 256) in another register for
1846 later manipulation, or load a register into the vrsave
1847 register. 2 instructions are used: mfvrsave and
1848 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1849 and mtspr SPR256, Rn. */
1850 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1851 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1852 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1853 {
1854 vrsave_reg = GET_SRC_REG (op);
1855 continue;
1856 }
1857 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1858 {
1859 continue;
1860 }
1861 /* Store the register where vrsave was saved to onto the stack:
1862 rS is the register where vrsave was stored in a previous
1863 instruction. */
1864 /* 100100 sssss 00001 dddddddd dddddddd */
1865 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1866 {
1867 if (vrsave_reg == GET_SRC_REG (op))
1868 {
1869 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1870 vrsave_reg = -1;
1871 }
1872 continue;
1873 }
1874 /* Compute the new value of vrsave, by modifying the register
1875 where vrsave was saved to. */
1876 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1877 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1878 {
1879 continue;
1880 }
1881 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1882 in a pair of insns to save the vector registers on the
1883 stack. */
1884 /* 001110 00000 00000 iiii iiii iiii iiii */
1885 /* 001110 01110 00000 iiii iiii iiii iiii */
1886 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1887 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1888 {
1889 if ((op & 0xffff0000) == 0x38000000)
1890 r0_contains_arg = 0;
1891 li_found_pc = pc;
1892 vr_saved_offset = SIGNED_SHORT (op);
1893
1894 /* This insn by itself is not part of the prologue, unless
1895 if part of the pair of insns mentioned above. So do not
1896 record this insn as part of the prologue yet. */
1897 prev_insn_was_prologue_insn = 0;
1898 }
1899 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1900 /* 011111 sssss 11111 00000 00111001110 */
1901 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1902 {
1903 if (pc == (li_found_pc + 4))
1904 {
1905 vr_reg = GET_SRC_REG (op);
1906 /* If this is the first vector reg to be saved, or if
1907 it has a lower number than others previously seen,
1908 reupdate the frame info. */
1909 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1910 {
1911 fdata->saved_vr = vr_reg;
1912 fdata->vr_offset = vr_saved_offset + offset;
1913 }
1914 vr_saved_offset = -1;
1915 vr_reg = -1;
1916 li_found_pc = 0;
1917 }
1918 }
1919 /* End AltiVec related instructions. */
1920
1921 /* Start BookE related instructions. */
1922 /* Store gen register S at (r31+uimm).
1923 Any register less than r13 is volatile, so we don't care. */
1924 /* 000100 sssss 11111 iiiii 01100100001 */
1925 else if (arch_info->mach == bfd_mach_ppc_e500
1926 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1927 {
1928 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1929 {
1930 unsigned int imm;
1931 ev_reg = GET_SRC_REG (op);
1932 imm = (op >> 11) & 0x1f;
1933 ev_offset = imm * 8;
1934 /* If this is the first vector reg to be saved, or if
1935 it has a lower number than others previously seen,
1936 reupdate the frame info. */
1937 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1938 {
1939 fdata->saved_ev = ev_reg;
1940 fdata->ev_offset = ev_offset + offset;
1941 }
1942 }
1943 continue;
1944 }
1945 /* Store gen register rS at (r1+rB). */
1946 /* 000100 sssss 00001 bbbbb 01100100000 */
1947 else if (arch_info->mach == bfd_mach_ppc_e500
1948 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1949 {
1950 if (pc == (li_found_pc + 4))
1951 {
1952 ev_reg = GET_SRC_REG (op);
1953 /* If this is the first vector reg to be saved, or if
1954 it has a lower number than others previously seen,
1955 reupdate the frame info. */
1956 /* We know the contents of rB from the previous instruction. */
1957 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1958 {
1959 fdata->saved_ev = ev_reg;
1960 fdata->ev_offset = vr_saved_offset + offset;
1961 }
1962 vr_saved_offset = -1;
1963 ev_reg = -1;
1964 li_found_pc = 0;
1965 }
1966 continue;
1967 }
1968 /* Store gen register r31 at (rA+uimm). */
1969 /* 000100 11111 aaaaa iiiii 01100100001 */
1970 else if (arch_info->mach == bfd_mach_ppc_e500
1971 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1972 {
1973 /* Wwe know that the source register is 31 already, but
1974 it can't hurt to compute it. */
1975 ev_reg = GET_SRC_REG (op);
1976 ev_offset = ((op >> 11) & 0x1f) * 8;
1977 /* If this is the first vector reg to be saved, or if
1978 it has a lower number than others previously seen,
1979 reupdate the frame info. */
1980 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1981 {
1982 fdata->saved_ev = ev_reg;
1983 fdata->ev_offset = ev_offset + offset;
1984 }
1985
1986 continue;
1987 }
1988 /* Store gen register S at (r31+r0).
1989 Store param on stack when offset from SP bigger than 4 bytes. */
1990 /* 000100 sssss 11111 00000 01100100000 */
1991 else if (arch_info->mach == bfd_mach_ppc_e500
1992 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1993 {
1994 if (pc == (li_found_pc + 4))
1995 {
1996 if ((op & 0x03e00000) >= 0x01a00000)
1997 {
1998 ev_reg = GET_SRC_REG (op);
1999 /* If this is the first vector reg to be saved, or if
2000 it has a lower number than others previously seen,
2001 reupdate the frame info. */
2002 /* We know the contents of r0 from the previous
2003 instruction. */
2004 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2005 {
2006 fdata->saved_ev = ev_reg;
2007 fdata->ev_offset = vr_saved_offset + offset;
2008 }
2009 ev_reg = -1;
2010 }
2011 vr_saved_offset = -1;
2012 li_found_pc = 0;
2013 continue;
2014 }
2015 }
2016 /* End BookE related instructions. */
2017
2018 else
2019 {
2020 unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
2021
2022 /* Not a recognized prologue instruction.
2023 Handle optimizer code motions into the prologue by continuing
2024 the search if we have no valid frame yet or if the return
2025 address is not yet saved in the frame. Also skip instructions
2026 if some of the GPRs expected to be saved are not yet saved. */
2027 if (fdata->frameless == 0 && fdata->nosavedpc == 0
2028 && (fdata->gpr_mask & all_mask) == all_mask)
2029 break;
2030
2031 if (op == 0x4e800020 /* blr */
2032 || op == 0x4e800420) /* bctr */
2033 /* Do not scan past epilogue in frameless functions or
2034 trampolines. */
2035 break;
2036 if ((op & 0xf4000000) == 0x40000000) /* bxx */
2037 /* Never skip branches. */
2038 break;
2039
2040 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
2041 /* Do not scan too many insns, scanning insns is expensive with
2042 remote targets. */
2043 break;
2044
2045 /* Continue scanning. */
2046 prev_insn_was_prologue_insn = 0;
2047 continue;
2048 }
2049 }
2050
2051 #if 0
2052 /* I have problems with skipping over __main() that I need to address
2053 * sometime. Previously, I used to use misc_function_vector which
2054 * didn't work as well as I wanted to be. -MGO */
2055
2056 /* If the first thing after skipping a prolog is a branch to a function,
2057 this might be a call to an initializer in main(), introduced by gcc2.
2058 We'd like to skip over it as well. Fortunately, xlc does some extra
2059 work before calling a function right after a prologue, thus we can
2060 single out such gcc2 behaviour. */
2061
2062
2063 if ((op & 0xfc000001) == 0x48000001)
2064 { /* bl foo, an initializer function? */
2065 op = read_memory_integer (pc + 4, 4, byte_order);
2066
2067 if (op == 0x4def7b82)
2068 { /* cror 0xf, 0xf, 0xf (nop) */
2069
2070 /* Check and see if we are in main. If so, skip over this
2071 initializer function as well. */
2072
2073 tmp = find_pc_misc_function (pc);
2074 if (tmp >= 0
2075 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
2076 return pc + 8;
2077 }
2078 }
2079 #endif /* 0 */
2080
2081 if (pc == lim_pc && lr_reg >= 0)
2082 fdata->lr_register = lr_reg;
2083
2084 fdata->offset = -fdata->offset;
2085 return last_prologue_pc;
2086 }
2087
2088 static CORE_ADDR
2089 rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2090 {
2091 struct rs6000_framedata frame;
2092 CORE_ADDR limit_pc, func_addr;
2093
2094 /* See if we can determine the end of the prologue via the symbol table.
2095 If so, then return either PC, or the PC after the prologue, whichever
2096 is greater. */
2097 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
2098 {
2099 CORE_ADDR post_prologue_pc
2100 = skip_prologue_using_sal (gdbarch, func_addr);
2101 if (post_prologue_pc != 0)
2102 return max (pc, post_prologue_pc);
2103 }
2104
2105 /* Can't determine prologue from the symbol table, need to examine
2106 instructions. */
2107
2108 /* Find an upper limit on the function prologue using the debug
2109 information. If the debug information could not be used to provide
2110 that bound, then use an arbitrary large number as the upper bound. */
2111 limit_pc = skip_prologue_using_sal (gdbarch, pc);
2112 if (limit_pc == 0)
2113 limit_pc = pc + 100; /* Magic. */
2114
2115 pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
2116 return pc;
2117 }
2118
2119 /* When compiling for EABI, some versions of GCC emit a call to __eabi
2120 in the prologue of main().
2121
2122 The function below examines the code pointed at by PC and checks to
2123 see if it corresponds to a call to __eabi. If so, it returns the
2124 address of the instruction following that call. Otherwise, it simply
2125 returns PC. */
2126
2127 static CORE_ADDR
2128 rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2129 {
2130 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2131 gdb_byte buf[4];
2132 unsigned long op;
2133
2134 if (target_read_memory (pc, buf, 4))
2135 return pc;
2136 op = extract_unsigned_integer (buf, 4, byte_order);
2137
2138 if ((op & BL_MASK) == BL_INSTRUCTION)
2139 {
2140 CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
2141 CORE_ADDR call_dest = pc + 4 + displ;
2142 struct minimal_symbol *s = lookup_minimal_symbol_by_pc (call_dest);
2143
2144 /* We check for ___eabi (three leading underscores) in addition
2145 to __eabi in case the GCC option "-fleading-underscore" was
2146 used to compile the program. */
2147 if (s != NULL
2148 && SYMBOL_LINKAGE_NAME (s) != NULL
2149 && (strcmp (SYMBOL_LINKAGE_NAME (s), "__eabi") == 0
2150 || strcmp (SYMBOL_LINKAGE_NAME (s), "___eabi") == 0))
2151 pc += 4;
2152 }
2153 return pc;
2154 }
2155
2156 /* All the ABI's require 16 byte alignment. */
2157 static CORE_ADDR
2158 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2159 {
2160 return (addr & -16);
2161 }
2162
2163 /* Return whether handle_inferior_event() should proceed through code
2164 starting at PC in function NAME when stepping.
2165
2166 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2167 handle memory references that are too distant to fit in instructions
2168 generated by the compiler. For example, if 'foo' in the following
2169 instruction:
2170
2171 lwz r9,foo(r2)
2172
2173 is greater than 32767, the linker might replace the lwz with a branch to
2174 somewhere in @FIX1 that does the load in 2 instructions and then branches
2175 back to where execution should continue.
2176
2177 GDB should silently step over @FIX code, just like AIX dbx does.
2178 Unfortunately, the linker uses the "b" instruction for the
2179 branches, meaning that the link register doesn't get set.
2180 Therefore, GDB's usual step_over_function () mechanism won't work.
2181
2182 Instead, use the gdbarch_skip_trampoline_code and
2183 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2184 @FIX code. */
2185
2186 static int
2187 rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
2188 CORE_ADDR pc, char *name)
2189 {
2190 return name && !strncmp (name, "@FIX", 4);
2191 }
2192
2193 /* Skip code that the user doesn't want to see when stepping:
2194
2195 1. Indirect function calls use a piece of trampoline code to do context
2196 switching, i.e. to set the new TOC table. Skip such code if we are on
2197 its first instruction (as when we have single-stepped to here).
2198
2199 2. Skip shared library trampoline code (which is different from
2200 indirect function call trampolines).
2201
2202 3. Skip bigtoc fixup code.
2203
2204 Result is desired PC to step until, or NULL if we are not in
2205 code that should be skipped. */
2206
2207 static CORE_ADDR
2208 rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2209 {
2210 struct gdbarch *gdbarch = get_frame_arch (frame);
2211 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2212 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2213 unsigned int ii, op;
2214 int rel;
2215 CORE_ADDR solib_target_pc;
2216 struct minimal_symbol *msymbol;
2217
2218 static unsigned trampoline_code[] =
2219 {
2220 0x800b0000, /* l r0,0x0(r11) */
2221 0x90410014, /* st r2,0x14(r1) */
2222 0x7c0903a6, /* mtctr r0 */
2223 0x804b0004, /* l r2,0x4(r11) */
2224 0x816b0008, /* l r11,0x8(r11) */
2225 0x4e800420, /* bctr */
2226 0x4e800020, /* br */
2227 0
2228 };
2229
2230 /* Check for bigtoc fixup code. */
2231 msymbol = lookup_minimal_symbol_by_pc (pc);
2232 if (msymbol
2233 && rs6000_in_solib_return_trampoline (gdbarch, pc,
2234 SYMBOL_LINKAGE_NAME (msymbol)))
2235 {
2236 /* Double-check that the third instruction from PC is relative "b". */
2237 op = read_memory_integer (pc + 8, 4, byte_order);
2238 if ((op & 0xfc000003) == 0x48000000)
2239 {
2240 /* Extract bits 6-29 as a signed 24-bit relative word address and
2241 add it to the containing PC. */
2242 rel = ((int)(op << 6) >> 6);
2243 return pc + 8 + rel;
2244 }
2245 }
2246
2247 /* If pc is in a shared library trampoline, return its target. */
2248 solib_target_pc = find_solib_trampoline_target (frame, pc);
2249 if (solib_target_pc)
2250 return solib_target_pc;
2251
2252 for (ii = 0; trampoline_code[ii]; ++ii)
2253 {
2254 op = read_memory_integer (pc + (ii * 4), 4, byte_order);
2255 if (op != trampoline_code[ii])
2256 return 0;
2257 }
2258 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination addr */
2259 pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
2260 return pc;
2261 }
2262
2263 /* ISA-specific vector types. */
2264
2265 static struct type *
2266 rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2267 {
2268 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2269
2270 if (!tdep->ppc_builtin_type_vec64)
2271 {
2272 const struct builtin_type *bt = builtin_type (gdbarch);
2273
2274 /* The type we're building is this: */
2275 #if 0
2276 union __gdb_builtin_type_vec64
2277 {
2278 int64_t uint64;
2279 float v2_float[2];
2280 int32_t v2_int32[2];
2281 int16_t v4_int16[4];
2282 int8_t v8_int8[8];
2283 };
2284 #endif
2285
2286 struct type *t;
2287
2288 t = arch_composite_type (gdbarch,
2289 "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
2290 append_composite_type_field (t, "uint64", bt->builtin_int64);
2291 append_composite_type_field (t, "v2_float",
2292 init_vector_type (bt->builtin_float, 2));
2293 append_composite_type_field (t, "v2_int32",
2294 init_vector_type (bt->builtin_int32, 2));
2295 append_composite_type_field (t, "v4_int16",
2296 init_vector_type (bt->builtin_int16, 4));
2297 append_composite_type_field (t, "v8_int8",
2298 init_vector_type (bt->builtin_int8, 8));
2299
2300 TYPE_VECTOR (t) = 1;
2301 TYPE_NAME (t) = "ppc_builtin_type_vec64";
2302 tdep->ppc_builtin_type_vec64 = t;
2303 }
2304
2305 return tdep->ppc_builtin_type_vec64;
2306 }
2307
2308 /* Vector 128 type. */
2309
2310 static struct type *
2311 rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2312 {
2313 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2314
2315 if (!tdep->ppc_builtin_type_vec128)
2316 {
2317 const struct builtin_type *bt = builtin_type (gdbarch);
2318
2319 /* The type we're building is this
2320
2321 type = union __ppc_builtin_type_vec128 {
2322 uint128_t uint128;
2323 double v2_double[2];
2324 float v4_float[4];
2325 int32_t v4_int32[4];
2326 int16_t v8_int16[8];
2327 int8_t v16_int8[16];
2328 }
2329 */
2330
2331 struct type *t;
2332
2333 t = arch_composite_type (gdbarch,
2334 "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
2335 append_composite_type_field (t, "uint128", bt->builtin_uint128);
2336 append_composite_type_field (t, "v2_double",
2337 init_vector_type (bt->builtin_double, 2));
2338 append_composite_type_field (t, "v4_float",
2339 init_vector_type (bt->builtin_float, 4));
2340 append_composite_type_field (t, "v4_int32",
2341 init_vector_type (bt->builtin_int32, 4));
2342 append_composite_type_field (t, "v8_int16",
2343 init_vector_type (bt->builtin_int16, 8));
2344 append_composite_type_field (t, "v16_int8",
2345 init_vector_type (bt->builtin_int8, 16));
2346
2347 TYPE_VECTOR (t) = 1;
2348 TYPE_NAME (t) = "ppc_builtin_type_vec128";
2349 tdep->ppc_builtin_type_vec128 = t;
2350 }
2351
2352 return tdep->ppc_builtin_type_vec128;
2353 }
2354
2355 /* Return the name of register number REGNO, or the empty string if it
2356 is an anonymous register. */
2357
2358 static const char *
2359 rs6000_register_name (struct gdbarch *gdbarch, int regno)
2360 {
2361 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2362
2363 /* The upper half "registers" have names in the XML description,
2364 but we present only the low GPRs and the full 64-bit registers
2365 to the user. */
2366 if (tdep->ppc_ev0_upper_regnum >= 0
2367 && tdep->ppc_ev0_upper_regnum <= regno
2368 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2369 return "";
2370
2371 /* Hide the upper halves of the vs0~vs31 registers. */
2372 if (tdep->ppc_vsr0_regnum >= 0
2373 && tdep->ppc_vsr0_upper_regnum <= regno
2374 && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2375 return "";
2376
2377 /* Check if the SPE pseudo registers are available. */
2378 if (IS_SPE_PSEUDOREG (tdep, regno))
2379 {
2380 static const char *const spe_regnames[] = {
2381 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2382 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2383 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2384 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2385 };
2386 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2387 }
2388
2389 /* Check if the decimal128 pseudo-registers are available. */
2390 if (IS_DFP_PSEUDOREG (tdep, regno))
2391 {
2392 static const char *const dfp128_regnames[] = {
2393 "dl0", "dl1", "dl2", "dl3",
2394 "dl4", "dl5", "dl6", "dl7",
2395 "dl8", "dl9", "dl10", "dl11",
2396 "dl12", "dl13", "dl14", "dl15"
2397 };
2398 return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2399 }
2400
2401 /* Check if this is a VSX pseudo-register. */
2402 if (IS_VSX_PSEUDOREG (tdep, regno))
2403 {
2404 static const char *const vsx_regnames[] = {
2405 "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2406 "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2407 "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2408 "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2409 "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2410 "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2411 "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2412 "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2413 "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2414 };
2415 return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2416 }
2417
2418 /* Check if the this is a Extended FP pseudo-register. */
2419 if (IS_EFP_PSEUDOREG (tdep, regno))
2420 {
2421 static const char *const efpr_regnames[] = {
2422 "f32", "f33", "f34", "f35", "f36", "f37", "f38",
2423 "f39", "f40", "f41", "f42", "f43", "f44", "f45",
2424 "f46", "f47", "f48", "f49", "f50", "f51",
2425 "f52", "f53", "f54", "f55", "f56", "f57",
2426 "f58", "f59", "f60", "f61", "f62", "f63"
2427 };
2428 return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2429 }
2430
2431 return tdesc_register_name (gdbarch, regno);
2432 }
2433
2434 /* Return the GDB type object for the "standard" data type of data in
2435 register N. */
2436
2437 static struct type *
2438 rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2439 {
2440 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2441
2442 /* These are the only pseudo-registers we support. */
2443 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2444 || IS_DFP_PSEUDOREG (tdep, regnum)
2445 || IS_VSX_PSEUDOREG (tdep, regnum)
2446 || IS_EFP_PSEUDOREG (tdep, regnum));
2447
2448 /* These are the e500 pseudo-registers. */
2449 if (IS_SPE_PSEUDOREG (tdep, regnum))
2450 return rs6000_builtin_type_vec64 (gdbarch);
2451 else if (IS_DFP_PSEUDOREG (tdep, regnum))
2452 /* PPC decimal128 pseudo-registers. */
2453 return builtin_type (gdbarch)->builtin_declong;
2454 else if (IS_VSX_PSEUDOREG (tdep, regnum))
2455 /* POWER7 VSX pseudo-registers. */
2456 return rs6000_builtin_type_vec128 (gdbarch);
2457 else
2458 /* POWER7 Extended FP pseudo-registers. */
2459 return builtin_type (gdbarch)->builtin_double;
2460 }
2461
2462 /* Is REGNUM a member of REGGROUP? */
2463 static int
2464 rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2465 struct reggroup *group)
2466 {
2467 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2468
2469 /* These are the only pseudo-registers we support. */
2470 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2471 || IS_DFP_PSEUDOREG (tdep, regnum)
2472 || IS_VSX_PSEUDOREG (tdep, regnum)
2473 || IS_EFP_PSEUDOREG (tdep, regnum));
2474
2475 /* These are the e500 pseudo-registers or the POWER7 VSX registers. */
2476 if (IS_SPE_PSEUDOREG (tdep, regnum) || IS_VSX_PSEUDOREG (tdep, regnum))
2477 return group == all_reggroup || group == vector_reggroup;
2478 else
2479 /* PPC decimal128 or Extended FP pseudo-registers. */
2480 return group == all_reggroup || group == float_reggroup;
2481 }
2482
2483 /* The register format for RS/6000 floating point registers is always
2484 double, we need a conversion if the memory format is float. */
2485
2486 static int
2487 rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2488 struct type *type)
2489 {
2490 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2491
2492 return (tdep->ppc_fp0_regnum >= 0
2493 && regnum >= tdep->ppc_fp0_regnum
2494 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2495 && TYPE_CODE (type) == TYPE_CODE_FLT
2496 && TYPE_LENGTH (type)
2497 != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
2498 }
2499
2500 static void
2501 rs6000_register_to_value (struct frame_info *frame,
2502 int regnum,
2503 struct type *type,
2504 gdb_byte *to)
2505 {
2506 struct gdbarch *gdbarch = get_frame_arch (frame);
2507 gdb_byte from[MAX_REGISTER_SIZE];
2508
2509 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2510
2511 get_frame_register (frame, regnum, from);
2512 convert_typed_floating (from, builtin_type (gdbarch)->builtin_double,
2513 to, type);
2514 }
2515
2516 static void
2517 rs6000_value_to_register (struct frame_info *frame,
2518 int regnum,
2519 struct type *type,
2520 const gdb_byte *from)
2521 {
2522 struct gdbarch *gdbarch = get_frame_arch (frame);
2523 gdb_byte to[MAX_REGISTER_SIZE];
2524
2525 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2526
2527 convert_typed_floating (from, type,
2528 to, builtin_type (gdbarch)->builtin_double);
2529 put_frame_register (frame, regnum, to);
2530 }
2531
2532 /* Move SPE vector register values between a 64-bit buffer and the two
2533 32-bit raw register halves in a regcache. This function handles
2534 both splitting a 64-bit value into two 32-bit halves, and joining
2535 two halves into a whole 64-bit value, depending on the function
2536 passed as the MOVE argument.
2537
2538 EV_REG must be the number of an SPE evN vector register --- a
2539 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2540 64-bit buffer.
2541
2542 Call MOVE once for each 32-bit half of that register, passing
2543 REGCACHE, the number of the raw register corresponding to that
2544 half, and the address of the appropriate half of BUFFER.
2545
2546 For example, passing 'regcache_raw_read' as the MOVE function will
2547 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2548 'regcache_raw_supply' will supply the contents of BUFFER to the
2549 appropriate pair of raw registers in REGCACHE.
2550
2551 You may need to cast away some 'const' qualifiers when passing
2552 MOVE, since this function can't tell at compile-time which of
2553 REGCACHE or BUFFER is acting as the source of the data. If C had
2554 co-variant type qualifiers, ... */
2555 static void
2556 e500_move_ev_register (void (*move) (struct regcache *regcache,
2557 int regnum, gdb_byte *buf),
2558 struct regcache *regcache, int ev_reg,
2559 gdb_byte *buffer)
2560 {
2561 struct gdbarch *arch = get_regcache_arch (regcache);
2562 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2563 int reg_index;
2564 gdb_byte *byte_buffer = buffer;
2565
2566 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2567
2568 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2569
2570 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2571 {
2572 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2573 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2574 }
2575 else
2576 {
2577 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2578 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2579 }
2580 }
2581
2582 static void
2583 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2584 int reg_nr, gdb_byte *buffer)
2585 {
2586 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2587 }
2588
2589 static void
2590 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2591 int reg_nr, const gdb_byte *buffer)
2592 {
2593 e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
2594 regcache_raw_write,
2595 regcache, reg_nr, (gdb_byte *) buffer);
2596 }
2597
2598 /* Read method for DFP pseudo-registers. */
2599 static void
2600 dfp_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2601 int reg_nr, gdb_byte *buffer)
2602 {
2603 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2604 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2605
2606 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2607 {
2608 /* Read two FP registers to form a whole dl register. */
2609 regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2610 2 * reg_index, buffer);
2611 regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2612 2 * reg_index + 1, buffer + 8);
2613 }
2614 else
2615 {
2616 regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2617 2 * reg_index + 1, buffer + 8);
2618 regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2619 2 * reg_index, buffer);
2620 }
2621 }
2622
2623 /* Write method for DFP pseudo-registers. */
2624 static void
2625 dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2626 int reg_nr, const gdb_byte *buffer)
2627 {
2628 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2629 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2630
2631 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2632 {
2633 /* Write each half of the dl register into a separate
2634 FP register. */
2635 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2636 2 * reg_index, buffer);
2637 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2638 2 * reg_index + 1, buffer + 8);
2639 }
2640 else
2641 {
2642 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2643 2 * reg_index + 1, buffer + 8);
2644 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2645 2 * reg_index, buffer);
2646 }
2647 }
2648
2649 /* Read method for POWER7 VSX pseudo-registers. */
2650 static void
2651 vsx_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2652 int reg_nr, gdb_byte *buffer)
2653 {
2654 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2655 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2656
2657 /* Read the portion that overlaps the VMX registers. */
2658 if (reg_index > 31)
2659 regcache_raw_read (regcache, tdep->ppc_vr0_regnum +
2660 reg_index - 32, buffer);
2661 else
2662 /* Read the portion that overlaps the FPR registers. */
2663 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2664 {
2665 regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2666 reg_index, buffer);
2667 regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2668 reg_index, buffer + 8);
2669 }
2670 else
2671 {
2672 regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2673 reg_index, buffer + 8);
2674 regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2675 reg_index, buffer);
2676 }
2677 }
2678
2679 /* Write method for POWER7 VSX pseudo-registers. */
2680 static void
2681 vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2682 int reg_nr, const gdb_byte *buffer)
2683 {
2684 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2685 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2686
2687 /* Write the portion that overlaps the VMX registers. */
2688 if (reg_index > 31)
2689 regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
2690 reg_index - 32, buffer);
2691 else
2692 /* Write the portion that overlaps the FPR registers. */
2693 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2694 {
2695 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2696 reg_index, buffer);
2697 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2698 reg_index, buffer + 8);
2699 }
2700 else
2701 {
2702 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2703 reg_index, buffer + 8);
2704 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2705 reg_index, buffer);
2706 }
2707 }
2708
2709 /* Read method for POWER7 Extended FP pseudo-registers. */
2710 static void
2711 efpr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2712 int reg_nr, gdb_byte *buffer)
2713 {
2714 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2715 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2716
2717 /* Read the portion that overlaps the VMX registers. */
2718 regcache_raw_read (regcache, tdep->ppc_vr0_regnum +
2719 reg_index, buffer);
2720 }
2721
2722 /* Write method for POWER7 Extended FP pseudo-registers. */
2723 static void
2724 efpr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2725 int reg_nr, const gdb_byte *buffer)
2726 {
2727 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2728 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2729
2730 /* Write the portion that overlaps the VMX registers. */
2731 regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
2732 reg_index, buffer);
2733 }
2734
2735 static void
2736 rs6000_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2737 int reg_nr, gdb_byte *buffer)
2738 {
2739 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2740 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2741
2742 gdb_assert (regcache_arch == gdbarch);
2743
2744 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2745 e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2746 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2747 dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2748 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2749 vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2750 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2751 efpr_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2752 else
2753 internal_error (__FILE__, __LINE__,
2754 _("rs6000_pseudo_register_read: "
2755 "called on unexpected register '%s' (%d)"),
2756 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2757 }
2758
2759 static void
2760 rs6000_pseudo_register_write (struct gdbarch *gdbarch,
2761 struct regcache *regcache,
2762 int reg_nr, const gdb_byte *buffer)
2763 {
2764 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2765 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2766
2767 gdb_assert (regcache_arch == gdbarch);
2768
2769 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2770 e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2771 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2772 dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2773 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2774 vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2775 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2776 efpr_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2777 else
2778 internal_error (__FILE__, __LINE__,
2779 _("rs6000_pseudo_register_write: "
2780 "called on unexpected register '%s' (%d)"),
2781 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2782 }
2783
2784 /* Convert a DBX STABS register number to a GDB register number. */
2785 static int
2786 rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
2787 {
2788 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2789
2790 if (0 <= num && num <= 31)
2791 return tdep->ppc_gp0_regnum + num;
2792 else if (32 <= num && num <= 63)
2793 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2794 specifies registers the architecture doesn't have? Our
2795 callers don't check the value we return. */
2796 return tdep->ppc_fp0_regnum + (num - 32);
2797 else if (77 <= num && num <= 108)
2798 return tdep->ppc_vr0_regnum + (num - 77);
2799 else if (1200 <= num && num < 1200 + 32)
2800 return tdep->ppc_ev0_regnum + (num - 1200);
2801 else
2802 switch (num)
2803 {
2804 case 64:
2805 return tdep->ppc_mq_regnum;
2806 case 65:
2807 return tdep->ppc_lr_regnum;
2808 case 66:
2809 return tdep->ppc_ctr_regnum;
2810 case 76:
2811 return tdep->ppc_xer_regnum;
2812 case 109:
2813 return tdep->ppc_vrsave_regnum;
2814 case 110:
2815 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2816 case 111:
2817 return tdep->ppc_acc_regnum;
2818 case 112:
2819 return tdep->ppc_spefscr_regnum;
2820 default:
2821 return num;
2822 }
2823 }
2824
2825
2826 /* Convert a Dwarf 2 register number to a GDB register number. */
2827 static int
2828 rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
2829 {
2830 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2831
2832 if (0 <= num && num <= 31)
2833 return tdep->ppc_gp0_regnum + num;
2834 else if (32 <= num && num <= 63)
2835 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2836 specifies registers the architecture doesn't have? Our
2837 callers don't check the value we return. */
2838 return tdep->ppc_fp0_regnum + (num - 32);
2839 else if (1124 <= num && num < 1124 + 32)
2840 return tdep->ppc_vr0_regnum + (num - 1124);
2841 else if (1200 <= num && num < 1200 + 32)
2842 return tdep->ppc_ev0_regnum + (num - 1200);
2843 else
2844 switch (num)
2845 {
2846 case 64:
2847 return tdep->ppc_cr_regnum;
2848 case 67:
2849 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2850 case 99:
2851 return tdep->ppc_acc_regnum;
2852 case 100:
2853 return tdep->ppc_mq_regnum;
2854 case 101:
2855 return tdep->ppc_xer_regnum;
2856 case 108:
2857 return tdep->ppc_lr_regnum;
2858 case 109:
2859 return tdep->ppc_ctr_regnum;
2860 case 356:
2861 return tdep->ppc_vrsave_regnum;
2862 case 612:
2863 return tdep->ppc_spefscr_regnum;
2864 default:
2865 return num;
2866 }
2867 }
2868
2869 /* Translate a .eh_frame register to DWARF register, or adjust a
2870 .debug_frame register. */
2871
2872 static int
2873 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
2874 {
2875 /* GCC releases before 3.4 use GCC internal register numbering in
2876 .debug_frame (and .debug_info, et cetera). The numbering is
2877 different from the standard SysV numbering for everything except
2878 for GPRs and FPRs. We can not detect this problem in most cases
2879 - to get accurate debug info for variables living in lr, ctr, v0,
2880 et cetera, use a newer version of GCC. But we must detect
2881 one important case - lr is in column 65 in .debug_frame output,
2882 instead of 108.
2883
2884 GCC 3.4, and the "hammer" branch, have a related problem. They
2885 record lr register saves in .debug_frame as 108, but still record
2886 the return column as 65. We fix that up too.
2887
2888 We can do this because 65 is assigned to fpsr, and GCC never
2889 generates debug info referring to it. To add support for
2890 handwritten debug info that restores fpsr, we would need to add a
2891 producer version check to this. */
2892 if (!eh_frame_p)
2893 {
2894 if (num == 65)
2895 return 108;
2896 else
2897 return num;
2898 }
2899
2900 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
2901 internal register numbering; translate that to the standard DWARF2
2902 register numbering. */
2903 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
2904 return num;
2905 else if (68 <= num && num <= 75) /* cr0-cr8 */
2906 return num - 68 + 86;
2907 else if (77 <= num && num <= 108) /* vr0-vr31 */
2908 return num - 77 + 1124;
2909 else
2910 switch (num)
2911 {
2912 case 64: /* mq */
2913 return 100;
2914 case 65: /* lr */
2915 return 108;
2916 case 66: /* ctr */
2917 return 109;
2918 case 76: /* xer */
2919 return 101;
2920 case 109: /* vrsave */
2921 return 356;
2922 case 110: /* vscr */
2923 return 67;
2924 case 111: /* spe_acc */
2925 return 99;
2926 case 112: /* spefscr */
2927 return 612;
2928 default:
2929 return num;
2930 }
2931 }
2932 \f
2933
2934 /* Handling the various POWER/PowerPC variants. */
2935
2936 /* Information about a particular processor variant. */
2937
2938 struct variant
2939 {
2940 /* Name of this variant. */
2941 char *name;
2942
2943 /* English description of the variant. */
2944 char *description;
2945
2946 /* bfd_arch_info.arch corresponding to variant. */
2947 enum bfd_architecture arch;
2948
2949 /* bfd_arch_info.mach corresponding to variant. */
2950 unsigned long mach;
2951
2952 /* Target description for this variant. */
2953 struct target_desc **tdesc;
2954 };
2955
2956 static struct variant variants[] =
2957 {
2958 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2959 bfd_mach_ppc, &tdesc_powerpc_altivec32},
2960 {"power", "POWER user-level", bfd_arch_rs6000,
2961 bfd_mach_rs6k, &tdesc_rs6000},
2962 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2963 bfd_mach_ppc_403, &tdesc_powerpc_403},
2964 {"405", "IBM PowerPC 405", bfd_arch_powerpc,
2965 bfd_mach_ppc_405, &tdesc_powerpc_405},
2966 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2967 bfd_mach_ppc_601, &tdesc_powerpc_601},
2968 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2969 bfd_mach_ppc_602, &tdesc_powerpc_602},
2970 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2971 bfd_mach_ppc_603, &tdesc_powerpc_603},
2972 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2973 604, &tdesc_powerpc_604},
2974 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2975 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
2976 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2977 bfd_mach_ppc_505, &tdesc_powerpc_505},
2978 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2979 bfd_mach_ppc_860, &tdesc_powerpc_860},
2980 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2981 bfd_mach_ppc_750, &tdesc_powerpc_750},
2982 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2983 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
2984 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2985 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
2986
2987 /* 64-bit */
2988 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2989 bfd_mach_ppc64, &tdesc_powerpc_altivec64},
2990 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2991 bfd_mach_ppc_620, &tdesc_powerpc_64},
2992 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2993 bfd_mach_ppc_630, &tdesc_powerpc_64},
2994 {"a35", "PowerPC A35", bfd_arch_powerpc,
2995 bfd_mach_ppc_a35, &tdesc_powerpc_64},
2996 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2997 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
2998 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2999 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
3000
3001 /* FIXME: I haven't checked the register sets of the following. */
3002 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
3003 bfd_mach_rs6k_rs1, &tdesc_rs6000},
3004 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
3005 bfd_mach_rs6k_rsc, &tdesc_rs6000},
3006 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
3007 bfd_mach_rs6k_rs2, &tdesc_rs6000},
3008
3009 {0, 0, 0, 0, 0}
3010 };
3011
3012 /* Return the variant corresponding to architecture ARCH and machine number
3013 MACH. If no such variant exists, return null. */
3014
3015 static const struct variant *
3016 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
3017 {
3018 const struct variant *v;
3019
3020 for (v = variants; v->name; v++)
3021 if (arch == v->arch && mach == v->mach)
3022 return v;
3023
3024 return NULL;
3025 }
3026
3027 static int
3028 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
3029 {
3030 if (!info->disassembler_options)
3031 info->disassembler_options = "any";
3032
3033 if (info->endian == BFD_ENDIAN_BIG)
3034 return print_insn_big_powerpc (memaddr, info);
3035 else
3036 return print_insn_little_powerpc (memaddr, info);
3037 }
3038 \f
3039 static CORE_ADDR
3040 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
3041 {
3042 return frame_unwind_register_unsigned (next_frame,
3043 gdbarch_pc_regnum (gdbarch));
3044 }
3045
3046 static struct frame_id
3047 rs6000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
3048 {
3049 return frame_id_build (get_frame_register_unsigned
3050 (this_frame, gdbarch_sp_regnum (gdbarch)),
3051 get_frame_pc (this_frame));
3052 }
3053
3054 struct rs6000_frame_cache
3055 {
3056 CORE_ADDR base;
3057 CORE_ADDR initial_sp;
3058 struct trad_frame_saved_reg *saved_regs;
3059 };
3060
3061 static struct rs6000_frame_cache *
3062 rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
3063 {
3064 struct rs6000_frame_cache *cache;
3065 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3066 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3067 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3068 struct rs6000_framedata fdata;
3069 int wordsize = tdep->wordsize;
3070 CORE_ADDR func, pc;
3071
3072 if ((*this_cache) != NULL)
3073 return (*this_cache);
3074 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3075 (*this_cache) = cache;
3076 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3077
3078 func = get_frame_func (this_frame);
3079 pc = get_frame_pc (this_frame);
3080 skip_prologue (gdbarch, func, pc, &fdata);
3081
3082 /* Figure out the parent's stack pointer. */
3083
3084 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3085 address of the current frame. Things might be easier if the
3086 ->frame pointed to the outer-most address of the frame. In
3087 the mean time, the address of the prev frame is used as the
3088 base address of this frame. */
3089 cache->base = get_frame_register_unsigned
3090 (this_frame, gdbarch_sp_regnum (gdbarch));
3091
3092 /* If the function appears to be frameless, check a couple of likely
3093 indicators that we have simply failed to find the frame setup.
3094 Two common cases of this are missing symbols (i.e.
3095 get_frame_func returns the wrong address or 0), and assembly
3096 stubs which have a fast exit path but set up a frame on the slow
3097 path.
3098
3099 If the LR appears to return to this function, then presume that
3100 we have an ABI compliant frame that we failed to find. */
3101 if (fdata.frameless && fdata.lr_offset == 0)
3102 {
3103 CORE_ADDR saved_lr;
3104 int make_frame = 0;
3105
3106 saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3107 if (func == 0 && saved_lr == pc)
3108 make_frame = 1;
3109 else if (func != 0)
3110 {
3111 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3112 if (func == saved_func)
3113 make_frame = 1;
3114 }
3115
3116 if (make_frame)
3117 {
3118 fdata.frameless = 0;
3119 fdata.lr_offset = tdep->lr_frame_offset;
3120 }
3121 }
3122
3123 if (!fdata.frameless)
3124 /* Frameless really means stackless. */
3125 cache->base
3126 = read_memory_unsigned_integer (cache->base, wordsize, byte_order);
3127
3128 trad_frame_set_value (cache->saved_regs,
3129 gdbarch_sp_regnum (gdbarch), cache->base);
3130
3131 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3132 All fpr's from saved_fpr to fp31 are saved. */
3133
3134 if (fdata.saved_fpr >= 0)
3135 {
3136 int i;
3137 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3138
3139 /* If skip_prologue says floating-point registers were saved,
3140 but the current architecture has no floating-point registers,
3141 then that's strange. But we have no indices to even record
3142 the addresses under, so we just ignore it. */
3143 if (ppc_floating_point_unit_p (gdbarch))
3144 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3145 {
3146 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3147 fpr_addr += 8;
3148 }
3149 }
3150
3151 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3152 All gpr's from saved_gpr to gpr31 are saved (except during the
3153 prologue). */
3154
3155 if (fdata.saved_gpr >= 0)
3156 {
3157 int i;
3158 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3159 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3160 {
3161 if (fdata.gpr_mask & (1U << i))
3162 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3163 gpr_addr += wordsize;
3164 }
3165 }
3166
3167 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3168 All vr's from saved_vr to vr31 are saved. */
3169 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3170 {
3171 if (fdata.saved_vr >= 0)
3172 {
3173 int i;
3174 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3175 for (i = fdata.saved_vr; i < 32; i++)
3176 {
3177 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3178 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3179 }
3180 }
3181 }
3182
3183 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3184 All vr's from saved_ev to ev31 are saved. ????? */
3185 if (tdep->ppc_ev0_regnum != -1)
3186 {
3187 if (fdata.saved_ev >= 0)
3188 {
3189 int i;
3190 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3191 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3192 {
3193 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3194 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
3195 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3196 }
3197 }
3198 }
3199
3200 /* If != 0, fdata.cr_offset is the offset from the frame that
3201 holds the CR. */
3202 if (fdata.cr_offset != 0)
3203 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
3204
3205 /* If != 0, fdata.lr_offset is the offset from the frame that
3206 holds the LR. */
3207 if (fdata.lr_offset != 0)
3208 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
3209 else if (fdata.lr_register != -1)
3210 cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register;
3211 /* The PC is found in the link register. */
3212 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3213 cache->saved_regs[tdep->ppc_lr_regnum];
3214
3215 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3216 holds the VRSAVE. */
3217 if (fdata.vrsave_offset != 0)
3218 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
3219
3220 if (fdata.alloca_reg < 0)
3221 /* If no alloca register used, then fi->frame is the value of the
3222 %sp for this frame, and it is good enough. */
3223 cache->initial_sp
3224 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3225 else
3226 cache->initial_sp
3227 = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
3228
3229 return cache;
3230 }
3231
3232 static void
3233 rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
3234 struct frame_id *this_id)
3235 {
3236 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3237 this_cache);
3238 /* This marks the outermost frame. */
3239 if (info->base == 0)
3240 return;
3241
3242 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3243 }
3244
3245 static struct value *
3246 rs6000_frame_prev_register (struct frame_info *this_frame,
3247 void **this_cache, int regnum)
3248 {
3249 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3250 this_cache);
3251 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3252 }
3253
3254 static const struct frame_unwind rs6000_frame_unwind =
3255 {
3256 NORMAL_FRAME,
3257 rs6000_frame_this_id,
3258 rs6000_frame_prev_register,
3259 NULL,
3260 default_frame_sniffer
3261 };
3262 \f
3263
3264 static CORE_ADDR
3265 rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
3266 {
3267 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3268 this_cache);
3269 return info->initial_sp;
3270 }
3271
3272 static const struct frame_base rs6000_frame_base = {
3273 &rs6000_frame_unwind,
3274 rs6000_frame_base_address,
3275 rs6000_frame_base_address,
3276 rs6000_frame_base_address
3277 };
3278
3279 static const struct frame_base *
3280 rs6000_frame_base_sniffer (struct frame_info *this_frame)
3281 {
3282 return &rs6000_frame_base;
3283 }
3284
3285 /* DWARF-2 frame support. Used to handle the detection of
3286 clobbered registers during function calls. */
3287
3288 static void
3289 ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3290 struct dwarf2_frame_state_reg *reg,
3291 struct frame_info *this_frame)
3292 {
3293 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3294
3295 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3296 non-volatile registers. We will use the same code for both. */
3297
3298 /* Call-saved GP registers. */
3299 if ((regnum >= tdep->ppc_gp0_regnum + 14
3300 && regnum <= tdep->ppc_gp0_regnum + 31)
3301 || (regnum == tdep->ppc_gp0_regnum + 1))
3302 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3303
3304 /* Call-clobbered GP registers. */
3305 if ((regnum >= tdep->ppc_gp0_regnum + 3
3306 && regnum <= tdep->ppc_gp0_regnum + 12)
3307 || (regnum == tdep->ppc_gp0_regnum))
3308 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3309
3310 /* Deal with FP registers, if supported. */
3311 if (tdep->ppc_fp0_regnum >= 0)
3312 {
3313 /* Call-saved FP registers. */
3314 if ((regnum >= tdep->ppc_fp0_regnum + 14
3315 && regnum <= tdep->ppc_fp0_regnum + 31))
3316 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3317
3318 /* Call-clobbered FP registers. */
3319 if ((regnum >= tdep->ppc_fp0_regnum
3320 && regnum <= tdep->ppc_fp0_regnum + 13))
3321 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3322 }
3323
3324 /* Deal with ALTIVEC registers, if supported. */
3325 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3326 {
3327 /* Call-saved Altivec registers. */
3328 if ((regnum >= tdep->ppc_vr0_regnum + 20
3329 && regnum <= tdep->ppc_vr0_regnum + 31)
3330 || regnum == tdep->ppc_vrsave_regnum)
3331 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3332
3333 /* Call-clobbered Altivec registers. */
3334 if ((regnum >= tdep->ppc_vr0_regnum
3335 && regnum <= tdep->ppc_vr0_regnum + 19))
3336 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3337 }
3338
3339 /* Handle PC register and Stack Pointer correctly. */
3340 if (regnum == gdbarch_pc_regnum (gdbarch))
3341 reg->how = DWARF2_FRAME_REG_RA;
3342 else if (regnum == gdbarch_sp_regnum (gdbarch))
3343 reg->how = DWARF2_FRAME_REG_CFA;
3344 }
3345
3346
3347 /* Initialize the current architecture based on INFO. If possible, re-use an
3348 architecture from ARCHES, which is a list of architectures already created
3349 during this debugging session.
3350
3351 Called e.g. at program startup, when reading a core file, and when reading
3352 a binary file. */
3353
3354 static struct gdbarch *
3355 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3356 {
3357 struct gdbarch *gdbarch;
3358 struct gdbarch_tdep *tdep;
3359 int wordsize, from_xcoff_exec, from_elf_exec;
3360 enum bfd_architecture arch;
3361 unsigned long mach;
3362 bfd abfd;
3363 asection *sect;
3364 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
3365 int soft_float;
3366 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
3367 int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0, have_dfp = 0,
3368 have_vsx = 0;
3369 int tdesc_wordsize = -1;
3370 const struct target_desc *tdesc = info.target_desc;
3371 struct tdesc_arch_data *tdesc_data = NULL;
3372 int num_pseudoregs = 0;
3373 int cur_reg;
3374
3375 /* INFO may refer to a binary that is not of the PowerPC architecture,
3376 e.g. when debugging a stand-alone SPE executable on a Cell/B.E. system.
3377 In this case, we must not attempt to infer properties of the (PowerPC
3378 side) of the target system from properties of that executable. Trust
3379 the target description instead. */
3380 if (info.abfd
3381 && bfd_get_arch (info.abfd) != bfd_arch_powerpc
3382 && bfd_get_arch (info.abfd) != bfd_arch_rs6000)
3383 info.abfd = NULL;
3384
3385 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
3386 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3387
3388 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3389 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3390
3391 /* Check word size. If INFO is from a binary file, infer it from
3392 that, else choose a likely default. */
3393 if (from_xcoff_exec)
3394 {
3395 if (bfd_xcoff_is_xcoff64 (info.abfd))
3396 wordsize = 8;
3397 else
3398 wordsize = 4;
3399 }
3400 else if (from_elf_exec)
3401 {
3402 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3403 wordsize = 8;
3404 else
3405 wordsize = 4;
3406 }
3407 else if (tdesc_has_registers (tdesc))
3408 wordsize = -1;
3409 else
3410 {
3411 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3412 wordsize = info.bfd_arch_info->bits_per_word /
3413 info.bfd_arch_info->bits_per_byte;
3414 else
3415 wordsize = 4;
3416 }
3417
3418 /* Get the architecture and machine from the BFD. */
3419 arch = info.bfd_arch_info->arch;
3420 mach = info.bfd_arch_info->mach;
3421
3422 /* For e500 executables, the apuinfo section is of help here. Such
3423 section contains the identifier and revision number of each
3424 Application-specific Processing Unit that is present on the
3425 chip. The content of the section is determined by the assembler
3426 which looks at each instruction and determines which unit (and
3427 which version of it) can execute it. In our case we just look for
3428 the existance of the section. */
3429
3430 if (info.abfd)
3431 {
3432 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3433 if (sect)
3434 {
3435 arch = info.bfd_arch_info->arch;
3436 mach = bfd_mach_ppc_e500;
3437 bfd_default_set_arch_mach (&abfd, arch, mach);
3438 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3439 }
3440 }
3441
3442 /* Find a default target description which describes our register
3443 layout, if we do not already have one. */
3444 if (! tdesc_has_registers (tdesc))
3445 {
3446 const struct variant *v;
3447
3448 /* Choose variant. */
3449 v = find_variant_by_arch (arch, mach);
3450 if (!v)
3451 return NULL;
3452
3453 tdesc = *v->tdesc;
3454 }
3455
3456 gdb_assert (tdesc_has_registers (tdesc));
3457
3458 /* Check any target description for validity. */
3459 if (tdesc_has_registers (tdesc))
3460 {
3461 static const char *const gprs[] = {
3462 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
3463 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
3464 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
3465 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
3466 };
3467 static const char *const segment_regs[] = {
3468 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
3469 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
3470 };
3471 const struct tdesc_feature *feature;
3472 int i, valid_p;
3473 static const char *const msr_names[] = { "msr", "ps" };
3474 static const char *const cr_names[] = { "cr", "cnd" };
3475 static const char *const ctr_names[] = { "ctr", "cnt" };
3476
3477 feature = tdesc_find_feature (tdesc,
3478 "org.gnu.gdb.power.core");
3479 if (feature == NULL)
3480 return NULL;
3481
3482 tdesc_data = tdesc_data_alloc ();
3483
3484 valid_p = 1;
3485 for (i = 0; i < ppc_num_gprs; i++)
3486 valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
3487 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
3488 "pc");
3489 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
3490 "lr");
3491 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
3492 "xer");
3493
3494 /* Allow alternate names for these registers, to accomodate GDB's
3495 historic naming. */
3496 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3497 PPC_MSR_REGNUM, msr_names);
3498 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3499 PPC_CR_REGNUM, cr_names);
3500 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3501 PPC_CTR_REGNUM, ctr_names);
3502
3503 if (!valid_p)
3504 {
3505 tdesc_data_cleanup (tdesc_data);
3506 return NULL;
3507 }
3508
3509 have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
3510 "mq");
3511
3512 tdesc_wordsize = tdesc_register_size (feature, "pc") / 8;
3513 if (wordsize == -1)
3514 wordsize = tdesc_wordsize;
3515
3516 feature = tdesc_find_feature (tdesc,
3517 "org.gnu.gdb.power.fpu");
3518 if (feature != NULL)
3519 {
3520 static const char *const fprs[] = {
3521 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
3522 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
3523 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
3524 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
3525 };
3526 valid_p = 1;
3527 for (i = 0; i < ppc_num_fprs; i++)
3528 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3529 PPC_F0_REGNUM + i, fprs[i]);
3530 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3531 PPC_FPSCR_REGNUM, "fpscr");
3532
3533 if (!valid_p)
3534 {
3535 tdesc_data_cleanup (tdesc_data);
3536 return NULL;
3537 }
3538 have_fpu = 1;
3539 }
3540 else
3541 have_fpu = 0;
3542
3543 /* The DFP pseudo-registers will be available when there are floating
3544 point registers. */
3545 have_dfp = have_fpu;
3546
3547 feature = tdesc_find_feature (tdesc,
3548 "org.gnu.gdb.power.altivec");
3549 if (feature != NULL)
3550 {
3551 static const char *const vector_regs[] = {
3552 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
3553 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
3554 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
3555 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
3556 };
3557
3558 valid_p = 1;
3559 for (i = 0; i < ppc_num_gprs; i++)
3560 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3561 PPC_VR0_REGNUM + i,
3562 vector_regs[i]);
3563 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3564 PPC_VSCR_REGNUM, "vscr");
3565 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3566 PPC_VRSAVE_REGNUM, "vrsave");
3567
3568 if (have_spe || !valid_p)
3569 {
3570 tdesc_data_cleanup (tdesc_data);
3571 return NULL;
3572 }
3573 have_altivec = 1;
3574 }
3575 else
3576 have_altivec = 0;
3577
3578 /* Check for POWER7 VSX registers support. */
3579 feature = tdesc_find_feature (tdesc,
3580 "org.gnu.gdb.power.vsx");
3581
3582 if (feature != NULL)
3583 {
3584 static const char *const vsx_regs[] = {
3585 "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
3586 "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
3587 "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
3588 "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
3589 "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
3590 "vs30h", "vs31h"
3591 };
3592
3593 valid_p = 1;
3594
3595 for (i = 0; i < ppc_num_vshrs; i++)
3596 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3597 PPC_VSR0_UPPER_REGNUM + i,
3598 vsx_regs[i]);
3599 if (!valid_p)
3600 {
3601 tdesc_data_cleanup (tdesc_data);
3602 return NULL;
3603 }
3604
3605 have_vsx = 1;
3606 }
3607 else
3608 have_vsx = 0;
3609
3610 /* On machines supporting the SPE APU, the general-purpose registers
3611 are 64 bits long. There are SIMD vector instructions to treat them
3612 as pairs of floats, but the rest of the instruction set treats them
3613 as 32-bit registers, and only operates on their lower halves.
3614
3615 In the GDB regcache, we treat their high and low halves as separate
3616 registers. The low halves we present as the general-purpose
3617 registers, and then we have pseudo-registers that stitch together
3618 the upper and lower halves and present them as pseudo-registers.
3619
3620 Thus, the target description is expected to supply the upper
3621 halves separately. */
3622
3623 feature = tdesc_find_feature (tdesc,
3624 "org.gnu.gdb.power.spe");
3625 if (feature != NULL)
3626 {
3627 static const char *const upper_spe[] = {
3628 "ev0h", "ev1h", "ev2h", "ev3h",
3629 "ev4h", "ev5h", "ev6h", "ev7h",
3630 "ev8h", "ev9h", "ev10h", "ev11h",
3631 "ev12h", "ev13h", "ev14h", "ev15h",
3632 "ev16h", "ev17h", "ev18h", "ev19h",
3633 "ev20h", "ev21h", "ev22h", "ev23h",
3634 "ev24h", "ev25h", "ev26h", "ev27h",
3635 "ev28h", "ev29h", "ev30h", "ev31h"
3636 };
3637
3638 valid_p = 1;
3639 for (i = 0; i < ppc_num_gprs; i++)
3640 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3641 PPC_SPE_UPPER_GP0_REGNUM + i,
3642 upper_spe[i]);
3643 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3644 PPC_SPE_ACC_REGNUM, "acc");
3645 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3646 PPC_SPE_FSCR_REGNUM, "spefscr");
3647
3648 if (have_mq || have_fpu || !valid_p)
3649 {
3650 tdesc_data_cleanup (tdesc_data);
3651 return NULL;
3652 }
3653 have_spe = 1;
3654 }
3655 else
3656 have_spe = 0;
3657 }
3658
3659 /* If we have a 64-bit binary on a 32-bit target, complain. Also
3660 complain for a 32-bit binary on a 64-bit target; we do not yet
3661 support that. For instance, the 32-bit ABI routines expect
3662 32-bit GPRs.
3663
3664 As long as there isn't an explicit target description, we'll
3665 choose one based on the BFD architecture and get a word size
3666 matching the binary (probably powerpc:common or
3667 powerpc:common64). So there is only trouble if a 64-bit target
3668 supplies a 64-bit description while debugging a 32-bit
3669 binary. */
3670 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
3671 {
3672 tdesc_data_cleanup (tdesc_data);
3673 return NULL;
3674 }
3675
3676 #ifdef HAVE_ELF
3677 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
3678 {
3679 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
3680 Tag_GNU_Power_ABI_FP))
3681 {
3682 case 1:
3683 soft_float_flag = AUTO_BOOLEAN_FALSE;
3684 break;
3685 case 2:
3686 soft_float_flag = AUTO_BOOLEAN_TRUE;
3687 break;
3688 default:
3689 break;
3690 }
3691 }
3692
3693 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
3694 {
3695 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
3696 Tag_GNU_Power_ABI_Vector))
3697 {
3698 case 1:
3699 vector_abi = POWERPC_VEC_GENERIC;
3700 break;
3701 case 2:
3702 vector_abi = POWERPC_VEC_ALTIVEC;
3703 break;
3704 case 3:
3705 vector_abi = POWERPC_VEC_SPE;
3706 break;
3707 default:
3708 break;
3709 }
3710 }
3711 #endif
3712
3713 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
3714 soft_float = 1;
3715 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
3716 soft_float = 0;
3717 else
3718 soft_float = !have_fpu;
3719
3720 /* If we have a hard float binary or setting but no floating point
3721 registers, downgrade to soft float anyway. We're still somewhat
3722 useful in this scenario. */
3723 if (!soft_float && !have_fpu)
3724 soft_float = 1;
3725
3726 /* Similarly for vector registers. */
3727 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
3728 vector_abi = POWERPC_VEC_GENERIC;
3729
3730 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
3731 vector_abi = POWERPC_VEC_GENERIC;
3732
3733 if (vector_abi == POWERPC_VEC_AUTO)
3734 {
3735 if (have_altivec)
3736 vector_abi = POWERPC_VEC_ALTIVEC;
3737 else if (have_spe)
3738 vector_abi = POWERPC_VEC_SPE;
3739 else
3740 vector_abi = POWERPC_VEC_GENERIC;
3741 }
3742
3743 /* Do not limit the vector ABI based on available hardware, since we
3744 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
3745
3746 /* Find a candidate among extant architectures. */
3747 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3748 arches != NULL;
3749 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3750 {
3751 /* Word size in the various PowerPC bfd_arch_info structs isn't
3752 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
3753 separate word size check. */
3754 tdep = gdbarch_tdep (arches->gdbarch);
3755 if (tdep && tdep->soft_float != soft_float)
3756 continue;
3757 if (tdep && tdep->vector_abi != vector_abi)
3758 continue;
3759 if (tdep && tdep->wordsize == wordsize)
3760 {
3761 if (tdesc_data != NULL)
3762 tdesc_data_cleanup (tdesc_data);
3763 return arches->gdbarch;
3764 }
3765 }
3766
3767 /* None found, create a new architecture from INFO, whose bfd_arch_info
3768 validity depends on the source:
3769 - executable useless
3770 - rs6000_host_arch() good
3771 - core file good
3772 - "set arch" trust blindly
3773 - GDB startup useless but harmless */
3774
3775 tdep = XCALLOC (1, struct gdbarch_tdep);
3776 tdep->wordsize = wordsize;
3777 tdep->soft_float = soft_float;
3778 tdep->vector_abi = vector_abi;
3779
3780 gdbarch = gdbarch_alloc (&info, tdep);
3781
3782 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
3783 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
3784 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
3785 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
3786 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
3787 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
3788 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
3789 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
3790
3791 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
3792 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
3793 tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
3794 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
3795 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
3796 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
3797 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
3798 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
3799
3800 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
3801 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
3802 set_gdbarch_deprecated_fp_regnum (gdbarch, PPC_R0_REGNUM + 1);
3803 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
3804 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
3805
3806 /* The XML specification for PowerPC sensibly calls the MSR "msr".
3807 GDB traditionally called it "ps", though, so let GDB add an
3808 alias. */
3809 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
3810
3811 if (wordsize == 8)
3812 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
3813 else
3814 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
3815
3816 /* Set lr_frame_offset. */
3817 if (wordsize == 8)
3818 tdep->lr_frame_offset = 16;
3819 else
3820 tdep->lr_frame_offset = 4;
3821
3822 if (have_spe || have_dfp || have_vsx)
3823 {
3824 set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
3825 set_gdbarch_pseudo_register_write (gdbarch, rs6000_pseudo_register_write);
3826 }
3827
3828 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3829
3830 /* Select instruction printer. */
3831 if (arch == bfd_arch_rs6000)
3832 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
3833 else
3834 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
3835
3836 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
3837
3838 if (have_spe)
3839 num_pseudoregs += 32;
3840 if (have_dfp)
3841 num_pseudoregs += 16;
3842 if (have_vsx)
3843 /* Include both VSX and Extended FP registers. */
3844 num_pseudoregs += 96;
3845
3846 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
3847
3848 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3849 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3850 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3851 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3852 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3853 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3854 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3855 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3856 set_gdbarch_char_signed (gdbarch, 0);
3857
3858 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
3859 if (wordsize == 8)
3860 /* PPC64 SYSV. */
3861 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3862
3863 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3864 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3865 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3866
3867 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3868 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
3869
3870 if (wordsize == 4)
3871 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
3872 else if (wordsize == 8)
3873 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
3874
3875 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
3876 set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
3877 set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
3878
3879 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3880 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3881
3882 /* The value of symbols of type N_SO and N_FUN maybe null when
3883 it shouldn't be. */
3884 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
3885
3886 /* Handles single stepping of atomic sequences. */
3887 set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
3888
3889 /* Not sure on this. FIXMEmgo */
3890 set_gdbarch_frame_args_skip (gdbarch, 8);
3891
3892 /* Helpers for function argument information. */
3893 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3894
3895 /* Trampoline. */
3896 set_gdbarch_in_solib_return_trampoline
3897 (gdbarch, rs6000_in_solib_return_trampoline);
3898 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
3899
3900 /* Hook in the DWARF CFI frame unwinder. */
3901 dwarf2_append_unwinders (gdbarch);
3902 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
3903
3904 /* Frame handling. */
3905 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
3906
3907 /* Setup displaced stepping. */
3908 set_gdbarch_displaced_step_copy_insn (gdbarch,
3909 simple_displaced_step_copy_insn);
3910 set_gdbarch_displaced_step_hw_singlestep (gdbarch,
3911 ppc_displaced_step_hw_singlestep);
3912 set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
3913 set_gdbarch_displaced_step_free_closure (gdbarch,
3914 simple_displaced_step_free_closure);
3915 set_gdbarch_displaced_step_location (gdbarch,
3916 displaced_step_at_entry_point);
3917
3918 set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
3919
3920 /* Hook in ABI-specific overrides, if they have been registered. */
3921 info.target_desc = tdesc;
3922 info.tdep_info = (void *) tdesc_data;
3923 gdbarch_init_osabi (info, gdbarch);
3924
3925 switch (info.osabi)
3926 {
3927 case GDB_OSABI_LINUX:
3928 case GDB_OSABI_NETBSD_AOUT:
3929 case GDB_OSABI_NETBSD_ELF:
3930 case GDB_OSABI_UNKNOWN:
3931 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3932 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
3933 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
3934 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3935 break;
3936 default:
3937 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3938
3939 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3940 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
3941 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
3942 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3943 }
3944
3945 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
3946 set_tdesc_pseudo_register_reggroup_p (gdbarch,
3947 rs6000_pseudo_register_reggroup_p);
3948 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
3949
3950 /* Override the normal target description method to make the SPE upper
3951 halves anonymous. */
3952 set_gdbarch_register_name (gdbarch, rs6000_register_name);
3953
3954 /* Choose register numbers for all supported pseudo-registers. */
3955 tdep->ppc_ev0_regnum = -1;
3956 tdep->ppc_dl0_regnum = -1;
3957 tdep->ppc_vsr0_regnum = -1;
3958 tdep->ppc_efpr0_regnum = -1;
3959
3960 cur_reg = gdbarch_num_regs (gdbarch);
3961
3962 if (have_spe)
3963 {
3964 tdep->ppc_ev0_regnum = cur_reg;
3965 cur_reg += 32;
3966 }
3967 if (have_dfp)
3968 {
3969 tdep->ppc_dl0_regnum = cur_reg;
3970 cur_reg += 16;
3971 }
3972 if (have_vsx)
3973 {
3974 tdep->ppc_vsr0_regnum = cur_reg;
3975 cur_reg += 64;
3976 tdep->ppc_efpr0_regnum = cur_reg;
3977 cur_reg += 32;
3978 }
3979
3980 gdb_assert (gdbarch_num_regs (gdbarch)
3981 + gdbarch_num_pseudo_regs (gdbarch) == cur_reg);
3982
3983 return gdbarch;
3984 }
3985
3986 static void
3987 rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3988 {
3989 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3990
3991 if (tdep == NULL)
3992 return;
3993
3994 /* FIXME: Dump gdbarch_tdep. */
3995 }
3996
3997 /* PowerPC-specific commands. */
3998
3999 static void
4000 set_powerpc_command (char *args, int from_tty)
4001 {
4002 printf_unfiltered (_("\
4003 \"set powerpc\" must be followed by an appropriate subcommand.\n"));
4004 help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout);
4005 }
4006
4007 static void
4008 show_powerpc_command (char *args, int from_tty)
4009 {
4010 cmd_show_list (showpowerpccmdlist, from_tty, "");
4011 }
4012
4013 static void
4014 powerpc_set_soft_float (char *args, int from_tty,
4015 struct cmd_list_element *c)
4016 {
4017 struct gdbarch_info info;
4018
4019 /* Update the architecture. */
4020 gdbarch_info_init (&info);
4021 if (!gdbarch_update_p (info))
4022 internal_error (__FILE__, __LINE__, "could not update architecture");
4023 }
4024
4025 static void
4026 powerpc_set_vector_abi (char *args, int from_tty,
4027 struct cmd_list_element *c)
4028 {
4029 struct gdbarch_info info;
4030 enum powerpc_vector_abi vector_abi;
4031
4032 for (vector_abi = POWERPC_VEC_AUTO;
4033 vector_abi != POWERPC_VEC_LAST;
4034 vector_abi++)
4035 if (strcmp (powerpc_vector_abi_string,
4036 powerpc_vector_strings[vector_abi]) == 0)
4037 {
4038 powerpc_vector_abi_global = vector_abi;
4039 break;
4040 }
4041
4042 if (vector_abi == POWERPC_VEC_LAST)
4043 internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
4044 powerpc_vector_abi_string);
4045
4046 /* Update the architecture. */
4047 gdbarch_info_init (&info);
4048 if (!gdbarch_update_p (info))
4049 internal_error (__FILE__, __LINE__, "could not update architecture");
4050 }
4051
4052 /* Initialization code. */
4053
4054 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
4055
4056 void
4057 _initialize_rs6000_tdep (void)
4058 {
4059 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
4060 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
4061
4062 /* Initialize the standard target descriptions. */
4063 initialize_tdesc_powerpc_32 ();
4064 initialize_tdesc_powerpc_altivec32 ();
4065 initialize_tdesc_powerpc_vsx32 ();
4066 initialize_tdesc_powerpc_403 ();
4067 initialize_tdesc_powerpc_403gc ();
4068 initialize_tdesc_powerpc_405 ();
4069 initialize_tdesc_powerpc_505 ();
4070 initialize_tdesc_powerpc_601 ();
4071 initialize_tdesc_powerpc_602 ();
4072 initialize_tdesc_powerpc_603 ();
4073 initialize_tdesc_powerpc_604 ();
4074 initialize_tdesc_powerpc_64 ();
4075 initialize_tdesc_powerpc_altivec64 ();
4076 initialize_tdesc_powerpc_vsx64 ();
4077 initialize_tdesc_powerpc_7400 ();
4078 initialize_tdesc_powerpc_750 ();
4079 initialize_tdesc_powerpc_860 ();
4080 initialize_tdesc_powerpc_e500 ();
4081 initialize_tdesc_rs6000 ();
4082
4083 /* Add root prefix command for all "set powerpc"/"show powerpc"
4084 commands. */
4085 add_prefix_cmd ("powerpc", no_class, set_powerpc_command,
4086 _("Various PowerPC-specific commands."),
4087 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
4088
4089 add_prefix_cmd ("powerpc", no_class, show_powerpc_command,
4090 _("Various PowerPC-specific commands."),
4091 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
4092
4093 /* Add a command to allow the user to force the ABI. */
4094 add_setshow_auto_boolean_cmd ("soft-float", class_support,
4095 &powerpc_soft_float_global,
4096 _("Set whether to use a soft-float ABI."),
4097 _("Show whether to use a soft-float ABI."),
4098 NULL,
4099 powerpc_set_soft_float, NULL,
4100 &setpowerpccmdlist, &showpowerpccmdlist);
4101
4102 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
4103 &powerpc_vector_abi_string,
4104 _("Set the vector ABI."),
4105 _("Show the vector ABI."),
4106 NULL, powerpc_set_vector_abi, NULL,
4107 &setpowerpccmdlist, &showpowerpccmdlist);
4108 }
This page took 0.155954 seconds and 3 git commands to generate.