bfd_section_* macros
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "infrun.h"
24 #include "symtab.h"
25 #include "target.h"
26 #include "gdbcore.h"
27 #include "gdbcmd.h"
28 #include "objfiles.h"
29 #include "arch-utils.h"
30 #include "regcache.h"
31 #include "regset.h"
32 #include "target-float.h"
33 #include "value.h"
34 #include "parser-defs.h"
35 #include "osabi.h"
36 #include "infcall.h"
37 #include "sim-regno.h"
38 #include "gdb/sim-ppc.h"
39 #include "reggroups.h"
40 #include "dwarf2-frame.h"
41 #include "target-descriptions.h"
42 #include "user-regs.h"
43 #include "record-full.h"
44 #include "auxv.h"
45
46 #include "coff/internal.h" /* for libcoff.h */
47 #include "libcoff.h" /* for xcoff_data */
48 #include "coff/xcoff.h"
49 #include "libxcoff.h"
50
51 #include "elf-bfd.h"
52 #include "elf/ppc.h"
53 #include "elf/ppc64.h"
54
55 #include "solib-svr4.h"
56 #include "ppc-tdep.h"
57 #include "ppc-ravenscar-thread.h"
58
59 #include "dis-asm.h"
60
61 #include "trad-frame.h"
62 #include "frame-unwind.h"
63 #include "frame-base.h"
64
65 #include "ax.h"
66 #include "ax-gdb.h"
67 #include <algorithm>
68
69 #include "features/rs6000/powerpc-32.c"
70 #include "features/rs6000/powerpc-altivec32.c"
71 #include "features/rs6000/powerpc-vsx32.c"
72 #include "features/rs6000/powerpc-403.c"
73 #include "features/rs6000/powerpc-403gc.c"
74 #include "features/rs6000/powerpc-405.c"
75 #include "features/rs6000/powerpc-505.c"
76 #include "features/rs6000/powerpc-601.c"
77 #include "features/rs6000/powerpc-602.c"
78 #include "features/rs6000/powerpc-603.c"
79 #include "features/rs6000/powerpc-604.c"
80 #include "features/rs6000/powerpc-64.c"
81 #include "features/rs6000/powerpc-altivec64.c"
82 #include "features/rs6000/powerpc-vsx64.c"
83 #include "features/rs6000/powerpc-7400.c"
84 #include "features/rs6000/powerpc-750.c"
85 #include "features/rs6000/powerpc-860.c"
86 #include "features/rs6000/powerpc-e500.c"
87 #include "features/rs6000/rs6000.c"
88
89 /* Determine if regnum is an SPE pseudo-register. */
90 #define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
91 && (regnum) >= (tdep)->ppc_ev0_regnum \
92 && (regnum) < (tdep)->ppc_ev0_regnum + 32)
93
94 /* Determine if regnum is a decimal float pseudo-register. */
95 #define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
96 && (regnum) >= (tdep)->ppc_dl0_regnum \
97 && (regnum) < (tdep)->ppc_dl0_regnum + 16)
98
99 /* Determine if regnum is a "vX" alias for the raw "vrX" vector
100 registers. */
101 #define IS_V_ALIAS_PSEUDOREG(tdep, regnum) (\
102 (tdep)->ppc_v0_alias_regnum >= 0 \
103 && (regnum) >= (tdep)->ppc_v0_alias_regnum \
104 && (regnum) < (tdep)->ppc_v0_alias_regnum + ppc_num_vrs)
105
106 /* Determine if regnum is a POWER7 VSX register. */
107 #define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
108 && (regnum) >= (tdep)->ppc_vsr0_regnum \
109 && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
110
111 /* Determine if regnum is a POWER7 Extended FP register. */
112 #define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
113 && (regnum) >= (tdep)->ppc_efpr0_regnum \
114 && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
115
116 /* Determine if regnum is a checkpointed decimal float
117 pseudo-register. */
118 #define IS_CDFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cdl0_regnum >= 0 \
119 && (regnum) >= (tdep)->ppc_cdl0_regnum \
120 && (regnum) < (tdep)->ppc_cdl0_regnum + 16)
121
122 /* Determine if regnum is a Checkpointed POWER7 VSX register. */
123 #define IS_CVSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cvsr0_regnum >= 0 \
124 && (regnum) >= (tdep)->ppc_cvsr0_regnum \
125 && (regnum) < (tdep)->ppc_cvsr0_regnum + ppc_num_vsrs)
126
127 /* Determine if regnum is a Checkpointed POWER7 Extended FP register. */
128 #define IS_CEFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cefpr0_regnum >= 0 \
129 && (regnum) >= (tdep)->ppc_cefpr0_regnum \
130 && (regnum) < (tdep)->ppc_cefpr0_regnum + ppc_num_efprs)
131
132 /* Holds the current set of options to be passed to the disassembler. */
133 static char *powerpc_disassembler_options;
134
135 /* The list of available "set powerpc ..." and "show powerpc ..."
136 commands. */
137 static struct cmd_list_element *setpowerpccmdlist = NULL;
138 static struct cmd_list_element *showpowerpccmdlist = NULL;
139
140 static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
141
142 /* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
143 static const char *const powerpc_vector_strings[] =
144 {
145 "auto",
146 "generic",
147 "altivec",
148 "spe",
149 NULL
150 };
151
152 /* A variable that can be configured by the user. */
153 static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
154 static const char *powerpc_vector_abi_string = "auto";
155
156 /* To be used by skip_prologue. */
157
158 struct rs6000_framedata
159 {
160 int offset; /* total size of frame --- the distance
161 by which we decrement sp to allocate
162 the frame */
163 int saved_gpr; /* smallest # of saved gpr */
164 unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
165 int saved_fpr; /* smallest # of saved fpr */
166 int saved_vr; /* smallest # of saved vr */
167 int saved_ev; /* smallest # of saved ev */
168 int alloca_reg; /* alloca register number (frame ptr) */
169 char frameless; /* true if frameless functions. */
170 char nosavedpc; /* true if pc not saved. */
171 char used_bl; /* true if link register clobbered */
172 int gpr_offset; /* offset of saved gprs from prev sp */
173 int fpr_offset; /* offset of saved fprs from prev sp */
174 int vr_offset; /* offset of saved vrs from prev sp */
175 int ev_offset; /* offset of saved evs from prev sp */
176 int lr_offset; /* offset of saved lr */
177 int lr_register; /* register of saved lr, if trustworthy */
178 int cr_offset; /* offset of saved cr */
179 int vrsave_offset; /* offset of saved vrsave register */
180 };
181
182
183 /* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
184 int
185 vsx_register_p (struct gdbarch *gdbarch, int regno)
186 {
187 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
188 if (tdep->ppc_vsr0_regnum < 0)
189 return 0;
190 else
191 return (regno >= tdep->ppc_vsr0_upper_regnum && regno
192 <= tdep->ppc_vsr0_upper_regnum + 31);
193 }
194
195 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
196 int
197 altivec_register_p (struct gdbarch *gdbarch, int regno)
198 {
199 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
200 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
201 return 0;
202 else
203 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
204 }
205
206
207 /* Return true if REGNO is an SPE register, false otherwise. */
208 int
209 spe_register_p (struct gdbarch *gdbarch, int regno)
210 {
211 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
212
213 /* Is it a reference to EV0 -- EV31, and do we have those? */
214 if (IS_SPE_PSEUDOREG (tdep, regno))
215 return 1;
216
217 /* Is it a reference to one of the raw upper GPR halves? */
218 if (tdep->ppc_ev0_upper_regnum >= 0
219 && tdep->ppc_ev0_upper_regnum <= regno
220 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
221 return 1;
222
223 /* Is it a reference to the 64-bit accumulator, and do we have that? */
224 if (tdep->ppc_acc_regnum >= 0
225 && tdep->ppc_acc_regnum == regno)
226 return 1;
227
228 /* Is it a reference to the SPE floating-point status and control register,
229 and do we have that? */
230 if (tdep->ppc_spefscr_regnum >= 0
231 && tdep->ppc_spefscr_regnum == regno)
232 return 1;
233
234 return 0;
235 }
236
237
238 /* Return non-zero if the architecture described by GDBARCH has
239 floating-point registers (f0 --- f31 and fpscr). */
240 int
241 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
242 {
243 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
244
245 return (tdep->ppc_fp0_regnum >= 0
246 && tdep->ppc_fpscr_regnum >= 0);
247 }
248
249 /* Return non-zero if the architecture described by GDBARCH has
250 Altivec registers (vr0 --- vr31, vrsave and vscr). */
251 int
252 ppc_altivec_support_p (struct gdbarch *gdbarch)
253 {
254 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
255
256 return (tdep->ppc_vr0_regnum >= 0
257 && tdep->ppc_vrsave_regnum >= 0);
258 }
259
260 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
261 set it to SIM_REGNO.
262
263 This is a helper function for init_sim_regno_table, constructing
264 the table mapping GDB register numbers to sim register numbers; we
265 initialize every element in that table to -1 before we start
266 filling it in. */
267 static void
268 set_sim_regno (int *table, int gdb_regno, int sim_regno)
269 {
270 /* Make sure we don't try to assign any given GDB register a sim
271 register number more than once. */
272 gdb_assert (table[gdb_regno] == -1);
273 table[gdb_regno] = sim_regno;
274 }
275
276
277 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
278 numbers to simulator register numbers, based on the values placed
279 in the ARCH->tdep->ppc_foo_regnum members. */
280 static void
281 init_sim_regno_table (struct gdbarch *arch)
282 {
283 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
284 int total_regs = gdbarch_num_regs (arch);
285 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
286 int i;
287 static const char *const segment_regs[] = {
288 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
289 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
290 };
291
292 /* Presume that all registers not explicitly mentioned below are
293 unavailable from the sim. */
294 for (i = 0; i < total_regs; i++)
295 sim_regno[i] = -1;
296
297 /* General-purpose registers. */
298 for (i = 0; i < ppc_num_gprs; i++)
299 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
300
301 /* Floating-point registers. */
302 if (tdep->ppc_fp0_regnum >= 0)
303 for (i = 0; i < ppc_num_fprs; i++)
304 set_sim_regno (sim_regno,
305 tdep->ppc_fp0_regnum + i,
306 sim_ppc_f0_regnum + i);
307 if (tdep->ppc_fpscr_regnum >= 0)
308 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
309
310 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
311 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
312 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
313
314 /* Segment registers. */
315 for (i = 0; i < ppc_num_srs; i++)
316 {
317 int gdb_regno;
318
319 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
320 if (gdb_regno >= 0)
321 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
322 }
323
324 /* Altivec registers. */
325 if (tdep->ppc_vr0_regnum >= 0)
326 {
327 for (i = 0; i < ppc_num_vrs; i++)
328 set_sim_regno (sim_regno,
329 tdep->ppc_vr0_regnum + i,
330 sim_ppc_vr0_regnum + i);
331
332 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
333 we can treat this more like the other cases. */
334 set_sim_regno (sim_regno,
335 tdep->ppc_vr0_regnum + ppc_num_vrs,
336 sim_ppc_vscr_regnum);
337 }
338 /* vsave is a special-purpose register, so the code below handles it. */
339
340 /* SPE APU (E500) registers. */
341 if (tdep->ppc_ev0_upper_regnum >= 0)
342 for (i = 0; i < ppc_num_gprs; i++)
343 set_sim_regno (sim_regno,
344 tdep->ppc_ev0_upper_regnum + i,
345 sim_ppc_rh0_regnum + i);
346 if (tdep->ppc_acc_regnum >= 0)
347 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
348 /* spefscr is a special-purpose register, so the code below handles it. */
349
350 #ifdef WITH_PPC_SIM
351 /* Now handle all special-purpose registers. Verify that they
352 haven't mistakenly been assigned numbers by any of the above
353 code. */
354 for (i = 0; i < sim_ppc_num_sprs; i++)
355 {
356 const char *spr_name = sim_spr_register_name (i);
357 int gdb_regno = -1;
358
359 if (spr_name != NULL)
360 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
361
362 if (gdb_regno != -1)
363 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
364 }
365 #endif
366
367 /* Drop the initialized array into place. */
368 tdep->sim_regno = sim_regno;
369 }
370
371
372 /* Given a GDB register number REG, return the corresponding SIM
373 register number. */
374 static int
375 rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
376 {
377 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
378 int sim_regno;
379
380 if (tdep->sim_regno == NULL)
381 init_sim_regno_table (gdbarch);
382
383 gdb_assert (0 <= reg && reg <= gdbarch_num_cooked_regs (gdbarch));
384 sim_regno = tdep->sim_regno[reg];
385
386 if (sim_regno >= 0)
387 return sim_regno;
388 else
389 return LEGACY_SIM_REGNO_IGNORE;
390 }
391
392 \f
393
394 /* Register set support functions. */
395
396 /* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
397 Write the register to REGCACHE. */
398
399 void
400 ppc_supply_reg (struct regcache *regcache, int regnum,
401 const gdb_byte *regs, size_t offset, int regsize)
402 {
403 if (regnum != -1 && offset != -1)
404 {
405 if (regsize > 4)
406 {
407 struct gdbarch *gdbarch = regcache->arch ();
408 int gdb_regsize = register_size (gdbarch, regnum);
409 if (gdb_regsize < regsize
410 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
411 offset += regsize - gdb_regsize;
412 }
413 regcache->raw_supply (regnum, regs + offset);
414 }
415 }
416
417 /* Read register REGNUM from REGCACHE and store to REGS + OFFSET
418 in a field REGSIZE wide. Zero pad as necessary. */
419
420 void
421 ppc_collect_reg (const struct regcache *regcache, int regnum,
422 gdb_byte *regs, size_t offset, int regsize)
423 {
424 if (regnum != -1 && offset != -1)
425 {
426 if (regsize > 4)
427 {
428 struct gdbarch *gdbarch = regcache->arch ();
429 int gdb_regsize = register_size (gdbarch, regnum);
430 if (gdb_regsize < regsize)
431 {
432 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
433 {
434 memset (regs + offset, 0, regsize - gdb_regsize);
435 offset += regsize - gdb_regsize;
436 }
437 else
438 memset (regs + offset + regsize - gdb_regsize, 0,
439 regsize - gdb_regsize);
440 }
441 }
442 regcache->raw_collect (regnum, regs + offset);
443 }
444 }
445
446 static int
447 ppc_greg_offset (struct gdbarch *gdbarch,
448 struct gdbarch_tdep *tdep,
449 const struct ppc_reg_offsets *offsets,
450 int regnum,
451 int *regsize)
452 {
453 *regsize = offsets->gpr_size;
454 if (regnum >= tdep->ppc_gp0_regnum
455 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
456 return (offsets->r0_offset
457 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
458
459 if (regnum == gdbarch_pc_regnum (gdbarch))
460 return offsets->pc_offset;
461
462 if (regnum == tdep->ppc_ps_regnum)
463 return offsets->ps_offset;
464
465 if (regnum == tdep->ppc_lr_regnum)
466 return offsets->lr_offset;
467
468 if (regnum == tdep->ppc_ctr_regnum)
469 return offsets->ctr_offset;
470
471 *regsize = offsets->xr_size;
472 if (regnum == tdep->ppc_cr_regnum)
473 return offsets->cr_offset;
474
475 if (regnum == tdep->ppc_xer_regnum)
476 return offsets->xer_offset;
477
478 if (regnum == tdep->ppc_mq_regnum)
479 return offsets->mq_offset;
480
481 return -1;
482 }
483
484 static int
485 ppc_fpreg_offset (struct gdbarch_tdep *tdep,
486 const struct ppc_reg_offsets *offsets,
487 int regnum)
488 {
489 if (regnum >= tdep->ppc_fp0_regnum
490 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
491 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
492
493 if (regnum == tdep->ppc_fpscr_regnum)
494 return offsets->fpscr_offset;
495
496 return -1;
497 }
498
499 /* Supply register REGNUM in the general-purpose register set REGSET
500 from the buffer specified by GREGS and LEN to register cache
501 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
502
503 void
504 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
505 int regnum, const void *gregs, size_t len)
506 {
507 struct gdbarch *gdbarch = regcache->arch ();
508 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
509 const struct ppc_reg_offsets *offsets
510 = (const struct ppc_reg_offsets *) regset->regmap;
511 size_t offset;
512 int regsize;
513
514 if (regnum == -1)
515 {
516 int i;
517 int gpr_size = offsets->gpr_size;
518
519 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
520 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
521 i++, offset += gpr_size)
522 ppc_supply_reg (regcache, i, (const gdb_byte *) gregs, offset,
523 gpr_size);
524
525 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
526 (const gdb_byte *) gregs, offsets->pc_offset, gpr_size);
527 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
528 (const gdb_byte *) gregs, offsets->ps_offset, gpr_size);
529 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
530 (const gdb_byte *) gregs, offsets->lr_offset, gpr_size);
531 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
532 (const gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
533 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
534 (const gdb_byte *) gregs, offsets->cr_offset,
535 offsets->xr_size);
536 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
537 (const gdb_byte *) gregs, offsets->xer_offset,
538 offsets->xr_size);
539 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
540 (const gdb_byte *) gregs, offsets->mq_offset,
541 offsets->xr_size);
542 return;
543 }
544
545 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
546 ppc_supply_reg (regcache, regnum, (const gdb_byte *) gregs, offset, regsize);
547 }
548
549 /* Supply register REGNUM in the floating-point register set REGSET
550 from the buffer specified by FPREGS and LEN to register cache
551 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
552
553 void
554 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
555 int regnum, const void *fpregs, size_t len)
556 {
557 struct gdbarch *gdbarch = regcache->arch ();
558 struct gdbarch_tdep *tdep;
559 const struct ppc_reg_offsets *offsets;
560 size_t offset;
561
562 if (!ppc_floating_point_unit_p (gdbarch))
563 return;
564
565 tdep = gdbarch_tdep (gdbarch);
566 offsets = (const struct ppc_reg_offsets *) regset->regmap;
567 if (regnum == -1)
568 {
569 int i;
570
571 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
572 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
573 i++, offset += 8)
574 ppc_supply_reg (regcache, i, (const gdb_byte *) fpregs, offset, 8);
575
576 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
577 (const gdb_byte *) fpregs, offsets->fpscr_offset,
578 offsets->fpscr_size);
579 return;
580 }
581
582 offset = ppc_fpreg_offset (tdep, offsets, regnum);
583 ppc_supply_reg (regcache, regnum, (const gdb_byte *) fpregs, offset,
584 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
585 }
586
587 /* Collect register REGNUM in the general-purpose register set
588 REGSET from register cache REGCACHE into the buffer specified by
589 GREGS and LEN. If REGNUM is -1, do this for all registers in
590 REGSET. */
591
592 void
593 ppc_collect_gregset (const struct regset *regset,
594 const struct regcache *regcache,
595 int regnum, void *gregs, size_t len)
596 {
597 struct gdbarch *gdbarch = regcache->arch ();
598 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
599 const struct ppc_reg_offsets *offsets
600 = (const struct ppc_reg_offsets *) regset->regmap;
601 size_t offset;
602 int regsize;
603
604 if (regnum == -1)
605 {
606 int i;
607 int gpr_size = offsets->gpr_size;
608
609 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
610 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
611 i++, offset += gpr_size)
612 ppc_collect_reg (regcache, i, (gdb_byte *) gregs, offset, gpr_size);
613
614 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
615 (gdb_byte *) gregs, offsets->pc_offset, gpr_size);
616 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
617 (gdb_byte *) gregs, offsets->ps_offset, gpr_size);
618 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
619 (gdb_byte *) gregs, offsets->lr_offset, gpr_size);
620 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
621 (gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
622 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
623 (gdb_byte *) gregs, offsets->cr_offset,
624 offsets->xr_size);
625 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
626 (gdb_byte *) gregs, offsets->xer_offset,
627 offsets->xr_size);
628 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
629 (gdb_byte *) gregs, offsets->mq_offset,
630 offsets->xr_size);
631 return;
632 }
633
634 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
635 ppc_collect_reg (regcache, regnum, (gdb_byte *) gregs, offset, regsize);
636 }
637
638 /* Collect register REGNUM in the floating-point register set
639 REGSET from register cache REGCACHE into the buffer specified by
640 FPREGS and LEN. If REGNUM is -1, do this for all registers in
641 REGSET. */
642
643 void
644 ppc_collect_fpregset (const struct regset *regset,
645 const struct regcache *regcache,
646 int regnum, void *fpregs, size_t len)
647 {
648 struct gdbarch *gdbarch = regcache->arch ();
649 struct gdbarch_tdep *tdep;
650 const struct ppc_reg_offsets *offsets;
651 size_t offset;
652
653 if (!ppc_floating_point_unit_p (gdbarch))
654 return;
655
656 tdep = gdbarch_tdep (gdbarch);
657 offsets = (const struct ppc_reg_offsets *) regset->regmap;
658 if (regnum == -1)
659 {
660 int i;
661
662 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
663 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
664 i++, offset += 8)
665 ppc_collect_reg (regcache, i, (gdb_byte *) fpregs, offset, 8);
666
667 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
668 (gdb_byte *) fpregs, offsets->fpscr_offset,
669 offsets->fpscr_size);
670 return;
671 }
672
673 offset = ppc_fpreg_offset (tdep, offsets, regnum);
674 ppc_collect_reg (regcache, regnum, (gdb_byte *) fpregs, offset,
675 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
676 }
677
678 static int
679 insn_changes_sp_or_jumps (unsigned long insn)
680 {
681 int opcode = (insn >> 26) & 0x03f;
682 int sd = (insn >> 21) & 0x01f;
683 int a = (insn >> 16) & 0x01f;
684 int subcode = (insn >> 1) & 0x3ff;
685
686 /* Changes the stack pointer. */
687
688 /* NOTE: There are many ways to change the value of a given register.
689 The ways below are those used when the register is R1, the SP,
690 in a funtion's epilogue. */
691
692 if (opcode == 31 && subcode == 444 && a == 1)
693 return 1; /* mr R1,Rn */
694 if (opcode == 14 && sd == 1)
695 return 1; /* addi R1,Rn,simm */
696 if (opcode == 58 && sd == 1)
697 return 1; /* ld R1,ds(Rn) */
698
699 /* Transfers control. */
700
701 if (opcode == 18)
702 return 1; /* b */
703 if (opcode == 16)
704 return 1; /* bc */
705 if (opcode == 19 && subcode == 16)
706 return 1; /* bclr */
707 if (opcode == 19 && subcode == 528)
708 return 1; /* bcctr */
709
710 return 0;
711 }
712
713 /* Return true if we are in the function's epilogue, i.e. after the
714 instruction that destroyed the function's stack frame.
715
716 1) scan forward from the point of execution:
717 a) If you find an instruction that modifies the stack pointer
718 or transfers control (except a return), execution is not in
719 an epilogue, return.
720 b) Stop scanning if you find a return instruction or reach the
721 end of the function or reach the hard limit for the size of
722 an epilogue.
723 2) scan backward from the point of execution:
724 a) If you find an instruction that modifies the stack pointer,
725 execution *is* in an epilogue, return.
726 b) Stop scanning if you reach an instruction that transfers
727 control or the beginning of the function or reach the hard
728 limit for the size of an epilogue. */
729
730 static int
731 rs6000_in_function_epilogue_frame_p (struct frame_info *curfrm,
732 struct gdbarch *gdbarch, CORE_ADDR pc)
733 {
734 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
735 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
736 bfd_byte insn_buf[PPC_INSN_SIZE];
737 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
738 unsigned long insn;
739
740 /* Find the search limits based on function boundaries and hard limit. */
741
742 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
743 return 0;
744
745 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
746 if (epilogue_start < func_start) epilogue_start = func_start;
747
748 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
749 if (epilogue_end > func_end) epilogue_end = func_end;
750
751 /* Scan forward until next 'blr'. */
752
753 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
754 {
755 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
756 return 0;
757 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
758 if (insn == 0x4e800020)
759 break;
760 /* Assume a bctr is a tail call unless it points strictly within
761 this function. */
762 if (insn == 0x4e800420)
763 {
764 CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
765 tdep->ppc_ctr_regnum);
766 if (ctr > func_start && ctr < func_end)
767 return 0;
768 else
769 break;
770 }
771 if (insn_changes_sp_or_jumps (insn))
772 return 0;
773 }
774
775 /* Scan backward until adjustment to stack pointer (R1). */
776
777 for (scan_pc = pc - PPC_INSN_SIZE;
778 scan_pc >= epilogue_start;
779 scan_pc -= PPC_INSN_SIZE)
780 {
781 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
782 return 0;
783 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
784 if (insn_changes_sp_or_jumps (insn))
785 return 1;
786 }
787
788 return 0;
789 }
790
791 /* Implement the stack_frame_destroyed_p gdbarch method. */
792
793 static int
794 rs6000_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
795 {
796 return rs6000_in_function_epilogue_frame_p (get_current_frame (),
797 gdbarch, pc);
798 }
799
800 /* Get the ith function argument for the current function. */
801 static CORE_ADDR
802 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
803 struct type *type)
804 {
805 return get_frame_register_unsigned (frame, 3 + argi);
806 }
807
808 /* Sequence of bytes for breakpoint instruction. */
809
810 constexpr gdb_byte big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
811 constexpr gdb_byte little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
812
813 typedef BP_MANIPULATION_ENDIAN (little_breakpoint, big_breakpoint)
814 rs6000_breakpoint;
815
816 /* Instruction masks for displaced stepping. */
817 #define BRANCH_MASK 0xfc000000
818 #define BP_MASK 0xFC0007FE
819 #define B_INSN 0x48000000
820 #define BC_INSN 0x40000000
821 #define BXL_INSN 0x4c000000
822 #define BP_INSN 0x7C000008
823
824 /* Instruction masks used during single-stepping of atomic
825 sequences. */
826 #define LOAD_AND_RESERVE_MASK 0xfc0007fe
827 #define LWARX_INSTRUCTION 0x7c000028
828 #define LDARX_INSTRUCTION 0x7c0000A8
829 #define LBARX_INSTRUCTION 0x7c000068
830 #define LHARX_INSTRUCTION 0x7c0000e8
831 #define LQARX_INSTRUCTION 0x7c000228
832 #define STORE_CONDITIONAL_MASK 0xfc0007ff
833 #define STWCX_INSTRUCTION 0x7c00012d
834 #define STDCX_INSTRUCTION 0x7c0001ad
835 #define STBCX_INSTRUCTION 0x7c00056d
836 #define STHCX_INSTRUCTION 0x7c0005ad
837 #define STQCX_INSTRUCTION 0x7c00016d
838
839 /* Check if insn is one of the Load And Reserve instructions used for atomic
840 sequences. */
841 #define IS_LOAD_AND_RESERVE_INSN(insn) ((insn & LOAD_AND_RESERVE_MASK) == LWARX_INSTRUCTION \
842 || (insn & LOAD_AND_RESERVE_MASK) == LDARX_INSTRUCTION \
843 || (insn & LOAD_AND_RESERVE_MASK) == LBARX_INSTRUCTION \
844 || (insn & LOAD_AND_RESERVE_MASK) == LHARX_INSTRUCTION \
845 || (insn & LOAD_AND_RESERVE_MASK) == LQARX_INSTRUCTION)
846 /* Check if insn is one of the Store Conditional instructions used for atomic
847 sequences. */
848 #define IS_STORE_CONDITIONAL_INSN(insn) ((insn & STORE_CONDITIONAL_MASK) == STWCX_INSTRUCTION \
849 || (insn & STORE_CONDITIONAL_MASK) == STDCX_INSTRUCTION \
850 || (insn & STORE_CONDITIONAL_MASK) == STBCX_INSTRUCTION \
851 || (insn & STORE_CONDITIONAL_MASK) == STHCX_INSTRUCTION \
852 || (insn & STORE_CONDITIONAL_MASK) == STQCX_INSTRUCTION)
853
854 typedef buf_displaced_step_closure ppc_displaced_step_closure;
855
856 /* We can't displaced step atomic sequences. */
857
858 static struct displaced_step_closure *
859 ppc_displaced_step_copy_insn (struct gdbarch *gdbarch,
860 CORE_ADDR from, CORE_ADDR to,
861 struct regcache *regs)
862 {
863 size_t len = gdbarch_max_insn_length (gdbarch);
864 std::unique_ptr<ppc_displaced_step_closure> closure
865 (new ppc_displaced_step_closure (len));
866 gdb_byte *buf = closure->buf.data ();
867 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
868 int insn;
869
870 read_memory (from, buf, len);
871
872 insn = extract_signed_integer (buf, PPC_INSN_SIZE, byte_order);
873
874 /* Assume all atomic sequences start with a Load and Reserve instruction. */
875 if (IS_LOAD_AND_RESERVE_INSN (insn))
876 {
877 if (debug_displaced)
878 {
879 fprintf_unfiltered (gdb_stdlog,
880 "displaced: can't displaced step "
881 "atomic sequence at %s\n",
882 paddress (gdbarch, from));
883 }
884
885 return NULL;
886 }
887
888 write_memory (to, buf, len);
889
890 if (debug_displaced)
891 {
892 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
893 paddress (gdbarch, from), paddress (gdbarch, to));
894 displaced_step_dump_bytes (gdb_stdlog, buf, len);
895 }
896
897 return closure.release ();
898 }
899
900 /* Fix up the state of registers and memory after having single-stepped
901 a displaced instruction. */
902 static void
903 ppc_displaced_step_fixup (struct gdbarch *gdbarch,
904 struct displaced_step_closure *closure_,
905 CORE_ADDR from, CORE_ADDR to,
906 struct regcache *regs)
907 {
908 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
909 /* Our closure is a copy of the instruction. */
910 ppc_displaced_step_closure *closure = (ppc_displaced_step_closure *) closure_;
911 ULONGEST insn = extract_unsigned_integer (closure->buf.data (),
912 PPC_INSN_SIZE, byte_order);
913 ULONGEST opcode = 0;
914 /* Offset for non PC-relative instructions. */
915 LONGEST offset = PPC_INSN_SIZE;
916
917 opcode = insn & BRANCH_MASK;
918
919 if (debug_displaced)
920 fprintf_unfiltered (gdb_stdlog,
921 "displaced: (ppc) fixup (%s, %s)\n",
922 paddress (gdbarch, from), paddress (gdbarch, to));
923
924
925 /* Handle PC-relative branch instructions. */
926 if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
927 {
928 ULONGEST current_pc;
929
930 /* Read the current PC value after the instruction has been executed
931 in a displaced location. Calculate the offset to be applied to the
932 original PC value before the displaced stepping. */
933 regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
934 &current_pc);
935 offset = current_pc - to;
936
937 if (opcode != BXL_INSN)
938 {
939 /* Check for AA bit indicating whether this is an absolute
940 addressing or PC-relative (1: absolute, 0: relative). */
941 if (!(insn & 0x2))
942 {
943 /* PC-relative addressing is being used in the branch. */
944 if (debug_displaced)
945 fprintf_unfiltered
946 (gdb_stdlog,
947 "displaced: (ppc) branch instruction: %s\n"
948 "displaced: (ppc) adjusted PC from %s to %s\n",
949 paddress (gdbarch, insn), paddress (gdbarch, current_pc),
950 paddress (gdbarch, from + offset));
951
952 regcache_cooked_write_unsigned (regs,
953 gdbarch_pc_regnum (gdbarch),
954 from + offset);
955 }
956 }
957 else
958 {
959 /* If we're here, it means we have a branch to LR or CTR. If the
960 branch was taken, the offset is probably greater than 4 (the next
961 instruction), so it's safe to assume that an offset of 4 means we
962 did not take the branch. */
963 if (offset == PPC_INSN_SIZE)
964 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
965 from + PPC_INSN_SIZE);
966 }
967
968 /* Check for LK bit indicating whether we should set the link
969 register to point to the next instruction
970 (1: Set, 0: Don't set). */
971 if (insn & 0x1)
972 {
973 /* Link register needs to be set to the next instruction's PC. */
974 regcache_cooked_write_unsigned (regs,
975 gdbarch_tdep (gdbarch)->ppc_lr_regnum,
976 from + PPC_INSN_SIZE);
977 if (debug_displaced)
978 fprintf_unfiltered (gdb_stdlog,
979 "displaced: (ppc) adjusted LR to %s\n",
980 paddress (gdbarch, from + PPC_INSN_SIZE));
981
982 }
983 }
984 /* Check for breakpoints in the inferior. If we've found one, place the PC
985 right at the breakpoint instruction. */
986 else if ((insn & BP_MASK) == BP_INSN)
987 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
988 else
989 /* Handle any other instructions that do not fit in the categories above. */
990 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
991 from + offset);
992 }
993
994 /* Always use hardware single-stepping to execute the
995 displaced instruction. */
996 static int
997 ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
998 struct displaced_step_closure *closure)
999 {
1000 return 1;
1001 }
1002
1003 /* Checks for an atomic sequence of instructions beginning with a
1004 Load And Reserve instruction and ending with a Store Conditional
1005 instruction. If such a sequence is found, attempt to step through it.
1006 A breakpoint is placed at the end of the sequence. */
1007 std::vector<CORE_ADDR>
1008 ppc_deal_with_atomic_sequence (struct regcache *regcache)
1009 {
1010 struct gdbarch *gdbarch = regcache->arch ();
1011 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1012 CORE_ADDR pc = regcache_read_pc (regcache);
1013 CORE_ADDR breaks[2] = {CORE_ADDR_MAX, CORE_ADDR_MAX};
1014 CORE_ADDR loc = pc;
1015 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
1016 int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1017 int insn_count;
1018 int index;
1019 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
1020 const int atomic_sequence_length = 16; /* Instruction sequence length. */
1021 int bc_insn_count = 0; /* Conditional branch instruction count. */
1022
1023 /* Assume all atomic sequences start with a Load And Reserve instruction. */
1024 if (!IS_LOAD_AND_RESERVE_INSN (insn))
1025 return {};
1026
1027 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1028 instructions. */
1029 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1030 {
1031 loc += PPC_INSN_SIZE;
1032 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1033
1034 /* Assume that there is at most one conditional branch in the atomic
1035 sequence. If a conditional branch is found, put a breakpoint in
1036 its destination address. */
1037 if ((insn & BRANCH_MASK) == BC_INSN)
1038 {
1039 int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
1040 int absolute = insn & 2;
1041
1042 if (bc_insn_count >= 1)
1043 return {}; /* More than one conditional branch found, fallback
1044 to the standard single-step code. */
1045
1046 if (absolute)
1047 breaks[1] = immediate;
1048 else
1049 breaks[1] = loc + immediate;
1050
1051 bc_insn_count++;
1052 last_breakpoint++;
1053 }
1054
1055 if (IS_STORE_CONDITIONAL_INSN (insn))
1056 break;
1057 }
1058
1059 /* Assume that the atomic sequence ends with a Store Conditional
1060 instruction. */
1061 if (!IS_STORE_CONDITIONAL_INSN (insn))
1062 return {};
1063
1064 closing_insn = loc;
1065 loc += PPC_INSN_SIZE;
1066
1067 /* Insert a breakpoint right after the end of the atomic sequence. */
1068 breaks[0] = loc;
1069
1070 /* Check for duplicated breakpoints. Check also for a breakpoint
1071 placed (branch instruction's destination) anywhere in sequence. */
1072 if (last_breakpoint
1073 && (breaks[1] == breaks[0]
1074 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
1075 last_breakpoint = 0;
1076
1077 std::vector<CORE_ADDR> next_pcs;
1078
1079 for (index = 0; index <= last_breakpoint; index++)
1080 next_pcs.push_back (breaks[index]);
1081
1082 return next_pcs;
1083 }
1084
1085
1086 #define SIGNED_SHORT(x) \
1087 ((sizeof (short) == 2) \
1088 ? ((int)(short)(x)) \
1089 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1090
1091 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1092
1093 /* Limit the number of skipped non-prologue instructions, as the examining
1094 of the prologue is expensive. */
1095 static int max_skip_non_prologue_insns = 10;
1096
1097 /* Return nonzero if the given instruction OP can be part of the prologue
1098 of a function and saves a parameter on the stack. FRAMEP should be
1099 set if one of the previous instructions in the function has set the
1100 Frame Pointer. */
1101
1102 static int
1103 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1104 {
1105 /* Move parameters from argument registers to temporary register. */
1106 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1107 {
1108 /* Rx must be scratch register r0. */
1109 const int rx_regno = (op >> 16) & 31;
1110 /* Ry: Only r3 - r10 are used for parameter passing. */
1111 const int ry_regno = GET_SRC_REG (op);
1112
1113 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1114 {
1115 *r0_contains_arg = 1;
1116 return 1;
1117 }
1118 else
1119 return 0;
1120 }
1121
1122 /* Save a General Purpose Register on stack. */
1123
1124 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1125 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1126 {
1127 /* Rx: Only r3 - r10 are used for parameter passing. */
1128 const int rx_regno = GET_SRC_REG (op);
1129
1130 return (rx_regno >= 3 && rx_regno <= 10);
1131 }
1132
1133 /* Save a General Purpose Register on stack via the Frame Pointer. */
1134
1135 if (framep &&
1136 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1137 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1138 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1139 {
1140 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1141 However, the compiler sometimes uses r0 to hold an argument. */
1142 const int rx_regno = GET_SRC_REG (op);
1143
1144 return ((rx_regno >= 3 && rx_regno <= 10)
1145 || (rx_regno == 0 && *r0_contains_arg));
1146 }
1147
1148 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1149 {
1150 /* Only f2 - f8 are used for parameter passing. */
1151 const int src_regno = GET_SRC_REG (op);
1152
1153 return (src_regno >= 2 && src_regno <= 8);
1154 }
1155
1156 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1157 {
1158 /* Only f2 - f8 are used for parameter passing. */
1159 const int src_regno = GET_SRC_REG (op);
1160
1161 return (src_regno >= 2 && src_regno <= 8);
1162 }
1163
1164 /* Not an insn that saves a parameter on stack. */
1165 return 0;
1166 }
1167
1168 /* Assuming that INSN is a "bl" instruction located at PC, return
1169 nonzero if the destination of the branch is a "blrl" instruction.
1170
1171 This sequence is sometimes found in certain function prologues.
1172 It allows the function to load the LR register with a value that
1173 they can use to access PIC data using PC-relative offsets. */
1174
1175 static int
1176 bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
1177 {
1178 CORE_ADDR dest;
1179 int immediate;
1180 int absolute;
1181 int dest_insn;
1182
1183 absolute = (int) ((insn >> 1) & 1);
1184 immediate = ((insn & ~3) << 6) >> 6;
1185 if (absolute)
1186 dest = immediate;
1187 else
1188 dest = pc + immediate;
1189
1190 dest_insn = read_memory_integer (dest, 4, byte_order);
1191 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1192 return 1;
1193
1194 return 0;
1195 }
1196
1197 /* Return true if OP is a stw or std instruction with
1198 register operands RS and RA and any immediate offset.
1199
1200 If WITH_UPDATE is true, also return true if OP is
1201 a stwu or stdu instruction with the same operands.
1202
1203 Return false otherwise.
1204 */
1205 static bool
1206 store_insn_p (unsigned long op, unsigned long rs,
1207 unsigned long ra, bool with_update)
1208 {
1209 rs = rs << 21;
1210 ra = ra << 16;
1211
1212 if (/* std RS, SIMM(RA) */
1213 ((op & 0xffff0003) == (rs | ra | 0xf8000000)) ||
1214 /* stw RS, SIMM(RA) */
1215 ((op & 0xffff0000) == (rs | ra | 0x90000000)))
1216 return true;
1217
1218 if (with_update)
1219 {
1220 if (/* stdu RS, SIMM(RA) */
1221 ((op & 0xffff0003) == (rs | ra | 0xf8000001)) ||
1222 /* stwu RS, SIMM(RA) */
1223 ((op & 0xffff0000) == (rs | ra | 0x94000000)))
1224 return true;
1225 }
1226
1227 return false;
1228 }
1229
1230 /* Masks for decoding a branch-and-link (bl) instruction.
1231
1232 BL_MASK and BL_INSTRUCTION are used in combination with each other.
1233 The former is anded with the opcode in question; if the result of
1234 this masking operation is equal to BL_INSTRUCTION, then the opcode in
1235 question is a ``bl'' instruction.
1236
1237 BL_DISPLACMENT_MASK is anded with the opcode in order to extract
1238 the branch displacement. */
1239
1240 #define BL_MASK 0xfc000001
1241 #define BL_INSTRUCTION 0x48000001
1242 #define BL_DISPLACEMENT_MASK 0x03fffffc
1243
1244 static unsigned long
1245 rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
1246 {
1247 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1248 gdb_byte buf[4];
1249 unsigned long op;
1250
1251 /* Fetch the instruction and convert it to an integer. */
1252 if (target_read_memory (pc, buf, 4))
1253 return 0;
1254 op = extract_unsigned_integer (buf, 4, byte_order);
1255
1256 return op;
1257 }
1258
1259 /* GCC generates several well-known sequences of instructions at the begining
1260 of each function prologue when compiling with -fstack-check. If one of
1261 such sequences starts at START_PC, then return the address of the
1262 instruction immediately past this sequence. Otherwise, return START_PC. */
1263
1264 static CORE_ADDR
1265 rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
1266 {
1267 CORE_ADDR pc = start_pc;
1268 unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
1269
1270 /* First possible sequence: A small number of probes.
1271 stw 0, -<some immediate>(1)
1272 [repeat this instruction any (small) number of times]. */
1273
1274 if ((op & 0xffff0000) == 0x90010000)
1275 {
1276 while ((op & 0xffff0000) == 0x90010000)
1277 {
1278 pc = pc + 4;
1279 op = rs6000_fetch_instruction (gdbarch, pc);
1280 }
1281 return pc;
1282 }
1283
1284 /* Second sequence: A probing loop.
1285 addi 12,1,-<some immediate>
1286 lis 0,-<some immediate>
1287 [possibly ori 0,0,<some immediate>]
1288 add 0,12,0
1289 cmpw 0,12,0
1290 beq 0,<disp>
1291 addi 12,12,-<some immediate>
1292 stw 0,0(12)
1293 b <disp>
1294 [possibly one last probe: stw 0,<some immediate>(12)]. */
1295
1296 while (1)
1297 {
1298 /* addi 12,1,-<some immediate> */
1299 if ((op & 0xffff0000) != 0x39810000)
1300 break;
1301
1302 /* lis 0,-<some immediate> */
1303 pc = pc + 4;
1304 op = rs6000_fetch_instruction (gdbarch, pc);
1305 if ((op & 0xffff0000) != 0x3c000000)
1306 break;
1307
1308 pc = pc + 4;
1309 op = rs6000_fetch_instruction (gdbarch, pc);
1310 /* [possibly ori 0,0,<some immediate>] */
1311 if ((op & 0xffff0000) == 0x60000000)
1312 {
1313 pc = pc + 4;
1314 op = rs6000_fetch_instruction (gdbarch, pc);
1315 }
1316 /* add 0,12,0 */
1317 if (op != 0x7c0c0214)
1318 break;
1319
1320 /* cmpw 0,12,0 */
1321 pc = pc + 4;
1322 op = rs6000_fetch_instruction (gdbarch, pc);
1323 if (op != 0x7c0c0000)
1324 break;
1325
1326 /* beq 0,<disp> */
1327 pc = pc + 4;
1328 op = rs6000_fetch_instruction (gdbarch, pc);
1329 if ((op & 0xff9f0001) != 0x41820000)
1330 break;
1331
1332 /* addi 12,12,-<some immediate> */
1333 pc = pc + 4;
1334 op = rs6000_fetch_instruction (gdbarch, pc);
1335 if ((op & 0xffff0000) != 0x398c0000)
1336 break;
1337
1338 /* stw 0,0(12) */
1339 pc = pc + 4;
1340 op = rs6000_fetch_instruction (gdbarch, pc);
1341 if (op != 0x900c0000)
1342 break;
1343
1344 /* b <disp> */
1345 pc = pc + 4;
1346 op = rs6000_fetch_instruction (gdbarch, pc);
1347 if ((op & 0xfc000001) != 0x48000000)
1348 break;
1349
1350 /* [possibly one last probe: stw 0,<some immediate>(12)]. */
1351 pc = pc + 4;
1352 op = rs6000_fetch_instruction (gdbarch, pc);
1353 if ((op & 0xffff0000) == 0x900c0000)
1354 {
1355 pc = pc + 4;
1356 op = rs6000_fetch_instruction (gdbarch, pc);
1357 }
1358
1359 /* We found a valid stack-check sequence, return the new PC. */
1360 return pc;
1361 }
1362
1363 /* Third sequence: No probe; instead, a comparizon between the stack size
1364 limit (saved in a run-time global variable) and the current stack
1365 pointer:
1366
1367 addi 0,1,-<some immediate>
1368 lis 12,__gnat_stack_limit@ha
1369 lwz 12,__gnat_stack_limit@l(12)
1370 twllt 0,12
1371
1372 or, with a small variant in the case of a bigger stack frame:
1373 addis 0,1,<some immediate>
1374 addic 0,0,-<some immediate>
1375 lis 12,__gnat_stack_limit@ha
1376 lwz 12,__gnat_stack_limit@l(12)
1377 twllt 0,12
1378 */
1379 while (1)
1380 {
1381 /* addi 0,1,-<some immediate> */
1382 if ((op & 0xffff0000) != 0x38010000)
1383 {
1384 /* small stack frame variant not recognized; try the
1385 big stack frame variant: */
1386
1387 /* addis 0,1,<some immediate> */
1388 if ((op & 0xffff0000) != 0x3c010000)
1389 break;
1390
1391 /* addic 0,0,-<some immediate> */
1392 pc = pc + 4;
1393 op = rs6000_fetch_instruction (gdbarch, pc);
1394 if ((op & 0xffff0000) != 0x30000000)
1395 break;
1396 }
1397
1398 /* lis 12,<some immediate> */
1399 pc = pc + 4;
1400 op = rs6000_fetch_instruction (gdbarch, pc);
1401 if ((op & 0xffff0000) != 0x3d800000)
1402 break;
1403
1404 /* lwz 12,<some immediate>(12) */
1405 pc = pc + 4;
1406 op = rs6000_fetch_instruction (gdbarch, pc);
1407 if ((op & 0xffff0000) != 0x818c0000)
1408 break;
1409
1410 /* twllt 0,12 */
1411 pc = pc + 4;
1412 op = rs6000_fetch_instruction (gdbarch, pc);
1413 if ((op & 0xfffffffe) != 0x7c406008)
1414 break;
1415
1416 /* We found a valid stack-check sequence, return the new PC. */
1417 return pc;
1418 }
1419
1420 /* No stack check code in our prologue, return the start_pc. */
1421 return start_pc;
1422 }
1423
1424 /* return pc value after skipping a function prologue and also return
1425 information about a function frame.
1426
1427 in struct rs6000_framedata fdata:
1428 - frameless is TRUE, if function does not have a frame.
1429 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1430 - offset is the initial size of this stack frame --- the amount by
1431 which we decrement the sp to allocate the frame.
1432 - saved_gpr is the number of the first saved gpr.
1433 - saved_fpr is the number of the first saved fpr.
1434 - saved_vr is the number of the first saved vr.
1435 - saved_ev is the number of the first saved ev.
1436 - alloca_reg is the number of the register used for alloca() handling.
1437 Otherwise -1.
1438 - gpr_offset is the offset of the first saved gpr from the previous frame.
1439 - fpr_offset is the offset of the first saved fpr from the previous frame.
1440 - vr_offset is the offset of the first saved vr from the previous frame.
1441 - ev_offset is the offset of the first saved ev from the previous frame.
1442 - lr_offset is the offset of the saved lr
1443 - cr_offset is the offset of the saved cr
1444 - vrsave_offset is the offset of the saved vrsave register. */
1445
1446 static CORE_ADDR
1447 skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1448 struct rs6000_framedata *fdata)
1449 {
1450 CORE_ADDR orig_pc = pc;
1451 CORE_ADDR last_prologue_pc = pc;
1452 CORE_ADDR li_found_pc = 0;
1453 gdb_byte buf[4];
1454 unsigned long op;
1455 long offset = 0;
1456 long alloca_reg_offset = 0;
1457 long vr_saved_offset = 0;
1458 int lr_reg = -1;
1459 int cr_reg = -1;
1460 int vr_reg = -1;
1461 int ev_reg = -1;
1462 long ev_offset = 0;
1463 int vrsave_reg = -1;
1464 int reg;
1465 int framep = 0;
1466 int minimal_toc_loaded = 0;
1467 int prev_insn_was_prologue_insn = 1;
1468 int num_skip_non_prologue_insns = 0;
1469 int r0_contains_arg = 0;
1470 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1471 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1472 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1473
1474 memset (fdata, 0, sizeof (struct rs6000_framedata));
1475 fdata->saved_gpr = -1;
1476 fdata->saved_fpr = -1;
1477 fdata->saved_vr = -1;
1478 fdata->saved_ev = -1;
1479 fdata->alloca_reg = -1;
1480 fdata->frameless = 1;
1481 fdata->nosavedpc = 1;
1482 fdata->lr_register = -1;
1483
1484 pc = rs6000_skip_stack_check (gdbarch, pc);
1485 if (pc >= lim_pc)
1486 pc = lim_pc;
1487
1488 for (;; pc += 4)
1489 {
1490 /* Sometimes it isn't clear if an instruction is a prologue
1491 instruction or not. When we encounter one of these ambiguous
1492 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1493 Otherwise, we'll assume that it really is a prologue instruction. */
1494 if (prev_insn_was_prologue_insn)
1495 last_prologue_pc = pc;
1496
1497 /* Stop scanning if we've hit the limit. */
1498 if (pc >= lim_pc)
1499 break;
1500
1501 prev_insn_was_prologue_insn = 1;
1502
1503 /* Fetch the instruction and convert it to an integer. */
1504 if (target_read_memory (pc, buf, 4))
1505 break;
1506 op = extract_unsigned_integer (buf, 4, byte_order);
1507
1508 if ((op & 0xfc1fffff) == 0x7c0802a6)
1509 { /* mflr Rx */
1510 /* Since shared library / PIC code, which needs to get its
1511 address at runtime, can appear to save more than one link
1512 register vis:
1513
1514 *INDENT-OFF*
1515 stwu r1,-304(r1)
1516 mflr r3
1517 bl 0xff570d0 (blrl)
1518 stw r30,296(r1)
1519 mflr r30
1520 stw r31,300(r1)
1521 stw r3,308(r1);
1522 ...
1523 *INDENT-ON*
1524
1525 remember just the first one, but skip over additional
1526 ones. */
1527 if (lr_reg == -1)
1528 lr_reg = (op & 0x03e00000) >> 21;
1529 if (lr_reg == 0)
1530 r0_contains_arg = 0;
1531 continue;
1532 }
1533 else if ((op & 0xfc1fffff) == 0x7c000026)
1534 { /* mfcr Rx */
1535 cr_reg = (op & 0x03e00000) >> 21;
1536 if (cr_reg == 0)
1537 r0_contains_arg = 0;
1538 continue;
1539
1540 }
1541 else if ((op & 0xfc1f0000) == 0xd8010000)
1542 { /* stfd Rx,NUM(r1) */
1543 reg = GET_SRC_REG (op);
1544 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1545 {
1546 fdata->saved_fpr = reg;
1547 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1548 }
1549 continue;
1550
1551 }
1552 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1553 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1554 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1555 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1556 {
1557
1558 reg = GET_SRC_REG (op);
1559 if ((op & 0xfc1f0000) == 0xbc010000)
1560 fdata->gpr_mask |= ~((1U << reg) - 1);
1561 else
1562 fdata->gpr_mask |= 1U << reg;
1563 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1564 {
1565 fdata->saved_gpr = reg;
1566 if ((op & 0xfc1f0003) == 0xf8010000)
1567 op &= ~3UL;
1568 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1569 }
1570 continue;
1571
1572 }
1573 else if ((op & 0xffff0000) == 0x3c4c0000
1574 || (op & 0xffff0000) == 0x3c400000
1575 || (op & 0xffff0000) == 0x38420000)
1576 {
1577 /* . 0: addis 2,12,.TOC.-0b@ha
1578 . addi 2,2,.TOC.-0b@l
1579 or
1580 . lis 2,.TOC.@ha
1581 . addi 2,2,.TOC.@l
1582 used by ELFv2 global entry points to set up r2. */
1583 continue;
1584 }
1585 else if (op == 0x60000000)
1586 {
1587 /* nop */
1588 /* Allow nops in the prologue, but do not consider them to
1589 be part of the prologue unless followed by other prologue
1590 instructions. */
1591 prev_insn_was_prologue_insn = 0;
1592 continue;
1593
1594 }
1595 else if ((op & 0xffff0000) == 0x3c000000)
1596 { /* addis 0,0,NUM, used for >= 32k frames */
1597 fdata->offset = (op & 0x0000ffff) << 16;
1598 fdata->frameless = 0;
1599 r0_contains_arg = 0;
1600 continue;
1601
1602 }
1603 else if ((op & 0xffff0000) == 0x60000000)
1604 { /* ori 0,0,NUM, 2nd half of >= 32k frames */
1605 fdata->offset |= (op & 0x0000ffff);
1606 fdata->frameless = 0;
1607 r0_contains_arg = 0;
1608 continue;
1609
1610 }
1611 else if (lr_reg >= 0 &&
1612 ((store_insn_p (op, lr_reg, 1, true)) ||
1613 (framep &&
1614 (store_insn_p (op, lr_reg,
1615 fdata->alloca_reg - tdep->ppc_gp0_regnum,
1616 false)))))
1617 {
1618 if (store_insn_p (op, lr_reg, 1, true))
1619 fdata->lr_offset = offset;
1620 else /* LR save through frame pointer. */
1621 fdata->lr_offset = alloca_reg_offset;
1622
1623 fdata->nosavedpc = 0;
1624 /* Invalidate lr_reg, but don't set it to -1.
1625 That would mean that it had never been set. */
1626 lr_reg = -2;
1627 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1628 (op & 0xfc000000) == 0x90000000) /* stw */
1629 {
1630 /* Does not update r1, so add displacement to lr_offset. */
1631 fdata->lr_offset += SIGNED_SHORT (op);
1632 }
1633 continue;
1634
1635 }
1636 else if (cr_reg >= 0 &&
1637 (store_insn_p (op, cr_reg, 1, true)))
1638 {
1639 fdata->cr_offset = offset;
1640 /* Invalidate cr_reg, but don't set it to -1.
1641 That would mean that it had never been set. */
1642 cr_reg = -2;
1643 if ((op & 0xfc000003) == 0xf8000000 ||
1644 (op & 0xfc000000) == 0x90000000)
1645 {
1646 /* Does not update r1, so add displacement to cr_offset. */
1647 fdata->cr_offset += SIGNED_SHORT (op);
1648 }
1649 continue;
1650
1651 }
1652 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1653 {
1654 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1655 prediction bits. If the LR has already been saved, we can
1656 skip it. */
1657 continue;
1658 }
1659 else if (op == 0x48000005)
1660 { /* bl .+4 used in
1661 -mrelocatable */
1662 fdata->used_bl = 1;
1663 continue;
1664
1665 }
1666 else if (op == 0x48000004)
1667 { /* b .+4 (xlc) */
1668 break;
1669
1670 }
1671 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1672 in V.4 -mminimal-toc */
1673 (op & 0xffff0000) == 0x3bde0000)
1674 { /* addi 30,30,foo@l */
1675 continue;
1676
1677 }
1678 else if ((op & 0xfc000001) == 0x48000001)
1679 { /* bl foo,
1680 to save fprs??? */
1681
1682 fdata->frameless = 0;
1683
1684 /* If the return address has already been saved, we can skip
1685 calls to blrl (for PIC). */
1686 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
1687 {
1688 fdata->used_bl = 1;
1689 continue;
1690 }
1691
1692 /* Don't skip over the subroutine call if it is not within
1693 the first three instructions of the prologue and either
1694 we have no line table information or the line info tells
1695 us that the subroutine call is not part of the line
1696 associated with the prologue. */
1697 if ((pc - orig_pc) > 8)
1698 {
1699 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1700 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1701
1702 if ((prologue_sal.line == 0)
1703 || (prologue_sal.line != this_sal.line))
1704 break;
1705 }
1706
1707 op = read_memory_integer (pc + 4, 4, byte_order);
1708
1709 /* At this point, make sure this is not a trampoline
1710 function (a function that simply calls another functions,
1711 and nothing else). If the next is not a nop, this branch
1712 was part of the function prologue. */
1713
1714 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1715 break; /* Don't skip over
1716 this branch. */
1717
1718 fdata->used_bl = 1;
1719 continue;
1720 }
1721 /* update stack pointer */
1722 else if ((op & 0xfc1f0000) == 0x94010000)
1723 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1724 fdata->frameless = 0;
1725 fdata->offset = SIGNED_SHORT (op);
1726 offset = fdata->offset;
1727 continue;
1728 }
1729 else if ((op & 0xfc1f07fa) == 0x7c01016a)
1730 { /* stwux rX,r1,rY || stdux rX,r1,rY */
1731 /* No way to figure out what r1 is going to be. */
1732 fdata->frameless = 0;
1733 offset = fdata->offset;
1734 continue;
1735 }
1736 else if ((op & 0xfc1f0003) == 0xf8010001)
1737 { /* stdu rX,NUM(r1) */
1738 fdata->frameless = 0;
1739 fdata->offset = SIGNED_SHORT (op & ~3UL);
1740 offset = fdata->offset;
1741 continue;
1742 }
1743 else if ((op & 0xffff0000) == 0x38210000)
1744 { /* addi r1,r1,SIMM */
1745 fdata->frameless = 0;
1746 fdata->offset += SIGNED_SHORT (op);
1747 offset = fdata->offset;
1748 continue;
1749 }
1750 /* Load up minimal toc pointer. Do not treat an epilogue restore
1751 of r31 as a minimal TOC load. */
1752 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1753 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1754 && !framep
1755 && !minimal_toc_loaded)
1756 {
1757 minimal_toc_loaded = 1;
1758 continue;
1759
1760 /* move parameters from argument registers to local variable
1761 registers */
1762 }
1763 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1764 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1765 (((op >> 21) & 31) <= 10) &&
1766 ((long) ((op >> 16) & 31)
1767 >= fdata->saved_gpr)) /* Rx: local var reg */
1768 {
1769 continue;
1770
1771 /* store parameters in stack */
1772 }
1773 /* Move parameters from argument registers to temporary register. */
1774 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1775 {
1776 continue;
1777
1778 /* Set up frame pointer */
1779 }
1780 else if (op == 0x603d0000) /* oril r29, r1, 0x0 */
1781 {
1782 fdata->frameless = 0;
1783 framep = 1;
1784 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29);
1785 alloca_reg_offset = offset;
1786 continue;
1787
1788 /* Another way to set up the frame pointer. */
1789 }
1790 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1791 || op == 0x7c3f0b78)
1792 { /* mr r31, r1 */
1793 fdata->frameless = 0;
1794 framep = 1;
1795 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1796 alloca_reg_offset = offset;
1797 continue;
1798
1799 /* Another way to set up the frame pointer. */
1800 }
1801 else if ((op & 0xfc1fffff) == 0x38010000)
1802 { /* addi rX, r1, 0x0 */
1803 fdata->frameless = 0;
1804 framep = 1;
1805 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1806 + ((op & ~0x38010000) >> 21));
1807 alloca_reg_offset = offset;
1808 continue;
1809 }
1810 /* AltiVec related instructions. */
1811 /* Store the vrsave register (spr 256) in another register for
1812 later manipulation, or load a register into the vrsave
1813 register. 2 instructions are used: mfvrsave and
1814 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1815 and mtspr SPR256, Rn. */
1816 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1817 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1818 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1819 {
1820 vrsave_reg = GET_SRC_REG (op);
1821 continue;
1822 }
1823 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1824 {
1825 continue;
1826 }
1827 /* Store the register where vrsave was saved to onto the stack:
1828 rS is the register where vrsave was stored in a previous
1829 instruction. */
1830 /* 100100 sssss 00001 dddddddd dddddddd */
1831 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1832 {
1833 if (vrsave_reg == GET_SRC_REG (op))
1834 {
1835 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1836 vrsave_reg = -1;
1837 }
1838 continue;
1839 }
1840 /* Compute the new value of vrsave, by modifying the register
1841 where vrsave was saved to. */
1842 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1843 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1844 {
1845 continue;
1846 }
1847 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1848 in a pair of insns to save the vector registers on the
1849 stack. */
1850 /* 001110 00000 00000 iiii iiii iiii iiii */
1851 /* 001110 01110 00000 iiii iiii iiii iiii */
1852 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1853 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1854 {
1855 if ((op & 0xffff0000) == 0x38000000)
1856 r0_contains_arg = 0;
1857 li_found_pc = pc;
1858 vr_saved_offset = SIGNED_SHORT (op);
1859
1860 /* This insn by itself is not part of the prologue, unless
1861 if part of the pair of insns mentioned above. So do not
1862 record this insn as part of the prologue yet. */
1863 prev_insn_was_prologue_insn = 0;
1864 }
1865 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1866 /* 011111 sssss 11111 00000 00111001110 */
1867 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1868 {
1869 if (pc == (li_found_pc + 4))
1870 {
1871 vr_reg = GET_SRC_REG (op);
1872 /* If this is the first vector reg to be saved, or if
1873 it has a lower number than others previously seen,
1874 reupdate the frame info. */
1875 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1876 {
1877 fdata->saved_vr = vr_reg;
1878 fdata->vr_offset = vr_saved_offset + offset;
1879 }
1880 vr_saved_offset = -1;
1881 vr_reg = -1;
1882 li_found_pc = 0;
1883 }
1884 }
1885 /* End AltiVec related instructions. */
1886
1887 /* Start BookE related instructions. */
1888 /* Store gen register S at (r31+uimm).
1889 Any register less than r13 is volatile, so we don't care. */
1890 /* 000100 sssss 11111 iiiii 01100100001 */
1891 else if (arch_info->mach == bfd_mach_ppc_e500
1892 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1893 {
1894 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1895 {
1896 unsigned int imm;
1897 ev_reg = GET_SRC_REG (op);
1898 imm = (op >> 11) & 0x1f;
1899 ev_offset = imm * 8;
1900 /* If this is the first vector reg to be saved, or if
1901 it has a lower number than others previously seen,
1902 reupdate the frame info. */
1903 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1904 {
1905 fdata->saved_ev = ev_reg;
1906 fdata->ev_offset = ev_offset + offset;
1907 }
1908 }
1909 continue;
1910 }
1911 /* Store gen register rS at (r1+rB). */
1912 /* 000100 sssss 00001 bbbbb 01100100000 */
1913 else if (arch_info->mach == bfd_mach_ppc_e500
1914 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1915 {
1916 if (pc == (li_found_pc + 4))
1917 {
1918 ev_reg = GET_SRC_REG (op);
1919 /* If this is the first vector reg to be saved, or if
1920 it has a lower number than others previously seen,
1921 reupdate the frame info. */
1922 /* We know the contents of rB from the previous instruction. */
1923 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1924 {
1925 fdata->saved_ev = ev_reg;
1926 fdata->ev_offset = vr_saved_offset + offset;
1927 }
1928 vr_saved_offset = -1;
1929 ev_reg = -1;
1930 li_found_pc = 0;
1931 }
1932 continue;
1933 }
1934 /* Store gen register r31 at (rA+uimm). */
1935 /* 000100 11111 aaaaa iiiii 01100100001 */
1936 else if (arch_info->mach == bfd_mach_ppc_e500
1937 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1938 {
1939 /* Wwe know that the source register is 31 already, but
1940 it can't hurt to compute it. */
1941 ev_reg = GET_SRC_REG (op);
1942 ev_offset = ((op >> 11) & 0x1f) * 8;
1943 /* If this is the first vector reg to be saved, or if
1944 it has a lower number than others previously seen,
1945 reupdate the frame info. */
1946 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1947 {
1948 fdata->saved_ev = ev_reg;
1949 fdata->ev_offset = ev_offset + offset;
1950 }
1951
1952 continue;
1953 }
1954 /* Store gen register S at (r31+r0).
1955 Store param on stack when offset from SP bigger than 4 bytes. */
1956 /* 000100 sssss 11111 00000 01100100000 */
1957 else if (arch_info->mach == bfd_mach_ppc_e500
1958 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1959 {
1960 if (pc == (li_found_pc + 4))
1961 {
1962 if ((op & 0x03e00000) >= 0x01a00000)
1963 {
1964 ev_reg = GET_SRC_REG (op);
1965 /* If this is the first vector reg to be saved, or if
1966 it has a lower number than others previously seen,
1967 reupdate the frame info. */
1968 /* We know the contents of r0 from the previous
1969 instruction. */
1970 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1971 {
1972 fdata->saved_ev = ev_reg;
1973 fdata->ev_offset = vr_saved_offset + offset;
1974 }
1975 ev_reg = -1;
1976 }
1977 vr_saved_offset = -1;
1978 li_found_pc = 0;
1979 continue;
1980 }
1981 }
1982 /* End BookE related instructions. */
1983
1984 else
1985 {
1986 /* Not a recognized prologue instruction.
1987 Handle optimizer code motions into the prologue by continuing
1988 the search if we have no valid frame yet or if the return
1989 address is not yet saved in the frame. Also skip instructions
1990 if some of the GPRs expected to be saved are not yet saved. */
1991 if (fdata->frameless == 0 && fdata->nosavedpc == 0
1992 && fdata->saved_gpr != -1)
1993 {
1994 unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
1995
1996 if ((fdata->gpr_mask & all_mask) == all_mask)
1997 break;
1998 }
1999
2000 if (op == 0x4e800020 /* blr */
2001 || op == 0x4e800420) /* bctr */
2002 /* Do not scan past epilogue in frameless functions or
2003 trampolines. */
2004 break;
2005 if ((op & 0xf4000000) == 0x40000000) /* bxx */
2006 /* Never skip branches. */
2007 break;
2008
2009 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
2010 /* Do not scan too many insns, scanning insns is expensive with
2011 remote targets. */
2012 break;
2013
2014 /* Continue scanning. */
2015 prev_insn_was_prologue_insn = 0;
2016 continue;
2017 }
2018 }
2019
2020 #if 0
2021 /* I have problems with skipping over __main() that I need to address
2022 * sometime. Previously, I used to use misc_function_vector which
2023 * didn't work as well as I wanted to be. -MGO */
2024
2025 /* If the first thing after skipping a prolog is a branch to a function,
2026 this might be a call to an initializer in main(), introduced by gcc2.
2027 We'd like to skip over it as well. Fortunately, xlc does some extra
2028 work before calling a function right after a prologue, thus we can
2029 single out such gcc2 behaviour. */
2030
2031
2032 if ((op & 0xfc000001) == 0x48000001)
2033 { /* bl foo, an initializer function? */
2034 op = read_memory_integer (pc + 4, 4, byte_order);
2035
2036 if (op == 0x4def7b82)
2037 { /* cror 0xf, 0xf, 0xf (nop) */
2038
2039 /* Check and see if we are in main. If so, skip over this
2040 initializer function as well. */
2041
2042 tmp = find_pc_misc_function (pc);
2043 if (tmp >= 0
2044 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
2045 return pc + 8;
2046 }
2047 }
2048 #endif /* 0 */
2049
2050 if (pc == lim_pc && lr_reg >= 0)
2051 fdata->lr_register = lr_reg;
2052
2053 fdata->offset = -fdata->offset;
2054 return last_prologue_pc;
2055 }
2056
2057 static CORE_ADDR
2058 rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2059 {
2060 struct rs6000_framedata frame;
2061 CORE_ADDR limit_pc, func_addr, func_end_addr = 0;
2062
2063 /* See if we can determine the end of the prologue via the symbol table.
2064 If so, then return either PC, or the PC after the prologue, whichever
2065 is greater. */
2066 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
2067 {
2068 CORE_ADDR post_prologue_pc
2069 = skip_prologue_using_sal (gdbarch, func_addr);
2070 if (post_prologue_pc != 0)
2071 return std::max (pc, post_prologue_pc);
2072 }
2073
2074 /* Can't determine prologue from the symbol table, need to examine
2075 instructions. */
2076
2077 /* Find an upper limit on the function prologue using the debug
2078 information. If the debug information could not be used to provide
2079 that bound, then use an arbitrary large number as the upper bound. */
2080 limit_pc = skip_prologue_using_sal (gdbarch, pc);
2081 if (limit_pc == 0)
2082 limit_pc = pc + 100; /* Magic. */
2083
2084 /* Do not allow limit_pc to be past the function end, if we know
2085 where that end is... */
2086 if (func_end_addr && limit_pc > func_end_addr)
2087 limit_pc = func_end_addr;
2088
2089 pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
2090 return pc;
2091 }
2092
2093 /* When compiling for EABI, some versions of GCC emit a call to __eabi
2094 in the prologue of main().
2095
2096 The function below examines the code pointed at by PC and checks to
2097 see if it corresponds to a call to __eabi. If so, it returns the
2098 address of the instruction following that call. Otherwise, it simply
2099 returns PC. */
2100
2101 static CORE_ADDR
2102 rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2103 {
2104 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2105 gdb_byte buf[4];
2106 unsigned long op;
2107
2108 if (target_read_memory (pc, buf, 4))
2109 return pc;
2110 op = extract_unsigned_integer (buf, 4, byte_order);
2111
2112 if ((op & BL_MASK) == BL_INSTRUCTION)
2113 {
2114 CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
2115 CORE_ADDR call_dest = pc + 4 + displ;
2116 struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);
2117
2118 /* We check for ___eabi (three leading underscores) in addition
2119 to __eabi in case the GCC option "-fleading-underscore" was
2120 used to compile the program. */
2121 if (s.minsym != NULL
2122 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
2123 && (strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__eabi") == 0
2124 || strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "___eabi") == 0))
2125 pc += 4;
2126 }
2127 return pc;
2128 }
2129
2130 /* All the ABI's require 16 byte alignment. */
2131 static CORE_ADDR
2132 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2133 {
2134 return (addr & -16);
2135 }
2136
2137 /* Return whether handle_inferior_event() should proceed through code
2138 starting at PC in function NAME when stepping.
2139
2140 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2141 handle memory references that are too distant to fit in instructions
2142 generated by the compiler. For example, if 'foo' in the following
2143 instruction:
2144
2145 lwz r9,foo(r2)
2146
2147 is greater than 32767, the linker might replace the lwz with a branch to
2148 somewhere in @FIX1 that does the load in 2 instructions and then branches
2149 back to where execution should continue.
2150
2151 GDB should silently step over @FIX code, just like AIX dbx does.
2152 Unfortunately, the linker uses the "b" instruction for the
2153 branches, meaning that the link register doesn't get set.
2154 Therefore, GDB's usual step_over_function () mechanism won't work.
2155
2156 Instead, use the gdbarch_skip_trampoline_code and
2157 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2158 @FIX code. */
2159
2160 static int
2161 rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
2162 CORE_ADDR pc, const char *name)
2163 {
2164 return name && startswith (name, "@FIX");
2165 }
2166
2167 /* Skip code that the user doesn't want to see when stepping:
2168
2169 1. Indirect function calls use a piece of trampoline code to do context
2170 switching, i.e. to set the new TOC table. Skip such code if we are on
2171 its first instruction (as when we have single-stepped to here).
2172
2173 2. Skip shared library trampoline code (which is different from
2174 indirect function call trampolines).
2175
2176 3. Skip bigtoc fixup code.
2177
2178 Result is desired PC to step until, or NULL if we are not in
2179 code that should be skipped. */
2180
2181 static CORE_ADDR
2182 rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2183 {
2184 struct gdbarch *gdbarch = get_frame_arch (frame);
2185 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2186 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2187 unsigned int ii, op;
2188 int rel;
2189 CORE_ADDR solib_target_pc;
2190 struct bound_minimal_symbol msymbol;
2191
2192 static unsigned trampoline_code[] =
2193 {
2194 0x800b0000, /* l r0,0x0(r11) */
2195 0x90410014, /* st r2,0x14(r1) */
2196 0x7c0903a6, /* mtctr r0 */
2197 0x804b0004, /* l r2,0x4(r11) */
2198 0x816b0008, /* l r11,0x8(r11) */
2199 0x4e800420, /* bctr */
2200 0x4e800020, /* br */
2201 0
2202 };
2203
2204 /* Check for bigtoc fixup code. */
2205 msymbol = lookup_minimal_symbol_by_pc (pc);
2206 if (msymbol.minsym
2207 && rs6000_in_solib_return_trampoline (gdbarch, pc,
2208 MSYMBOL_LINKAGE_NAME (msymbol.minsym)))
2209 {
2210 /* Double-check that the third instruction from PC is relative "b". */
2211 op = read_memory_integer (pc + 8, 4, byte_order);
2212 if ((op & 0xfc000003) == 0x48000000)
2213 {
2214 /* Extract bits 6-29 as a signed 24-bit relative word address and
2215 add it to the containing PC. */
2216 rel = ((int)(op << 6) >> 6);
2217 return pc + 8 + rel;
2218 }
2219 }
2220
2221 /* If pc is in a shared library trampoline, return its target. */
2222 solib_target_pc = find_solib_trampoline_target (frame, pc);
2223 if (solib_target_pc)
2224 return solib_target_pc;
2225
2226 for (ii = 0; trampoline_code[ii]; ++ii)
2227 {
2228 op = read_memory_integer (pc + (ii * 4), 4, byte_order);
2229 if (op != trampoline_code[ii])
2230 return 0;
2231 }
2232 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination
2233 addr. */
2234 pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
2235 return pc;
2236 }
2237
2238 /* ISA-specific vector types. */
2239
2240 static struct type *
2241 rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2242 {
2243 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2244
2245 if (!tdep->ppc_builtin_type_vec64)
2246 {
2247 const struct builtin_type *bt = builtin_type (gdbarch);
2248
2249 /* The type we're building is this: */
2250 #if 0
2251 union __gdb_builtin_type_vec64
2252 {
2253 int64_t uint64;
2254 float v2_float[2];
2255 int32_t v2_int32[2];
2256 int16_t v4_int16[4];
2257 int8_t v8_int8[8];
2258 };
2259 #endif
2260
2261 struct type *t;
2262
2263 t = arch_composite_type (gdbarch,
2264 "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
2265 append_composite_type_field (t, "uint64", bt->builtin_int64);
2266 append_composite_type_field (t, "v2_float",
2267 init_vector_type (bt->builtin_float, 2));
2268 append_composite_type_field (t, "v2_int32",
2269 init_vector_type (bt->builtin_int32, 2));
2270 append_composite_type_field (t, "v4_int16",
2271 init_vector_type (bt->builtin_int16, 4));
2272 append_composite_type_field (t, "v8_int8",
2273 init_vector_type (bt->builtin_int8, 8));
2274
2275 TYPE_VECTOR (t) = 1;
2276 TYPE_NAME (t) = "ppc_builtin_type_vec64";
2277 tdep->ppc_builtin_type_vec64 = t;
2278 }
2279
2280 return tdep->ppc_builtin_type_vec64;
2281 }
2282
2283 /* Vector 128 type. */
2284
2285 static struct type *
2286 rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2287 {
2288 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2289
2290 if (!tdep->ppc_builtin_type_vec128)
2291 {
2292 const struct builtin_type *bt = builtin_type (gdbarch);
2293
2294 /* The type we're building is this
2295
2296 type = union __ppc_builtin_type_vec128 {
2297 uint128_t uint128;
2298 double v2_double[2];
2299 float v4_float[4];
2300 int32_t v4_int32[4];
2301 int16_t v8_int16[8];
2302 int8_t v16_int8[16];
2303 }
2304 */
2305
2306 struct type *t;
2307
2308 t = arch_composite_type (gdbarch,
2309 "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
2310 append_composite_type_field (t, "uint128", bt->builtin_uint128);
2311 append_composite_type_field (t, "v2_double",
2312 init_vector_type (bt->builtin_double, 2));
2313 append_composite_type_field (t, "v4_float",
2314 init_vector_type (bt->builtin_float, 4));
2315 append_composite_type_field (t, "v4_int32",
2316 init_vector_type (bt->builtin_int32, 4));
2317 append_composite_type_field (t, "v8_int16",
2318 init_vector_type (bt->builtin_int16, 8));
2319 append_composite_type_field (t, "v16_int8",
2320 init_vector_type (bt->builtin_int8, 16));
2321
2322 TYPE_VECTOR (t) = 1;
2323 TYPE_NAME (t) = "ppc_builtin_type_vec128";
2324 tdep->ppc_builtin_type_vec128 = t;
2325 }
2326
2327 return tdep->ppc_builtin_type_vec128;
2328 }
2329
2330 /* Return the name of register number REGNO, or the empty string if it
2331 is an anonymous register. */
2332
2333 static const char *
2334 rs6000_register_name (struct gdbarch *gdbarch, int regno)
2335 {
2336 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2337
2338 /* The upper half "registers" have names in the XML description,
2339 but we present only the low GPRs and the full 64-bit registers
2340 to the user. */
2341 if (tdep->ppc_ev0_upper_regnum >= 0
2342 && tdep->ppc_ev0_upper_regnum <= regno
2343 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2344 return "";
2345
2346 /* Hide the upper halves of the vs0~vs31 registers. */
2347 if (tdep->ppc_vsr0_regnum >= 0
2348 && tdep->ppc_vsr0_upper_regnum <= regno
2349 && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2350 return "";
2351
2352 /* Hide the upper halves of the cvs0~cvs31 registers. */
2353 if (PPC_CVSR0_UPPER_REGNUM <= regno
2354 && regno < PPC_CVSR0_UPPER_REGNUM + ppc_num_gprs)
2355 return "";
2356
2357 /* Check if the SPE pseudo registers are available. */
2358 if (IS_SPE_PSEUDOREG (tdep, regno))
2359 {
2360 static const char *const spe_regnames[] = {
2361 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2362 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2363 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2364 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2365 };
2366 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2367 }
2368
2369 /* Check if the decimal128 pseudo-registers are available. */
2370 if (IS_DFP_PSEUDOREG (tdep, regno))
2371 {
2372 static const char *const dfp128_regnames[] = {
2373 "dl0", "dl1", "dl2", "dl3",
2374 "dl4", "dl5", "dl6", "dl7",
2375 "dl8", "dl9", "dl10", "dl11",
2376 "dl12", "dl13", "dl14", "dl15"
2377 };
2378 return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2379 }
2380
2381 /* Check if this is a vX alias for a raw vrX vector register. */
2382 if (IS_V_ALIAS_PSEUDOREG (tdep, regno))
2383 {
2384 static const char *const vector_alias_regnames[] = {
2385 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
2386 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15",
2387 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",
2388 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
2389 };
2390 return vector_alias_regnames[regno - tdep->ppc_v0_alias_regnum];
2391 }
2392
2393 /* Check if this is a VSX pseudo-register. */
2394 if (IS_VSX_PSEUDOREG (tdep, regno))
2395 {
2396 static const char *const vsx_regnames[] = {
2397 "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2398 "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2399 "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2400 "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2401 "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2402 "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2403 "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2404 "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2405 "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2406 };
2407 return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2408 }
2409
2410 /* Check if the this is a Extended FP pseudo-register. */
2411 if (IS_EFP_PSEUDOREG (tdep, regno))
2412 {
2413 static const char *const efpr_regnames[] = {
2414 "f32", "f33", "f34", "f35", "f36", "f37", "f38",
2415 "f39", "f40", "f41", "f42", "f43", "f44", "f45",
2416 "f46", "f47", "f48", "f49", "f50", "f51",
2417 "f52", "f53", "f54", "f55", "f56", "f57",
2418 "f58", "f59", "f60", "f61", "f62", "f63"
2419 };
2420 return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2421 }
2422
2423 /* Check if this is a Checkpointed DFP pseudo-register. */
2424 if (IS_CDFP_PSEUDOREG (tdep, regno))
2425 {
2426 static const char *const cdfp128_regnames[] = {
2427 "cdl0", "cdl1", "cdl2", "cdl3",
2428 "cdl4", "cdl5", "cdl6", "cdl7",
2429 "cdl8", "cdl9", "cdl10", "cdl11",
2430 "cdl12", "cdl13", "cdl14", "cdl15"
2431 };
2432 return cdfp128_regnames[regno - tdep->ppc_cdl0_regnum];
2433 }
2434
2435 /* Check if this is a Checkpointed VSX pseudo-register. */
2436 if (IS_CVSX_PSEUDOREG (tdep, regno))
2437 {
2438 static const char *const cvsx_regnames[] = {
2439 "cvs0", "cvs1", "cvs2", "cvs3", "cvs4", "cvs5", "cvs6", "cvs7",
2440 "cvs8", "cvs9", "cvs10", "cvs11", "cvs12", "cvs13", "cvs14",
2441 "cvs15", "cvs16", "cvs17", "cvs18", "cvs19", "cvs20", "cvs21",
2442 "cvs22", "cvs23", "cvs24", "cvs25", "cvs26", "cvs27", "cvs28",
2443 "cvs29", "cvs30", "cvs31", "cvs32", "cvs33", "cvs34", "cvs35",
2444 "cvs36", "cvs37", "cvs38", "cvs39", "cvs40", "cvs41", "cvs42",
2445 "cvs43", "cvs44", "cvs45", "cvs46", "cvs47", "cvs48", "cvs49",
2446 "cvs50", "cvs51", "cvs52", "cvs53", "cvs54", "cvs55", "cvs56",
2447 "cvs57", "cvs58", "cvs59", "cvs60", "cvs61", "cvs62", "cvs63"
2448 };
2449 return cvsx_regnames[regno - tdep->ppc_cvsr0_regnum];
2450 }
2451
2452 /* Check if the this is a Checkpointed Extended FP pseudo-register. */
2453 if (IS_CEFP_PSEUDOREG (tdep, regno))
2454 {
2455 static const char *const cefpr_regnames[] = {
2456 "cf32", "cf33", "cf34", "cf35", "cf36", "cf37", "cf38",
2457 "cf39", "cf40", "cf41", "cf42", "cf43", "cf44", "cf45",
2458 "cf46", "cf47", "cf48", "cf49", "cf50", "cf51",
2459 "cf52", "cf53", "cf54", "cf55", "cf56", "cf57",
2460 "cf58", "cf59", "cf60", "cf61", "cf62", "cf63"
2461 };
2462 return cefpr_regnames[regno - tdep->ppc_cefpr0_regnum];
2463 }
2464
2465 return tdesc_register_name (gdbarch, regno);
2466 }
2467
2468 /* Return the GDB type object for the "standard" data type of data in
2469 register N. */
2470
2471 static struct type *
2472 rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2473 {
2474 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2475
2476 /* These are the e500 pseudo-registers. */
2477 if (IS_SPE_PSEUDOREG (tdep, regnum))
2478 return rs6000_builtin_type_vec64 (gdbarch);
2479 else if (IS_DFP_PSEUDOREG (tdep, regnum)
2480 || IS_CDFP_PSEUDOREG (tdep, regnum))
2481 /* PPC decimal128 pseudo-registers. */
2482 return builtin_type (gdbarch)->builtin_declong;
2483 else if (IS_V_ALIAS_PSEUDOREG (tdep, regnum))
2484 return gdbarch_register_type (gdbarch,
2485 tdep->ppc_vr0_regnum
2486 + (regnum
2487 - tdep->ppc_v0_alias_regnum));
2488 else if (IS_VSX_PSEUDOREG (tdep, regnum)
2489 || IS_CVSX_PSEUDOREG (tdep, regnum))
2490 /* POWER7 VSX pseudo-registers. */
2491 return rs6000_builtin_type_vec128 (gdbarch);
2492 else if (IS_EFP_PSEUDOREG (tdep, regnum)
2493 || IS_CEFP_PSEUDOREG (tdep, regnum))
2494 /* POWER7 Extended FP pseudo-registers. */
2495 return builtin_type (gdbarch)->builtin_double;
2496 else
2497 internal_error (__FILE__, __LINE__,
2498 _("rs6000_pseudo_register_type: "
2499 "called on unexpected register '%s' (%d)"),
2500 gdbarch_register_name (gdbarch, regnum), regnum);
2501 }
2502
2503 /* Check if REGNUM is a member of REGGROUP. We only need to handle
2504 the vX aliases for the vector registers by always returning false
2505 to avoid duplicated information in "info register vector/all",
2506 since the raw vrX registers will already show in these cases. For
2507 other pseudo-registers we use the default membership function. */
2508
2509 static int
2510 rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2511 struct reggroup *group)
2512 {
2513 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2514
2515 if (IS_V_ALIAS_PSEUDOREG (tdep, regnum))
2516 return 0;
2517 else
2518 return default_register_reggroup_p (gdbarch, regnum, group);
2519 }
2520
2521 /* The register format for RS/6000 floating point registers is always
2522 double, we need a conversion if the memory format is float. */
2523
2524 static int
2525 rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2526 struct type *type)
2527 {
2528 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2529
2530 return (tdep->ppc_fp0_regnum >= 0
2531 && regnum >= tdep->ppc_fp0_regnum
2532 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2533 && TYPE_CODE (type) == TYPE_CODE_FLT
2534 && TYPE_LENGTH (type)
2535 != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
2536 }
2537
2538 static int
2539 rs6000_register_to_value (struct frame_info *frame,
2540 int regnum,
2541 struct type *type,
2542 gdb_byte *to,
2543 int *optimizedp, int *unavailablep)
2544 {
2545 struct gdbarch *gdbarch = get_frame_arch (frame);
2546 gdb_byte from[PPC_MAX_REGISTER_SIZE];
2547
2548 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2549
2550 if (!get_frame_register_bytes (frame, regnum, 0,
2551 register_size (gdbarch, regnum),
2552 from, optimizedp, unavailablep))
2553 return 0;
2554
2555 target_float_convert (from, builtin_type (gdbarch)->builtin_double,
2556 to, type);
2557 *optimizedp = *unavailablep = 0;
2558 return 1;
2559 }
2560
2561 static void
2562 rs6000_value_to_register (struct frame_info *frame,
2563 int regnum,
2564 struct type *type,
2565 const gdb_byte *from)
2566 {
2567 struct gdbarch *gdbarch = get_frame_arch (frame);
2568 gdb_byte to[PPC_MAX_REGISTER_SIZE];
2569
2570 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2571
2572 target_float_convert (from, type,
2573 to, builtin_type (gdbarch)->builtin_double);
2574 put_frame_register (frame, regnum, to);
2575 }
2576
2577 /* The type of a function that moves the value of REG between CACHE
2578 or BUF --- in either direction. */
2579 typedef enum register_status (*move_ev_register_func) (struct regcache *,
2580 int, void *);
2581
2582 /* Move SPE vector register values between a 64-bit buffer and the two
2583 32-bit raw register halves in a regcache. This function handles
2584 both splitting a 64-bit value into two 32-bit halves, and joining
2585 two halves into a whole 64-bit value, depending on the function
2586 passed as the MOVE argument.
2587
2588 EV_REG must be the number of an SPE evN vector register --- a
2589 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2590 64-bit buffer.
2591
2592 Call MOVE once for each 32-bit half of that register, passing
2593 REGCACHE, the number of the raw register corresponding to that
2594 half, and the address of the appropriate half of BUFFER.
2595
2596 For example, passing 'regcache_raw_read' as the MOVE function will
2597 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2598 'regcache_raw_supply' will supply the contents of BUFFER to the
2599 appropriate pair of raw registers in REGCACHE.
2600
2601 You may need to cast away some 'const' qualifiers when passing
2602 MOVE, since this function can't tell at compile-time which of
2603 REGCACHE or BUFFER is acting as the source of the data. If C had
2604 co-variant type qualifiers, ... */
2605
2606 static enum register_status
2607 e500_move_ev_register (move_ev_register_func move,
2608 struct regcache *regcache, int ev_reg, void *buffer)
2609 {
2610 struct gdbarch *arch = regcache->arch ();
2611 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2612 int reg_index;
2613 gdb_byte *byte_buffer = (gdb_byte *) buffer;
2614 enum register_status status;
2615
2616 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2617
2618 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2619
2620 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2621 {
2622 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2623 byte_buffer);
2624 if (status == REG_VALID)
2625 status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
2626 byte_buffer + 4);
2627 }
2628 else
2629 {
2630 status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2631 if (status == REG_VALID)
2632 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2633 byte_buffer + 4);
2634 }
2635
2636 return status;
2637 }
2638
2639 static enum register_status
2640 do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
2641 {
2642 regcache->raw_write (regnum, (const gdb_byte *) buffer);
2643
2644 return REG_VALID;
2645 }
2646
2647 static enum register_status
2648 e500_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2649 int ev_reg, gdb_byte *buffer)
2650 {
2651 struct gdbarch *arch = regcache->arch ();
2652 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2653 int reg_index;
2654 enum register_status status;
2655
2656 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2657
2658 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2659
2660 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2661 {
2662 status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
2663 buffer);
2664 if (status == REG_VALID)
2665 status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index,
2666 buffer + 4);
2667 }
2668 else
2669 {
2670 status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index, buffer);
2671 if (status == REG_VALID)
2672 status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
2673 buffer + 4);
2674 }
2675
2676 return status;
2677
2678 }
2679
2680 static void
2681 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2682 int reg_nr, const gdb_byte *buffer)
2683 {
2684 e500_move_ev_register (do_regcache_raw_write, regcache,
2685 reg_nr, (void *) buffer);
2686 }
2687
2688 /* Read method for DFP pseudo-registers. */
2689 static enum register_status
2690 dfp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2691 int reg_nr, gdb_byte *buffer)
2692 {
2693 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2694 int reg_index, fp0;
2695 enum register_status status;
2696
2697 if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2698 {
2699 reg_index = reg_nr - tdep->ppc_dl0_regnum;
2700 fp0 = PPC_F0_REGNUM;
2701 }
2702 else
2703 {
2704 gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
2705
2706 reg_index = reg_nr - tdep->ppc_cdl0_regnum;
2707 fp0 = PPC_CF0_REGNUM;
2708 }
2709
2710 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2711 {
2712 /* Read two FP registers to form a whole dl register. */
2713 status = regcache->raw_read (fp0 + 2 * reg_index, buffer);
2714 if (status == REG_VALID)
2715 status = regcache->raw_read (fp0 + 2 * reg_index + 1,
2716 buffer + 8);
2717 }
2718 else
2719 {
2720 status = regcache->raw_read (fp0 + 2 * reg_index + 1, buffer);
2721 if (status == REG_VALID)
2722 status = regcache->raw_read (fp0 + 2 * reg_index, buffer + 8);
2723 }
2724
2725 return status;
2726 }
2727
2728 /* Write method for DFP pseudo-registers. */
2729 static void
2730 dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2731 int reg_nr, const gdb_byte *buffer)
2732 {
2733 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2734 int reg_index, fp0;
2735
2736 if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2737 {
2738 reg_index = reg_nr - tdep->ppc_dl0_regnum;
2739 fp0 = PPC_F0_REGNUM;
2740 }
2741 else
2742 {
2743 gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
2744
2745 reg_index = reg_nr - tdep->ppc_cdl0_regnum;
2746 fp0 = PPC_CF0_REGNUM;
2747 }
2748
2749 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2750 {
2751 /* Write each half of the dl register into a separate
2752 FP register. */
2753 regcache->raw_write (fp0 + 2 * reg_index, buffer);
2754 regcache->raw_write (fp0 + 2 * reg_index + 1, buffer + 8);
2755 }
2756 else
2757 {
2758 regcache->raw_write (fp0 + 2 * reg_index + 1, buffer);
2759 regcache->raw_write (fp0 + 2 * reg_index, buffer + 8);
2760 }
2761 }
2762
2763 /* Read method for the vX aliases for the raw vrX registers. */
2764
2765 static enum register_status
2766 v_alias_pseudo_register_read (struct gdbarch *gdbarch,
2767 readable_regcache *regcache, int reg_nr,
2768 gdb_byte *buffer)
2769 {
2770 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2771 gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
2772
2773 return regcache->raw_read (tdep->ppc_vr0_regnum
2774 + (reg_nr - tdep->ppc_v0_alias_regnum),
2775 buffer);
2776 }
2777
2778 /* Write method for the vX aliases for the raw vrX registers. */
2779
2780 static void
2781 v_alias_pseudo_register_write (struct gdbarch *gdbarch,
2782 struct regcache *regcache,
2783 int reg_nr, const gdb_byte *buffer)
2784 {
2785 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2786 gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
2787
2788 regcache->raw_write (tdep->ppc_vr0_regnum
2789 + (reg_nr - tdep->ppc_v0_alias_regnum), buffer);
2790 }
2791
2792 /* Read method for POWER7 VSX pseudo-registers. */
2793 static enum register_status
2794 vsx_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2795 int reg_nr, gdb_byte *buffer)
2796 {
2797 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2798 int reg_index, vr0, fp0, vsr0_upper;
2799 enum register_status status;
2800
2801 if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2802 {
2803 reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2804 vr0 = PPC_VR0_REGNUM;
2805 fp0 = PPC_F0_REGNUM;
2806 vsr0_upper = PPC_VSR0_UPPER_REGNUM;
2807 }
2808 else
2809 {
2810 gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
2811
2812 reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
2813 vr0 = PPC_CVR0_REGNUM;
2814 fp0 = PPC_CF0_REGNUM;
2815 vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
2816 }
2817
2818 /* Read the portion that overlaps the VMX registers. */
2819 if (reg_index > 31)
2820 status = regcache->raw_read (vr0 + reg_index - 32, buffer);
2821 else
2822 /* Read the portion that overlaps the FPR registers. */
2823 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2824 {
2825 status = regcache->raw_read (fp0 + reg_index, buffer);
2826 if (status == REG_VALID)
2827 status = regcache->raw_read (vsr0_upper + reg_index,
2828 buffer + 8);
2829 }
2830 else
2831 {
2832 status = regcache->raw_read (fp0 + reg_index, buffer + 8);
2833 if (status == REG_VALID)
2834 status = regcache->raw_read (vsr0_upper + reg_index, buffer);
2835 }
2836
2837 return status;
2838 }
2839
2840 /* Write method for POWER7 VSX pseudo-registers. */
2841 static void
2842 vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2843 int reg_nr, const gdb_byte *buffer)
2844 {
2845 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2846 int reg_index, vr0, fp0, vsr0_upper;
2847
2848 if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2849 {
2850 reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2851 vr0 = PPC_VR0_REGNUM;
2852 fp0 = PPC_F0_REGNUM;
2853 vsr0_upper = PPC_VSR0_UPPER_REGNUM;
2854 }
2855 else
2856 {
2857 gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
2858
2859 reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
2860 vr0 = PPC_CVR0_REGNUM;
2861 fp0 = PPC_CF0_REGNUM;
2862 vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
2863 }
2864
2865 /* Write the portion that overlaps the VMX registers. */
2866 if (reg_index > 31)
2867 regcache->raw_write (vr0 + reg_index - 32, buffer);
2868 else
2869 /* Write the portion that overlaps the FPR registers. */
2870 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2871 {
2872 regcache->raw_write (fp0 + reg_index, buffer);
2873 regcache->raw_write (vsr0_upper + reg_index, buffer + 8);
2874 }
2875 else
2876 {
2877 regcache->raw_write (fp0 + reg_index, buffer + 8);
2878 regcache->raw_write (vsr0_upper + reg_index, buffer);
2879 }
2880 }
2881
2882 /* Read method for POWER7 Extended FP pseudo-registers. */
2883 static enum register_status
2884 efp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2885 int reg_nr, gdb_byte *buffer)
2886 {
2887 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2888 int reg_index, vr0;
2889
2890 if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2891 {
2892 reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2893 vr0 = PPC_VR0_REGNUM;
2894 }
2895 else
2896 {
2897 gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
2898
2899 reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
2900 vr0 = PPC_CVR0_REGNUM;
2901 }
2902
2903 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
2904
2905 /* Read the portion that overlaps the VMX register. */
2906 return regcache->raw_read_part (vr0 + reg_index, offset,
2907 register_size (gdbarch, reg_nr),
2908 buffer);
2909 }
2910
2911 /* Write method for POWER7 Extended FP pseudo-registers. */
2912 static void
2913 efp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2914 int reg_nr, const gdb_byte *buffer)
2915 {
2916 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2917 int reg_index, vr0;
2918 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
2919
2920 if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2921 {
2922 reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2923 vr0 = PPC_VR0_REGNUM;
2924 }
2925 else
2926 {
2927 gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
2928
2929 reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
2930 vr0 = PPC_CVR0_REGNUM;
2931
2932 /* The call to raw_write_part fails silently if the initial read
2933 of the read-update-write sequence returns an invalid status,
2934 so we check this manually and throw an error if needed. */
2935 regcache->raw_update (vr0 + reg_index);
2936 if (regcache->get_register_status (vr0 + reg_index) != REG_VALID)
2937 error (_("Cannot write to the checkpointed EFP register, "
2938 "the corresponding vector register is unavailable."));
2939 }
2940
2941 /* Write the portion that overlaps the VMX register. */
2942 regcache->raw_write_part (vr0 + reg_index, offset,
2943 register_size (gdbarch, reg_nr), buffer);
2944 }
2945
2946 static enum register_status
2947 rs6000_pseudo_register_read (struct gdbarch *gdbarch,
2948 readable_regcache *regcache,
2949 int reg_nr, gdb_byte *buffer)
2950 {
2951 struct gdbarch *regcache_arch = regcache->arch ();
2952 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2953
2954 gdb_assert (regcache_arch == gdbarch);
2955
2956 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2957 return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2958 else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
2959 || IS_CDFP_PSEUDOREG (tdep, reg_nr))
2960 return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2961 else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
2962 return v_alias_pseudo_register_read (gdbarch, regcache, reg_nr,
2963 buffer);
2964 else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
2965 || IS_CVSX_PSEUDOREG (tdep, reg_nr))
2966 return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2967 else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
2968 || IS_CEFP_PSEUDOREG (tdep, reg_nr))
2969 return efp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2970 else
2971 internal_error (__FILE__, __LINE__,
2972 _("rs6000_pseudo_register_read: "
2973 "called on unexpected register '%s' (%d)"),
2974 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2975 }
2976
2977 static void
2978 rs6000_pseudo_register_write (struct gdbarch *gdbarch,
2979 struct regcache *regcache,
2980 int reg_nr, const gdb_byte *buffer)
2981 {
2982 struct gdbarch *regcache_arch = regcache->arch ();
2983 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2984
2985 gdb_assert (regcache_arch == gdbarch);
2986
2987 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2988 e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2989 else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
2990 || IS_CDFP_PSEUDOREG (tdep, reg_nr))
2991 dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2992 else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
2993 v_alias_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2994 else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
2995 || IS_CVSX_PSEUDOREG (tdep, reg_nr))
2996 vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2997 else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
2998 || IS_CEFP_PSEUDOREG (tdep, reg_nr))
2999 efp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
3000 else
3001 internal_error (__FILE__, __LINE__,
3002 _("rs6000_pseudo_register_write: "
3003 "called on unexpected register '%s' (%d)"),
3004 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
3005 }
3006
3007 /* Set the register mask in AX with the registers that form the DFP or
3008 checkpointed DFP pseudo-register REG_NR. */
3009
3010 static void
3011 dfp_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3012 struct agent_expr *ax, int reg_nr)
3013 {
3014 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3015 int reg_index, fp0;
3016
3017 if (IS_DFP_PSEUDOREG (tdep, reg_nr))
3018 {
3019 reg_index = reg_nr - tdep->ppc_dl0_regnum;
3020 fp0 = PPC_F0_REGNUM;
3021 }
3022 else
3023 {
3024 gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
3025
3026 reg_index = reg_nr - tdep->ppc_cdl0_regnum;
3027 fp0 = PPC_CF0_REGNUM;
3028 }
3029
3030 ax_reg_mask (ax, fp0 + 2 * reg_index);
3031 ax_reg_mask (ax, fp0 + 2 * reg_index + 1);
3032 }
3033
3034 /* Set the register mask in AX with the raw vector register that
3035 corresponds to its REG_NR alias. */
3036
3037 static void
3038 v_alias_pseudo_register_collect (struct gdbarch *gdbarch,
3039 struct agent_expr *ax, int reg_nr)
3040 {
3041 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3042 gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
3043
3044 ax_reg_mask (ax, tdep->ppc_vr0_regnum
3045 + (reg_nr - tdep->ppc_v0_alias_regnum));
3046 }
3047
3048 /* Set the register mask in AX with the registers that form the VSX or
3049 checkpointed VSX pseudo-register REG_NR. */
3050
3051 static void
3052 vsx_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3053 struct agent_expr *ax, int reg_nr)
3054 {
3055 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3056 int reg_index, vr0, fp0, vsr0_upper;
3057
3058 if (IS_VSX_PSEUDOREG (tdep, reg_nr))
3059 {
3060 reg_index = reg_nr - tdep->ppc_vsr0_regnum;
3061 vr0 = PPC_VR0_REGNUM;
3062 fp0 = PPC_F0_REGNUM;
3063 vsr0_upper = PPC_VSR0_UPPER_REGNUM;
3064 }
3065 else
3066 {
3067 gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
3068
3069 reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
3070 vr0 = PPC_CVR0_REGNUM;
3071 fp0 = PPC_CF0_REGNUM;
3072 vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
3073 }
3074
3075 if (reg_index > 31)
3076 {
3077 ax_reg_mask (ax, vr0 + reg_index - 32);
3078 }
3079 else
3080 {
3081 ax_reg_mask (ax, fp0 + reg_index);
3082 ax_reg_mask (ax, vsr0_upper + reg_index);
3083 }
3084 }
3085
3086 /* Set the register mask in AX with the register that corresponds to
3087 the EFP or checkpointed EFP pseudo-register REG_NR. */
3088
3089 static void
3090 efp_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3091 struct agent_expr *ax, int reg_nr)
3092 {
3093 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3094 int reg_index, vr0;
3095
3096 if (IS_EFP_PSEUDOREG (tdep, reg_nr))
3097 {
3098 reg_index = reg_nr - tdep->ppc_efpr0_regnum;
3099 vr0 = PPC_VR0_REGNUM;
3100 }
3101 else
3102 {
3103 gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
3104
3105 reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
3106 vr0 = PPC_CVR0_REGNUM;
3107 }
3108
3109 ax_reg_mask (ax, vr0 + reg_index);
3110 }
3111
3112 static int
3113 rs6000_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3114 struct agent_expr *ax, int reg_nr)
3115 {
3116 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3117 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
3118 {
3119 int reg_index = reg_nr - tdep->ppc_ev0_regnum;
3120 ax_reg_mask (ax, tdep->ppc_gp0_regnum + reg_index);
3121 ax_reg_mask (ax, tdep->ppc_ev0_upper_regnum + reg_index);
3122 }
3123 else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
3124 || IS_CDFP_PSEUDOREG (tdep, reg_nr))
3125 {
3126 dfp_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
3127 }
3128 else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
3129 {
3130 v_alias_pseudo_register_collect (gdbarch, ax, reg_nr);
3131 }
3132 else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
3133 || IS_CVSX_PSEUDOREG (tdep, reg_nr))
3134 {
3135 vsx_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
3136 }
3137 else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
3138 || IS_CEFP_PSEUDOREG (tdep, reg_nr))
3139 {
3140 efp_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
3141 }
3142 else
3143 internal_error (__FILE__, __LINE__,
3144 _("rs6000_pseudo_register_collect: "
3145 "called on unexpected register '%s' (%d)"),
3146 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
3147 return 0;
3148 }
3149
3150
3151 static void
3152 rs6000_gen_return_address (struct gdbarch *gdbarch,
3153 struct agent_expr *ax, struct axs_value *value,
3154 CORE_ADDR scope)
3155 {
3156 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3157 value->type = register_type (gdbarch, tdep->ppc_lr_regnum);
3158 value->kind = axs_lvalue_register;
3159 value->u.reg = tdep->ppc_lr_regnum;
3160 }
3161
3162
3163 /* Convert a DBX STABS register number to a GDB register number. */
3164 static int
3165 rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
3166 {
3167 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3168
3169 if (0 <= num && num <= 31)
3170 return tdep->ppc_gp0_regnum + num;
3171 else if (32 <= num && num <= 63)
3172 /* FIXME: jimb/2004-05-05: What should we do when the debug info
3173 specifies registers the architecture doesn't have? Our
3174 callers don't check the value we return. */
3175 return tdep->ppc_fp0_regnum + (num - 32);
3176 else if (77 <= num && num <= 108)
3177 return tdep->ppc_vr0_regnum + (num - 77);
3178 else if (1200 <= num && num < 1200 + 32)
3179 return tdep->ppc_ev0_upper_regnum + (num - 1200);
3180 else
3181 switch (num)
3182 {
3183 case 64:
3184 return tdep->ppc_mq_regnum;
3185 case 65:
3186 return tdep->ppc_lr_regnum;
3187 case 66:
3188 return tdep->ppc_ctr_regnum;
3189 case 76:
3190 return tdep->ppc_xer_regnum;
3191 case 109:
3192 return tdep->ppc_vrsave_regnum;
3193 case 110:
3194 return tdep->ppc_vrsave_regnum - 1; /* vscr */
3195 case 111:
3196 return tdep->ppc_acc_regnum;
3197 case 112:
3198 return tdep->ppc_spefscr_regnum;
3199 default:
3200 return num;
3201 }
3202 }
3203
3204
3205 /* Convert a Dwarf 2 register number to a GDB register number. */
3206 static int
3207 rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
3208 {
3209 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3210
3211 if (0 <= num && num <= 31)
3212 return tdep->ppc_gp0_regnum + num;
3213 else if (32 <= num && num <= 63)
3214 /* FIXME: jimb/2004-05-05: What should we do when the debug info
3215 specifies registers the architecture doesn't have? Our
3216 callers don't check the value we return. */
3217 return tdep->ppc_fp0_regnum + (num - 32);
3218 else if (1124 <= num && num < 1124 + 32)
3219 return tdep->ppc_vr0_regnum + (num - 1124);
3220 else if (1200 <= num && num < 1200 + 32)
3221 return tdep->ppc_ev0_upper_regnum + (num - 1200);
3222 else
3223 switch (num)
3224 {
3225 case 64:
3226 return tdep->ppc_cr_regnum;
3227 case 67:
3228 return tdep->ppc_vrsave_regnum - 1; /* vscr */
3229 case 99:
3230 return tdep->ppc_acc_regnum;
3231 case 100:
3232 return tdep->ppc_mq_regnum;
3233 case 101:
3234 return tdep->ppc_xer_regnum;
3235 case 108:
3236 return tdep->ppc_lr_regnum;
3237 case 109:
3238 return tdep->ppc_ctr_regnum;
3239 case 356:
3240 return tdep->ppc_vrsave_regnum;
3241 case 612:
3242 return tdep->ppc_spefscr_regnum;
3243 default:
3244 return num;
3245 }
3246 }
3247
3248 /* Translate a .eh_frame register to DWARF register, or adjust a
3249 .debug_frame register. */
3250
3251 static int
3252 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
3253 {
3254 /* GCC releases before 3.4 use GCC internal register numbering in
3255 .debug_frame (and .debug_info, et cetera). The numbering is
3256 different from the standard SysV numbering for everything except
3257 for GPRs and FPRs. We can not detect this problem in most cases
3258 - to get accurate debug info for variables living in lr, ctr, v0,
3259 et cetera, use a newer version of GCC. But we must detect
3260 one important case - lr is in column 65 in .debug_frame output,
3261 instead of 108.
3262
3263 GCC 3.4, and the "hammer" branch, have a related problem. They
3264 record lr register saves in .debug_frame as 108, but still record
3265 the return column as 65. We fix that up too.
3266
3267 We can do this because 65 is assigned to fpsr, and GCC never
3268 generates debug info referring to it. To add support for
3269 handwritten debug info that restores fpsr, we would need to add a
3270 producer version check to this. */
3271 if (!eh_frame_p)
3272 {
3273 if (num == 65)
3274 return 108;
3275 else
3276 return num;
3277 }
3278
3279 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
3280 internal register numbering; translate that to the standard DWARF2
3281 register numbering. */
3282 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
3283 return num;
3284 else if (68 <= num && num <= 75) /* cr0-cr8 */
3285 return num - 68 + 86;
3286 else if (77 <= num && num <= 108) /* vr0-vr31 */
3287 return num - 77 + 1124;
3288 else
3289 switch (num)
3290 {
3291 case 64: /* mq */
3292 return 100;
3293 case 65: /* lr */
3294 return 108;
3295 case 66: /* ctr */
3296 return 109;
3297 case 76: /* xer */
3298 return 101;
3299 case 109: /* vrsave */
3300 return 356;
3301 case 110: /* vscr */
3302 return 67;
3303 case 111: /* spe_acc */
3304 return 99;
3305 case 112: /* spefscr */
3306 return 612;
3307 default:
3308 return num;
3309 }
3310 }
3311 \f
3312
3313 /* Handling the various POWER/PowerPC variants. */
3314
3315 /* Information about a particular processor variant. */
3316
3317 struct variant
3318 {
3319 /* Name of this variant. */
3320 const char *name;
3321
3322 /* English description of the variant. */
3323 const char *description;
3324
3325 /* bfd_arch_info.arch corresponding to variant. */
3326 enum bfd_architecture arch;
3327
3328 /* bfd_arch_info.mach corresponding to variant. */
3329 unsigned long mach;
3330
3331 /* Target description for this variant. */
3332 struct target_desc **tdesc;
3333 };
3334
3335 static struct variant variants[] =
3336 {
3337 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
3338 bfd_mach_ppc, &tdesc_powerpc_altivec32},
3339 {"power", "POWER user-level", bfd_arch_rs6000,
3340 bfd_mach_rs6k, &tdesc_rs6000},
3341 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
3342 bfd_mach_ppc_403, &tdesc_powerpc_403},
3343 {"405", "IBM PowerPC 405", bfd_arch_powerpc,
3344 bfd_mach_ppc_405, &tdesc_powerpc_405},
3345 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
3346 bfd_mach_ppc_601, &tdesc_powerpc_601},
3347 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
3348 bfd_mach_ppc_602, &tdesc_powerpc_602},
3349 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
3350 bfd_mach_ppc_603, &tdesc_powerpc_603},
3351 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
3352 604, &tdesc_powerpc_604},
3353 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
3354 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
3355 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
3356 bfd_mach_ppc_505, &tdesc_powerpc_505},
3357 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
3358 bfd_mach_ppc_860, &tdesc_powerpc_860},
3359 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
3360 bfd_mach_ppc_750, &tdesc_powerpc_750},
3361 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
3362 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
3363 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
3364 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
3365
3366 /* 64-bit */
3367 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
3368 bfd_mach_ppc64, &tdesc_powerpc_altivec64},
3369 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
3370 bfd_mach_ppc_620, &tdesc_powerpc_64},
3371 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
3372 bfd_mach_ppc_630, &tdesc_powerpc_64},
3373 {"a35", "PowerPC A35", bfd_arch_powerpc,
3374 bfd_mach_ppc_a35, &tdesc_powerpc_64},
3375 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
3376 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
3377 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
3378 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
3379
3380 /* FIXME: I haven't checked the register sets of the following. */
3381 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
3382 bfd_mach_rs6k_rs1, &tdesc_rs6000},
3383 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
3384 bfd_mach_rs6k_rsc, &tdesc_rs6000},
3385 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
3386 bfd_mach_rs6k_rs2, &tdesc_rs6000},
3387
3388 {0, 0, (enum bfd_architecture) 0, 0, 0}
3389 };
3390
3391 /* Return the variant corresponding to architecture ARCH and machine number
3392 MACH. If no such variant exists, return null. */
3393
3394 static const struct variant *
3395 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
3396 {
3397 const struct variant *v;
3398
3399 for (v = variants; v->name; v++)
3400 if (arch == v->arch && mach == v->mach)
3401 return v;
3402
3403 return NULL;
3404 }
3405
3406 \f
3407
3408 struct rs6000_frame_cache
3409 {
3410 CORE_ADDR base;
3411 CORE_ADDR initial_sp;
3412 struct trad_frame_saved_reg *saved_regs;
3413
3414 /* Set BASE_P to true if this frame cache is properly initialized.
3415 Otherwise set to false because some registers or memory cannot
3416 collected. */
3417 int base_p;
3418 /* Cache PC for building unavailable frame. */
3419 CORE_ADDR pc;
3420 };
3421
3422 static struct rs6000_frame_cache *
3423 rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
3424 {
3425 struct rs6000_frame_cache *cache;
3426 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3427 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3428 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3429 struct rs6000_framedata fdata;
3430 int wordsize = tdep->wordsize;
3431 CORE_ADDR func = 0, pc = 0;
3432
3433 if ((*this_cache) != NULL)
3434 return (struct rs6000_frame_cache *) (*this_cache);
3435 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3436 (*this_cache) = cache;
3437 cache->pc = 0;
3438 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3439
3440 try
3441 {
3442 func = get_frame_func (this_frame);
3443 cache->pc = func;
3444 pc = get_frame_pc (this_frame);
3445 skip_prologue (gdbarch, func, pc, &fdata);
3446
3447 /* Figure out the parent's stack pointer. */
3448
3449 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3450 address of the current frame. Things might be easier if the
3451 ->frame pointed to the outer-most address of the frame. In
3452 the mean time, the address of the prev frame is used as the
3453 base address of this frame. */
3454 cache->base = get_frame_register_unsigned
3455 (this_frame, gdbarch_sp_regnum (gdbarch));
3456 }
3457 catch (const gdb_exception_error &ex)
3458 {
3459 if (ex.error != NOT_AVAILABLE_ERROR)
3460 throw;
3461 return (struct rs6000_frame_cache *) (*this_cache);
3462 }
3463
3464 /* If the function appears to be frameless, check a couple of likely
3465 indicators that we have simply failed to find the frame setup.
3466 Two common cases of this are missing symbols (i.e.
3467 get_frame_func returns the wrong address or 0), and assembly
3468 stubs which have a fast exit path but set up a frame on the slow
3469 path.
3470
3471 If the LR appears to return to this function, then presume that
3472 we have an ABI compliant frame that we failed to find. */
3473 if (fdata.frameless && fdata.lr_offset == 0)
3474 {
3475 CORE_ADDR saved_lr;
3476 int make_frame = 0;
3477
3478 saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3479 if (func == 0 && saved_lr == pc)
3480 make_frame = 1;
3481 else if (func != 0)
3482 {
3483 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3484 if (func == saved_func)
3485 make_frame = 1;
3486 }
3487
3488 if (make_frame)
3489 {
3490 fdata.frameless = 0;
3491 fdata.lr_offset = tdep->lr_frame_offset;
3492 }
3493 }
3494
3495 if (!fdata.frameless)
3496 {
3497 /* Frameless really means stackless. */
3498 ULONGEST backchain;
3499
3500 if (safe_read_memory_unsigned_integer (cache->base, wordsize,
3501 byte_order, &backchain))
3502 cache->base = (CORE_ADDR) backchain;
3503 }
3504
3505 trad_frame_set_value (cache->saved_regs,
3506 gdbarch_sp_regnum (gdbarch), cache->base);
3507
3508 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3509 All fpr's from saved_fpr to fp31 are saved. */
3510
3511 if (fdata.saved_fpr >= 0)
3512 {
3513 int i;
3514 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3515
3516 /* If skip_prologue says floating-point registers were saved,
3517 but the current architecture has no floating-point registers,
3518 then that's strange. But we have no indices to even record
3519 the addresses under, so we just ignore it. */
3520 if (ppc_floating_point_unit_p (gdbarch))
3521 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3522 {
3523 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3524 fpr_addr += 8;
3525 }
3526 }
3527
3528 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3529 All gpr's from saved_gpr to gpr31 are saved (except during the
3530 prologue). */
3531
3532 if (fdata.saved_gpr >= 0)
3533 {
3534 int i;
3535 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3536 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3537 {
3538 if (fdata.gpr_mask & (1U << i))
3539 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3540 gpr_addr += wordsize;
3541 }
3542 }
3543
3544 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3545 All vr's from saved_vr to vr31 are saved. */
3546 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3547 {
3548 if (fdata.saved_vr >= 0)
3549 {
3550 int i;
3551 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3552 for (i = fdata.saved_vr; i < 32; i++)
3553 {
3554 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3555 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3556 }
3557 }
3558 }
3559
3560 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3561 All vr's from saved_ev to ev31 are saved. ????? */
3562 if (tdep->ppc_ev0_regnum != -1)
3563 {
3564 if (fdata.saved_ev >= 0)
3565 {
3566 int i;
3567 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3568 CORE_ADDR off = (byte_order == BFD_ENDIAN_BIG ? 4 : 0);
3569
3570 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3571 {
3572 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3573 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + off;
3574 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3575 }
3576 }
3577 }
3578
3579 /* If != 0, fdata.cr_offset is the offset from the frame that
3580 holds the CR. */
3581 if (fdata.cr_offset != 0)
3582 cache->saved_regs[tdep->ppc_cr_regnum].addr
3583 = cache->base + fdata.cr_offset;
3584
3585 /* If != 0, fdata.lr_offset is the offset from the frame that
3586 holds the LR. */
3587 if (fdata.lr_offset != 0)
3588 cache->saved_regs[tdep->ppc_lr_regnum].addr
3589 = cache->base + fdata.lr_offset;
3590 else if (fdata.lr_register != -1)
3591 cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register;
3592 /* The PC is found in the link register. */
3593 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3594 cache->saved_regs[tdep->ppc_lr_regnum];
3595
3596 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3597 holds the VRSAVE. */
3598 if (fdata.vrsave_offset != 0)
3599 cache->saved_regs[tdep->ppc_vrsave_regnum].addr
3600 = cache->base + fdata.vrsave_offset;
3601
3602 if (fdata.alloca_reg < 0)
3603 /* If no alloca register used, then fi->frame is the value of the
3604 %sp for this frame, and it is good enough. */
3605 cache->initial_sp
3606 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3607 else
3608 cache->initial_sp
3609 = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
3610
3611 cache->base_p = 1;
3612 return cache;
3613 }
3614
3615 static void
3616 rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
3617 struct frame_id *this_id)
3618 {
3619 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3620 this_cache);
3621
3622 if (!info->base_p)
3623 {
3624 (*this_id) = frame_id_build_unavailable_stack (info->pc);
3625 return;
3626 }
3627
3628 /* This marks the outermost frame. */
3629 if (info->base == 0)
3630 return;
3631
3632 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3633 }
3634
3635 static struct value *
3636 rs6000_frame_prev_register (struct frame_info *this_frame,
3637 void **this_cache, int regnum)
3638 {
3639 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3640 this_cache);
3641 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3642 }
3643
3644 static const struct frame_unwind rs6000_frame_unwind =
3645 {
3646 NORMAL_FRAME,
3647 default_frame_unwind_stop_reason,
3648 rs6000_frame_this_id,
3649 rs6000_frame_prev_register,
3650 NULL,
3651 default_frame_sniffer
3652 };
3653
3654 /* Allocate and initialize a frame cache for an epilogue frame.
3655 SP is restored and prev-PC is stored in LR. */
3656
3657 static struct rs6000_frame_cache *
3658 rs6000_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
3659 {
3660 struct rs6000_frame_cache *cache;
3661 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3662 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3663
3664 if (*this_cache)
3665 return (struct rs6000_frame_cache *) *this_cache;
3666
3667 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3668 (*this_cache) = cache;
3669 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3670
3671 try
3672 {
3673 /* At this point the stack looks as if we just entered the
3674 function, and the return address is stored in LR. */
3675 CORE_ADDR sp, lr;
3676
3677 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3678 lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3679
3680 cache->base = sp;
3681 cache->initial_sp = sp;
3682
3683 trad_frame_set_value (cache->saved_regs,
3684 gdbarch_pc_regnum (gdbarch), lr);
3685 }
3686 catch (const gdb_exception_error &ex)
3687 {
3688 if (ex.error != NOT_AVAILABLE_ERROR)
3689 throw;
3690 }
3691
3692 return cache;
3693 }
3694
3695 /* Implementation of frame_unwind.this_id, as defined in frame_unwind.h.
3696 Return the frame ID of an epilogue frame. */
3697
3698 static void
3699 rs6000_epilogue_frame_this_id (struct frame_info *this_frame,
3700 void **this_cache, struct frame_id *this_id)
3701 {
3702 CORE_ADDR pc;
3703 struct rs6000_frame_cache *info =
3704 rs6000_epilogue_frame_cache (this_frame, this_cache);
3705
3706 pc = get_frame_func (this_frame);
3707 if (info->base == 0)
3708 (*this_id) = frame_id_build_unavailable_stack (pc);
3709 else
3710 (*this_id) = frame_id_build (info->base, pc);
3711 }
3712
3713 /* Implementation of frame_unwind.prev_register, as defined in frame_unwind.h.
3714 Return the register value of REGNUM in previous frame. */
3715
3716 static struct value *
3717 rs6000_epilogue_frame_prev_register (struct frame_info *this_frame,
3718 void **this_cache, int regnum)
3719 {
3720 struct rs6000_frame_cache *info =
3721 rs6000_epilogue_frame_cache (this_frame, this_cache);
3722 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3723 }
3724
3725 /* Implementation of frame_unwind.sniffer, as defined in frame_unwind.h.
3726 Check whether this an epilogue frame. */
3727
3728 static int
3729 rs6000_epilogue_frame_sniffer (const struct frame_unwind *self,
3730 struct frame_info *this_frame,
3731 void **this_prologue_cache)
3732 {
3733 if (frame_relative_level (this_frame) == 0)
3734 return rs6000_in_function_epilogue_frame_p (this_frame,
3735 get_frame_arch (this_frame),
3736 get_frame_pc (this_frame));
3737 else
3738 return 0;
3739 }
3740
3741 /* Frame unwinder for epilogue frame. This is required for reverse step-over
3742 a function without debug information. */
3743
3744 static const struct frame_unwind rs6000_epilogue_frame_unwind =
3745 {
3746 NORMAL_FRAME,
3747 default_frame_unwind_stop_reason,
3748 rs6000_epilogue_frame_this_id, rs6000_epilogue_frame_prev_register,
3749 NULL,
3750 rs6000_epilogue_frame_sniffer
3751 };
3752 \f
3753
3754 static CORE_ADDR
3755 rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
3756 {
3757 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3758 this_cache);
3759 return info->initial_sp;
3760 }
3761
3762 static const struct frame_base rs6000_frame_base = {
3763 &rs6000_frame_unwind,
3764 rs6000_frame_base_address,
3765 rs6000_frame_base_address,
3766 rs6000_frame_base_address
3767 };
3768
3769 static const struct frame_base *
3770 rs6000_frame_base_sniffer (struct frame_info *this_frame)
3771 {
3772 return &rs6000_frame_base;
3773 }
3774
3775 /* DWARF-2 frame support. Used to handle the detection of
3776 clobbered registers during function calls. */
3777
3778 static void
3779 ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3780 struct dwarf2_frame_state_reg *reg,
3781 struct frame_info *this_frame)
3782 {
3783 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3784
3785 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3786 non-volatile registers. We will use the same code for both. */
3787
3788 /* Call-saved GP registers. */
3789 if ((regnum >= tdep->ppc_gp0_regnum + 14
3790 && regnum <= tdep->ppc_gp0_regnum + 31)
3791 || (regnum == tdep->ppc_gp0_regnum + 1))
3792 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3793
3794 /* Call-clobbered GP registers. */
3795 if ((regnum >= tdep->ppc_gp0_regnum + 3
3796 && regnum <= tdep->ppc_gp0_regnum + 12)
3797 || (regnum == tdep->ppc_gp0_regnum))
3798 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3799
3800 /* Deal with FP registers, if supported. */
3801 if (tdep->ppc_fp0_regnum >= 0)
3802 {
3803 /* Call-saved FP registers. */
3804 if ((regnum >= tdep->ppc_fp0_regnum + 14
3805 && regnum <= tdep->ppc_fp0_regnum + 31))
3806 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3807
3808 /* Call-clobbered FP registers. */
3809 if ((regnum >= tdep->ppc_fp0_regnum
3810 && regnum <= tdep->ppc_fp0_regnum + 13))
3811 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3812 }
3813
3814 /* Deal with ALTIVEC registers, if supported. */
3815 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3816 {
3817 /* Call-saved Altivec registers. */
3818 if ((regnum >= tdep->ppc_vr0_regnum + 20
3819 && regnum <= tdep->ppc_vr0_regnum + 31)
3820 || regnum == tdep->ppc_vrsave_regnum)
3821 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3822
3823 /* Call-clobbered Altivec registers. */
3824 if ((regnum >= tdep->ppc_vr0_regnum
3825 && regnum <= tdep->ppc_vr0_regnum + 19))
3826 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3827 }
3828
3829 /* Handle PC register and Stack Pointer correctly. */
3830 if (regnum == gdbarch_pc_regnum (gdbarch))
3831 reg->how = DWARF2_FRAME_REG_RA;
3832 else if (regnum == gdbarch_sp_regnum (gdbarch))
3833 reg->how = DWARF2_FRAME_REG_CFA;
3834 }
3835
3836
3837 /* Return true if a .gnu_attributes section exists in BFD and it
3838 indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
3839 section exists in BFD and it indicates that SPE extensions are in
3840 use. Check the .gnu.attributes section first, as the binary might be
3841 compiled for SPE, but not actually using SPE instructions. */
3842
3843 static int
3844 bfd_uses_spe_extensions (bfd *abfd)
3845 {
3846 asection *sect;
3847 gdb_byte *contents = NULL;
3848 bfd_size_type size;
3849 gdb_byte *ptr;
3850 int success = 0;
3851
3852 if (!abfd)
3853 return 0;
3854
3855 #ifdef HAVE_ELF
3856 /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
3857 could be using the SPE vector abi without actually using any spe
3858 bits whatsoever. But it's close enough for now. */
3859 int vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
3860 Tag_GNU_Power_ABI_Vector);
3861 if (vector_abi == 3)
3862 return 1;
3863 #endif
3864
3865 sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
3866 if (!sect)
3867 return 0;
3868
3869 size = bfd_section_size (sect);
3870 contents = (gdb_byte *) xmalloc (size);
3871 if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
3872 {
3873 xfree (contents);
3874 return 0;
3875 }
3876
3877 /* Parse the .PPC.EMB.apuinfo section. The layout is as follows:
3878
3879 struct {
3880 uint32 name_len;
3881 uint32 data_len;
3882 uint32 type;
3883 char name[name_len rounded up to 4-byte alignment];
3884 char data[data_len];
3885 };
3886
3887 Technically, there's only supposed to be one such structure in a
3888 given apuinfo section, but the linker is not always vigilant about
3889 merging apuinfo sections from input files. Just go ahead and parse
3890 them all, exiting early when we discover the binary uses SPE
3891 insns.
3892
3893 It's not specified in what endianness the information in this
3894 section is stored. Assume that it's the endianness of the BFD. */
3895 ptr = contents;
3896 while (1)
3897 {
3898 unsigned int name_len;
3899 unsigned int data_len;
3900 unsigned int type;
3901
3902 /* If we can't read the first three fields, we're done. */
3903 if (size < 12)
3904 break;
3905
3906 name_len = bfd_get_32 (abfd, ptr);
3907 name_len = (name_len + 3) & ~3U; /* Round to 4 bytes. */
3908 data_len = bfd_get_32 (abfd, ptr + 4);
3909 type = bfd_get_32 (abfd, ptr + 8);
3910 ptr += 12;
3911
3912 /* The name must be "APUinfo\0". */
3913 if (name_len != 8
3914 && strcmp ((const char *) ptr, "APUinfo") != 0)
3915 break;
3916 ptr += name_len;
3917
3918 /* The type must be 2. */
3919 if (type != 2)
3920 break;
3921
3922 /* The data is stored as a series of uint32. The upper half of
3923 each uint32 indicates the particular APU used and the lower
3924 half indicates the revision of that APU. We just care about
3925 the upper half. */
3926
3927 /* Not 4-byte quantities. */
3928 if (data_len & 3U)
3929 break;
3930
3931 while (data_len)
3932 {
3933 unsigned int apuinfo = bfd_get_32 (abfd, ptr);
3934 unsigned int apu = apuinfo >> 16;
3935 ptr += 4;
3936 data_len -= 4;
3937
3938 /* The SPE APU is 0x100; the SPEFP APU is 0x101. Accept
3939 either. */
3940 if (apu == 0x100 || apu == 0x101)
3941 {
3942 success = 1;
3943 data_len = 0;
3944 }
3945 }
3946
3947 if (success)
3948 break;
3949 }
3950
3951 xfree (contents);
3952 return success;
3953 }
3954
3955 /* These are macros for parsing instruction fields (I.1.6.28) */
3956
3957 #define PPC_FIELD(value, from, len) \
3958 (((value) >> (32 - (from) - (len))) & ((1 << (len)) - 1))
3959 #define PPC_SEXT(v, bs) \
3960 ((((CORE_ADDR) (v) & (((CORE_ADDR) 1 << (bs)) - 1)) \
3961 ^ ((CORE_ADDR) 1 << ((bs) - 1))) \
3962 - ((CORE_ADDR) 1 << ((bs) - 1)))
3963 #define PPC_OP6(insn) PPC_FIELD (insn, 0, 6)
3964 #define PPC_EXTOP(insn) PPC_FIELD (insn, 21, 10)
3965 #define PPC_RT(insn) PPC_FIELD (insn, 6, 5)
3966 #define PPC_RS(insn) PPC_FIELD (insn, 6, 5)
3967 #define PPC_RA(insn) PPC_FIELD (insn, 11, 5)
3968 #define PPC_RB(insn) PPC_FIELD (insn, 16, 5)
3969 #define PPC_NB(insn) PPC_FIELD (insn, 16, 5)
3970 #define PPC_VRT(insn) PPC_FIELD (insn, 6, 5)
3971 #define PPC_FRT(insn) PPC_FIELD (insn, 6, 5)
3972 #define PPC_SPR(insn) (PPC_FIELD (insn, 11, 5) \
3973 | (PPC_FIELD (insn, 16, 5) << 5))
3974 #define PPC_BO(insn) PPC_FIELD (insn, 6, 5)
3975 #define PPC_T(insn) PPC_FIELD (insn, 6, 5)
3976 #define PPC_D(insn) PPC_SEXT (PPC_FIELD (insn, 16, 16), 16)
3977 #define PPC_DS(insn) PPC_SEXT (PPC_FIELD (insn, 16, 14), 14)
3978 #define PPC_DQ(insn) PPC_SEXT (PPC_FIELD (insn, 16, 12), 12)
3979 #define PPC_BIT(insn,n) ((insn & (1 << (31 - (n)))) ? 1 : 0)
3980 #define PPC_OE(insn) PPC_BIT (insn, 21)
3981 #define PPC_RC(insn) PPC_BIT (insn, 31)
3982 #define PPC_Rc(insn) PPC_BIT (insn, 21)
3983 #define PPC_LK(insn) PPC_BIT (insn, 31)
3984 #define PPC_TX(insn) PPC_BIT (insn, 31)
3985 #define PPC_LEV(insn) PPC_FIELD (insn, 20, 7)
3986
3987 #define PPC_XT(insn) ((PPC_TX (insn) << 5) | PPC_T (insn))
3988 #define PPC_XER_NB(xer) (xer & 0x7f)
3989
3990 /* Record Vector-Scalar Registers.
3991 For VSR less than 32, it's represented by an FPR and an VSR-upper register.
3992 Otherwise, it's just a VR register. Record them accordingly. */
3993
3994 static int
3995 ppc_record_vsr (struct regcache *regcache, struct gdbarch_tdep *tdep, int vsr)
3996 {
3997 if (vsr < 0 || vsr >= 64)
3998 return -1;
3999
4000 if (vsr >= 32)
4001 {
4002 if (tdep->ppc_vr0_regnum >= 0)
4003 record_full_arch_list_add_reg (regcache, tdep->ppc_vr0_regnum + vsr - 32);
4004 }
4005 else
4006 {
4007 if (tdep->ppc_fp0_regnum >= 0)
4008 record_full_arch_list_add_reg (regcache, tdep->ppc_fp0_regnum + vsr);
4009 if (tdep->ppc_vsr0_upper_regnum >= 0)
4010 record_full_arch_list_add_reg (regcache,
4011 tdep->ppc_vsr0_upper_regnum + vsr);
4012 }
4013
4014 return 0;
4015 }
4016
4017 /* Parse and record instructions primary opcode-4 at ADDR.
4018 Return 0 if successful. */
4019
4020 static int
4021 ppc_process_record_op4 (struct gdbarch *gdbarch, struct regcache *regcache,
4022 CORE_ADDR addr, uint32_t insn)
4023 {
4024 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4025 int ext = PPC_FIELD (insn, 21, 11);
4026 int vra = PPC_FIELD (insn, 11, 5);
4027
4028 switch (ext & 0x3f)
4029 {
4030 case 32: /* Vector Multiply-High-Add Signed Halfword Saturate */
4031 case 33: /* Vector Multiply-High-Round-Add Signed Halfword Saturate */
4032 case 39: /* Vector Multiply-Sum Unsigned Halfword Saturate */
4033 case 41: /* Vector Multiply-Sum Signed Halfword Saturate */
4034 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4035 /* FALL-THROUGH */
4036 case 42: /* Vector Select */
4037 case 43: /* Vector Permute */
4038 case 59: /* Vector Permute Right-indexed */
4039 case 44: /* Vector Shift Left Double by Octet Immediate */
4040 case 45: /* Vector Permute and Exclusive-OR */
4041 case 60: /* Vector Add Extended Unsigned Quadword Modulo */
4042 case 61: /* Vector Add Extended & write Carry Unsigned Quadword */
4043 case 62: /* Vector Subtract Extended Unsigned Quadword Modulo */
4044 case 63: /* Vector Subtract Extended & write Carry Unsigned Quadword */
4045 case 34: /* Vector Multiply-Low-Add Unsigned Halfword Modulo */
4046 case 35: /* Vector Multiply-Sum Unsigned Doubleword Modulo */
4047 case 36: /* Vector Multiply-Sum Unsigned Byte Modulo */
4048 case 37: /* Vector Multiply-Sum Mixed Byte Modulo */
4049 case 38: /* Vector Multiply-Sum Unsigned Halfword Modulo */
4050 case 40: /* Vector Multiply-Sum Signed Halfword Modulo */
4051 case 46: /* Vector Multiply-Add Single-Precision */
4052 case 47: /* Vector Negative Multiply-Subtract Single-Precision */
4053 record_full_arch_list_add_reg (regcache,
4054 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4055 return 0;
4056
4057 case 48: /* Multiply-Add High Doubleword */
4058 case 49: /* Multiply-Add High Doubleword Unsigned */
4059 case 51: /* Multiply-Add Low Doubleword */
4060 record_full_arch_list_add_reg (regcache,
4061 tdep->ppc_gp0_regnum + PPC_RT (insn));
4062 return 0;
4063 }
4064
4065 switch ((ext & 0x1ff))
4066 {
4067 case 385:
4068 if (vra != 0 /* Decimal Convert To Signed Quadword */
4069 && vra != 2 /* Decimal Convert From Signed Quadword */
4070 && vra != 4 /* Decimal Convert To Zoned */
4071 && vra != 5 /* Decimal Convert To National */
4072 && vra != 6 /* Decimal Convert From Zoned */
4073 && vra != 7 /* Decimal Convert From National */
4074 && vra != 31) /* Decimal Set Sign */
4075 break;
4076 /* Fall through. */
4077 /* 5.16 Decimal Integer Arithmetic Instructions */
4078 case 1: /* Decimal Add Modulo */
4079 case 65: /* Decimal Subtract Modulo */
4080
4081 case 193: /* Decimal Shift */
4082 case 129: /* Decimal Unsigned Shift */
4083 case 449: /* Decimal Shift and Round */
4084
4085 case 257: /* Decimal Truncate */
4086 case 321: /* Decimal Unsigned Truncate */
4087
4088 /* Bit-21 should be set. */
4089 if (!PPC_BIT (insn, 21))
4090 break;
4091
4092 record_full_arch_list_add_reg (regcache,
4093 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4094 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4095 return 0;
4096 }
4097
4098 /* Bit-21 is used for RC */
4099 switch (ext & 0x3ff)
4100 {
4101 case 6: /* Vector Compare Equal To Unsigned Byte */
4102 case 70: /* Vector Compare Equal To Unsigned Halfword */
4103 case 134: /* Vector Compare Equal To Unsigned Word */
4104 case 199: /* Vector Compare Equal To Unsigned Doubleword */
4105 case 774: /* Vector Compare Greater Than Signed Byte */
4106 case 838: /* Vector Compare Greater Than Signed Halfword */
4107 case 902: /* Vector Compare Greater Than Signed Word */
4108 case 967: /* Vector Compare Greater Than Signed Doubleword */
4109 case 518: /* Vector Compare Greater Than Unsigned Byte */
4110 case 646: /* Vector Compare Greater Than Unsigned Word */
4111 case 582: /* Vector Compare Greater Than Unsigned Halfword */
4112 case 711: /* Vector Compare Greater Than Unsigned Doubleword */
4113 case 966: /* Vector Compare Bounds Single-Precision */
4114 case 198: /* Vector Compare Equal To Single-Precision */
4115 case 454: /* Vector Compare Greater Than or Equal To Single-Precision */
4116 case 710: /* Vector Compare Greater Than Single-Precision */
4117 case 7: /* Vector Compare Not Equal Byte */
4118 case 71: /* Vector Compare Not Equal Halfword */
4119 case 135: /* Vector Compare Not Equal Word */
4120 case 263: /* Vector Compare Not Equal or Zero Byte */
4121 case 327: /* Vector Compare Not Equal or Zero Halfword */
4122 case 391: /* Vector Compare Not Equal or Zero Word */
4123 if (PPC_Rc (insn))
4124 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4125 record_full_arch_list_add_reg (regcache,
4126 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4127 return 0;
4128 }
4129
4130 if (ext == 1538)
4131 {
4132 switch (vra)
4133 {
4134 case 0: /* Vector Count Leading Zero Least-Significant Bits
4135 Byte */
4136 case 1: /* Vector Count Trailing Zero Least-Significant Bits
4137 Byte */
4138 record_full_arch_list_add_reg (regcache,
4139 tdep->ppc_gp0_regnum + PPC_RT (insn));
4140 return 0;
4141
4142 case 6: /* Vector Negate Word */
4143 case 7: /* Vector Negate Doubleword */
4144 case 8: /* Vector Parity Byte Word */
4145 case 9: /* Vector Parity Byte Doubleword */
4146 case 10: /* Vector Parity Byte Quadword */
4147 case 16: /* Vector Extend Sign Byte To Word */
4148 case 17: /* Vector Extend Sign Halfword To Word */
4149 case 24: /* Vector Extend Sign Byte To Doubleword */
4150 case 25: /* Vector Extend Sign Halfword To Doubleword */
4151 case 26: /* Vector Extend Sign Word To Doubleword */
4152 case 28: /* Vector Count Trailing Zeros Byte */
4153 case 29: /* Vector Count Trailing Zeros Halfword */
4154 case 30: /* Vector Count Trailing Zeros Word */
4155 case 31: /* Vector Count Trailing Zeros Doubleword */
4156 record_full_arch_list_add_reg (regcache,
4157 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4158 return 0;
4159 }
4160 }
4161
4162 switch (ext)
4163 {
4164 case 142: /* Vector Pack Unsigned Halfword Unsigned Saturate */
4165 case 206: /* Vector Pack Unsigned Word Unsigned Saturate */
4166 case 270: /* Vector Pack Signed Halfword Unsigned Saturate */
4167 case 334: /* Vector Pack Signed Word Unsigned Saturate */
4168 case 398: /* Vector Pack Signed Halfword Signed Saturate */
4169 case 462: /* Vector Pack Signed Word Signed Saturate */
4170 case 1230: /* Vector Pack Unsigned Doubleword Unsigned Saturate */
4171 case 1358: /* Vector Pack Signed Doubleword Unsigned Saturate */
4172 case 1486: /* Vector Pack Signed Doubleword Signed Saturate */
4173 case 512: /* Vector Add Unsigned Byte Saturate */
4174 case 576: /* Vector Add Unsigned Halfword Saturate */
4175 case 640: /* Vector Add Unsigned Word Saturate */
4176 case 768: /* Vector Add Signed Byte Saturate */
4177 case 832: /* Vector Add Signed Halfword Saturate */
4178 case 896: /* Vector Add Signed Word Saturate */
4179 case 1536: /* Vector Subtract Unsigned Byte Saturate */
4180 case 1600: /* Vector Subtract Unsigned Halfword Saturate */
4181 case 1664: /* Vector Subtract Unsigned Word Saturate */
4182 case 1792: /* Vector Subtract Signed Byte Saturate */
4183 case 1856: /* Vector Subtract Signed Halfword Saturate */
4184 case 1920: /* Vector Subtract Signed Word Saturate */
4185
4186 case 1544: /* Vector Sum across Quarter Unsigned Byte Saturate */
4187 case 1800: /* Vector Sum across Quarter Signed Byte Saturate */
4188 case 1608: /* Vector Sum across Quarter Signed Halfword Saturate */
4189 case 1672: /* Vector Sum across Half Signed Word Saturate */
4190 case 1928: /* Vector Sum across Signed Word Saturate */
4191 case 970: /* Vector Convert To Signed Fixed-Point Word Saturate */
4192 case 906: /* Vector Convert To Unsigned Fixed-Point Word Saturate */
4193 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4194 /* FALL-THROUGH */
4195 case 12: /* Vector Merge High Byte */
4196 case 14: /* Vector Pack Unsigned Halfword Unsigned Modulo */
4197 case 76: /* Vector Merge High Halfword */
4198 case 78: /* Vector Pack Unsigned Word Unsigned Modulo */
4199 case 140: /* Vector Merge High Word */
4200 case 268: /* Vector Merge Low Byte */
4201 case 332: /* Vector Merge Low Halfword */
4202 case 396: /* Vector Merge Low Word */
4203 case 526: /* Vector Unpack High Signed Byte */
4204 case 590: /* Vector Unpack High Signed Halfword */
4205 case 654: /* Vector Unpack Low Signed Byte */
4206 case 718: /* Vector Unpack Low Signed Halfword */
4207 case 782: /* Vector Pack Pixel */
4208 case 846: /* Vector Unpack High Pixel */
4209 case 974: /* Vector Unpack Low Pixel */
4210 case 1102: /* Vector Pack Unsigned Doubleword Unsigned Modulo */
4211 case 1614: /* Vector Unpack High Signed Word */
4212 case 1676: /* Vector Merge Odd Word */
4213 case 1742: /* Vector Unpack Low Signed Word */
4214 case 1932: /* Vector Merge Even Word */
4215 case 524: /* Vector Splat Byte */
4216 case 588: /* Vector Splat Halfword */
4217 case 652: /* Vector Splat Word */
4218 case 780: /* Vector Splat Immediate Signed Byte */
4219 case 844: /* Vector Splat Immediate Signed Halfword */
4220 case 908: /* Vector Splat Immediate Signed Word */
4221 case 452: /* Vector Shift Left */
4222 case 708: /* Vector Shift Right */
4223 case 1036: /* Vector Shift Left by Octet */
4224 case 1100: /* Vector Shift Right by Octet */
4225 case 0: /* Vector Add Unsigned Byte Modulo */
4226 case 64: /* Vector Add Unsigned Halfword Modulo */
4227 case 128: /* Vector Add Unsigned Word Modulo */
4228 case 192: /* Vector Add Unsigned Doubleword Modulo */
4229 case 256: /* Vector Add Unsigned Quadword Modulo */
4230 case 320: /* Vector Add & write Carry Unsigned Quadword */
4231 case 384: /* Vector Add and Write Carry-Out Unsigned Word */
4232 case 8: /* Vector Multiply Odd Unsigned Byte */
4233 case 72: /* Vector Multiply Odd Unsigned Halfword */
4234 case 136: /* Vector Multiply Odd Unsigned Word */
4235 case 264: /* Vector Multiply Odd Signed Byte */
4236 case 328: /* Vector Multiply Odd Signed Halfword */
4237 case 392: /* Vector Multiply Odd Signed Word */
4238 case 520: /* Vector Multiply Even Unsigned Byte */
4239 case 584: /* Vector Multiply Even Unsigned Halfword */
4240 case 648: /* Vector Multiply Even Unsigned Word */
4241 case 776: /* Vector Multiply Even Signed Byte */
4242 case 840: /* Vector Multiply Even Signed Halfword */
4243 case 904: /* Vector Multiply Even Signed Word */
4244 case 137: /* Vector Multiply Unsigned Word Modulo */
4245 case 1024: /* Vector Subtract Unsigned Byte Modulo */
4246 case 1088: /* Vector Subtract Unsigned Halfword Modulo */
4247 case 1152: /* Vector Subtract Unsigned Word Modulo */
4248 case 1216: /* Vector Subtract Unsigned Doubleword Modulo */
4249 case 1280: /* Vector Subtract Unsigned Quadword Modulo */
4250 case 1344: /* Vector Subtract & write Carry Unsigned Quadword */
4251 case 1408: /* Vector Subtract and Write Carry-Out Unsigned Word */
4252 case 1282: /* Vector Average Signed Byte */
4253 case 1346: /* Vector Average Signed Halfword */
4254 case 1410: /* Vector Average Signed Word */
4255 case 1026: /* Vector Average Unsigned Byte */
4256 case 1090: /* Vector Average Unsigned Halfword */
4257 case 1154: /* Vector Average Unsigned Word */
4258 case 258: /* Vector Maximum Signed Byte */
4259 case 322: /* Vector Maximum Signed Halfword */
4260 case 386: /* Vector Maximum Signed Word */
4261 case 450: /* Vector Maximum Signed Doubleword */
4262 case 2: /* Vector Maximum Unsigned Byte */
4263 case 66: /* Vector Maximum Unsigned Halfword */
4264 case 130: /* Vector Maximum Unsigned Word */
4265 case 194: /* Vector Maximum Unsigned Doubleword */
4266 case 770: /* Vector Minimum Signed Byte */
4267 case 834: /* Vector Minimum Signed Halfword */
4268 case 898: /* Vector Minimum Signed Word */
4269 case 962: /* Vector Minimum Signed Doubleword */
4270 case 514: /* Vector Minimum Unsigned Byte */
4271 case 578: /* Vector Minimum Unsigned Halfword */
4272 case 642: /* Vector Minimum Unsigned Word */
4273 case 706: /* Vector Minimum Unsigned Doubleword */
4274 case 1028: /* Vector Logical AND */
4275 case 1668: /* Vector Logical Equivalent */
4276 case 1092: /* Vector Logical AND with Complement */
4277 case 1412: /* Vector Logical NAND */
4278 case 1348: /* Vector Logical OR with Complement */
4279 case 1156: /* Vector Logical OR */
4280 case 1284: /* Vector Logical NOR */
4281 case 1220: /* Vector Logical XOR */
4282 case 4: /* Vector Rotate Left Byte */
4283 case 132: /* Vector Rotate Left Word VX-form */
4284 case 68: /* Vector Rotate Left Halfword */
4285 case 196: /* Vector Rotate Left Doubleword */
4286 case 260: /* Vector Shift Left Byte */
4287 case 388: /* Vector Shift Left Word */
4288 case 324: /* Vector Shift Left Halfword */
4289 case 1476: /* Vector Shift Left Doubleword */
4290 case 516: /* Vector Shift Right Byte */
4291 case 644: /* Vector Shift Right Word */
4292 case 580: /* Vector Shift Right Halfword */
4293 case 1732: /* Vector Shift Right Doubleword */
4294 case 772: /* Vector Shift Right Algebraic Byte */
4295 case 900: /* Vector Shift Right Algebraic Word */
4296 case 836: /* Vector Shift Right Algebraic Halfword */
4297 case 964: /* Vector Shift Right Algebraic Doubleword */
4298 case 10: /* Vector Add Single-Precision */
4299 case 74: /* Vector Subtract Single-Precision */
4300 case 1034: /* Vector Maximum Single-Precision */
4301 case 1098: /* Vector Minimum Single-Precision */
4302 case 842: /* Vector Convert From Signed Fixed-Point Word */
4303 case 778: /* Vector Convert From Unsigned Fixed-Point Word */
4304 case 714: /* Vector Round to Single-Precision Integer toward -Infinity */
4305 case 522: /* Vector Round to Single-Precision Integer Nearest */
4306 case 650: /* Vector Round to Single-Precision Integer toward +Infinity */
4307 case 586: /* Vector Round to Single-Precision Integer toward Zero */
4308 case 394: /* Vector 2 Raised to the Exponent Estimate Floating-Point */
4309 case 458: /* Vector Log Base 2 Estimate Floating-Point */
4310 case 266: /* Vector Reciprocal Estimate Single-Precision */
4311 case 330: /* Vector Reciprocal Square Root Estimate Single-Precision */
4312 case 1288: /* Vector AES Cipher */
4313 case 1289: /* Vector AES Cipher Last */
4314 case 1352: /* Vector AES Inverse Cipher */
4315 case 1353: /* Vector AES Inverse Cipher Last */
4316 case 1480: /* Vector AES SubBytes */
4317 case 1730: /* Vector SHA-512 Sigma Doubleword */
4318 case 1666: /* Vector SHA-256 Sigma Word */
4319 case 1032: /* Vector Polynomial Multiply-Sum Byte */
4320 case 1160: /* Vector Polynomial Multiply-Sum Word */
4321 case 1096: /* Vector Polynomial Multiply-Sum Halfword */
4322 case 1224: /* Vector Polynomial Multiply-Sum Doubleword */
4323 case 1292: /* Vector Gather Bits by Bytes by Doubleword */
4324 case 1794: /* Vector Count Leading Zeros Byte */
4325 case 1858: /* Vector Count Leading Zeros Halfword */
4326 case 1922: /* Vector Count Leading Zeros Word */
4327 case 1986: /* Vector Count Leading Zeros Doubleword */
4328 case 1795: /* Vector Population Count Byte */
4329 case 1859: /* Vector Population Count Halfword */
4330 case 1923: /* Vector Population Count Word */
4331 case 1987: /* Vector Population Count Doubleword */
4332 case 1356: /* Vector Bit Permute Quadword */
4333 case 1484: /* Vector Bit Permute Doubleword */
4334 case 513: /* Vector Multiply-by-10 Unsigned Quadword */
4335 case 1: /* Vector Multiply-by-10 & write Carry Unsigned
4336 Quadword */
4337 case 577: /* Vector Multiply-by-10 Extended Unsigned Quadword */
4338 case 65: /* Vector Multiply-by-10 Extended & write Carry
4339 Unsigned Quadword */
4340 case 1027: /* Vector Absolute Difference Unsigned Byte */
4341 case 1091: /* Vector Absolute Difference Unsigned Halfword */
4342 case 1155: /* Vector Absolute Difference Unsigned Word */
4343 case 1796: /* Vector Shift Right Variable */
4344 case 1860: /* Vector Shift Left Variable */
4345 case 133: /* Vector Rotate Left Word then Mask Insert */
4346 case 197: /* Vector Rotate Left Doubleword then Mask Insert */
4347 case 389: /* Vector Rotate Left Word then AND with Mask */
4348 case 453: /* Vector Rotate Left Doubleword then AND with Mask */
4349 case 525: /* Vector Extract Unsigned Byte */
4350 case 589: /* Vector Extract Unsigned Halfword */
4351 case 653: /* Vector Extract Unsigned Word */
4352 case 717: /* Vector Extract Doubleword */
4353 case 781: /* Vector Insert Byte */
4354 case 845: /* Vector Insert Halfword */
4355 case 909: /* Vector Insert Word */
4356 case 973: /* Vector Insert Doubleword */
4357 record_full_arch_list_add_reg (regcache,
4358 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4359 return 0;
4360
4361 case 1549: /* Vector Extract Unsigned Byte Left-Indexed */
4362 case 1613: /* Vector Extract Unsigned Halfword Left-Indexed */
4363 case 1677: /* Vector Extract Unsigned Word Left-Indexed */
4364 case 1805: /* Vector Extract Unsigned Byte Right-Indexed */
4365 case 1869: /* Vector Extract Unsigned Halfword Right-Indexed */
4366 case 1933: /* Vector Extract Unsigned Word Right-Indexed */
4367 record_full_arch_list_add_reg (regcache,
4368 tdep->ppc_gp0_regnum + PPC_RT (insn));
4369 return 0;
4370
4371 case 1604: /* Move To Vector Status and Control Register */
4372 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4373 return 0;
4374 case 1540: /* Move From Vector Status and Control Register */
4375 record_full_arch_list_add_reg (regcache,
4376 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4377 return 0;
4378 case 833: /* Decimal Copy Sign */
4379 record_full_arch_list_add_reg (regcache,
4380 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4381 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4382 return 0;
4383 }
4384
4385 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4386 "at %s, 4-%d.\n", insn, paddress (gdbarch, addr), ext);
4387 return -1;
4388 }
4389
4390 /* Parse and record instructions of primary opcode-19 at ADDR.
4391 Return 0 if successful. */
4392
4393 static int
4394 ppc_process_record_op19 (struct gdbarch *gdbarch, struct regcache *regcache,
4395 CORE_ADDR addr, uint32_t insn)
4396 {
4397 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4398 int ext = PPC_EXTOP (insn);
4399
4400 switch (ext & 0x01f)
4401 {
4402 case 2: /* Add PC Immediate Shifted */
4403 record_full_arch_list_add_reg (regcache,
4404 tdep->ppc_gp0_regnum + PPC_RT (insn));
4405 return 0;
4406 }
4407
4408 switch (ext)
4409 {
4410 case 0: /* Move Condition Register Field */
4411 case 33: /* Condition Register NOR */
4412 case 129: /* Condition Register AND with Complement */
4413 case 193: /* Condition Register XOR */
4414 case 225: /* Condition Register NAND */
4415 case 257: /* Condition Register AND */
4416 case 289: /* Condition Register Equivalent */
4417 case 417: /* Condition Register OR with Complement */
4418 case 449: /* Condition Register OR */
4419 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4420 return 0;
4421
4422 case 16: /* Branch Conditional */
4423 case 560: /* Branch Conditional to Branch Target Address Register */
4424 if ((PPC_BO (insn) & 0x4) == 0)
4425 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4426 /* FALL-THROUGH */
4427 case 528: /* Branch Conditional to Count Register */
4428 if (PPC_LK (insn))
4429 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4430 return 0;
4431
4432 case 150: /* Instruction Synchronize */
4433 /* Do nothing. */
4434 return 0;
4435 }
4436
4437 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4438 "at %s, 19-%d.\n", insn, paddress (gdbarch, addr), ext);
4439 return -1;
4440 }
4441
4442 /* Parse and record instructions of primary opcode-31 at ADDR.
4443 Return 0 if successful. */
4444
4445 static int
4446 ppc_process_record_op31 (struct gdbarch *gdbarch, struct regcache *regcache,
4447 CORE_ADDR addr, uint32_t insn)
4448 {
4449 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4450 int ext = PPC_EXTOP (insn);
4451 int tmp, nr, nb, i;
4452 CORE_ADDR at_dcsz, ea = 0;
4453 ULONGEST rb, ra, xer;
4454 int size = 0;
4455
4456 /* These instructions have OE bit. */
4457 switch (ext & 0x1ff)
4458 {
4459 /* These write RT and XER. Update CR if RC is set. */
4460 case 8: /* Subtract from carrying */
4461 case 10: /* Add carrying */
4462 case 136: /* Subtract from extended */
4463 case 138: /* Add extended */
4464 case 200: /* Subtract from zero extended */
4465 case 202: /* Add to zero extended */
4466 case 232: /* Subtract from minus one extended */
4467 case 234: /* Add to minus one extended */
4468 /* CA is always altered, but SO/OV are only altered when OE=1.
4469 In any case, XER is always altered. */
4470 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4471 if (PPC_RC (insn))
4472 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4473 record_full_arch_list_add_reg (regcache,
4474 tdep->ppc_gp0_regnum + PPC_RT (insn));
4475 return 0;
4476
4477 /* These write RT. Update CR if RC is set and update XER if OE is set. */
4478 case 40: /* Subtract from */
4479 case 104: /* Negate */
4480 case 233: /* Multiply low doubleword */
4481 case 235: /* Multiply low word */
4482 case 266: /* Add */
4483 case 393: /* Divide Doubleword Extended Unsigned */
4484 case 395: /* Divide Word Extended Unsigned */
4485 case 425: /* Divide Doubleword Extended */
4486 case 427: /* Divide Word Extended */
4487 case 457: /* Divide Doubleword Unsigned */
4488 case 459: /* Divide Word Unsigned */
4489 case 489: /* Divide Doubleword */
4490 case 491: /* Divide Word */
4491 if (PPC_OE (insn))
4492 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4493 /* FALL-THROUGH */
4494 case 9: /* Multiply High Doubleword Unsigned */
4495 case 11: /* Multiply High Word Unsigned */
4496 case 73: /* Multiply High Doubleword */
4497 case 75: /* Multiply High Word */
4498 if (PPC_RC (insn))
4499 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4500 record_full_arch_list_add_reg (regcache,
4501 tdep->ppc_gp0_regnum + PPC_RT (insn));
4502 return 0;
4503 }
4504
4505 if ((ext & 0x1f) == 15)
4506 {
4507 /* Integer Select. bit[16:20] is used for BC. */
4508 record_full_arch_list_add_reg (regcache,
4509 tdep->ppc_gp0_regnum + PPC_RT (insn));
4510 return 0;
4511 }
4512
4513 if ((ext & 0xff) == 170)
4514 {
4515 /* Add Extended using alternate carry bits */
4516 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4517 record_full_arch_list_add_reg (regcache,
4518 tdep->ppc_gp0_regnum + PPC_RT (insn));
4519 return 0;
4520 }
4521
4522 switch (ext)
4523 {
4524 case 78: /* Determine Leftmost Zero Byte */
4525 if (PPC_RC (insn))
4526 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4527 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4528 record_full_arch_list_add_reg (regcache,
4529 tdep->ppc_gp0_regnum + PPC_RT (insn));
4530 return 0;
4531
4532 /* These only write RT. */
4533 case 19: /* Move from condition register */
4534 /* Move From One Condition Register Field */
4535 case 74: /* Add and Generate Sixes */
4536 case 74 | 0x200: /* Add and Generate Sixes (bit-21 dont-care) */
4537 case 302: /* Move From Branch History Rolling Buffer */
4538 case 339: /* Move From Special Purpose Register */
4539 case 371: /* Move From Time Base [Phased-Out] */
4540 case 309: /* Load Doubleword Monitored Indexed */
4541 case 128: /* Set Boolean */
4542 case 755: /* Deliver A Random Number */
4543 record_full_arch_list_add_reg (regcache,
4544 tdep->ppc_gp0_regnum + PPC_RT (insn));
4545 return 0;
4546
4547 /* These only write to RA. */
4548 case 51: /* Move From VSR Doubleword */
4549 case 115: /* Move From VSR Word and Zero */
4550 case 122: /* Population count bytes */
4551 case 378: /* Population count words */
4552 case 506: /* Population count doublewords */
4553 case 154: /* Parity Word */
4554 case 186: /* Parity Doubleword */
4555 case 252: /* Bit Permute Doubleword */
4556 case 282: /* Convert Declets To Binary Coded Decimal */
4557 case 314: /* Convert Binary Coded Decimal To Declets */
4558 case 508: /* Compare bytes */
4559 case 307: /* Move From VSR Lower Doubleword */
4560 record_full_arch_list_add_reg (regcache,
4561 tdep->ppc_gp0_regnum + PPC_RA (insn));
4562 return 0;
4563
4564 /* These write CR and optional RA. */
4565 case 792: /* Shift Right Algebraic Word */
4566 case 794: /* Shift Right Algebraic Doubleword */
4567 case 824: /* Shift Right Algebraic Word Immediate */
4568 case 826: /* Shift Right Algebraic Doubleword Immediate (413) */
4569 case 826 | 1: /* Shift Right Algebraic Doubleword Immediate (413) */
4570 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4571 record_full_arch_list_add_reg (regcache,
4572 tdep->ppc_gp0_regnum + PPC_RA (insn));
4573 /* FALL-THROUGH */
4574 case 0: /* Compare */
4575 case 32: /* Compare logical */
4576 case 144: /* Move To Condition Register Fields */
4577 /* Move To One Condition Register Field */
4578 case 192: /* Compare Ranged Byte */
4579 case 224: /* Compare Equal Byte */
4580 case 576: /* Move XER to CR Extended */
4581 case 902: /* Paste (should always fail due to single-stepping and
4582 the memory location might not be accessible, so
4583 record only CR) */
4584 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4585 return 0;
4586
4587 /* These write to RT. Update RA if 'update indexed.' */
4588 case 53: /* Load Doubleword with Update Indexed */
4589 case 119: /* Load Byte and Zero with Update Indexed */
4590 case 311: /* Load Halfword and Zero with Update Indexed */
4591 case 55: /* Load Word and Zero with Update Indexed */
4592 case 375: /* Load Halfword Algebraic with Update Indexed */
4593 case 373: /* Load Word Algebraic with Update Indexed */
4594 record_full_arch_list_add_reg (regcache,
4595 tdep->ppc_gp0_regnum + PPC_RA (insn));
4596 /* FALL-THROUGH */
4597 case 21: /* Load Doubleword Indexed */
4598 case 52: /* Load Byte And Reserve Indexed */
4599 case 116: /* Load Halfword And Reserve Indexed */
4600 case 20: /* Load Word And Reserve Indexed */
4601 case 84: /* Load Doubleword And Reserve Indexed */
4602 case 87: /* Load Byte and Zero Indexed */
4603 case 279: /* Load Halfword and Zero Indexed */
4604 case 23: /* Load Word and Zero Indexed */
4605 case 343: /* Load Halfword Algebraic Indexed */
4606 case 341: /* Load Word Algebraic Indexed */
4607 case 790: /* Load Halfword Byte-Reverse Indexed */
4608 case 534: /* Load Word Byte-Reverse Indexed */
4609 case 532: /* Load Doubleword Byte-Reverse Indexed */
4610 case 582: /* Load Word Atomic */
4611 case 614: /* Load Doubleword Atomic */
4612 case 265: /* Modulo Unsigned Doubleword */
4613 case 777: /* Modulo Signed Doubleword */
4614 case 267: /* Modulo Unsigned Word */
4615 case 779: /* Modulo Signed Word */
4616 record_full_arch_list_add_reg (regcache,
4617 tdep->ppc_gp0_regnum + PPC_RT (insn));
4618 return 0;
4619
4620 case 597: /* Load String Word Immediate */
4621 case 533: /* Load String Word Indexed */
4622 if (ext == 597)
4623 {
4624 nr = PPC_NB (insn);
4625 if (nr == 0)
4626 nr = 32;
4627 }
4628 else
4629 {
4630 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4631 nr = PPC_XER_NB (xer);
4632 }
4633
4634 nr = (nr + 3) >> 2;
4635
4636 /* If n=0, the contents of register RT are undefined. */
4637 if (nr == 0)
4638 nr = 1;
4639
4640 for (i = 0; i < nr; i++)
4641 record_full_arch_list_add_reg (regcache,
4642 tdep->ppc_gp0_regnum
4643 + ((PPC_RT (insn) + i) & 0x1f));
4644 return 0;
4645
4646 case 276: /* Load Quadword And Reserve Indexed */
4647 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
4648 record_full_arch_list_add_reg (regcache, tmp);
4649 record_full_arch_list_add_reg (regcache, tmp + 1);
4650 return 0;
4651
4652 /* These write VRT. */
4653 case 6: /* Load Vector for Shift Left Indexed */
4654 case 38: /* Load Vector for Shift Right Indexed */
4655 case 7: /* Load Vector Element Byte Indexed */
4656 case 39: /* Load Vector Element Halfword Indexed */
4657 case 71: /* Load Vector Element Word Indexed */
4658 case 103: /* Load Vector Indexed */
4659 case 359: /* Load Vector Indexed LRU */
4660 record_full_arch_list_add_reg (regcache,
4661 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4662 return 0;
4663
4664 /* These write FRT. Update RA if 'update indexed.' */
4665 case 567: /* Load Floating-Point Single with Update Indexed */
4666 case 631: /* Load Floating-Point Double with Update Indexed */
4667 record_full_arch_list_add_reg (regcache,
4668 tdep->ppc_gp0_regnum + PPC_RA (insn));
4669 /* FALL-THROUGH */
4670 case 535: /* Load Floating-Point Single Indexed */
4671 case 599: /* Load Floating-Point Double Indexed */
4672 case 855: /* Load Floating-Point as Integer Word Algebraic Indexed */
4673 case 887: /* Load Floating-Point as Integer Word and Zero Indexed */
4674 record_full_arch_list_add_reg (regcache,
4675 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4676 return 0;
4677
4678 case 791: /* Load Floating-Point Double Pair Indexed */
4679 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
4680 record_full_arch_list_add_reg (regcache, tmp);
4681 record_full_arch_list_add_reg (regcache, tmp + 1);
4682 return 0;
4683
4684 case 179: /* Move To VSR Doubleword */
4685 case 211: /* Move To VSR Word Algebraic */
4686 case 243: /* Move To VSR Word and Zero */
4687 case 588: /* Load VSX Scalar Doubleword Indexed */
4688 case 524: /* Load VSX Scalar Single-Precision Indexed */
4689 case 76: /* Load VSX Scalar as Integer Word Algebraic Indexed */
4690 case 12: /* Load VSX Scalar as Integer Word and Zero Indexed */
4691 case 844: /* Load VSX Vector Doubleword*2 Indexed */
4692 case 332: /* Load VSX Vector Doubleword & Splat Indexed */
4693 case 780: /* Load VSX Vector Word*4 Indexed */
4694 case 268: /* Load VSX Vector Indexed */
4695 case 364: /* Load VSX Vector Word & Splat Indexed */
4696 case 812: /* Load VSX Vector Halfword*8 Indexed */
4697 case 876: /* Load VSX Vector Byte*16 Indexed */
4698 case 269: /* Load VSX Vector with Length */
4699 case 301: /* Load VSX Vector Left-justified with Length */
4700 case 781: /* Load VSX Scalar as Integer Byte & Zero Indexed */
4701 case 813: /* Load VSX Scalar as Integer Halfword & Zero Indexed */
4702 case 403: /* Move To VSR Word & Splat */
4703 case 435: /* Move To VSR Double Doubleword */
4704 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4705 return 0;
4706
4707 /* These write RA. Update CR if RC is set. */
4708 case 24: /* Shift Left Word */
4709 case 26: /* Count Leading Zeros Word */
4710 case 27: /* Shift Left Doubleword */
4711 case 28: /* AND */
4712 case 58: /* Count Leading Zeros Doubleword */
4713 case 60: /* AND with Complement */
4714 case 124: /* NOR */
4715 case 284: /* Equivalent */
4716 case 316: /* XOR */
4717 case 476: /* NAND */
4718 case 412: /* OR with Complement */
4719 case 444: /* OR */
4720 case 536: /* Shift Right Word */
4721 case 539: /* Shift Right Doubleword */
4722 case 922: /* Extend Sign Halfword */
4723 case 954: /* Extend Sign Byte */
4724 case 986: /* Extend Sign Word */
4725 case 538: /* Count Trailing Zeros Word */
4726 case 570: /* Count Trailing Zeros Doubleword */
4727 case 890: /* Extend-Sign Word and Shift Left Immediate (445) */
4728 case 890 | 1: /* Extend-Sign Word and Shift Left Immediate (445) */
4729
4730 if (ext == 444 && tdep->ppc_ppr_regnum >= 0
4731 && (PPC_RS (insn) == PPC_RA (insn))
4732 && (PPC_RA (insn) == PPC_RB (insn))
4733 && !PPC_RC (insn))
4734 {
4735 /* or Rx,Rx,Rx alters PRI in PPR. */
4736 record_full_arch_list_add_reg (regcache, tdep->ppc_ppr_regnum);
4737 return 0;
4738 }
4739
4740 if (PPC_RC (insn))
4741 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4742 record_full_arch_list_add_reg (regcache,
4743 tdep->ppc_gp0_regnum + PPC_RA (insn));
4744 return 0;
4745
4746 /* Store memory. */
4747 case 181: /* Store Doubleword with Update Indexed */
4748 case 183: /* Store Word with Update Indexed */
4749 case 247: /* Store Byte with Update Indexed */
4750 case 439: /* Store Half Word with Update Indexed */
4751 case 695: /* Store Floating-Point Single with Update Indexed */
4752 case 759: /* Store Floating-Point Double with Update Indexed */
4753 record_full_arch_list_add_reg (regcache,
4754 tdep->ppc_gp0_regnum + PPC_RA (insn));
4755 /* FALL-THROUGH */
4756 case 135: /* Store Vector Element Byte Indexed */
4757 case 167: /* Store Vector Element Halfword Indexed */
4758 case 199: /* Store Vector Element Word Indexed */
4759 case 231: /* Store Vector Indexed */
4760 case 487: /* Store Vector Indexed LRU */
4761 case 716: /* Store VSX Scalar Doubleword Indexed */
4762 case 140: /* Store VSX Scalar as Integer Word Indexed */
4763 case 652: /* Store VSX Scalar Single-Precision Indexed */
4764 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4765 case 908: /* Store VSX Vector Word*4 Indexed */
4766 case 149: /* Store Doubleword Indexed */
4767 case 151: /* Store Word Indexed */
4768 case 215: /* Store Byte Indexed */
4769 case 407: /* Store Half Word Indexed */
4770 case 694: /* Store Byte Conditional Indexed */
4771 case 726: /* Store Halfword Conditional Indexed */
4772 case 150: /* Store Word Conditional Indexed */
4773 case 214: /* Store Doubleword Conditional Indexed */
4774 case 182: /* Store Quadword Conditional Indexed */
4775 case 662: /* Store Word Byte-Reverse Indexed */
4776 case 918: /* Store Halfword Byte-Reverse Indexed */
4777 case 660: /* Store Doubleword Byte-Reverse Indexed */
4778 case 663: /* Store Floating-Point Single Indexed */
4779 case 727: /* Store Floating-Point Double Indexed */
4780 case 919: /* Store Floating-Point Double Pair Indexed */
4781 case 983: /* Store Floating-Point as Integer Word Indexed */
4782 case 396: /* Store VSX Vector Indexed */
4783 case 940: /* Store VSX Vector Halfword*8 Indexed */
4784 case 1004: /* Store VSX Vector Byte*16 Indexed */
4785 case 909: /* Store VSX Scalar as Integer Byte Indexed */
4786 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
4787 if (ext == 694 || ext == 726 || ext == 150 || ext == 214 || ext == 182)
4788 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4789
4790 ra = 0;
4791 if (PPC_RA (insn) != 0)
4792 regcache_raw_read_unsigned (regcache,
4793 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4794 regcache_raw_read_unsigned (regcache,
4795 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4796 ea = ra + rb;
4797
4798 switch (ext)
4799 {
4800 case 183: /* Store Word with Update Indexed */
4801 case 199: /* Store Vector Element Word Indexed */
4802 case 140: /* Store VSX Scalar as Integer Word Indexed */
4803 case 652: /* Store VSX Scalar Single-Precision Indexed */
4804 case 151: /* Store Word Indexed */
4805 case 150: /* Store Word Conditional Indexed */
4806 case 662: /* Store Word Byte-Reverse Indexed */
4807 case 663: /* Store Floating-Point Single Indexed */
4808 case 695: /* Store Floating-Point Single with Update Indexed */
4809 case 983: /* Store Floating-Point as Integer Word Indexed */
4810 size = 4;
4811 break;
4812 case 247: /* Store Byte with Update Indexed */
4813 case 135: /* Store Vector Element Byte Indexed */
4814 case 215: /* Store Byte Indexed */
4815 case 694: /* Store Byte Conditional Indexed */
4816 case 909: /* Store VSX Scalar as Integer Byte Indexed */
4817 size = 1;
4818 break;
4819 case 439: /* Store Halfword with Update Indexed */
4820 case 167: /* Store Vector Element Halfword Indexed */
4821 case 407: /* Store Halfword Indexed */
4822 case 726: /* Store Halfword Conditional Indexed */
4823 case 918: /* Store Halfword Byte-Reverse Indexed */
4824 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
4825 size = 2;
4826 break;
4827 case 181: /* Store Doubleword with Update Indexed */
4828 case 716: /* Store VSX Scalar Doubleword Indexed */
4829 case 149: /* Store Doubleword Indexed */
4830 case 214: /* Store Doubleword Conditional Indexed */
4831 case 660: /* Store Doubleword Byte-Reverse Indexed */
4832 case 727: /* Store Floating-Point Double Indexed */
4833 case 759: /* Store Floating-Point Double with Update Indexed */
4834 size = 8;
4835 break;
4836 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4837 case 908: /* Store VSX Vector Word*4 Indexed */
4838 case 182: /* Store Quadword Conditional Indexed */
4839 case 231: /* Store Vector Indexed */
4840 case 487: /* Store Vector Indexed LRU */
4841 case 919: /* Store Floating-Point Double Pair Indexed */
4842 case 396: /* Store VSX Vector Indexed */
4843 case 940: /* Store VSX Vector Halfword*8 Indexed */
4844 case 1004: /* Store VSX Vector Byte*16 Indexed */
4845 size = 16;
4846 break;
4847 default:
4848 gdb_assert (0);
4849 }
4850
4851 /* Align address for Store Vector instructions. */
4852 switch (ext)
4853 {
4854 case 167: /* Store Vector Element Halfword Indexed */
4855 addr = addr & ~0x1ULL;
4856 break;
4857
4858 case 199: /* Store Vector Element Word Indexed */
4859 addr = addr & ~0x3ULL;
4860 break;
4861
4862 case 231: /* Store Vector Indexed */
4863 case 487: /* Store Vector Indexed LRU */
4864 addr = addr & ~0xfULL;
4865 break;
4866 }
4867
4868 record_full_arch_list_add_mem (addr, size);
4869 return 0;
4870
4871 case 397: /* Store VSX Vector with Length */
4872 case 429: /* Store VSX Vector Left-justified with Length */
4873 ra = 0;
4874 if (PPC_RA (insn) != 0)
4875 regcache_raw_read_unsigned (regcache,
4876 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4877 ea = ra;
4878 regcache_raw_read_unsigned (regcache,
4879 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4880 /* Store up to 16 bytes. */
4881 nb = (rb & 0xff) > 16 ? 16 : (rb & 0xff);
4882 if (nb > 0)
4883 record_full_arch_list_add_mem (ea, nb);
4884 return 0;
4885
4886 case 710: /* Store Word Atomic */
4887 case 742: /* Store Doubleword Atomic */
4888 ra = 0;
4889 if (PPC_RA (insn) != 0)
4890 regcache_raw_read_unsigned (regcache,
4891 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4892 ea = ra;
4893 switch (ext)
4894 {
4895 case 710: /* Store Word Atomic */
4896 size = 8;
4897 break;
4898 case 742: /* Store Doubleword Atomic */
4899 size = 16;
4900 break;
4901 default:
4902 gdb_assert (0);
4903 }
4904 record_full_arch_list_add_mem (ea, size);
4905 return 0;
4906
4907 case 725: /* Store String Word Immediate */
4908 ra = 0;
4909 if (PPC_RA (insn) != 0)
4910 regcache_raw_read_unsigned (regcache,
4911 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4912 ea += ra;
4913
4914 nb = PPC_NB (insn);
4915 if (nb == 0)
4916 nb = 32;
4917
4918 record_full_arch_list_add_mem (ea, nb);
4919
4920 return 0;
4921
4922 case 661: /* Store String Word Indexed */
4923 ra = 0;
4924 if (PPC_RA (insn) != 0)
4925 regcache_raw_read_unsigned (regcache,
4926 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4927 ea += ra;
4928
4929 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4930 nb = PPC_XER_NB (xer);
4931
4932 if (nb != 0)
4933 {
4934 regcache_raw_read_unsigned (regcache,
4935 tdep->ppc_gp0_regnum + PPC_RB (insn),
4936 &rb);
4937 ea += rb;
4938 record_full_arch_list_add_mem (ea, nb);
4939 }
4940
4941 return 0;
4942
4943 case 467: /* Move To Special Purpose Register */
4944 switch (PPC_SPR (insn))
4945 {
4946 case 1: /* XER */
4947 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4948 return 0;
4949 case 3: /* DSCR */
4950 if (tdep->ppc_dscr_regnum >= 0)
4951 record_full_arch_list_add_reg (regcache, tdep->ppc_dscr_regnum);
4952 return 0;
4953 case 8: /* LR */
4954 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4955 return 0;
4956 case 9: /* CTR */
4957 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4958 return 0;
4959 case 256: /* VRSAVE */
4960 record_full_arch_list_add_reg (regcache, tdep->ppc_vrsave_regnum);
4961 return 0;
4962 case 815: /* TAR */
4963 if (tdep->ppc_tar_regnum >= 0)
4964 record_full_arch_list_add_reg (regcache, tdep->ppc_tar_regnum);
4965 return 0;
4966 case 896:
4967 case 898: /* PPR */
4968 if (tdep->ppc_ppr_regnum >= 0)
4969 record_full_arch_list_add_reg (regcache, tdep->ppc_ppr_regnum);
4970 return 0;
4971 }
4972
4973 goto UNKNOWN_OP;
4974
4975 case 147: /* Move To Split Little Endian */
4976 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
4977 return 0;
4978
4979 case 512: /* Move to Condition Register from XER */
4980 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4981 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4982 return 0;
4983
4984 case 4: /* Trap Word */
4985 case 68: /* Trap Doubleword */
4986 case 430: /* Clear BHRB */
4987 case 598: /* Synchronize */
4988 case 62: /* Wait for Interrupt */
4989 case 30: /* Wait */
4990 case 22: /* Instruction Cache Block Touch */
4991 case 854: /* Enforce In-order Execution of I/O */
4992 case 246: /* Data Cache Block Touch for Store */
4993 case 54: /* Data Cache Block Store */
4994 case 86: /* Data Cache Block Flush */
4995 case 278: /* Data Cache Block Touch */
4996 case 758: /* Data Cache Block Allocate */
4997 case 982: /* Instruction Cache Block Invalidate */
4998 case 774: /* Copy */
4999 case 838: /* CP_Abort */
5000 return 0;
5001
5002 case 654: /* Transaction Begin */
5003 case 686: /* Transaction End */
5004 case 750: /* Transaction Suspend or Resume */
5005 case 782: /* Transaction Abort Word Conditional */
5006 case 814: /* Transaction Abort Doubleword Conditional */
5007 case 846: /* Transaction Abort Word Conditional Immediate */
5008 case 878: /* Transaction Abort Doubleword Conditional Immediate */
5009 case 910: /* Transaction Abort */
5010 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
5011 /* FALL-THROUGH */
5012 case 718: /* Transaction Check */
5013 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5014 return 0;
5015
5016 case 1014: /* Data Cache Block set to Zero */
5017 if (target_auxv_search (current_top_target (), AT_DCACHEBSIZE, &at_dcsz) <= 0
5018 || at_dcsz == 0)
5019 at_dcsz = 128; /* Assume 128-byte cache line size (POWER8) */
5020
5021 ra = 0;
5022 if (PPC_RA (insn) != 0)
5023 regcache_raw_read_unsigned (regcache,
5024 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
5025 regcache_raw_read_unsigned (regcache,
5026 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
5027 ea = (ra + rb) & ~((ULONGEST) (at_dcsz - 1));
5028 record_full_arch_list_add_mem (ea, at_dcsz);
5029 return 0;
5030 }
5031
5032 UNKNOWN_OP:
5033 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5034 "at %s, 31-%d.\n", insn, paddress (gdbarch, addr), ext);
5035 return -1;
5036 }
5037
5038 /* Parse and record instructions of primary opcode-59 at ADDR.
5039 Return 0 if successful. */
5040
5041 static int
5042 ppc_process_record_op59 (struct gdbarch *gdbarch, struct regcache *regcache,
5043 CORE_ADDR addr, uint32_t insn)
5044 {
5045 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5046 int ext = PPC_EXTOP (insn);
5047
5048 switch (ext & 0x1f)
5049 {
5050 case 18: /* Floating Divide */
5051 case 20: /* Floating Subtract */
5052 case 21: /* Floating Add */
5053 case 22: /* Floating Square Root */
5054 case 24: /* Floating Reciprocal Estimate */
5055 case 25: /* Floating Multiply */
5056 case 26: /* Floating Reciprocal Square Root Estimate */
5057 case 28: /* Floating Multiply-Subtract */
5058 case 29: /* Floating Multiply-Add */
5059 case 30: /* Floating Negative Multiply-Subtract */
5060 case 31: /* Floating Negative Multiply-Add */
5061 record_full_arch_list_add_reg (regcache,
5062 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5063 if (PPC_RC (insn))
5064 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5065 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5066
5067 return 0;
5068 }
5069
5070 switch (ext)
5071 {
5072 case 2: /* DFP Add */
5073 case 3: /* DFP Quantize */
5074 case 34: /* DFP Multiply */
5075 case 35: /* DFP Reround */
5076 case 67: /* DFP Quantize Immediate */
5077 case 99: /* DFP Round To FP Integer With Inexact */
5078 case 227: /* DFP Round To FP Integer Without Inexact */
5079 case 258: /* DFP Convert To DFP Long! */
5080 case 290: /* DFP Convert To Fixed */
5081 case 514: /* DFP Subtract */
5082 case 546: /* DFP Divide */
5083 case 770: /* DFP Round To DFP Short! */
5084 case 802: /* DFP Convert From Fixed */
5085 case 834: /* DFP Encode BCD To DPD */
5086 if (PPC_RC (insn))
5087 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5088 record_full_arch_list_add_reg (regcache,
5089 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5090 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5091 return 0;
5092
5093 case 130: /* DFP Compare Ordered */
5094 case 162: /* DFP Test Exponent */
5095 case 194: /* DFP Test Data Class */
5096 case 226: /* DFP Test Data Group */
5097 case 642: /* DFP Compare Unordered */
5098 case 674: /* DFP Test Significance */
5099 case 675: /* DFP Test Significance Immediate */
5100 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5101 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5102 return 0;
5103
5104 case 66: /* DFP Shift Significand Left Immediate */
5105 case 98: /* DFP Shift Significand Right Immediate */
5106 case 322: /* DFP Decode DPD To BCD */
5107 case 354: /* DFP Extract Biased Exponent */
5108 case 866: /* DFP Insert Biased Exponent */
5109 record_full_arch_list_add_reg (regcache,
5110 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5111 if (PPC_RC (insn))
5112 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5113 return 0;
5114
5115 case 846: /* Floating Convert From Integer Doubleword Single */
5116 case 974: /* Floating Convert From Integer Doubleword Unsigned
5117 Single */
5118 record_full_arch_list_add_reg (regcache,
5119 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5120 if (PPC_RC (insn))
5121 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5122 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5123
5124 return 0;
5125 }
5126
5127 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5128 "at %s, 59-%d.\n", insn, paddress (gdbarch, addr), ext);
5129 return -1;
5130 }
5131
5132 /* Parse and record instructions of primary opcode-60 at ADDR.
5133 Return 0 if successful. */
5134
5135 static int
5136 ppc_process_record_op60 (struct gdbarch *gdbarch, struct regcache *regcache,
5137 CORE_ADDR addr, uint32_t insn)
5138 {
5139 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5140 int ext = PPC_EXTOP (insn);
5141
5142 switch (ext >> 2)
5143 {
5144 case 0: /* VSX Scalar Add Single-Precision */
5145 case 32: /* VSX Scalar Add Double-Precision */
5146 case 24: /* VSX Scalar Divide Single-Precision */
5147 case 56: /* VSX Scalar Divide Double-Precision */
5148 case 176: /* VSX Scalar Copy Sign Double-Precision */
5149 case 33: /* VSX Scalar Multiply-Add Double-Precision */
5150 case 41: /* ditto */
5151 case 1: /* VSX Scalar Multiply-Add Single-Precision */
5152 case 9: /* ditto */
5153 case 160: /* VSX Scalar Maximum Double-Precision */
5154 case 168: /* VSX Scalar Minimum Double-Precision */
5155 case 49: /* VSX Scalar Multiply-Subtract Double-Precision */
5156 case 57: /* ditto */
5157 case 17: /* VSX Scalar Multiply-Subtract Single-Precision */
5158 case 25: /* ditto */
5159 case 48: /* VSX Scalar Multiply Double-Precision */
5160 case 16: /* VSX Scalar Multiply Single-Precision */
5161 case 161: /* VSX Scalar Negative Multiply-Add Double-Precision */
5162 case 169: /* ditto */
5163 case 129: /* VSX Scalar Negative Multiply-Add Single-Precision */
5164 case 137: /* ditto */
5165 case 177: /* VSX Scalar Negative Multiply-Subtract Double-Precision */
5166 case 185: /* ditto */
5167 case 145: /* VSX Scalar Negative Multiply-Subtract Single-Precision */
5168 case 153: /* ditto */
5169 case 40: /* VSX Scalar Subtract Double-Precision */
5170 case 8: /* VSX Scalar Subtract Single-Precision */
5171 case 96: /* VSX Vector Add Double-Precision */
5172 case 64: /* VSX Vector Add Single-Precision */
5173 case 120: /* VSX Vector Divide Double-Precision */
5174 case 88: /* VSX Vector Divide Single-Precision */
5175 case 97: /* VSX Vector Multiply-Add Double-Precision */
5176 case 105: /* ditto */
5177 case 65: /* VSX Vector Multiply-Add Single-Precision */
5178 case 73: /* ditto */
5179 case 224: /* VSX Vector Maximum Double-Precision */
5180 case 192: /* VSX Vector Maximum Single-Precision */
5181 case 232: /* VSX Vector Minimum Double-Precision */
5182 case 200: /* VSX Vector Minimum Single-Precision */
5183 case 113: /* VSX Vector Multiply-Subtract Double-Precision */
5184 case 121: /* ditto */
5185 case 81: /* VSX Vector Multiply-Subtract Single-Precision */
5186 case 89: /* ditto */
5187 case 112: /* VSX Vector Multiply Double-Precision */
5188 case 80: /* VSX Vector Multiply Single-Precision */
5189 case 225: /* VSX Vector Negative Multiply-Add Double-Precision */
5190 case 233: /* ditto */
5191 case 193: /* VSX Vector Negative Multiply-Add Single-Precision */
5192 case 201: /* ditto */
5193 case 241: /* VSX Vector Negative Multiply-Subtract Double-Precision */
5194 case 249: /* ditto */
5195 case 209: /* VSX Vector Negative Multiply-Subtract Single-Precision */
5196 case 217: /* ditto */
5197 case 104: /* VSX Vector Subtract Double-Precision */
5198 case 72: /* VSX Vector Subtract Single-Precision */
5199 case 128: /* VSX Scalar Maximum Type-C Double-Precision */
5200 case 136: /* VSX Scalar Minimum Type-C Double-Precision */
5201 case 144: /* VSX Scalar Maximum Type-J Double-Precision */
5202 case 152: /* VSX Scalar Minimum Type-J Double-Precision */
5203 case 3: /* VSX Scalar Compare Equal Double-Precision */
5204 case 11: /* VSX Scalar Compare Greater Than Double-Precision */
5205 case 19: /* VSX Scalar Compare Greater Than or Equal
5206 Double-Precision */
5207 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5208 /* FALL-THROUGH */
5209 case 240: /* VSX Vector Copy Sign Double-Precision */
5210 case 208: /* VSX Vector Copy Sign Single-Precision */
5211 case 130: /* VSX Logical AND */
5212 case 138: /* VSX Logical AND with Complement */
5213 case 186: /* VSX Logical Equivalence */
5214 case 178: /* VSX Logical NAND */
5215 case 170: /* VSX Logical OR with Complement */
5216 case 162: /* VSX Logical NOR */
5217 case 146: /* VSX Logical OR */
5218 case 154: /* VSX Logical XOR */
5219 case 18: /* VSX Merge High Word */
5220 case 50: /* VSX Merge Low Word */
5221 case 10: /* VSX Permute Doubleword Immediate (DM=0) */
5222 case 10 | 0x20: /* VSX Permute Doubleword Immediate (DM=1) */
5223 case 10 | 0x40: /* VSX Permute Doubleword Immediate (DM=2) */
5224 case 10 | 0x60: /* VSX Permute Doubleword Immediate (DM=3) */
5225 case 2: /* VSX Shift Left Double by Word Immediate (SHW=0) */
5226 case 2 | 0x20: /* VSX Shift Left Double by Word Immediate (SHW=1) */
5227 case 2 | 0x40: /* VSX Shift Left Double by Word Immediate (SHW=2) */
5228 case 2 | 0x60: /* VSX Shift Left Double by Word Immediate (SHW=3) */
5229 case 216: /* VSX Vector Insert Exponent Single-Precision */
5230 case 248: /* VSX Vector Insert Exponent Double-Precision */
5231 case 26: /* VSX Vector Permute */
5232 case 58: /* VSX Vector Permute Right-indexed */
5233 case 213: /* VSX Vector Test Data Class Single-Precision (DC=0) */
5234 case 213 | 0x8: /* VSX Vector Test Data Class Single-Precision (DC=1) */
5235 case 245: /* VSX Vector Test Data Class Double-Precision (DC=0) */
5236 case 245 | 0x8: /* VSX Vector Test Data Class Double-Precision (DC=1) */
5237 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5238 return 0;
5239
5240 case 61: /* VSX Scalar Test for software Divide Double-Precision */
5241 case 125: /* VSX Vector Test for software Divide Double-Precision */
5242 case 93: /* VSX Vector Test for software Divide Single-Precision */
5243 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5244 return 0;
5245
5246 case 35: /* VSX Scalar Compare Unordered Double-Precision */
5247 case 43: /* VSX Scalar Compare Ordered Double-Precision */
5248 case 59: /* VSX Scalar Compare Exponents Double-Precision */
5249 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5250 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5251 return 0;
5252 }
5253
5254 switch ((ext >> 2) & 0x7f) /* Mask out Rc-bit. */
5255 {
5256 case 99: /* VSX Vector Compare Equal To Double-Precision */
5257 case 67: /* VSX Vector Compare Equal To Single-Precision */
5258 case 115: /* VSX Vector Compare Greater Than or
5259 Equal To Double-Precision */
5260 case 83: /* VSX Vector Compare Greater Than or
5261 Equal To Single-Precision */
5262 case 107: /* VSX Vector Compare Greater Than Double-Precision */
5263 case 75: /* VSX Vector Compare Greater Than Single-Precision */
5264 if (PPC_Rc (insn))
5265 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5266 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5267 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5268 return 0;
5269 }
5270
5271 switch (ext >> 1)
5272 {
5273 case 265: /* VSX Scalar round Double-Precision to
5274 Single-Precision and Convert to
5275 Single-Precision format */
5276 case 344: /* VSX Scalar truncate Double-Precision to
5277 Integer and Convert to Signed Integer
5278 Doubleword format with Saturate */
5279 case 88: /* VSX Scalar truncate Double-Precision to
5280 Integer and Convert to Signed Integer Word
5281 Format with Saturate */
5282 case 328: /* VSX Scalar truncate Double-Precision integer
5283 and Convert to Unsigned Integer Doubleword
5284 Format with Saturate */
5285 case 72: /* VSX Scalar truncate Double-Precision to
5286 Integer and Convert to Unsigned Integer Word
5287 Format with Saturate */
5288 case 329: /* VSX Scalar Convert Single-Precision to
5289 Double-Precision format */
5290 case 376: /* VSX Scalar Convert Signed Integer
5291 Doubleword to floating-point format and
5292 Round to Double-Precision format */
5293 case 312: /* VSX Scalar Convert Signed Integer
5294 Doubleword to floating-point format and
5295 round to Single-Precision */
5296 case 360: /* VSX Scalar Convert Unsigned Integer
5297 Doubleword to floating-point format and
5298 Round to Double-Precision format */
5299 case 296: /* VSX Scalar Convert Unsigned Integer
5300 Doubleword to floating-point format and
5301 Round to Single-Precision */
5302 case 73: /* VSX Scalar Round to Double-Precision Integer
5303 Using Round to Nearest Away */
5304 case 107: /* VSX Scalar Round to Double-Precision Integer
5305 Exact using Current rounding mode */
5306 case 121: /* VSX Scalar Round to Double-Precision Integer
5307 Using Round toward -Infinity */
5308 case 105: /* VSX Scalar Round to Double-Precision Integer
5309 Using Round toward +Infinity */
5310 case 89: /* VSX Scalar Round to Double-Precision Integer
5311 Using Round toward Zero */
5312 case 90: /* VSX Scalar Reciprocal Estimate Double-Precision */
5313 case 26: /* VSX Scalar Reciprocal Estimate Single-Precision */
5314 case 281: /* VSX Scalar Round to Single-Precision */
5315 case 74: /* VSX Scalar Reciprocal Square Root Estimate
5316 Double-Precision */
5317 case 10: /* VSX Scalar Reciprocal Square Root Estimate
5318 Single-Precision */
5319 case 75: /* VSX Scalar Square Root Double-Precision */
5320 case 11: /* VSX Scalar Square Root Single-Precision */
5321 case 393: /* VSX Vector round Double-Precision to
5322 Single-Precision and Convert to
5323 Single-Precision format */
5324 case 472: /* VSX Vector truncate Double-Precision to
5325 Integer and Convert to Signed Integer
5326 Doubleword format with Saturate */
5327 case 216: /* VSX Vector truncate Double-Precision to
5328 Integer and Convert to Signed Integer Word
5329 Format with Saturate */
5330 case 456: /* VSX Vector truncate Double-Precision to
5331 Integer and Convert to Unsigned Integer
5332 Doubleword format with Saturate */
5333 case 200: /* VSX Vector truncate Double-Precision to
5334 Integer and Convert to Unsigned Integer Word
5335 Format with Saturate */
5336 case 457: /* VSX Vector Convert Single-Precision to
5337 Double-Precision format */
5338 case 408: /* VSX Vector truncate Single-Precision to
5339 Integer and Convert to Signed Integer
5340 Doubleword format with Saturate */
5341 case 152: /* VSX Vector truncate Single-Precision to
5342 Integer and Convert to Signed Integer Word
5343 Format with Saturate */
5344 case 392: /* VSX Vector truncate Single-Precision to
5345 Integer and Convert to Unsigned Integer
5346 Doubleword format with Saturate */
5347 case 136: /* VSX Vector truncate Single-Precision to
5348 Integer and Convert to Unsigned Integer Word
5349 Format with Saturate */
5350 case 504: /* VSX Vector Convert and round Signed Integer
5351 Doubleword to Double-Precision format */
5352 case 440: /* VSX Vector Convert and round Signed Integer
5353 Doubleword to Single-Precision format */
5354 case 248: /* VSX Vector Convert Signed Integer Word to
5355 Double-Precision format */
5356 case 184: /* VSX Vector Convert and round Signed Integer
5357 Word to Single-Precision format */
5358 case 488: /* VSX Vector Convert and round Unsigned
5359 Integer Doubleword to Double-Precision format */
5360 case 424: /* VSX Vector Convert and round Unsigned
5361 Integer Doubleword to Single-Precision format */
5362 case 232: /* VSX Vector Convert and round Unsigned
5363 Integer Word to Double-Precision format */
5364 case 168: /* VSX Vector Convert and round Unsigned
5365 Integer Word to Single-Precision format */
5366 case 201: /* VSX Vector Round to Double-Precision
5367 Integer using round to Nearest Away */
5368 case 235: /* VSX Vector Round to Double-Precision
5369 Integer Exact using Current rounding mode */
5370 case 249: /* VSX Vector Round to Double-Precision
5371 Integer using round toward -Infinity */
5372 case 233: /* VSX Vector Round to Double-Precision
5373 Integer using round toward +Infinity */
5374 case 217: /* VSX Vector Round to Double-Precision
5375 Integer using round toward Zero */
5376 case 218: /* VSX Vector Reciprocal Estimate Double-Precision */
5377 case 154: /* VSX Vector Reciprocal Estimate Single-Precision */
5378 case 137: /* VSX Vector Round to Single-Precision Integer
5379 Using Round to Nearest Away */
5380 case 171: /* VSX Vector Round to Single-Precision Integer
5381 Exact Using Current rounding mode */
5382 case 185: /* VSX Vector Round to Single-Precision Integer
5383 Using Round toward -Infinity */
5384 case 169: /* VSX Vector Round to Single-Precision Integer
5385 Using Round toward +Infinity */
5386 case 153: /* VSX Vector Round to Single-Precision Integer
5387 Using round toward Zero */
5388 case 202: /* VSX Vector Reciprocal Square Root Estimate
5389 Double-Precision */
5390 case 138: /* VSX Vector Reciprocal Square Root Estimate
5391 Single-Precision */
5392 case 203: /* VSX Vector Square Root Double-Precision */
5393 case 139: /* VSX Vector Square Root Single-Precision */
5394 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5395 /* FALL-THROUGH */
5396 case 345: /* VSX Scalar Absolute Value Double-Precision */
5397 case 267: /* VSX Scalar Convert Scalar Single-Precision to
5398 Vector Single-Precision format Non-signalling */
5399 case 331: /* VSX Scalar Convert Single-Precision to
5400 Double-Precision format Non-signalling */
5401 case 361: /* VSX Scalar Negative Absolute Value Double-Precision */
5402 case 377: /* VSX Scalar Negate Double-Precision */
5403 case 473: /* VSX Vector Absolute Value Double-Precision */
5404 case 409: /* VSX Vector Absolute Value Single-Precision */
5405 case 489: /* VSX Vector Negative Absolute Value Double-Precision */
5406 case 425: /* VSX Vector Negative Absolute Value Single-Precision */
5407 case 505: /* VSX Vector Negate Double-Precision */
5408 case 441: /* VSX Vector Negate Single-Precision */
5409 case 164: /* VSX Splat Word */
5410 case 165: /* VSX Vector Extract Unsigned Word */
5411 case 181: /* VSX Vector Insert Word */
5412 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5413 return 0;
5414
5415 case 298: /* VSX Scalar Test Data Class Single-Precision */
5416 case 362: /* VSX Scalar Test Data Class Double-Precision */
5417 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5418 /* FALL-THROUGH */
5419 case 106: /* VSX Scalar Test for software Square Root
5420 Double-Precision */
5421 case 234: /* VSX Vector Test for software Square Root
5422 Double-Precision */
5423 case 170: /* VSX Vector Test for software Square Root
5424 Single-Precision */
5425 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5426 return 0;
5427
5428 case 347:
5429 switch (PPC_FIELD (insn, 11, 5))
5430 {
5431 case 0: /* VSX Scalar Extract Exponent Double-Precision */
5432 case 1: /* VSX Scalar Extract Significand Double-Precision */
5433 record_full_arch_list_add_reg (regcache,
5434 tdep->ppc_gp0_regnum + PPC_RT (insn));
5435 return 0;
5436 case 16: /* VSX Scalar Convert Half-Precision format to
5437 Double-Precision format */
5438 case 17: /* VSX Scalar round & Convert Double-Precision format
5439 to Half-Precision format */
5440 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5441 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5442 return 0;
5443 }
5444 break;
5445
5446 case 475:
5447 switch (PPC_FIELD (insn, 11, 5))
5448 {
5449 case 24: /* VSX Vector Convert Half-Precision format to
5450 Single-Precision format */
5451 case 25: /* VSX Vector round and Convert Single-Precision format
5452 to Half-Precision format */
5453 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5454 /* FALL-THROUGH */
5455 case 0: /* VSX Vector Extract Exponent Double-Precision */
5456 case 1: /* VSX Vector Extract Significand Double-Precision */
5457 case 7: /* VSX Vector Byte-Reverse Halfword */
5458 case 8: /* VSX Vector Extract Exponent Single-Precision */
5459 case 9: /* VSX Vector Extract Significand Single-Precision */
5460 case 15: /* VSX Vector Byte-Reverse Word */
5461 case 23: /* VSX Vector Byte-Reverse Doubleword */
5462 case 31: /* VSX Vector Byte-Reverse Quadword */
5463 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5464 return 0;
5465 }
5466 break;
5467 }
5468
5469 switch (ext)
5470 {
5471 case 360: /* VSX Vector Splat Immediate Byte */
5472 if (PPC_FIELD (insn, 11, 2) == 0)
5473 {
5474 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5475 return 0;
5476 }
5477 break;
5478 case 918: /* VSX Scalar Insert Exponent Double-Precision */
5479 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5480 return 0;
5481 }
5482
5483 if (((ext >> 3) & 0x3) == 3) /* VSX Select */
5484 {
5485 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5486 return 0;
5487 }
5488
5489 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5490 "at %s, 60-%d.\n", insn, paddress (gdbarch, addr), ext);
5491 return -1;
5492 }
5493
5494 /* Parse and record instructions of primary opcode-61 at ADDR.
5495 Return 0 if successful. */
5496
5497 static int
5498 ppc_process_record_op61 (struct gdbarch *gdbarch, struct regcache *regcache,
5499 CORE_ADDR addr, uint32_t insn)
5500 {
5501 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5502 ULONGEST ea = 0;
5503 int size;
5504
5505 switch (insn & 0x3)
5506 {
5507 case 0: /* Store Floating-Point Double Pair */
5508 case 2: /* Store VSX Scalar Doubleword */
5509 case 3: /* Store VSX Scalar Single */
5510 if (PPC_RA (insn) != 0)
5511 regcache_raw_read_unsigned (regcache,
5512 tdep->ppc_gp0_regnum + PPC_RA (insn),
5513 &ea);
5514 ea += PPC_DS (insn) << 2;
5515 switch (insn & 0x3)
5516 {
5517 case 0: /* Store Floating-Point Double Pair */
5518 size = 16;
5519 break;
5520 case 2: /* Store VSX Scalar Doubleword */
5521 size = 8;
5522 break;
5523 case 3: /* Store VSX Scalar Single */
5524 size = 4;
5525 break;
5526 default:
5527 gdb_assert (0);
5528 }
5529 record_full_arch_list_add_mem (ea, size);
5530 return 0;
5531 }
5532
5533 switch (insn & 0x7)
5534 {
5535 case 1: /* Load VSX Vector */
5536 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5537 return 0;
5538 case 5: /* Store VSX Vector */
5539 if (PPC_RA (insn) != 0)
5540 regcache_raw_read_unsigned (regcache,
5541 tdep->ppc_gp0_regnum + PPC_RA (insn),
5542 &ea);
5543 ea += PPC_DQ (insn) << 4;
5544 record_full_arch_list_add_mem (ea, 16);
5545 return 0;
5546 }
5547
5548 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5549 "at %s.\n", insn, paddress (gdbarch, addr));
5550 return -1;
5551 }
5552
5553 /* Parse and record instructions of primary opcode-63 at ADDR.
5554 Return 0 if successful. */
5555
5556 static int
5557 ppc_process_record_op63 (struct gdbarch *gdbarch, struct regcache *regcache,
5558 CORE_ADDR addr, uint32_t insn)
5559 {
5560 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5561 int ext = PPC_EXTOP (insn);
5562 int tmp;
5563
5564 switch (ext & 0x1f)
5565 {
5566 case 18: /* Floating Divide */
5567 case 20: /* Floating Subtract */
5568 case 21: /* Floating Add */
5569 case 22: /* Floating Square Root */
5570 case 24: /* Floating Reciprocal Estimate */
5571 case 25: /* Floating Multiply */
5572 case 26: /* Floating Reciprocal Square Root Estimate */
5573 case 28: /* Floating Multiply-Subtract */
5574 case 29: /* Floating Multiply-Add */
5575 case 30: /* Floating Negative Multiply-Subtract */
5576 case 31: /* Floating Negative Multiply-Add */
5577 record_full_arch_list_add_reg (regcache,
5578 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5579 if (PPC_RC (insn))
5580 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5581 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5582 return 0;
5583
5584 case 23: /* Floating Select */
5585 record_full_arch_list_add_reg (regcache,
5586 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5587 if (PPC_RC (insn))
5588 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5589 return 0;
5590 }
5591
5592 switch (ext & 0xff)
5593 {
5594 case 5: /* VSX Scalar Round to Quad-Precision Integer */
5595 case 37: /* VSX Scalar Round Quad-Precision to Double-Extended
5596 Precision */
5597 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5598 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5599 return 0;
5600 }
5601
5602 switch (ext)
5603 {
5604 case 2: /* DFP Add Quad */
5605 case 3: /* DFP Quantize Quad */
5606 case 34: /* DFP Multiply Quad */
5607 case 35: /* DFP Reround Quad */
5608 case 67: /* DFP Quantize Immediate Quad */
5609 case 99: /* DFP Round To FP Integer With Inexact Quad */
5610 case 227: /* DFP Round To FP Integer Without Inexact Quad */
5611 case 258: /* DFP Convert To DFP Extended Quad */
5612 case 514: /* DFP Subtract Quad */
5613 case 546: /* DFP Divide Quad */
5614 case 770: /* DFP Round To DFP Long Quad */
5615 case 802: /* DFP Convert From Fixed Quad */
5616 case 834: /* DFP Encode BCD To DPD Quad */
5617 if (PPC_RC (insn))
5618 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5619 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5620 record_full_arch_list_add_reg (regcache, tmp);
5621 record_full_arch_list_add_reg (regcache, tmp + 1);
5622 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5623 return 0;
5624
5625 case 130: /* DFP Compare Ordered Quad */
5626 case 162: /* DFP Test Exponent Quad */
5627 case 194: /* DFP Test Data Class Quad */
5628 case 226: /* DFP Test Data Group Quad */
5629 case 642: /* DFP Compare Unordered Quad */
5630 case 674: /* DFP Test Significance Quad */
5631 case 675: /* DFP Test Significance Immediate Quad */
5632 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5633 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5634 return 0;
5635
5636 case 66: /* DFP Shift Significand Left Immediate Quad */
5637 case 98: /* DFP Shift Significand Right Immediate Quad */
5638 case 322: /* DFP Decode DPD To BCD Quad */
5639 case 866: /* DFP Insert Biased Exponent Quad */
5640 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5641 record_full_arch_list_add_reg (regcache, tmp);
5642 record_full_arch_list_add_reg (regcache, tmp + 1);
5643 if (PPC_RC (insn))
5644 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5645 return 0;
5646
5647 case 290: /* DFP Convert To Fixed Quad */
5648 record_full_arch_list_add_reg (regcache,
5649 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5650 if (PPC_RC (insn))
5651 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5652 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5653 return 0;
5654
5655 case 354: /* DFP Extract Biased Exponent Quad */
5656 record_full_arch_list_add_reg (regcache,
5657 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5658 if (PPC_RC (insn))
5659 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5660 return 0;
5661
5662 case 12: /* Floating Round to Single-Precision */
5663 case 14: /* Floating Convert To Integer Word */
5664 case 15: /* Floating Convert To Integer Word
5665 with round toward Zero */
5666 case 142: /* Floating Convert To Integer Word Unsigned */
5667 case 143: /* Floating Convert To Integer Word Unsigned
5668 with round toward Zero */
5669 case 392: /* Floating Round to Integer Nearest */
5670 case 424: /* Floating Round to Integer Toward Zero */
5671 case 456: /* Floating Round to Integer Plus */
5672 case 488: /* Floating Round to Integer Minus */
5673 case 814: /* Floating Convert To Integer Doubleword */
5674 case 815: /* Floating Convert To Integer Doubleword
5675 with round toward Zero */
5676 case 846: /* Floating Convert From Integer Doubleword */
5677 case 942: /* Floating Convert To Integer Doubleword Unsigned */
5678 case 943: /* Floating Convert To Integer Doubleword Unsigned
5679 with round toward Zero */
5680 case 974: /* Floating Convert From Integer Doubleword Unsigned */
5681 record_full_arch_list_add_reg (regcache,
5682 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5683 if (PPC_RC (insn))
5684 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5685 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5686 return 0;
5687
5688 case 583:
5689 switch (PPC_FIELD (insn, 11, 5))
5690 {
5691 case 1: /* Move From FPSCR & Clear Enables */
5692 case 20: /* Move From FPSCR Control & set DRN */
5693 case 21: /* Move From FPSCR Control & set DRN Immediate */
5694 case 22: /* Move From FPSCR Control & set RN */
5695 case 23: /* Move From FPSCR Control & set RN Immediate */
5696 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5697 /* Fall through. */
5698 case 0: /* Move From FPSCR */
5699 case 24: /* Move From FPSCR Lightweight */
5700 if (PPC_FIELD (insn, 11, 5) == 0 && PPC_RC (insn))
5701 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5702 record_full_arch_list_add_reg (regcache,
5703 tdep->ppc_fp0_regnum
5704 + PPC_FRT (insn));
5705 return 0;
5706 }
5707 break;
5708
5709 case 8: /* Floating Copy Sign */
5710 case 40: /* Floating Negate */
5711 case 72: /* Floating Move Register */
5712 case 136: /* Floating Negative Absolute Value */
5713 case 264: /* Floating Absolute Value */
5714 record_full_arch_list_add_reg (regcache,
5715 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5716 if (PPC_RC (insn))
5717 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5718 return 0;
5719
5720 case 838: /* Floating Merge Odd Word */
5721 case 966: /* Floating Merge Even Word */
5722 record_full_arch_list_add_reg (regcache,
5723 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5724 return 0;
5725
5726 case 38: /* Move To FPSCR Bit 1 */
5727 case 70: /* Move To FPSCR Bit 0 */
5728 case 134: /* Move To FPSCR Field Immediate */
5729 case 711: /* Move To FPSCR Fields */
5730 if (PPC_RC (insn))
5731 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5732 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5733 return 0;
5734
5735 case 0: /* Floating Compare Unordered */
5736 case 32: /* Floating Compare Ordered */
5737 case 64: /* Move to Condition Register from FPSCR */
5738 case 132: /* VSX Scalar Compare Ordered Quad-Precision */
5739 case 164: /* VSX Scalar Compare Exponents Quad-Precision */
5740 case 644: /* VSX Scalar Compare Unordered Quad-Precision */
5741 case 708: /* VSX Scalar Test Data Class Quad-Precision */
5742 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5743 /* FALL-THROUGH */
5744 case 128: /* Floating Test for software Divide */
5745 case 160: /* Floating Test for software Square Root */
5746 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5747 return 0;
5748
5749 case 4: /* VSX Scalar Add Quad-Precision */
5750 case 36: /* VSX Scalar Multiply Quad-Precision */
5751 case 388: /* VSX Scalar Multiply-Add Quad-Precision */
5752 case 420: /* VSX Scalar Multiply-Subtract Quad-Precision */
5753 case 452: /* VSX Scalar Negative Multiply-Add Quad-Precision */
5754 case 484: /* VSX Scalar Negative Multiply-Subtract
5755 Quad-Precision */
5756 case 516: /* VSX Scalar Subtract Quad-Precision */
5757 case 548: /* VSX Scalar Divide Quad-Precision */
5758 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5759 /* FALL-THROUGH */
5760 case 100: /* VSX Scalar Copy Sign Quad-Precision */
5761 case 868: /* VSX Scalar Insert Exponent Quad-Precision */
5762 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5763 return 0;
5764
5765 case 804:
5766 switch (PPC_FIELD (insn, 11, 5))
5767 {
5768 case 27: /* VSX Scalar Square Root Quad-Precision */
5769 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5770 /* FALL-THROUGH */
5771 case 0: /* VSX Scalar Absolute Quad-Precision */
5772 case 2: /* VSX Scalar Extract Exponent Quad-Precision */
5773 case 8: /* VSX Scalar Negative Absolute Quad-Precision */
5774 case 16: /* VSX Scalar Negate Quad-Precision */
5775 case 18: /* VSX Scalar Extract Significand Quad-Precision */
5776 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5777 return 0;
5778 }
5779 break;
5780
5781 case 836:
5782 switch (PPC_FIELD (insn, 11, 5))
5783 {
5784 case 1: /* VSX Scalar truncate & Convert Quad-Precision format
5785 to Unsigned Word format */
5786 case 2: /* VSX Scalar Convert Unsigned Doubleword format to
5787 Quad-Precision format */
5788 case 9: /* VSX Scalar truncate & Convert Quad-Precision format
5789 to Signed Word format */
5790 case 10: /* VSX Scalar Convert Signed Doubleword format to
5791 Quad-Precision format */
5792 case 17: /* VSX Scalar truncate & Convert Quad-Precision format
5793 to Unsigned Doubleword format */
5794 case 20: /* VSX Scalar round & Convert Quad-Precision format to
5795 Double-Precision format */
5796 case 22: /* VSX Scalar Convert Double-Precision format to
5797 Quad-Precision format */
5798 case 25: /* VSX Scalar truncate & Convert Quad-Precision format
5799 to Signed Doubleword format */
5800 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5801 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5802 return 0;
5803 }
5804 }
5805
5806 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5807 "at %s, 63-%d.\n", insn, paddress (gdbarch, addr), ext);
5808 return -1;
5809 }
5810
5811 /* Parse the current instruction and record the values of the registers and
5812 memory that will be changed in current instruction to "record_arch_list".
5813 Return -1 if something wrong. */
5814
5815 int
5816 ppc_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5817 CORE_ADDR addr)
5818 {
5819 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5820 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5821 uint32_t insn;
5822 int op6, tmp, i;
5823
5824 insn = read_memory_unsigned_integer (addr, 4, byte_order);
5825 op6 = PPC_OP6 (insn);
5826
5827 switch (op6)
5828 {
5829 case 2: /* Trap Doubleword Immediate */
5830 case 3: /* Trap Word Immediate */
5831 /* Do nothing. */
5832 break;
5833
5834 case 4:
5835 if (ppc_process_record_op4 (gdbarch, regcache, addr, insn) != 0)
5836 return -1;
5837 break;
5838
5839 case 17: /* System call */
5840 if (PPC_LEV (insn) != 0)
5841 goto UNKNOWN_OP;
5842
5843 if (tdep->ppc_syscall_record != NULL)
5844 {
5845 if (tdep->ppc_syscall_record (regcache) != 0)
5846 return -1;
5847 }
5848 else
5849 {
5850 printf_unfiltered (_("no syscall record support\n"));
5851 return -1;
5852 }
5853 break;
5854
5855 case 7: /* Multiply Low Immediate */
5856 record_full_arch_list_add_reg (regcache,
5857 tdep->ppc_gp0_regnum + PPC_RT (insn));
5858 break;
5859
5860 case 8: /* Subtract From Immediate Carrying */
5861 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5862 record_full_arch_list_add_reg (regcache,
5863 tdep->ppc_gp0_regnum + PPC_RT (insn));
5864 break;
5865
5866 case 10: /* Compare Logical Immediate */
5867 case 11: /* Compare Immediate */
5868 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5869 break;
5870
5871 case 13: /* Add Immediate Carrying and Record */
5872 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5873 /* FALL-THROUGH */
5874 case 12: /* Add Immediate Carrying */
5875 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5876 /* FALL-THROUGH */
5877 case 14: /* Add Immediate */
5878 case 15: /* Add Immediate Shifted */
5879 record_full_arch_list_add_reg (regcache,
5880 tdep->ppc_gp0_regnum + PPC_RT (insn));
5881 break;
5882
5883 case 16: /* Branch Conditional */
5884 if ((PPC_BO (insn) & 0x4) == 0)
5885 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
5886 /* FALL-THROUGH */
5887 case 18: /* Branch */
5888 if (PPC_LK (insn))
5889 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
5890 break;
5891
5892 case 19:
5893 if (ppc_process_record_op19 (gdbarch, regcache, addr, insn) != 0)
5894 return -1;
5895 break;
5896
5897 case 20: /* Rotate Left Word Immediate then Mask Insert */
5898 case 21: /* Rotate Left Word Immediate then AND with Mask */
5899 case 23: /* Rotate Left Word then AND with Mask */
5900 case 30: /* Rotate Left Doubleword Immediate then Clear Left */
5901 /* Rotate Left Doubleword Immediate then Clear Right */
5902 /* Rotate Left Doubleword Immediate then Clear */
5903 /* Rotate Left Doubleword then Clear Left */
5904 /* Rotate Left Doubleword then Clear Right */
5905 /* Rotate Left Doubleword Immediate then Mask Insert */
5906 if (PPC_RC (insn))
5907 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5908 record_full_arch_list_add_reg (regcache,
5909 tdep->ppc_gp0_regnum + PPC_RA (insn));
5910 break;
5911
5912 case 28: /* AND Immediate */
5913 case 29: /* AND Immediate Shifted */
5914 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5915 /* FALL-THROUGH */
5916 case 24: /* OR Immediate */
5917 case 25: /* OR Immediate Shifted */
5918 case 26: /* XOR Immediate */
5919 case 27: /* XOR Immediate Shifted */
5920 record_full_arch_list_add_reg (regcache,
5921 tdep->ppc_gp0_regnum + PPC_RA (insn));
5922 break;
5923
5924 case 31:
5925 if (ppc_process_record_op31 (gdbarch, regcache, addr, insn) != 0)
5926 return -1;
5927 break;
5928
5929 case 33: /* Load Word and Zero with Update */
5930 case 35: /* Load Byte and Zero with Update */
5931 case 41: /* Load Halfword and Zero with Update */
5932 case 43: /* Load Halfword Algebraic with Update */
5933 record_full_arch_list_add_reg (regcache,
5934 tdep->ppc_gp0_regnum + PPC_RA (insn));
5935 /* FALL-THROUGH */
5936 case 32: /* Load Word and Zero */
5937 case 34: /* Load Byte and Zero */
5938 case 40: /* Load Halfword and Zero */
5939 case 42: /* Load Halfword Algebraic */
5940 record_full_arch_list_add_reg (regcache,
5941 tdep->ppc_gp0_regnum + PPC_RT (insn));
5942 break;
5943
5944 case 46: /* Load Multiple Word */
5945 for (i = PPC_RT (insn); i < 32; i++)
5946 record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i);
5947 break;
5948
5949 case 56: /* Load Quadword */
5950 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
5951 record_full_arch_list_add_reg (regcache, tmp);
5952 record_full_arch_list_add_reg (regcache, tmp + 1);
5953 break;
5954
5955 case 49: /* Load Floating-Point Single with Update */
5956 case 51: /* Load Floating-Point Double with Update */
5957 record_full_arch_list_add_reg (regcache,
5958 tdep->ppc_gp0_regnum + PPC_RA (insn));
5959 /* FALL-THROUGH */
5960 case 48: /* Load Floating-Point Single */
5961 case 50: /* Load Floating-Point Double */
5962 record_full_arch_list_add_reg (regcache,
5963 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5964 break;
5965
5966 case 47: /* Store Multiple Word */
5967 {
5968 ULONGEST iaddr = 0;
5969
5970 if (PPC_RA (insn) != 0)
5971 regcache_raw_read_unsigned (regcache,
5972 tdep->ppc_gp0_regnum + PPC_RA (insn),
5973 &iaddr);
5974
5975 iaddr += PPC_D (insn);
5976 record_full_arch_list_add_mem (iaddr, 4 * (32 - PPC_RS (insn)));
5977 }
5978 break;
5979
5980 case 37: /* Store Word with Update */
5981 case 39: /* Store Byte with Update */
5982 case 45: /* Store Halfword with Update */
5983 case 53: /* Store Floating-Point Single with Update */
5984 case 55: /* Store Floating-Point Double with Update */
5985 record_full_arch_list_add_reg (regcache,
5986 tdep->ppc_gp0_regnum + PPC_RA (insn));
5987 /* FALL-THROUGH */
5988 case 36: /* Store Word */
5989 case 38: /* Store Byte */
5990 case 44: /* Store Halfword */
5991 case 52: /* Store Floating-Point Single */
5992 case 54: /* Store Floating-Point Double */
5993 {
5994 ULONGEST iaddr = 0;
5995 int size = -1;
5996
5997 if (PPC_RA (insn) != 0)
5998 regcache_raw_read_unsigned (regcache,
5999 tdep->ppc_gp0_regnum + PPC_RA (insn),
6000 &iaddr);
6001 iaddr += PPC_D (insn);
6002
6003 if (op6 == 36 || op6 == 37 || op6 == 52 || op6 == 53)
6004 size = 4;
6005 else if (op6 == 54 || op6 == 55)
6006 size = 8;
6007 else if (op6 == 44 || op6 == 45)
6008 size = 2;
6009 else if (op6 == 38 || op6 == 39)
6010 size = 1;
6011 else
6012 gdb_assert (0);
6013
6014 record_full_arch_list_add_mem (iaddr, size);
6015 }
6016 break;
6017
6018 case 57:
6019 switch (insn & 0x3)
6020 {
6021 case 0: /* Load Floating-Point Double Pair */
6022 tmp = tdep->ppc_fp0_regnum + (PPC_RT (insn) & ~1);
6023 record_full_arch_list_add_reg (regcache, tmp);
6024 record_full_arch_list_add_reg (regcache, tmp + 1);
6025 break;
6026 case 2: /* Load VSX Scalar Doubleword */
6027 case 3: /* Load VSX Scalar Single */
6028 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
6029 break;
6030 default:
6031 goto UNKNOWN_OP;
6032 }
6033 break;
6034
6035 case 58: /* Load Doubleword */
6036 /* Load Doubleword with Update */
6037 /* Load Word Algebraic */
6038 if (PPC_FIELD (insn, 30, 2) > 2)
6039 goto UNKNOWN_OP;
6040
6041 record_full_arch_list_add_reg (regcache,
6042 tdep->ppc_gp0_regnum + PPC_RT (insn));
6043 if (PPC_BIT (insn, 31))
6044 record_full_arch_list_add_reg (regcache,
6045 tdep->ppc_gp0_regnum + PPC_RA (insn));
6046 break;
6047
6048 case 59:
6049 if (ppc_process_record_op59 (gdbarch, regcache, addr, insn) != 0)
6050 return -1;
6051 break;
6052
6053 case 60:
6054 if (ppc_process_record_op60 (gdbarch, regcache, addr, insn) != 0)
6055 return -1;
6056 break;
6057
6058 case 61:
6059 if (ppc_process_record_op61 (gdbarch, regcache, addr, insn) != 0)
6060 return -1;
6061 break;
6062
6063 case 62: /* Store Doubleword */
6064 /* Store Doubleword with Update */
6065 /* Store Quadword with Update */
6066 {
6067 ULONGEST iaddr = 0;
6068 int size;
6069 int sub2 = PPC_FIELD (insn, 30, 2);
6070
6071 if (sub2 > 2)
6072 goto UNKNOWN_OP;
6073
6074 if (PPC_RA (insn) != 0)
6075 regcache_raw_read_unsigned (regcache,
6076 tdep->ppc_gp0_regnum + PPC_RA (insn),
6077 &iaddr);
6078
6079 size = (sub2 == 2) ? 16 : 8;
6080
6081 iaddr += PPC_DS (insn) << 2;
6082 record_full_arch_list_add_mem (iaddr, size);
6083
6084 if (op6 == 62 && sub2 == 1)
6085 record_full_arch_list_add_reg (regcache,
6086 tdep->ppc_gp0_regnum +
6087 PPC_RA (insn));
6088
6089 break;
6090 }
6091
6092 case 63:
6093 if (ppc_process_record_op63 (gdbarch, regcache, addr, insn) != 0)
6094 return -1;
6095 break;
6096
6097 default:
6098 UNKNOWN_OP:
6099 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
6100 "at %s, %d.\n", insn, paddress (gdbarch, addr), op6);
6101 return -1;
6102 }
6103
6104 if (record_full_arch_list_add_reg (regcache, PPC_PC_REGNUM))
6105 return -1;
6106 if (record_full_arch_list_add_end ())
6107 return -1;
6108 return 0;
6109 }
6110
6111 /* Initialize the current architecture based on INFO. If possible, re-use an
6112 architecture from ARCHES, which is a list of architectures already created
6113 during this debugging session.
6114
6115 Called e.g. at program startup, when reading a core file, and when reading
6116 a binary file. */
6117
6118 static struct gdbarch *
6119 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
6120 {
6121 struct gdbarch *gdbarch;
6122 struct gdbarch_tdep *tdep;
6123 int wordsize, from_xcoff_exec, from_elf_exec;
6124 enum bfd_architecture arch;
6125 unsigned long mach;
6126 bfd abfd;
6127 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
6128 int soft_float;
6129 enum powerpc_long_double_abi long_double_abi = POWERPC_LONG_DOUBLE_AUTO;
6130 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
6131 enum powerpc_elf_abi elf_abi = POWERPC_ELF_AUTO;
6132 int have_fpu = 0, have_spe = 0, have_mq = 0, have_altivec = 0;
6133 int have_dfp = 0, have_vsx = 0, have_ppr = 0, have_dscr = 0;
6134 int have_tar = 0, have_ebb = 0, have_pmu = 0, have_htm_spr = 0;
6135 int have_htm_core = 0, have_htm_fpu = 0, have_htm_altivec = 0;
6136 int have_htm_vsx = 0, have_htm_ppr = 0, have_htm_dscr = 0;
6137 int have_htm_tar = 0;
6138 int tdesc_wordsize = -1;
6139 const struct target_desc *tdesc = info.target_desc;
6140 struct tdesc_arch_data *tdesc_data = NULL;
6141 int num_pseudoregs = 0;
6142 int cur_reg;
6143
6144 /* INFO may refer to a binary that is not of the PowerPC architecture,
6145 e.g. when debugging a stand-alone SPE executable on a Cell/B.E. system.
6146 In this case, we must not attempt to infer properties of the (PowerPC
6147 side) of the target system from properties of that executable. Trust
6148 the target description instead. */
6149 if (info.abfd
6150 && bfd_get_arch (info.abfd) != bfd_arch_powerpc
6151 && bfd_get_arch (info.abfd) != bfd_arch_rs6000)
6152 info.abfd = NULL;
6153
6154 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
6155 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
6156
6157 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
6158 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
6159
6160 /* Check word size. If INFO is from a binary file, infer it from
6161 that, else choose a likely default. */
6162 if (from_xcoff_exec)
6163 {
6164 if (bfd_xcoff_is_xcoff64 (info.abfd))
6165 wordsize = 8;
6166 else
6167 wordsize = 4;
6168 }
6169 else if (from_elf_exec)
6170 {
6171 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6172 wordsize = 8;
6173 else
6174 wordsize = 4;
6175 }
6176 else if (tdesc_has_registers (tdesc))
6177 wordsize = -1;
6178 else
6179 {
6180 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
6181 wordsize = (info.bfd_arch_info->bits_per_word
6182 / info.bfd_arch_info->bits_per_byte);
6183 else
6184 wordsize = 4;
6185 }
6186
6187 /* Get the architecture and machine from the BFD. */
6188 arch = info.bfd_arch_info->arch;
6189 mach = info.bfd_arch_info->mach;
6190
6191 /* For e500 executables, the apuinfo section is of help here. Such
6192 section contains the identifier and revision number of each
6193 Application-specific Processing Unit that is present on the
6194 chip. The content of the section is determined by the assembler
6195 which looks at each instruction and determines which unit (and
6196 which version of it) can execute it. Grovel through the section
6197 looking for relevant e500 APUs. */
6198
6199 if (bfd_uses_spe_extensions (info.abfd))
6200 {
6201 arch = info.bfd_arch_info->arch;
6202 mach = bfd_mach_ppc_e500;
6203 bfd_default_set_arch_mach (&abfd, arch, mach);
6204 info.bfd_arch_info = bfd_get_arch_info (&abfd);
6205 }
6206
6207 /* Find a default target description which describes our register
6208 layout, if we do not already have one. */
6209 if (! tdesc_has_registers (tdesc))
6210 {
6211 const struct variant *v;
6212
6213 /* Choose variant. */
6214 v = find_variant_by_arch (arch, mach);
6215 if (!v)
6216 return NULL;
6217
6218 tdesc = *v->tdesc;
6219 }
6220
6221 gdb_assert (tdesc_has_registers (tdesc));
6222
6223 /* Check any target description for validity. */
6224 if (tdesc_has_registers (tdesc))
6225 {
6226 static const char *const gprs[] = {
6227 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
6228 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
6229 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
6230 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
6231 };
6232 const struct tdesc_feature *feature;
6233 int i, valid_p;
6234 static const char *const msr_names[] = { "msr", "ps" };
6235 static const char *const cr_names[] = { "cr", "cnd" };
6236 static const char *const ctr_names[] = { "ctr", "cnt" };
6237
6238 feature = tdesc_find_feature (tdesc,
6239 "org.gnu.gdb.power.core");
6240 if (feature == NULL)
6241 return NULL;
6242
6243 tdesc_data = tdesc_data_alloc ();
6244
6245 valid_p = 1;
6246 for (i = 0; i < ppc_num_gprs; i++)
6247 valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
6248 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
6249 "pc");
6250 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
6251 "lr");
6252 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
6253 "xer");
6254
6255 /* Allow alternate names for these registers, to accomodate GDB's
6256 historic naming. */
6257 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
6258 PPC_MSR_REGNUM, msr_names);
6259 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
6260 PPC_CR_REGNUM, cr_names);
6261 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
6262 PPC_CTR_REGNUM, ctr_names);
6263
6264 if (!valid_p)
6265 {
6266 tdesc_data_cleanup (tdesc_data);
6267 return NULL;
6268 }
6269
6270 have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
6271 "mq");
6272
6273 tdesc_wordsize = tdesc_register_bitsize (feature, "pc") / 8;
6274 if (wordsize == -1)
6275 wordsize = tdesc_wordsize;
6276
6277 feature = tdesc_find_feature (tdesc,
6278 "org.gnu.gdb.power.fpu");
6279 if (feature != NULL)
6280 {
6281 static const char *const fprs[] = {
6282 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
6283 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
6284 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
6285 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
6286 };
6287 valid_p = 1;
6288 for (i = 0; i < ppc_num_fprs; i++)
6289 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6290 PPC_F0_REGNUM + i, fprs[i]);
6291 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6292 PPC_FPSCR_REGNUM, "fpscr");
6293
6294 if (!valid_p)
6295 {
6296 tdesc_data_cleanup (tdesc_data);
6297 return NULL;
6298 }
6299 have_fpu = 1;
6300
6301 /* The fpscr register was expanded in isa 2.05 to 64 bits
6302 along with the addition of the decimal floating point
6303 facility. */
6304 if (tdesc_register_bitsize (feature, "fpscr") > 32)
6305 have_dfp = 1;
6306 }
6307 else
6308 have_fpu = 0;
6309
6310 feature = tdesc_find_feature (tdesc,
6311 "org.gnu.gdb.power.altivec");
6312 if (feature != NULL)
6313 {
6314 static const char *const vector_regs[] = {
6315 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
6316 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
6317 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
6318 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
6319 };
6320
6321 valid_p = 1;
6322 for (i = 0; i < ppc_num_gprs; i++)
6323 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6324 PPC_VR0_REGNUM + i,
6325 vector_regs[i]);
6326 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6327 PPC_VSCR_REGNUM, "vscr");
6328 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6329 PPC_VRSAVE_REGNUM, "vrsave");
6330
6331 if (have_spe || !valid_p)
6332 {
6333 tdesc_data_cleanup (tdesc_data);
6334 return NULL;
6335 }
6336 have_altivec = 1;
6337 }
6338 else
6339 have_altivec = 0;
6340
6341 /* Check for POWER7 VSX registers support. */
6342 feature = tdesc_find_feature (tdesc,
6343 "org.gnu.gdb.power.vsx");
6344
6345 if (feature != NULL)
6346 {
6347 static const char *const vsx_regs[] = {
6348 "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
6349 "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
6350 "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
6351 "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
6352 "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
6353 "vs30h", "vs31h"
6354 };
6355
6356 valid_p = 1;
6357
6358 for (i = 0; i < ppc_num_vshrs; i++)
6359 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6360 PPC_VSR0_UPPER_REGNUM + i,
6361 vsx_regs[i]);
6362
6363 if (!valid_p || !have_fpu || !have_altivec)
6364 {
6365 tdesc_data_cleanup (tdesc_data);
6366 return NULL;
6367 }
6368
6369 have_vsx = 1;
6370 }
6371 else
6372 have_vsx = 0;
6373
6374 /* On machines supporting the SPE APU, the general-purpose registers
6375 are 64 bits long. There are SIMD vector instructions to treat them
6376 as pairs of floats, but the rest of the instruction set treats them
6377 as 32-bit registers, and only operates on their lower halves.
6378
6379 In the GDB regcache, we treat their high and low halves as separate
6380 registers. The low halves we present as the general-purpose
6381 registers, and then we have pseudo-registers that stitch together
6382 the upper and lower halves and present them as pseudo-registers.
6383
6384 Thus, the target description is expected to supply the upper
6385 halves separately. */
6386
6387 feature = tdesc_find_feature (tdesc,
6388 "org.gnu.gdb.power.spe");
6389 if (feature != NULL)
6390 {
6391 static const char *const upper_spe[] = {
6392 "ev0h", "ev1h", "ev2h", "ev3h",
6393 "ev4h", "ev5h", "ev6h", "ev7h",
6394 "ev8h", "ev9h", "ev10h", "ev11h",
6395 "ev12h", "ev13h", "ev14h", "ev15h",
6396 "ev16h", "ev17h", "ev18h", "ev19h",
6397 "ev20h", "ev21h", "ev22h", "ev23h",
6398 "ev24h", "ev25h", "ev26h", "ev27h",
6399 "ev28h", "ev29h", "ev30h", "ev31h"
6400 };
6401
6402 valid_p = 1;
6403 for (i = 0; i < ppc_num_gprs; i++)
6404 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6405 PPC_SPE_UPPER_GP0_REGNUM + i,
6406 upper_spe[i]);
6407 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6408 PPC_SPE_ACC_REGNUM, "acc");
6409 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6410 PPC_SPE_FSCR_REGNUM, "spefscr");
6411
6412 if (have_mq || have_fpu || !valid_p)
6413 {
6414 tdesc_data_cleanup (tdesc_data);
6415 return NULL;
6416 }
6417 have_spe = 1;
6418 }
6419 else
6420 have_spe = 0;
6421
6422 /* Program Priority Register. */
6423 feature = tdesc_find_feature (tdesc,
6424 "org.gnu.gdb.power.ppr");
6425 if (feature != NULL)
6426 {
6427 valid_p = 1;
6428 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6429 PPC_PPR_REGNUM, "ppr");
6430
6431 if (!valid_p)
6432 {
6433 tdesc_data_cleanup (tdesc_data);
6434 return NULL;
6435 }
6436 have_ppr = 1;
6437 }
6438 else
6439 have_ppr = 0;
6440
6441 /* Data Stream Control Register. */
6442 feature = tdesc_find_feature (tdesc,
6443 "org.gnu.gdb.power.dscr");
6444 if (feature != NULL)
6445 {
6446 valid_p = 1;
6447 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6448 PPC_DSCR_REGNUM, "dscr");
6449
6450 if (!valid_p)
6451 {
6452 tdesc_data_cleanup (tdesc_data);
6453 return NULL;
6454 }
6455 have_dscr = 1;
6456 }
6457 else
6458 have_dscr = 0;
6459
6460 /* Target Address Register. */
6461 feature = tdesc_find_feature (tdesc,
6462 "org.gnu.gdb.power.tar");
6463 if (feature != NULL)
6464 {
6465 valid_p = 1;
6466 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6467 PPC_TAR_REGNUM, "tar");
6468
6469 if (!valid_p)
6470 {
6471 tdesc_data_cleanup (tdesc_data);
6472 return NULL;
6473 }
6474 have_tar = 1;
6475 }
6476 else
6477 have_tar = 0;
6478
6479 /* Event-based Branching Registers. */
6480 feature = tdesc_find_feature (tdesc,
6481 "org.gnu.gdb.power.ebb");
6482 if (feature != NULL)
6483 {
6484 static const char *const ebb_regs[] = {
6485 "bescr", "ebbhr", "ebbrr"
6486 };
6487
6488 valid_p = 1;
6489 for (i = 0; i < ARRAY_SIZE (ebb_regs); i++)
6490 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6491 PPC_BESCR_REGNUM + i,
6492 ebb_regs[i]);
6493 if (!valid_p)
6494 {
6495 tdesc_data_cleanup (tdesc_data);
6496 return NULL;
6497 }
6498 have_ebb = 1;
6499 }
6500 else
6501 have_ebb = 0;
6502
6503 /* Subset of the ISA 2.07 Performance Monitor Registers provided
6504 by Linux. */
6505 feature = tdesc_find_feature (tdesc,
6506 "org.gnu.gdb.power.linux.pmu");
6507 if (feature != NULL)
6508 {
6509 valid_p = 1;
6510
6511 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6512 PPC_MMCR0_REGNUM,
6513 "mmcr0");
6514 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6515 PPC_MMCR2_REGNUM,
6516 "mmcr2");
6517 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6518 PPC_SIAR_REGNUM,
6519 "siar");
6520 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6521 PPC_SDAR_REGNUM,
6522 "sdar");
6523 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6524 PPC_SIER_REGNUM,
6525 "sier");
6526
6527 if (!valid_p)
6528 {
6529 tdesc_data_cleanup (tdesc_data);
6530 return NULL;
6531 }
6532 have_pmu = 1;
6533 }
6534 else
6535 have_pmu = 0;
6536
6537 /* Hardware Transactional Memory Registers. */
6538 feature = tdesc_find_feature (tdesc,
6539 "org.gnu.gdb.power.htm.spr");
6540 if (feature != NULL)
6541 {
6542 static const char *const tm_spr_regs[] = {
6543 "tfhar", "texasr", "tfiar"
6544 };
6545
6546 valid_p = 1;
6547 for (i = 0; i < ARRAY_SIZE (tm_spr_regs); i++)
6548 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6549 PPC_TFHAR_REGNUM + i,
6550 tm_spr_regs[i]);
6551 if (!valid_p)
6552 {
6553 tdesc_data_cleanup (tdesc_data);
6554 return NULL;
6555 }
6556
6557 have_htm_spr = 1;
6558 }
6559 else
6560 have_htm_spr = 0;
6561
6562 feature = tdesc_find_feature (tdesc,
6563 "org.gnu.gdb.power.htm.core");
6564 if (feature != NULL)
6565 {
6566 static const char *const cgprs[] = {
6567 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
6568 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14",
6569 "cr15", "cr16", "cr17", "cr18", "cr19", "cr20", "cr21",
6570 "cr22", "cr23", "cr24", "cr25", "cr26", "cr27", "cr28",
6571 "cr29", "cr30", "cr31", "ccr", "cxer", "clr", "cctr"
6572 };
6573
6574 valid_p = 1;
6575
6576 for (i = 0; i < ARRAY_SIZE (cgprs); i++)
6577 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6578 PPC_CR0_REGNUM + i,
6579 cgprs[i]);
6580 if (!valid_p)
6581 {
6582 tdesc_data_cleanup (tdesc_data);
6583 return NULL;
6584 }
6585
6586 have_htm_core = 1;
6587 }
6588 else
6589 have_htm_core = 0;
6590
6591 feature = tdesc_find_feature (tdesc,
6592 "org.gnu.gdb.power.htm.fpu");
6593 if (feature != NULL)
6594 {
6595 valid_p = 1;
6596
6597 static const char *const cfprs[] = {
6598 "cf0", "cf1", "cf2", "cf3", "cf4", "cf5", "cf6", "cf7",
6599 "cf8", "cf9", "cf10", "cf11", "cf12", "cf13", "cf14", "cf15",
6600 "cf16", "cf17", "cf18", "cf19", "cf20", "cf21", "cf22",
6601 "cf23", "cf24", "cf25", "cf26", "cf27", "cf28", "cf29",
6602 "cf30", "cf31", "cfpscr"
6603 };
6604
6605 for (i = 0; i < ARRAY_SIZE (cfprs); i++)
6606 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6607 PPC_CF0_REGNUM + i,
6608 cfprs[i]);
6609
6610 if (!valid_p)
6611 {
6612 tdesc_data_cleanup (tdesc_data);
6613 return NULL;
6614 }
6615 have_htm_fpu = 1;
6616 }
6617 else
6618 have_htm_fpu = 0;
6619
6620 feature = tdesc_find_feature (tdesc,
6621 "org.gnu.gdb.power.htm.altivec");
6622 if (feature != NULL)
6623 {
6624 valid_p = 1;
6625
6626 static const char *const cvmx[] = {
6627 "cvr0", "cvr1", "cvr2", "cvr3", "cvr4", "cvr5", "cvr6",
6628 "cvr7", "cvr8", "cvr9", "cvr10", "cvr11", "cvr12", "cvr13",
6629 "cvr14", "cvr15","cvr16", "cvr17", "cvr18", "cvr19", "cvr20",
6630 "cvr21", "cvr22", "cvr23", "cvr24", "cvr25", "cvr26",
6631 "cvr27", "cvr28", "cvr29", "cvr30", "cvr31", "cvscr",
6632 "cvrsave"
6633 };
6634
6635 for (i = 0; i < ARRAY_SIZE (cvmx); i++)
6636 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6637 PPC_CVR0_REGNUM + i,
6638 cvmx[i]);
6639
6640 if (!valid_p)
6641 {
6642 tdesc_data_cleanup (tdesc_data);
6643 return NULL;
6644 }
6645 have_htm_altivec = 1;
6646 }
6647 else
6648 have_htm_altivec = 0;
6649
6650 feature = tdesc_find_feature (tdesc,
6651 "org.gnu.gdb.power.htm.vsx");
6652 if (feature != NULL)
6653 {
6654 valid_p = 1;
6655
6656 static const char *const cvsx[] = {
6657 "cvs0h", "cvs1h", "cvs2h", "cvs3h", "cvs4h", "cvs5h",
6658 "cvs6h", "cvs7h", "cvs8h", "cvs9h", "cvs10h", "cvs11h",
6659 "cvs12h", "cvs13h", "cvs14h", "cvs15h", "cvs16h", "cvs17h",
6660 "cvs18h", "cvs19h", "cvs20h", "cvs21h", "cvs22h", "cvs23h",
6661 "cvs24h", "cvs25h", "cvs26h", "cvs27h", "cvs28h", "cvs29h",
6662 "cvs30h", "cvs31h"
6663 };
6664
6665 for (i = 0; i < ARRAY_SIZE (cvsx); i++)
6666 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6667 (PPC_CVSR0_UPPER_REGNUM
6668 + i),
6669 cvsx[i]);
6670
6671 if (!valid_p || !have_htm_fpu || !have_htm_altivec)
6672 {
6673 tdesc_data_cleanup (tdesc_data);
6674 return NULL;
6675 }
6676 have_htm_vsx = 1;
6677 }
6678 else
6679 have_htm_vsx = 0;
6680
6681 feature = tdesc_find_feature (tdesc,
6682 "org.gnu.gdb.power.htm.ppr");
6683 if (feature != NULL)
6684 {
6685 valid_p = tdesc_numbered_register (feature, tdesc_data,
6686 PPC_CPPR_REGNUM, "cppr");
6687
6688 if (!valid_p)
6689 {
6690 tdesc_data_cleanup (tdesc_data);
6691 return NULL;
6692 }
6693 have_htm_ppr = 1;
6694 }
6695 else
6696 have_htm_ppr = 0;
6697
6698 feature = tdesc_find_feature (tdesc,
6699 "org.gnu.gdb.power.htm.dscr");
6700 if (feature != NULL)
6701 {
6702 valid_p = tdesc_numbered_register (feature, tdesc_data,
6703 PPC_CDSCR_REGNUM, "cdscr");
6704
6705 if (!valid_p)
6706 {
6707 tdesc_data_cleanup (tdesc_data);
6708 return NULL;
6709 }
6710 have_htm_dscr = 1;
6711 }
6712 else
6713 have_htm_dscr = 0;
6714
6715 feature = tdesc_find_feature (tdesc,
6716 "org.gnu.gdb.power.htm.tar");
6717 if (feature != NULL)
6718 {
6719 valid_p = tdesc_numbered_register (feature, tdesc_data,
6720 PPC_CTAR_REGNUM, "ctar");
6721
6722 if (!valid_p)
6723 {
6724 tdesc_data_cleanup (tdesc_data);
6725 return NULL;
6726 }
6727 have_htm_tar = 1;
6728 }
6729 else
6730 have_htm_tar = 0;
6731 }
6732
6733 /* If we have a 64-bit binary on a 32-bit target, complain. Also
6734 complain for a 32-bit binary on a 64-bit target; we do not yet
6735 support that. For instance, the 32-bit ABI routines expect
6736 32-bit GPRs.
6737
6738 As long as there isn't an explicit target description, we'll
6739 choose one based on the BFD architecture and get a word size
6740 matching the binary (probably powerpc:common or
6741 powerpc:common64). So there is only trouble if a 64-bit target
6742 supplies a 64-bit description while debugging a 32-bit
6743 binary. */
6744 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
6745 {
6746 tdesc_data_cleanup (tdesc_data);
6747 return NULL;
6748 }
6749
6750 #ifdef HAVE_ELF
6751 if (from_elf_exec)
6752 {
6753 switch (elf_elfheader (info.abfd)->e_flags & EF_PPC64_ABI)
6754 {
6755 case 1:
6756 elf_abi = POWERPC_ELF_V1;
6757 break;
6758 case 2:
6759 elf_abi = POWERPC_ELF_V2;
6760 break;
6761 default:
6762 break;
6763 }
6764 }
6765
6766 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
6767 {
6768 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6769 Tag_GNU_Power_ABI_FP) & 3)
6770 {
6771 case 1:
6772 soft_float_flag = AUTO_BOOLEAN_FALSE;
6773 break;
6774 case 2:
6775 soft_float_flag = AUTO_BOOLEAN_TRUE;
6776 break;
6777 default:
6778 break;
6779 }
6780 }
6781
6782 if (long_double_abi == POWERPC_LONG_DOUBLE_AUTO && from_elf_exec)
6783 {
6784 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6785 Tag_GNU_Power_ABI_FP) >> 2)
6786 {
6787 case 1:
6788 long_double_abi = POWERPC_LONG_DOUBLE_IBM128;
6789 break;
6790 case 3:
6791 long_double_abi = POWERPC_LONG_DOUBLE_IEEE128;
6792 break;
6793 default:
6794 break;
6795 }
6796 }
6797
6798 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
6799 {
6800 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6801 Tag_GNU_Power_ABI_Vector))
6802 {
6803 case 1:
6804 vector_abi = POWERPC_VEC_GENERIC;
6805 break;
6806 case 2:
6807 vector_abi = POWERPC_VEC_ALTIVEC;
6808 break;
6809 case 3:
6810 vector_abi = POWERPC_VEC_SPE;
6811 break;
6812 default:
6813 break;
6814 }
6815 }
6816 #endif
6817
6818 /* At this point, the only supported ELF-based 64-bit little-endian
6819 operating system is GNU/Linux, and this uses the ELFv2 ABI by
6820 default. All other supported ELF-based operating systems use the
6821 ELFv1 ABI by default. Therefore, if the ABI marker is missing,
6822 e.g. because we run a legacy binary, or have attached to a process
6823 and have not found any associated binary file, set the default
6824 according to this heuristic. */
6825 if (elf_abi == POWERPC_ELF_AUTO)
6826 {
6827 if (wordsize == 8 && info.byte_order == BFD_ENDIAN_LITTLE)
6828 elf_abi = POWERPC_ELF_V2;
6829 else
6830 elf_abi = POWERPC_ELF_V1;
6831 }
6832
6833 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
6834 soft_float = 1;
6835 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
6836 soft_float = 0;
6837 else
6838 soft_float = !have_fpu;
6839
6840 /* If we have a hard float binary or setting but no floating point
6841 registers, downgrade to soft float anyway. We're still somewhat
6842 useful in this scenario. */
6843 if (!soft_float && !have_fpu)
6844 soft_float = 1;
6845
6846 /* Similarly for vector registers. */
6847 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
6848 vector_abi = POWERPC_VEC_GENERIC;
6849
6850 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
6851 vector_abi = POWERPC_VEC_GENERIC;
6852
6853 if (vector_abi == POWERPC_VEC_AUTO)
6854 {
6855 if (have_altivec)
6856 vector_abi = POWERPC_VEC_ALTIVEC;
6857 else if (have_spe)
6858 vector_abi = POWERPC_VEC_SPE;
6859 else
6860 vector_abi = POWERPC_VEC_GENERIC;
6861 }
6862
6863 /* Do not limit the vector ABI based on available hardware, since we
6864 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
6865
6866 /* Find a candidate among extant architectures. */
6867 for (arches = gdbarch_list_lookup_by_info (arches, &info);
6868 arches != NULL;
6869 arches = gdbarch_list_lookup_by_info (arches->next, &info))
6870 {
6871 /* Word size in the various PowerPC bfd_arch_info structs isn't
6872 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
6873 separate word size check. */
6874 tdep = gdbarch_tdep (arches->gdbarch);
6875 if (tdep && tdep->elf_abi != elf_abi)
6876 continue;
6877 if (tdep && tdep->soft_float != soft_float)
6878 continue;
6879 if (tdep && tdep->long_double_abi != long_double_abi)
6880 continue;
6881 if (tdep && tdep->vector_abi != vector_abi)
6882 continue;
6883 if (tdep && tdep->wordsize == wordsize)
6884 {
6885 if (tdesc_data != NULL)
6886 tdesc_data_cleanup (tdesc_data);
6887 return arches->gdbarch;
6888 }
6889 }
6890
6891 /* None found, create a new architecture from INFO, whose bfd_arch_info
6892 validity depends on the source:
6893 - executable useless
6894 - rs6000_host_arch() good
6895 - core file good
6896 - "set arch" trust blindly
6897 - GDB startup useless but harmless */
6898
6899 tdep = XCNEW (struct gdbarch_tdep);
6900 tdep->wordsize = wordsize;
6901 tdep->elf_abi = elf_abi;
6902 tdep->soft_float = soft_float;
6903 tdep->long_double_abi = long_double_abi;
6904 tdep->vector_abi = vector_abi;
6905
6906 gdbarch = gdbarch_alloc (&info, tdep);
6907
6908 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
6909 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
6910 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
6911 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
6912 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
6913 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
6914 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
6915 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
6916
6917 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
6918 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
6919 tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
6920 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
6921 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
6922 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
6923 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
6924 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
6925 tdep->ppc_ppr_regnum = have_ppr ? PPC_PPR_REGNUM : -1;
6926 tdep->ppc_dscr_regnum = have_dscr ? PPC_DSCR_REGNUM : -1;
6927 tdep->ppc_tar_regnum = have_tar ? PPC_TAR_REGNUM : -1;
6928 tdep->have_ebb = have_ebb;
6929
6930 /* If additional pmu registers are added, care must be taken when
6931 setting new fields in the tdep below, to maintain compatibility
6932 with features that only provide some of the registers. Currently
6933 gdb access to the pmu registers is only supported in linux, and
6934 linux only provides a subset of the pmu registers defined in the
6935 architecture. */
6936
6937 tdep->ppc_mmcr0_regnum = have_pmu ? PPC_MMCR0_REGNUM : -1;
6938 tdep->ppc_mmcr2_regnum = have_pmu ? PPC_MMCR2_REGNUM : -1;
6939 tdep->ppc_siar_regnum = have_pmu ? PPC_SIAR_REGNUM : -1;
6940 tdep->ppc_sdar_regnum = have_pmu ? PPC_SDAR_REGNUM : -1;
6941 tdep->ppc_sier_regnum = have_pmu ? PPC_SIER_REGNUM : -1;
6942
6943 tdep->have_htm_spr = have_htm_spr;
6944 tdep->have_htm_core = have_htm_core;
6945 tdep->have_htm_fpu = have_htm_fpu;
6946 tdep->have_htm_altivec = have_htm_altivec;
6947 tdep->have_htm_vsx = have_htm_vsx;
6948 tdep->ppc_cppr_regnum = have_htm_ppr ? PPC_CPPR_REGNUM : -1;
6949 tdep->ppc_cdscr_regnum = have_htm_dscr ? PPC_CDSCR_REGNUM : -1;
6950 tdep->ppc_ctar_regnum = have_htm_tar ? PPC_CTAR_REGNUM : -1;
6951
6952 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
6953 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
6954 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
6955 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
6956
6957 /* The XML specification for PowerPC sensibly calls the MSR "msr".
6958 GDB traditionally called it "ps", though, so let GDB add an
6959 alias. */
6960 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
6961
6962 if (wordsize == 8)
6963 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
6964 else
6965 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
6966
6967 /* Set lr_frame_offset. */
6968 if (wordsize == 8)
6969 tdep->lr_frame_offset = 16;
6970 else
6971 tdep->lr_frame_offset = 4;
6972
6973 if (have_spe || have_dfp || have_altivec
6974 || have_vsx || have_htm_fpu || have_htm_vsx)
6975 {
6976 set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
6977 set_gdbarch_pseudo_register_write (gdbarch,
6978 rs6000_pseudo_register_write);
6979 set_gdbarch_ax_pseudo_register_collect (gdbarch,
6980 rs6000_ax_pseudo_register_collect);
6981 }
6982
6983 set_gdbarch_gen_return_address (gdbarch, rs6000_gen_return_address);
6984
6985 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
6986
6987 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
6988
6989 if (have_spe)
6990 num_pseudoregs += 32;
6991 if (have_dfp)
6992 num_pseudoregs += 16;
6993 if (have_altivec)
6994 num_pseudoregs += 32;
6995 if (have_vsx)
6996 /* Include both VSX and Extended FP registers. */
6997 num_pseudoregs += 96;
6998 if (have_htm_fpu)
6999 num_pseudoregs += 16;
7000 /* Include both checkpointed VSX and EFP registers. */
7001 if (have_htm_vsx)
7002 num_pseudoregs += 64 + 32;
7003
7004 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
7005
7006 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
7007 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
7008 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
7009 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
7010 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
7011 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
7012 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
7013 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
7014 set_gdbarch_char_signed (gdbarch, 0);
7015
7016 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
7017 if (wordsize == 8)
7018 /* PPC64 SYSV. */
7019 set_gdbarch_frame_red_zone_size (gdbarch, 288);
7020
7021 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
7022 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
7023 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
7024
7025 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
7026 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
7027
7028 if (wordsize == 4)
7029 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
7030 else if (wordsize == 8)
7031 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
7032
7033 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
7034 set_gdbarch_stack_frame_destroyed_p (gdbarch, rs6000_stack_frame_destroyed_p);
7035 set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
7036
7037 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7038
7039 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
7040 rs6000_breakpoint::kind_from_pc);
7041 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
7042 rs6000_breakpoint::bp_from_kind);
7043
7044 /* The value of symbols of type N_SO and N_FUN maybe null when
7045 it shouldn't be. */
7046 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
7047
7048 /* Handles single stepping of atomic sequences. */
7049 set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
7050
7051 /* Not sure on this. FIXMEmgo */
7052 set_gdbarch_frame_args_skip (gdbarch, 8);
7053
7054 /* Helpers for function argument information. */
7055 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
7056
7057 /* Trampoline. */
7058 set_gdbarch_in_solib_return_trampoline
7059 (gdbarch, rs6000_in_solib_return_trampoline);
7060 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
7061
7062 /* Hook in the DWARF CFI frame unwinder. */
7063 dwarf2_append_unwinders (gdbarch);
7064 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
7065
7066 /* Frame handling. */
7067 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
7068
7069 /* Setup displaced stepping. */
7070 set_gdbarch_displaced_step_copy_insn (gdbarch,
7071 ppc_displaced_step_copy_insn);
7072 set_gdbarch_displaced_step_hw_singlestep (gdbarch,
7073 ppc_displaced_step_hw_singlestep);
7074 set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
7075 set_gdbarch_displaced_step_location (gdbarch,
7076 displaced_step_at_entry_point);
7077
7078 set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
7079
7080 /* Hook in ABI-specific overrides, if they have been registered. */
7081 info.target_desc = tdesc;
7082 info.tdesc_data = tdesc_data;
7083 gdbarch_init_osabi (info, gdbarch);
7084
7085 switch (info.osabi)
7086 {
7087 case GDB_OSABI_LINUX:
7088 case GDB_OSABI_NETBSD:
7089 case GDB_OSABI_UNKNOWN:
7090 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
7091 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
7092 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
7093 break;
7094 default:
7095 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
7096
7097 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
7098 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
7099 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
7100 }
7101
7102 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
7103 set_tdesc_pseudo_register_reggroup_p (gdbarch,
7104 rs6000_pseudo_register_reggroup_p);
7105 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7106
7107 /* Override the normal target description method to make the SPE upper
7108 halves anonymous. */
7109 set_gdbarch_register_name (gdbarch, rs6000_register_name);
7110
7111 /* Choose register numbers for all supported pseudo-registers. */
7112 tdep->ppc_ev0_regnum = -1;
7113 tdep->ppc_dl0_regnum = -1;
7114 tdep->ppc_v0_alias_regnum = -1;
7115 tdep->ppc_vsr0_regnum = -1;
7116 tdep->ppc_efpr0_regnum = -1;
7117 tdep->ppc_cdl0_regnum = -1;
7118 tdep->ppc_cvsr0_regnum = -1;
7119 tdep->ppc_cefpr0_regnum = -1;
7120
7121 cur_reg = gdbarch_num_regs (gdbarch);
7122
7123 if (have_spe)
7124 {
7125 tdep->ppc_ev0_regnum = cur_reg;
7126 cur_reg += 32;
7127 }
7128 if (have_dfp)
7129 {
7130 tdep->ppc_dl0_regnum = cur_reg;
7131 cur_reg += 16;
7132 }
7133 if (have_altivec)
7134 {
7135 tdep->ppc_v0_alias_regnum = cur_reg;
7136 cur_reg += 32;
7137 }
7138 if (have_vsx)
7139 {
7140 tdep->ppc_vsr0_regnum = cur_reg;
7141 cur_reg += 64;
7142 tdep->ppc_efpr0_regnum = cur_reg;
7143 cur_reg += 32;
7144 }
7145 if (have_htm_fpu)
7146 {
7147 tdep->ppc_cdl0_regnum = cur_reg;
7148 cur_reg += 16;
7149 }
7150 if (have_htm_vsx)
7151 {
7152 tdep->ppc_cvsr0_regnum = cur_reg;
7153 cur_reg += 64;
7154 tdep->ppc_cefpr0_regnum = cur_reg;
7155 cur_reg += 32;
7156 }
7157
7158 gdb_assert (gdbarch_num_cooked_regs (gdbarch) == cur_reg);
7159
7160 /* Register the ravenscar_arch_ops. */
7161 if (mach == bfd_mach_ppc_e500)
7162 register_e500_ravenscar_ops (gdbarch);
7163 else
7164 register_ppc_ravenscar_ops (gdbarch);
7165
7166 set_gdbarch_disassembler_options (gdbarch, &powerpc_disassembler_options);
7167 set_gdbarch_valid_disassembler_options (gdbarch,
7168 disassembler_options_powerpc ());
7169
7170 return gdbarch;
7171 }
7172
7173 static void
7174 rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
7175 {
7176 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7177
7178 if (tdep == NULL)
7179 return;
7180
7181 /* FIXME: Dump gdbarch_tdep. */
7182 }
7183
7184 /* PowerPC-specific commands. */
7185
7186 static void
7187 set_powerpc_command (const char *args, int from_tty)
7188 {
7189 printf_unfiltered (_("\
7190 \"set powerpc\" must be followed by an appropriate subcommand.\n"));
7191 help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout);
7192 }
7193
7194 static void
7195 show_powerpc_command (const char *args, int from_tty)
7196 {
7197 cmd_show_list (showpowerpccmdlist, from_tty, "");
7198 }
7199
7200 static void
7201 powerpc_set_soft_float (const char *args, int from_tty,
7202 struct cmd_list_element *c)
7203 {
7204 struct gdbarch_info info;
7205
7206 /* Update the architecture. */
7207 gdbarch_info_init (&info);
7208 if (!gdbarch_update_p (info))
7209 internal_error (__FILE__, __LINE__, _("could not update architecture"));
7210 }
7211
7212 static void
7213 powerpc_set_vector_abi (const char *args, int from_tty,
7214 struct cmd_list_element *c)
7215 {
7216 struct gdbarch_info info;
7217 int vector_abi;
7218
7219 for (vector_abi = POWERPC_VEC_AUTO;
7220 vector_abi != POWERPC_VEC_LAST;
7221 vector_abi++)
7222 if (strcmp (powerpc_vector_abi_string,
7223 powerpc_vector_strings[vector_abi]) == 0)
7224 {
7225 powerpc_vector_abi_global = (enum powerpc_vector_abi) vector_abi;
7226 break;
7227 }
7228
7229 if (vector_abi == POWERPC_VEC_LAST)
7230 internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
7231 powerpc_vector_abi_string);
7232
7233 /* Update the architecture. */
7234 gdbarch_info_init (&info);
7235 if (!gdbarch_update_p (info))
7236 internal_error (__FILE__, __LINE__, _("could not update architecture"));
7237 }
7238
7239 /* Show the current setting of the exact watchpoints flag. */
7240
7241 static void
7242 show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
7243 struct cmd_list_element *c,
7244 const char *value)
7245 {
7246 fprintf_filtered (file, _("Use of exact watchpoints is %s.\n"), value);
7247 }
7248
7249 /* Read a PPC instruction from memory. */
7250
7251 static unsigned int
7252 read_insn (struct frame_info *frame, CORE_ADDR pc)
7253 {
7254 struct gdbarch *gdbarch = get_frame_arch (frame);
7255 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7256
7257 return read_memory_unsigned_integer (pc, 4, byte_order);
7258 }
7259
7260 /* Return non-zero if the instructions at PC match the series
7261 described in PATTERN, or zero otherwise. PATTERN is an array of
7262 'struct ppc_insn_pattern' objects, terminated by an entry whose
7263 mask is zero.
7264
7265 When the match is successful, fill INSNS[i] with what PATTERN[i]
7266 matched. If PATTERN[i] is optional, and the instruction wasn't
7267 present, set INSNS[i] to 0 (which is not a valid PPC instruction).
7268 INSNS should have as many elements as PATTERN, minus the terminator.
7269 Note that, if PATTERN contains optional instructions which aren't
7270 present in memory, then INSNS will have holes, so INSNS[i] isn't
7271 necessarily the i'th instruction in memory. */
7272
7273 int
7274 ppc_insns_match_pattern (struct frame_info *frame, CORE_ADDR pc,
7275 const struct ppc_insn_pattern *pattern,
7276 unsigned int *insns)
7277 {
7278 int i;
7279 unsigned int insn;
7280
7281 for (i = 0, insn = 0; pattern[i].mask; i++)
7282 {
7283 if (insn == 0)
7284 insn = read_insn (frame, pc);
7285 insns[i] = 0;
7286 if ((insn & pattern[i].mask) == pattern[i].data)
7287 {
7288 insns[i] = insn;
7289 pc += 4;
7290 insn = 0;
7291 }
7292 else if (!pattern[i].optional)
7293 return 0;
7294 }
7295
7296 return 1;
7297 }
7298
7299 /* Return the 'd' field of the d-form instruction INSN, properly
7300 sign-extended. */
7301
7302 CORE_ADDR
7303 ppc_insn_d_field (unsigned int insn)
7304 {
7305 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
7306 }
7307
7308 /* Return the 'ds' field of the ds-form instruction INSN, with the two
7309 zero bits concatenated at the right, and properly
7310 sign-extended. */
7311
7312 CORE_ADDR
7313 ppc_insn_ds_field (unsigned int insn)
7314 {
7315 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
7316 }
7317
7318 /* Initialization code. */
7319
7320 void
7321 _initialize_rs6000_tdep (void)
7322 {
7323 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
7324 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
7325
7326 /* Initialize the standard target descriptions. */
7327 initialize_tdesc_powerpc_32 ();
7328 initialize_tdesc_powerpc_altivec32 ();
7329 initialize_tdesc_powerpc_vsx32 ();
7330 initialize_tdesc_powerpc_403 ();
7331 initialize_tdesc_powerpc_403gc ();
7332 initialize_tdesc_powerpc_405 ();
7333 initialize_tdesc_powerpc_505 ();
7334 initialize_tdesc_powerpc_601 ();
7335 initialize_tdesc_powerpc_602 ();
7336 initialize_tdesc_powerpc_603 ();
7337 initialize_tdesc_powerpc_604 ();
7338 initialize_tdesc_powerpc_64 ();
7339 initialize_tdesc_powerpc_altivec64 ();
7340 initialize_tdesc_powerpc_vsx64 ();
7341 initialize_tdesc_powerpc_7400 ();
7342 initialize_tdesc_powerpc_750 ();
7343 initialize_tdesc_powerpc_860 ();
7344 initialize_tdesc_powerpc_e500 ();
7345 initialize_tdesc_rs6000 ();
7346
7347 /* Add root prefix command for all "set powerpc"/"show powerpc"
7348 commands. */
7349 add_prefix_cmd ("powerpc", no_class, set_powerpc_command,
7350 _("Various PowerPC-specific commands."),
7351 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
7352
7353 add_prefix_cmd ("powerpc", no_class, show_powerpc_command,
7354 _("Various PowerPC-specific commands."),
7355 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
7356
7357 /* Add a command to allow the user to force the ABI. */
7358 add_setshow_auto_boolean_cmd ("soft-float", class_support,
7359 &powerpc_soft_float_global,
7360 _("Set whether to use a soft-float ABI."),
7361 _("Show whether to use a soft-float ABI."),
7362 NULL,
7363 powerpc_set_soft_float, NULL,
7364 &setpowerpccmdlist, &showpowerpccmdlist);
7365
7366 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
7367 &powerpc_vector_abi_string,
7368 _("Set the vector ABI."),
7369 _("Show the vector ABI."),
7370 NULL, powerpc_set_vector_abi, NULL,
7371 &setpowerpccmdlist, &showpowerpccmdlist);
7372
7373 add_setshow_boolean_cmd ("exact-watchpoints", class_support,
7374 &target_exact_watchpoints,
7375 _("\
7376 Set whether to use just one debug register for watchpoints on scalars."),
7377 _("\
7378 Show whether to use just one debug register for watchpoints on scalars."),
7379 _("\
7380 If true, GDB will use only one debug register when watching a variable of\n\
7381 scalar type, thus assuming that the variable is accessed through the address\n\
7382 of its first byte."),
7383 NULL, show_powerpc_exact_watchpoints,
7384 &setpowerpccmdlist, &showpowerpccmdlist);
7385 }
This page took 0.178883 seconds and 4 git commands to generate.