Automatic date update in version.in
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "infrun.h"
24 #include "symtab.h"
25 #include "target.h"
26 #include "gdbcore.h"
27 #include "gdbcmd.h"
28 #include "objfiles.h"
29 #include "arch-utils.h"
30 #include "regcache.h"
31 #include "regset.h"
32 #include "target-float.h"
33 #include "value.h"
34 #include "parser-defs.h"
35 #include "osabi.h"
36 #include "infcall.h"
37 #include "sim-regno.h"
38 #include "gdb/sim-ppc.h"
39 #include "reggroups.h"
40 #include "dwarf2/frame.h"
41 #include "target-descriptions.h"
42 #include "user-regs.h"
43 #include "record-full.h"
44 #include "auxv.h"
45
46 #include "coff/internal.h" /* for libcoff.h */
47 #include "libcoff.h" /* for xcoff_data */
48 #include "coff/xcoff.h"
49 #include "libxcoff.h"
50
51 #include "elf-bfd.h"
52 #include "elf/ppc.h"
53 #include "elf/ppc64.h"
54
55 #include "solib-svr4.h"
56 #include "ppc-tdep.h"
57 #include "ppc-ravenscar-thread.h"
58
59 #include "dis-asm.h"
60
61 #include "trad-frame.h"
62 #include "frame-unwind.h"
63 #include "frame-base.h"
64
65 #include "ax.h"
66 #include "ax-gdb.h"
67 #include <algorithm>
68
69 #include "features/rs6000/powerpc-32.c"
70 #include "features/rs6000/powerpc-altivec32.c"
71 #include "features/rs6000/powerpc-vsx32.c"
72 #include "features/rs6000/powerpc-403.c"
73 #include "features/rs6000/powerpc-403gc.c"
74 #include "features/rs6000/powerpc-405.c"
75 #include "features/rs6000/powerpc-505.c"
76 #include "features/rs6000/powerpc-601.c"
77 #include "features/rs6000/powerpc-602.c"
78 #include "features/rs6000/powerpc-603.c"
79 #include "features/rs6000/powerpc-604.c"
80 #include "features/rs6000/powerpc-64.c"
81 #include "features/rs6000/powerpc-altivec64.c"
82 #include "features/rs6000/powerpc-vsx64.c"
83 #include "features/rs6000/powerpc-7400.c"
84 #include "features/rs6000/powerpc-750.c"
85 #include "features/rs6000/powerpc-860.c"
86 #include "features/rs6000/powerpc-e500.c"
87 #include "features/rs6000/rs6000.c"
88
89 /* Determine if regnum is an SPE pseudo-register. */
90 #define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
91 && (regnum) >= (tdep)->ppc_ev0_regnum \
92 && (regnum) < (tdep)->ppc_ev0_regnum + 32)
93
94 /* Determine if regnum is a decimal float pseudo-register. */
95 #define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
96 && (regnum) >= (tdep)->ppc_dl0_regnum \
97 && (regnum) < (tdep)->ppc_dl0_regnum + 16)
98
99 /* Determine if regnum is a "vX" alias for the raw "vrX" vector
100 registers. */
101 #define IS_V_ALIAS_PSEUDOREG(tdep, regnum) (\
102 (tdep)->ppc_v0_alias_regnum >= 0 \
103 && (regnum) >= (tdep)->ppc_v0_alias_regnum \
104 && (regnum) < (tdep)->ppc_v0_alias_regnum + ppc_num_vrs)
105
106 /* Determine if regnum is a POWER7 VSX register. */
107 #define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
108 && (regnum) >= (tdep)->ppc_vsr0_regnum \
109 && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
110
111 /* Determine if regnum is a POWER7 Extended FP register. */
112 #define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
113 && (regnum) >= (tdep)->ppc_efpr0_regnum \
114 && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
115
116 /* Determine if regnum is a checkpointed decimal float
117 pseudo-register. */
118 #define IS_CDFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cdl0_regnum >= 0 \
119 && (regnum) >= (tdep)->ppc_cdl0_regnum \
120 && (regnum) < (tdep)->ppc_cdl0_regnum + 16)
121
122 /* Determine if regnum is a Checkpointed POWER7 VSX register. */
123 #define IS_CVSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cvsr0_regnum >= 0 \
124 && (regnum) >= (tdep)->ppc_cvsr0_regnum \
125 && (regnum) < (tdep)->ppc_cvsr0_regnum + ppc_num_vsrs)
126
127 /* Determine if regnum is a Checkpointed POWER7 Extended FP register. */
128 #define IS_CEFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cefpr0_regnum >= 0 \
129 && (regnum) >= (tdep)->ppc_cefpr0_regnum \
130 && (regnum) < (tdep)->ppc_cefpr0_regnum + ppc_num_efprs)
131
132 /* Holds the current set of options to be passed to the disassembler. */
133 static char *powerpc_disassembler_options;
134
135 /* The list of available "set powerpc ..." and "show powerpc ..."
136 commands. */
137 static struct cmd_list_element *setpowerpccmdlist = NULL;
138 static struct cmd_list_element *showpowerpccmdlist = NULL;
139
140 static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
141
142 /* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
143 static const char *const powerpc_vector_strings[] =
144 {
145 "auto",
146 "generic",
147 "altivec",
148 "spe",
149 NULL
150 };
151
152 /* A variable that can be configured by the user. */
153 static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
154 static const char *powerpc_vector_abi_string = "auto";
155
156 /* PowerPC-related per-inferior data. */
157
158 struct ppc_inferior_data
159 {
160 /* This is an optional in case we add more fields to ppc_inferior_data, we
161 don't want it instantiated as soon as we get the ppc_inferior_data for an
162 inferior. */
163 gdb::optional<displaced_step_buffers> disp_step_buf;
164 };
165
166 static inferior_key<ppc_inferior_data> ppc_inferior_data_key;
167
168 /* Get the per-inferior PowerPC data for INF. */
169
170 static ppc_inferior_data *
171 get_ppc_per_inferior (inferior *inf)
172 {
173 ppc_inferior_data *per_inf = ppc_inferior_data_key.get (inf);
174
175 if (per_inf == nullptr)
176 per_inf = ppc_inferior_data_key.emplace (inf);
177
178 return per_inf;
179 }
180
181 /* To be used by skip_prologue. */
182
183 struct rs6000_framedata
184 {
185 int offset; /* total size of frame --- the distance
186 by which we decrement sp to allocate
187 the frame */
188 int saved_gpr; /* smallest # of saved gpr */
189 unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
190 int saved_fpr; /* smallest # of saved fpr */
191 int saved_vr; /* smallest # of saved vr */
192 int saved_ev; /* smallest # of saved ev */
193 int alloca_reg; /* alloca register number (frame ptr) */
194 char frameless; /* true if frameless functions. */
195 char nosavedpc; /* true if pc not saved. */
196 char used_bl; /* true if link register clobbered */
197 int gpr_offset; /* offset of saved gprs from prev sp */
198 int fpr_offset; /* offset of saved fprs from prev sp */
199 int vr_offset; /* offset of saved vrs from prev sp */
200 int ev_offset; /* offset of saved evs from prev sp */
201 int lr_offset; /* offset of saved lr */
202 int lr_register; /* register of saved lr, if trustworthy */
203 int cr_offset; /* offset of saved cr */
204 int vrsave_offset; /* offset of saved vrsave register */
205 };
206
207
208 /* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
209 int
210 vsx_register_p (struct gdbarch *gdbarch, int regno)
211 {
212 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
213 if (tdep->ppc_vsr0_regnum < 0)
214 return 0;
215 else
216 return (regno >= tdep->ppc_vsr0_upper_regnum && regno
217 <= tdep->ppc_vsr0_upper_regnum + 31);
218 }
219
220 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
221 int
222 altivec_register_p (struct gdbarch *gdbarch, int regno)
223 {
224 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
225 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
226 return 0;
227 else
228 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
229 }
230
231
232 /* Return true if REGNO is an SPE register, false otherwise. */
233 int
234 spe_register_p (struct gdbarch *gdbarch, int regno)
235 {
236 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
237
238 /* Is it a reference to EV0 -- EV31, and do we have those? */
239 if (IS_SPE_PSEUDOREG (tdep, regno))
240 return 1;
241
242 /* Is it a reference to one of the raw upper GPR halves? */
243 if (tdep->ppc_ev0_upper_regnum >= 0
244 && tdep->ppc_ev0_upper_regnum <= regno
245 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
246 return 1;
247
248 /* Is it a reference to the 64-bit accumulator, and do we have that? */
249 if (tdep->ppc_acc_regnum >= 0
250 && tdep->ppc_acc_regnum == regno)
251 return 1;
252
253 /* Is it a reference to the SPE floating-point status and control register,
254 and do we have that? */
255 if (tdep->ppc_spefscr_regnum >= 0
256 && tdep->ppc_spefscr_regnum == regno)
257 return 1;
258
259 return 0;
260 }
261
262
263 /* Return non-zero if the architecture described by GDBARCH has
264 floating-point registers (f0 --- f31 and fpscr). */
265 int
266 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
267 {
268 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
269
270 return (tdep->ppc_fp0_regnum >= 0
271 && tdep->ppc_fpscr_regnum >= 0);
272 }
273
274 /* Return non-zero if the architecture described by GDBARCH has
275 Altivec registers (vr0 --- vr31, vrsave and vscr). */
276 int
277 ppc_altivec_support_p (struct gdbarch *gdbarch)
278 {
279 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
280
281 return (tdep->ppc_vr0_regnum >= 0
282 && tdep->ppc_vrsave_regnum >= 0);
283 }
284
285 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
286 set it to SIM_REGNO.
287
288 This is a helper function for init_sim_regno_table, constructing
289 the table mapping GDB register numbers to sim register numbers; we
290 initialize every element in that table to -1 before we start
291 filling it in. */
292 static void
293 set_sim_regno (int *table, int gdb_regno, int sim_regno)
294 {
295 /* Make sure we don't try to assign any given GDB register a sim
296 register number more than once. */
297 gdb_assert (table[gdb_regno] == -1);
298 table[gdb_regno] = sim_regno;
299 }
300
301
302 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
303 numbers to simulator register numbers, based on the values placed
304 in the ARCH->tdep->ppc_foo_regnum members. */
305 static void
306 init_sim_regno_table (struct gdbarch *arch)
307 {
308 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
309 int total_regs = gdbarch_num_regs (arch);
310 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
311 int i;
312 static const char *const segment_regs[] = {
313 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
314 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
315 };
316
317 /* Presume that all registers not explicitly mentioned below are
318 unavailable from the sim. */
319 for (i = 0; i < total_regs; i++)
320 sim_regno[i] = -1;
321
322 /* General-purpose registers. */
323 for (i = 0; i < ppc_num_gprs; i++)
324 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
325
326 /* Floating-point registers. */
327 if (tdep->ppc_fp0_regnum >= 0)
328 for (i = 0; i < ppc_num_fprs; i++)
329 set_sim_regno (sim_regno,
330 tdep->ppc_fp0_regnum + i,
331 sim_ppc_f0_regnum + i);
332 if (tdep->ppc_fpscr_regnum >= 0)
333 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
334
335 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
336 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
337 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
338
339 /* Segment registers. */
340 for (i = 0; i < ppc_num_srs; i++)
341 {
342 int gdb_regno;
343
344 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
345 if (gdb_regno >= 0)
346 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
347 }
348
349 /* Altivec registers. */
350 if (tdep->ppc_vr0_regnum >= 0)
351 {
352 for (i = 0; i < ppc_num_vrs; i++)
353 set_sim_regno (sim_regno,
354 tdep->ppc_vr0_regnum + i,
355 sim_ppc_vr0_regnum + i);
356
357 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
358 we can treat this more like the other cases. */
359 set_sim_regno (sim_regno,
360 tdep->ppc_vr0_regnum + ppc_num_vrs,
361 sim_ppc_vscr_regnum);
362 }
363 /* vsave is a special-purpose register, so the code below handles it. */
364
365 /* SPE APU (E500) registers. */
366 if (tdep->ppc_ev0_upper_regnum >= 0)
367 for (i = 0; i < ppc_num_gprs; i++)
368 set_sim_regno (sim_regno,
369 tdep->ppc_ev0_upper_regnum + i,
370 sim_ppc_rh0_regnum + i);
371 if (tdep->ppc_acc_regnum >= 0)
372 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
373 /* spefscr is a special-purpose register, so the code below handles it. */
374
375 #ifdef WITH_PPC_SIM
376 /* Now handle all special-purpose registers. Verify that they
377 haven't mistakenly been assigned numbers by any of the above
378 code. */
379 for (i = 0; i < sim_ppc_num_sprs; i++)
380 {
381 const char *spr_name = sim_spr_register_name (i);
382 int gdb_regno = -1;
383
384 if (spr_name != NULL)
385 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
386
387 if (gdb_regno != -1)
388 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
389 }
390 #endif
391
392 /* Drop the initialized array into place. */
393 tdep->sim_regno = sim_regno;
394 }
395
396
397 /* Given a GDB register number REG, return the corresponding SIM
398 register number. */
399 static int
400 rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
401 {
402 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
403 int sim_regno;
404
405 if (tdep->sim_regno == NULL)
406 init_sim_regno_table (gdbarch);
407
408 gdb_assert (0 <= reg && reg <= gdbarch_num_cooked_regs (gdbarch));
409 sim_regno = tdep->sim_regno[reg];
410
411 if (sim_regno >= 0)
412 return sim_regno;
413 else
414 return LEGACY_SIM_REGNO_IGNORE;
415 }
416
417 \f
418
419 /* Register set support functions. */
420
421 /* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
422 Write the register to REGCACHE. */
423
424 void
425 ppc_supply_reg (struct regcache *regcache, int regnum,
426 const gdb_byte *regs, size_t offset, int regsize)
427 {
428 if (regnum != -1 && offset != -1)
429 {
430 if (regsize > 4)
431 {
432 struct gdbarch *gdbarch = regcache->arch ();
433 int gdb_regsize = register_size (gdbarch, regnum);
434 if (gdb_regsize < regsize
435 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
436 offset += regsize - gdb_regsize;
437 }
438 regcache->raw_supply (regnum, regs + offset);
439 }
440 }
441
442 /* Read register REGNUM from REGCACHE and store to REGS + OFFSET
443 in a field REGSIZE wide. Zero pad as necessary. */
444
445 void
446 ppc_collect_reg (const struct regcache *regcache, int regnum,
447 gdb_byte *regs, size_t offset, int regsize)
448 {
449 if (regnum != -1 && offset != -1)
450 {
451 if (regsize > 4)
452 {
453 struct gdbarch *gdbarch = regcache->arch ();
454 int gdb_regsize = register_size (gdbarch, regnum);
455 if (gdb_regsize < regsize)
456 {
457 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
458 {
459 memset (regs + offset, 0, regsize - gdb_regsize);
460 offset += regsize - gdb_regsize;
461 }
462 else
463 memset (regs + offset + regsize - gdb_regsize, 0,
464 regsize - gdb_regsize);
465 }
466 }
467 regcache->raw_collect (regnum, regs + offset);
468 }
469 }
470
471 static int
472 ppc_greg_offset (struct gdbarch *gdbarch,
473 struct gdbarch_tdep *tdep,
474 const struct ppc_reg_offsets *offsets,
475 int regnum,
476 int *regsize)
477 {
478 *regsize = offsets->gpr_size;
479 if (regnum >= tdep->ppc_gp0_regnum
480 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
481 return (offsets->r0_offset
482 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
483
484 if (regnum == gdbarch_pc_regnum (gdbarch))
485 return offsets->pc_offset;
486
487 if (regnum == tdep->ppc_ps_regnum)
488 return offsets->ps_offset;
489
490 if (regnum == tdep->ppc_lr_regnum)
491 return offsets->lr_offset;
492
493 if (regnum == tdep->ppc_ctr_regnum)
494 return offsets->ctr_offset;
495
496 *regsize = offsets->xr_size;
497 if (regnum == tdep->ppc_cr_regnum)
498 return offsets->cr_offset;
499
500 if (regnum == tdep->ppc_xer_regnum)
501 return offsets->xer_offset;
502
503 if (regnum == tdep->ppc_mq_regnum)
504 return offsets->mq_offset;
505
506 return -1;
507 }
508
509 static int
510 ppc_fpreg_offset (struct gdbarch_tdep *tdep,
511 const struct ppc_reg_offsets *offsets,
512 int regnum)
513 {
514 if (regnum >= tdep->ppc_fp0_regnum
515 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
516 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
517
518 if (regnum == tdep->ppc_fpscr_regnum)
519 return offsets->fpscr_offset;
520
521 return -1;
522 }
523
524 /* Supply register REGNUM in the general-purpose register set REGSET
525 from the buffer specified by GREGS and LEN to register cache
526 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
527
528 void
529 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
530 int regnum, const void *gregs, size_t len)
531 {
532 struct gdbarch *gdbarch = regcache->arch ();
533 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
534 const struct ppc_reg_offsets *offsets
535 = (const struct ppc_reg_offsets *) regset->regmap;
536 size_t offset;
537 int regsize;
538
539 if (regnum == -1)
540 {
541 int i;
542 int gpr_size = offsets->gpr_size;
543
544 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
545 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
546 i++, offset += gpr_size)
547 ppc_supply_reg (regcache, i, (const gdb_byte *) gregs, offset,
548 gpr_size);
549
550 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
551 (const gdb_byte *) gregs, offsets->pc_offset, gpr_size);
552 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
553 (const gdb_byte *) gregs, offsets->ps_offset, gpr_size);
554 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
555 (const gdb_byte *) gregs, offsets->lr_offset, gpr_size);
556 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
557 (const gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
558 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
559 (const gdb_byte *) gregs, offsets->cr_offset,
560 offsets->xr_size);
561 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
562 (const gdb_byte *) gregs, offsets->xer_offset,
563 offsets->xr_size);
564 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
565 (const gdb_byte *) gregs, offsets->mq_offset,
566 offsets->xr_size);
567 return;
568 }
569
570 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
571 ppc_supply_reg (regcache, regnum, (const gdb_byte *) gregs, offset, regsize);
572 }
573
574 /* Supply register REGNUM in the floating-point register set REGSET
575 from the buffer specified by FPREGS and LEN to register cache
576 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
577
578 void
579 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
580 int regnum, const void *fpregs, size_t len)
581 {
582 struct gdbarch *gdbarch = regcache->arch ();
583 struct gdbarch_tdep *tdep;
584 const struct ppc_reg_offsets *offsets;
585 size_t offset;
586
587 if (!ppc_floating_point_unit_p (gdbarch))
588 return;
589
590 tdep = gdbarch_tdep (gdbarch);
591 offsets = (const struct ppc_reg_offsets *) regset->regmap;
592 if (regnum == -1)
593 {
594 int i;
595
596 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
597 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
598 i++, offset += 8)
599 ppc_supply_reg (regcache, i, (const gdb_byte *) fpregs, offset, 8);
600
601 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
602 (const gdb_byte *) fpregs, offsets->fpscr_offset,
603 offsets->fpscr_size);
604 return;
605 }
606
607 offset = ppc_fpreg_offset (tdep, offsets, regnum);
608 ppc_supply_reg (regcache, regnum, (const gdb_byte *) fpregs, offset,
609 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
610 }
611
612 /* Collect register REGNUM in the general-purpose register set
613 REGSET from register cache REGCACHE into the buffer specified by
614 GREGS and LEN. If REGNUM is -1, do this for all registers in
615 REGSET. */
616
617 void
618 ppc_collect_gregset (const struct regset *regset,
619 const struct regcache *regcache,
620 int regnum, void *gregs, size_t len)
621 {
622 struct gdbarch *gdbarch = regcache->arch ();
623 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
624 const struct ppc_reg_offsets *offsets
625 = (const struct ppc_reg_offsets *) regset->regmap;
626 size_t offset;
627 int regsize;
628
629 if (regnum == -1)
630 {
631 int i;
632 int gpr_size = offsets->gpr_size;
633
634 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
635 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
636 i++, offset += gpr_size)
637 ppc_collect_reg (regcache, i, (gdb_byte *) gregs, offset, gpr_size);
638
639 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
640 (gdb_byte *) gregs, offsets->pc_offset, gpr_size);
641 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
642 (gdb_byte *) gregs, offsets->ps_offset, gpr_size);
643 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
644 (gdb_byte *) gregs, offsets->lr_offset, gpr_size);
645 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
646 (gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
647 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
648 (gdb_byte *) gregs, offsets->cr_offset,
649 offsets->xr_size);
650 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
651 (gdb_byte *) gregs, offsets->xer_offset,
652 offsets->xr_size);
653 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
654 (gdb_byte *) gregs, offsets->mq_offset,
655 offsets->xr_size);
656 return;
657 }
658
659 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
660 ppc_collect_reg (regcache, regnum, (gdb_byte *) gregs, offset, regsize);
661 }
662
663 /* Collect register REGNUM in the floating-point register set
664 REGSET from register cache REGCACHE into the buffer specified by
665 FPREGS and LEN. If REGNUM is -1, do this for all registers in
666 REGSET. */
667
668 void
669 ppc_collect_fpregset (const struct regset *regset,
670 const struct regcache *regcache,
671 int regnum, void *fpregs, size_t len)
672 {
673 struct gdbarch *gdbarch = regcache->arch ();
674 struct gdbarch_tdep *tdep;
675 const struct ppc_reg_offsets *offsets;
676 size_t offset;
677
678 if (!ppc_floating_point_unit_p (gdbarch))
679 return;
680
681 tdep = gdbarch_tdep (gdbarch);
682 offsets = (const struct ppc_reg_offsets *) regset->regmap;
683 if (regnum == -1)
684 {
685 int i;
686
687 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
688 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
689 i++, offset += 8)
690 ppc_collect_reg (regcache, i, (gdb_byte *) fpregs, offset, 8);
691
692 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
693 (gdb_byte *) fpregs, offsets->fpscr_offset,
694 offsets->fpscr_size);
695 return;
696 }
697
698 offset = ppc_fpreg_offset (tdep, offsets, regnum);
699 ppc_collect_reg (regcache, regnum, (gdb_byte *) fpregs, offset,
700 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
701 }
702
703 static int
704 insn_changes_sp_or_jumps (unsigned long insn)
705 {
706 int opcode = (insn >> 26) & 0x03f;
707 int sd = (insn >> 21) & 0x01f;
708 int a = (insn >> 16) & 0x01f;
709 int subcode = (insn >> 1) & 0x3ff;
710
711 /* Changes the stack pointer. */
712
713 /* NOTE: There are many ways to change the value of a given register.
714 The ways below are those used when the register is R1, the SP,
715 in a funtion's epilogue. */
716
717 if (opcode == 31 && subcode == 444 && a == 1)
718 return 1; /* mr R1,Rn */
719 if (opcode == 14 && sd == 1)
720 return 1; /* addi R1,Rn,simm */
721 if (opcode == 58 && sd == 1)
722 return 1; /* ld R1,ds(Rn) */
723
724 /* Transfers control. */
725
726 if (opcode == 18)
727 return 1; /* b */
728 if (opcode == 16)
729 return 1; /* bc */
730 if (opcode == 19 && subcode == 16)
731 return 1; /* bclr */
732 if (opcode == 19 && subcode == 528)
733 return 1; /* bcctr */
734
735 return 0;
736 }
737
738 /* Return true if we are in the function's epilogue, i.e. after the
739 instruction that destroyed the function's stack frame.
740
741 1) scan forward from the point of execution:
742 a) If you find an instruction that modifies the stack pointer
743 or transfers control (except a return), execution is not in
744 an epilogue, return.
745 b) Stop scanning if you find a return instruction or reach the
746 end of the function or reach the hard limit for the size of
747 an epilogue.
748 2) scan backward from the point of execution:
749 a) If you find an instruction that modifies the stack pointer,
750 execution *is* in an epilogue, return.
751 b) Stop scanning if you reach an instruction that transfers
752 control or the beginning of the function or reach the hard
753 limit for the size of an epilogue. */
754
755 static int
756 rs6000_in_function_epilogue_frame_p (struct frame_info *curfrm,
757 struct gdbarch *gdbarch, CORE_ADDR pc)
758 {
759 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
760 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
761 bfd_byte insn_buf[PPC_INSN_SIZE];
762 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
763 unsigned long insn;
764
765 /* Find the search limits based on function boundaries and hard limit. */
766
767 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
768 return 0;
769
770 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
771 if (epilogue_start < func_start) epilogue_start = func_start;
772
773 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
774 if (epilogue_end > func_end) epilogue_end = func_end;
775
776 /* Scan forward until next 'blr'. */
777
778 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
779 {
780 if (!safe_frame_unwind_memory (curfrm, scan_pc,
781 {insn_buf, PPC_INSN_SIZE}))
782 return 0;
783 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
784 if (insn == 0x4e800020)
785 break;
786 /* Assume a bctr is a tail call unless it points strictly within
787 this function. */
788 if (insn == 0x4e800420)
789 {
790 CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
791 tdep->ppc_ctr_regnum);
792 if (ctr > func_start && ctr < func_end)
793 return 0;
794 else
795 break;
796 }
797 if (insn_changes_sp_or_jumps (insn))
798 return 0;
799 }
800
801 /* Scan backward until adjustment to stack pointer (R1). */
802
803 for (scan_pc = pc - PPC_INSN_SIZE;
804 scan_pc >= epilogue_start;
805 scan_pc -= PPC_INSN_SIZE)
806 {
807 if (!safe_frame_unwind_memory (curfrm, scan_pc,
808 {insn_buf, PPC_INSN_SIZE}))
809 return 0;
810 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
811 if (insn_changes_sp_or_jumps (insn))
812 return 1;
813 }
814
815 return 0;
816 }
817
818 /* Implement the stack_frame_destroyed_p gdbarch method. */
819
820 static int
821 rs6000_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
822 {
823 return rs6000_in_function_epilogue_frame_p (get_current_frame (),
824 gdbarch, pc);
825 }
826
827 /* Get the ith function argument for the current function. */
828 static CORE_ADDR
829 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
830 struct type *type)
831 {
832 return get_frame_register_unsigned (frame, 3 + argi);
833 }
834
835 /* Sequence of bytes for breakpoint instruction. */
836
837 constexpr gdb_byte big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
838 constexpr gdb_byte little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
839
840 typedef BP_MANIPULATION_ENDIAN (little_breakpoint, big_breakpoint)
841 rs6000_breakpoint;
842
843 /* Instruction masks for displaced stepping. */
844 #define OP_MASK 0xfc000000
845 #define BP_MASK 0xFC0007FE
846 #define B_INSN 0x48000000
847 #define BC_INSN 0x40000000
848 #define BXL_INSN 0x4c000000
849 #define BP_INSN 0x7C000008
850
851 /* Instruction masks used during single-stepping of atomic
852 sequences. */
853 #define LOAD_AND_RESERVE_MASK 0xfc0007fe
854 #define LWARX_INSTRUCTION 0x7c000028
855 #define LDARX_INSTRUCTION 0x7c0000A8
856 #define LBARX_INSTRUCTION 0x7c000068
857 #define LHARX_INSTRUCTION 0x7c0000e8
858 #define LQARX_INSTRUCTION 0x7c000228
859 #define STORE_CONDITIONAL_MASK 0xfc0007ff
860 #define STWCX_INSTRUCTION 0x7c00012d
861 #define STDCX_INSTRUCTION 0x7c0001ad
862 #define STBCX_INSTRUCTION 0x7c00056d
863 #define STHCX_INSTRUCTION 0x7c0005ad
864 #define STQCX_INSTRUCTION 0x7c00016d
865
866 /* Instruction masks for single-stepping of addpcis/lnia. */
867 #define ADDPCIS_INSN 0x4c000004
868 #define ADDPCIS_INSN_MASK 0xfc00003e
869 #define ADDPCIS_TARGET_REGISTER 0x03F00000
870 #define ADDPCIS_INSN_REGSHIFT 21
871
872 #define PNOP_MASK 0xfff3ffff
873 #define PNOP_INSN 0x07000000
874 #define R_MASK 0x00100000
875 #define R_ZERO 0x00000000
876
877 /* Check if insn is one of the Load And Reserve instructions used for atomic
878 sequences. */
879 #define IS_LOAD_AND_RESERVE_INSN(insn) ((insn & LOAD_AND_RESERVE_MASK) == LWARX_INSTRUCTION \
880 || (insn & LOAD_AND_RESERVE_MASK) == LDARX_INSTRUCTION \
881 || (insn & LOAD_AND_RESERVE_MASK) == LBARX_INSTRUCTION \
882 || (insn & LOAD_AND_RESERVE_MASK) == LHARX_INSTRUCTION \
883 || (insn & LOAD_AND_RESERVE_MASK) == LQARX_INSTRUCTION)
884 /* Check if insn is one of the Store Conditional instructions used for atomic
885 sequences. */
886 #define IS_STORE_CONDITIONAL_INSN(insn) ((insn & STORE_CONDITIONAL_MASK) == STWCX_INSTRUCTION \
887 || (insn & STORE_CONDITIONAL_MASK) == STDCX_INSTRUCTION \
888 || (insn & STORE_CONDITIONAL_MASK) == STBCX_INSTRUCTION \
889 || (insn & STORE_CONDITIONAL_MASK) == STHCX_INSTRUCTION \
890 || (insn & STORE_CONDITIONAL_MASK) == STQCX_INSTRUCTION)
891
892 typedef buf_displaced_step_copy_insn_closure
893 ppc_displaced_step_copy_insn_closure;
894
895 /* We can't displaced step atomic sequences. */
896
897 static displaced_step_copy_insn_closure_up
898 ppc_displaced_step_copy_insn (struct gdbarch *gdbarch,
899 CORE_ADDR from, CORE_ADDR to,
900 struct regcache *regs)
901 {
902 size_t len = gdbarch_max_insn_length (gdbarch);
903 std::unique_ptr<ppc_displaced_step_copy_insn_closure> closure
904 (new ppc_displaced_step_copy_insn_closure (len));
905 gdb_byte *buf = closure->buf.data ();
906 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
907 int insn;
908
909 len = target_read (current_inferior()->top_target(), TARGET_OBJECT_MEMORY, NULL,
910 buf, from, len);
911 if ((ssize_t) len < PPC_INSN_SIZE)
912 memory_error (TARGET_XFER_E_IO, from);
913
914 insn = extract_signed_integer (buf, PPC_INSN_SIZE, byte_order);
915
916 /* Check for PNOP and for prefixed instructions with R=0. Those
917 instructions are safe to displace. Prefixed instructions with R=1
918 will read/write data to/from locations relative to the current PC.
919 We would not be able to fixup after an instruction has written data
920 into a displaced location, so decline to displace those instructions. */
921 if ((insn & OP_MASK) == 1 << 26)
922 {
923 if (((insn & PNOP_MASK) != PNOP_INSN)
924 && ((insn & R_MASK) != R_ZERO))
925 {
926 displaced_debug_printf ("Not displacing prefixed instruction %08x at %s",
927 insn, paddress (gdbarch, from));
928 return NULL;
929 }
930 }
931 else
932 /* Non-prefixed instructions.. */
933 {
934 /* Set the instruction length to 4 to match the actual instruction
935 length. */
936 len = 4;
937 }
938
939 /* Assume all atomic sequences start with a Load and Reserve instruction. */
940 if (IS_LOAD_AND_RESERVE_INSN (insn))
941 {
942 displaced_debug_printf ("can't displaced step atomic sequence at %s",
943 paddress (gdbarch, from));
944
945 return NULL;
946 }
947
948 write_memory (to, buf, len);
949
950 displaced_debug_printf ("copy %s->%s: %s",
951 paddress (gdbarch, from), paddress (gdbarch, to),
952 displaced_step_dump_bytes (buf, len).c_str ());
953
954 /* This is a work around for a problem with g++ 4.8. */
955 return displaced_step_copy_insn_closure_up (closure.release ());
956 }
957
958 /* Fix up the state of registers and memory after having single-stepped
959 a displaced instruction. */
960 static void
961 ppc_displaced_step_fixup (struct gdbarch *gdbarch,
962 struct displaced_step_copy_insn_closure *closure_,
963 CORE_ADDR from, CORE_ADDR to,
964 struct regcache *regs)
965 {
966 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
967 /* Our closure is a copy of the instruction. */
968 ppc_displaced_step_copy_insn_closure *closure
969 = (ppc_displaced_step_copy_insn_closure *) closure_;
970 ULONGEST insn = extract_unsigned_integer (closure->buf.data (),
971 PPC_INSN_SIZE, byte_order);
972 ULONGEST opcode;
973 /* Offset for non PC-relative instructions. */
974 LONGEST offset;
975
976 opcode = insn & OP_MASK;
977
978 /* Set offset to 8 if this is an 8-byte (prefixed) instruction. */
979 if ((opcode) == 1 << 26)
980 offset = 2 * PPC_INSN_SIZE;
981 else
982 offset = PPC_INSN_SIZE;
983
984 displaced_debug_printf ("(ppc) fixup (%s, %s)",
985 paddress (gdbarch, from), paddress (gdbarch, to));
986
987 /* Handle the addpcis/lnia instruction. */
988 if ((insn & ADDPCIS_INSN_MASK) == ADDPCIS_INSN)
989 {
990 LONGEST displaced_offset;
991 ULONGEST current_val;
992 /* Measure the displacement. */
993 displaced_offset = from - to;
994 /* Identify the target register that was updated by the instruction. */
995 int regnum = (insn & ADDPCIS_TARGET_REGISTER) >> ADDPCIS_INSN_REGSHIFT;
996 /* Read and update the target value. */
997 regcache_cooked_read_unsigned (regs, regnum , &current_val);
998 displaced_debug_printf ("addpcis target regnum %d was %s now %s",
999 regnum, paddress (gdbarch, current_val),
1000 paddress (gdbarch, current_val
1001 + displaced_offset));
1002 regcache_cooked_write_unsigned (regs, regnum,
1003 current_val + displaced_offset);
1004 /* point the PC back at the non-displaced instruction. */
1005 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1006 from + offset);
1007 }
1008 /* Handle PC-relative branch instructions. */
1009 else if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
1010 {
1011 ULONGEST current_pc;
1012
1013 /* Read the current PC value after the instruction has been executed
1014 in a displaced location. Calculate the offset to be applied to the
1015 original PC value before the displaced stepping. */
1016 regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1017 &current_pc);
1018 offset = current_pc - to;
1019
1020 if (opcode != BXL_INSN)
1021 {
1022 /* Check for AA bit indicating whether this is an absolute
1023 addressing or PC-relative (1: absolute, 0: relative). */
1024 if (!(insn & 0x2))
1025 {
1026 /* PC-relative addressing is being used in the branch. */
1027 displaced_debug_printf ("(ppc) branch instruction: %s",
1028 paddress (gdbarch, insn));
1029 displaced_debug_printf ("(ppc) adjusted PC from %s to %s",
1030 paddress (gdbarch, current_pc),
1031 paddress (gdbarch, from + offset));
1032
1033 regcache_cooked_write_unsigned (regs,
1034 gdbarch_pc_regnum (gdbarch),
1035 from + offset);
1036 }
1037 }
1038 else
1039 {
1040 /* If we're here, it means we have a branch to LR or CTR. If the
1041 branch was taken, the offset is probably greater than 4 (the next
1042 instruction), so it's safe to assume that an offset of 4 means we
1043 did not take the branch. */
1044 if (offset == PPC_INSN_SIZE)
1045 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1046 from + PPC_INSN_SIZE);
1047 }
1048
1049 /* Check for LK bit indicating whether we should set the link
1050 register to point to the next instruction
1051 (1: Set, 0: Don't set). */
1052 if (insn & 0x1)
1053 {
1054 /* Link register needs to be set to the next instruction's PC. */
1055 regcache_cooked_write_unsigned (regs,
1056 gdbarch_tdep (gdbarch)->ppc_lr_regnum,
1057 from + PPC_INSN_SIZE);
1058 displaced_debug_printf ("(ppc) adjusted LR to %s",
1059 paddress (gdbarch, from + PPC_INSN_SIZE));
1060
1061 }
1062 }
1063 /* Check for breakpoints in the inferior. If we've found one, place the PC
1064 right at the breakpoint instruction. */
1065 else if ((insn & BP_MASK) == BP_INSN)
1066 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
1067 else
1068 {
1069 /* Handle any other instructions that do not fit in the categories
1070 above. */
1071 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1072 from + offset);
1073 }
1074 }
1075
1076 /* Implementation of gdbarch_displaced_step_prepare. */
1077
1078 static displaced_step_prepare_status
1079 ppc_displaced_step_prepare (gdbarch *arch, thread_info *thread,
1080 CORE_ADDR &displaced_pc)
1081 {
1082 ppc_inferior_data *per_inferior = get_ppc_per_inferior (thread->inf);
1083
1084 if (!per_inferior->disp_step_buf.has_value ())
1085 {
1086 /* Figure out where the displaced step buffer is. */
1087 CORE_ADDR disp_step_buf_addr
1088 = displaced_step_at_entry_point (thread->inf->gdbarch);
1089
1090 per_inferior->disp_step_buf.emplace (disp_step_buf_addr);
1091 }
1092
1093 return per_inferior->disp_step_buf->prepare (thread, displaced_pc);
1094 }
1095
1096 /* Implementation of gdbarch_displaced_step_finish. */
1097
1098 static displaced_step_finish_status
1099 ppc_displaced_step_finish (gdbarch *arch, thread_info *thread,
1100 gdb_signal sig)
1101 {
1102 ppc_inferior_data *per_inferior = get_ppc_per_inferior (thread->inf);
1103
1104 gdb_assert (per_inferior->disp_step_buf.has_value ());
1105
1106 return per_inferior->disp_step_buf->finish (arch, thread, sig);
1107 }
1108
1109 /* Implementation of gdbarch_displaced_step_restore_all_in_ptid. */
1110
1111 static void
1112 ppc_displaced_step_restore_all_in_ptid (inferior *parent_inf, ptid_t ptid)
1113 {
1114 ppc_inferior_data *per_inferior = ppc_inferior_data_key.get (parent_inf);
1115
1116 if (per_inferior == nullptr
1117 || !per_inferior->disp_step_buf.has_value ())
1118 return;
1119
1120 per_inferior->disp_step_buf->restore_in_ptid (ptid);
1121 }
1122
1123 /* Always use hardware single-stepping to execute the
1124 displaced instruction. */
1125 static bool
1126 ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch)
1127 {
1128 return true;
1129 }
1130
1131 /* Checks for an atomic sequence of instructions beginning with a
1132 Load And Reserve instruction and ending with a Store Conditional
1133 instruction. If such a sequence is found, attempt to step through it.
1134 A breakpoint is placed at the end of the sequence. */
1135 std::vector<CORE_ADDR>
1136 ppc_deal_with_atomic_sequence (struct regcache *regcache)
1137 {
1138 struct gdbarch *gdbarch = regcache->arch ();
1139 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1140 CORE_ADDR pc = regcache_read_pc (regcache);
1141 CORE_ADDR breaks[2] = {CORE_ADDR_MAX, CORE_ADDR_MAX};
1142 CORE_ADDR loc = pc;
1143 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
1144 int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1145 int insn_count;
1146 int index;
1147 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
1148 const int atomic_sequence_length = 16; /* Instruction sequence length. */
1149 int bc_insn_count = 0; /* Conditional branch instruction count. */
1150
1151 /* Assume all atomic sequences start with a Load And Reserve instruction. */
1152 if (!IS_LOAD_AND_RESERVE_INSN (insn))
1153 return {};
1154
1155 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1156 instructions. */
1157 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1158 {
1159 if ((insn & OP_MASK) == 1 << 26)
1160 loc += 2 * PPC_INSN_SIZE;
1161 else
1162 loc += PPC_INSN_SIZE;
1163 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1164
1165 /* Assume that there is at most one conditional branch in the atomic
1166 sequence. If a conditional branch is found, put a breakpoint in
1167 its destination address. */
1168 if ((insn & OP_MASK) == BC_INSN)
1169 {
1170 int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
1171 int absolute = insn & 2;
1172
1173 if (bc_insn_count >= 1)
1174 return {}; /* More than one conditional branch found, fallback
1175 to the standard single-step code. */
1176
1177 if (absolute)
1178 breaks[1] = immediate;
1179 else
1180 breaks[1] = loc + immediate;
1181
1182 bc_insn_count++;
1183 last_breakpoint++;
1184 }
1185
1186 if (IS_STORE_CONDITIONAL_INSN (insn))
1187 break;
1188 }
1189
1190 /* Assume that the atomic sequence ends with a Store Conditional
1191 instruction. */
1192 if (!IS_STORE_CONDITIONAL_INSN (insn))
1193 return {};
1194
1195 closing_insn = loc;
1196 loc += PPC_INSN_SIZE;
1197
1198 /* Insert a breakpoint right after the end of the atomic sequence. */
1199 breaks[0] = loc;
1200
1201 /* Check for duplicated breakpoints. Check also for a breakpoint
1202 placed (branch instruction's destination) anywhere in sequence. */
1203 if (last_breakpoint
1204 && (breaks[1] == breaks[0]
1205 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
1206 last_breakpoint = 0;
1207
1208 std::vector<CORE_ADDR> next_pcs;
1209
1210 for (index = 0; index <= last_breakpoint; index++)
1211 next_pcs.push_back (breaks[index]);
1212
1213 return next_pcs;
1214 }
1215
1216
1217 #define SIGNED_SHORT(x) \
1218 ((sizeof (short) == 2) \
1219 ? ((int)(short)(x)) \
1220 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1221
1222 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1223
1224 /* Limit the number of skipped non-prologue instructions, as the examining
1225 of the prologue is expensive. */
1226 static int max_skip_non_prologue_insns = 10;
1227
1228 /* Return nonzero if the given instruction OP can be part of the prologue
1229 of a function and saves a parameter on the stack. FRAMEP should be
1230 set if one of the previous instructions in the function has set the
1231 Frame Pointer. */
1232
1233 static int
1234 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1235 {
1236 /* Move parameters from argument registers to temporary register. */
1237 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1238 {
1239 /* Rx must be scratch register r0. */
1240 const int rx_regno = (op >> 16) & 31;
1241 /* Ry: Only r3 - r10 are used for parameter passing. */
1242 const int ry_regno = GET_SRC_REG (op);
1243
1244 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1245 {
1246 *r0_contains_arg = 1;
1247 return 1;
1248 }
1249 else
1250 return 0;
1251 }
1252
1253 /* Save a General Purpose Register on stack. */
1254
1255 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1256 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1257 {
1258 /* Rx: Only r3 - r10 are used for parameter passing. */
1259 const int rx_regno = GET_SRC_REG (op);
1260
1261 return (rx_regno >= 3 && rx_regno <= 10);
1262 }
1263
1264 /* Save a General Purpose Register on stack via the Frame Pointer. */
1265
1266 if (framep &&
1267 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1268 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1269 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1270 {
1271 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1272 However, the compiler sometimes uses r0 to hold an argument. */
1273 const int rx_regno = GET_SRC_REG (op);
1274
1275 return ((rx_regno >= 3 && rx_regno <= 10)
1276 || (rx_regno == 0 && *r0_contains_arg));
1277 }
1278
1279 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1280 {
1281 /* Only f2 - f8 are used for parameter passing. */
1282 const int src_regno = GET_SRC_REG (op);
1283
1284 return (src_regno >= 2 && src_regno <= 8);
1285 }
1286
1287 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1288 {
1289 /* Only f2 - f8 are used for parameter passing. */
1290 const int src_regno = GET_SRC_REG (op);
1291
1292 return (src_regno >= 2 && src_regno <= 8);
1293 }
1294
1295 /* Not an insn that saves a parameter on stack. */
1296 return 0;
1297 }
1298
1299 /* Assuming that INSN is a "bl" instruction located at PC, return
1300 nonzero if the destination of the branch is a "blrl" instruction.
1301
1302 This sequence is sometimes found in certain function prologues.
1303 It allows the function to load the LR register with a value that
1304 they can use to access PIC data using PC-relative offsets. */
1305
1306 static int
1307 bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
1308 {
1309 CORE_ADDR dest;
1310 int immediate;
1311 int absolute;
1312 int dest_insn;
1313
1314 absolute = (int) ((insn >> 1) & 1);
1315 immediate = ((insn & ~3) << 6) >> 6;
1316 if (absolute)
1317 dest = immediate;
1318 else
1319 dest = pc + immediate;
1320
1321 dest_insn = read_memory_integer (dest, 4, byte_order);
1322 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1323 return 1;
1324
1325 return 0;
1326 }
1327
1328 /* Return true if OP is a stw or std instruction with
1329 register operands RS and RA and any immediate offset.
1330
1331 If WITH_UPDATE is true, also return true if OP is
1332 a stwu or stdu instruction with the same operands.
1333
1334 Return false otherwise.
1335 */
1336 static bool
1337 store_insn_p (unsigned long op, unsigned long rs,
1338 unsigned long ra, bool with_update)
1339 {
1340 rs = rs << 21;
1341 ra = ra << 16;
1342
1343 if (/* std RS, SIMM(RA) */
1344 ((op & 0xffff0003) == (rs | ra | 0xf8000000)) ||
1345 /* stw RS, SIMM(RA) */
1346 ((op & 0xffff0000) == (rs | ra | 0x90000000)))
1347 return true;
1348
1349 if (with_update)
1350 {
1351 if (/* stdu RS, SIMM(RA) */
1352 ((op & 0xffff0003) == (rs | ra | 0xf8000001)) ||
1353 /* stwu RS, SIMM(RA) */
1354 ((op & 0xffff0000) == (rs | ra | 0x94000000)))
1355 return true;
1356 }
1357
1358 return false;
1359 }
1360
1361 /* Masks for decoding a branch-and-link (bl) instruction.
1362
1363 BL_MASK and BL_INSTRUCTION are used in combination with each other.
1364 The former is anded with the opcode in question; if the result of
1365 this masking operation is equal to BL_INSTRUCTION, then the opcode in
1366 question is a ``bl'' instruction.
1367
1368 BL_DISPLACEMENT_MASK is anded with the opcode in order to extract
1369 the branch displacement. */
1370
1371 #define BL_MASK 0xfc000001
1372 #define BL_INSTRUCTION 0x48000001
1373 #define BL_DISPLACEMENT_MASK 0x03fffffc
1374
1375 static unsigned long
1376 rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
1377 {
1378 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1379 gdb_byte buf[4];
1380 unsigned long op;
1381
1382 /* Fetch the instruction and convert it to an integer. */
1383 if (target_read_memory (pc, buf, 4))
1384 return 0;
1385 op = extract_unsigned_integer (buf, 4, byte_order);
1386
1387 return op;
1388 }
1389
1390 /* GCC generates several well-known sequences of instructions at the begining
1391 of each function prologue when compiling with -fstack-check. If one of
1392 such sequences starts at START_PC, then return the address of the
1393 instruction immediately past this sequence. Otherwise, return START_PC. */
1394
1395 static CORE_ADDR
1396 rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
1397 {
1398 CORE_ADDR pc = start_pc;
1399 unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
1400
1401 /* First possible sequence: A small number of probes.
1402 stw 0, -<some immediate>(1)
1403 [repeat this instruction any (small) number of times]. */
1404
1405 if ((op & 0xffff0000) == 0x90010000)
1406 {
1407 while ((op & 0xffff0000) == 0x90010000)
1408 {
1409 pc = pc + 4;
1410 op = rs6000_fetch_instruction (gdbarch, pc);
1411 }
1412 return pc;
1413 }
1414
1415 /* Second sequence: A probing loop.
1416 addi 12,1,-<some immediate>
1417 lis 0,-<some immediate>
1418 [possibly ori 0,0,<some immediate>]
1419 add 0,12,0
1420 cmpw 0,12,0
1421 beq 0,<disp>
1422 addi 12,12,-<some immediate>
1423 stw 0,0(12)
1424 b <disp>
1425 [possibly one last probe: stw 0,<some immediate>(12)]. */
1426
1427 while (1)
1428 {
1429 /* addi 12,1,-<some immediate> */
1430 if ((op & 0xffff0000) != 0x39810000)
1431 break;
1432
1433 /* lis 0,-<some immediate> */
1434 pc = pc + 4;
1435 op = rs6000_fetch_instruction (gdbarch, pc);
1436 if ((op & 0xffff0000) != 0x3c000000)
1437 break;
1438
1439 pc = pc + 4;
1440 op = rs6000_fetch_instruction (gdbarch, pc);
1441 /* [possibly ori 0,0,<some immediate>] */
1442 if ((op & 0xffff0000) == 0x60000000)
1443 {
1444 pc = pc + 4;
1445 op = rs6000_fetch_instruction (gdbarch, pc);
1446 }
1447 /* add 0,12,0 */
1448 if (op != 0x7c0c0214)
1449 break;
1450
1451 /* cmpw 0,12,0 */
1452 pc = pc + 4;
1453 op = rs6000_fetch_instruction (gdbarch, pc);
1454 if (op != 0x7c0c0000)
1455 break;
1456
1457 /* beq 0,<disp> */
1458 pc = pc + 4;
1459 op = rs6000_fetch_instruction (gdbarch, pc);
1460 if ((op & 0xff9f0001) != 0x41820000)
1461 break;
1462
1463 /* addi 12,12,-<some immediate> */
1464 pc = pc + 4;
1465 op = rs6000_fetch_instruction (gdbarch, pc);
1466 if ((op & 0xffff0000) != 0x398c0000)
1467 break;
1468
1469 /* stw 0,0(12) */
1470 pc = pc + 4;
1471 op = rs6000_fetch_instruction (gdbarch, pc);
1472 if (op != 0x900c0000)
1473 break;
1474
1475 /* b <disp> */
1476 pc = pc + 4;
1477 op = rs6000_fetch_instruction (gdbarch, pc);
1478 if ((op & 0xfc000001) != 0x48000000)
1479 break;
1480
1481 /* [possibly one last probe: stw 0,<some immediate>(12)]. */
1482 pc = pc + 4;
1483 op = rs6000_fetch_instruction (gdbarch, pc);
1484 if ((op & 0xffff0000) == 0x900c0000)
1485 {
1486 pc = pc + 4;
1487 op = rs6000_fetch_instruction (gdbarch, pc);
1488 }
1489
1490 /* We found a valid stack-check sequence, return the new PC. */
1491 return pc;
1492 }
1493
1494 /* Third sequence: No probe; instead, a comparison between the stack size
1495 limit (saved in a run-time global variable) and the current stack
1496 pointer:
1497
1498 addi 0,1,-<some immediate>
1499 lis 12,__gnat_stack_limit@ha
1500 lwz 12,__gnat_stack_limit@l(12)
1501 twllt 0,12
1502
1503 or, with a small variant in the case of a bigger stack frame:
1504 addis 0,1,<some immediate>
1505 addic 0,0,-<some immediate>
1506 lis 12,__gnat_stack_limit@ha
1507 lwz 12,__gnat_stack_limit@l(12)
1508 twllt 0,12
1509 */
1510 while (1)
1511 {
1512 /* addi 0,1,-<some immediate> */
1513 if ((op & 0xffff0000) != 0x38010000)
1514 {
1515 /* small stack frame variant not recognized; try the
1516 big stack frame variant: */
1517
1518 /* addis 0,1,<some immediate> */
1519 if ((op & 0xffff0000) != 0x3c010000)
1520 break;
1521
1522 /* addic 0,0,-<some immediate> */
1523 pc = pc + 4;
1524 op = rs6000_fetch_instruction (gdbarch, pc);
1525 if ((op & 0xffff0000) != 0x30000000)
1526 break;
1527 }
1528
1529 /* lis 12,<some immediate> */
1530 pc = pc + 4;
1531 op = rs6000_fetch_instruction (gdbarch, pc);
1532 if ((op & 0xffff0000) != 0x3d800000)
1533 break;
1534
1535 /* lwz 12,<some immediate>(12) */
1536 pc = pc + 4;
1537 op = rs6000_fetch_instruction (gdbarch, pc);
1538 if ((op & 0xffff0000) != 0x818c0000)
1539 break;
1540
1541 /* twllt 0,12 */
1542 pc = pc + 4;
1543 op = rs6000_fetch_instruction (gdbarch, pc);
1544 if ((op & 0xfffffffe) != 0x7c406008)
1545 break;
1546
1547 /* We found a valid stack-check sequence, return the new PC. */
1548 return pc;
1549 }
1550
1551 /* No stack check code in our prologue, return the start_pc. */
1552 return start_pc;
1553 }
1554
1555 /* return pc value after skipping a function prologue and also return
1556 information about a function frame.
1557
1558 in struct rs6000_framedata fdata:
1559 - frameless is TRUE, if function does not have a frame.
1560 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1561 - offset is the initial size of this stack frame --- the amount by
1562 which we decrement the sp to allocate the frame.
1563 - saved_gpr is the number of the first saved gpr.
1564 - saved_fpr is the number of the first saved fpr.
1565 - saved_vr is the number of the first saved vr.
1566 - saved_ev is the number of the first saved ev.
1567 - alloca_reg is the number of the register used for alloca() handling.
1568 Otherwise -1.
1569 - gpr_offset is the offset of the first saved gpr from the previous frame.
1570 - fpr_offset is the offset of the first saved fpr from the previous frame.
1571 - vr_offset is the offset of the first saved vr from the previous frame.
1572 - ev_offset is the offset of the first saved ev from the previous frame.
1573 - lr_offset is the offset of the saved lr
1574 - cr_offset is the offset of the saved cr
1575 - vrsave_offset is the offset of the saved vrsave register. */
1576
1577 static CORE_ADDR
1578 skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1579 struct rs6000_framedata *fdata)
1580 {
1581 CORE_ADDR orig_pc = pc;
1582 CORE_ADDR last_prologue_pc = pc;
1583 CORE_ADDR li_found_pc = 0;
1584 gdb_byte buf[4];
1585 unsigned long op;
1586 long offset = 0;
1587 long alloca_reg_offset = 0;
1588 long vr_saved_offset = 0;
1589 int lr_reg = -1;
1590 int cr_reg = -1;
1591 int vr_reg = -1;
1592 int ev_reg = -1;
1593 long ev_offset = 0;
1594 int vrsave_reg = -1;
1595 int reg;
1596 int framep = 0;
1597 int minimal_toc_loaded = 0;
1598 int prev_insn_was_prologue_insn = 1;
1599 int num_skip_non_prologue_insns = 0;
1600 int r0_contains_arg = 0;
1601 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1602 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1603 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1604
1605 memset (fdata, 0, sizeof (struct rs6000_framedata));
1606 fdata->saved_gpr = -1;
1607 fdata->saved_fpr = -1;
1608 fdata->saved_vr = -1;
1609 fdata->saved_ev = -1;
1610 fdata->alloca_reg = -1;
1611 fdata->frameless = 1;
1612 fdata->nosavedpc = 1;
1613 fdata->lr_register = -1;
1614
1615 pc = rs6000_skip_stack_check (gdbarch, pc);
1616 if (pc >= lim_pc)
1617 pc = lim_pc;
1618
1619 for (;; pc += 4)
1620 {
1621 /* Sometimes it isn't clear if an instruction is a prologue
1622 instruction or not. When we encounter one of these ambiguous
1623 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1624 Otherwise, we'll assume that it really is a prologue instruction. */
1625 if (prev_insn_was_prologue_insn)
1626 last_prologue_pc = pc;
1627
1628 /* Stop scanning if we've hit the limit. */
1629 if (pc >= lim_pc)
1630 break;
1631
1632 prev_insn_was_prologue_insn = 1;
1633
1634 /* Fetch the instruction and convert it to an integer. */
1635 if (target_read_memory (pc, buf, 4))
1636 break;
1637 op = extract_unsigned_integer (buf, 4, byte_order);
1638
1639 if ((op & 0xfc1fffff) == 0x7c0802a6)
1640 { /* mflr Rx */
1641 /* Since shared library / PIC code, which needs to get its
1642 address at runtime, can appear to save more than one link
1643 register vis:
1644
1645 *INDENT-OFF*
1646 stwu r1,-304(r1)
1647 mflr r3
1648 bl 0xff570d0 (blrl)
1649 stw r30,296(r1)
1650 mflr r30
1651 stw r31,300(r1)
1652 stw r3,308(r1);
1653 ...
1654 *INDENT-ON*
1655
1656 remember just the first one, but skip over additional
1657 ones. */
1658 if (lr_reg == -1)
1659 lr_reg = (op & 0x03e00000) >> 21;
1660 if (lr_reg == 0)
1661 r0_contains_arg = 0;
1662 continue;
1663 }
1664 else if ((op & 0xfc1fffff) == 0x7c000026)
1665 { /* mfcr Rx */
1666 cr_reg = (op & 0x03e00000) >> 21;
1667 if (cr_reg == 0)
1668 r0_contains_arg = 0;
1669 continue;
1670
1671 }
1672 else if ((op & 0xfc1f0000) == 0xd8010000)
1673 { /* stfd Rx,NUM(r1) */
1674 reg = GET_SRC_REG (op);
1675 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1676 {
1677 fdata->saved_fpr = reg;
1678 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1679 }
1680 continue;
1681
1682 }
1683 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1684 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1685 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1686 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1687 {
1688
1689 reg = GET_SRC_REG (op);
1690 if ((op & 0xfc1f0000) == 0xbc010000)
1691 fdata->gpr_mask |= ~((1U << reg) - 1);
1692 else
1693 fdata->gpr_mask |= 1U << reg;
1694 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1695 {
1696 fdata->saved_gpr = reg;
1697 if ((op & 0xfc1f0003) == 0xf8010000)
1698 op &= ~3UL;
1699 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1700 }
1701 continue;
1702
1703 }
1704 else if ((op & 0xffff0000) == 0x3c4c0000
1705 || (op & 0xffff0000) == 0x3c400000
1706 || (op & 0xffff0000) == 0x38420000)
1707 {
1708 /* . 0: addis 2,12,.TOC.-0b@ha
1709 . addi 2,2,.TOC.-0b@l
1710 or
1711 . lis 2,.TOC.@ha
1712 . addi 2,2,.TOC.@l
1713 used by ELFv2 global entry points to set up r2. */
1714 continue;
1715 }
1716 else if (op == 0x60000000)
1717 {
1718 /* nop */
1719 /* Allow nops in the prologue, but do not consider them to
1720 be part of the prologue unless followed by other prologue
1721 instructions. */
1722 prev_insn_was_prologue_insn = 0;
1723 continue;
1724
1725 }
1726 else if ((op & 0xffff0000) == 0x3c000000)
1727 { /* addis 0,0,NUM, used for >= 32k frames */
1728 fdata->offset = (op & 0x0000ffff) << 16;
1729 fdata->frameless = 0;
1730 r0_contains_arg = 0;
1731 continue;
1732
1733 }
1734 else if ((op & 0xffff0000) == 0x60000000)
1735 { /* ori 0,0,NUM, 2nd half of >= 32k frames */
1736 fdata->offset |= (op & 0x0000ffff);
1737 fdata->frameless = 0;
1738 r0_contains_arg = 0;
1739 continue;
1740
1741 }
1742 else if (lr_reg >= 0 &&
1743 ((store_insn_p (op, lr_reg, 1, true)) ||
1744 (framep &&
1745 (store_insn_p (op, lr_reg,
1746 fdata->alloca_reg - tdep->ppc_gp0_regnum,
1747 false)))))
1748 {
1749 if (store_insn_p (op, lr_reg, 1, true))
1750 fdata->lr_offset = offset;
1751 else /* LR save through frame pointer. */
1752 fdata->lr_offset = alloca_reg_offset;
1753
1754 fdata->nosavedpc = 0;
1755 /* Invalidate lr_reg, but don't set it to -1.
1756 That would mean that it had never been set. */
1757 lr_reg = -2;
1758 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1759 (op & 0xfc000000) == 0x90000000) /* stw */
1760 {
1761 /* Does not update r1, so add displacement to lr_offset. */
1762 fdata->lr_offset += SIGNED_SHORT (op);
1763 }
1764 continue;
1765
1766 }
1767 else if (cr_reg >= 0 &&
1768 (store_insn_p (op, cr_reg, 1, true)))
1769 {
1770 fdata->cr_offset = offset;
1771 /* Invalidate cr_reg, but don't set it to -1.
1772 That would mean that it had never been set. */
1773 cr_reg = -2;
1774 if ((op & 0xfc000003) == 0xf8000000 ||
1775 (op & 0xfc000000) == 0x90000000)
1776 {
1777 /* Does not update r1, so add displacement to cr_offset. */
1778 fdata->cr_offset += SIGNED_SHORT (op);
1779 }
1780 continue;
1781
1782 }
1783 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1784 {
1785 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1786 prediction bits. If the LR has already been saved, we can
1787 skip it. */
1788 continue;
1789 }
1790 else if (op == 0x48000005)
1791 { /* bl .+4 used in
1792 -mrelocatable */
1793 fdata->used_bl = 1;
1794 continue;
1795
1796 }
1797 else if (op == 0x48000004)
1798 { /* b .+4 (xlc) */
1799 break;
1800
1801 }
1802 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1803 in V.4 -mminimal-toc */
1804 (op & 0xffff0000) == 0x3bde0000)
1805 { /* addi 30,30,foo@l */
1806 continue;
1807
1808 }
1809 else if ((op & 0xfc000001) == 0x48000001)
1810 { /* bl foo,
1811 to save fprs??? */
1812
1813 fdata->frameless = 0;
1814
1815 /* If the return address has already been saved, we can skip
1816 calls to blrl (for PIC). */
1817 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
1818 {
1819 fdata->used_bl = 1;
1820 continue;
1821 }
1822
1823 /* Don't skip over the subroutine call if it is not within
1824 the first three instructions of the prologue and either
1825 we have no line table information or the line info tells
1826 us that the subroutine call is not part of the line
1827 associated with the prologue. */
1828 if ((pc - orig_pc) > 8)
1829 {
1830 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1831 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1832
1833 if ((prologue_sal.line == 0)
1834 || (prologue_sal.line != this_sal.line))
1835 break;
1836 }
1837
1838 op = read_memory_integer (pc + 4, 4, byte_order);
1839
1840 /* At this point, make sure this is not a trampoline
1841 function (a function that simply calls another functions,
1842 and nothing else). If the next is not a nop, this branch
1843 was part of the function prologue. */
1844
1845 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1846 break; /* Don't skip over
1847 this branch. */
1848
1849 fdata->used_bl = 1;
1850 continue;
1851 }
1852 /* update stack pointer */
1853 else if ((op & 0xfc1f0000) == 0x94010000)
1854 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1855 fdata->frameless = 0;
1856 fdata->offset = SIGNED_SHORT (op);
1857 offset = fdata->offset;
1858 continue;
1859 }
1860 else if ((op & 0xfc1f07fa) == 0x7c01016a)
1861 { /* stwux rX,r1,rY || stdux rX,r1,rY */
1862 /* No way to figure out what r1 is going to be. */
1863 fdata->frameless = 0;
1864 offset = fdata->offset;
1865 continue;
1866 }
1867 else if ((op & 0xfc1f0003) == 0xf8010001)
1868 { /* stdu rX,NUM(r1) */
1869 fdata->frameless = 0;
1870 fdata->offset = SIGNED_SHORT (op & ~3UL);
1871 offset = fdata->offset;
1872 continue;
1873 }
1874 else if ((op & 0xffff0000) == 0x38210000)
1875 { /* addi r1,r1,SIMM */
1876 fdata->frameless = 0;
1877 fdata->offset += SIGNED_SHORT (op);
1878 offset = fdata->offset;
1879 continue;
1880 }
1881 /* Load up minimal toc pointer. Do not treat an epilogue restore
1882 of r31 as a minimal TOC load. */
1883 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1884 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1885 && !framep
1886 && !minimal_toc_loaded)
1887 {
1888 minimal_toc_loaded = 1;
1889 continue;
1890
1891 /* move parameters from argument registers to local variable
1892 registers */
1893 }
1894 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1895 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1896 (((op >> 21) & 31) <= 10) &&
1897 ((long) ((op >> 16) & 31)
1898 >= fdata->saved_gpr)) /* Rx: local var reg */
1899 {
1900 continue;
1901
1902 /* store parameters in stack */
1903 }
1904 /* Move parameters from argument registers to temporary register. */
1905 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1906 {
1907 continue;
1908
1909 /* Set up frame pointer */
1910 }
1911 else if (op == 0x603d0000) /* oril r29, r1, 0x0 */
1912 {
1913 fdata->frameless = 0;
1914 framep = 1;
1915 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29);
1916 alloca_reg_offset = offset;
1917 continue;
1918
1919 /* Another way to set up the frame pointer. */
1920 }
1921 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1922 || op == 0x7c3f0b78)
1923 { /* mr r31, r1 */
1924 fdata->frameless = 0;
1925 framep = 1;
1926 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1927 alloca_reg_offset = offset;
1928 continue;
1929
1930 /* Another way to set up the frame pointer. */
1931 }
1932 else if ((op & 0xfc1fffff) == 0x38010000)
1933 { /* addi rX, r1, 0x0 */
1934 fdata->frameless = 0;
1935 framep = 1;
1936 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1937 + ((op & ~0x38010000) >> 21));
1938 alloca_reg_offset = offset;
1939 continue;
1940 }
1941 /* AltiVec related instructions. */
1942 /* Store the vrsave register (spr 256) in another register for
1943 later manipulation, or load a register into the vrsave
1944 register. 2 instructions are used: mfvrsave and
1945 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1946 and mtspr SPR256, Rn. */
1947 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1948 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1949 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1950 {
1951 vrsave_reg = GET_SRC_REG (op);
1952 continue;
1953 }
1954 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1955 {
1956 continue;
1957 }
1958 /* Store the register where vrsave was saved to onto the stack:
1959 rS is the register where vrsave was stored in a previous
1960 instruction. */
1961 /* 100100 sssss 00001 dddddddd dddddddd */
1962 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1963 {
1964 if (vrsave_reg == GET_SRC_REG (op))
1965 {
1966 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1967 vrsave_reg = -1;
1968 }
1969 continue;
1970 }
1971 /* Compute the new value of vrsave, by modifying the register
1972 where vrsave was saved to. */
1973 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1974 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1975 {
1976 continue;
1977 }
1978 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1979 in a pair of insns to save the vector registers on the
1980 stack. */
1981 /* 001110 00000 00000 iiii iiii iiii iiii */
1982 /* 001110 01110 00000 iiii iiii iiii iiii */
1983 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1984 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1985 {
1986 if ((op & 0xffff0000) == 0x38000000)
1987 r0_contains_arg = 0;
1988 li_found_pc = pc;
1989 vr_saved_offset = SIGNED_SHORT (op);
1990
1991 /* This insn by itself is not part of the prologue, unless
1992 if part of the pair of insns mentioned above. So do not
1993 record this insn as part of the prologue yet. */
1994 prev_insn_was_prologue_insn = 0;
1995 }
1996 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1997 /* 011111 sssss 11111 00000 00111001110 */
1998 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1999 {
2000 if (pc == (li_found_pc + 4))
2001 {
2002 vr_reg = GET_SRC_REG (op);
2003 /* If this is the first vector reg to be saved, or if
2004 it has a lower number than others previously seen,
2005 reupdate the frame info. */
2006 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
2007 {
2008 fdata->saved_vr = vr_reg;
2009 fdata->vr_offset = vr_saved_offset + offset;
2010 }
2011 vr_saved_offset = -1;
2012 vr_reg = -1;
2013 li_found_pc = 0;
2014 }
2015 }
2016 /* End AltiVec related instructions. */
2017
2018 /* Start BookE related instructions. */
2019 /* Store gen register S at (r31+uimm).
2020 Any register less than r13 is volatile, so we don't care. */
2021 /* 000100 sssss 11111 iiiii 01100100001 */
2022 else if (arch_info->mach == bfd_mach_ppc_e500
2023 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
2024 {
2025 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
2026 {
2027 unsigned int imm;
2028 ev_reg = GET_SRC_REG (op);
2029 imm = (op >> 11) & 0x1f;
2030 ev_offset = imm * 8;
2031 /* If this is the first vector reg to be saved, or if
2032 it has a lower number than others previously seen,
2033 reupdate the frame info. */
2034 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2035 {
2036 fdata->saved_ev = ev_reg;
2037 fdata->ev_offset = ev_offset + offset;
2038 }
2039 }
2040 continue;
2041 }
2042 /* Store gen register rS at (r1+rB). */
2043 /* 000100 sssss 00001 bbbbb 01100100000 */
2044 else if (arch_info->mach == bfd_mach_ppc_e500
2045 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
2046 {
2047 if (pc == (li_found_pc + 4))
2048 {
2049 ev_reg = GET_SRC_REG (op);
2050 /* If this is the first vector reg to be saved, or if
2051 it has a lower number than others previously seen,
2052 reupdate the frame info. */
2053 /* We know the contents of rB from the previous instruction. */
2054 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2055 {
2056 fdata->saved_ev = ev_reg;
2057 fdata->ev_offset = vr_saved_offset + offset;
2058 }
2059 vr_saved_offset = -1;
2060 ev_reg = -1;
2061 li_found_pc = 0;
2062 }
2063 continue;
2064 }
2065 /* Store gen register r31 at (rA+uimm). */
2066 /* 000100 11111 aaaaa iiiii 01100100001 */
2067 else if (arch_info->mach == bfd_mach_ppc_e500
2068 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
2069 {
2070 /* Wwe know that the source register is 31 already, but
2071 it can't hurt to compute it. */
2072 ev_reg = GET_SRC_REG (op);
2073 ev_offset = ((op >> 11) & 0x1f) * 8;
2074 /* If this is the first vector reg to be saved, or if
2075 it has a lower number than others previously seen,
2076 reupdate the frame info. */
2077 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2078 {
2079 fdata->saved_ev = ev_reg;
2080 fdata->ev_offset = ev_offset + offset;
2081 }
2082
2083 continue;
2084 }
2085 /* Store gen register S at (r31+r0).
2086 Store param on stack when offset from SP bigger than 4 bytes. */
2087 /* 000100 sssss 11111 00000 01100100000 */
2088 else if (arch_info->mach == bfd_mach_ppc_e500
2089 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
2090 {
2091 if (pc == (li_found_pc + 4))
2092 {
2093 if ((op & 0x03e00000) >= 0x01a00000)
2094 {
2095 ev_reg = GET_SRC_REG (op);
2096 /* If this is the first vector reg to be saved, or if
2097 it has a lower number than others previously seen,
2098 reupdate the frame info. */
2099 /* We know the contents of r0 from the previous
2100 instruction. */
2101 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2102 {
2103 fdata->saved_ev = ev_reg;
2104 fdata->ev_offset = vr_saved_offset + offset;
2105 }
2106 ev_reg = -1;
2107 }
2108 vr_saved_offset = -1;
2109 li_found_pc = 0;
2110 continue;
2111 }
2112 }
2113 /* End BookE related instructions. */
2114
2115 else
2116 {
2117 /* Not a recognized prologue instruction.
2118 Handle optimizer code motions into the prologue by continuing
2119 the search if we have no valid frame yet or if the return
2120 address is not yet saved in the frame. Also skip instructions
2121 if some of the GPRs expected to be saved are not yet saved. */
2122 if (fdata->frameless == 0 && fdata->nosavedpc == 0
2123 && fdata->saved_gpr != -1)
2124 {
2125 unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
2126
2127 if ((fdata->gpr_mask & all_mask) == all_mask)
2128 break;
2129 }
2130
2131 if (op == 0x4e800020 /* blr */
2132 || op == 0x4e800420) /* bctr */
2133 /* Do not scan past epilogue in frameless functions or
2134 trampolines. */
2135 break;
2136 if ((op & 0xf4000000) == 0x40000000) /* bxx */
2137 /* Never skip branches. */
2138 break;
2139
2140 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
2141 /* Do not scan too many insns, scanning insns is expensive with
2142 remote targets. */
2143 break;
2144
2145 /* Continue scanning. */
2146 prev_insn_was_prologue_insn = 0;
2147 continue;
2148 }
2149 }
2150
2151 #if 0
2152 /* I have problems with skipping over __main() that I need to address
2153 * sometime. Previously, I used to use misc_function_vector which
2154 * didn't work as well as I wanted to be. -MGO */
2155
2156 /* If the first thing after skipping a prolog is a branch to a function,
2157 this might be a call to an initializer in main(), introduced by gcc2.
2158 We'd like to skip over it as well. Fortunately, xlc does some extra
2159 work before calling a function right after a prologue, thus we can
2160 single out such gcc2 behaviour. */
2161
2162
2163 if ((op & 0xfc000001) == 0x48000001)
2164 { /* bl foo, an initializer function? */
2165 op = read_memory_integer (pc + 4, 4, byte_order);
2166
2167 if (op == 0x4def7b82)
2168 { /* cror 0xf, 0xf, 0xf (nop) */
2169
2170 /* Check and see if we are in main. If so, skip over this
2171 initializer function as well. */
2172
2173 tmp = find_pc_misc_function (pc);
2174 if (tmp >= 0
2175 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
2176 return pc + 8;
2177 }
2178 }
2179 #endif /* 0 */
2180
2181 if (pc == lim_pc && lr_reg >= 0)
2182 fdata->lr_register = lr_reg;
2183
2184 fdata->offset = -fdata->offset;
2185 return last_prologue_pc;
2186 }
2187
2188 static CORE_ADDR
2189 rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2190 {
2191 struct rs6000_framedata frame;
2192 CORE_ADDR limit_pc, func_addr, func_end_addr = 0;
2193
2194 /* See if we can determine the end of the prologue via the symbol table.
2195 If so, then return either PC, or the PC after the prologue, whichever
2196 is greater. */
2197 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
2198 {
2199 CORE_ADDR post_prologue_pc
2200 = skip_prologue_using_sal (gdbarch, func_addr);
2201 if (post_prologue_pc != 0)
2202 return std::max (pc, post_prologue_pc);
2203 }
2204
2205 /* Can't determine prologue from the symbol table, need to examine
2206 instructions. */
2207
2208 /* Find an upper limit on the function prologue using the debug
2209 information. If the debug information could not be used to provide
2210 that bound, then use an arbitrary large number as the upper bound. */
2211 limit_pc = skip_prologue_using_sal (gdbarch, pc);
2212 if (limit_pc == 0)
2213 limit_pc = pc + 100; /* Magic. */
2214
2215 /* Do not allow limit_pc to be past the function end, if we know
2216 where that end is... */
2217 if (func_end_addr && limit_pc > func_end_addr)
2218 limit_pc = func_end_addr;
2219
2220 pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
2221 return pc;
2222 }
2223
2224 /* When compiling for EABI, some versions of GCC emit a call to __eabi
2225 in the prologue of main().
2226
2227 The function below examines the code pointed at by PC and checks to
2228 see if it corresponds to a call to __eabi. If so, it returns the
2229 address of the instruction following that call. Otherwise, it simply
2230 returns PC. */
2231
2232 static CORE_ADDR
2233 rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2234 {
2235 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2236 gdb_byte buf[4];
2237 unsigned long op;
2238
2239 if (target_read_memory (pc, buf, 4))
2240 return pc;
2241 op = extract_unsigned_integer (buf, 4, byte_order);
2242
2243 if ((op & BL_MASK) == BL_INSTRUCTION)
2244 {
2245 CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
2246 CORE_ADDR call_dest = pc + 4 + displ;
2247 struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);
2248
2249 /* We check for ___eabi (three leading underscores) in addition
2250 to __eabi in case the GCC option "-fleading-underscore" was
2251 used to compile the program. */
2252 if (s.minsym != NULL
2253 && s.minsym->linkage_name () != NULL
2254 && (strcmp (s.minsym->linkage_name (), "__eabi") == 0
2255 || strcmp (s.minsym->linkage_name (), "___eabi") == 0))
2256 pc += 4;
2257 }
2258 return pc;
2259 }
2260
2261 /* All the ABI's require 16 byte alignment. */
2262 static CORE_ADDR
2263 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2264 {
2265 return (addr & -16);
2266 }
2267
2268 /* Return whether handle_inferior_event() should proceed through code
2269 starting at PC in function NAME when stepping.
2270
2271 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2272 handle memory references that are too distant to fit in instructions
2273 generated by the compiler. For example, if 'foo' in the following
2274 instruction:
2275
2276 lwz r9,foo(r2)
2277
2278 is greater than 32767, the linker might replace the lwz with a branch to
2279 somewhere in @FIX1 that does the load in 2 instructions and then branches
2280 back to where execution should continue.
2281
2282 GDB should silently step over @FIX code, just like AIX dbx does.
2283 Unfortunately, the linker uses the "b" instruction for the
2284 branches, meaning that the link register doesn't get set.
2285 Therefore, GDB's usual step_over_function () mechanism won't work.
2286
2287 Instead, use the gdbarch_skip_trampoline_code and
2288 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2289 @FIX code. */
2290
2291 static int
2292 rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
2293 CORE_ADDR pc, const char *name)
2294 {
2295 return name && startswith (name, "@FIX");
2296 }
2297
2298 /* Skip code that the user doesn't want to see when stepping:
2299
2300 1. Indirect function calls use a piece of trampoline code to do context
2301 switching, i.e. to set the new TOC table. Skip such code if we are on
2302 its first instruction (as when we have single-stepped to here).
2303
2304 2. Skip shared library trampoline code (which is different from
2305 indirect function call trampolines).
2306
2307 3. Skip bigtoc fixup code.
2308
2309 Result is desired PC to step until, or NULL if we are not in
2310 code that should be skipped. */
2311
2312 static CORE_ADDR
2313 rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2314 {
2315 struct gdbarch *gdbarch = get_frame_arch (frame);
2316 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2317 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2318 unsigned int ii, op;
2319 int rel;
2320 CORE_ADDR solib_target_pc;
2321 struct bound_minimal_symbol msymbol;
2322
2323 static unsigned trampoline_code[] =
2324 {
2325 0x800b0000, /* l r0,0x0(r11) */
2326 0x90410014, /* st r2,0x14(r1) */
2327 0x7c0903a6, /* mtctr r0 */
2328 0x804b0004, /* l r2,0x4(r11) */
2329 0x816b0008, /* l r11,0x8(r11) */
2330 0x4e800420, /* bctr */
2331 0x4e800020, /* br */
2332 0
2333 };
2334
2335 /* Check for bigtoc fixup code. */
2336 msymbol = lookup_minimal_symbol_by_pc (pc);
2337 if (msymbol.minsym
2338 && rs6000_in_solib_return_trampoline (gdbarch, pc,
2339 msymbol.minsym->linkage_name ()))
2340 {
2341 /* Double-check that the third instruction from PC is relative "b". */
2342 op = read_memory_integer (pc + 8, 4, byte_order);
2343 if ((op & 0xfc000003) == 0x48000000)
2344 {
2345 /* Extract bits 6-29 as a signed 24-bit relative word address and
2346 add it to the containing PC. */
2347 rel = ((int)(op << 6) >> 6);
2348 return pc + 8 + rel;
2349 }
2350 }
2351
2352 /* If pc is in a shared library trampoline, return its target. */
2353 solib_target_pc = find_solib_trampoline_target (frame, pc);
2354 if (solib_target_pc)
2355 return solib_target_pc;
2356
2357 for (ii = 0; trampoline_code[ii]; ++ii)
2358 {
2359 op = read_memory_integer (pc + (ii * 4), 4, byte_order);
2360 if (op != trampoline_code[ii])
2361 return 0;
2362 }
2363 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination
2364 addr. */
2365 pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
2366 return pc;
2367 }
2368
2369 /* ISA-specific vector types. */
2370
2371 static struct type *
2372 rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2373 {
2374 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2375
2376 if (!tdep->ppc_builtin_type_vec64)
2377 {
2378 const struct builtin_type *bt = builtin_type (gdbarch);
2379
2380 /* The type we're building is this: */
2381 #if 0
2382 union __gdb_builtin_type_vec64
2383 {
2384 int64_t uint64;
2385 float v2_float[2];
2386 int32_t v2_int32[2];
2387 int16_t v4_int16[4];
2388 int8_t v8_int8[8];
2389 };
2390 #endif
2391
2392 struct type *t;
2393
2394 t = arch_composite_type (gdbarch,
2395 "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
2396 append_composite_type_field (t, "uint64", bt->builtin_int64);
2397 append_composite_type_field (t, "v2_float",
2398 init_vector_type (bt->builtin_float, 2));
2399 append_composite_type_field (t, "v2_int32",
2400 init_vector_type (bt->builtin_int32, 2));
2401 append_composite_type_field (t, "v4_int16",
2402 init_vector_type (bt->builtin_int16, 4));
2403 append_composite_type_field (t, "v8_int8",
2404 init_vector_type (bt->builtin_int8, 8));
2405
2406 t->set_is_vector (true);
2407 t->set_name ("ppc_builtin_type_vec64");
2408 tdep->ppc_builtin_type_vec64 = t;
2409 }
2410
2411 return tdep->ppc_builtin_type_vec64;
2412 }
2413
2414 /* Vector 128 type. */
2415
2416 static struct type *
2417 rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2418 {
2419 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2420
2421 if (!tdep->ppc_builtin_type_vec128)
2422 {
2423 const struct builtin_type *bt = builtin_type (gdbarch);
2424
2425 /* The type we're building is this
2426
2427 type = union __ppc_builtin_type_vec128 {
2428 float128_t float128;
2429 uint128_t uint128;
2430 double v2_double[2];
2431 float v4_float[4];
2432 int32_t v4_int32[4];
2433 int16_t v8_int16[8];
2434 int8_t v16_int8[16];
2435 }
2436 */
2437
2438 /* PPC specific type for IEEE 128-bit float field */
2439 struct type *t_float128
2440 = arch_float_type (gdbarch, 128, "float128_t", floatformats_ia64_quad);
2441
2442 struct type *t;
2443
2444 t = arch_composite_type (gdbarch,
2445 "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
2446 append_composite_type_field (t, "float128", t_float128);
2447 append_composite_type_field (t, "uint128", bt->builtin_uint128);
2448 append_composite_type_field (t, "v2_double",
2449 init_vector_type (bt->builtin_double, 2));
2450 append_composite_type_field (t, "v4_float",
2451 init_vector_type (bt->builtin_float, 4));
2452 append_composite_type_field (t, "v4_int32",
2453 init_vector_type (bt->builtin_int32, 4));
2454 append_composite_type_field (t, "v8_int16",
2455 init_vector_type (bt->builtin_int16, 8));
2456 append_composite_type_field (t, "v16_int8",
2457 init_vector_type (bt->builtin_int8, 16));
2458
2459 t->set_is_vector (true);
2460 t->set_name ("ppc_builtin_type_vec128");
2461 tdep->ppc_builtin_type_vec128 = t;
2462 }
2463
2464 return tdep->ppc_builtin_type_vec128;
2465 }
2466
2467 /* Return the name of register number REGNO, or the empty string if it
2468 is an anonymous register. */
2469
2470 static const char *
2471 rs6000_register_name (struct gdbarch *gdbarch, int regno)
2472 {
2473 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2474
2475 /* The upper half "registers" have names in the XML description,
2476 but we present only the low GPRs and the full 64-bit registers
2477 to the user. */
2478 if (tdep->ppc_ev0_upper_regnum >= 0
2479 && tdep->ppc_ev0_upper_regnum <= regno
2480 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2481 return "";
2482
2483 /* Hide the upper halves of the vs0~vs31 registers. */
2484 if (tdep->ppc_vsr0_regnum >= 0
2485 && tdep->ppc_vsr0_upper_regnum <= regno
2486 && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2487 return "";
2488
2489 /* Hide the upper halves of the cvs0~cvs31 registers. */
2490 if (PPC_CVSR0_UPPER_REGNUM <= regno
2491 && regno < PPC_CVSR0_UPPER_REGNUM + ppc_num_gprs)
2492 return "";
2493
2494 /* Check if the SPE pseudo registers are available. */
2495 if (IS_SPE_PSEUDOREG (tdep, regno))
2496 {
2497 static const char *const spe_regnames[] = {
2498 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2499 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2500 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2501 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2502 };
2503 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2504 }
2505
2506 /* Check if the decimal128 pseudo-registers are available. */
2507 if (IS_DFP_PSEUDOREG (tdep, regno))
2508 {
2509 static const char *const dfp128_regnames[] = {
2510 "dl0", "dl1", "dl2", "dl3",
2511 "dl4", "dl5", "dl6", "dl7",
2512 "dl8", "dl9", "dl10", "dl11",
2513 "dl12", "dl13", "dl14", "dl15"
2514 };
2515 return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2516 }
2517
2518 /* Check if this is a vX alias for a raw vrX vector register. */
2519 if (IS_V_ALIAS_PSEUDOREG (tdep, regno))
2520 {
2521 static const char *const vector_alias_regnames[] = {
2522 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
2523 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15",
2524 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",
2525 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
2526 };
2527 return vector_alias_regnames[regno - tdep->ppc_v0_alias_regnum];
2528 }
2529
2530 /* Check if this is a VSX pseudo-register. */
2531 if (IS_VSX_PSEUDOREG (tdep, regno))
2532 {
2533 static const char *const vsx_regnames[] = {
2534 "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2535 "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2536 "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2537 "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2538 "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2539 "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2540 "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2541 "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2542 "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2543 };
2544 return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2545 }
2546
2547 /* Check if the this is a Extended FP pseudo-register. */
2548 if (IS_EFP_PSEUDOREG (tdep, regno))
2549 {
2550 static const char *const efpr_regnames[] = {
2551 "f32", "f33", "f34", "f35", "f36", "f37", "f38",
2552 "f39", "f40", "f41", "f42", "f43", "f44", "f45",
2553 "f46", "f47", "f48", "f49", "f50", "f51",
2554 "f52", "f53", "f54", "f55", "f56", "f57",
2555 "f58", "f59", "f60", "f61", "f62", "f63"
2556 };
2557 return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2558 }
2559
2560 /* Check if this is a Checkpointed DFP pseudo-register. */
2561 if (IS_CDFP_PSEUDOREG (tdep, regno))
2562 {
2563 static const char *const cdfp128_regnames[] = {
2564 "cdl0", "cdl1", "cdl2", "cdl3",
2565 "cdl4", "cdl5", "cdl6", "cdl7",
2566 "cdl8", "cdl9", "cdl10", "cdl11",
2567 "cdl12", "cdl13", "cdl14", "cdl15"
2568 };
2569 return cdfp128_regnames[regno - tdep->ppc_cdl0_regnum];
2570 }
2571
2572 /* Check if this is a Checkpointed VSX pseudo-register. */
2573 if (IS_CVSX_PSEUDOREG (tdep, regno))
2574 {
2575 static const char *const cvsx_regnames[] = {
2576 "cvs0", "cvs1", "cvs2", "cvs3", "cvs4", "cvs5", "cvs6", "cvs7",
2577 "cvs8", "cvs9", "cvs10", "cvs11", "cvs12", "cvs13", "cvs14",
2578 "cvs15", "cvs16", "cvs17", "cvs18", "cvs19", "cvs20", "cvs21",
2579 "cvs22", "cvs23", "cvs24", "cvs25", "cvs26", "cvs27", "cvs28",
2580 "cvs29", "cvs30", "cvs31", "cvs32", "cvs33", "cvs34", "cvs35",
2581 "cvs36", "cvs37", "cvs38", "cvs39", "cvs40", "cvs41", "cvs42",
2582 "cvs43", "cvs44", "cvs45", "cvs46", "cvs47", "cvs48", "cvs49",
2583 "cvs50", "cvs51", "cvs52", "cvs53", "cvs54", "cvs55", "cvs56",
2584 "cvs57", "cvs58", "cvs59", "cvs60", "cvs61", "cvs62", "cvs63"
2585 };
2586 return cvsx_regnames[regno - tdep->ppc_cvsr0_regnum];
2587 }
2588
2589 /* Check if the this is a Checkpointed Extended FP pseudo-register. */
2590 if (IS_CEFP_PSEUDOREG (tdep, regno))
2591 {
2592 static const char *const cefpr_regnames[] = {
2593 "cf32", "cf33", "cf34", "cf35", "cf36", "cf37", "cf38",
2594 "cf39", "cf40", "cf41", "cf42", "cf43", "cf44", "cf45",
2595 "cf46", "cf47", "cf48", "cf49", "cf50", "cf51",
2596 "cf52", "cf53", "cf54", "cf55", "cf56", "cf57",
2597 "cf58", "cf59", "cf60", "cf61", "cf62", "cf63"
2598 };
2599 return cefpr_regnames[regno - tdep->ppc_cefpr0_regnum];
2600 }
2601
2602 return tdesc_register_name (gdbarch, regno);
2603 }
2604
2605 /* Return the GDB type object for the "standard" data type of data in
2606 register N. */
2607
2608 static struct type *
2609 rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2610 {
2611 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2612
2613 /* These are the e500 pseudo-registers. */
2614 if (IS_SPE_PSEUDOREG (tdep, regnum))
2615 return rs6000_builtin_type_vec64 (gdbarch);
2616 else if (IS_DFP_PSEUDOREG (tdep, regnum)
2617 || IS_CDFP_PSEUDOREG (tdep, regnum))
2618 /* PPC decimal128 pseudo-registers. */
2619 return builtin_type (gdbarch)->builtin_declong;
2620 else if (IS_V_ALIAS_PSEUDOREG (tdep, regnum))
2621 return gdbarch_register_type (gdbarch,
2622 tdep->ppc_vr0_regnum
2623 + (regnum
2624 - tdep->ppc_v0_alias_regnum));
2625 else if (IS_VSX_PSEUDOREG (tdep, regnum)
2626 || IS_CVSX_PSEUDOREG (tdep, regnum))
2627 /* POWER7 VSX pseudo-registers. */
2628 return rs6000_builtin_type_vec128 (gdbarch);
2629 else if (IS_EFP_PSEUDOREG (tdep, regnum)
2630 || IS_CEFP_PSEUDOREG (tdep, regnum))
2631 /* POWER7 Extended FP pseudo-registers. */
2632 return builtin_type (gdbarch)->builtin_double;
2633 else
2634 internal_error (__FILE__, __LINE__,
2635 _("rs6000_pseudo_register_type: "
2636 "called on unexpected register '%s' (%d)"),
2637 gdbarch_register_name (gdbarch, regnum), regnum);
2638 }
2639
2640 /* Check if REGNUM is a member of REGGROUP. We only need to handle
2641 the vX aliases for the vector registers by always returning false
2642 to avoid duplicated information in "info register vector/all",
2643 since the raw vrX registers will already show in these cases. For
2644 other pseudo-registers we use the default membership function. */
2645
2646 static int
2647 rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2648 struct reggroup *group)
2649 {
2650 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2651
2652 if (IS_V_ALIAS_PSEUDOREG (tdep, regnum))
2653 return 0;
2654 else
2655 return default_register_reggroup_p (gdbarch, regnum, group);
2656 }
2657
2658 /* The register format for RS/6000 floating point registers is always
2659 double, we need a conversion if the memory format is float. */
2660
2661 static int
2662 rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2663 struct type *type)
2664 {
2665 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2666
2667 return (tdep->ppc_fp0_regnum >= 0
2668 && regnum >= tdep->ppc_fp0_regnum
2669 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2670 && type->code () == TYPE_CODE_FLT
2671 && TYPE_LENGTH (type)
2672 != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
2673 }
2674
2675 static int
2676 rs6000_register_to_value (struct frame_info *frame,
2677 int regnum,
2678 struct type *type,
2679 gdb_byte *to,
2680 int *optimizedp, int *unavailablep)
2681 {
2682 struct gdbarch *gdbarch = get_frame_arch (frame);
2683 gdb_byte from[PPC_MAX_REGISTER_SIZE];
2684
2685 gdb_assert (type->code () == TYPE_CODE_FLT);
2686
2687 if (!get_frame_register_bytes (frame, regnum, 0,
2688 gdb::make_array_view (from,
2689 register_size (gdbarch,
2690 regnum)),
2691 optimizedp, unavailablep))
2692 return 0;
2693
2694 target_float_convert (from, builtin_type (gdbarch)->builtin_double,
2695 to, type);
2696 *optimizedp = *unavailablep = 0;
2697 return 1;
2698 }
2699
2700 static void
2701 rs6000_value_to_register (struct frame_info *frame,
2702 int regnum,
2703 struct type *type,
2704 const gdb_byte *from)
2705 {
2706 struct gdbarch *gdbarch = get_frame_arch (frame);
2707 gdb_byte to[PPC_MAX_REGISTER_SIZE];
2708
2709 gdb_assert (type->code () == TYPE_CODE_FLT);
2710
2711 target_float_convert (from, type,
2712 to, builtin_type (gdbarch)->builtin_double);
2713 put_frame_register (frame, regnum, to);
2714 }
2715
2716 /* The type of a function that moves the value of REG between CACHE
2717 or BUF --- in either direction. */
2718 typedef enum register_status (*move_ev_register_func) (struct regcache *,
2719 int, void *);
2720
2721 /* Move SPE vector register values between a 64-bit buffer and the two
2722 32-bit raw register halves in a regcache. This function handles
2723 both splitting a 64-bit value into two 32-bit halves, and joining
2724 two halves into a whole 64-bit value, depending on the function
2725 passed as the MOVE argument.
2726
2727 EV_REG must be the number of an SPE evN vector register --- a
2728 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2729 64-bit buffer.
2730
2731 Call MOVE once for each 32-bit half of that register, passing
2732 REGCACHE, the number of the raw register corresponding to that
2733 half, and the address of the appropriate half of BUFFER.
2734
2735 For example, passing 'regcache_raw_read' as the MOVE function will
2736 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2737 'regcache_raw_supply' will supply the contents of BUFFER to the
2738 appropriate pair of raw registers in REGCACHE.
2739
2740 You may need to cast away some 'const' qualifiers when passing
2741 MOVE, since this function can't tell at compile-time which of
2742 REGCACHE or BUFFER is acting as the source of the data. If C had
2743 co-variant type qualifiers, ... */
2744
2745 static enum register_status
2746 e500_move_ev_register (move_ev_register_func move,
2747 struct regcache *regcache, int ev_reg, void *buffer)
2748 {
2749 struct gdbarch *arch = regcache->arch ();
2750 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2751 int reg_index;
2752 gdb_byte *byte_buffer = (gdb_byte *) buffer;
2753 enum register_status status;
2754
2755 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2756
2757 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2758
2759 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2760 {
2761 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2762 byte_buffer);
2763 if (status == REG_VALID)
2764 status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
2765 byte_buffer + 4);
2766 }
2767 else
2768 {
2769 status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2770 if (status == REG_VALID)
2771 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2772 byte_buffer + 4);
2773 }
2774
2775 return status;
2776 }
2777
2778 static enum register_status
2779 do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
2780 {
2781 regcache->raw_write (regnum, (const gdb_byte *) buffer);
2782
2783 return REG_VALID;
2784 }
2785
2786 static enum register_status
2787 e500_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2788 int ev_reg, gdb_byte *buffer)
2789 {
2790 struct gdbarch *arch = regcache->arch ();
2791 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2792 int reg_index;
2793 enum register_status status;
2794
2795 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2796
2797 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2798
2799 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2800 {
2801 status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
2802 buffer);
2803 if (status == REG_VALID)
2804 status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index,
2805 buffer + 4);
2806 }
2807 else
2808 {
2809 status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index, buffer);
2810 if (status == REG_VALID)
2811 status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
2812 buffer + 4);
2813 }
2814
2815 return status;
2816
2817 }
2818
2819 static void
2820 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2821 int reg_nr, const gdb_byte *buffer)
2822 {
2823 e500_move_ev_register (do_regcache_raw_write, regcache,
2824 reg_nr, (void *) buffer);
2825 }
2826
2827 /* Read method for DFP pseudo-registers. */
2828 static enum register_status
2829 dfp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2830 int reg_nr, gdb_byte *buffer)
2831 {
2832 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2833 int reg_index, fp0;
2834 enum register_status status;
2835
2836 if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2837 {
2838 reg_index = reg_nr - tdep->ppc_dl0_regnum;
2839 fp0 = PPC_F0_REGNUM;
2840 }
2841 else
2842 {
2843 gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
2844
2845 reg_index = reg_nr - tdep->ppc_cdl0_regnum;
2846 fp0 = PPC_CF0_REGNUM;
2847 }
2848
2849 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2850 {
2851 /* Read two FP registers to form a whole dl register. */
2852 status = regcache->raw_read (fp0 + 2 * reg_index, buffer);
2853 if (status == REG_VALID)
2854 status = regcache->raw_read (fp0 + 2 * reg_index + 1,
2855 buffer + 8);
2856 }
2857 else
2858 {
2859 status = regcache->raw_read (fp0 + 2 * reg_index + 1, buffer);
2860 if (status == REG_VALID)
2861 status = regcache->raw_read (fp0 + 2 * reg_index, buffer + 8);
2862 }
2863
2864 return status;
2865 }
2866
2867 /* Write method for DFP pseudo-registers. */
2868 static void
2869 dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2870 int reg_nr, const gdb_byte *buffer)
2871 {
2872 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2873 int reg_index, fp0;
2874
2875 if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2876 {
2877 reg_index = reg_nr - tdep->ppc_dl0_regnum;
2878 fp0 = PPC_F0_REGNUM;
2879 }
2880 else
2881 {
2882 gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
2883
2884 reg_index = reg_nr - tdep->ppc_cdl0_regnum;
2885 fp0 = PPC_CF0_REGNUM;
2886 }
2887
2888 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2889 {
2890 /* Write each half of the dl register into a separate
2891 FP register. */
2892 regcache->raw_write (fp0 + 2 * reg_index, buffer);
2893 regcache->raw_write (fp0 + 2 * reg_index + 1, buffer + 8);
2894 }
2895 else
2896 {
2897 regcache->raw_write (fp0 + 2 * reg_index + 1, buffer);
2898 regcache->raw_write (fp0 + 2 * reg_index, buffer + 8);
2899 }
2900 }
2901
2902 /* Read method for the vX aliases for the raw vrX registers. */
2903
2904 static enum register_status
2905 v_alias_pseudo_register_read (struct gdbarch *gdbarch,
2906 readable_regcache *regcache, int reg_nr,
2907 gdb_byte *buffer)
2908 {
2909 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2910 gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
2911
2912 return regcache->raw_read (tdep->ppc_vr0_regnum
2913 + (reg_nr - tdep->ppc_v0_alias_regnum),
2914 buffer);
2915 }
2916
2917 /* Write method for the vX aliases for the raw vrX registers. */
2918
2919 static void
2920 v_alias_pseudo_register_write (struct gdbarch *gdbarch,
2921 struct regcache *regcache,
2922 int reg_nr, const gdb_byte *buffer)
2923 {
2924 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2925 gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
2926
2927 regcache->raw_write (tdep->ppc_vr0_regnum
2928 + (reg_nr - tdep->ppc_v0_alias_regnum), buffer);
2929 }
2930
2931 /* Read method for POWER7 VSX pseudo-registers. */
2932 static enum register_status
2933 vsx_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2934 int reg_nr, gdb_byte *buffer)
2935 {
2936 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2937 int reg_index, vr0, fp0, vsr0_upper;
2938 enum register_status status;
2939
2940 if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2941 {
2942 reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2943 vr0 = PPC_VR0_REGNUM;
2944 fp0 = PPC_F0_REGNUM;
2945 vsr0_upper = PPC_VSR0_UPPER_REGNUM;
2946 }
2947 else
2948 {
2949 gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
2950
2951 reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
2952 vr0 = PPC_CVR0_REGNUM;
2953 fp0 = PPC_CF0_REGNUM;
2954 vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
2955 }
2956
2957 /* Read the portion that overlaps the VMX registers. */
2958 if (reg_index > 31)
2959 status = regcache->raw_read (vr0 + reg_index - 32, buffer);
2960 else
2961 /* Read the portion that overlaps the FPR registers. */
2962 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2963 {
2964 status = regcache->raw_read (fp0 + reg_index, buffer);
2965 if (status == REG_VALID)
2966 status = regcache->raw_read (vsr0_upper + reg_index,
2967 buffer + 8);
2968 }
2969 else
2970 {
2971 status = regcache->raw_read (fp0 + reg_index, buffer + 8);
2972 if (status == REG_VALID)
2973 status = regcache->raw_read (vsr0_upper + reg_index, buffer);
2974 }
2975
2976 return status;
2977 }
2978
2979 /* Write method for POWER7 VSX pseudo-registers. */
2980 static void
2981 vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2982 int reg_nr, const gdb_byte *buffer)
2983 {
2984 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2985 int reg_index, vr0, fp0, vsr0_upper;
2986
2987 if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2988 {
2989 reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2990 vr0 = PPC_VR0_REGNUM;
2991 fp0 = PPC_F0_REGNUM;
2992 vsr0_upper = PPC_VSR0_UPPER_REGNUM;
2993 }
2994 else
2995 {
2996 gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
2997
2998 reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
2999 vr0 = PPC_CVR0_REGNUM;
3000 fp0 = PPC_CF0_REGNUM;
3001 vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
3002 }
3003
3004 /* Write the portion that overlaps the VMX registers. */
3005 if (reg_index > 31)
3006 regcache->raw_write (vr0 + reg_index - 32, buffer);
3007 else
3008 /* Write the portion that overlaps the FPR registers. */
3009 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
3010 {
3011 regcache->raw_write (fp0 + reg_index, buffer);
3012 regcache->raw_write (vsr0_upper + reg_index, buffer + 8);
3013 }
3014 else
3015 {
3016 regcache->raw_write (fp0 + reg_index, buffer + 8);
3017 regcache->raw_write (vsr0_upper + reg_index, buffer);
3018 }
3019 }
3020
3021 /* Read method for POWER7 Extended FP pseudo-registers. */
3022 static enum register_status
3023 efp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
3024 int reg_nr, gdb_byte *buffer)
3025 {
3026 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3027 int reg_index, vr0;
3028
3029 if (IS_EFP_PSEUDOREG (tdep, reg_nr))
3030 {
3031 reg_index = reg_nr - tdep->ppc_efpr0_regnum;
3032 vr0 = PPC_VR0_REGNUM;
3033 }
3034 else
3035 {
3036 gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
3037
3038 reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
3039 vr0 = PPC_CVR0_REGNUM;
3040 }
3041
3042 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
3043
3044 /* Read the portion that overlaps the VMX register. */
3045 return regcache->raw_read_part (vr0 + reg_index, offset,
3046 register_size (gdbarch, reg_nr),
3047 buffer);
3048 }
3049
3050 /* Write method for POWER7 Extended FP pseudo-registers. */
3051 static void
3052 efp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3053 int reg_nr, const gdb_byte *buffer)
3054 {
3055 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3056 int reg_index, vr0;
3057 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
3058
3059 if (IS_EFP_PSEUDOREG (tdep, reg_nr))
3060 {
3061 reg_index = reg_nr - tdep->ppc_efpr0_regnum;
3062 vr0 = PPC_VR0_REGNUM;
3063 }
3064 else
3065 {
3066 gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
3067
3068 reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
3069 vr0 = PPC_CVR0_REGNUM;
3070
3071 /* The call to raw_write_part fails silently if the initial read
3072 of the read-update-write sequence returns an invalid status,
3073 so we check this manually and throw an error if needed. */
3074 regcache->raw_update (vr0 + reg_index);
3075 if (regcache->get_register_status (vr0 + reg_index) != REG_VALID)
3076 error (_("Cannot write to the checkpointed EFP register, "
3077 "the corresponding vector register is unavailable."));
3078 }
3079
3080 /* Write the portion that overlaps the VMX register. */
3081 regcache->raw_write_part (vr0 + reg_index, offset,
3082 register_size (gdbarch, reg_nr), buffer);
3083 }
3084
3085 static enum register_status
3086 rs6000_pseudo_register_read (struct gdbarch *gdbarch,
3087 readable_regcache *regcache,
3088 int reg_nr, gdb_byte *buffer)
3089 {
3090 struct gdbarch *regcache_arch = regcache->arch ();
3091 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3092
3093 gdb_assert (regcache_arch == gdbarch);
3094
3095 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
3096 return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
3097 else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
3098 || IS_CDFP_PSEUDOREG (tdep, reg_nr))
3099 return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
3100 else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
3101 return v_alias_pseudo_register_read (gdbarch, regcache, reg_nr,
3102 buffer);
3103 else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
3104 || IS_CVSX_PSEUDOREG (tdep, reg_nr))
3105 return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
3106 else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
3107 || IS_CEFP_PSEUDOREG (tdep, reg_nr))
3108 return efp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
3109 else
3110 internal_error (__FILE__, __LINE__,
3111 _("rs6000_pseudo_register_read: "
3112 "called on unexpected register '%s' (%d)"),
3113 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
3114 }
3115
3116 static void
3117 rs6000_pseudo_register_write (struct gdbarch *gdbarch,
3118 struct regcache *regcache,
3119 int reg_nr, const gdb_byte *buffer)
3120 {
3121 struct gdbarch *regcache_arch = regcache->arch ();
3122 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3123
3124 gdb_assert (regcache_arch == gdbarch);
3125
3126 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
3127 e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
3128 else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
3129 || IS_CDFP_PSEUDOREG (tdep, reg_nr))
3130 dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
3131 else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
3132 v_alias_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
3133 else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
3134 || IS_CVSX_PSEUDOREG (tdep, reg_nr))
3135 vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
3136 else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
3137 || IS_CEFP_PSEUDOREG (tdep, reg_nr))
3138 efp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
3139 else
3140 internal_error (__FILE__, __LINE__,
3141 _("rs6000_pseudo_register_write: "
3142 "called on unexpected register '%s' (%d)"),
3143 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
3144 }
3145
3146 /* Set the register mask in AX with the registers that form the DFP or
3147 checkpointed DFP pseudo-register REG_NR. */
3148
3149 static void
3150 dfp_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3151 struct agent_expr *ax, int reg_nr)
3152 {
3153 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3154 int reg_index, fp0;
3155
3156 if (IS_DFP_PSEUDOREG (tdep, reg_nr))
3157 {
3158 reg_index = reg_nr - tdep->ppc_dl0_regnum;
3159 fp0 = PPC_F0_REGNUM;
3160 }
3161 else
3162 {
3163 gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
3164
3165 reg_index = reg_nr - tdep->ppc_cdl0_regnum;
3166 fp0 = PPC_CF0_REGNUM;
3167 }
3168
3169 ax_reg_mask (ax, fp0 + 2 * reg_index);
3170 ax_reg_mask (ax, fp0 + 2 * reg_index + 1);
3171 }
3172
3173 /* Set the register mask in AX with the raw vector register that
3174 corresponds to its REG_NR alias. */
3175
3176 static void
3177 v_alias_pseudo_register_collect (struct gdbarch *gdbarch,
3178 struct agent_expr *ax, int reg_nr)
3179 {
3180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3181 gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
3182
3183 ax_reg_mask (ax, tdep->ppc_vr0_regnum
3184 + (reg_nr - tdep->ppc_v0_alias_regnum));
3185 }
3186
3187 /* Set the register mask in AX with the registers that form the VSX or
3188 checkpointed VSX pseudo-register REG_NR. */
3189
3190 static void
3191 vsx_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3192 struct agent_expr *ax, int reg_nr)
3193 {
3194 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3195 int reg_index, vr0, fp0, vsr0_upper;
3196
3197 if (IS_VSX_PSEUDOREG (tdep, reg_nr))
3198 {
3199 reg_index = reg_nr - tdep->ppc_vsr0_regnum;
3200 vr0 = PPC_VR0_REGNUM;
3201 fp0 = PPC_F0_REGNUM;
3202 vsr0_upper = PPC_VSR0_UPPER_REGNUM;
3203 }
3204 else
3205 {
3206 gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
3207
3208 reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
3209 vr0 = PPC_CVR0_REGNUM;
3210 fp0 = PPC_CF0_REGNUM;
3211 vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
3212 }
3213
3214 if (reg_index > 31)
3215 {
3216 ax_reg_mask (ax, vr0 + reg_index - 32);
3217 }
3218 else
3219 {
3220 ax_reg_mask (ax, fp0 + reg_index);
3221 ax_reg_mask (ax, vsr0_upper + reg_index);
3222 }
3223 }
3224
3225 /* Set the register mask in AX with the register that corresponds to
3226 the EFP or checkpointed EFP pseudo-register REG_NR. */
3227
3228 static void
3229 efp_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3230 struct agent_expr *ax, int reg_nr)
3231 {
3232 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3233 int reg_index, vr0;
3234
3235 if (IS_EFP_PSEUDOREG (tdep, reg_nr))
3236 {
3237 reg_index = reg_nr - tdep->ppc_efpr0_regnum;
3238 vr0 = PPC_VR0_REGNUM;
3239 }
3240 else
3241 {
3242 gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
3243
3244 reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
3245 vr0 = PPC_CVR0_REGNUM;
3246 }
3247
3248 ax_reg_mask (ax, vr0 + reg_index);
3249 }
3250
3251 static int
3252 rs6000_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3253 struct agent_expr *ax, int reg_nr)
3254 {
3255 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3256 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
3257 {
3258 int reg_index = reg_nr - tdep->ppc_ev0_regnum;
3259 ax_reg_mask (ax, tdep->ppc_gp0_regnum + reg_index);
3260 ax_reg_mask (ax, tdep->ppc_ev0_upper_regnum + reg_index);
3261 }
3262 else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
3263 || IS_CDFP_PSEUDOREG (tdep, reg_nr))
3264 {
3265 dfp_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
3266 }
3267 else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
3268 {
3269 v_alias_pseudo_register_collect (gdbarch, ax, reg_nr);
3270 }
3271 else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
3272 || IS_CVSX_PSEUDOREG (tdep, reg_nr))
3273 {
3274 vsx_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
3275 }
3276 else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
3277 || IS_CEFP_PSEUDOREG (tdep, reg_nr))
3278 {
3279 efp_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
3280 }
3281 else
3282 internal_error (__FILE__, __LINE__,
3283 _("rs6000_pseudo_register_collect: "
3284 "called on unexpected register '%s' (%d)"),
3285 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
3286 return 0;
3287 }
3288
3289
3290 static void
3291 rs6000_gen_return_address (struct gdbarch *gdbarch,
3292 struct agent_expr *ax, struct axs_value *value,
3293 CORE_ADDR scope)
3294 {
3295 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3296 value->type = register_type (gdbarch, tdep->ppc_lr_regnum);
3297 value->kind = axs_lvalue_register;
3298 value->u.reg = tdep->ppc_lr_regnum;
3299 }
3300
3301
3302 /* Convert a DBX STABS register number to a GDB register number. */
3303 static int
3304 rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
3305 {
3306 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3307
3308 if (0 <= num && num <= 31)
3309 return tdep->ppc_gp0_regnum + num;
3310 else if (32 <= num && num <= 63)
3311 /* FIXME: jimb/2004-05-05: What should we do when the debug info
3312 specifies registers the architecture doesn't have? Our
3313 callers don't check the value we return. */
3314 return tdep->ppc_fp0_regnum + (num - 32);
3315 else if (77 <= num && num <= 108)
3316 return tdep->ppc_vr0_regnum + (num - 77);
3317 else if (1200 <= num && num < 1200 + 32)
3318 return tdep->ppc_ev0_upper_regnum + (num - 1200);
3319 else
3320 switch (num)
3321 {
3322 case 64:
3323 return tdep->ppc_mq_regnum;
3324 case 65:
3325 return tdep->ppc_lr_regnum;
3326 case 66:
3327 return tdep->ppc_ctr_regnum;
3328 case 76:
3329 return tdep->ppc_xer_regnum;
3330 case 109:
3331 return tdep->ppc_vrsave_regnum;
3332 case 110:
3333 return tdep->ppc_vrsave_regnum - 1; /* vscr */
3334 case 111:
3335 return tdep->ppc_acc_regnum;
3336 case 112:
3337 return tdep->ppc_spefscr_regnum;
3338 default:
3339 return num;
3340 }
3341 }
3342
3343
3344 /* Convert a Dwarf 2 register number to a GDB register number. */
3345 static int
3346 rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
3347 {
3348 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3349
3350 if (0 <= num && num <= 31)
3351 return tdep->ppc_gp0_regnum + num;
3352 else if (32 <= num && num <= 63)
3353 /* FIXME: jimb/2004-05-05: What should we do when the debug info
3354 specifies registers the architecture doesn't have? Our
3355 callers don't check the value we return. */
3356 return tdep->ppc_fp0_regnum + (num - 32);
3357 else if (1124 <= num && num < 1124 + 32)
3358 return tdep->ppc_vr0_regnum + (num - 1124);
3359 else if (1200 <= num && num < 1200 + 32)
3360 return tdep->ppc_ev0_upper_regnum + (num - 1200);
3361 else
3362 switch (num)
3363 {
3364 case 64:
3365 return tdep->ppc_cr_regnum;
3366 case 67:
3367 return tdep->ppc_vrsave_regnum - 1; /* vscr */
3368 case 99:
3369 return tdep->ppc_acc_regnum;
3370 case 100:
3371 return tdep->ppc_mq_regnum;
3372 case 101:
3373 return tdep->ppc_xer_regnum;
3374 case 108:
3375 return tdep->ppc_lr_regnum;
3376 case 109:
3377 return tdep->ppc_ctr_regnum;
3378 case 356:
3379 return tdep->ppc_vrsave_regnum;
3380 case 612:
3381 return tdep->ppc_spefscr_regnum;
3382 }
3383
3384 /* Unknown DWARF register number. */
3385 return -1;
3386 }
3387
3388 /* Translate a .eh_frame register to DWARF register, or adjust a
3389 .debug_frame register. */
3390
3391 static int
3392 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
3393 {
3394 /* GCC releases before 3.4 use GCC internal register numbering in
3395 .debug_frame (and .debug_info, et cetera). The numbering is
3396 different from the standard SysV numbering for everything except
3397 for GPRs and FPRs. We can not detect this problem in most cases
3398 - to get accurate debug info for variables living in lr, ctr, v0,
3399 et cetera, use a newer version of GCC. But we must detect
3400 one important case - lr is in column 65 in .debug_frame output,
3401 instead of 108.
3402
3403 GCC 3.4, and the "hammer" branch, have a related problem. They
3404 record lr register saves in .debug_frame as 108, but still record
3405 the return column as 65. We fix that up too.
3406
3407 We can do this because 65 is assigned to fpsr, and GCC never
3408 generates debug info referring to it. To add support for
3409 handwritten debug info that restores fpsr, we would need to add a
3410 producer version check to this. */
3411 if (!eh_frame_p)
3412 {
3413 if (num == 65)
3414 return 108;
3415 else
3416 return num;
3417 }
3418
3419 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
3420 internal register numbering; translate that to the standard DWARF2
3421 register numbering. */
3422 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
3423 return num;
3424 else if (68 <= num && num <= 75) /* cr0-cr8 */
3425 return num - 68 + 86;
3426 else if (77 <= num && num <= 108) /* vr0-vr31 */
3427 return num - 77 + 1124;
3428 else
3429 switch (num)
3430 {
3431 case 64: /* mq */
3432 return 100;
3433 case 65: /* lr */
3434 return 108;
3435 case 66: /* ctr */
3436 return 109;
3437 case 76: /* xer */
3438 return 101;
3439 case 109: /* vrsave */
3440 return 356;
3441 case 110: /* vscr */
3442 return 67;
3443 case 111: /* spe_acc */
3444 return 99;
3445 case 112: /* spefscr */
3446 return 612;
3447 default:
3448 return num;
3449 }
3450 }
3451 \f
3452
3453 /* Handling the various POWER/PowerPC variants. */
3454
3455 /* Information about a particular processor variant. */
3456
3457 struct ppc_variant
3458 {
3459 /* Name of this variant. */
3460 const char *name;
3461
3462 /* English description of the variant. */
3463 const char *description;
3464
3465 /* bfd_arch_info.arch corresponding to variant. */
3466 enum bfd_architecture arch;
3467
3468 /* bfd_arch_info.mach corresponding to variant. */
3469 unsigned long mach;
3470
3471 /* Target description for this variant. */
3472 struct target_desc **tdesc;
3473 };
3474
3475 static struct ppc_variant variants[] =
3476 {
3477 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
3478 bfd_mach_ppc, &tdesc_powerpc_altivec32},
3479 {"power", "POWER user-level", bfd_arch_rs6000,
3480 bfd_mach_rs6k, &tdesc_rs6000},
3481 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
3482 bfd_mach_ppc_403, &tdesc_powerpc_403},
3483 {"405", "IBM PowerPC 405", bfd_arch_powerpc,
3484 bfd_mach_ppc_405, &tdesc_powerpc_405},
3485 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
3486 bfd_mach_ppc_601, &tdesc_powerpc_601},
3487 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
3488 bfd_mach_ppc_602, &tdesc_powerpc_602},
3489 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
3490 bfd_mach_ppc_603, &tdesc_powerpc_603},
3491 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
3492 604, &tdesc_powerpc_604},
3493 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
3494 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
3495 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
3496 bfd_mach_ppc_505, &tdesc_powerpc_505},
3497 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
3498 bfd_mach_ppc_860, &tdesc_powerpc_860},
3499 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
3500 bfd_mach_ppc_750, &tdesc_powerpc_750},
3501 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
3502 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
3503 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
3504 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
3505
3506 /* 64-bit */
3507 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
3508 bfd_mach_ppc64, &tdesc_powerpc_altivec64},
3509 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
3510 bfd_mach_ppc_620, &tdesc_powerpc_64},
3511 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
3512 bfd_mach_ppc_630, &tdesc_powerpc_64},
3513 {"a35", "PowerPC A35", bfd_arch_powerpc,
3514 bfd_mach_ppc_a35, &tdesc_powerpc_64},
3515 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
3516 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
3517 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
3518 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
3519
3520 /* FIXME: I haven't checked the register sets of the following. */
3521 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
3522 bfd_mach_rs6k_rs1, &tdesc_rs6000},
3523 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
3524 bfd_mach_rs6k_rsc, &tdesc_rs6000},
3525 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
3526 bfd_mach_rs6k_rs2, &tdesc_rs6000},
3527
3528 {0, 0, (enum bfd_architecture) 0, 0, 0}
3529 };
3530
3531 /* Return the variant corresponding to architecture ARCH and machine number
3532 MACH. If no such variant exists, return null. */
3533
3534 static const struct ppc_variant *
3535 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
3536 {
3537 const struct ppc_variant *v;
3538
3539 for (v = variants; v->name; v++)
3540 if (arch == v->arch && mach == v->mach)
3541 return v;
3542
3543 return NULL;
3544 }
3545
3546 \f
3547
3548 struct rs6000_frame_cache
3549 {
3550 CORE_ADDR base;
3551 CORE_ADDR initial_sp;
3552 trad_frame_saved_reg *saved_regs;
3553
3554 /* Set BASE_P to true if this frame cache is properly initialized.
3555 Otherwise set to false because some registers or memory cannot
3556 collected. */
3557 int base_p;
3558 /* Cache PC for building unavailable frame. */
3559 CORE_ADDR pc;
3560 };
3561
3562 static struct rs6000_frame_cache *
3563 rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
3564 {
3565 struct rs6000_frame_cache *cache;
3566 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3567 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3568 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3569 struct rs6000_framedata fdata;
3570 int wordsize = tdep->wordsize;
3571 CORE_ADDR func = 0, pc = 0;
3572
3573 if ((*this_cache) != NULL)
3574 return (struct rs6000_frame_cache *) (*this_cache);
3575 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3576 (*this_cache) = cache;
3577 cache->pc = 0;
3578 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3579
3580 try
3581 {
3582 func = get_frame_func (this_frame);
3583 cache->pc = func;
3584 pc = get_frame_pc (this_frame);
3585 skip_prologue (gdbarch, func, pc, &fdata);
3586
3587 /* Figure out the parent's stack pointer. */
3588
3589 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3590 address of the current frame. Things might be easier if the
3591 ->frame pointed to the outer-most address of the frame. In
3592 the mean time, the address of the prev frame is used as the
3593 base address of this frame. */
3594 cache->base = get_frame_register_unsigned
3595 (this_frame, gdbarch_sp_regnum (gdbarch));
3596 }
3597 catch (const gdb_exception_error &ex)
3598 {
3599 if (ex.error != NOT_AVAILABLE_ERROR)
3600 throw;
3601 return (struct rs6000_frame_cache *) (*this_cache);
3602 }
3603
3604 /* If the function appears to be frameless, check a couple of likely
3605 indicators that we have simply failed to find the frame setup.
3606 Two common cases of this are missing symbols (i.e.
3607 get_frame_func returns the wrong address or 0), and assembly
3608 stubs which have a fast exit path but set up a frame on the slow
3609 path.
3610
3611 If the LR appears to return to this function, then presume that
3612 we have an ABI compliant frame that we failed to find. */
3613 if (fdata.frameless && fdata.lr_offset == 0)
3614 {
3615 CORE_ADDR saved_lr;
3616 int make_frame = 0;
3617
3618 saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3619 if (func == 0 && saved_lr == pc)
3620 make_frame = 1;
3621 else if (func != 0)
3622 {
3623 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3624 if (func == saved_func)
3625 make_frame = 1;
3626 }
3627
3628 if (make_frame)
3629 {
3630 fdata.frameless = 0;
3631 fdata.lr_offset = tdep->lr_frame_offset;
3632 }
3633 }
3634
3635 if (!fdata.frameless)
3636 {
3637 /* Frameless really means stackless. */
3638 ULONGEST backchain;
3639
3640 if (safe_read_memory_unsigned_integer (cache->base, wordsize,
3641 byte_order, &backchain))
3642 cache->base = (CORE_ADDR) backchain;
3643 }
3644
3645 cache->saved_regs[gdbarch_sp_regnum (gdbarch)].set_value (cache->base);
3646
3647 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3648 All fpr's from saved_fpr to fp31 are saved. */
3649
3650 if (fdata.saved_fpr >= 0)
3651 {
3652 int i;
3653 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3654
3655 /* If skip_prologue says floating-point registers were saved,
3656 but the current architecture has no floating-point registers,
3657 then that's strange. But we have no indices to even record
3658 the addresses under, so we just ignore it. */
3659 if (ppc_floating_point_unit_p (gdbarch))
3660 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3661 {
3662 cache->saved_regs[tdep->ppc_fp0_regnum + i].set_addr (fpr_addr);
3663 fpr_addr += 8;
3664 }
3665 }
3666
3667 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3668 All gpr's from saved_gpr to gpr31 are saved (except during the
3669 prologue). */
3670
3671 if (fdata.saved_gpr >= 0)
3672 {
3673 int i;
3674 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3675 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3676 {
3677 if (fdata.gpr_mask & (1U << i))
3678 cache->saved_regs[tdep->ppc_gp0_regnum + i].set_addr (gpr_addr);
3679 gpr_addr += wordsize;
3680 }
3681 }
3682
3683 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3684 All vr's from saved_vr to vr31 are saved. */
3685 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3686 {
3687 if (fdata.saved_vr >= 0)
3688 {
3689 int i;
3690 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3691 for (i = fdata.saved_vr; i < 32; i++)
3692 {
3693 cache->saved_regs[tdep->ppc_vr0_regnum + i].set_addr (vr_addr);
3694 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3695 }
3696 }
3697 }
3698
3699 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3700 All vr's from saved_ev to ev31 are saved. ????? */
3701 if (tdep->ppc_ev0_regnum != -1)
3702 {
3703 if (fdata.saved_ev >= 0)
3704 {
3705 int i;
3706 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3707 CORE_ADDR off = (byte_order == BFD_ENDIAN_BIG ? 4 : 0);
3708
3709 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3710 {
3711 cache->saved_regs[tdep->ppc_ev0_regnum + i].set_addr (ev_addr);
3712 cache->saved_regs[tdep->ppc_gp0_regnum + i].set_addr (ev_addr
3713 + off);
3714 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3715 }
3716 }
3717 }
3718
3719 /* If != 0, fdata.cr_offset is the offset from the frame that
3720 holds the CR. */
3721 if (fdata.cr_offset != 0)
3722 cache->saved_regs[tdep->ppc_cr_regnum].set_addr (cache->base
3723 + fdata.cr_offset);
3724
3725 /* If != 0, fdata.lr_offset is the offset from the frame that
3726 holds the LR. */
3727 if (fdata.lr_offset != 0)
3728 cache->saved_regs[tdep->ppc_lr_regnum].set_addr (cache->base
3729 + fdata.lr_offset);
3730 else if (fdata.lr_register != -1)
3731 cache->saved_regs[tdep->ppc_lr_regnum].set_realreg (fdata.lr_register);
3732 /* The PC is found in the link register. */
3733 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3734 cache->saved_regs[tdep->ppc_lr_regnum];
3735
3736 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3737 holds the VRSAVE. */
3738 if (fdata.vrsave_offset != 0)
3739 cache->saved_regs[tdep->ppc_vrsave_regnum].set_addr (cache->base
3740 + fdata.vrsave_offset);
3741
3742 if (fdata.alloca_reg < 0)
3743 /* If no alloca register used, then fi->frame is the value of the
3744 %sp for this frame, and it is good enough. */
3745 cache->initial_sp
3746 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3747 else
3748 cache->initial_sp
3749 = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
3750
3751 cache->base_p = 1;
3752 return cache;
3753 }
3754
3755 static void
3756 rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
3757 struct frame_id *this_id)
3758 {
3759 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3760 this_cache);
3761
3762 if (!info->base_p)
3763 {
3764 (*this_id) = frame_id_build_unavailable_stack (info->pc);
3765 return;
3766 }
3767
3768 /* This marks the outermost frame. */
3769 if (info->base == 0)
3770 return;
3771
3772 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3773 }
3774
3775 static struct value *
3776 rs6000_frame_prev_register (struct frame_info *this_frame,
3777 void **this_cache, int regnum)
3778 {
3779 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3780 this_cache);
3781 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3782 }
3783
3784 static const struct frame_unwind rs6000_frame_unwind =
3785 {
3786 "rs6000 prologue",
3787 NORMAL_FRAME,
3788 default_frame_unwind_stop_reason,
3789 rs6000_frame_this_id,
3790 rs6000_frame_prev_register,
3791 NULL,
3792 default_frame_sniffer
3793 };
3794
3795 /* Allocate and initialize a frame cache for an epilogue frame.
3796 SP is restored and prev-PC is stored in LR. */
3797
3798 static struct rs6000_frame_cache *
3799 rs6000_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
3800 {
3801 struct rs6000_frame_cache *cache;
3802 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3803 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3804
3805 if (*this_cache)
3806 return (struct rs6000_frame_cache *) *this_cache;
3807
3808 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3809 (*this_cache) = cache;
3810 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3811
3812 try
3813 {
3814 /* At this point the stack looks as if we just entered the
3815 function, and the return address is stored in LR. */
3816 CORE_ADDR sp, lr;
3817
3818 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3819 lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3820
3821 cache->base = sp;
3822 cache->initial_sp = sp;
3823
3824 cache->saved_regs[gdbarch_pc_regnum (gdbarch)].set_value (lr);
3825 }
3826 catch (const gdb_exception_error &ex)
3827 {
3828 if (ex.error != NOT_AVAILABLE_ERROR)
3829 throw;
3830 }
3831
3832 return cache;
3833 }
3834
3835 /* Implementation of frame_unwind.this_id, as defined in frame_unwind.h.
3836 Return the frame ID of an epilogue frame. */
3837
3838 static void
3839 rs6000_epilogue_frame_this_id (struct frame_info *this_frame,
3840 void **this_cache, struct frame_id *this_id)
3841 {
3842 CORE_ADDR pc;
3843 struct rs6000_frame_cache *info =
3844 rs6000_epilogue_frame_cache (this_frame, this_cache);
3845
3846 pc = get_frame_func (this_frame);
3847 if (info->base == 0)
3848 (*this_id) = frame_id_build_unavailable_stack (pc);
3849 else
3850 (*this_id) = frame_id_build (info->base, pc);
3851 }
3852
3853 /* Implementation of frame_unwind.prev_register, as defined in frame_unwind.h.
3854 Return the register value of REGNUM in previous frame. */
3855
3856 static struct value *
3857 rs6000_epilogue_frame_prev_register (struct frame_info *this_frame,
3858 void **this_cache, int regnum)
3859 {
3860 struct rs6000_frame_cache *info =
3861 rs6000_epilogue_frame_cache (this_frame, this_cache);
3862 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3863 }
3864
3865 /* Implementation of frame_unwind.sniffer, as defined in frame_unwind.h.
3866 Check whether this an epilogue frame. */
3867
3868 static int
3869 rs6000_epilogue_frame_sniffer (const struct frame_unwind *self,
3870 struct frame_info *this_frame,
3871 void **this_prologue_cache)
3872 {
3873 if (frame_relative_level (this_frame) == 0)
3874 return rs6000_in_function_epilogue_frame_p (this_frame,
3875 get_frame_arch (this_frame),
3876 get_frame_pc (this_frame));
3877 else
3878 return 0;
3879 }
3880
3881 /* Frame unwinder for epilogue frame. This is required for reverse step-over
3882 a function without debug information. */
3883
3884 static const struct frame_unwind rs6000_epilogue_frame_unwind =
3885 {
3886 "rs6000 epilogue",
3887 NORMAL_FRAME,
3888 default_frame_unwind_stop_reason,
3889 rs6000_epilogue_frame_this_id, rs6000_epilogue_frame_prev_register,
3890 NULL,
3891 rs6000_epilogue_frame_sniffer
3892 };
3893 \f
3894
3895 static CORE_ADDR
3896 rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
3897 {
3898 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3899 this_cache);
3900 return info->initial_sp;
3901 }
3902
3903 static const struct frame_base rs6000_frame_base = {
3904 &rs6000_frame_unwind,
3905 rs6000_frame_base_address,
3906 rs6000_frame_base_address,
3907 rs6000_frame_base_address
3908 };
3909
3910 static const struct frame_base *
3911 rs6000_frame_base_sniffer (struct frame_info *this_frame)
3912 {
3913 return &rs6000_frame_base;
3914 }
3915
3916 /* DWARF-2 frame support. Used to handle the detection of
3917 clobbered registers during function calls. */
3918
3919 static void
3920 ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3921 struct dwarf2_frame_state_reg *reg,
3922 struct frame_info *this_frame)
3923 {
3924 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3925
3926 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3927 non-volatile registers. We will use the same code for both. */
3928
3929 /* Call-saved GP registers. */
3930 if ((regnum >= tdep->ppc_gp0_regnum + 14
3931 && regnum <= tdep->ppc_gp0_regnum + 31)
3932 || (regnum == tdep->ppc_gp0_regnum + 1))
3933 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3934
3935 /* Call-clobbered GP registers. */
3936 if ((regnum >= tdep->ppc_gp0_regnum + 3
3937 && regnum <= tdep->ppc_gp0_regnum + 12)
3938 || (regnum == tdep->ppc_gp0_regnum))
3939 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3940
3941 /* Deal with FP registers, if supported. */
3942 if (tdep->ppc_fp0_regnum >= 0)
3943 {
3944 /* Call-saved FP registers. */
3945 if ((regnum >= tdep->ppc_fp0_regnum + 14
3946 && regnum <= tdep->ppc_fp0_regnum + 31))
3947 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3948
3949 /* Call-clobbered FP registers. */
3950 if ((regnum >= tdep->ppc_fp0_regnum
3951 && regnum <= tdep->ppc_fp0_regnum + 13))
3952 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3953 }
3954
3955 /* Deal with ALTIVEC registers, if supported. */
3956 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3957 {
3958 /* Call-saved Altivec registers. */
3959 if ((regnum >= tdep->ppc_vr0_regnum + 20
3960 && regnum <= tdep->ppc_vr0_regnum + 31)
3961 || regnum == tdep->ppc_vrsave_regnum)
3962 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3963
3964 /* Call-clobbered Altivec registers. */
3965 if ((regnum >= tdep->ppc_vr0_regnum
3966 && regnum <= tdep->ppc_vr0_regnum + 19))
3967 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3968 }
3969
3970 /* Handle PC register and Stack Pointer correctly. */
3971 if (regnum == gdbarch_pc_regnum (gdbarch))
3972 reg->how = DWARF2_FRAME_REG_RA;
3973 else if (regnum == gdbarch_sp_regnum (gdbarch))
3974 reg->how = DWARF2_FRAME_REG_CFA;
3975 }
3976
3977
3978 /* Return true if a .gnu_attributes section exists in BFD and it
3979 indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
3980 section exists in BFD and it indicates that SPE extensions are in
3981 use. Check the .gnu.attributes section first, as the binary might be
3982 compiled for SPE, but not actually using SPE instructions. */
3983
3984 static int
3985 bfd_uses_spe_extensions (bfd *abfd)
3986 {
3987 asection *sect;
3988 gdb_byte *contents = NULL;
3989 bfd_size_type size;
3990 gdb_byte *ptr;
3991 int success = 0;
3992
3993 if (!abfd)
3994 return 0;
3995
3996 #ifdef HAVE_ELF
3997 /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
3998 could be using the SPE vector abi without actually using any spe
3999 bits whatsoever. But it's close enough for now. */
4000 int vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
4001 Tag_GNU_Power_ABI_Vector);
4002 if (vector_abi == 3)
4003 return 1;
4004 #endif
4005
4006 sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
4007 if (!sect)
4008 return 0;
4009
4010 size = bfd_section_size (sect);
4011 contents = (gdb_byte *) xmalloc (size);
4012 if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
4013 {
4014 xfree (contents);
4015 return 0;
4016 }
4017
4018 /* Parse the .PPC.EMB.apuinfo section. The layout is as follows:
4019
4020 struct {
4021 uint32 name_len;
4022 uint32 data_len;
4023 uint32 type;
4024 char name[name_len rounded up to 4-byte alignment];
4025 char data[data_len];
4026 };
4027
4028 Technically, there's only supposed to be one such structure in a
4029 given apuinfo section, but the linker is not always vigilant about
4030 merging apuinfo sections from input files. Just go ahead and parse
4031 them all, exiting early when we discover the binary uses SPE
4032 insns.
4033
4034 It's not specified in what endianness the information in this
4035 section is stored. Assume that it's the endianness of the BFD. */
4036 ptr = contents;
4037 while (1)
4038 {
4039 unsigned int name_len;
4040 unsigned int data_len;
4041 unsigned int type;
4042
4043 /* If we can't read the first three fields, we're done. */
4044 if (size < 12)
4045 break;
4046
4047 name_len = bfd_get_32 (abfd, ptr);
4048 name_len = (name_len + 3) & ~3U; /* Round to 4 bytes. */
4049 data_len = bfd_get_32 (abfd, ptr + 4);
4050 type = bfd_get_32 (abfd, ptr + 8);
4051 ptr += 12;
4052
4053 /* The name must be "APUinfo\0". */
4054 if (name_len != 8
4055 && strcmp ((const char *) ptr, "APUinfo") != 0)
4056 break;
4057 ptr += name_len;
4058
4059 /* The type must be 2. */
4060 if (type != 2)
4061 break;
4062
4063 /* The data is stored as a series of uint32. The upper half of
4064 each uint32 indicates the particular APU used and the lower
4065 half indicates the revision of that APU. We just care about
4066 the upper half. */
4067
4068 /* Not 4-byte quantities. */
4069 if (data_len & 3U)
4070 break;
4071
4072 while (data_len)
4073 {
4074 unsigned int apuinfo = bfd_get_32 (abfd, ptr);
4075 unsigned int apu = apuinfo >> 16;
4076 ptr += 4;
4077 data_len -= 4;
4078
4079 /* The SPE APU is 0x100; the SPEFP APU is 0x101. Accept
4080 either. */
4081 if (apu == 0x100 || apu == 0x101)
4082 {
4083 success = 1;
4084 data_len = 0;
4085 }
4086 }
4087
4088 if (success)
4089 break;
4090 }
4091
4092 xfree (contents);
4093 return success;
4094 }
4095
4096 /* These are macros for parsing instruction fields (I.1.6.28) */
4097
4098 #define PPC_FIELD(value, from, len) \
4099 (((value) >> (32 - (from) - (len))) & ((1 << (len)) - 1))
4100 #define PPC_SEXT(v, bs) \
4101 ((((CORE_ADDR) (v) & (((CORE_ADDR) 1 << (bs)) - 1)) \
4102 ^ ((CORE_ADDR) 1 << ((bs) - 1))) \
4103 - ((CORE_ADDR) 1 << ((bs) - 1)))
4104 #define PPC_OP6(insn) PPC_FIELD (insn, 0, 6)
4105 #define PPC_EXTOP(insn) PPC_FIELD (insn, 21, 10)
4106 #define PPC_RT(insn) PPC_FIELD (insn, 6, 5)
4107 #define PPC_RS(insn) PPC_FIELD (insn, 6, 5)
4108 #define PPC_RA(insn) PPC_FIELD (insn, 11, 5)
4109 #define PPC_RB(insn) PPC_FIELD (insn, 16, 5)
4110 #define PPC_NB(insn) PPC_FIELD (insn, 16, 5)
4111 #define PPC_VRT(insn) PPC_FIELD (insn, 6, 5)
4112 #define PPC_FRT(insn) PPC_FIELD (insn, 6, 5)
4113 #define PPC_SPR(insn) (PPC_FIELD (insn, 11, 5) \
4114 | (PPC_FIELD (insn, 16, 5) << 5))
4115 #define PPC_BO(insn) PPC_FIELD (insn, 6, 5)
4116 #define PPC_T(insn) PPC_FIELD (insn, 6, 5)
4117 #define PPC_D(insn) PPC_SEXT (PPC_FIELD (insn, 16, 16), 16)
4118 #define PPC_DS(insn) PPC_SEXT (PPC_FIELD (insn, 16, 14), 14)
4119 #define PPC_DQ(insn) PPC_SEXT (PPC_FIELD (insn, 16, 12), 12)
4120 #define PPC_BIT(insn,n) ((insn & (1 << (31 - (n)))) ? 1 : 0)
4121 #define PPC_OE(insn) PPC_BIT (insn, 21)
4122 #define PPC_RC(insn) PPC_BIT (insn, 31)
4123 #define PPC_Rc(insn) PPC_BIT (insn, 21)
4124 #define PPC_LK(insn) PPC_BIT (insn, 31)
4125 #define PPC_TX(insn) PPC_BIT (insn, 31)
4126 #define PPC_LEV(insn) PPC_FIELD (insn, 20, 7)
4127
4128 #define PPC_XT(insn) ((PPC_TX (insn) << 5) | PPC_T (insn))
4129 #define PPC_XER_NB(xer) (xer & 0x7f)
4130
4131 /* Record Vector-Scalar Registers.
4132 For VSR less than 32, it's represented by an FPR and an VSR-upper register.
4133 Otherwise, it's just a VR register. Record them accordingly. */
4134
4135 static int
4136 ppc_record_vsr (struct regcache *regcache, struct gdbarch_tdep *tdep, int vsr)
4137 {
4138 if (vsr < 0 || vsr >= 64)
4139 return -1;
4140
4141 if (vsr >= 32)
4142 {
4143 if (tdep->ppc_vr0_regnum >= 0)
4144 record_full_arch_list_add_reg (regcache, tdep->ppc_vr0_regnum + vsr - 32);
4145 }
4146 else
4147 {
4148 if (tdep->ppc_fp0_regnum >= 0)
4149 record_full_arch_list_add_reg (regcache, tdep->ppc_fp0_regnum + vsr);
4150 if (tdep->ppc_vsr0_upper_regnum >= 0)
4151 record_full_arch_list_add_reg (regcache,
4152 tdep->ppc_vsr0_upper_regnum + vsr);
4153 }
4154
4155 return 0;
4156 }
4157
4158 /* Parse and record instructions primary opcode-4 at ADDR.
4159 Return 0 if successful. */
4160
4161 static int
4162 ppc_process_record_op4 (struct gdbarch *gdbarch, struct regcache *regcache,
4163 CORE_ADDR addr, uint32_t insn)
4164 {
4165 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4166 int ext = PPC_FIELD (insn, 21, 11);
4167 int vra = PPC_FIELD (insn, 11, 5);
4168
4169 switch (ext & 0x3f)
4170 {
4171 case 32: /* Vector Multiply-High-Add Signed Halfword Saturate */
4172 case 33: /* Vector Multiply-High-Round-Add Signed Halfword Saturate */
4173 case 39: /* Vector Multiply-Sum Unsigned Halfword Saturate */
4174 case 41: /* Vector Multiply-Sum Signed Halfword Saturate */
4175 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4176 /* FALL-THROUGH */
4177 case 42: /* Vector Select */
4178 case 43: /* Vector Permute */
4179 case 59: /* Vector Permute Right-indexed */
4180 case 44: /* Vector Shift Left Double by Octet Immediate */
4181 case 45: /* Vector Permute and Exclusive-OR */
4182 case 60: /* Vector Add Extended Unsigned Quadword Modulo */
4183 case 61: /* Vector Add Extended & write Carry Unsigned Quadword */
4184 case 62: /* Vector Subtract Extended Unsigned Quadword Modulo */
4185 case 63: /* Vector Subtract Extended & write Carry Unsigned Quadword */
4186 case 34: /* Vector Multiply-Low-Add Unsigned Halfword Modulo */
4187 case 35: /* Vector Multiply-Sum Unsigned Doubleword Modulo */
4188 case 36: /* Vector Multiply-Sum Unsigned Byte Modulo */
4189 case 37: /* Vector Multiply-Sum Mixed Byte Modulo */
4190 case 38: /* Vector Multiply-Sum Unsigned Halfword Modulo */
4191 case 40: /* Vector Multiply-Sum Signed Halfword Modulo */
4192 case 46: /* Vector Multiply-Add Single-Precision */
4193 case 47: /* Vector Negative Multiply-Subtract Single-Precision */
4194 record_full_arch_list_add_reg (regcache,
4195 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4196 return 0;
4197
4198 case 48: /* Multiply-Add High Doubleword */
4199 case 49: /* Multiply-Add High Doubleword Unsigned */
4200 case 51: /* Multiply-Add Low Doubleword */
4201 record_full_arch_list_add_reg (regcache,
4202 tdep->ppc_gp0_regnum + PPC_RT (insn));
4203 return 0;
4204 }
4205
4206 switch ((ext & 0x1ff))
4207 {
4208 case 385:
4209 if (vra != 0 /* Decimal Convert To Signed Quadword */
4210 && vra != 2 /* Decimal Convert From Signed Quadword */
4211 && vra != 4 /* Decimal Convert To Zoned */
4212 && vra != 5 /* Decimal Convert To National */
4213 && vra != 6 /* Decimal Convert From Zoned */
4214 && vra != 7 /* Decimal Convert From National */
4215 && vra != 31) /* Decimal Set Sign */
4216 break;
4217 /* Fall through. */
4218 /* 5.16 Decimal Integer Arithmetic Instructions */
4219 case 1: /* Decimal Add Modulo */
4220 case 65: /* Decimal Subtract Modulo */
4221
4222 case 193: /* Decimal Shift */
4223 case 129: /* Decimal Unsigned Shift */
4224 case 449: /* Decimal Shift and Round */
4225
4226 case 257: /* Decimal Truncate */
4227 case 321: /* Decimal Unsigned Truncate */
4228
4229 /* Bit-21 should be set. */
4230 if (!PPC_BIT (insn, 21))
4231 break;
4232
4233 record_full_arch_list_add_reg (regcache,
4234 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4235 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4236 return 0;
4237 }
4238
4239 /* Bit-21 is used for RC */
4240 switch (ext & 0x3ff)
4241 {
4242 case 6: /* Vector Compare Equal To Unsigned Byte */
4243 case 70: /* Vector Compare Equal To Unsigned Halfword */
4244 case 134: /* Vector Compare Equal To Unsigned Word */
4245 case 199: /* Vector Compare Equal To Unsigned Doubleword */
4246 case 774: /* Vector Compare Greater Than Signed Byte */
4247 case 838: /* Vector Compare Greater Than Signed Halfword */
4248 case 902: /* Vector Compare Greater Than Signed Word */
4249 case 967: /* Vector Compare Greater Than Signed Doubleword */
4250 case 518: /* Vector Compare Greater Than Unsigned Byte */
4251 case 646: /* Vector Compare Greater Than Unsigned Word */
4252 case 582: /* Vector Compare Greater Than Unsigned Halfword */
4253 case 711: /* Vector Compare Greater Than Unsigned Doubleword */
4254 case 966: /* Vector Compare Bounds Single-Precision */
4255 case 198: /* Vector Compare Equal To Single-Precision */
4256 case 454: /* Vector Compare Greater Than or Equal To Single-Precision */
4257 case 710: /* Vector Compare Greater Than Single-Precision */
4258 case 7: /* Vector Compare Not Equal Byte */
4259 case 71: /* Vector Compare Not Equal Halfword */
4260 case 135: /* Vector Compare Not Equal Word */
4261 case 263: /* Vector Compare Not Equal or Zero Byte */
4262 case 327: /* Vector Compare Not Equal or Zero Halfword */
4263 case 391: /* Vector Compare Not Equal or Zero Word */
4264 if (PPC_Rc (insn))
4265 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4266 record_full_arch_list_add_reg (regcache,
4267 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4268 return 0;
4269 }
4270
4271 if (ext == 1538)
4272 {
4273 switch (vra)
4274 {
4275 case 0: /* Vector Count Leading Zero Least-Significant Bits
4276 Byte */
4277 case 1: /* Vector Count Trailing Zero Least-Significant Bits
4278 Byte */
4279 record_full_arch_list_add_reg (regcache,
4280 tdep->ppc_gp0_regnum + PPC_RT (insn));
4281 return 0;
4282
4283 case 6: /* Vector Negate Word */
4284 case 7: /* Vector Negate Doubleword */
4285 case 8: /* Vector Parity Byte Word */
4286 case 9: /* Vector Parity Byte Doubleword */
4287 case 10: /* Vector Parity Byte Quadword */
4288 case 16: /* Vector Extend Sign Byte To Word */
4289 case 17: /* Vector Extend Sign Halfword To Word */
4290 case 24: /* Vector Extend Sign Byte To Doubleword */
4291 case 25: /* Vector Extend Sign Halfword To Doubleword */
4292 case 26: /* Vector Extend Sign Word To Doubleword */
4293 case 28: /* Vector Count Trailing Zeros Byte */
4294 case 29: /* Vector Count Trailing Zeros Halfword */
4295 case 30: /* Vector Count Trailing Zeros Word */
4296 case 31: /* Vector Count Trailing Zeros Doubleword */
4297 record_full_arch_list_add_reg (regcache,
4298 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4299 return 0;
4300 }
4301 }
4302
4303 switch (ext)
4304 {
4305 case 142: /* Vector Pack Unsigned Halfword Unsigned Saturate */
4306 case 206: /* Vector Pack Unsigned Word Unsigned Saturate */
4307 case 270: /* Vector Pack Signed Halfword Unsigned Saturate */
4308 case 334: /* Vector Pack Signed Word Unsigned Saturate */
4309 case 398: /* Vector Pack Signed Halfword Signed Saturate */
4310 case 462: /* Vector Pack Signed Word Signed Saturate */
4311 case 1230: /* Vector Pack Unsigned Doubleword Unsigned Saturate */
4312 case 1358: /* Vector Pack Signed Doubleword Unsigned Saturate */
4313 case 1486: /* Vector Pack Signed Doubleword Signed Saturate */
4314 case 512: /* Vector Add Unsigned Byte Saturate */
4315 case 576: /* Vector Add Unsigned Halfword Saturate */
4316 case 640: /* Vector Add Unsigned Word Saturate */
4317 case 768: /* Vector Add Signed Byte Saturate */
4318 case 832: /* Vector Add Signed Halfword Saturate */
4319 case 896: /* Vector Add Signed Word Saturate */
4320 case 1536: /* Vector Subtract Unsigned Byte Saturate */
4321 case 1600: /* Vector Subtract Unsigned Halfword Saturate */
4322 case 1664: /* Vector Subtract Unsigned Word Saturate */
4323 case 1792: /* Vector Subtract Signed Byte Saturate */
4324 case 1856: /* Vector Subtract Signed Halfword Saturate */
4325 case 1920: /* Vector Subtract Signed Word Saturate */
4326
4327 case 1544: /* Vector Sum across Quarter Unsigned Byte Saturate */
4328 case 1800: /* Vector Sum across Quarter Signed Byte Saturate */
4329 case 1608: /* Vector Sum across Quarter Signed Halfword Saturate */
4330 case 1672: /* Vector Sum across Half Signed Word Saturate */
4331 case 1928: /* Vector Sum across Signed Word Saturate */
4332 case 970: /* Vector Convert To Signed Fixed-Point Word Saturate */
4333 case 906: /* Vector Convert To Unsigned Fixed-Point Word Saturate */
4334 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4335 /* FALL-THROUGH */
4336 case 12: /* Vector Merge High Byte */
4337 case 14: /* Vector Pack Unsigned Halfword Unsigned Modulo */
4338 case 76: /* Vector Merge High Halfword */
4339 case 78: /* Vector Pack Unsigned Word Unsigned Modulo */
4340 case 140: /* Vector Merge High Word */
4341 case 268: /* Vector Merge Low Byte */
4342 case 332: /* Vector Merge Low Halfword */
4343 case 396: /* Vector Merge Low Word */
4344 case 526: /* Vector Unpack High Signed Byte */
4345 case 590: /* Vector Unpack High Signed Halfword */
4346 case 654: /* Vector Unpack Low Signed Byte */
4347 case 718: /* Vector Unpack Low Signed Halfword */
4348 case 782: /* Vector Pack Pixel */
4349 case 846: /* Vector Unpack High Pixel */
4350 case 974: /* Vector Unpack Low Pixel */
4351 case 1102: /* Vector Pack Unsigned Doubleword Unsigned Modulo */
4352 case 1614: /* Vector Unpack High Signed Word */
4353 case 1676: /* Vector Merge Odd Word */
4354 case 1742: /* Vector Unpack Low Signed Word */
4355 case 1932: /* Vector Merge Even Word */
4356 case 524: /* Vector Splat Byte */
4357 case 588: /* Vector Splat Halfword */
4358 case 652: /* Vector Splat Word */
4359 case 780: /* Vector Splat Immediate Signed Byte */
4360 case 844: /* Vector Splat Immediate Signed Halfword */
4361 case 908: /* Vector Splat Immediate Signed Word */
4362 case 452: /* Vector Shift Left */
4363 case 708: /* Vector Shift Right */
4364 case 1036: /* Vector Shift Left by Octet */
4365 case 1100: /* Vector Shift Right by Octet */
4366 case 0: /* Vector Add Unsigned Byte Modulo */
4367 case 64: /* Vector Add Unsigned Halfword Modulo */
4368 case 128: /* Vector Add Unsigned Word Modulo */
4369 case 192: /* Vector Add Unsigned Doubleword Modulo */
4370 case 256: /* Vector Add Unsigned Quadword Modulo */
4371 case 320: /* Vector Add & write Carry Unsigned Quadword */
4372 case 384: /* Vector Add and Write Carry-Out Unsigned Word */
4373 case 8: /* Vector Multiply Odd Unsigned Byte */
4374 case 72: /* Vector Multiply Odd Unsigned Halfword */
4375 case 136: /* Vector Multiply Odd Unsigned Word */
4376 case 264: /* Vector Multiply Odd Signed Byte */
4377 case 328: /* Vector Multiply Odd Signed Halfword */
4378 case 392: /* Vector Multiply Odd Signed Word */
4379 case 520: /* Vector Multiply Even Unsigned Byte */
4380 case 584: /* Vector Multiply Even Unsigned Halfword */
4381 case 648: /* Vector Multiply Even Unsigned Word */
4382 case 776: /* Vector Multiply Even Signed Byte */
4383 case 840: /* Vector Multiply Even Signed Halfword */
4384 case 904: /* Vector Multiply Even Signed Word */
4385 case 137: /* Vector Multiply Unsigned Word Modulo */
4386 case 1024: /* Vector Subtract Unsigned Byte Modulo */
4387 case 1088: /* Vector Subtract Unsigned Halfword Modulo */
4388 case 1152: /* Vector Subtract Unsigned Word Modulo */
4389 case 1216: /* Vector Subtract Unsigned Doubleword Modulo */
4390 case 1280: /* Vector Subtract Unsigned Quadword Modulo */
4391 case 1344: /* Vector Subtract & write Carry Unsigned Quadword */
4392 case 1408: /* Vector Subtract and Write Carry-Out Unsigned Word */
4393 case 1282: /* Vector Average Signed Byte */
4394 case 1346: /* Vector Average Signed Halfword */
4395 case 1410: /* Vector Average Signed Word */
4396 case 1026: /* Vector Average Unsigned Byte */
4397 case 1090: /* Vector Average Unsigned Halfword */
4398 case 1154: /* Vector Average Unsigned Word */
4399 case 258: /* Vector Maximum Signed Byte */
4400 case 322: /* Vector Maximum Signed Halfword */
4401 case 386: /* Vector Maximum Signed Word */
4402 case 450: /* Vector Maximum Signed Doubleword */
4403 case 2: /* Vector Maximum Unsigned Byte */
4404 case 66: /* Vector Maximum Unsigned Halfword */
4405 case 130: /* Vector Maximum Unsigned Word */
4406 case 194: /* Vector Maximum Unsigned Doubleword */
4407 case 770: /* Vector Minimum Signed Byte */
4408 case 834: /* Vector Minimum Signed Halfword */
4409 case 898: /* Vector Minimum Signed Word */
4410 case 962: /* Vector Minimum Signed Doubleword */
4411 case 514: /* Vector Minimum Unsigned Byte */
4412 case 578: /* Vector Minimum Unsigned Halfword */
4413 case 642: /* Vector Minimum Unsigned Word */
4414 case 706: /* Vector Minimum Unsigned Doubleword */
4415 case 1028: /* Vector Logical AND */
4416 case 1668: /* Vector Logical Equivalent */
4417 case 1092: /* Vector Logical AND with Complement */
4418 case 1412: /* Vector Logical NAND */
4419 case 1348: /* Vector Logical OR with Complement */
4420 case 1156: /* Vector Logical OR */
4421 case 1284: /* Vector Logical NOR */
4422 case 1220: /* Vector Logical XOR */
4423 case 4: /* Vector Rotate Left Byte */
4424 case 132: /* Vector Rotate Left Word VX-form */
4425 case 68: /* Vector Rotate Left Halfword */
4426 case 196: /* Vector Rotate Left Doubleword */
4427 case 260: /* Vector Shift Left Byte */
4428 case 388: /* Vector Shift Left Word */
4429 case 324: /* Vector Shift Left Halfword */
4430 case 1476: /* Vector Shift Left Doubleword */
4431 case 516: /* Vector Shift Right Byte */
4432 case 644: /* Vector Shift Right Word */
4433 case 580: /* Vector Shift Right Halfword */
4434 case 1732: /* Vector Shift Right Doubleword */
4435 case 772: /* Vector Shift Right Algebraic Byte */
4436 case 900: /* Vector Shift Right Algebraic Word */
4437 case 836: /* Vector Shift Right Algebraic Halfword */
4438 case 964: /* Vector Shift Right Algebraic Doubleword */
4439 case 10: /* Vector Add Single-Precision */
4440 case 74: /* Vector Subtract Single-Precision */
4441 case 1034: /* Vector Maximum Single-Precision */
4442 case 1098: /* Vector Minimum Single-Precision */
4443 case 842: /* Vector Convert From Signed Fixed-Point Word */
4444 case 778: /* Vector Convert From Unsigned Fixed-Point Word */
4445 case 714: /* Vector Round to Single-Precision Integer toward -Infinity */
4446 case 522: /* Vector Round to Single-Precision Integer Nearest */
4447 case 650: /* Vector Round to Single-Precision Integer toward +Infinity */
4448 case 586: /* Vector Round to Single-Precision Integer toward Zero */
4449 case 394: /* Vector 2 Raised to the Exponent Estimate Floating-Point */
4450 case 458: /* Vector Log Base 2 Estimate Floating-Point */
4451 case 266: /* Vector Reciprocal Estimate Single-Precision */
4452 case 330: /* Vector Reciprocal Square Root Estimate Single-Precision */
4453 case 1288: /* Vector AES Cipher */
4454 case 1289: /* Vector AES Cipher Last */
4455 case 1352: /* Vector AES Inverse Cipher */
4456 case 1353: /* Vector AES Inverse Cipher Last */
4457 case 1480: /* Vector AES SubBytes */
4458 case 1730: /* Vector SHA-512 Sigma Doubleword */
4459 case 1666: /* Vector SHA-256 Sigma Word */
4460 case 1032: /* Vector Polynomial Multiply-Sum Byte */
4461 case 1160: /* Vector Polynomial Multiply-Sum Word */
4462 case 1096: /* Vector Polynomial Multiply-Sum Halfword */
4463 case 1224: /* Vector Polynomial Multiply-Sum Doubleword */
4464 case 1292: /* Vector Gather Bits by Bytes by Doubleword */
4465 case 1794: /* Vector Count Leading Zeros Byte */
4466 case 1858: /* Vector Count Leading Zeros Halfword */
4467 case 1922: /* Vector Count Leading Zeros Word */
4468 case 1986: /* Vector Count Leading Zeros Doubleword */
4469 case 1795: /* Vector Population Count Byte */
4470 case 1859: /* Vector Population Count Halfword */
4471 case 1923: /* Vector Population Count Word */
4472 case 1987: /* Vector Population Count Doubleword */
4473 case 1356: /* Vector Bit Permute Quadword */
4474 case 1484: /* Vector Bit Permute Doubleword */
4475 case 513: /* Vector Multiply-by-10 Unsigned Quadword */
4476 case 1: /* Vector Multiply-by-10 & write Carry Unsigned
4477 Quadword */
4478 case 577: /* Vector Multiply-by-10 Extended Unsigned Quadword */
4479 case 65: /* Vector Multiply-by-10 Extended & write Carry
4480 Unsigned Quadword */
4481 case 1027: /* Vector Absolute Difference Unsigned Byte */
4482 case 1091: /* Vector Absolute Difference Unsigned Halfword */
4483 case 1155: /* Vector Absolute Difference Unsigned Word */
4484 case 1796: /* Vector Shift Right Variable */
4485 case 1860: /* Vector Shift Left Variable */
4486 case 133: /* Vector Rotate Left Word then Mask Insert */
4487 case 197: /* Vector Rotate Left Doubleword then Mask Insert */
4488 case 389: /* Vector Rotate Left Word then AND with Mask */
4489 case 453: /* Vector Rotate Left Doubleword then AND with Mask */
4490 case 525: /* Vector Extract Unsigned Byte */
4491 case 589: /* Vector Extract Unsigned Halfword */
4492 case 653: /* Vector Extract Unsigned Word */
4493 case 717: /* Vector Extract Doubleword */
4494 case 781: /* Vector Insert Byte */
4495 case 845: /* Vector Insert Halfword */
4496 case 909: /* Vector Insert Word */
4497 case 973: /* Vector Insert Doubleword */
4498 record_full_arch_list_add_reg (regcache,
4499 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4500 return 0;
4501
4502 case 1549: /* Vector Extract Unsigned Byte Left-Indexed */
4503 case 1613: /* Vector Extract Unsigned Halfword Left-Indexed */
4504 case 1677: /* Vector Extract Unsigned Word Left-Indexed */
4505 case 1805: /* Vector Extract Unsigned Byte Right-Indexed */
4506 case 1869: /* Vector Extract Unsigned Halfword Right-Indexed */
4507 case 1933: /* Vector Extract Unsigned Word Right-Indexed */
4508 record_full_arch_list_add_reg (regcache,
4509 tdep->ppc_gp0_regnum + PPC_RT (insn));
4510 return 0;
4511
4512 case 1604: /* Move To Vector Status and Control Register */
4513 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4514 return 0;
4515 case 1540: /* Move From Vector Status and Control Register */
4516 record_full_arch_list_add_reg (regcache,
4517 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4518 return 0;
4519 case 833: /* Decimal Copy Sign */
4520 record_full_arch_list_add_reg (regcache,
4521 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4522 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4523 return 0;
4524 }
4525
4526 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4527 "at %s, 4-%d.\n", insn, paddress (gdbarch, addr), ext);
4528 return -1;
4529 }
4530
4531 /* Parse and record instructions of primary opcode-19 at ADDR.
4532 Return 0 if successful. */
4533
4534 static int
4535 ppc_process_record_op19 (struct gdbarch *gdbarch, struct regcache *regcache,
4536 CORE_ADDR addr, uint32_t insn)
4537 {
4538 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4539 int ext = PPC_EXTOP (insn);
4540
4541 switch (ext & 0x01f)
4542 {
4543 case 2: /* Add PC Immediate Shifted */
4544 record_full_arch_list_add_reg (regcache,
4545 tdep->ppc_gp0_regnum + PPC_RT (insn));
4546 return 0;
4547 }
4548
4549 switch (ext)
4550 {
4551 case 0: /* Move Condition Register Field */
4552 case 33: /* Condition Register NOR */
4553 case 129: /* Condition Register AND with Complement */
4554 case 193: /* Condition Register XOR */
4555 case 225: /* Condition Register NAND */
4556 case 257: /* Condition Register AND */
4557 case 289: /* Condition Register Equivalent */
4558 case 417: /* Condition Register OR with Complement */
4559 case 449: /* Condition Register OR */
4560 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4561 return 0;
4562
4563 case 16: /* Branch Conditional */
4564 case 560: /* Branch Conditional to Branch Target Address Register */
4565 if ((PPC_BO (insn) & 0x4) == 0)
4566 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4567 /* FALL-THROUGH */
4568 case 528: /* Branch Conditional to Count Register */
4569 if (PPC_LK (insn))
4570 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4571 return 0;
4572
4573 case 150: /* Instruction Synchronize */
4574 /* Do nothing. */
4575 return 0;
4576 }
4577
4578 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4579 "at %s, 19-%d.\n", insn, paddress (gdbarch, addr), ext);
4580 return -1;
4581 }
4582
4583 /* Parse and record instructions of primary opcode-31 at ADDR.
4584 Return 0 if successful. */
4585
4586 static int
4587 ppc_process_record_op31 (struct gdbarch *gdbarch, struct regcache *regcache,
4588 CORE_ADDR addr, uint32_t insn)
4589 {
4590 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4591 int ext = PPC_EXTOP (insn);
4592 int tmp, nr, nb, i;
4593 CORE_ADDR at_dcsz, ea = 0;
4594 ULONGEST rb, ra, xer;
4595 int size = 0;
4596
4597 /* These instructions have OE bit. */
4598 switch (ext & 0x1ff)
4599 {
4600 /* These write RT and XER. Update CR if RC is set. */
4601 case 8: /* Subtract from carrying */
4602 case 10: /* Add carrying */
4603 case 136: /* Subtract from extended */
4604 case 138: /* Add extended */
4605 case 200: /* Subtract from zero extended */
4606 case 202: /* Add to zero extended */
4607 case 232: /* Subtract from minus one extended */
4608 case 234: /* Add to minus one extended */
4609 /* CA is always altered, but SO/OV are only altered when OE=1.
4610 In any case, XER is always altered. */
4611 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4612 if (PPC_RC (insn))
4613 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4614 record_full_arch_list_add_reg (regcache,
4615 tdep->ppc_gp0_regnum + PPC_RT (insn));
4616 return 0;
4617
4618 /* These write RT. Update CR if RC is set and update XER if OE is set. */
4619 case 40: /* Subtract from */
4620 case 104: /* Negate */
4621 case 233: /* Multiply low doubleword */
4622 case 235: /* Multiply low word */
4623 case 266: /* Add */
4624 case 393: /* Divide Doubleword Extended Unsigned */
4625 case 395: /* Divide Word Extended Unsigned */
4626 case 425: /* Divide Doubleword Extended */
4627 case 427: /* Divide Word Extended */
4628 case 457: /* Divide Doubleword Unsigned */
4629 case 459: /* Divide Word Unsigned */
4630 case 489: /* Divide Doubleword */
4631 case 491: /* Divide Word */
4632 if (PPC_OE (insn))
4633 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4634 /* FALL-THROUGH */
4635 case 9: /* Multiply High Doubleword Unsigned */
4636 case 11: /* Multiply High Word Unsigned */
4637 case 73: /* Multiply High Doubleword */
4638 case 75: /* Multiply High Word */
4639 if (PPC_RC (insn))
4640 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4641 record_full_arch_list_add_reg (regcache,
4642 tdep->ppc_gp0_regnum + PPC_RT (insn));
4643 return 0;
4644 }
4645
4646 if ((ext & 0x1f) == 15)
4647 {
4648 /* Integer Select. bit[16:20] is used for BC. */
4649 record_full_arch_list_add_reg (regcache,
4650 tdep->ppc_gp0_regnum + PPC_RT (insn));
4651 return 0;
4652 }
4653
4654 if ((ext & 0xff) == 170)
4655 {
4656 /* Add Extended using alternate carry bits */
4657 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4658 record_full_arch_list_add_reg (regcache,
4659 tdep->ppc_gp0_regnum + PPC_RT (insn));
4660 return 0;
4661 }
4662
4663 switch (ext)
4664 {
4665 case 78: /* Determine Leftmost Zero Byte */
4666 if (PPC_RC (insn))
4667 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4668 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4669 record_full_arch_list_add_reg (regcache,
4670 tdep->ppc_gp0_regnum + PPC_RT (insn));
4671 return 0;
4672
4673 /* These only write RT. */
4674 case 19: /* Move from condition register */
4675 /* Move From One Condition Register Field */
4676 case 74: /* Add and Generate Sixes */
4677 case 74 | 0x200: /* Add and Generate Sixes (bit-21 dont-care) */
4678 case 302: /* Move From Branch History Rolling Buffer */
4679 case 339: /* Move From Special Purpose Register */
4680 case 371: /* Move From Time Base [Phased-Out] */
4681 case 309: /* Load Doubleword Monitored Indexed */
4682 case 128: /* Set Boolean */
4683 case 755: /* Deliver A Random Number */
4684 record_full_arch_list_add_reg (regcache,
4685 tdep->ppc_gp0_regnum + PPC_RT (insn));
4686 return 0;
4687
4688 /* These only write to RA. */
4689 case 51: /* Move From VSR Doubleword */
4690 case 115: /* Move From VSR Word and Zero */
4691 case 122: /* Population count bytes */
4692 case 378: /* Population count words */
4693 case 506: /* Population count doublewords */
4694 case 154: /* Parity Word */
4695 case 186: /* Parity Doubleword */
4696 case 252: /* Bit Permute Doubleword */
4697 case 282: /* Convert Declets To Binary Coded Decimal */
4698 case 314: /* Convert Binary Coded Decimal To Declets */
4699 case 508: /* Compare bytes */
4700 case 307: /* Move From VSR Lower Doubleword */
4701 record_full_arch_list_add_reg (regcache,
4702 tdep->ppc_gp0_regnum + PPC_RA (insn));
4703 return 0;
4704
4705 /* These write CR and optional RA. */
4706 case 792: /* Shift Right Algebraic Word */
4707 case 794: /* Shift Right Algebraic Doubleword */
4708 case 824: /* Shift Right Algebraic Word Immediate */
4709 case 826: /* Shift Right Algebraic Doubleword Immediate (413) */
4710 case 826 | 1: /* Shift Right Algebraic Doubleword Immediate (413) */
4711 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4712 record_full_arch_list_add_reg (regcache,
4713 tdep->ppc_gp0_regnum + PPC_RA (insn));
4714 /* FALL-THROUGH */
4715 case 0: /* Compare */
4716 case 32: /* Compare logical */
4717 case 144: /* Move To Condition Register Fields */
4718 /* Move To One Condition Register Field */
4719 case 192: /* Compare Ranged Byte */
4720 case 224: /* Compare Equal Byte */
4721 case 576: /* Move XER to CR Extended */
4722 case 902: /* Paste (should always fail due to single-stepping and
4723 the memory location might not be accessible, so
4724 record only CR) */
4725 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4726 return 0;
4727
4728 /* These write to RT. Update RA if 'update indexed.' */
4729 case 53: /* Load Doubleword with Update Indexed */
4730 case 119: /* Load Byte and Zero with Update Indexed */
4731 case 311: /* Load Halfword and Zero with Update Indexed */
4732 case 55: /* Load Word and Zero with Update Indexed */
4733 case 375: /* Load Halfword Algebraic with Update Indexed */
4734 case 373: /* Load Word Algebraic with Update Indexed */
4735 record_full_arch_list_add_reg (regcache,
4736 tdep->ppc_gp0_regnum + PPC_RA (insn));
4737 /* FALL-THROUGH */
4738 case 21: /* Load Doubleword Indexed */
4739 case 52: /* Load Byte And Reserve Indexed */
4740 case 116: /* Load Halfword And Reserve Indexed */
4741 case 20: /* Load Word And Reserve Indexed */
4742 case 84: /* Load Doubleword And Reserve Indexed */
4743 case 87: /* Load Byte and Zero Indexed */
4744 case 279: /* Load Halfword and Zero Indexed */
4745 case 23: /* Load Word and Zero Indexed */
4746 case 343: /* Load Halfword Algebraic Indexed */
4747 case 341: /* Load Word Algebraic Indexed */
4748 case 790: /* Load Halfword Byte-Reverse Indexed */
4749 case 534: /* Load Word Byte-Reverse Indexed */
4750 case 532: /* Load Doubleword Byte-Reverse Indexed */
4751 case 582: /* Load Word Atomic */
4752 case 614: /* Load Doubleword Atomic */
4753 case 265: /* Modulo Unsigned Doubleword */
4754 case 777: /* Modulo Signed Doubleword */
4755 case 267: /* Modulo Unsigned Word */
4756 case 779: /* Modulo Signed Word */
4757 record_full_arch_list_add_reg (regcache,
4758 tdep->ppc_gp0_regnum + PPC_RT (insn));
4759 return 0;
4760
4761 case 597: /* Load String Word Immediate */
4762 case 533: /* Load String Word Indexed */
4763 if (ext == 597)
4764 {
4765 nr = PPC_NB (insn);
4766 if (nr == 0)
4767 nr = 32;
4768 }
4769 else
4770 {
4771 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4772 nr = PPC_XER_NB (xer);
4773 }
4774
4775 nr = (nr + 3) >> 2;
4776
4777 /* If n=0, the contents of register RT are undefined. */
4778 if (nr == 0)
4779 nr = 1;
4780
4781 for (i = 0; i < nr; i++)
4782 record_full_arch_list_add_reg (regcache,
4783 tdep->ppc_gp0_regnum
4784 + ((PPC_RT (insn) + i) & 0x1f));
4785 return 0;
4786
4787 case 276: /* Load Quadword And Reserve Indexed */
4788 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
4789 record_full_arch_list_add_reg (regcache, tmp);
4790 record_full_arch_list_add_reg (regcache, tmp + 1);
4791 return 0;
4792
4793 /* These write VRT. */
4794 case 6: /* Load Vector for Shift Left Indexed */
4795 case 38: /* Load Vector for Shift Right Indexed */
4796 case 7: /* Load Vector Element Byte Indexed */
4797 case 39: /* Load Vector Element Halfword Indexed */
4798 case 71: /* Load Vector Element Word Indexed */
4799 case 103: /* Load Vector Indexed */
4800 case 359: /* Load Vector Indexed LRU */
4801 record_full_arch_list_add_reg (regcache,
4802 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4803 return 0;
4804
4805 /* These write FRT. Update RA if 'update indexed.' */
4806 case 567: /* Load Floating-Point Single with Update Indexed */
4807 case 631: /* Load Floating-Point Double with Update Indexed */
4808 record_full_arch_list_add_reg (regcache,
4809 tdep->ppc_gp0_regnum + PPC_RA (insn));
4810 /* FALL-THROUGH */
4811 case 535: /* Load Floating-Point Single Indexed */
4812 case 599: /* Load Floating-Point Double Indexed */
4813 case 855: /* Load Floating-Point as Integer Word Algebraic Indexed */
4814 case 887: /* Load Floating-Point as Integer Word and Zero Indexed */
4815 record_full_arch_list_add_reg (regcache,
4816 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4817 return 0;
4818
4819 case 791: /* Load Floating-Point Double Pair Indexed */
4820 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
4821 record_full_arch_list_add_reg (regcache, tmp);
4822 record_full_arch_list_add_reg (regcache, tmp + 1);
4823 return 0;
4824
4825 case 179: /* Move To VSR Doubleword */
4826 case 211: /* Move To VSR Word Algebraic */
4827 case 243: /* Move To VSR Word and Zero */
4828 case 588: /* Load VSX Scalar Doubleword Indexed */
4829 case 524: /* Load VSX Scalar Single-Precision Indexed */
4830 case 76: /* Load VSX Scalar as Integer Word Algebraic Indexed */
4831 case 12: /* Load VSX Scalar as Integer Word and Zero Indexed */
4832 case 844: /* Load VSX Vector Doubleword*2 Indexed */
4833 case 332: /* Load VSX Vector Doubleword & Splat Indexed */
4834 case 780: /* Load VSX Vector Word*4 Indexed */
4835 case 268: /* Load VSX Vector Indexed */
4836 case 364: /* Load VSX Vector Word & Splat Indexed */
4837 case 812: /* Load VSX Vector Halfword*8 Indexed */
4838 case 876: /* Load VSX Vector Byte*16 Indexed */
4839 case 269: /* Load VSX Vector with Length */
4840 case 301: /* Load VSX Vector Left-justified with Length */
4841 case 781: /* Load VSX Scalar as Integer Byte & Zero Indexed */
4842 case 813: /* Load VSX Scalar as Integer Halfword & Zero Indexed */
4843 case 403: /* Move To VSR Word & Splat */
4844 case 435: /* Move To VSR Double Doubleword */
4845 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4846 return 0;
4847
4848 /* These write RA. Update CR if RC is set. */
4849 case 24: /* Shift Left Word */
4850 case 26: /* Count Leading Zeros Word */
4851 case 27: /* Shift Left Doubleword */
4852 case 28: /* AND */
4853 case 58: /* Count Leading Zeros Doubleword */
4854 case 60: /* AND with Complement */
4855 case 124: /* NOR */
4856 case 284: /* Equivalent */
4857 case 316: /* XOR */
4858 case 476: /* NAND */
4859 case 412: /* OR with Complement */
4860 case 444: /* OR */
4861 case 536: /* Shift Right Word */
4862 case 539: /* Shift Right Doubleword */
4863 case 922: /* Extend Sign Halfword */
4864 case 954: /* Extend Sign Byte */
4865 case 986: /* Extend Sign Word */
4866 case 538: /* Count Trailing Zeros Word */
4867 case 570: /* Count Trailing Zeros Doubleword */
4868 case 890: /* Extend-Sign Word and Shift Left Immediate (445) */
4869 case 890 | 1: /* Extend-Sign Word and Shift Left Immediate (445) */
4870
4871 if (ext == 444 && tdep->ppc_ppr_regnum >= 0
4872 && (PPC_RS (insn) == PPC_RA (insn))
4873 && (PPC_RA (insn) == PPC_RB (insn))
4874 && !PPC_RC (insn))
4875 {
4876 /* or Rx,Rx,Rx alters PRI in PPR. */
4877 record_full_arch_list_add_reg (regcache, tdep->ppc_ppr_regnum);
4878 return 0;
4879 }
4880
4881 if (PPC_RC (insn))
4882 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4883 record_full_arch_list_add_reg (regcache,
4884 tdep->ppc_gp0_regnum + PPC_RA (insn));
4885 return 0;
4886
4887 /* Store memory. */
4888 case 181: /* Store Doubleword with Update Indexed */
4889 case 183: /* Store Word with Update Indexed */
4890 case 247: /* Store Byte with Update Indexed */
4891 case 439: /* Store Half Word with Update Indexed */
4892 case 695: /* Store Floating-Point Single with Update Indexed */
4893 case 759: /* Store Floating-Point Double with Update Indexed */
4894 record_full_arch_list_add_reg (regcache,
4895 tdep->ppc_gp0_regnum + PPC_RA (insn));
4896 /* FALL-THROUGH */
4897 case 135: /* Store Vector Element Byte Indexed */
4898 case 167: /* Store Vector Element Halfword Indexed */
4899 case 199: /* Store Vector Element Word Indexed */
4900 case 231: /* Store Vector Indexed */
4901 case 487: /* Store Vector Indexed LRU */
4902 case 716: /* Store VSX Scalar Doubleword Indexed */
4903 case 140: /* Store VSX Scalar as Integer Word Indexed */
4904 case 652: /* Store VSX Scalar Single-Precision Indexed */
4905 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4906 case 908: /* Store VSX Vector Word*4 Indexed */
4907 case 149: /* Store Doubleword Indexed */
4908 case 151: /* Store Word Indexed */
4909 case 215: /* Store Byte Indexed */
4910 case 407: /* Store Half Word Indexed */
4911 case 694: /* Store Byte Conditional Indexed */
4912 case 726: /* Store Halfword Conditional Indexed */
4913 case 150: /* Store Word Conditional Indexed */
4914 case 214: /* Store Doubleword Conditional Indexed */
4915 case 182: /* Store Quadword Conditional Indexed */
4916 case 662: /* Store Word Byte-Reverse Indexed */
4917 case 918: /* Store Halfword Byte-Reverse Indexed */
4918 case 660: /* Store Doubleword Byte-Reverse Indexed */
4919 case 663: /* Store Floating-Point Single Indexed */
4920 case 727: /* Store Floating-Point Double Indexed */
4921 case 919: /* Store Floating-Point Double Pair Indexed */
4922 case 983: /* Store Floating-Point as Integer Word Indexed */
4923 case 396: /* Store VSX Vector Indexed */
4924 case 940: /* Store VSX Vector Halfword*8 Indexed */
4925 case 1004: /* Store VSX Vector Byte*16 Indexed */
4926 case 909: /* Store VSX Scalar as Integer Byte Indexed */
4927 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
4928 if (ext == 694 || ext == 726 || ext == 150 || ext == 214 || ext == 182)
4929 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4930
4931 ra = 0;
4932 if (PPC_RA (insn) != 0)
4933 regcache_raw_read_unsigned (regcache,
4934 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4935 regcache_raw_read_unsigned (regcache,
4936 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4937 ea = ra + rb;
4938
4939 switch (ext)
4940 {
4941 case 183: /* Store Word with Update Indexed */
4942 case 199: /* Store Vector Element Word Indexed */
4943 case 140: /* Store VSX Scalar as Integer Word Indexed */
4944 case 652: /* Store VSX Scalar Single-Precision Indexed */
4945 case 151: /* Store Word Indexed */
4946 case 150: /* Store Word Conditional Indexed */
4947 case 662: /* Store Word Byte-Reverse Indexed */
4948 case 663: /* Store Floating-Point Single Indexed */
4949 case 695: /* Store Floating-Point Single with Update Indexed */
4950 case 983: /* Store Floating-Point as Integer Word Indexed */
4951 size = 4;
4952 break;
4953 case 247: /* Store Byte with Update Indexed */
4954 case 135: /* Store Vector Element Byte Indexed */
4955 case 215: /* Store Byte Indexed */
4956 case 694: /* Store Byte Conditional Indexed */
4957 case 909: /* Store VSX Scalar as Integer Byte Indexed */
4958 size = 1;
4959 break;
4960 case 439: /* Store Halfword with Update Indexed */
4961 case 167: /* Store Vector Element Halfword Indexed */
4962 case 407: /* Store Halfword Indexed */
4963 case 726: /* Store Halfword Conditional Indexed */
4964 case 918: /* Store Halfword Byte-Reverse Indexed */
4965 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
4966 size = 2;
4967 break;
4968 case 181: /* Store Doubleword with Update Indexed */
4969 case 716: /* Store VSX Scalar Doubleword Indexed */
4970 case 149: /* Store Doubleword Indexed */
4971 case 214: /* Store Doubleword Conditional Indexed */
4972 case 660: /* Store Doubleword Byte-Reverse Indexed */
4973 case 727: /* Store Floating-Point Double Indexed */
4974 case 759: /* Store Floating-Point Double with Update Indexed */
4975 size = 8;
4976 break;
4977 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4978 case 908: /* Store VSX Vector Word*4 Indexed */
4979 case 182: /* Store Quadword Conditional Indexed */
4980 case 231: /* Store Vector Indexed */
4981 case 487: /* Store Vector Indexed LRU */
4982 case 919: /* Store Floating-Point Double Pair Indexed */
4983 case 396: /* Store VSX Vector Indexed */
4984 case 940: /* Store VSX Vector Halfword*8 Indexed */
4985 case 1004: /* Store VSX Vector Byte*16 Indexed */
4986 size = 16;
4987 break;
4988 default:
4989 gdb_assert (0);
4990 }
4991
4992 /* Align address for Store Vector instructions. */
4993 switch (ext)
4994 {
4995 case 167: /* Store Vector Element Halfword Indexed */
4996 addr = addr & ~0x1ULL;
4997 break;
4998
4999 case 199: /* Store Vector Element Word Indexed */
5000 addr = addr & ~0x3ULL;
5001 break;
5002
5003 case 231: /* Store Vector Indexed */
5004 case 487: /* Store Vector Indexed LRU */
5005 addr = addr & ~0xfULL;
5006 break;
5007 }
5008
5009 record_full_arch_list_add_mem (addr, size);
5010 return 0;
5011
5012 case 397: /* Store VSX Vector with Length */
5013 case 429: /* Store VSX Vector Left-justified with Length */
5014 ra = 0;
5015 if (PPC_RA (insn) != 0)
5016 regcache_raw_read_unsigned (regcache,
5017 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
5018 ea = ra;
5019 regcache_raw_read_unsigned (regcache,
5020 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
5021 /* Store up to 16 bytes. */
5022 nb = (rb & 0xff) > 16 ? 16 : (rb & 0xff);
5023 if (nb > 0)
5024 record_full_arch_list_add_mem (ea, nb);
5025 return 0;
5026
5027 case 710: /* Store Word Atomic */
5028 case 742: /* Store Doubleword Atomic */
5029 ra = 0;
5030 if (PPC_RA (insn) != 0)
5031 regcache_raw_read_unsigned (regcache,
5032 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
5033 ea = ra;
5034 switch (ext)
5035 {
5036 case 710: /* Store Word Atomic */
5037 size = 8;
5038 break;
5039 case 742: /* Store Doubleword Atomic */
5040 size = 16;
5041 break;
5042 default:
5043 gdb_assert (0);
5044 }
5045 record_full_arch_list_add_mem (ea, size);
5046 return 0;
5047
5048 case 725: /* Store String Word Immediate */
5049 ra = 0;
5050 if (PPC_RA (insn) != 0)
5051 regcache_raw_read_unsigned (regcache,
5052 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
5053 ea += ra;
5054
5055 nb = PPC_NB (insn);
5056 if (nb == 0)
5057 nb = 32;
5058
5059 record_full_arch_list_add_mem (ea, nb);
5060
5061 return 0;
5062
5063 case 661: /* Store String Word Indexed */
5064 ra = 0;
5065 if (PPC_RA (insn) != 0)
5066 regcache_raw_read_unsigned (regcache,
5067 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
5068 ea += ra;
5069
5070 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
5071 nb = PPC_XER_NB (xer);
5072
5073 if (nb != 0)
5074 {
5075 regcache_raw_read_unsigned (regcache,
5076 tdep->ppc_gp0_regnum + PPC_RB (insn),
5077 &rb);
5078 ea += rb;
5079 record_full_arch_list_add_mem (ea, nb);
5080 }
5081
5082 return 0;
5083
5084 case 467: /* Move To Special Purpose Register */
5085 switch (PPC_SPR (insn))
5086 {
5087 case 1: /* XER */
5088 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5089 return 0;
5090 case 3: /* DSCR */
5091 if (tdep->ppc_dscr_regnum >= 0)
5092 record_full_arch_list_add_reg (regcache, tdep->ppc_dscr_regnum);
5093 return 0;
5094 case 8: /* LR */
5095 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
5096 return 0;
5097 case 9: /* CTR */
5098 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
5099 return 0;
5100 case 256: /* VRSAVE */
5101 record_full_arch_list_add_reg (regcache, tdep->ppc_vrsave_regnum);
5102 return 0;
5103 case 815: /* TAR */
5104 if (tdep->ppc_tar_regnum >= 0)
5105 record_full_arch_list_add_reg (regcache, tdep->ppc_tar_regnum);
5106 return 0;
5107 case 896:
5108 case 898: /* PPR */
5109 if (tdep->ppc_ppr_regnum >= 0)
5110 record_full_arch_list_add_reg (regcache, tdep->ppc_ppr_regnum);
5111 return 0;
5112 }
5113
5114 goto UNKNOWN_OP;
5115
5116 case 147: /* Move To Split Little Endian */
5117 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
5118 return 0;
5119
5120 case 512: /* Move to Condition Register from XER */
5121 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5122 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5123 return 0;
5124
5125 case 4: /* Trap Word */
5126 case 68: /* Trap Doubleword */
5127 case 430: /* Clear BHRB */
5128 case 598: /* Synchronize */
5129 case 62: /* Wait for Interrupt */
5130 case 30: /* Wait */
5131 case 22: /* Instruction Cache Block Touch */
5132 case 854: /* Enforce In-order Execution of I/O */
5133 case 246: /* Data Cache Block Touch for Store */
5134 case 54: /* Data Cache Block Store */
5135 case 86: /* Data Cache Block Flush */
5136 case 278: /* Data Cache Block Touch */
5137 case 758: /* Data Cache Block Allocate */
5138 case 982: /* Instruction Cache Block Invalidate */
5139 case 774: /* Copy */
5140 case 838: /* CP_Abort */
5141 return 0;
5142
5143 case 654: /* Transaction Begin */
5144 case 686: /* Transaction End */
5145 case 750: /* Transaction Suspend or Resume */
5146 case 782: /* Transaction Abort Word Conditional */
5147 case 814: /* Transaction Abort Doubleword Conditional */
5148 case 846: /* Transaction Abort Word Conditional Immediate */
5149 case 878: /* Transaction Abort Doubleword Conditional Immediate */
5150 case 910: /* Transaction Abort */
5151 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
5152 /* FALL-THROUGH */
5153 case 718: /* Transaction Check */
5154 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5155 return 0;
5156
5157 case 1014: /* Data Cache Block set to Zero */
5158 if (target_auxv_search (current_inferior ()->top_target (),
5159 AT_DCACHEBSIZE, &at_dcsz) <= 0
5160 || at_dcsz == 0)
5161 at_dcsz = 128; /* Assume 128-byte cache line size (POWER8) */
5162
5163 ra = 0;
5164 if (PPC_RA (insn) != 0)
5165 regcache_raw_read_unsigned (regcache,
5166 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
5167 regcache_raw_read_unsigned (regcache,
5168 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
5169 ea = (ra + rb) & ~((ULONGEST) (at_dcsz - 1));
5170 record_full_arch_list_add_mem (ea, at_dcsz);
5171 return 0;
5172 }
5173
5174 UNKNOWN_OP:
5175 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5176 "at %s, 31-%d.\n", insn, paddress (gdbarch, addr), ext);
5177 return -1;
5178 }
5179
5180 /* Parse and record instructions of primary opcode-59 at ADDR.
5181 Return 0 if successful. */
5182
5183 static int
5184 ppc_process_record_op59 (struct gdbarch *gdbarch, struct regcache *regcache,
5185 CORE_ADDR addr, uint32_t insn)
5186 {
5187 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5188 int ext = PPC_EXTOP (insn);
5189
5190 switch (ext & 0x1f)
5191 {
5192 case 18: /* Floating Divide */
5193 case 20: /* Floating Subtract */
5194 case 21: /* Floating Add */
5195 case 22: /* Floating Square Root */
5196 case 24: /* Floating Reciprocal Estimate */
5197 case 25: /* Floating Multiply */
5198 case 26: /* Floating Reciprocal Square Root Estimate */
5199 case 28: /* Floating Multiply-Subtract */
5200 case 29: /* Floating Multiply-Add */
5201 case 30: /* Floating Negative Multiply-Subtract */
5202 case 31: /* Floating Negative Multiply-Add */
5203 record_full_arch_list_add_reg (regcache,
5204 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5205 if (PPC_RC (insn))
5206 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5207 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5208
5209 return 0;
5210 }
5211
5212 switch (ext)
5213 {
5214 case 2: /* DFP Add */
5215 case 3: /* DFP Quantize */
5216 case 34: /* DFP Multiply */
5217 case 35: /* DFP Reround */
5218 case 67: /* DFP Quantize Immediate */
5219 case 99: /* DFP Round To FP Integer With Inexact */
5220 case 227: /* DFP Round To FP Integer Without Inexact */
5221 case 258: /* DFP Convert To DFP Long! */
5222 case 290: /* DFP Convert To Fixed */
5223 case 514: /* DFP Subtract */
5224 case 546: /* DFP Divide */
5225 case 770: /* DFP Round To DFP Short! */
5226 case 802: /* DFP Convert From Fixed */
5227 case 834: /* DFP Encode BCD To DPD */
5228 if (PPC_RC (insn))
5229 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5230 record_full_arch_list_add_reg (regcache,
5231 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5232 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5233 return 0;
5234
5235 case 130: /* DFP Compare Ordered */
5236 case 162: /* DFP Test Exponent */
5237 case 194: /* DFP Test Data Class */
5238 case 226: /* DFP Test Data Group */
5239 case 642: /* DFP Compare Unordered */
5240 case 674: /* DFP Test Significance */
5241 case 675: /* DFP Test Significance Immediate */
5242 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5243 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5244 return 0;
5245
5246 case 66: /* DFP Shift Significand Left Immediate */
5247 case 98: /* DFP Shift Significand Right Immediate */
5248 case 322: /* DFP Decode DPD To BCD */
5249 case 354: /* DFP Extract Biased Exponent */
5250 case 866: /* DFP Insert Biased Exponent */
5251 record_full_arch_list_add_reg (regcache,
5252 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5253 if (PPC_RC (insn))
5254 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5255 return 0;
5256
5257 case 846: /* Floating Convert From Integer Doubleword Single */
5258 case 974: /* Floating Convert From Integer Doubleword Unsigned
5259 Single */
5260 record_full_arch_list_add_reg (regcache,
5261 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5262 if (PPC_RC (insn))
5263 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5264 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5265
5266 return 0;
5267 }
5268
5269 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5270 "at %s, 59-%d.\n", insn, paddress (gdbarch, addr), ext);
5271 return -1;
5272 }
5273
5274 /* Parse and record instructions of primary opcode-60 at ADDR.
5275 Return 0 if successful. */
5276
5277 static int
5278 ppc_process_record_op60 (struct gdbarch *gdbarch, struct regcache *regcache,
5279 CORE_ADDR addr, uint32_t insn)
5280 {
5281 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5282 int ext = PPC_EXTOP (insn);
5283
5284 switch (ext >> 2)
5285 {
5286 case 0: /* VSX Scalar Add Single-Precision */
5287 case 32: /* VSX Scalar Add Double-Precision */
5288 case 24: /* VSX Scalar Divide Single-Precision */
5289 case 56: /* VSX Scalar Divide Double-Precision */
5290 case 176: /* VSX Scalar Copy Sign Double-Precision */
5291 case 33: /* VSX Scalar Multiply-Add Double-Precision */
5292 case 41: /* ditto */
5293 case 1: /* VSX Scalar Multiply-Add Single-Precision */
5294 case 9: /* ditto */
5295 case 160: /* VSX Scalar Maximum Double-Precision */
5296 case 168: /* VSX Scalar Minimum Double-Precision */
5297 case 49: /* VSX Scalar Multiply-Subtract Double-Precision */
5298 case 57: /* ditto */
5299 case 17: /* VSX Scalar Multiply-Subtract Single-Precision */
5300 case 25: /* ditto */
5301 case 48: /* VSX Scalar Multiply Double-Precision */
5302 case 16: /* VSX Scalar Multiply Single-Precision */
5303 case 161: /* VSX Scalar Negative Multiply-Add Double-Precision */
5304 case 169: /* ditto */
5305 case 129: /* VSX Scalar Negative Multiply-Add Single-Precision */
5306 case 137: /* ditto */
5307 case 177: /* VSX Scalar Negative Multiply-Subtract Double-Precision */
5308 case 185: /* ditto */
5309 case 145: /* VSX Scalar Negative Multiply-Subtract Single-Precision */
5310 case 153: /* ditto */
5311 case 40: /* VSX Scalar Subtract Double-Precision */
5312 case 8: /* VSX Scalar Subtract Single-Precision */
5313 case 96: /* VSX Vector Add Double-Precision */
5314 case 64: /* VSX Vector Add Single-Precision */
5315 case 120: /* VSX Vector Divide Double-Precision */
5316 case 88: /* VSX Vector Divide Single-Precision */
5317 case 97: /* VSX Vector Multiply-Add Double-Precision */
5318 case 105: /* ditto */
5319 case 65: /* VSX Vector Multiply-Add Single-Precision */
5320 case 73: /* ditto */
5321 case 224: /* VSX Vector Maximum Double-Precision */
5322 case 192: /* VSX Vector Maximum Single-Precision */
5323 case 232: /* VSX Vector Minimum Double-Precision */
5324 case 200: /* VSX Vector Minimum Single-Precision */
5325 case 113: /* VSX Vector Multiply-Subtract Double-Precision */
5326 case 121: /* ditto */
5327 case 81: /* VSX Vector Multiply-Subtract Single-Precision */
5328 case 89: /* ditto */
5329 case 112: /* VSX Vector Multiply Double-Precision */
5330 case 80: /* VSX Vector Multiply Single-Precision */
5331 case 225: /* VSX Vector Negative Multiply-Add Double-Precision */
5332 case 233: /* ditto */
5333 case 193: /* VSX Vector Negative Multiply-Add Single-Precision */
5334 case 201: /* ditto */
5335 case 241: /* VSX Vector Negative Multiply-Subtract Double-Precision */
5336 case 249: /* ditto */
5337 case 209: /* VSX Vector Negative Multiply-Subtract Single-Precision */
5338 case 217: /* ditto */
5339 case 104: /* VSX Vector Subtract Double-Precision */
5340 case 72: /* VSX Vector Subtract Single-Precision */
5341 case 128: /* VSX Scalar Maximum Type-C Double-Precision */
5342 case 136: /* VSX Scalar Minimum Type-C Double-Precision */
5343 case 144: /* VSX Scalar Maximum Type-J Double-Precision */
5344 case 152: /* VSX Scalar Minimum Type-J Double-Precision */
5345 case 3: /* VSX Scalar Compare Equal Double-Precision */
5346 case 11: /* VSX Scalar Compare Greater Than Double-Precision */
5347 case 19: /* VSX Scalar Compare Greater Than or Equal
5348 Double-Precision */
5349 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5350 /* FALL-THROUGH */
5351 case 240: /* VSX Vector Copy Sign Double-Precision */
5352 case 208: /* VSX Vector Copy Sign Single-Precision */
5353 case 130: /* VSX Logical AND */
5354 case 138: /* VSX Logical AND with Complement */
5355 case 186: /* VSX Logical Equivalence */
5356 case 178: /* VSX Logical NAND */
5357 case 170: /* VSX Logical OR with Complement */
5358 case 162: /* VSX Logical NOR */
5359 case 146: /* VSX Logical OR */
5360 case 154: /* VSX Logical XOR */
5361 case 18: /* VSX Merge High Word */
5362 case 50: /* VSX Merge Low Word */
5363 case 10: /* VSX Permute Doubleword Immediate (DM=0) */
5364 case 10 | 0x20: /* VSX Permute Doubleword Immediate (DM=1) */
5365 case 10 | 0x40: /* VSX Permute Doubleword Immediate (DM=2) */
5366 case 10 | 0x60: /* VSX Permute Doubleword Immediate (DM=3) */
5367 case 2: /* VSX Shift Left Double by Word Immediate (SHW=0) */
5368 case 2 | 0x20: /* VSX Shift Left Double by Word Immediate (SHW=1) */
5369 case 2 | 0x40: /* VSX Shift Left Double by Word Immediate (SHW=2) */
5370 case 2 | 0x60: /* VSX Shift Left Double by Word Immediate (SHW=3) */
5371 case 216: /* VSX Vector Insert Exponent Single-Precision */
5372 case 248: /* VSX Vector Insert Exponent Double-Precision */
5373 case 26: /* VSX Vector Permute */
5374 case 58: /* VSX Vector Permute Right-indexed */
5375 case 213: /* VSX Vector Test Data Class Single-Precision (DC=0) */
5376 case 213 | 0x8: /* VSX Vector Test Data Class Single-Precision (DC=1) */
5377 case 245: /* VSX Vector Test Data Class Double-Precision (DC=0) */
5378 case 245 | 0x8: /* VSX Vector Test Data Class Double-Precision (DC=1) */
5379 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5380 return 0;
5381
5382 case 61: /* VSX Scalar Test for software Divide Double-Precision */
5383 case 125: /* VSX Vector Test for software Divide Double-Precision */
5384 case 93: /* VSX Vector Test for software Divide Single-Precision */
5385 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5386 return 0;
5387
5388 case 35: /* VSX Scalar Compare Unordered Double-Precision */
5389 case 43: /* VSX Scalar Compare Ordered Double-Precision */
5390 case 59: /* VSX Scalar Compare Exponents Double-Precision */
5391 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5392 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5393 return 0;
5394 }
5395
5396 switch ((ext >> 2) & 0x7f) /* Mask out Rc-bit. */
5397 {
5398 case 99: /* VSX Vector Compare Equal To Double-Precision */
5399 case 67: /* VSX Vector Compare Equal To Single-Precision */
5400 case 115: /* VSX Vector Compare Greater Than or
5401 Equal To Double-Precision */
5402 case 83: /* VSX Vector Compare Greater Than or
5403 Equal To Single-Precision */
5404 case 107: /* VSX Vector Compare Greater Than Double-Precision */
5405 case 75: /* VSX Vector Compare Greater Than Single-Precision */
5406 if (PPC_Rc (insn))
5407 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5408 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5409 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5410 return 0;
5411 }
5412
5413 switch (ext >> 1)
5414 {
5415 case 265: /* VSX Scalar round Double-Precision to
5416 Single-Precision and Convert to
5417 Single-Precision format */
5418 case 344: /* VSX Scalar truncate Double-Precision to
5419 Integer and Convert to Signed Integer
5420 Doubleword format with Saturate */
5421 case 88: /* VSX Scalar truncate Double-Precision to
5422 Integer and Convert to Signed Integer Word
5423 Format with Saturate */
5424 case 328: /* VSX Scalar truncate Double-Precision integer
5425 and Convert to Unsigned Integer Doubleword
5426 Format with Saturate */
5427 case 72: /* VSX Scalar truncate Double-Precision to
5428 Integer and Convert to Unsigned Integer Word
5429 Format with Saturate */
5430 case 329: /* VSX Scalar Convert Single-Precision to
5431 Double-Precision format */
5432 case 376: /* VSX Scalar Convert Signed Integer
5433 Doubleword to floating-point format and
5434 Round to Double-Precision format */
5435 case 312: /* VSX Scalar Convert Signed Integer
5436 Doubleword to floating-point format and
5437 round to Single-Precision */
5438 case 360: /* VSX Scalar Convert Unsigned Integer
5439 Doubleword to floating-point format and
5440 Round to Double-Precision format */
5441 case 296: /* VSX Scalar Convert Unsigned Integer
5442 Doubleword to floating-point format and
5443 Round to Single-Precision */
5444 case 73: /* VSX Scalar Round to Double-Precision Integer
5445 Using Round to Nearest Away */
5446 case 107: /* VSX Scalar Round to Double-Precision Integer
5447 Exact using Current rounding mode */
5448 case 121: /* VSX Scalar Round to Double-Precision Integer
5449 Using Round toward -Infinity */
5450 case 105: /* VSX Scalar Round to Double-Precision Integer
5451 Using Round toward +Infinity */
5452 case 89: /* VSX Scalar Round to Double-Precision Integer
5453 Using Round toward Zero */
5454 case 90: /* VSX Scalar Reciprocal Estimate Double-Precision */
5455 case 26: /* VSX Scalar Reciprocal Estimate Single-Precision */
5456 case 281: /* VSX Scalar Round to Single-Precision */
5457 case 74: /* VSX Scalar Reciprocal Square Root Estimate
5458 Double-Precision */
5459 case 10: /* VSX Scalar Reciprocal Square Root Estimate
5460 Single-Precision */
5461 case 75: /* VSX Scalar Square Root Double-Precision */
5462 case 11: /* VSX Scalar Square Root Single-Precision */
5463 case 393: /* VSX Vector round Double-Precision to
5464 Single-Precision and Convert to
5465 Single-Precision format */
5466 case 472: /* VSX Vector truncate Double-Precision to
5467 Integer and Convert to Signed Integer
5468 Doubleword format with Saturate */
5469 case 216: /* VSX Vector truncate Double-Precision to
5470 Integer and Convert to Signed Integer Word
5471 Format with Saturate */
5472 case 456: /* VSX Vector truncate Double-Precision to
5473 Integer and Convert to Unsigned Integer
5474 Doubleword format with Saturate */
5475 case 200: /* VSX Vector truncate Double-Precision to
5476 Integer and Convert to Unsigned Integer Word
5477 Format with Saturate */
5478 case 457: /* VSX Vector Convert Single-Precision to
5479 Double-Precision format */
5480 case 408: /* VSX Vector truncate Single-Precision to
5481 Integer and Convert to Signed Integer
5482 Doubleword format with Saturate */
5483 case 152: /* VSX Vector truncate Single-Precision to
5484 Integer and Convert to Signed Integer Word
5485 Format with Saturate */
5486 case 392: /* VSX Vector truncate Single-Precision to
5487 Integer and Convert to Unsigned Integer
5488 Doubleword format with Saturate */
5489 case 136: /* VSX Vector truncate Single-Precision to
5490 Integer and Convert to Unsigned Integer Word
5491 Format with Saturate */
5492 case 504: /* VSX Vector Convert and round Signed Integer
5493 Doubleword to Double-Precision format */
5494 case 440: /* VSX Vector Convert and round Signed Integer
5495 Doubleword to Single-Precision format */
5496 case 248: /* VSX Vector Convert Signed Integer Word to
5497 Double-Precision format */
5498 case 184: /* VSX Vector Convert and round Signed Integer
5499 Word to Single-Precision format */
5500 case 488: /* VSX Vector Convert and round Unsigned
5501 Integer Doubleword to Double-Precision format */
5502 case 424: /* VSX Vector Convert and round Unsigned
5503 Integer Doubleword to Single-Precision format */
5504 case 232: /* VSX Vector Convert and round Unsigned
5505 Integer Word to Double-Precision format */
5506 case 168: /* VSX Vector Convert and round Unsigned
5507 Integer Word to Single-Precision format */
5508 case 201: /* VSX Vector Round to Double-Precision
5509 Integer using round to Nearest Away */
5510 case 235: /* VSX Vector Round to Double-Precision
5511 Integer Exact using Current rounding mode */
5512 case 249: /* VSX Vector Round to Double-Precision
5513 Integer using round toward -Infinity */
5514 case 233: /* VSX Vector Round to Double-Precision
5515 Integer using round toward +Infinity */
5516 case 217: /* VSX Vector Round to Double-Precision
5517 Integer using round toward Zero */
5518 case 218: /* VSX Vector Reciprocal Estimate Double-Precision */
5519 case 154: /* VSX Vector Reciprocal Estimate Single-Precision */
5520 case 137: /* VSX Vector Round to Single-Precision Integer
5521 Using Round to Nearest Away */
5522 case 171: /* VSX Vector Round to Single-Precision Integer
5523 Exact Using Current rounding mode */
5524 case 185: /* VSX Vector Round to Single-Precision Integer
5525 Using Round toward -Infinity */
5526 case 169: /* VSX Vector Round to Single-Precision Integer
5527 Using Round toward +Infinity */
5528 case 153: /* VSX Vector Round to Single-Precision Integer
5529 Using round toward Zero */
5530 case 202: /* VSX Vector Reciprocal Square Root Estimate
5531 Double-Precision */
5532 case 138: /* VSX Vector Reciprocal Square Root Estimate
5533 Single-Precision */
5534 case 203: /* VSX Vector Square Root Double-Precision */
5535 case 139: /* VSX Vector Square Root Single-Precision */
5536 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5537 /* FALL-THROUGH */
5538 case 345: /* VSX Scalar Absolute Value Double-Precision */
5539 case 267: /* VSX Scalar Convert Scalar Single-Precision to
5540 Vector Single-Precision format Non-signalling */
5541 case 331: /* VSX Scalar Convert Single-Precision to
5542 Double-Precision format Non-signalling */
5543 case 361: /* VSX Scalar Negative Absolute Value Double-Precision */
5544 case 377: /* VSX Scalar Negate Double-Precision */
5545 case 473: /* VSX Vector Absolute Value Double-Precision */
5546 case 409: /* VSX Vector Absolute Value Single-Precision */
5547 case 489: /* VSX Vector Negative Absolute Value Double-Precision */
5548 case 425: /* VSX Vector Negative Absolute Value Single-Precision */
5549 case 505: /* VSX Vector Negate Double-Precision */
5550 case 441: /* VSX Vector Negate Single-Precision */
5551 case 164: /* VSX Splat Word */
5552 case 165: /* VSX Vector Extract Unsigned Word */
5553 case 181: /* VSX Vector Insert Word */
5554 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5555 return 0;
5556
5557 case 298: /* VSX Scalar Test Data Class Single-Precision */
5558 case 362: /* VSX Scalar Test Data Class Double-Precision */
5559 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5560 /* FALL-THROUGH */
5561 case 106: /* VSX Scalar Test for software Square Root
5562 Double-Precision */
5563 case 234: /* VSX Vector Test for software Square Root
5564 Double-Precision */
5565 case 170: /* VSX Vector Test for software Square Root
5566 Single-Precision */
5567 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5568 return 0;
5569
5570 case 347:
5571 switch (PPC_FIELD (insn, 11, 5))
5572 {
5573 case 0: /* VSX Scalar Extract Exponent Double-Precision */
5574 case 1: /* VSX Scalar Extract Significand Double-Precision */
5575 record_full_arch_list_add_reg (regcache,
5576 tdep->ppc_gp0_regnum + PPC_RT (insn));
5577 return 0;
5578 case 16: /* VSX Scalar Convert Half-Precision format to
5579 Double-Precision format */
5580 case 17: /* VSX Scalar round & Convert Double-Precision format
5581 to Half-Precision format */
5582 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5583 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5584 return 0;
5585 }
5586 break;
5587
5588 case 475:
5589 switch (PPC_FIELD (insn, 11, 5))
5590 {
5591 case 24: /* VSX Vector Convert Half-Precision format to
5592 Single-Precision format */
5593 case 25: /* VSX Vector round and Convert Single-Precision format
5594 to Half-Precision format */
5595 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5596 /* FALL-THROUGH */
5597 case 0: /* VSX Vector Extract Exponent Double-Precision */
5598 case 1: /* VSX Vector Extract Significand Double-Precision */
5599 case 7: /* VSX Vector Byte-Reverse Halfword */
5600 case 8: /* VSX Vector Extract Exponent Single-Precision */
5601 case 9: /* VSX Vector Extract Significand Single-Precision */
5602 case 15: /* VSX Vector Byte-Reverse Word */
5603 case 23: /* VSX Vector Byte-Reverse Doubleword */
5604 case 31: /* VSX Vector Byte-Reverse Quadword */
5605 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5606 return 0;
5607 }
5608 break;
5609 }
5610
5611 switch (ext)
5612 {
5613 case 360: /* VSX Vector Splat Immediate Byte */
5614 if (PPC_FIELD (insn, 11, 2) == 0)
5615 {
5616 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5617 return 0;
5618 }
5619 break;
5620 case 918: /* VSX Scalar Insert Exponent Double-Precision */
5621 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5622 return 0;
5623 }
5624
5625 if (((ext >> 3) & 0x3) == 3) /* VSX Select */
5626 {
5627 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5628 return 0;
5629 }
5630
5631 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5632 "at %s, 60-%d.\n", insn, paddress (gdbarch, addr), ext);
5633 return -1;
5634 }
5635
5636 /* Parse and record instructions of primary opcode-61 at ADDR.
5637 Return 0 if successful. */
5638
5639 static int
5640 ppc_process_record_op61 (struct gdbarch *gdbarch, struct regcache *regcache,
5641 CORE_ADDR addr, uint32_t insn)
5642 {
5643 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5644 ULONGEST ea = 0;
5645 int size;
5646
5647 switch (insn & 0x3)
5648 {
5649 case 0: /* Store Floating-Point Double Pair */
5650 case 2: /* Store VSX Scalar Doubleword */
5651 case 3: /* Store VSX Scalar Single */
5652 if (PPC_RA (insn) != 0)
5653 regcache_raw_read_unsigned (regcache,
5654 tdep->ppc_gp0_regnum + PPC_RA (insn),
5655 &ea);
5656 ea += PPC_DS (insn) << 2;
5657 switch (insn & 0x3)
5658 {
5659 case 0: /* Store Floating-Point Double Pair */
5660 size = 16;
5661 break;
5662 case 2: /* Store VSX Scalar Doubleword */
5663 size = 8;
5664 break;
5665 case 3: /* Store VSX Scalar Single */
5666 size = 4;
5667 break;
5668 default:
5669 gdb_assert (0);
5670 }
5671 record_full_arch_list_add_mem (ea, size);
5672 return 0;
5673 }
5674
5675 switch (insn & 0x7)
5676 {
5677 case 1: /* Load VSX Vector */
5678 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5679 return 0;
5680 case 5: /* Store VSX Vector */
5681 if (PPC_RA (insn) != 0)
5682 regcache_raw_read_unsigned (regcache,
5683 tdep->ppc_gp0_regnum + PPC_RA (insn),
5684 &ea);
5685 ea += PPC_DQ (insn) << 4;
5686 record_full_arch_list_add_mem (ea, 16);
5687 return 0;
5688 }
5689
5690 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5691 "at %s.\n", insn, paddress (gdbarch, addr));
5692 return -1;
5693 }
5694
5695 /* Parse and record instructions of primary opcode-63 at ADDR.
5696 Return 0 if successful. */
5697
5698 static int
5699 ppc_process_record_op63 (struct gdbarch *gdbarch, struct regcache *regcache,
5700 CORE_ADDR addr, uint32_t insn)
5701 {
5702 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5703 int ext = PPC_EXTOP (insn);
5704 int tmp;
5705
5706 switch (ext & 0x1f)
5707 {
5708 case 18: /* Floating Divide */
5709 case 20: /* Floating Subtract */
5710 case 21: /* Floating Add */
5711 case 22: /* Floating Square Root */
5712 case 24: /* Floating Reciprocal Estimate */
5713 case 25: /* Floating Multiply */
5714 case 26: /* Floating Reciprocal Square Root Estimate */
5715 case 28: /* Floating Multiply-Subtract */
5716 case 29: /* Floating Multiply-Add */
5717 case 30: /* Floating Negative Multiply-Subtract */
5718 case 31: /* Floating Negative Multiply-Add */
5719 record_full_arch_list_add_reg (regcache,
5720 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5721 if (PPC_RC (insn))
5722 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5723 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5724 return 0;
5725
5726 case 23: /* Floating Select */
5727 record_full_arch_list_add_reg (regcache,
5728 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5729 if (PPC_RC (insn))
5730 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5731 return 0;
5732 }
5733
5734 switch (ext & 0xff)
5735 {
5736 case 5: /* VSX Scalar Round to Quad-Precision Integer */
5737 case 37: /* VSX Scalar Round Quad-Precision to Double-Extended
5738 Precision */
5739 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5740 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5741 return 0;
5742 }
5743
5744 switch (ext)
5745 {
5746 case 2: /* DFP Add Quad */
5747 case 3: /* DFP Quantize Quad */
5748 case 34: /* DFP Multiply Quad */
5749 case 35: /* DFP Reround Quad */
5750 case 67: /* DFP Quantize Immediate Quad */
5751 case 99: /* DFP Round To FP Integer With Inexact Quad */
5752 case 227: /* DFP Round To FP Integer Without Inexact Quad */
5753 case 258: /* DFP Convert To DFP Extended Quad */
5754 case 514: /* DFP Subtract Quad */
5755 case 546: /* DFP Divide Quad */
5756 case 770: /* DFP Round To DFP Long Quad */
5757 case 802: /* DFP Convert From Fixed Quad */
5758 case 834: /* DFP Encode BCD To DPD Quad */
5759 if (PPC_RC (insn))
5760 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5761 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5762 record_full_arch_list_add_reg (regcache, tmp);
5763 record_full_arch_list_add_reg (regcache, tmp + 1);
5764 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5765 return 0;
5766
5767 case 130: /* DFP Compare Ordered Quad */
5768 case 162: /* DFP Test Exponent Quad */
5769 case 194: /* DFP Test Data Class Quad */
5770 case 226: /* DFP Test Data Group Quad */
5771 case 642: /* DFP Compare Unordered Quad */
5772 case 674: /* DFP Test Significance Quad */
5773 case 675: /* DFP Test Significance Immediate Quad */
5774 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5775 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5776 return 0;
5777
5778 case 66: /* DFP Shift Significand Left Immediate Quad */
5779 case 98: /* DFP Shift Significand Right Immediate Quad */
5780 case 322: /* DFP Decode DPD To BCD Quad */
5781 case 866: /* DFP Insert Biased Exponent Quad */
5782 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5783 record_full_arch_list_add_reg (regcache, tmp);
5784 record_full_arch_list_add_reg (regcache, tmp + 1);
5785 if (PPC_RC (insn))
5786 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5787 return 0;
5788
5789 case 290: /* DFP Convert To Fixed Quad */
5790 record_full_arch_list_add_reg (regcache,
5791 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5792 if (PPC_RC (insn))
5793 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5794 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5795 return 0;
5796
5797 case 354: /* DFP Extract Biased Exponent Quad */
5798 record_full_arch_list_add_reg (regcache,
5799 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5800 if (PPC_RC (insn))
5801 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5802 return 0;
5803
5804 case 12: /* Floating Round to Single-Precision */
5805 case 14: /* Floating Convert To Integer Word */
5806 case 15: /* Floating Convert To Integer Word
5807 with round toward Zero */
5808 case 142: /* Floating Convert To Integer Word Unsigned */
5809 case 143: /* Floating Convert To Integer Word Unsigned
5810 with round toward Zero */
5811 case 392: /* Floating Round to Integer Nearest */
5812 case 424: /* Floating Round to Integer Toward Zero */
5813 case 456: /* Floating Round to Integer Plus */
5814 case 488: /* Floating Round to Integer Minus */
5815 case 814: /* Floating Convert To Integer Doubleword */
5816 case 815: /* Floating Convert To Integer Doubleword
5817 with round toward Zero */
5818 case 846: /* Floating Convert From Integer Doubleword */
5819 case 942: /* Floating Convert To Integer Doubleword Unsigned */
5820 case 943: /* Floating Convert To Integer Doubleword Unsigned
5821 with round toward Zero */
5822 case 974: /* Floating Convert From Integer Doubleword Unsigned */
5823 record_full_arch_list_add_reg (regcache,
5824 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5825 if (PPC_RC (insn))
5826 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5827 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5828 return 0;
5829
5830 case 583:
5831 switch (PPC_FIELD (insn, 11, 5))
5832 {
5833 case 1: /* Move From FPSCR & Clear Enables */
5834 case 20: /* Move From FPSCR Control & set DRN */
5835 case 21: /* Move From FPSCR Control & set DRN Immediate */
5836 case 22: /* Move From FPSCR Control & set RN */
5837 case 23: /* Move From FPSCR Control & set RN Immediate */
5838 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5839 /* Fall through. */
5840 case 0: /* Move From FPSCR */
5841 case 24: /* Move From FPSCR Lightweight */
5842 if (PPC_FIELD (insn, 11, 5) == 0 && PPC_RC (insn))
5843 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5844 record_full_arch_list_add_reg (regcache,
5845 tdep->ppc_fp0_regnum
5846 + PPC_FRT (insn));
5847 return 0;
5848 }
5849 break;
5850
5851 case 8: /* Floating Copy Sign */
5852 case 40: /* Floating Negate */
5853 case 72: /* Floating Move Register */
5854 case 136: /* Floating Negative Absolute Value */
5855 case 264: /* Floating Absolute Value */
5856 record_full_arch_list_add_reg (regcache,
5857 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5858 if (PPC_RC (insn))
5859 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5860 return 0;
5861
5862 case 838: /* Floating Merge Odd Word */
5863 case 966: /* Floating Merge Even Word */
5864 record_full_arch_list_add_reg (regcache,
5865 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5866 return 0;
5867
5868 case 38: /* Move To FPSCR Bit 1 */
5869 case 70: /* Move To FPSCR Bit 0 */
5870 case 134: /* Move To FPSCR Field Immediate */
5871 case 711: /* Move To FPSCR Fields */
5872 if (PPC_RC (insn))
5873 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5874 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5875 return 0;
5876
5877 case 0: /* Floating Compare Unordered */
5878 case 32: /* Floating Compare Ordered */
5879 case 64: /* Move to Condition Register from FPSCR */
5880 case 132: /* VSX Scalar Compare Ordered Quad-Precision */
5881 case 164: /* VSX Scalar Compare Exponents Quad-Precision */
5882 case 644: /* VSX Scalar Compare Unordered Quad-Precision */
5883 case 708: /* VSX Scalar Test Data Class Quad-Precision */
5884 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5885 /* FALL-THROUGH */
5886 case 128: /* Floating Test for software Divide */
5887 case 160: /* Floating Test for software Square Root */
5888 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5889 return 0;
5890
5891 case 4: /* VSX Scalar Add Quad-Precision */
5892 case 36: /* VSX Scalar Multiply Quad-Precision */
5893 case 388: /* VSX Scalar Multiply-Add Quad-Precision */
5894 case 420: /* VSX Scalar Multiply-Subtract Quad-Precision */
5895 case 452: /* VSX Scalar Negative Multiply-Add Quad-Precision */
5896 case 484: /* VSX Scalar Negative Multiply-Subtract
5897 Quad-Precision */
5898 case 516: /* VSX Scalar Subtract Quad-Precision */
5899 case 548: /* VSX Scalar Divide Quad-Precision */
5900 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5901 /* FALL-THROUGH */
5902 case 100: /* VSX Scalar Copy Sign Quad-Precision */
5903 case 868: /* VSX Scalar Insert Exponent Quad-Precision */
5904 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5905 return 0;
5906
5907 case 804:
5908 switch (PPC_FIELD (insn, 11, 5))
5909 {
5910 case 27: /* VSX Scalar Square Root Quad-Precision */
5911 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5912 /* FALL-THROUGH */
5913 case 0: /* VSX Scalar Absolute Quad-Precision */
5914 case 2: /* VSX Scalar Extract Exponent Quad-Precision */
5915 case 8: /* VSX Scalar Negative Absolute Quad-Precision */
5916 case 16: /* VSX Scalar Negate Quad-Precision */
5917 case 18: /* VSX Scalar Extract Significand Quad-Precision */
5918 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5919 return 0;
5920 }
5921 break;
5922
5923 case 836:
5924 switch (PPC_FIELD (insn, 11, 5))
5925 {
5926 case 1: /* VSX Scalar truncate & Convert Quad-Precision format
5927 to Unsigned Word format */
5928 case 2: /* VSX Scalar Convert Unsigned Doubleword format to
5929 Quad-Precision format */
5930 case 9: /* VSX Scalar truncate & Convert Quad-Precision format
5931 to Signed Word format */
5932 case 10: /* VSX Scalar Convert Signed Doubleword format to
5933 Quad-Precision format */
5934 case 17: /* VSX Scalar truncate & Convert Quad-Precision format
5935 to Unsigned Doubleword format */
5936 case 20: /* VSX Scalar round & Convert Quad-Precision format to
5937 Double-Precision format */
5938 case 22: /* VSX Scalar Convert Double-Precision format to
5939 Quad-Precision format */
5940 case 25: /* VSX Scalar truncate & Convert Quad-Precision format
5941 to Signed Doubleword format */
5942 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5943 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5944 return 0;
5945 }
5946 }
5947
5948 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5949 "at %s, 63-%d.\n", insn, paddress (gdbarch, addr), ext);
5950 return -1;
5951 }
5952
5953 /* Parse the current instruction and record the values of the registers and
5954 memory that will be changed in current instruction to "record_arch_list".
5955 Return -1 if something wrong. */
5956
5957 int
5958 ppc_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5959 CORE_ADDR addr)
5960 {
5961 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5962 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5963 uint32_t insn;
5964 int op6, tmp, i;
5965
5966 insn = read_memory_unsigned_integer (addr, 4, byte_order);
5967 op6 = PPC_OP6 (insn);
5968
5969 switch (op6)
5970 {
5971 case 2: /* Trap Doubleword Immediate */
5972 case 3: /* Trap Word Immediate */
5973 /* Do nothing. */
5974 break;
5975
5976 case 4:
5977 if (ppc_process_record_op4 (gdbarch, regcache, addr, insn) != 0)
5978 return -1;
5979 break;
5980
5981 case 17: /* System call */
5982 if (PPC_LEV (insn) != 0)
5983 goto UNKNOWN_OP;
5984
5985 if (tdep->ppc_syscall_record != NULL)
5986 {
5987 if (tdep->ppc_syscall_record (regcache) != 0)
5988 return -1;
5989 }
5990 else
5991 {
5992 printf_unfiltered (_("no syscall record support\n"));
5993 return -1;
5994 }
5995 break;
5996
5997 case 7: /* Multiply Low Immediate */
5998 record_full_arch_list_add_reg (regcache,
5999 tdep->ppc_gp0_regnum + PPC_RT (insn));
6000 break;
6001
6002 case 8: /* Subtract From Immediate Carrying */
6003 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
6004 record_full_arch_list_add_reg (regcache,
6005 tdep->ppc_gp0_regnum + PPC_RT (insn));
6006 break;
6007
6008 case 10: /* Compare Logical Immediate */
6009 case 11: /* Compare Immediate */
6010 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
6011 break;
6012
6013 case 13: /* Add Immediate Carrying and Record */
6014 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
6015 /* FALL-THROUGH */
6016 case 12: /* Add Immediate Carrying */
6017 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
6018 /* FALL-THROUGH */
6019 case 14: /* Add Immediate */
6020 case 15: /* Add Immediate Shifted */
6021 record_full_arch_list_add_reg (regcache,
6022 tdep->ppc_gp0_regnum + PPC_RT (insn));
6023 break;
6024
6025 case 16: /* Branch Conditional */
6026 if ((PPC_BO (insn) & 0x4) == 0)
6027 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
6028 /* FALL-THROUGH */
6029 case 18: /* Branch */
6030 if (PPC_LK (insn))
6031 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
6032 break;
6033
6034 case 19:
6035 if (ppc_process_record_op19 (gdbarch, regcache, addr, insn) != 0)
6036 return -1;
6037 break;
6038
6039 case 20: /* Rotate Left Word Immediate then Mask Insert */
6040 case 21: /* Rotate Left Word Immediate then AND with Mask */
6041 case 23: /* Rotate Left Word then AND with Mask */
6042 case 30: /* Rotate Left Doubleword Immediate then Clear Left */
6043 /* Rotate Left Doubleword Immediate then Clear Right */
6044 /* Rotate Left Doubleword Immediate then Clear */
6045 /* Rotate Left Doubleword then Clear Left */
6046 /* Rotate Left Doubleword then Clear Right */
6047 /* Rotate Left Doubleword Immediate then Mask Insert */
6048 if (PPC_RC (insn))
6049 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
6050 record_full_arch_list_add_reg (regcache,
6051 tdep->ppc_gp0_regnum + PPC_RA (insn));
6052 break;
6053
6054 case 28: /* AND Immediate */
6055 case 29: /* AND Immediate Shifted */
6056 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
6057 /* FALL-THROUGH */
6058 case 24: /* OR Immediate */
6059 case 25: /* OR Immediate Shifted */
6060 case 26: /* XOR Immediate */
6061 case 27: /* XOR Immediate Shifted */
6062 record_full_arch_list_add_reg (regcache,
6063 tdep->ppc_gp0_regnum + PPC_RA (insn));
6064 break;
6065
6066 case 31:
6067 if (ppc_process_record_op31 (gdbarch, regcache, addr, insn) != 0)
6068 return -1;
6069 break;
6070
6071 case 33: /* Load Word and Zero with Update */
6072 case 35: /* Load Byte and Zero with Update */
6073 case 41: /* Load Halfword and Zero with Update */
6074 case 43: /* Load Halfword Algebraic with Update */
6075 record_full_arch_list_add_reg (regcache,
6076 tdep->ppc_gp0_regnum + PPC_RA (insn));
6077 /* FALL-THROUGH */
6078 case 32: /* Load Word and Zero */
6079 case 34: /* Load Byte and Zero */
6080 case 40: /* Load Halfword and Zero */
6081 case 42: /* Load Halfword Algebraic */
6082 record_full_arch_list_add_reg (regcache,
6083 tdep->ppc_gp0_regnum + PPC_RT (insn));
6084 break;
6085
6086 case 46: /* Load Multiple Word */
6087 for (i = PPC_RT (insn); i < 32; i++)
6088 record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i);
6089 break;
6090
6091 case 56: /* Load Quadword */
6092 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
6093 record_full_arch_list_add_reg (regcache, tmp);
6094 record_full_arch_list_add_reg (regcache, tmp + 1);
6095 break;
6096
6097 case 49: /* Load Floating-Point Single with Update */
6098 case 51: /* Load Floating-Point Double with Update */
6099 record_full_arch_list_add_reg (regcache,
6100 tdep->ppc_gp0_regnum + PPC_RA (insn));
6101 /* FALL-THROUGH */
6102 case 48: /* Load Floating-Point Single */
6103 case 50: /* Load Floating-Point Double */
6104 record_full_arch_list_add_reg (regcache,
6105 tdep->ppc_fp0_regnum + PPC_FRT (insn));
6106 break;
6107
6108 case 47: /* Store Multiple Word */
6109 {
6110 ULONGEST iaddr = 0;
6111
6112 if (PPC_RA (insn) != 0)
6113 regcache_raw_read_unsigned (regcache,
6114 tdep->ppc_gp0_regnum + PPC_RA (insn),
6115 &iaddr);
6116
6117 iaddr += PPC_D (insn);
6118 record_full_arch_list_add_mem (iaddr, 4 * (32 - PPC_RS (insn)));
6119 }
6120 break;
6121
6122 case 37: /* Store Word with Update */
6123 case 39: /* Store Byte with Update */
6124 case 45: /* Store Halfword with Update */
6125 case 53: /* Store Floating-Point Single with Update */
6126 case 55: /* Store Floating-Point Double with Update */
6127 record_full_arch_list_add_reg (regcache,
6128 tdep->ppc_gp0_regnum + PPC_RA (insn));
6129 /* FALL-THROUGH */
6130 case 36: /* Store Word */
6131 case 38: /* Store Byte */
6132 case 44: /* Store Halfword */
6133 case 52: /* Store Floating-Point Single */
6134 case 54: /* Store Floating-Point Double */
6135 {
6136 ULONGEST iaddr = 0;
6137 int size = -1;
6138
6139 if (PPC_RA (insn) != 0)
6140 regcache_raw_read_unsigned (regcache,
6141 tdep->ppc_gp0_regnum + PPC_RA (insn),
6142 &iaddr);
6143 iaddr += PPC_D (insn);
6144
6145 if (op6 == 36 || op6 == 37 || op6 == 52 || op6 == 53)
6146 size = 4;
6147 else if (op6 == 54 || op6 == 55)
6148 size = 8;
6149 else if (op6 == 44 || op6 == 45)
6150 size = 2;
6151 else if (op6 == 38 || op6 == 39)
6152 size = 1;
6153 else
6154 gdb_assert (0);
6155
6156 record_full_arch_list_add_mem (iaddr, size);
6157 }
6158 break;
6159
6160 case 57:
6161 switch (insn & 0x3)
6162 {
6163 case 0: /* Load Floating-Point Double Pair */
6164 tmp = tdep->ppc_fp0_regnum + (PPC_RT (insn) & ~1);
6165 record_full_arch_list_add_reg (regcache, tmp);
6166 record_full_arch_list_add_reg (regcache, tmp + 1);
6167 break;
6168 case 2: /* Load VSX Scalar Doubleword */
6169 case 3: /* Load VSX Scalar Single */
6170 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
6171 break;
6172 default:
6173 goto UNKNOWN_OP;
6174 }
6175 break;
6176
6177 case 58: /* Load Doubleword */
6178 /* Load Doubleword with Update */
6179 /* Load Word Algebraic */
6180 if (PPC_FIELD (insn, 30, 2) > 2)
6181 goto UNKNOWN_OP;
6182
6183 record_full_arch_list_add_reg (regcache,
6184 tdep->ppc_gp0_regnum + PPC_RT (insn));
6185 if (PPC_BIT (insn, 31))
6186 record_full_arch_list_add_reg (regcache,
6187 tdep->ppc_gp0_regnum + PPC_RA (insn));
6188 break;
6189
6190 case 59:
6191 if (ppc_process_record_op59 (gdbarch, regcache, addr, insn) != 0)
6192 return -1;
6193 break;
6194
6195 case 60:
6196 if (ppc_process_record_op60 (gdbarch, regcache, addr, insn) != 0)
6197 return -1;
6198 break;
6199
6200 case 61:
6201 if (ppc_process_record_op61 (gdbarch, regcache, addr, insn) != 0)
6202 return -1;
6203 break;
6204
6205 case 62: /* Store Doubleword */
6206 /* Store Doubleword with Update */
6207 /* Store Quadword with Update */
6208 {
6209 ULONGEST iaddr = 0;
6210 int size;
6211 int sub2 = PPC_FIELD (insn, 30, 2);
6212
6213 if (sub2 > 2)
6214 goto UNKNOWN_OP;
6215
6216 if (PPC_RA (insn) != 0)
6217 regcache_raw_read_unsigned (regcache,
6218 tdep->ppc_gp0_regnum + PPC_RA (insn),
6219 &iaddr);
6220
6221 size = (sub2 == 2) ? 16 : 8;
6222
6223 iaddr += PPC_DS (insn) << 2;
6224 record_full_arch_list_add_mem (iaddr, size);
6225
6226 if (op6 == 62 && sub2 == 1)
6227 record_full_arch_list_add_reg (regcache,
6228 tdep->ppc_gp0_regnum +
6229 PPC_RA (insn));
6230
6231 break;
6232 }
6233
6234 case 63:
6235 if (ppc_process_record_op63 (gdbarch, regcache, addr, insn) != 0)
6236 return -1;
6237 break;
6238
6239 default:
6240 UNKNOWN_OP:
6241 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
6242 "at %s, %d.\n", insn, paddress (gdbarch, addr), op6);
6243 return -1;
6244 }
6245
6246 if (record_full_arch_list_add_reg (regcache, PPC_PC_REGNUM))
6247 return -1;
6248 if (record_full_arch_list_add_end ())
6249 return -1;
6250 return 0;
6251 }
6252
6253 /* Initialize the current architecture based on INFO. If possible, re-use an
6254 architecture from ARCHES, which is a list of architectures already created
6255 during this debugging session.
6256
6257 Called e.g. at program startup, when reading a core file, and when reading
6258 a binary file. */
6259
6260 static struct gdbarch *
6261 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
6262 {
6263 struct gdbarch *gdbarch;
6264 struct gdbarch_tdep *tdep;
6265 int wordsize, from_xcoff_exec, from_elf_exec;
6266 enum bfd_architecture arch;
6267 unsigned long mach;
6268 bfd abfd;
6269 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
6270 int soft_float;
6271 enum powerpc_long_double_abi long_double_abi = POWERPC_LONG_DOUBLE_AUTO;
6272 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
6273 enum powerpc_elf_abi elf_abi = POWERPC_ELF_AUTO;
6274 int have_fpu = 0, have_spe = 0, have_mq = 0, have_altivec = 0;
6275 int have_dfp = 0, have_vsx = 0, have_ppr = 0, have_dscr = 0;
6276 int have_tar = 0, have_ebb = 0, have_pmu = 0, have_htm_spr = 0;
6277 int have_htm_core = 0, have_htm_fpu = 0, have_htm_altivec = 0;
6278 int have_htm_vsx = 0, have_htm_ppr = 0, have_htm_dscr = 0;
6279 int have_htm_tar = 0;
6280 int tdesc_wordsize = -1;
6281 const struct target_desc *tdesc = info.target_desc;
6282 tdesc_arch_data_up tdesc_data;
6283 int num_pseudoregs = 0;
6284 int cur_reg;
6285
6286 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
6287 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
6288
6289 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
6290 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
6291
6292 /* Check word size. If INFO is from a binary file, infer it from
6293 that, else choose a likely default. */
6294 if (from_xcoff_exec)
6295 {
6296 if (bfd_xcoff_is_xcoff64 (info.abfd))
6297 wordsize = 8;
6298 else
6299 wordsize = 4;
6300 }
6301 else if (from_elf_exec)
6302 {
6303 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6304 wordsize = 8;
6305 else
6306 wordsize = 4;
6307 }
6308 else if (tdesc_has_registers (tdesc))
6309 wordsize = -1;
6310 else
6311 {
6312 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
6313 wordsize = (info.bfd_arch_info->bits_per_word
6314 / info.bfd_arch_info->bits_per_byte);
6315 else
6316 wordsize = 4;
6317 }
6318
6319 /* Get the architecture and machine from the BFD. */
6320 arch = info.bfd_arch_info->arch;
6321 mach = info.bfd_arch_info->mach;
6322
6323 /* For e500 executables, the apuinfo section is of help here. Such
6324 section contains the identifier and revision number of each
6325 Application-specific Processing Unit that is present on the
6326 chip. The content of the section is determined by the assembler
6327 which looks at each instruction and determines which unit (and
6328 which version of it) can execute it. Grovel through the section
6329 looking for relevant e500 APUs. */
6330
6331 if (bfd_uses_spe_extensions (info.abfd))
6332 {
6333 arch = info.bfd_arch_info->arch;
6334 mach = bfd_mach_ppc_e500;
6335 bfd_default_set_arch_mach (&abfd, arch, mach);
6336 info.bfd_arch_info = bfd_get_arch_info (&abfd);
6337 }
6338
6339 /* Find a default target description which describes our register
6340 layout, if we do not already have one. */
6341 if (! tdesc_has_registers (tdesc))
6342 {
6343 const struct ppc_variant *v;
6344
6345 /* Choose variant. */
6346 v = find_variant_by_arch (arch, mach);
6347 if (!v)
6348 return NULL;
6349
6350 tdesc = *v->tdesc;
6351 }
6352
6353 gdb_assert (tdesc_has_registers (tdesc));
6354
6355 /* Check any target description for validity. */
6356 if (tdesc_has_registers (tdesc))
6357 {
6358 static const char *const gprs[] = {
6359 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
6360 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
6361 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
6362 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
6363 };
6364 const struct tdesc_feature *feature;
6365 int i, valid_p;
6366 static const char *const msr_names[] = { "msr", "ps" };
6367 static const char *const cr_names[] = { "cr", "cnd" };
6368 static const char *const ctr_names[] = { "ctr", "cnt" };
6369
6370 feature = tdesc_find_feature (tdesc,
6371 "org.gnu.gdb.power.core");
6372 if (feature == NULL)
6373 return NULL;
6374
6375 tdesc_data = tdesc_data_alloc ();
6376
6377 valid_p = 1;
6378 for (i = 0; i < ppc_num_gprs; i++)
6379 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6380 i, gprs[i]);
6381 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6382 PPC_PC_REGNUM, "pc");
6383 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6384 PPC_LR_REGNUM, "lr");
6385 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6386 PPC_XER_REGNUM, "xer");
6387
6388 /* Allow alternate names for these registers, to accomodate GDB's
6389 historic naming. */
6390 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (),
6391 PPC_MSR_REGNUM, msr_names);
6392 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (),
6393 PPC_CR_REGNUM, cr_names);
6394 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (),
6395 PPC_CTR_REGNUM, ctr_names);
6396
6397 if (!valid_p)
6398 return NULL;
6399
6400 have_mq = tdesc_numbered_register (feature, tdesc_data.get (),
6401 PPC_MQ_REGNUM, "mq");
6402
6403 tdesc_wordsize = tdesc_register_bitsize (feature, "pc") / 8;
6404 if (wordsize == -1)
6405 wordsize = tdesc_wordsize;
6406
6407 feature = tdesc_find_feature (tdesc,
6408 "org.gnu.gdb.power.fpu");
6409 if (feature != NULL)
6410 {
6411 static const char *const fprs[] = {
6412 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
6413 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
6414 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
6415 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
6416 };
6417 valid_p = 1;
6418 for (i = 0; i < ppc_num_fprs; i++)
6419 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6420 PPC_F0_REGNUM + i, fprs[i]);
6421 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6422 PPC_FPSCR_REGNUM, "fpscr");
6423
6424 if (!valid_p)
6425 return NULL;
6426 have_fpu = 1;
6427
6428 /* The fpscr register was expanded in isa 2.05 to 64 bits
6429 along with the addition of the decimal floating point
6430 facility. */
6431 if (tdesc_register_bitsize (feature, "fpscr") > 32)
6432 have_dfp = 1;
6433 }
6434 else
6435 have_fpu = 0;
6436
6437 feature = tdesc_find_feature (tdesc,
6438 "org.gnu.gdb.power.altivec");
6439 if (feature != NULL)
6440 {
6441 static const char *const vector_regs[] = {
6442 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
6443 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
6444 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
6445 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
6446 };
6447
6448 valid_p = 1;
6449 for (i = 0; i < ppc_num_gprs; i++)
6450 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6451 PPC_VR0_REGNUM + i,
6452 vector_regs[i]);
6453 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6454 PPC_VSCR_REGNUM, "vscr");
6455 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6456 PPC_VRSAVE_REGNUM, "vrsave");
6457
6458 if (have_spe || !valid_p)
6459 return NULL;
6460 have_altivec = 1;
6461 }
6462 else
6463 have_altivec = 0;
6464
6465 /* Check for POWER7 VSX registers support. */
6466 feature = tdesc_find_feature (tdesc,
6467 "org.gnu.gdb.power.vsx");
6468
6469 if (feature != NULL)
6470 {
6471 static const char *const vsx_regs[] = {
6472 "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
6473 "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
6474 "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
6475 "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
6476 "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
6477 "vs30h", "vs31h"
6478 };
6479
6480 valid_p = 1;
6481
6482 for (i = 0; i < ppc_num_vshrs; i++)
6483 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6484 PPC_VSR0_UPPER_REGNUM + i,
6485 vsx_regs[i]);
6486
6487 if (!valid_p || !have_fpu || !have_altivec)
6488 return NULL;
6489
6490 have_vsx = 1;
6491 }
6492 else
6493 have_vsx = 0;
6494
6495 /* On machines supporting the SPE APU, the general-purpose registers
6496 are 64 bits long. There are SIMD vector instructions to treat them
6497 as pairs of floats, but the rest of the instruction set treats them
6498 as 32-bit registers, and only operates on their lower halves.
6499
6500 In the GDB regcache, we treat their high and low halves as separate
6501 registers. The low halves we present as the general-purpose
6502 registers, and then we have pseudo-registers that stitch together
6503 the upper and lower halves and present them as pseudo-registers.
6504
6505 Thus, the target description is expected to supply the upper
6506 halves separately. */
6507
6508 feature = tdesc_find_feature (tdesc,
6509 "org.gnu.gdb.power.spe");
6510 if (feature != NULL)
6511 {
6512 static const char *const upper_spe[] = {
6513 "ev0h", "ev1h", "ev2h", "ev3h",
6514 "ev4h", "ev5h", "ev6h", "ev7h",
6515 "ev8h", "ev9h", "ev10h", "ev11h",
6516 "ev12h", "ev13h", "ev14h", "ev15h",
6517 "ev16h", "ev17h", "ev18h", "ev19h",
6518 "ev20h", "ev21h", "ev22h", "ev23h",
6519 "ev24h", "ev25h", "ev26h", "ev27h",
6520 "ev28h", "ev29h", "ev30h", "ev31h"
6521 };
6522
6523 valid_p = 1;
6524 for (i = 0; i < ppc_num_gprs; i++)
6525 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6526 PPC_SPE_UPPER_GP0_REGNUM + i,
6527 upper_spe[i]);
6528 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6529 PPC_SPE_ACC_REGNUM, "acc");
6530 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6531 PPC_SPE_FSCR_REGNUM, "spefscr");
6532
6533 if (have_mq || have_fpu || !valid_p)
6534 return NULL;
6535 have_spe = 1;
6536 }
6537 else
6538 have_spe = 0;
6539
6540 /* Program Priority Register. */
6541 feature = tdesc_find_feature (tdesc,
6542 "org.gnu.gdb.power.ppr");
6543 if (feature != NULL)
6544 {
6545 valid_p = 1;
6546 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6547 PPC_PPR_REGNUM, "ppr");
6548
6549 if (!valid_p)
6550 return NULL;
6551 have_ppr = 1;
6552 }
6553 else
6554 have_ppr = 0;
6555
6556 /* Data Stream Control Register. */
6557 feature = tdesc_find_feature (tdesc,
6558 "org.gnu.gdb.power.dscr");
6559 if (feature != NULL)
6560 {
6561 valid_p = 1;
6562 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6563 PPC_DSCR_REGNUM, "dscr");
6564
6565 if (!valid_p)
6566 return NULL;
6567 have_dscr = 1;
6568 }
6569 else
6570 have_dscr = 0;
6571
6572 /* Target Address Register. */
6573 feature = tdesc_find_feature (tdesc,
6574 "org.gnu.gdb.power.tar");
6575 if (feature != NULL)
6576 {
6577 valid_p = 1;
6578 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6579 PPC_TAR_REGNUM, "tar");
6580
6581 if (!valid_p)
6582 return NULL;
6583 have_tar = 1;
6584 }
6585 else
6586 have_tar = 0;
6587
6588 /* Event-based Branching Registers. */
6589 feature = tdesc_find_feature (tdesc,
6590 "org.gnu.gdb.power.ebb");
6591 if (feature != NULL)
6592 {
6593 static const char *const ebb_regs[] = {
6594 "bescr", "ebbhr", "ebbrr"
6595 };
6596
6597 valid_p = 1;
6598 for (i = 0; i < ARRAY_SIZE (ebb_regs); i++)
6599 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6600 PPC_BESCR_REGNUM + i,
6601 ebb_regs[i]);
6602 if (!valid_p)
6603 return NULL;
6604 have_ebb = 1;
6605 }
6606 else
6607 have_ebb = 0;
6608
6609 /* Subset of the ISA 2.07 Performance Monitor Registers provided
6610 by Linux. */
6611 feature = tdesc_find_feature (tdesc,
6612 "org.gnu.gdb.power.linux.pmu");
6613 if (feature != NULL)
6614 {
6615 valid_p = 1;
6616
6617 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6618 PPC_MMCR0_REGNUM,
6619 "mmcr0");
6620 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6621 PPC_MMCR2_REGNUM,
6622 "mmcr2");
6623 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6624 PPC_SIAR_REGNUM,
6625 "siar");
6626 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6627 PPC_SDAR_REGNUM,
6628 "sdar");
6629 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6630 PPC_SIER_REGNUM,
6631 "sier");
6632
6633 if (!valid_p)
6634 return NULL;
6635 have_pmu = 1;
6636 }
6637 else
6638 have_pmu = 0;
6639
6640 /* Hardware Transactional Memory Registers. */
6641 feature = tdesc_find_feature (tdesc,
6642 "org.gnu.gdb.power.htm.spr");
6643 if (feature != NULL)
6644 {
6645 static const char *const tm_spr_regs[] = {
6646 "tfhar", "texasr", "tfiar"
6647 };
6648
6649 valid_p = 1;
6650 for (i = 0; i < ARRAY_SIZE (tm_spr_regs); i++)
6651 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6652 PPC_TFHAR_REGNUM + i,
6653 tm_spr_regs[i]);
6654 if (!valid_p)
6655 return NULL;
6656
6657 have_htm_spr = 1;
6658 }
6659 else
6660 have_htm_spr = 0;
6661
6662 feature = tdesc_find_feature (tdesc,
6663 "org.gnu.gdb.power.htm.core");
6664 if (feature != NULL)
6665 {
6666 static const char *const cgprs[] = {
6667 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
6668 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14",
6669 "cr15", "cr16", "cr17", "cr18", "cr19", "cr20", "cr21",
6670 "cr22", "cr23", "cr24", "cr25", "cr26", "cr27", "cr28",
6671 "cr29", "cr30", "cr31", "ccr", "cxer", "clr", "cctr"
6672 };
6673
6674 valid_p = 1;
6675
6676 for (i = 0; i < ARRAY_SIZE (cgprs); i++)
6677 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6678 PPC_CR0_REGNUM + i,
6679 cgprs[i]);
6680 if (!valid_p)
6681 return NULL;
6682
6683 have_htm_core = 1;
6684 }
6685 else
6686 have_htm_core = 0;
6687
6688 feature = tdesc_find_feature (tdesc,
6689 "org.gnu.gdb.power.htm.fpu");
6690 if (feature != NULL)
6691 {
6692 valid_p = 1;
6693
6694 static const char *const cfprs[] = {
6695 "cf0", "cf1", "cf2", "cf3", "cf4", "cf5", "cf6", "cf7",
6696 "cf8", "cf9", "cf10", "cf11", "cf12", "cf13", "cf14", "cf15",
6697 "cf16", "cf17", "cf18", "cf19", "cf20", "cf21", "cf22",
6698 "cf23", "cf24", "cf25", "cf26", "cf27", "cf28", "cf29",
6699 "cf30", "cf31", "cfpscr"
6700 };
6701
6702 for (i = 0; i < ARRAY_SIZE (cfprs); i++)
6703 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6704 PPC_CF0_REGNUM + i,
6705 cfprs[i]);
6706
6707 if (!valid_p)
6708 return NULL;
6709 have_htm_fpu = 1;
6710 }
6711 else
6712 have_htm_fpu = 0;
6713
6714 feature = tdesc_find_feature (tdesc,
6715 "org.gnu.gdb.power.htm.altivec");
6716 if (feature != NULL)
6717 {
6718 valid_p = 1;
6719
6720 static const char *const cvmx[] = {
6721 "cvr0", "cvr1", "cvr2", "cvr3", "cvr4", "cvr5", "cvr6",
6722 "cvr7", "cvr8", "cvr9", "cvr10", "cvr11", "cvr12", "cvr13",
6723 "cvr14", "cvr15","cvr16", "cvr17", "cvr18", "cvr19", "cvr20",
6724 "cvr21", "cvr22", "cvr23", "cvr24", "cvr25", "cvr26",
6725 "cvr27", "cvr28", "cvr29", "cvr30", "cvr31", "cvscr",
6726 "cvrsave"
6727 };
6728
6729 for (i = 0; i < ARRAY_SIZE (cvmx); i++)
6730 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6731 PPC_CVR0_REGNUM + i,
6732 cvmx[i]);
6733
6734 if (!valid_p)
6735 return NULL;
6736 have_htm_altivec = 1;
6737 }
6738 else
6739 have_htm_altivec = 0;
6740
6741 feature = tdesc_find_feature (tdesc,
6742 "org.gnu.gdb.power.htm.vsx");
6743 if (feature != NULL)
6744 {
6745 valid_p = 1;
6746
6747 static const char *const cvsx[] = {
6748 "cvs0h", "cvs1h", "cvs2h", "cvs3h", "cvs4h", "cvs5h",
6749 "cvs6h", "cvs7h", "cvs8h", "cvs9h", "cvs10h", "cvs11h",
6750 "cvs12h", "cvs13h", "cvs14h", "cvs15h", "cvs16h", "cvs17h",
6751 "cvs18h", "cvs19h", "cvs20h", "cvs21h", "cvs22h", "cvs23h",
6752 "cvs24h", "cvs25h", "cvs26h", "cvs27h", "cvs28h", "cvs29h",
6753 "cvs30h", "cvs31h"
6754 };
6755
6756 for (i = 0; i < ARRAY_SIZE (cvsx); i++)
6757 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6758 (PPC_CVSR0_UPPER_REGNUM
6759 + i),
6760 cvsx[i]);
6761
6762 if (!valid_p || !have_htm_fpu || !have_htm_altivec)
6763 return NULL;
6764 have_htm_vsx = 1;
6765 }
6766 else
6767 have_htm_vsx = 0;
6768
6769 feature = tdesc_find_feature (tdesc,
6770 "org.gnu.gdb.power.htm.ppr");
6771 if (feature != NULL)
6772 {
6773 valid_p = tdesc_numbered_register (feature, tdesc_data.get (),
6774 PPC_CPPR_REGNUM, "cppr");
6775
6776 if (!valid_p)
6777 return NULL;
6778 have_htm_ppr = 1;
6779 }
6780 else
6781 have_htm_ppr = 0;
6782
6783 feature = tdesc_find_feature (tdesc,
6784 "org.gnu.gdb.power.htm.dscr");
6785 if (feature != NULL)
6786 {
6787 valid_p = tdesc_numbered_register (feature, tdesc_data.get (),
6788 PPC_CDSCR_REGNUM, "cdscr");
6789
6790 if (!valid_p)
6791 return NULL;
6792 have_htm_dscr = 1;
6793 }
6794 else
6795 have_htm_dscr = 0;
6796
6797 feature = tdesc_find_feature (tdesc,
6798 "org.gnu.gdb.power.htm.tar");
6799 if (feature != NULL)
6800 {
6801 valid_p = tdesc_numbered_register (feature, tdesc_data.get (),
6802 PPC_CTAR_REGNUM, "ctar");
6803
6804 if (!valid_p)
6805 return NULL;
6806 have_htm_tar = 1;
6807 }
6808 else
6809 have_htm_tar = 0;
6810 }
6811
6812 /* If we have a 64-bit binary on a 32-bit target, complain. Also
6813 complain for a 32-bit binary on a 64-bit target; we do not yet
6814 support that. For instance, the 32-bit ABI routines expect
6815 32-bit GPRs.
6816
6817 As long as there isn't an explicit target description, we'll
6818 choose one based on the BFD architecture and get a word size
6819 matching the binary (probably powerpc:common or
6820 powerpc:common64). So there is only trouble if a 64-bit target
6821 supplies a 64-bit description while debugging a 32-bit
6822 binary. */
6823 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
6824 return NULL;
6825
6826 #ifdef HAVE_ELF
6827 if (from_elf_exec)
6828 {
6829 switch (elf_elfheader (info.abfd)->e_flags & EF_PPC64_ABI)
6830 {
6831 case 1:
6832 elf_abi = POWERPC_ELF_V1;
6833 break;
6834 case 2:
6835 elf_abi = POWERPC_ELF_V2;
6836 break;
6837 default:
6838 break;
6839 }
6840 }
6841
6842 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
6843 {
6844 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6845 Tag_GNU_Power_ABI_FP) & 3)
6846 {
6847 case 1:
6848 soft_float_flag = AUTO_BOOLEAN_FALSE;
6849 break;
6850 case 2:
6851 soft_float_flag = AUTO_BOOLEAN_TRUE;
6852 break;
6853 default:
6854 break;
6855 }
6856 }
6857
6858 if (long_double_abi == POWERPC_LONG_DOUBLE_AUTO && from_elf_exec)
6859 {
6860 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6861 Tag_GNU_Power_ABI_FP) >> 2)
6862 {
6863 case 1:
6864 long_double_abi = POWERPC_LONG_DOUBLE_IBM128;
6865 break;
6866 case 3:
6867 long_double_abi = POWERPC_LONG_DOUBLE_IEEE128;
6868 break;
6869 default:
6870 break;
6871 }
6872 }
6873
6874 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
6875 {
6876 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6877 Tag_GNU_Power_ABI_Vector))
6878 {
6879 case 1:
6880 vector_abi = POWERPC_VEC_GENERIC;
6881 break;
6882 case 2:
6883 vector_abi = POWERPC_VEC_ALTIVEC;
6884 break;
6885 case 3:
6886 vector_abi = POWERPC_VEC_SPE;
6887 break;
6888 default:
6889 break;
6890 }
6891 }
6892 #endif
6893
6894 /* At this point, the only supported ELF-based 64-bit little-endian
6895 operating system is GNU/Linux, and this uses the ELFv2 ABI by
6896 default. All other supported ELF-based operating systems use the
6897 ELFv1 ABI by default. Therefore, if the ABI marker is missing,
6898 e.g. because we run a legacy binary, or have attached to a process
6899 and have not found any associated binary file, set the default
6900 according to this heuristic. */
6901 if (elf_abi == POWERPC_ELF_AUTO)
6902 {
6903 if (wordsize == 8 && info.byte_order == BFD_ENDIAN_LITTLE)
6904 elf_abi = POWERPC_ELF_V2;
6905 else
6906 elf_abi = POWERPC_ELF_V1;
6907 }
6908
6909 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
6910 soft_float = 1;
6911 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
6912 soft_float = 0;
6913 else
6914 soft_float = !have_fpu;
6915
6916 /* If we have a hard float binary or setting but no floating point
6917 registers, downgrade to soft float anyway. We're still somewhat
6918 useful in this scenario. */
6919 if (!soft_float && !have_fpu)
6920 soft_float = 1;
6921
6922 /* Similarly for vector registers. */
6923 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
6924 vector_abi = POWERPC_VEC_GENERIC;
6925
6926 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
6927 vector_abi = POWERPC_VEC_GENERIC;
6928
6929 if (vector_abi == POWERPC_VEC_AUTO)
6930 {
6931 if (have_altivec)
6932 vector_abi = POWERPC_VEC_ALTIVEC;
6933 else if (have_spe)
6934 vector_abi = POWERPC_VEC_SPE;
6935 else
6936 vector_abi = POWERPC_VEC_GENERIC;
6937 }
6938
6939 /* Do not limit the vector ABI based on available hardware, since we
6940 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
6941
6942 /* Find a candidate among extant architectures. */
6943 for (arches = gdbarch_list_lookup_by_info (arches, &info);
6944 arches != NULL;
6945 arches = gdbarch_list_lookup_by_info (arches->next, &info))
6946 {
6947 /* Word size in the various PowerPC bfd_arch_info structs isn't
6948 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
6949 separate word size check. */
6950 tdep = gdbarch_tdep (arches->gdbarch);
6951 if (tdep && tdep->elf_abi != elf_abi)
6952 continue;
6953 if (tdep && tdep->soft_float != soft_float)
6954 continue;
6955 if (tdep && tdep->long_double_abi != long_double_abi)
6956 continue;
6957 if (tdep && tdep->vector_abi != vector_abi)
6958 continue;
6959 if (tdep && tdep->wordsize == wordsize)
6960 return arches->gdbarch;
6961 }
6962
6963 /* None found, create a new architecture from INFO, whose bfd_arch_info
6964 validity depends on the source:
6965 - executable useless
6966 - rs6000_host_arch() good
6967 - core file good
6968 - "set arch" trust blindly
6969 - GDB startup useless but harmless */
6970
6971 tdep = XCNEW (struct gdbarch_tdep);
6972 tdep->wordsize = wordsize;
6973 tdep->elf_abi = elf_abi;
6974 tdep->soft_float = soft_float;
6975 tdep->long_double_abi = long_double_abi;
6976 tdep->vector_abi = vector_abi;
6977
6978 gdbarch = gdbarch_alloc (&info, tdep);
6979
6980 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
6981 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
6982 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
6983 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
6984 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
6985 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
6986 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
6987 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
6988
6989 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
6990 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
6991 tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
6992 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
6993 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
6994 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
6995 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
6996 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
6997 tdep->ppc_ppr_regnum = have_ppr ? PPC_PPR_REGNUM : -1;
6998 tdep->ppc_dscr_regnum = have_dscr ? PPC_DSCR_REGNUM : -1;
6999 tdep->ppc_tar_regnum = have_tar ? PPC_TAR_REGNUM : -1;
7000 tdep->have_ebb = have_ebb;
7001
7002 /* If additional pmu registers are added, care must be taken when
7003 setting new fields in the tdep below, to maintain compatibility
7004 with features that only provide some of the registers. Currently
7005 gdb access to the pmu registers is only supported in linux, and
7006 linux only provides a subset of the pmu registers defined in the
7007 architecture. */
7008
7009 tdep->ppc_mmcr0_regnum = have_pmu ? PPC_MMCR0_REGNUM : -1;
7010 tdep->ppc_mmcr2_regnum = have_pmu ? PPC_MMCR2_REGNUM : -1;
7011 tdep->ppc_siar_regnum = have_pmu ? PPC_SIAR_REGNUM : -1;
7012 tdep->ppc_sdar_regnum = have_pmu ? PPC_SDAR_REGNUM : -1;
7013 tdep->ppc_sier_regnum = have_pmu ? PPC_SIER_REGNUM : -1;
7014
7015 tdep->have_htm_spr = have_htm_spr;
7016 tdep->have_htm_core = have_htm_core;
7017 tdep->have_htm_fpu = have_htm_fpu;
7018 tdep->have_htm_altivec = have_htm_altivec;
7019 tdep->have_htm_vsx = have_htm_vsx;
7020 tdep->ppc_cppr_regnum = have_htm_ppr ? PPC_CPPR_REGNUM : -1;
7021 tdep->ppc_cdscr_regnum = have_htm_dscr ? PPC_CDSCR_REGNUM : -1;
7022 tdep->ppc_ctar_regnum = have_htm_tar ? PPC_CTAR_REGNUM : -1;
7023
7024 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
7025 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
7026 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
7027 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
7028
7029 /* The XML specification for PowerPC sensibly calls the MSR "msr".
7030 GDB traditionally called it "ps", though, so let GDB add an
7031 alias. */
7032 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
7033
7034 if (wordsize == 8)
7035 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
7036 else
7037 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
7038
7039 /* Set lr_frame_offset. */
7040 if (wordsize == 8)
7041 tdep->lr_frame_offset = 16;
7042 else
7043 tdep->lr_frame_offset = 4;
7044
7045 if (have_spe || have_dfp || have_altivec
7046 || have_vsx || have_htm_fpu || have_htm_vsx)
7047 {
7048 set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
7049 set_gdbarch_pseudo_register_write (gdbarch,
7050 rs6000_pseudo_register_write);
7051 set_gdbarch_ax_pseudo_register_collect (gdbarch,
7052 rs6000_ax_pseudo_register_collect);
7053 }
7054
7055 set_gdbarch_gen_return_address (gdbarch, rs6000_gen_return_address);
7056
7057 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
7058
7059 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
7060
7061 if (have_spe)
7062 num_pseudoregs += 32;
7063 if (have_dfp)
7064 num_pseudoregs += 16;
7065 if (have_altivec)
7066 num_pseudoregs += 32;
7067 if (have_vsx)
7068 /* Include both VSX and Extended FP registers. */
7069 num_pseudoregs += 96;
7070 if (have_htm_fpu)
7071 num_pseudoregs += 16;
7072 /* Include both checkpointed VSX and EFP registers. */
7073 if (have_htm_vsx)
7074 num_pseudoregs += 64 + 32;
7075
7076 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
7077
7078 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
7079 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
7080 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
7081 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
7082 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
7083 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
7084 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
7085 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
7086 set_gdbarch_char_signed (gdbarch, 0);
7087
7088 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
7089 if (wordsize == 8)
7090 /* PPC64 SYSV. */
7091 set_gdbarch_frame_red_zone_size (gdbarch, 288);
7092
7093 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
7094 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
7095 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
7096
7097 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
7098 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
7099
7100 if (wordsize == 4)
7101 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
7102 else if (wordsize == 8)
7103 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
7104
7105 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
7106 set_gdbarch_stack_frame_destroyed_p (gdbarch, rs6000_stack_frame_destroyed_p);
7107 set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
7108
7109 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7110
7111 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
7112 rs6000_breakpoint::kind_from_pc);
7113 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
7114 rs6000_breakpoint::bp_from_kind);
7115
7116 /* The value of symbols of type N_SO and N_FUN maybe null when
7117 it shouldn't be. */
7118 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
7119
7120 /* Handles single stepping of atomic sequences. */
7121 set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
7122
7123 /* Not sure on this. FIXMEmgo */
7124 set_gdbarch_frame_args_skip (gdbarch, 8);
7125
7126 /* Helpers for function argument information. */
7127 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
7128
7129 /* Trampoline. */
7130 set_gdbarch_in_solib_return_trampoline
7131 (gdbarch, rs6000_in_solib_return_trampoline);
7132 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
7133
7134 /* Hook in the DWARF CFI frame unwinder. */
7135 dwarf2_append_unwinders (gdbarch);
7136 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
7137
7138 /* Frame handling. */
7139 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
7140
7141 /* Setup displaced stepping. */
7142 set_gdbarch_displaced_step_copy_insn (gdbarch,
7143 ppc_displaced_step_copy_insn);
7144 set_gdbarch_displaced_step_hw_singlestep (gdbarch,
7145 ppc_displaced_step_hw_singlestep);
7146 set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
7147 set_gdbarch_displaced_step_prepare (gdbarch, ppc_displaced_step_prepare);
7148 set_gdbarch_displaced_step_finish (gdbarch, ppc_displaced_step_finish);
7149 set_gdbarch_displaced_step_restore_all_in_ptid
7150 (gdbarch, ppc_displaced_step_restore_all_in_ptid);
7151
7152 set_gdbarch_max_insn_length (gdbarch, 2 * PPC_INSN_SIZE);
7153
7154 /* Hook in ABI-specific overrides, if they have been registered. */
7155 info.target_desc = tdesc;
7156 info.tdesc_data = tdesc_data.get ();
7157 gdbarch_init_osabi (info, gdbarch);
7158
7159 switch (info.osabi)
7160 {
7161 case GDB_OSABI_LINUX:
7162 case GDB_OSABI_NETBSD:
7163 case GDB_OSABI_UNKNOWN:
7164 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
7165 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
7166 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
7167 break;
7168 default:
7169 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
7170
7171 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
7172 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
7173 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
7174 }
7175
7176 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
7177 set_tdesc_pseudo_register_reggroup_p (gdbarch,
7178 rs6000_pseudo_register_reggroup_p);
7179 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
7180
7181 /* Override the normal target description method to make the SPE upper
7182 halves anonymous. */
7183 set_gdbarch_register_name (gdbarch, rs6000_register_name);
7184
7185 /* Choose register numbers for all supported pseudo-registers. */
7186 tdep->ppc_ev0_regnum = -1;
7187 tdep->ppc_dl0_regnum = -1;
7188 tdep->ppc_v0_alias_regnum = -1;
7189 tdep->ppc_vsr0_regnum = -1;
7190 tdep->ppc_efpr0_regnum = -1;
7191 tdep->ppc_cdl0_regnum = -1;
7192 tdep->ppc_cvsr0_regnum = -1;
7193 tdep->ppc_cefpr0_regnum = -1;
7194
7195 cur_reg = gdbarch_num_regs (gdbarch);
7196
7197 if (have_spe)
7198 {
7199 tdep->ppc_ev0_regnum = cur_reg;
7200 cur_reg += 32;
7201 }
7202 if (have_dfp)
7203 {
7204 tdep->ppc_dl0_regnum = cur_reg;
7205 cur_reg += 16;
7206 }
7207 if (have_altivec)
7208 {
7209 tdep->ppc_v0_alias_regnum = cur_reg;
7210 cur_reg += 32;
7211 }
7212 if (have_vsx)
7213 {
7214 tdep->ppc_vsr0_regnum = cur_reg;
7215 cur_reg += 64;
7216 tdep->ppc_efpr0_regnum = cur_reg;
7217 cur_reg += 32;
7218 }
7219 if (have_htm_fpu)
7220 {
7221 tdep->ppc_cdl0_regnum = cur_reg;
7222 cur_reg += 16;
7223 }
7224 if (have_htm_vsx)
7225 {
7226 tdep->ppc_cvsr0_regnum = cur_reg;
7227 cur_reg += 64;
7228 tdep->ppc_cefpr0_regnum = cur_reg;
7229 cur_reg += 32;
7230 }
7231
7232 gdb_assert (gdbarch_num_cooked_regs (gdbarch) == cur_reg);
7233
7234 /* Register the ravenscar_arch_ops. */
7235 if (mach == bfd_mach_ppc_e500)
7236 register_e500_ravenscar_ops (gdbarch);
7237 else
7238 register_ppc_ravenscar_ops (gdbarch);
7239
7240 set_gdbarch_disassembler_options (gdbarch, &powerpc_disassembler_options);
7241 set_gdbarch_valid_disassembler_options (gdbarch,
7242 disassembler_options_powerpc ());
7243
7244 return gdbarch;
7245 }
7246
7247 static void
7248 rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
7249 {
7250 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7251
7252 if (tdep == NULL)
7253 return;
7254
7255 /* FIXME: Dump gdbarch_tdep. */
7256 }
7257
7258 static void
7259 powerpc_set_soft_float (const char *args, int from_tty,
7260 struct cmd_list_element *c)
7261 {
7262 struct gdbarch_info info;
7263
7264 /* Update the architecture. */
7265 if (!gdbarch_update_p (info))
7266 internal_error (__FILE__, __LINE__, _("could not update architecture"));
7267 }
7268
7269 static void
7270 powerpc_set_vector_abi (const char *args, int from_tty,
7271 struct cmd_list_element *c)
7272 {
7273 int vector_abi;
7274
7275 for (vector_abi = POWERPC_VEC_AUTO;
7276 vector_abi != POWERPC_VEC_LAST;
7277 vector_abi++)
7278 if (strcmp (powerpc_vector_abi_string,
7279 powerpc_vector_strings[vector_abi]) == 0)
7280 {
7281 powerpc_vector_abi_global = (enum powerpc_vector_abi) vector_abi;
7282 break;
7283 }
7284
7285 if (vector_abi == POWERPC_VEC_LAST)
7286 internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
7287 powerpc_vector_abi_string);
7288
7289 /* Update the architecture. */
7290 gdbarch_info info;
7291 if (!gdbarch_update_p (info))
7292 internal_error (__FILE__, __LINE__, _("could not update architecture"));
7293 }
7294
7295 /* Show the current setting of the exact watchpoints flag. */
7296
7297 static void
7298 show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
7299 struct cmd_list_element *c,
7300 const char *value)
7301 {
7302 fprintf_filtered (file, _("Use of exact watchpoints is %s.\n"), value);
7303 }
7304
7305 /* Read a PPC instruction from memory. */
7306
7307 static unsigned int
7308 read_insn (struct frame_info *frame, CORE_ADDR pc)
7309 {
7310 struct gdbarch *gdbarch = get_frame_arch (frame);
7311 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7312
7313 return read_memory_unsigned_integer (pc, 4, byte_order);
7314 }
7315
7316 /* Return non-zero if the instructions at PC match the series
7317 described in PATTERN, or zero otherwise. PATTERN is an array of
7318 'struct ppc_insn_pattern' objects, terminated by an entry whose
7319 mask is zero.
7320
7321 When the match is successful, fill INSNS[i] with what PATTERN[i]
7322 matched. If PATTERN[i] is optional, and the instruction wasn't
7323 present, set INSNS[i] to 0 (which is not a valid PPC instruction).
7324 INSNS should have as many elements as PATTERN, minus the terminator.
7325 Note that, if PATTERN contains optional instructions which aren't
7326 present in memory, then INSNS will have holes, so INSNS[i] isn't
7327 necessarily the i'th instruction in memory. */
7328
7329 int
7330 ppc_insns_match_pattern (struct frame_info *frame, CORE_ADDR pc,
7331 const struct ppc_insn_pattern *pattern,
7332 unsigned int *insns)
7333 {
7334 int i;
7335 unsigned int insn;
7336
7337 for (i = 0, insn = 0; pattern[i].mask; i++)
7338 {
7339 if (insn == 0)
7340 insn = read_insn (frame, pc);
7341 insns[i] = 0;
7342 if ((insn & pattern[i].mask) == pattern[i].data)
7343 {
7344 insns[i] = insn;
7345 pc += 4;
7346 insn = 0;
7347 }
7348 else if (!pattern[i].optional)
7349 return 0;
7350 }
7351
7352 return 1;
7353 }
7354
7355 /* Return the 'd' field of the d-form instruction INSN, properly
7356 sign-extended. */
7357
7358 CORE_ADDR
7359 ppc_insn_d_field (unsigned int insn)
7360 {
7361 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
7362 }
7363
7364 /* Return the 'ds' field of the ds-form instruction INSN, with the two
7365 zero bits concatenated at the right, and properly
7366 sign-extended. */
7367
7368 CORE_ADDR
7369 ppc_insn_ds_field (unsigned int insn)
7370 {
7371 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
7372 }
7373
7374 CORE_ADDR
7375 ppc_insn_prefix_dform (unsigned int insn1, unsigned int insn2)
7376 {
7377 /* result is 34-bits */
7378 return (CORE_ADDR) ((((insn1 & 0x3ffff) ^ 0x20000) - 0x20000) << 16)
7379 | (CORE_ADDR)(insn2 & 0xffff);
7380 }
7381
7382 /* Initialization code. */
7383
7384 void _initialize_rs6000_tdep ();
7385 void
7386 _initialize_rs6000_tdep ()
7387 {
7388 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
7389 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
7390
7391 /* Initialize the standard target descriptions. */
7392 initialize_tdesc_powerpc_32 ();
7393 initialize_tdesc_powerpc_altivec32 ();
7394 initialize_tdesc_powerpc_vsx32 ();
7395 initialize_tdesc_powerpc_403 ();
7396 initialize_tdesc_powerpc_403gc ();
7397 initialize_tdesc_powerpc_405 ();
7398 initialize_tdesc_powerpc_505 ();
7399 initialize_tdesc_powerpc_601 ();
7400 initialize_tdesc_powerpc_602 ();
7401 initialize_tdesc_powerpc_603 ();
7402 initialize_tdesc_powerpc_604 ();
7403 initialize_tdesc_powerpc_64 ();
7404 initialize_tdesc_powerpc_altivec64 ();
7405 initialize_tdesc_powerpc_vsx64 ();
7406 initialize_tdesc_powerpc_7400 ();
7407 initialize_tdesc_powerpc_750 ();
7408 initialize_tdesc_powerpc_860 ();
7409 initialize_tdesc_powerpc_e500 ();
7410 initialize_tdesc_rs6000 ();
7411
7412 /* Add root prefix command for all "set powerpc"/"show powerpc"
7413 commands. */
7414 add_basic_prefix_cmd ("powerpc", no_class,
7415 _("Various PowerPC-specific commands."),
7416 &setpowerpccmdlist, 0, &setlist);
7417
7418 add_show_prefix_cmd ("powerpc", no_class,
7419 _("Various PowerPC-specific commands."),
7420 &showpowerpccmdlist, 0, &showlist);
7421
7422 /* Add a command to allow the user to force the ABI. */
7423 add_setshow_auto_boolean_cmd ("soft-float", class_support,
7424 &powerpc_soft_float_global,
7425 _("Set whether to use a soft-float ABI."),
7426 _("Show whether to use a soft-float ABI."),
7427 NULL,
7428 powerpc_set_soft_float, NULL,
7429 &setpowerpccmdlist, &showpowerpccmdlist);
7430
7431 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
7432 &powerpc_vector_abi_string,
7433 _("Set the vector ABI."),
7434 _("Show the vector ABI."),
7435 NULL, powerpc_set_vector_abi, NULL,
7436 &setpowerpccmdlist, &showpowerpccmdlist);
7437
7438 add_setshow_boolean_cmd ("exact-watchpoints", class_support,
7439 &target_exact_watchpoints,
7440 _("\
7441 Set whether to use just one debug register for watchpoints on scalars."),
7442 _("\
7443 Show whether to use just one debug register for watchpoints on scalars."),
7444 _("\
7445 If true, GDB will use only one debug register when watching a variable of\n\
7446 scalar type, thus assuming that the variable is accessed through the address\n\
7447 of its first byte."),
7448 NULL, show_powerpc_exact_watchpoints,
7449 &setpowerpccmdlist, &showpowerpccmdlist);
7450 }
This page took 0.276498 seconds and 4 git commands to generate.