Remove regcache_raw_collect
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "infrun.h"
24 #include "symtab.h"
25 #include "target.h"
26 #include "gdbcore.h"
27 #include "gdbcmd.h"
28 #include "objfiles.h"
29 #include "arch-utils.h"
30 #include "regcache.h"
31 #include "regset.h"
32 #include "target-float.h"
33 #include "value.h"
34 #include "parser-defs.h"
35 #include "osabi.h"
36 #include "infcall.h"
37 #include "sim-regno.h"
38 #include "gdb/sim-ppc.h"
39 #include "reggroups.h"
40 #include "dwarf2-frame.h"
41 #include "target-descriptions.h"
42 #include "user-regs.h"
43 #include "record-full.h"
44 #include "auxv.h"
45
46 #include "coff/internal.h" /* for libcoff.h */
47 #include "libcoff.h" /* for xcoff_data */
48 #include "coff/xcoff.h"
49 #include "libxcoff.h"
50
51 #include "elf-bfd.h"
52 #include "elf/ppc.h"
53 #include "elf/ppc64.h"
54
55 #include "solib-svr4.h"
56 #include "ppc-tdep.h"
57 #include "ppc-ravenscar-thread.h"
58
59 #include "dis-asm.h"
60
61 #include "trad-frame.h"
62 #include "frame-unwind.h"
63 #include "frame-base.h"
64
65 #include "ax.h"
66 #include "ax-gdb.h"
67 #include <algorithm>
68
69 #include "features/rs6000/powerpc-32.c"
70 #include "features/rs6000/powerpc-altivec32.c"
71 #include "features/rs6000/powerpc-vsx32.c"
72 #include "features/rs6000/powerpc-403.c"
73 #include "features/rs6000/powerpc-403gc.c"
74 #include "features/rs6000/powerpc-405.c"
75 #include "features/rs6000/powerpc-505.c"
76 #include "features/rs6000/powerpc-601.c"
77 #include "features/rs6000/powerpc-602.c"
78 #include "features/rs6000/powerpc-603.c"
79 #include "features/rs6000/powerpc-604.c"
80 #include "features/rs6000/powerpc-64.c"
81 #include "features/rs6000/powerpc-altivec64.c"
82 #include "features/rs6000/powerpc-vsx64.c"
83 #include "features/rs6000/powerpc-7400.c"
84 #include "features/rs6000/powerpc-750.c"
85 #include "features/rs6000/powerpc-860.c"
86 #include "features/rs6000/powerpc-e500.c"
87 #include "features/rs6000/rs6000.c"
88
89 /* Determine if regnum is an SPE pseudo-register. */
90 #define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
91 && (regnum) >= (tdep)->ppc_ev0_regnum \
92 && (regnum) < (tdep)->ppc_ev0_regnum + 32)
93
94 /* Determine if regnum is a decimal float pseudo-register. */
95 #define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
96 && (regnum) >= (tdep)->ppc_dl0_regnum \
97 && (regnum) < (tdep)->ppc_dl0_regnum + 16)
98
99 /* Determine if regnum is a POWER7 VSX register. */
100 #define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
101 && (regnum) >= (tdep)->ppc_vsr0_regnum \
102 && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
103
104 /* Determine if regnum is a POWER7 Extended FP register. */
105 #define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
106 && (regnum) >= (tdep)->ppc_efpr0_regnum \
107 && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
108
109 /* Holds the current set of options to be passed to the disassembler. */
110 static char *powerpc_disassembler_options;
111
112 /* The list of available "set powerpc ..." and "show powerpc ..."
113 commands. */
114 static struct cmd_list_element *setpowerpccmdlist = NULL;
115 static struct cmd_list_element *showpowerpccmdlist = NULL;
116
117 static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
118
119 /* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
120 static const char *const powerpc_vector_strings[] =
121 {
122 "auto",
123 "generic",
124 "altivec",
125 "spe",
126 NULL
127 };
128
129 /* A variable that can be configured by the user. */
130 static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
131 static const char *powerpc_vector_abi_string = "auto";
132
133 /* To be used by skip_prologue. */
134
135 struct rs6000_framedata
136 {
137 int offset; /* total size of frame --- the distance
138 by which we decrement sp to allocate
139 the frame */
140 int saved_gpr; /* smallest # of saved gpr */
141 unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
142 int saved_fpr; /* smallest # of saved fpr */
143 int saved_vr; /* smallest # of saved vr */
144 int saved_ev; /* smallest # of saved ev */
145 int alloca_reg; /* alloca register number (frame ptr) */
146 char frameless; /* true if frameless functions. */
147 char nosavedpc; /* true if pc not saved. */
148 char used_bl; /* true if link register clobbered */
149 int gpr_offset; /* offset of saved gprs from prev sp */
150 int fpr_offset; /* offset of saved fprs from prev sp */
151 int vr_offset; /* offset of saved vrs from prev sp */
152 int ev_offset; /* offset of saved evs from prev sp */
153 int lr_offset; /* offset of saved lr */
154 int lr_register; /* register of saved lr, if trustworthy */
155 int cr_offset; /* offset of saved cr */
156 int vrsave_offset; /* offset of saved vrsave register */
157 };
158
159
160 /* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
161 int
162 vsx_register_p (struct gdbarch *gdbarch, int regno)
163 {
164 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
165 if (tdep->ppc_vsr0_regnum < 0)
166 return 0;
167 else
168 return (regno >= tdep->ppc_vsr0_upper_regnum && regno
169 <= tdep->ppc_vsr0_upper_regnum + 31);
170 }
171
172 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
173 int
174 altivec_register_p (struct gdbarch *gdbarch, int regno)
175 {
176 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
177 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
178 return 0;
179 else
180 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
181 }
182
183
184 /* Return true if REGNO is an SPE register, false otherwise. */
185 int
186 spe_register_p (struct gdbarch *gdbarch, int regno)
187 {
188 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
189
190 /* Is it a reference to EV0 -- EV31, and do we have those? */
191 if (IS_SPE_PSEUDOREG (tdep, regno))
192 return 1;
193
194 /* Is it a reference to one of the raw upper GPR halves? */
195 if (tdep->ppc_ev0_upper_regnum >= 0
196 && tdep->ppc_ev0_upper_regnum <= regno
197 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
198 return 1;
199
200 /* Is it a reference to the 64-bit accumulator, and do we have that? */
201 if (tdep->ppc_acc_regnum >= 0
202 && tdep->ppc_acc_regnum == regno)
203 return 1;
204
205 /* Is it a reference to the SPE floating-point status and control register,
206 and do we have that? */
207 if (tdep->ppc_spefscr_regnum >= 0
208 && tdep->ppc_spefscr_regnum == regno)
209 return 1;
210
211 return 0;
212 }
213
214
215 /* Return non-zero if the architecture described by GDBARCH has
216 floating-point registers (f0 --- f31 and fpscr). */
217 int
218 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
219 {
220 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
221
222 return (tdep->ppc_fp0_regnum >= 0
223 && tdep->ppc_fpscr_regnum >= 0);
224 }
225
226 /* Return non-zero if the architecture described by GDBARCH has
227 Altivec registers (vr0 --- vr31, vrsave and vscr). */
228 int
229 ppc_altivec_support_p (struct gdbarch *gdbarch)
230 {
231 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
232
233 return (tdep->ppc_vr0_regnum >= 0
234 && tdep->ppc_vrsave_regnum >= 0);
235 }
236
237 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
238 set it to SIM_REGNO.
239
240 This is a helper function for init_sim_regno_table, constructing
241 the table mapping GDB register numbers to sim register numbers; we
242 initialize every element in that table to -1 before we start
243 filling it in. */
244 static void
245 set_sim_regno (int *table, int gdb_regno, int sim_regno)
246 {
247 /* Make sure we don't try to assign any given GDB register a sim
248 register number more than once. */
249 gdb_assert (table[gdb_regno] == -1);
250 table[gdb_regno] = sim_regno;
251 }
252
253
254 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
255 numbers to simulator register numbers, based on the values placed
256 in the ARCH->tdep->ppc_foo_regnum members. */
257 static void
258 init_sim_regno_table (struct gdbarch *arch)
259 {
260 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
261 int total_regs = gdbarch_num_regs (arch);
262 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
263 int i;
264 static const char *const segment_regs[] = {
265 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
266 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
267 };
268
269 /* Presume that all registers not explicitly mentioned below are
270 unavailable from the sim. */
271 for (i = 0; i < total_regs; i++)
272 sim_regno[i] = -1;
273
274 /* General-purpose registers. */
275 for (i = 0; i < ppc_num_gprs; i++)
276 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
277
278 /* Floating-point registers. */
279 if (tdep->ppc_fp0_regnum >= 0)
280 for (i = 0; i < ppc_num_fprs; i++)
281 set_sim_regno (sim_regno,
282 tdep->ppc_fp0_regnum + i,
283 sim_ppc_f0_regnum + i);
284 if (tdep->ppc_fpscr_regnum >= 0)
285 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
286
287 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
288 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
289 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
290
291 /* Segment registers. */
292 for (i = 0; i < ppc_num_srs; i++)
293 {
294 int gdb_regno;
295
296 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
297 if (gdb_regno >= 0)
298 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
299 }
300
301 /* Altivec registers. */
302 if (tdep->ppc_vr0_regnum >= 0)
303 {
304 for (i = 0; i < ppc_num_vrs; i++)
305 set_sim_regno (sim_regno,
306 tdep->ppc_vr0_regnum + i,
307 sim_ppc_vr0_regnum + i);
308
309 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
310 we can treat this more like the other cases. */
311 set_sim_regno (sim_regno,
312 tdep->ppc_vr0_regnum + ppc_num_vrs,
313 sim_ppc_vscr_regnum);
314 }
315 /* vsave is a special-purpose register, so the code below handles it. */
316
317 /* SPE APU (E500) registers. */
318 if (tdep->ppc_ev0_upper_regnum >= 0)
319 for (i = 0; i < ppc_num_gprs; i++)
320 set_sim_regno (sim_regno,
321 tdep->ppc_ev0_upper_regnum + i,
322 sim_ppc_rh0_regnum + i);
323 if (tdep->ppc_acc_regnum >= 0)
324 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
325 /* spefscr is a special-purpose register, so the code below handles it. */
326
327 #ifdef WITH_PPC_SIM
328 /* Now handle all special-purpose registers. Verify that they
329 haven't mistakenly been assigned numbers by any of the above
330 code. */
331 for (i = 0; i < sim_ppc_num_sprs; i++)
332 {
333 const char *spr_name = sim_spr_register_name (i);
334 int gdb_regno = -1;
335
336 if (spr_name != NULL)
337 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
338
339 if (gdb_regno != -1)
340 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
341 }
342 #endif
343
344 /* Drop the initialized array into place. */
345 tdep->sim_regno = sim_regno;
346 }
347
348
349 /* Given a GDB register number REG, return the corresponding SIM
350 register number. */
351 static int
352 rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
353 {
354 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
355 int sim_regno;
356
357 if (tdep->sim_regno == NULL)
358 init_sim_regno_table (gdbarch);
359
360 gdb_assert (0 <= reg
361 && reg <= gdbarch_num_regs (gdbarch)
362 + gdbarch_num_pseudo_regs (gdbarch));
363 sim_regno = tdep->sim_regno[reg];
364
365 if (sim_regno >= 0)
366 return sim_regno;
367 else
368 return LEGACY_SIM_REGNO_IGNORE;
369 }
370
371 \f
372
373 /* Register set support functions. */
374
375 /* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
376 Write the register to REGCACHE. */
377
378 void
379 ppc_supply_reg (struct regcache *regcache, int regnum,
380 const gdb_byte *regs, size_t offset, int regsize)
381 {
382 if (regnum != -1 && offset != -1)
383 {
384 if (regsize > 4)
385 {
386 struct gdbarch *gdbarch = regcache->arch ();
387 int gdb_regsize = register_size (gdbarch, regnum);
388 if (gdb_regsize < regsize
389 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
390 offset += regsize - gdb_regsize;
391 }
392 regcache->raw_supply (regnum, regs + offset);
393 }
394 }
395
396 /* Read register REGNUM from REGCACHE and store to REGS + OFFSET
397 in a field REGSIZE wide. Zero pad as necessary. */
398
399 void
400 ppc_collect_reg (const struct regcache *regcache, int regnum,
401 gdb_byte *regs, size_t offset, int regsize)
402 {
403 if (regnum != -1 && offset != -1)
404 {
405 if (regsize > 4)
406 {
407 struct gdbarch *gdbarch = regcache->arch ();
408 int gdb_regsize = register_size (gdbarch, regnum);
409 if (gdb_regsize < regsize)
410 {
411 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
412 {
413 memset (regs + offset, 0, regsize - gdb_regsize);
414 offset += regsize - gdb_regsize;
415 }
416 else
417 memset (regs + offset + regsize - gdb_regsize, 0,
418 regsize - gdb_regsize);
419 }
420 }
421 regcache->raw_collect (regnum, regs + offset);
422 }
423 }
424
425 static int
426 ppc_greg_offset (struct gdbarch *gdbarch,
427 struct gdbarch_tdep *tdep,
428 const struct ppc_reg_offsets *offsets,
429 int regnum,
430 int *regsize)
431 {
432 *regsize = offsets->gpr_size;
433 if (regnum >= tdep->ppc_gp0_regnum
434 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
435 return (offsets->r0_offset
436 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
437
438 if (regnum == gdbarch_pc_regnum (gdbarch))
439 return offsets->pc_offset;
440
441 if (regnum == tdep->ppc_ps_regnum)
442 return offsets->ps_offset;
443
444 if (regnum == tdep->ppc_lr_regnum)
445 return offsets->lr_offset;
446
447 if (regnum == tdep->ppc_ctr_regnum)
448 return offsets->ctr_offset;
449
450 *regsize = offsets->xr_size;
451 if (regnum == tdep->ppc_cr_regnum)
452 return offsets->cr_offset;
453
454 if (regnum == tdep->ppc_xer_regnum)
455 return offsets->xer_offset;
456
457 if (regnum == tdep->ppc_mq_regnum)
458 return offsets->mq_offset;
459
460 return -1;
461 }
462
463 static int
464 ppc_fpreg_offset (struct gdbarch_tdep *tdep,
465 const struct ppc_reg_offsets *offsets,
466 int regnum)
467 {
468 if (regnum >= tdep->ppc_fp0_regnum
469 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
470 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
471
472 if (regnum == tdep->ppc_fpscr_regnum)
473 return offsets->fpscr_offset;
474
475 return -1;
476 }
477
478 /* Supply register REGNUM in the general-purpose register set REGSET
479 from the buffer specified by GREGS and LEN to register cache
480 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
481
482 void
483 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
484 int regnum, const void *gregs, size_t len)
485 {
486 struct gdbarch *gdbarch = regcache->arch ();
487 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
488 const struct ppc_reg_offsets *offsets
489 = (const struct ppc_reg_offsets *) regset->regmap;
490 size_t offset;
491 int regsize;
492
493 if (regnum == -1)
494 {
495 int i;
496 int gpr_size = offsets->gpr_size;
497
498 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
499 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
500 i++, offset += gpr_size)
501 ppc_supply_reg (regcache, i, (const gdb_byte *) gregs, offset,
502 gpr_size);
503
504 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
505 (const gdb_byte *) gregs, offsets->pc_offset, gpr_size);
506 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
507 (const gdb_byte *) gregs, offsets->ps_offset, gpr_size);
508 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
509 (const gdb_byte *) gregs, offsets->lr_offset, gpr_size);
510 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
511 (const gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
512 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
513 (const gdb_byte *) gregs, offsets->cr_offset,
514 offsets->xr_size);
515 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
516 (const gdb_byte *) gregs, offsets->xer_offset,
517 offsets->xr_size);
518 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
519 (const gdb_byte *) gregs, offsets->mq_offset,
520 offsets->xr_size);
521 return;
522 }
523
524 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
525 ppc_supply_reg (regcache, regnum, (const gdb_byte *) gregs, offset, regsize);
526 }
527
528 /* Supply register REGNUM in the floating-point register set REGSET
529 from the buffer specified by FPREGS and LEN to register cache
530 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
531
532 void
533 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
534 int regnum, const void *fpregs, size_t len)
535 {
536 struct gdbarch *gdbarch = regcache->arch ();
537 struct gdbarch_tdep *tdep;
538 const struct ppc_reg_offsets *offsets;
539 size_t offset;
540
541 if (!ppc_floating_point_unit_p (gdbarch))
542 return;
543
544 tdep = gdbarch_tdep (gdbarch);
545 offsets = (const struct ppc_reg_offsets *) regset->regmap;
546 if (regnum == -1)
547 {
548 int i;
549
550 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
551 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
552 i++, offset += 8)
553 ppc_supply_reg (regcache, i, (const gdb_byte *) fpregs, offset, 8);
554
555 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
556 (const gdb_byte *) fpregs, offsets->fpscr_offset,
557 offsets->fpscr_size);
558 return;
559 }
560
561 offset = ppc_fpreg_offset (tdep, offsets, regnum);
562 ppc_supply_reg (regcache, regnum, (const gdb_byte *) fpregs, offset,
563 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
564 }
565
566 /* Collect register REGNUM in the general-purpose register set
567 REGSET from register cache REGCACHE into the buffer specified by
568 GREGS and LEN. If REGNUM is -1, do this for all registers in
569 REGSET. */
570
571 void
572 ppc_collect_gregset (const struct regset *regset,
573 const struct regcache *regcache,
574 int regnum, void *gregs, size_t len)
575 {
576 struct gdbarch *gdbarch = regcache->arch ();
577 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
578 const struct ppc_reg_offsets *offsets
579 = (const struct ppc_reg_offsets *) regset->regmap;
580 size_t offset;
581 int regsize;
582
583 if (regnum == -1)
584 {
585 int i;
586 int gpr_size = offsets->gpr_size;
587
588 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
589 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
590 i++, offset += gpr_size)
591 ppc_collect_reg (regcache, i, (gdb_byte *) gregs, offset, gpr_size);
592
593 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
594 (gdb_byte *) gregs, offsets->pc_offset, gpr_size);
595 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
596 (gdb_byte *) gregs, offsets->ps_offset, gpr_size);
597 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
598 (gdb_byte *) gregs, offsets->lr_offset, gpr_size);
599 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
600 (gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
601 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
602 (gdb_byte *) gregs, offsets->cr_offset,
603 offsets->xr_size);
604 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
605 (gdb_byte *) gregs, offsets->xer_offset,
606 offsets->xr_size);
607 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
608 (gdb_byte *) gregs, offsets->mq_offset,
609 offsets->xr_size);
610 return;
611 }
612
613 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
614 ppc_collect_reg (regcache, regnum, (gdb_byte *) gregs, offset, regsize);
615 }
616
617 /* Collect register REGNUM in the floating-point register set
618 REGSET from register cache REGCACHE into the buffer specified by
619 FPREGS and LEN. If REGNUM is -1, do this for all registers in
620 REGSET. */
621
622 void
623 ppc_collect_fpregset (const struct regset *regset,
624 const struct regcache *regcache,
625 int regnum, void *fpregs, size_t len)
626 {
627 struct gdbarch *gdbarch = regcache->arch ();
628 struct gdbarch_tdep *tdep;
629 const struct ppc_reg_offsets *offsets;
630 size_t offset;
631
632 if (!ppc_floating_point_unit_p (gdbarch))
633 return;
634
635 tdep = gdbarch_tdep (gdbarch);
636 offsets = (const struct ppc_reg_offsets *) regset->regmap;
637 if (regnum == -1)
638 {
639 int i;
640
641 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
642 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
643 i++, offset += 8)
644 ppc_collect_reg (regcache, i, (gdb_byte *) fpregs, offset, 8);
645
646 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
647 (gdb_byte *) fpregs, offsets->fpscr_offset,
648 offsets->fpscr_size);
649 return;
650 }
651
652 offset = ppc_fpreg_offset (tdep, offsets, regnum);
653 ppc_collect_reg (regcache, regnum, (gdb_byte *) fpregs, offset,
654 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
655 }
656
657 static int
658 insn_changes_sp_or_jumps (unsigned long insn)
659 {
660 int opcode = (insn >> 26) & 0x03f;
661 int sd = (insn >> 21) & 0x01f;
662 int a = (insn >> 16) & 0x01f;
663 int subcode = (insn >> 1) & 0x3ff;
664
665 /* Changes the stack pointer. */
666
667 /* NOTE: There are many ways to change the value of a given register.
668 The ways below are those used when the register is R1, the SP,
669 in a funtion's epilogue. */
670
671 if (opcode == 31 && subcode == 444 && a == 1)
672 return 1; /* mr R1,Rn */
673 if (opcode == 14 && sd == 1)
674 return 1; /* addi R1,Rn,simm */
675 if (opcode == 58 && sd == 1)
676 return 1; /* ld R1,ds(Rn) */
677
678 /* Transfers control. */
679
680 if (opcode == 18)
681 return 1; /* b */
682 if (opcode == 16)
683 return 1; /* bc */
684 if (opcode == 19 && subcode == 16)
685 return 1; /* bclr */
686 if (opcode == 19 && subcode == 528)
687 return 1; /* bcctr */
688
689 return 0;
690 }
691
692 /* Return true if we are in the function's epilogue, i.e. after the
693 instruction that destroyed the function's stack frame.
694
695 1) scan forward from the point of execution:
696 a) If you find an instruction that modifies the stack pointer
697 or transfers control (except a return), execution is not in
698 an epilogue, return.
699 b) Stop scanning if you find a return instruction or reach the
700 end of the function or reach the hard limit for the size of
701 an epilogue.
702 2) scan backward from the point of execution:
703 a) If you find an instruction that modifies the stack pointer,
704 execution *is* in an epilogue, return.
705 b) Stop scanning if you reach an instruction that transfers
706 control or the beginning of the function or reach the hard
707 limit for the size of an epilogue. */
708
709 static int
710 rs6000_in_function_epilogue_frame_p (struct frame_info *curfrm,
711 struct gdbarch *gdbarch, CORE_ADDR pc)
712 {
713 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
714 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
715 bfd_byte insn_buf[PPC_INSN_SIZE];
716 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
717 unsigned long insn;
718
719 /* Find the search limits based on function boundaries and hard limit. */
720
721 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
722 return 0;
723
724 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
725 if (epilogue_start < func_start) epilogue_start = func_start;
726
727 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
728 if (epilogue_end > func_end) epilogue_end = func_end;
729
730 /* Scan forward until next 'blr'. */
731
732 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
733 {
734 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
735 return 0;
736 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
737 if (insn == 0x4e800020)
738 break;
739 /* Assume a bctr is a tail call unless it points strictly within
740 this function. */
741 if (insn == 0x4e800420)
742 {
743 CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
744 tdep->ppc_ctr_regnum);
745 if (ctr > func_start && ctr < func_end)
746 return 0;
747 else
748 break;
749 }
750 if (insn_changes_sp_or_jumps (insn))
751 return 0;
752 }
753
754 /* Scan backward until adjustment to stack pointer (R1). */
755
756 for (scan_pc = pc - PPC_INSN_SIZE;
757 scan_pc >= epilogue_start;
758 scan_pc -= PPC_INSN_SIZE)
759 {
760 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
761 return 0;
762 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
763 if (insn_changes_sp_or_jumps (insn))
764 return 1;
765 }
766
767 return 0;
768 }
769
770 /* Implement the stack_frame_destroyed_p gdbarch method. */
771
772 static int
773 rs6000_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
774 {
775 return rs6000_in_function_epilogue_frame_p (get_current_frame (),
776 gdbarch, pc);
777 }
778
779 /* Get the ith function argument for the current function. */
780 static CORE_ADDR
781 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
782 struct type *type)
783 {
784 return get_frame_register_unsigned (frame, 3 + argi);
785 }
786
787 /* Sequence of bytes for breakpoint instruction. */
788
789 constexpr gdb_byte big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
790 constexpr gdb_byte little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
791
792 typedef BP_MANIPULATION_ENDIAN (little_breakpoint, big_breakpoint)
793 rs6000_breakpoint;
794
795 /* Instruction masks for displaced stepping. */
796 #define BRANCH_MASK 0xfc000000
797 #define BP_MASK 0xFC0007FE
798 #define B_INSN 0x48000000
799 #define BC_INSN 0x40000000
800 #define BXL_INSN 0x4c000000
801 #define BP_INSN 0x7C000008
802
803 /* Instruction masks used during single-stepping of atomic
804 sequences. */
805 #define LOAD_AND_RESERVE_MASK 0xfc0007fe
806 #define LWARX_INSTRUCTION 0x7c000028
807 #define LDARX_INSTRUCTION 0x7c0000A8
808 #define LBARX_INSTRUCTION 0x7c000068
809 #define LHARX_INSTRUCTION 0x7c0000e8
810 #define LQARX_INSTRUCTION 0x7c000228
811 #define STORE_CONDITIONAL_MASK 0xfc0007ff
812 #define STWCX_INSTRUCTION 0x7c00012d
813 #define STDCX_INSTRUCTION 0x7c0001ad
814 #define STBCX_INSTRUCTION 0x7c00056d
815 #define STHCX_INSTRUCTION 0x7c0005ad
816 #define STQCX_INSTRUCTION 0x7c00016d
817
818 /* Check if insn is one of the Load And Reserve instructions used for atomic
819 sequences. */
820 #define IS_LOAD_AND_RESERVE_INSN(insn) ((insn & LOAD_AND_RESERVE_MASK) == LWARX_INSTRUCTION \
821 || (insn & LOAD_AND_RESERVE_MASK) == LDARX_INSTRUCTION \
822 || (insn & LOAD_AND_RESERVE_MASK) == LBARX_INSTRUCTION \
823 || (insn & LOAD_AND_RESERVE_MASK) == LHARX_INSTRUCTION \
824 || (insn & LOAD_AND_RESERVE_MASK) == LQARX_INSTRUCTION)
825 /* Check if insn is one of the Store Conditional instructions used for atomic
826 sequences. */
827 #define IS_STORE_CONDITIONAL_INSN(insn) ((insn & STORE_CONDITIONAL_MASK) == STWCX_INSTRUCTION \
828 || (insn & STORE_CONDITIONAL_MASK) == STDCX_INSTRUCTION \
829 || (insn & STORE_CONDITIONAL_MASK) == STBCX_INSTRUCTION \
830 || (insn & STORE_CONDITIONAL_MASK) == STHCX_INSTRUCTION \
831 || (insn & STORE_CONDITIONAL_MASK) == STQCX_INSTRUCTION)
832
833 typedef buf_displaced_step_closure ppc_displaced_step_closure;
834
835 /* We can't displaced step atomic sequences. */
836
837 static struct displaced_step_closure *
838 ppc_displaced_step_copy_insn (struct gdbarch *gdbarch,
839 CORE_ADDR from, CORE_ADDR to,
840 struct regcache *regs)
841 {
842 size_t len = gdbarch_max_insn_length (gdbarch);
843 std::unique_ptr<ppc_displaced_step_closure> closure
844 (new ppc_displaced_step_closure (len));
845 gdb_byte *buf = closure->buf.data ();
846 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
847 int insn;
848
849 read_memory (from, buf, len);
850
851 insn = extract_signed_integer (buf, PPC_INSN_SIZE, byte_order);
852
853 /* Assume all atomic sequences start with a Load and Reserve instruction. */
854 if (IS_LOAD_AND_RESERVE_INSN (insn))
855 {
856 if (debug_displaced)
857 {
858 fprintf_unfiltered (gdb_stdlog,
859 "displaced: can't displaced step "
860 "atomic sequence at %s\n",
861 paddress (gdbarch, from));
862 }
863
864 return NULL;
865 }
866
867 write_memory (to, buf, len);
868
869 if (debug_displaced)
870 {
871 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
872 paddress (gdbarch, from), paddress (gdbarch, to));
873 displaced_step_dump_bytes (gdb_stdlog, buf, len);
874 }
875
876 return closure.release ();
877 }
878
879 /* Fix up the state of registers and memory after having single-stepped
880 a displaced instruction. */
881 static void
882 ppc_displaced_step_fixup (struct gdbarch *gdbarch,
883 struct displaced_step_closure *closure_,
884 CORE_ADDR from, CORE_ADDR to,
885 struct regcache *regs)
886 {
887 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
888 /* Our closure is a copy of the instruction. */
889 ppc_displaced_step_closure *closure = (ppc_displaced_step_closure *) closure_;
890 ULONGEST insn = extract_unsigned_integer (closure->buf.data (),
891 PPC_INSN_SIZE, byte_order);
892 ULONGEST opcode = 0;
893 /* Offset for non PC-relative instructions. */
894 LONGEST offset = PPC_INSN_SIZE;
895
896 opcode = insn & BRANCH_MASK;
897
898 if (debug_displaced)
899 fprintf_unfiltered (gdb_stdlog,
900 "displaced: (ppc) fixup (%s, %s)\n",
901 paddress (gdbarch, from), paddress (gdbarch, to));
902
903
904 /* Handle PC-relative branch instructions. */
905 if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
906 {
907 ULONGEST current_pc;
908
909 /* Read the current PC value after the instruction has been executed
910 in a displaced location. Calculate the offset to be applied to the
911 original PC value before the displaced stepping. */
912 regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
913 &current_pc);
914 offset = current_pc - to;
915
916 if (opcode != BXL_INSN)
917 {
918 /* Check for AA bit indicating whether this is an absolute
919 addressing or PC-relative (1: absolute, 0: relative). */
920 if (!(insn & 0x2))
921 {
922 /* PC-relative addressing is being used in the branch. */
923 if (debug_displaced)
924 fprintf_unfiltered
925 (gdb_stdlog,
926 "displaced: (ppc) branch instruction: %s\n"
927 "displaced: (ppc) adjusted PC from %s to %s\n",
928 paddress (gdbarch, insn), paddress (gdbarch, current_pc),
929 paddress (gdbarch, from + offset));
930
931 regcache_cooked_write_unsigned (regs,
932 gdbarch_pc_regnum (gdbarch),
933 from + offset);
934 }
935 }
936 else
937 {
938 /* If we're here, it means we have a branch to LR or CTR. If the
939 branch was taken, the offset is probably greater than 4 (the next
940 instruction), so it's safe to assume that an offset of 4 means we
941 did not take the branch. */
942 if (offset == PPC_INSN_SIZE)
943 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
944 from + PPC_INSN_SIZE);
945 }
946
947 /* Check for LK bit indicating whether we should set the link
948 register to point to the next instruction
949 (1: Set, 0: Don't set). */
950 if (insn & 0x1)
951 {
952 /* Link register needs to be set to the next instruction's PC. */
953 regcache_cooked_write_unsigned (regs,
954 gdbarch_tdep (gdbarch)->ppc_lr_regnum,
955 from + PPC_INSN_SIZE);
956 if (debug_displaced)
957 fprintf_unfiltered (gdb_stdlog,
958 "displaced: (ppc) adjusted LR to %s\n",
959 paddress (gdbarch, from + PPC_INSN_SIZE));
960
961 }
962 }
963 /* Check for breakpoints in the inferior. If we've found one, place the PC
964 right at the breakpoint instruction. */
965 else if ((insn & BP_MASK) == BP_INSN)
966 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
967 else
968 /* Handle any other instructions that do not fit in the categories above. */
969 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
970 from + offset);
971 }
972
973 /* Always use hardware single-stepping to execute the
974 displaced instruction. */
975 static int
976 ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
977 struct displaced_step_closure *closure)
978 {
979 return 1;
980 }
981
982 /* Checks for an atomic sequence of instructions beginning with a
983 Load And Reserve instruction and ending with a Store Conditional
984 instruction. If such a sequence is found, attempt to step through it.
985 A breakpoint is placed at the end of the sequence. */
986 std::vector<CORE_ADDR>
987 ppc_deal_with_atomic_sequence (struct regcache *regcache)
988 {
989 struct gdbarch *gdbarch = regcache->arch ();
990 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
991 CORE_ADDR pc = regcache_read_pc (regcache);
992 CORE_ADDR breaks[2] = {-1, -1};
993 CORE_ADDR loc = pc;
994 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
995 int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
996 int insn_count;
997 int index;
998 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
999 const int atomic_sequence_length = 16; /* Instruction sequence length. */
1000 int bc_insn_count = 0; /* Conditional branch instruction count. */
1001
1002 /* Assume all atomic sequences start with a Load And Reserve instruction. */
1003 if (!IS_LOAD_AND_RESERVE_INSN (insn))
1004 return {};
1005
1006 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1007 instructions. */
1008 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1009 {
1010 loc += PPC_INSN_SIZE;
1011 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1012
1013 /* Assume that there is at most one conditional branch in the atomic
1014 sequence. If a conditional branch is found, put a breakpoint in
1015 its destination address. */
1016 if ((insn & BRANCH_MASK) == BC_INSN)
1017 {
1018 int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
1019 int absolute = insn & 2;
1020
1021 if (bc_insn_count >= 1)
1022 return {}; /* More than one conditional branch found, fallback
1023 to the standard single-step code. */
1024
1025 if (absolute)
1026 breaks[1] = immediate;
1027 else
1028 breaks[1] = loc + immediate;
1029
1030 bc_insn_count++;
1031 last_breakpoint++;
1032 }
1033
1034 if (IS_STORE_CONDITIONAL_INSN (insn))
1035 break;
1036 }
1037
1038 /* Assume that the atomic sequence ends with a Store Conditional
1039 instruction. */
1040 if (!IS_STORE_CONDITIONAL_INSN (insn))
1041 return {};
1042
1043 closing_insn = loc;
1044 loc += PPC_INSN_SIZE;
1045
1046 /* Insert a breakpoint right after the end of the atomic sequence. */
1047 breaks[0] = loc;
1048
1049 /* Check for duplicated breakpoints. Check also for a breakpoint
1050 placed (branch instruction's destination) anywhere in sequence. */
1051 if (last_breakpoint
1052 && (breaks[1] == breaks[0]
1053 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
1054 last_breakpoint = 0;
1055
1056 std::vector<CORE_ADDR> next_pcs;
1057
1058 for (index = 0; index <= last_breakpoint; index++)
1059 next_pcs.push_back (breaks[index]);
1060
1061 return next_pcs;
1062 }
1063
1064
1065 #define SIGNED_SHORT(x) \
1066 ((sizeof (short) == 2) \
1067 ? ((int)(short)(x)) \
1068 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1069
1070 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1071
1072 /* Limit the number of skipped non-prologue instructions, as the examining
1073 of the prologue is expensive. */
1074 static int max_skip_non_prologue_insns = 10;
1075
1076 /* Return nonzero if the given instruction OP can be part of the prologue
1077 of a function and saves a parameter on the stack. FRAMEP should be
1078 set if one of the previous instructions in the function has set the
1079 Frame Pointer. */
1080
1081 static int
1082 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1083 {
1084 /* Move parameters from argument registers to temporary register. */
1085 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1086 {
1087 /* Rx must be scratch register r0. */
1088 const int rx_regno = (op >> 16) & 31;
1089 /* Ry: Only r3 - r10 are used for parameter passing. */
1090 const int ry_regno = GET_SRC_REG (op);
1091
1092 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1093 {
1094 *r0_contains_arg = 1;
1095 return 1;
1096 }
1097 else
1098 return 0;
1099 }
1100
1101 /* Save a General Purpose Register on stack. */
1102
1103 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1104 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1105 {
1106 /* Rx: Only r3 - r10 are used for parameter passing. */
1107 const int rx_regno = GET_SRC_REG (op);
1108
1109 return (rx_regno >= 3 && rx_regno <= 10);
1110 }
1111
1112 /* Save a General Purpose Register on stack via the Frame Pointer. */
1113
1114 if (framep &&
1115 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1116 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1117 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1118 {
1119 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1120 However, the compiler sometimes uses r0 to hold an argument. */
1121 const int rx_regno = GET_SRC_REG (op);
1122
1123 return ((rx_regno >= 3 && rx_regno <= 10)
1124 || (rx_regno == 0 && *r0_contains_arg));
1125 }
1126
1127 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1128 {
1129 /* Only f2 - f8 are used for parameter passing. */
1130 const int src_regno = GET_SRC_REG (op);
1131
1132 return (src_regno >= 2 && src_regno <= 8);
1133 }
1134
1135 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1136 {
1137 /* Only f2 - f8 are used for parameter passing. */
1138 const int src_regno = GET_SRC_REG (op);
1139
1140 return (src_regno >= 2 && src_regno <= 8);
1141 }
1142
1143 /* Not an insn that saves a parameter on stack. */
1144 return 0;
1145 }
1146
1147 /* Assuming that INSN is a "bl" instruction located at PC, return
1148 nonzero if the destination of the branch is a "blrl" instruction.
1149
1150 This sequence is sometimes found in certain function prologues.
1151 It allows the function to load the LR register with a value that
1152 they can use to access PIC data using PC-relative offsets. */
1153
1154 static int
1155 bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
1156 {
1157 CORE_ADDR dest;
1158 int immediate;
1159 int absolute;
1160 int dest_insn;
1161
1162 absolute = (int) ((insn >> 1) & 1);
1163 immediate = ((insn & ~3) << 6) >> 6;
1164 if (absolute)
1165 dest = immediate;
1166 else
1167 dest = pc + immediate;
1168
1169 dest_insn = read_memory_integer (dest, 4, byte_order);
1170 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1171 return 1;
1172
1173 return 0;
1174 }
1175
1176 /* Return true if OP is a stw or std instruction with
1177 register operands RS and RA and any immediate offset.
1178
1179 If WITH_UPDATE is true, also return true if OP is
1180 a stwu or stdu instruction with the same operands.
1181
1182 Return false otherwise.
1183 */
1184 static bool
1185 store_insn_p (unsigned long op, unsigned long rs,
1186 unsigned long ra, bool with_update)
1187 {
1188 rs = rs << 21;
1189 ra = ra << 16;
1190
1191 if (/* std RS, SIMM(RA) */
1192 ((op & 0xffff0003) == (rs | ra | 0xf8000000)) ||
1193 /* stw RS, SIMM(RA) */
1194 ((op & 0xffff0000) == (rs | ra | 0x90000000)))
1195 return true;
1196
1197 if (with_update)
1198 {
1199 if (/* stdu RS, SIMM(RA) */
1200 ((op & 0xffff0003) == (rs | ra | 0xf8000001)) ||
1201 /* stwu RS, SIMM(RA) */
1202 ((op & 0xffff0000) == (rs | ra | 0x94000000)))
1203 return true;
1204 }
1205
1206 return false;
1207 }
1208
1209 /* Masks for decoding a branch-and-link (bl) instruction.
1210
1211 BL_MASK and BL_INSTRUCTION are used in combination with each other.
1212 The former is anded with the opcode in question; if the result of
1213 this masking operation is equal to BL_INSTRUCTION, then the opcode in
1214 question is a ``bl'' instruction.
1215
1216 BL_DISPLACMENT_MASK is anded with the opcode in order to extract
1217 the branch displacement. */
1218
1219 #define BL_MASK 0xfc000001
1220 #define BL_INSTRUCTION 0x48000001
1221 #define BL_DISPLACEMENT_MASK 0x03fffffc
1222
1223 static unsigned long
1224 rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
1225 {
1226 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1227 gdb_byte buf[4];
1228 unsigned long op;
1229
1230 /* Fetch the instruction and convert it to an integer. */
1231 if (target_read_memory (pc, buf, 4))
1232 return 0;
1233 op = extract_unsigned_integer (buf, 4, byte_order);
1234
1235 return op;
1236 }
1237
1238 /* GCC generates several well-known sequences of instructions at the begining
1239 of each function prologue when compiling with -fstack-check. If one of
1240 such sequences starts at START_PC, then return the address of the
1241 instruction immediately past this sequence. Otherwise, return START_PC. */
1242
1243 static CORE_ADDR
1244 rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
1245 {
1246 CORE_ADDR pc = start_pc;
1247 unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
1248
1249 /* First possible sequence: A small number of probes.
1250 stw 0, -<some immediate>(1)
1251 [repeat this instruction any (small) number of times]. */
1252
1253 if ((op & 0xffff0000) == 0x90010000)
1254 {
1255 while ((op & 0xffff0000) == 0x90010000)
1256 {
1257 pc = pc + 4;
1258 op = rs6000_fetch_instruction (gdbarch, pc);
1259 }
1260 return pc;
1261 }
1262
1263 /* Second sequence: A probing loop.
1264 addi 12,1,-<some immediate>
1265 lis 0,-<some immediate>
1266 [possibly ori 0,0,<some immediate>]
1267 add 0,12,0
1268 cmpw 0,12,0
1269 beq 0,<disp>
1270 addi 12,12,-<some immediate>
1271 stw 0,0(12)
1272 b <disp>
1273 [possibly one last probe: stw 0,<some immediate>(12)]. */
1274
1275 while (1)
1276 {
1277 /* addi 12,1,-<some immediate> */
1278 if ((op & 0xffff0000) != 0x39810000)
1279 break;
1280
1281 /* lis 0,-<some immediate> */
1282 pc = pc + 4;
1283 op = rs6000_fetch_instruction (gdbarch, pc);
1284 if ((op & 0xffff0000) != 0x3c000000)
1285 break;
1286
1287 pc = pc + 4;
1288 op = rs6000_fetch_instruction (gdbarch, pc);
1289 /* [possibly ori 0,0,<some immediate>] */
1290 if ((op & 0xffff0000) == 0x60000000)
1291 {
1292 pc = pc + 4;
1293 op = rs6000_fetch_instruction (gdbarch, pc);
1294 }
1295 /* add 0,12,0 */
1296 if (op != 0x7c0c0214)
1297 break;
1298
1299 /* cmpw 0,12,0 */
1300 pc = pc + 4;
1301 op = rs6000_fetch_instruction (gdbarch, pc);
1302 if (op != 0x7c0c0000)
1303 break;
1304
1305 /* beq 0,<disp> */
1306 pc = pc + 4;
1307 op = rs6000_fetch_instruction (gdbarch, pc);
1308 if ((op & 0xff9f0001) != 0x41820000)
1309 break;
1310
1311 /* addi 12,12,-<some immediate> */
1312 pc = pc + 4;
1313 op = rs6000_fetch_instruction (gdbarch, pc);
1314 if ((op & 0xffff0000) != 0x398c0000)
1315 break;
1316
1317 /* stw 0,0(12) */
1318 pc = pc + 4;
1319 op = rs6000_fetch_instruction (gdbarch, pc);
1320 if (op != 0x900c0000)
1321 break;
1322
1323 /* b <disp> */
1324 pc = pc + 4;
1325 op = rs6000_fetch_instruction (gdbarch, pc);
1326 if ((op & 0xfc000001) != 0x48000000)
1327 break;
1328
1329 /* [possibly one last probe: stw 0,<some immediate>(12)]. */
1330 pc = pc + 4;
1331 op = rs6000_fetch_instruction (gdbarch, pc);
1332 if ((op & 0xffff0000) == 0x900c0000)
1333 {
1334 pc = pc + 4;
1335 op = rs6000_fetch_instruction (gdbarch, pc);
1336 }
1337
1338 /* We found a valid stack-check sequence, return the new PC. */
1339 return pc;
1340 }
1341
1342 /* Third sequence: No probe; instead, a comparizon between the stack size
1343 limit (saved in a run-time global variable) and the current stack
1344 pointer:
1345
1346 addi 0,1,-<some immediate>
1347 lis 12,__gnat_stack_limit@ha
1348 lwz 12,__gnat_stack_limit@l(12)
1349 twllt 0,12
1350
1351 or, with a small variant in the case of a bigger stack frame:
1352 addis 0,1,<some immediate>
1353 addic 0,0,-<some immediate>
1354 lis 12,__gnat_stack_limit@ha
1355 lwz 12,__gnat_stack_limit@l(12)
1356 twllt 0,12
1357 */
1358 while (1)
1359 {
1360 /* addi 0,1,-<some immediate> */
1361 if ((op & 0xffff0000) != 0x38010000)
1362 {
1363 /* small stack frame variant not recognized; try the
1364 big stack frame variant: */
1365
1366 /* addis 0,1,<some immediate> */
1367 if ((op & 0xffff0000) != 0x3c010000)
1368 break;
1369
1370 /* addic 0,0,-<some immediate> */
1371 pc = pc + 4;
1372 op = rs6000_fetch_instruction (gdbarch, pc);
1373 if ((op & 0xffff0000) != 0x30000000)
1374 break;
1375 }
1376
1377 /* lis 12,<some immediate> */
1378 pc = pc + 4;
1379 op = rs6000_fetch_instruction (gdbarch, pc);
1380 if ((op & 0xffff0000) != 0x3d800000)
1381 break;
1382
1383 /* lwz 12,<some immediate>(12) */
1384 pc = pc + 4;
1385 op = rs6000_fetch_instruction (gdbarch, pc);
1386 if ((op & 0xffff0000) != 0x818c0000)
1387 break;
1388
1389 /* twllt 0,12 */
1390 pc = pc + 4;
1391 op = rs6000_fetch_instruction (gdbarch, pc);
1392 if ((op & 0xfffffffe) != 0x7c406008)
1393 break;
1394
1395 /* We found a valid stack-check sequence, return the new PC. */
1396 return pc;
1397 }
1398
1399 /* No stack check code in our prologue, return the start_pc. */
1400 return start_pc;
1401 }
1402
1403 /* return pc value after skipping a function prologue and also return
1404 information about a function frame.
1405
1406 in struct rs6000_framedata fdata:
1407 - frameless is TRUE, if function does not have a frame.
1408 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1409 - offset is the initial size of this stack frame --- the amount by
1410 which we decrement the sp to allocate the frame.
1411 - saved_gpr is the number of the first saved gpr.
1412 - saved_fpr is the number of the first saved fpr.
1413 - saved_vr is the number of the first saved vr.
1414 - saved_ev is the number of the first saved ev.
1415 - alloca_reg is the number of the register used for alloca() handling.
1416 Otherwise -1.
1417 - gpr_offset is the offset of the first saved gpr from the previous frame.
1418 - fpr_offset is the offset of the first saved fpr from the previous frame.
1419 - vr_offset is the offset of the first saved vr from the previous frame.
1420 - ev_offset is the offset of the first saved ev from the previous frame.
1421 - lr_offset is the offset of the saved lr
1422 - cr_offset is the offset of the saved cr
1423 - vrsave_offset is the offset of the saved vrsave register. */
1424
1425 static CORE_ADDR
1426 skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1427 struct rs6000_framedata *fdata)
1428 {
1429 CORE_ADDR orig_pc = pc;
1430 CORE_ADDR last_prologue_pc = pc;
1431 CORE_ADDR li_found_pc = 0;
1432 gdb_byte buf[4];
1433 unsigned long op;
1434 long offset = 0;
1435 long alloca_reg_offset = 0;
1436 long vr_saved_offset = 0;
1437 int lr_reg = -1;
1438 int cr_reg = -1;
1439 int vr_reg = -1;
1440 int ev_reg = -1;
1441 long ev_offset = 0;
1442 int vrsave_reg = -1;
1443 int reg;
1444 int framep = 0;
1445 int minimal_toc_loaded = 0;
1446 int prev_insn_was_prologue_insn = 1;
1447 int num_skip_non_prologue_insns = 0;
1448 int r0_contains_arg = 0;
1449 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1450 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1451 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1452
1453 memset (fdata, 0, sizeof (struct rs6000_framedata));
1454 fdata->saved_gpr = -1;
1455 fdata->saved_fpr = -1;
1456 fdata->saved_vr = -1;
1457 fdata->saved_ev = -1;
1458 fdata->alloca_reg = -1;
1459 fdata->frameless = 1;
1460 fdata->nosavedpc = 1;
1461 fdata->lr_register = -1;
1462
1463 pc = rs6000_skip_stack_check (gdbarch, pc);
1464 if (pc >= lim_pc)
1465 pc = lim_pc;
1466
1467 for (;; pc += 4)
1468 {
1469 /* Sometimes it isn't clear if an instruction is a prologue
1470 instruction or not. When we encounter one of these ambiguous
1471 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1472 Otherwise, we'll assume that it really is a prologue instruction. */
1473 if (prev_insn_was_prologue_insn)
1474 last_prologue_pc = pc;
1475
1476 /* Stop scanning if we've hit the limit. */
1477 if (pc >= lim_pc)
1478 break;
1479
1480 prev_insn_was_prologue_insn = 1;
1481
1482 /* Fetch the instruction and convert it to an integer. */
1483 if (target_read_memory (pc, buf, 4))
1484 break;
1485 op = extract_unsigned_integer (buf, 4, byte_order);
1486
1487 if ((op & 0xfc1fffff) == 0x7c0802a6)
1488 { /* mflr Rx */
1489 /* Since shared library / PIC code, which needs to get its
1490 address at runtime, can appear to save more than one link
1491 register vis:
1492
1493 *INDENT-OFF*
1494 stwu r1,-304(r1)
1495 mflr r3
1496 bl 0xff570d0 (blrl)
1497 stw r30,296(r1)
1498 mflr r30
1499 stw r31,300(r1)
1500 stw r3,308(r1);
1501 ...
1502 *INDENT-ON*
1503
1504 remember just the first one, but skip over additional
1505 ones. */
1506 if (lr_reg == -1)
1507 lr_reg = (op & 0x03e00000) >> 21;
1508 if (lr_reg == 0)
1509 r0_contains_arg = 0;
1510 continue;
1511 }
1512 else if ((op & 0xfc1fffff) == 0x7c000026)
1513 { /* mfcr Rx */
1514 cr_reg = (op & 0x03e00000) >> 21;
1515 if (cr_reg == 0)
1516 r0_contains_arg = 0;
1517 continue;
1518
1519 }
1520 else if ((op & 0xfc1f0000) == 0xd8010000)
1521 { /* stfd Rx,NUM(r1) */
1522 reg = GET_SRC_REG (op);
1523 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1524 {
1525 fdata->saved_fpr = reg;
1526 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1527 }
1528 continue;
1529
1530 }
1531 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1532 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1533 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1534 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1535 {
1536
1537 reg = GET_SRC_REG (op);
1538 if ((op & 0xfc1f0000) == 0xbc010000)
1539 fdata->gpr_mask |= ~((1U << reg) - 1);
1540 else
1541 fdata->gpr_mask |= 1U << reg;
1542 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1543 {
1544 fdata->saved_gpr = reg;
1545 if ((op & 0xfc1f0003) == 0xf8010000)
1546 op &= ~3UL;
1547 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1548 }
1549 continue;
1550
1551 }
1552 else if ((op & 0xffff0000) == 0x3c4c0000
1553 || (op & 0xffff0000) == 0x3c400000
1554 || (op & 0xffff0000) == 0x38420000)
1555 {
1556 /* . 0: addis 2,12,.TOC.-0b@ha
1557 . addi 2,2,.TOC.-0b@l
1558 or
1559 . lis 2,.TOC.@ha
1560 . addi 2,2,.TOC.@l
1561 used by ELFv2 global entry points to set up r2. */
1562 continue;
1563 }
1564 else if (op == 0x60000000)
1565 {
1566 /* nop */
1567 /* Allow nops in the prologue, but do not consider them to
1568 be part of the prologue unless followed by other prologue
1569 instructions. */
1570 prev_insn_was_prologue_insn = 0;
1571 continue;
1572
1573 }
1574 else if ((op & 0xffff0000) == 0x3c000000)
1575 { /* addis 0,0,NUM, used for >= 32k frames */
1576 fdata->offset = (op & 0x0000ffff) << 16;
1577 fdata->frameless = 0;
1578 r0_contains_arg = 0;
1579 continue;
1580
1581 }
1582 else if ((op & 0xffff0000) == 0x60000000)
1583 { /* ori 0,0,NUM, 2nd half of >= 32k frames */
1584 fdata->offset |= (op & 0x0000ffff);
1585 fdata->frameless = 0;
1586 r0_contains_arg = 0;
1587 continue;
1588
1589 }
1590 else if (lr_reg >= 0 &&
1591 ((store_insn_p (op, lr_reg, 1, true)) ||
1592 (framep &&
1593 (store_insn_p (op, lr_reg,
1594 fdata->alloca_reg - tdep->ppc_gp0_regnum,
1595 false)))))
1596 {
1597 if (store_insn_p (op, lr_reg, 1, true))
1598 fdata->lr_offset = offset;
1599 else /* LR save through frame pointer. */
1600 fdata->lr_offset = alloca_reg_offset;
1601
1602 fdata->nosavedpc = 0;
1603 /* Invalidate lr_reg, but don't set it to -1.
1604 That would mean that it had never been set. */
1605 lr_reg = -2;
1606 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1607 (op & 0xfc000000) == 0x90000000) /* stw */
1608 {
1609 /* Does not update r1, so add displacement to lr_offset. */
1610 fdata->lr_offset += SIGNED_SHORT (op);
1611 }
1612 continue;
1613
1614 }
1615 else if (cr_reg >= 0 &&
1616 (store_insn_p (op, cr_reg, 1, true)))
1617 {
1618 fdata->cr_offset = offset;
1619 /* Invalidate cr_reg, but don't set it to -1.
1620 That would mean that it had never been set. */
1621 cr_reg = -2;
1622 if ((op & 0xfc000003) == 0xf8000000 ||
1623 (op & 0xfc000000) == 0x90000000)
1624 {
1625 /* Does not update r1, so add displacement to cr_offset. */
1626 fdata->cr_offset += SIGNED_SHORT (op);
1627 }
1628 continue;
1629
1630 }
1631 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1632 {
1633 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1634 prediction bits. If the LR has already been saved, we can
1635 skip it. */
1636 continue;
1637 }
1638 else if (op == 0x48000005)
1639 { /* bl .+4 used in
1640 -mrelocatable */
1641 fdata->used_bl = 1;
1642 continue;
1643
1644 }
1645 else if (op == 0x48000004)
1646 { /* b .+4 (xlc) */
1647 break;
1648
1649 }
1650 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1651 in V.4 -mminimal-toc */
1652 (op & 0xffff0000) == 0x3bde0000)
1653 { /* addi 30,30,foo@l */
1654 continue;
1655
1656 }
1657 else if ((op & 0xfc000001) == 0x48000001)
1658 { /* bl foo,
1659 to save fprs??? */
1660
1661 fdata->frameless = 0;
1662
1663 /* If the return address has already been saved, we can skip
1664 calls to blrl (for PIC). */
1665 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
1666 {
1667 fdata->used_bl = 1;
1668 continue;
1669 }
1670
1671 /* Don't skip over the subroutine call if it is not within
1672 the first three instructions of the prologue and either
1673 we have no line table information or the line info tells
1674 us that the subroutine call is not part of the line
1675 associated with the prologue. */
1676 if ((pc - orig_pc) > 8)
1677 {
1678 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1679 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1680
1681 if ((prologue_sal.line == 0)
1682 || (prologue_sal.line != this_sal.line))
1683 break;
1684 }
1685
1686 op = read_memory_integer (pc + 4, 4, byte_order);
1687
1688 /* At this point, make sure this is not a trampoline
1689 function (a function that simply calls another functions,
1690 and nothing else). If the next is not a nop, this branch
1691 was part of the function prologue. */
1692
1693 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1694 break; /* Don't skip over
1695 this branch. */
1696
1697 fdata->used_bl = 1;
1698 continue;
1699 }
1700 /* update stack pointer */
1701 else if ((op & 0xfc1f0000) == 0x94010000)
1702 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1703 fdata->frameless = 0;
1704 fdata->offset = SIGNED_SHORT (op);
1705 offset = fdata->offset;
1706 continue;
1707 }
1708 else if ((op & 0xfc1f07fa) == 0x7c01016a)
1709 { /* stwux rX,r1,rY || stdux rX,r1,rY */
1710 /* No way to figure out what r1 is going to be. */
1711 fdata->frameless = 0;
1712 offset = fdata->offset;
1713 continue;
1714 }
1715 else if ((op & 0xfc1f0003) == 0xf8010001)
1716 { /* stdu rX,NUM(r1) */
1717 fdata->frameless = 0;
1718 fdata->offset = SIGNED_SHORT (op & ~3UL);
1719 offset = fdata->offset;
1720 continue;
1721 }
1722 else if ((op & 0xffff0000) == 0x38210000)
1723 { /* addi r1,r1,SIMM */
1724 fdata->frameless = 0;
1725 fdata->offset += SIGNED_SHORT (op);
1726 offset = fdata->offset;
1727 continue;
1728 }
1729 /* Load up minimal toc pointer. Do not treat an epilogue restore
1730 of r31 as a minimal TOC load. */
1731 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1732 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1733 && !framep
1734 && !minimal_toc_loaded)
1735 {
1736 minimal_toc_loaded = 1;
1737 continue;
1738
1739 /* move parameters from argument registers to local variable
1740 registers */
1741 }
1742 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1743 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1744 (((op >> 21) & 31) <= 10) &&
1745 ((long) ((op >> 16) & 31)
1746 >= fdata->saved_gpr)) /* Rx: local var reg */
1747 {
1748 continue;
1749
1750 /* store parameters in stack */
1751 }
1752 /* Move parameters from argument registers to temporary register. */
1753 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1754 {
1755 continue;
1756
1757 /* Set up frame pointer */
1758 }
1759 else if (op == 0x603d0000) /* oril r29, r1, 0x0 */
1760 {
1761 fdata->frameless = 0;
1762 framep = 1;
1763 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29);
1764 alloca_reg_offset = offset;
1765 continue;
1766
1767 /* Another way to set up the frame pointer. */
1768 }
1769 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1770 || op == 0x7c3f0b78)
1771 { /* mr r31, r1 */
1772 fdata->frameless = 0;
1773 framep = 1;
1774 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1775 alloca_reg_offset = offset;
1776 continue;
1777
1778 /* Another way to set up the frame pointer. */
1779 }
1780 else if ((op & 0xfc1fffff) == 0x38010000)
1781 { /* addi rX, r1, 0x0 */
1782 fdata->frameless = 0;
1783 framep = 1;
1784 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1785 + ((op & ~0x38010000) >> 21));
1786 alloca_reg_offset = offset;
1787 continue;
1788 }
1789 /* AltiVec related instructions. */
1790 /* Store the vrsave register (spr 256) in another register for
1791 later manipulation, or load a register into the vrsave
1792 register. 2 instructions are used: mfvrsave and
1793 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1794 and mtspr SPR256, Rn. */
1795 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1796 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1797 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1798 {
1799 vrsave_reg = GET_SRC_REG (op);
1800 continue;
1801 }
1802 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1803 {
1804 continue;
1805 }
1806 /* Store the register where vrsave was saved to onto the stack:
1807 rS is the register where vrsave was stored in a previous
1808 instruction. */
1809 /* 100100 sssss 00001 dddddddd dddddddd */
1810 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1811 {
1812 if (vrsave_reg == GET_SRC_REG (op))
1813 {
1814 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1815 vrsave_reg = -1;
1816 }
1817 continue;
1818 }
1819 /* Compute the new value of vrsave, by modifying the register
1820 where vrsave was saved to. */
1821 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1822 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1823 {
1824 continue;
1825 }
1826 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1827 in a pair of insns to save the vector registers on the
1828 stack. */
1829 /* 001110 00000 00000 iiii iiii iiii iiii */
1830 /* 001110 01110 00000 iiii iiii iiii iiii */
1831 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1832 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1833 {
1834 if ((op & 0xffff0000) == 0x38000000)
1835 r0_contains_arg = 0;
1836 li_found_pc = pc;
1837 vr_saved_offset = SIGNED_SHORT (op);
1838
1839 /* This insn by itself is not part of the prologue, unless
1840 if part of the pair of insns mentioned above. So do not
1841 record this insn as part of the prologue yet. */
1842 prev_insn_was_prologue_insn = 0;
1843 }
1844 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1845 /* 011111 sssss 11111 00000 00111001110 */
1846 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1847 {
1848 if (pc == (li_found_pc + 4))
1849 {
1850 vr_reg = GET_SRC_REG (op);
1851 /* If this is the first vector reg to be saved, or if
1852 it has a lower number than others previously seen,
1853 reupdate the frame info. */
1854 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1855 {
1856 fdata->saved_vr = vr_reg;
1857 fdata->vr_offset = vr_saved_offset + offset;
1858 }
1859 vr_saved_offset = -1;
1860 vr_reg = -1;
1861 li_found_pc = 0;
1862 }
1863 }
1864 /* End AltiVec related instructions. */
1865
1866 /* Start BookE related instructions. */
1867 /* Store gen register S at (r31+uimm).
1868 Any register less than r13 is volatile, so we don't care. */
1869 /* 000100 sssss 11111 iiiii 01100100001 */
1870 else if (arch_info->mach == bfd_mach_ppc_e500
1871 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1872 {
1873 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1874 {
1875 unsigned int imm;
1876 ev_reg = GET_SRC_REG (op);
1877 imm = (op >> 11) & 0x1f;
1878 ev_offset = imm * 8;
1879 /* If this is the first vector reg to be saved, or if
1880 it has a lower number than others previously seen,
1881 reupdate the frame info. */
1882 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1883 {
1884 fdata->saved_ev = ev_reg;
1885 fdata->ev_offset = ev_offset + offset;
1886 }
1887 }
1888 continue;
1889 }
1890 /* Store gen register rS at (r1+rB). */
1891 /* 000100 sssss 00001 bbbbb 01100100000 */
1892 else if (arch_info->mach == bfd_mach_ppc_e500
1893 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1894 {
1895 if (pc == (li_found_pc + 4))
1896 {
1897 ev_reg = GET_SRC_REG (op);
1898 /* If this is the first vector reg to be saved, or if
1899 it has a lower number than others previously seen,
1900 reupdate the frame info. */
1901 /* We know the contents of rB from the previous instruction. */
1902 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1903 {
1904 fdata->saved_ev = ev_reg;
1905 fdata->ev_offset = vr_saved_offset + offset;
1906 }
1907 vr_saved_offset = -1;
1908 ev_reg = -1;
1909 li_found_pc = 0;
1910 }
1911 continue;
1912 }
1913 /* Store gen register r31 at (rA+uimm). */
1914 /* 000100 11111 aaaaa iiiii 01100100001 */
1915 else if (arch_info->mach == bfd_mach_ppc_e500
1916 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1917 {
1918 /* Wwe know that the source register is 31 already, but
1919 it can't hurt to compute it. */
1920 ev_reg = GET_SRC_REG (op);
1921 ev_offset = ((op >> 11) & 0x1f) * 8;
1922 /* If this is the first vector reg to be saved, or if
1923 it has a lower number than others previously seen,
1924 reupdate the frame info. */
1925 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1926 {
1927 fdata->saved_ev = ev_reg;
1928 fdata->ev_offset = ev_offset + offset;
1929 }
1930
1931 continue;
1932 }
1933 /* Store gen register S at (r31+r0).
1934 Store param on stack when offset from SP bigger than 4 bytes. */
1935 /* 000100 sssss 11111 00000 01100100000 */
1936 else if (arch_info->mach == bfd_mach_ppc_e500
1937 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1938 {
1939 if (pc == (li_found_pc + 4))
1940 {
1941 if ((op & 0x03e00000) >= 0x01a00000)
1942 {
1943 ev_reg = GET_SRC_REG (op);
1944 /* If this is the first vector reg to be saved, or if
1945 it has a lower number than others previously seen,
1946 reupdate the frame info. */
1947 /* We know the contents of r0 from the previous
1948 instruction. */
1949 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1950 {
1951 fdata->saved_ev = ev_reg;
1952 fdata->ev_offset = vr_saved_offset + offset;
1953 }
1954 ev_reg = -1;
1955 }
1956 vr_saved_offset = -1;
1957 li_found_pc = 0;
1958 continue;
1959 }
1960 }
1961 /* End BookE related instructions. */
1962
1963 else
1964 {
1965 unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
1966
1967 /* Not a recognized prologue instruction.
1968 Handle optimizer code motions into the prologue by continuing
1969 the search if we have no valid frame yet or if the return
1970 address is not yet saved in the frame. Also skip instructions
1971 if some of the GPRs expected to be saved are not yet saved. */
1972 if (fdata->frameless == 0 && fdata->nosavedpc == 0
1973 && (fdata->gpr_mask & all_mask) == all_mask)
1974 break;
1975
1976 if (op == 0x4e800020 /* blr */
1977 || op == 0x4e800420) /* bctr */
1978 /* Do not scan past epilogue in frameless functions or
1979 trampolines. */
1980 break;
1981 if ((op & 0xf4000000) == 0x40000000) /* bxx */
1982 /* Never skip branches. */
1983 break;
1984
1985 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1986 /* Do not scan too many insns, scanning insns is expensive with
1987 remote targets. */
1988 break;
1989
1990 /* Continue scanning. */
1991 prev_insn_was_prologue_insn = 0;
1992 continue;
1993 }
1994 }
1995
1996 #if 0
1997 /* I have problems with skipping over __main() that I need to address
1998 * sometime. Previously, I used to use misc_function_vector which
1999 * didn't work as well as I wanted to be. -MGO */
2000
2001 /* If the first thing after skipping a prolog is a branch to a function,
2002 this might be a call to an initializer in main(), introduced by gcc2.
2003 We'd like to skip over it as well. Fortunately, xlc does some extra
2004 work before calling a function right after a prologue, thus we can
2005 single out such gcc2 behaviour. */
2006
2007
2008 if ((op & 0xfc000001) == 0x48000001)
2009 { /* bl foo, an initializer function? */
2010 op = read_memory_integer (pc + 4, 4, byte_order);
2011
2012 if (op == 0x4def7b82)
2013 { /* cror 0xf, 0xf, 0xf (nop) */
2014
2015 /* Check and see if we are in main. If so, skip over this
2016 initializer function as well. */
2017
2018 tmp = find_pc_misc_function (pc);
2019 if (tmp >= 0
2020 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
2021 return pc + 8;
2022 }
2023 }
2024 #endif /* 0 */
2025
2026 if (pc == lim_pc && lr_reg >= 0)
2027 fdata->lr_register = lr_reg;
2028
2029 fdata->offset = -fdata->offset;
2030 return last_prologue_pc;
2031 }
2032
2033 static CORE_ADDR
2034 rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2035 {
2036 struct rs6000_framedata frame;
2037 CORE_ADDR limit_pc, func_addr, func_end_addr = 0;
2038
2039 /* See if we can determine the end of the prologue via the symbol table.
2040 If so, then return either PC, or the PC after the prologue, whichever
2041 is greater. */
2042 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
2043 {
2044 CORE_ADDR post_prologue_pc
2045 = skip_prologue_using_sal (gdbarch, func_addr);
2046 if (post_prologue_pc != 0)
2047 return std::max (pc, post_prologue_pc);
2048 }
2049
2050 /* Can't determine prologue from the symbol table, need to examine
2051 instructions. */
2052
2053 /* Find an upper limit on the function prologue using the debug
2054 information. If the debug information could not be used to provide
2055 that bound, then use an arbitrary large number as the upper bound. */
2056 limit_pc = skip_prologue_using_sal (gdbarch, pc);
2057 if (limit_pc == 0)
2058 limit_pc = pc + 100; /* Magic. */
2059
2060 /* Do not allow limit_pc to be past the function end, if we know
2061 where that end is... */
2062 if (func_end_addr && limit_pc > func_end_addr)
2063 limit_pc = func_end_addr;
2064
2065 pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
2066 return pc;
2067 }
2068
2069 /* When compiling for EABI, some versions of GCC emit a call to __eabi
2070 in the prologue of main().
2071
2072 The function below examines the code pointed at by PC and checks to
2073 see if it corresponds to a call to __eabi. If so, it returns the
2074 address of the instruction following that call. Otherwise, it simply
2075 returns PC. */
2076
2077 static CORE_ADDR
2078 rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2079 {
2080 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2081 gdb_byte buf[4];
2082 unsigned long op;
2083
2084 if (target_read_memory (pc, buf, 4))
2085 return pc;
2086 op = extract_unsigned_integer (buf, 4, byte_order);
2087
2088 if ((op & BL_MASK) == BL_INSTRUCTION)
2089 {
2090 CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
2091 CORE_ADDR call_dest = pc + 4 + displ;
2092 struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);
2093
2094 /* We check for ___eabi (three leading underscores) in addition
2095 to __eabi in case the GCC option "-fleading-underscore" was
2096 used to compile the program. */
2097 if (s.minsym != NULL
2098 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
2099 && (strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__eabi") == 0
2100 || strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "___eabi") == 0))
2101 pc += 4;
2102 }
2103 return pc;
2104 }
2105
2106 /* All the ABI's require 16 byte alignment. */
2107 static CORE_ADDR
2108 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2109 {
2110 return (addr & -16);
2111 }
2112
2113 /* Return whether handle_inferior_event() should proceed through code
2114 starting at PC in function NAME when stepping.
2115
2116 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2117 handle memory references that are too distant to fit in instructions
2118 generated by the compiler. For example, if 'foo' in the following
2119 instruction:
2120
2121 lwz r9,foo(r2)
2122
2123 is greater than 32767, the linker might replace the lwz with a branch to
2124 somewhere in @FIX1 that does the load in 2 instructions and then branches
2125 back to where execution should continue.
2126
2127 GDB should silently step over @FIX code, just like AIX dbx does.
2128 Unfortunately, the linker uses the "b" instruction for the
2129 branches, meaning that the link register doesn't get set.
2130 Therefore, GDB's usual step_over_function () mechanism won't work.
2131
2132 Instead, use the gdbarch_skip_trampoline_code and
2133 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2134 @FIX code. */
2135
2136 static int
2137 rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
2138 CORE_ADDR pc, const char *name)
2139 {
2140 return name && startswith (name, "@FIX");
2141 }
2142
2143 /* Skip code that the user doesn't want to see when stepping:
2144
2145 1. Indirect function calls use a piece of trampoline code to do context
2146 switching, i.e. to set the new TOC table. Skip such code if we are on
2147 its first instruction (as when we have single-stepped to here).
2148
2149 2. Skip shared library trampoline code (which is different from
2150 indirect function call trampolines).
2151
2152 3. Skip bigtoc fixup code.
2153
2154 Result is desired PC to step until, or NULL if we are not in
2155 code that should be skipped. */
2156
2157 static CORE_ADDR
2158 rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2159 {
2160 struct gdbarch *gdbarch = get_frame_arch (frame);
2161 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2162 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2163 unsigned int ii, op;
2164 int rel;
2165 CORE_ADDR solib_target_pc;
2166 struct bound_minimal_symbol msymbol;
2167
2168 static unsigned trampoline_code[] =
2169 {
2170 0x800b0000, /* l r0,0x0(r11) */
2171 0x90410014, /* st r2,0x14(r1) */
2172 0x7c0903a6, /* mtctr r0 */
2173 0x804b0004, /* l r2,0x4(r11) */
2174 0x816b0008, /* l r11,0x8(r11) */
2175 0x4e800420, /* bctr */
2176 0x4e800020, /* br */
2177 0
2178 };
2179
2180 /* Check for bigtoc fixup code. */
2181 msymbol = lookup_minimal_symbol_by_pc (pc);
2182 if (msymbol.minsym
2183 && rs6000_in_solib_return_trampoline (gdbarch, pc,
2184 MSYMBOL_LINKAGE_NAME (msymbol.minsym)))
2185 {
2186 /* Double-check that the third instruction from PC is relative "b". */
2187 op = read_memory_integer (pc + 8, 4, byte_order);
2188 if ((op & 0xfc000003) == 0x48000000)
2189 {
2190 /* Extract bits 6-29 as a signed 24-bit relative word address and
2191 add it to the containing PC. */
2192 rel = ((int)(op << 6) >> 6);
2193 return pc + 8 + rel;
2194 }
2195 }
2196
2197 /* If pc is in a shared library trampoline, return its target. */
2198 solib_target_pc = find_solib_trampoline_target (frame, pc);
2199 if (solib_target_pc)
2200 return solib_target_pc;
2201
2202 for (ii = 0; trampoline_code[ii]; ++ii)
2203 {
2204 op = read_memory_integer (pc + (ii * 4), 4, byte_order);
2205 if (op != trampoline_code[ii])
2206 return 0;
2207 }
2208 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination
2209 addr. */
2210 pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
2211 return pc;
2212 }
2213
2214 /* ISA-specific vector types. */
2215
2216 static struct type *
2217 rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2218 {
2219 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2220
2221 if (!tdep->ppc_builtin_type_vec64)
2222 {
2223 const struct builtin_type *bt = builtin_type (gdbarch);
2224
2225 /* The type we're building is this: */
2226 #if 0
2227 union __gdb_builtin_type_vec64
2228 {
2229 int64_t uint64;
2230 float v2_float[2];
2231 int32_t v2_int32[2];
2232 int16_t v4_int16[4];
2233 int8_t v8_int8[8];
2234 };
2235 #endif
2236
2237 struct type *t;
2238
2239 t = arch_composite_type (gdbarch,
2240 "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
2241 append_composite_type_field (t, "uint64", bt->builtin_int64);
2242 append_composite_type_field (t, "v2_float",
2243 init_vector_type (bt->builtin_float, 2));
2244 append_composite_type_field (t, "v2_int32",
2245 init_vector_type (bt->builtin_int32, 2));
2246 append_composite_type_field (t, "v4_int16",
2247 init_vector_type (bt->builtin_int16, 4));
2248 append_composite_type_field (t, "v8_int8",
2249 init_vector_type (bt->builtin_int8, 8));
2250
2251 TYPE_VECTOR (t) = 1;
2252 TYPE_NAME (t) = "ppc_builtin_type_vec64";
2253 tdep->ppc_builtin_type_vec64 = t;
2254 }
2255
2256 return tdep->ppc_builtin_type_vec64;
2257 }
2258
2259 /* Vector 128 type. */
2260
2261 static struct type *
2262 rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2263 {
2264 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2265
2266 if (!tdep->ppc_builtin_type_vec128)
2267 {
2268 const struct builtin_type *bt = builtin_type (gdbarch);
2269
2270 /* The type we're building is this
2271
2272 type = union __ppc_builtin_type_vec128 {
2273 uint128_t uint128;
2274 double v2_double[2];
2275 float v4_float[4];
2276 int32_t v4_int32[4];
2277 int16_t v8_int16[8];
2278 int8_t v16_int8[16];
2279 }
2280 */
2281
2282 struct type *t;
2283
2284 t = arch_composite_type (gdbarch,
2285 "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
2286 append_composite_type_field (t, "uint128", bt->builtin_uint128);
2287 append_composite_type_field (t, "v2_double",
2288 init_vector_type (bt->builtin_double, 2));
2289 append_composite_type_field (t, "v4_float",
2290 init_vector_type (bt->builtin_float, 4));
2291 append_composite_type_field (t, "v4_int32",
2292 init_vector_type (bt->builtin_int32, 4));
2293 append_composite_type_field (t, "v8_int16",
2294 init_vector_type (bt->builtin_int16, 8));
2295 append_composite_type_field (t, "v16_int8",
2296 init_vector_type (bt->builtin_int8, 16));
2297
2298 TYPE_VECTOR (t) = 1;
2299 TYPE_NAME (t) = "ppc_builtin_type_vec128";
2300 tdep->ppc_builtin_type_vec128 = t;
2301 }
2302
2303 return tdep->ppc_builtin_type_vec128;
2304 }
2305
2306 /* Return the name of register number REGNO, or the empty string if it
2307 is an anonymous register. */
2308
2309 static const char *
2310 rs6000_register_name (struct gdbarch *gdbarch, int regno)
2311 {
2312 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2313
2314 /* The upper half "registers" have names in the XML description,
2315 but we present only the low GPRs and the full 64-bit registers
2316 to the user. */
2317 if (tdep->ppc_ev0_upper_regnum >= 0
2318 && tdep->ppc_ev0_upper_regnum <= regno
2319 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2320 return "";
2321
2322 /* Hide the upper halves of the vs0~vs31 registers. */
2323 if (tdep->ppc_vsr0_regnum >= 0
2324 && tdep->ppc_vsr0_upper_regnum <= regno
2325 && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2326 return "";
2327
2328 /* Check if the SPE pseudo registers are available. */
2329 if (IS_SPE_PSEUDOREG (tdep, regno))
2330 {
2331 static const char *const spe_regnames[] = {
2332 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2333 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2334 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2335 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2336 };
2337 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2338 }
2339
2340 /* Check if the decimal128 pseudo-registers are available. */
2341 if (IS_DFP_PSEUDOREG (tdep, regno))
2342 {
2343 static const char *const dfp128_regnames[] = {
2344 "dl0", "dl1", "dl2", "dl3",
2345 "dl4", "dl5", "dl6", "dl7",
2346 "dl8", "dl9", "dl10", "dl11",
2347 "dl12", "dl13", "dl14", "dl15"
2348 };
2349 return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2350 }
2351
2352 /* Check if this is a VSX pseudo-register. */
2353 if (IS_VSX_PSEUDOREG (tdep, regno))
2354 {
2355 static const char *const vsx_regnames[] = {
2356 "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2357 "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2358 "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2359 "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2360 "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2361 "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2362 "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2363 "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2364 "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2365 };
2366 return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2367 }
2368
2369 /* Check if the this is a Extended FP pseudo-register. */
2370 if (IS_EFP_PSEUDOREG (tdep, regno))
2371 {
2372 static const char *const efpr_regnames[] = {
2373 "f32", "f33", "f34", "f35", "f36", "f37", "f38",
2374 "f39", "f40", "f41", "f42", "f43", "f44", "f45",
2375 "f46", "f47", "f48", "f49", "f50", "f51",
2376 "f52", "f53", "f54", "f55", "f56", "f57",
2377 "f58", "f59", "f60", "f61", "f62", "f63"
2378 };
2379 return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2380 }
2381
2382 return tdesc_register_name (gdbarch, regno);
2383 }
2384
2385 /* Return the GDB type object for the "standard" data type of data in
2386 register N. */
2387
2388 static struct type *
2389 rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2390 {
2391 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2392
2393 /* These are the only pseudo-registers we support. */
2394 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2395 || IS_DFP_PSEUDOREG (tdep, regnum)
2396 || IS_VSX_PSEUDOREG (tdep, regnum)
2397 || IS_EFP_PSEUDOREG (tdep, regnum));
2398
2399 /* These are the e500 pseudo-registers. */
2400 if (IS_SPE_PSEUDOREG (tdep, regnum))
2401 return rs6000_builtin_type_vec64 (gdbarch);
2402 else if (IS_DFP_PSEUDOREG (tdep, regnum))
2403 /* PPC decimal128 pseudo-registers. */
2404 return builtin_type (gdbarch)->builtin_declong;
2405 else if (IS_VSX_PSEUDOREG (tdep, regnum))
2406 /* POWER7 VSX pseudo-registers. */
2407 return rs6000_builtin_type_vec128 (gdbarch);
2408 else
2409 /* POWER7 Extended FP pseudo-registers. */
2410 return builtin_type (gdbarch)->builtin_double;
2411 }
2412
2413 /* Is REGNUM a member of REGGROUP? */
2414 static int
2415 rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2416 struct reggroup *group)
2417 {
2418 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2419
2420 /* These are the only pseudo-registers we support. */
2421 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2422 || IS_DFP_PSEUDOREG (tdep, regnum)
2423 || IS_VSX_PSEUDOREG (tdep, regnum)
2424 || IS_EFP_PSEUDOREG (tdep, regnum));
2425
2426 /* These are the e500 pseudo-registers or the POWER7 VSX registers. */
2427 if (IS_SPE_PSEUDOREG (tdep, regnum) || IS_VSX_PSEUDOREG (tdep, regnum))
2428 return group == all_reggroup || group == vector_reggroup;
2429 else
2430 /* PPC decimal128 or Extended FP pseudo-registers. */
2431 return group == all_reggroup || group == float_reggroup;
2432 }
2433
2434 /* The register format for RS/6000 floating point registers is always
2435 double, we need a conversion if the memory format is float. */
2436
2437 static int
2438 rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2439 struct type *type)
2440 {
2441 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2442
2443 return (tdep->ppc_fp0_regnum >= 0
2444 && regnum >= tdep->ppc_fp0_regnum
2445 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2446 && TYPE_CODE (type) == TYPE_CODE_FLT
2447 && TYPE_LENGTH (type)
2448 != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
2449 }
2450
2451 static int
2452 rs6000_register_to_value (struct frame_info *frame,
2453 int regnum,
2454 struct type *type,
2455 gdb_byte *to,
2456 int *optimizedp, int *unavailablep)
2457 {
2458 struct gdbarch *gdbarch = get_frame_arch (frame);
2459 gdb_byte from[PPC_MAX_REGISTER_SIZE];
2460
2461 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2462
2463 if (!get_frame_register_bytes (frame, regnum, 0,
2464 register_size (gdbarch, regnum),
2465 from, optimizedp, unavailablep))
2466 return 0;
2467
2468 target_float_convert (from, builtin_type (gdbarch)->builtin_double,
2469 to, type);
2470 *optimizedp = *unavailablep = 0;
2471 return 1;
2472 }
2473
2474 static void
2475 rs6000_value_to_register (struct frame_info *frame,
2476 int regnum,
2477 struct type *type,
2478 const gdb_byte *from)
2479 {
2480 struct gdbarch *gdbarch = get_frame_arch (frame);
2481 gdb_byte to[PPC_MAX_REGISTER_SIZE];
2482
2483 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2484
2485 target_float_convert (from, type,
2486 to, builtin_type (gdbarch)->builtin_double);
2487 put_frame_register (frame, regnum, to);
2488 }
2489
2490 /* The type of a function that moves the value of REG between CACHE
2491 or BUF --- in either direction. */
2492 typedef enum register_status (*move_ev_register_func) (struct regcache *,
2493 int, void *);
2494
2495 /* Move SPE vector register values between a 64-bit buffer and the two
2496 32-bit raw register halves in a regcache. This function handles
2497 both splitting a 64-bit value into two 32-bit halves, and joining
2498 two halves into a whole 64-bit value, depending on the function
2499 passed as the MOVE argument.
2500
2501 EV_REG must be the number of an SPE evN vector register --- a
2502 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2503 64-bit buffer.
2504
2505 Call MOVE once for each 32-bit half of that register, passing
2506 REGCACHE, the number of the raw register corresponding to that
2507 half, and the address of the appropriate half of BUFFER.
2508
2509 For example, passing 'regcache_raw_read' as the MOVE function will
2510 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2511 'regcache_raw_supply' will supply the contents of BUFFER to the
2512 appropriate pair of raw registers in REGCACHE.
2513
2514 You may need to cast away some 'const' qualifiers when passing
2515 MOVE, since this function can't tell at compile-time which of
2516 REGCACHE or BUFFER is acting as the source of the data. If C had
2517 co-variant type qualifiers, ... */
2518
2519 static enum register_status
2520 e500_move_ev_register (move_ev_register_func move,
2521 struct regcache *regcache, int ev_reg, void *buffer)
2522 {
2523 struct gdbarch *arch = regcache->arch ();
2524 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2525 int reg_index;
2526 gdb_byte *byte_buffer = (gdb_byte *) buffer;
2527 enum register_status status;
2528
2529 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2530
2531 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2532
2533 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2534 {
2535 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2536 byte_buffer);
2537 if (status == REG_VALID)
2538 status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
2539 byte_buffer + 4);
2540 }
2541 else
2542 {
2543 status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2544 if (status == REG_VALID)
2545 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2546 byte_buffer + 4);
2547 }
2548
2549 return status;
2550 }
2551
2552 static enum register_status
2553 do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
2554 {
2555 regcache->raw_write (regnum, (const gdb_byte *) buffer);
2556
2557 return REG_VALID;
2558 }
2559
2560 static enum register_status
2561 e500_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2562 int ev_reg, gdb_byte *buffer)
2563 {
2564 struct gdbarch *arch = regcache->arch ();
2565 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2566 int reg_index;
2567 enum register_status status;
2568
2569 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2570
2571 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2572
2573 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2574 {
2575 status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
2576 buffer);
2577 if (status == REG_VALID)
2578 status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index,
2579 buffer + 4);
2580 }
2581 else
2582 {
2583 status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index, buffer);
2584 if (status == REG_VALID)
2585 status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
2586 buffer + 4);
2587 }
2588
2589 return status;
2590
2591 }
2592
2593 static void
2594 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2595 int reg_nr, const gdb_byte *buffer)
2596 {
2597 e500_move_ev_register (do_regcache_raw_write, regcache,
2598 reg_nr, (void *) buffer);
2599 }
2600
2601 /* Read method for DFP pseudo-registers. */
2602 static enum register_status
2603 dfp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2604 int reg_nr, gdb_byte *buffer)
2605 {
2606 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2607 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2608 enum register_status status;
2609
2610 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2611 {
2612 /* Read two FP registers to form a whole dl register. */
2613 status = regcache->raw_read (tdep->ppc_fp0_regnum +
2614 2 * reg_index, buffer);
2615 if (status == REG_VALID)
2616 status = regcache->raw_read (tdep->ppc_fp0_regnum +
2617 2 * reg_index + 1, buffer + 8);
2618 }
2619 else
2620 {
2621 status = regcache->raw_read (tdep->ppc_fp0_regnum +
2622 2 * reg_index + 1, buffer);
2623 if (status == REG_VALID)
2624 status = regcache->raw_read (tdep->ppc_fp0_regnum +
2625 2 * reg_index, buffer + 8);
2626 }
2627
2628 return status;
2629 }
2630
2631 /* Write method for DFP pseudo-registers. */
2632 static void
2633 dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2634 int reg_nr, const gdb_byte *buffer)
2635 {
2636 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2637 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2638
2639 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2640 {
2641 /* Write each half of the dl register into a separate
2642 FP register. */
2643 regcache->raw_write (tdep->ppc_fp0_regnum +
2644 2 * reg_index, buffer);
2645 regcache->raw_write (tdep->ppc_fp0_regnum +
2646 2 * reg_index + 1, buffer + 8);
2647 }
2648 else
2649 {
2650 regcache->raw_write (tdep->ppc_fp0_regnum +
2651 2 * reg_index + 1, buffer);
2652 regcache->raw_write (tdep->ppc_fp0_regnum +
2653 2 * reg_index, buffer + 8);
2654 }
2655 }
2656
2657 /* Read method for POWER7 VSX pseudo-registers. */
2658 static enum register_status
2659 vsx_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2660 int reg_nr, gdb_byte *buffer)
2661 {
2662 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2663 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2664 enum register_status status;
2665
2666 /* Read the portion that overlaps the VMX registers. */
2667 if (reg_index > 31)
2668 status = regcache->raw_read (tdep->ppc_vr0_regnum +
2669 reg_index - 32, buffer);
2670 else
2671 /* Read the portion that overlaps the FPR registers. */
2672 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2673 {
2674 status = regcache->raw_read (tdep->ppc_fp0_regnum +
2675 reg_index, buffer);
2676 if (status == REG_VALID)
2677 status = regcache->raw_read (tdep->ppc_vsr0_upper_regnum +
2678 reg_index, buffer + 8);
2679 }
2680 else
2681 {
2682 status = regcache->raw_read (tdep->ppc_fp0_regnum +
2683 reg_index, buffer + 8);
2684 if (status == REG_VALID)
2685 status = regcache->raw_read (tdep->ppc_vsr0_upper_regnum +
2686 reg_index, buffer);
2687 }
2688
2689 return status;
2690 }
2691
2692 /* Write method for POWER7 VSX pseudo-registers. */
2693 static void
2694 vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2695 int reg_nr, const gdb_byte *buffer)
2696 {
2697 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2698 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2699
2700 /* Write the portion that overlaps the VMX registers. */
2701 if (reg_index > 31)
2702 regcache->raw_write (tdep->ppc_vr0_regnum +
2703 reg_index - 32, buffer);
2704 else
2705 /* Write the portion that overlaps the FPR registers. */
2706 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2707 {
2708 regcache->raw_write (tdep->ppc_fp0_regnum +
2709 reg_index, buffer);
2710 regcache->raw_write (tdep->ppc_vsr0_upper_regnum +
2711 reg_index, buffer + 8);
2712 }
2713 else
2714 {
2715 regcache->raw_write (tdep->ppc_fp0_regnum +
2716 reg_index, buffer + 8);
2717 regcache->raw_write (tdep->ppc_vsr0_upper_regnum +
2718 reg_index, buffer);
2719 }
2720 }
2721
2722 /* Read method for POWER7 Extended FP pseudo-registers. */
2723 static enum register_status
2724 efpr_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2725 int reg_nr, gdb_byte *buffer)
2726 {
2727 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2728 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2729 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
2730
2731 /* Read the portion that overlaps the VMX register. */
2732 return regcache->raw_read_part (tdep->ppc_vr0_regnum + reg_index,
2733 offset, register_size (gdbarch, reg_nr),
2734 buffer);
2735 }
2736
2737 /* Write method for POWER7 Extended FP pseudo-registers. */
2738 static void
2739 efpr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2740 int reg_nr, const gdb_byte *buffer)
2741 {
2742 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2743 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2744 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
2745
2746 /* Write the portion that overlaps the VMX register. */
2747 regcache->raw_write_part (tdep->ppc_vr0_regnum + reg_index, offset,
2748 register_size (gdbarch, reg_nr), buffer);
2749 }
2750
2751 static enum register_status
2752 rs6000_pseudo_register_read (struct gdbarch *gdbarch,
2753 readable_regcache *regcache,
2754 int reg_nr, gdb_byte *buffer)
2755 {
2756 struct gdbarch *regcache_arch = regcache->arch ();
2757 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2758
2759 gdb_assert (regcache_arch == gdbarch);
2760
2761 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2762 return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2763 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2764 return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2765 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2766 return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2767 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2768 return efpr_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2769 else
2770 internal_error (__FILE__, __LINE__,
2771 _("rs6000_pseudo_register_read: "
2772 "called on unexpected register '%s' (%d)"),
2773 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2774 }
2775
2776 static void
2777 rs6000_pseudo_register_write (struct gdbarch *gdbarch,
2778 struct regcache *regcache,
2779 int reg_nr, const gdb_byte *buffer)
2780 {
2781 struct gdbarch *regcache_arch = regcache->arch ();
2782 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2783
2784 gdb_assert (regcache_arch == gdbarch);
2785
2786 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2787 e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2788 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2789 dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2790 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2791 vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2792 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2793 efpr_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2794 else
2795 internal_error (__FILE__, __LINE__,
2796 _("rs6000_pseudo_register_write: "
2797 "called on unexpected register '%s' (%d)"),
2798 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2799 }
2800
2801 static int
2802 rs6000_ax_pseudo_register_collect (struct gdbarch *gdbarch,
2803 struct agent_expr *ax, int reg_nr)
2804 {
2805 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2806 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2807 {
2808 int reg_index = reg_nr - tdep->ppc_ev0_regnum;
2809 ax_reg_mask (ax, tdep->ppc_gp0_regnum + reg_index);
2810 ax_reg_mask (ax, tdep->ppc_ev0_upper_regnum + reg_index);
2811 }
2812 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2813 {
2814 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2815 ax_reg_mask (ax, tdep->ppc_fp0_regnum + 2 * reg_index);
2816 ax_reg_mask (ax, tdep->ppc_fp0_regnum + 2 * reg_index + 1);
2817 }
2818 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2819 {
2820 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2821 if (reg_index > 31)
2822 {
2823 ax_reg_mask (ax, tdep->ppc_vr0_regnum + reg_index - 32);
2824 }
2825 else
2826 {
2827 ax_reg_mask (ax, tdep->ppc_fp0_regnum + reg_index);
2828 ax_reg_mask (ax, tdep->ppc_vsr0_upper_regnum + reg_index);
2829 }
2830 }
2831 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2832 {
2833 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2834 ax_reg_mask (ax, tdep->ppc_vr0_regnum + reg_index);
2835 }
2836 else
2837 internal_error (__FILE__, __LINE__,
2838 _("rs6000_pseudo_register_collect: "
2839 "called on unexpected register '%s' (%d)"),
2840 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2841 return 0;
2842 }
2843
2844
2845 static void
2846 rs6000_gen_return_address (struct gdbarch *gdbarch,
2847 struct agent_expr *ax, struct axs_value *value,
2848 CORE_ADDR scope)
2849 {
2850 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2851 value->type = register_type (gdbarch, tdep->ppc_lr_regnum);
2852 value->kind = axs_lvalue_register;
2853 value->u.reg = tdep->ppc_lr_regnum;
2854 }
2855
2856
2857 /* Convert a DBX STABS register number to a GDB register number. */
2858 static int
2859 rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
2860 {
2861 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2862
2863 if (0 <= num && num <= 31)
2864 return tdep->ppc_gp0_regnum + num;
2865 else if (32 <= num && num <= 63)
2866 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2867 specifies registers the architecture doesn't have? Our
2868 callers don't check the value we return. */
2869 return tdep->ppc_fp0_regnum + (num - 32);
2870 else if (77 <= num && num <= 108)
2871 return tdep->ppc_vr0_regnum + (num - 77);
2872 else if (1200 <= num && num < 1200 + 32)
2873 return tdep->ppc_ev0_upper_regnum + (num - 1200);
2874 else
2875 switch (num)
2876 {
2877 case 64:
2878 return tdep->ppc_mq_regnum;
2879 case 65:
2880 return tdep->ppc_lr_regnum;
2881 case 66:
2882 return tdep->ppc_ctr_regnum;
2883 case 76:
2884 return tdep->ppc_xer_regnum;
2885 case 109:
2886 return tdep->ppc_vrsave_regnum;
2887 case 110:
2888 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2889 case 111:
2890 return tdep->ppc_acc_regnum;
2891 case 112:
2892 return tdep->ppc_spefscr_regnum;
2893 default:
2894 return num;
2895 }
2896 }
2897
2898
2899 /* Convert a Dwarf 2 register number to a GDB register number. */
2900 static int
2901 rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
2902 {
2903 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2904
2905 if (0 <= num && num <= 31)
2906 return tdep->ppc_gp0_regnum + num;
2907 else if (32 <= num && num <= 63)
2908 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2909 specifies registers the architecture doesn't have? Our
2910 callers don't check the value we return. */
2911 return tdep->ppc_fp0_regnum + (num - 32);
2912 else if (1124 <= num && num < 1124 + 32)
2913 return tdep->ppc_vr0_regnum + (num - 1124);
2914 else if (1200 <= num && num < 1200 + 32)
2915 return tdep->ppc_ev0_upper_regnum + (num - 1200);
2916 else
2917 switch (num)
2918 {
2919 case 64:
2920 return tdep->ppc_cr_regnum;
2921 case 67:
2922 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2923 case 99:
2924 return tdep->ppc_acc_regnum;
2925 case 100:
2926 return tdep->ppc_mq_regnum;
2927 case 101:
2928 return tdep->ppc_xer_regnum;
2929 case 108:
2930 return tdep->ppc_lr_regnum;
2931 case 109:
2932 return tdep->ppc_ctr_regnum;
2933 case 356:
2934 return tdep->ppc_vrsave_regnum;
2935 case 612:
2936 return tdep->ppc_spefscr_regnum;
2937 default:
2938 return num;
2939 }
2940 }
2941
2942 /* Translate a .eh_frame register to DWARF register, or adjust a
2943 .debug_frame register. */
2944
2945 static int
2946 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
2947 {
2948 /* GCC releases before 3.4 use GCC internal register numbering in
2949 .debug_frame (and .debug_info, et cetera). The numbering is
2950 different from the standard SysV numbering for everything except
2951 for GPRs and FPRs. We can not detect this problem in most cases
2952 - to get accurate debug info for variables living in lr, ctr, v0,
2953 et cetera, use a newer version of GCC. But we must detect
2954 one important case - lr is in column 65 in .debug_frame output,
2955 instead of 108.
2956
2957 GCC 3.4, and the "hammer" branch, have a related problem. They
2958 record lr register saves in .debug_frame as 108, but still record
2959 the return column as 65. We fix that up too.
2960
2961 We can do this because 65 is assigned to fpsr, and GCC never
2962 generates debug info referring to it. To add support for
2963 handwritten debug info that restores fpsr, we would need to add a
2964 producer version check to this. */
2965 if (!eh_frame_p)
2966 {
2967 if (num == 65)
2968 return 108;
2969 else
2970 return num;
2971 }
2972
2973 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
2974 internal register numbering; translate that to the standard DWARF2
2975 register numbering. */
2976 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
2977 return num;
2978 else if (68 <= num && num <= 75) /* cr0-cr8 */
2979 return num - 68 + 86;
2980 else if (77 <= num && num <= 108) /* vr0-vr31 */
2981 return num - 77 + 1124;
2982 else
2983 switch (num)
2984 {
2985 case 64: /* mq */
2986 return 100;
2987 case 65: /* lr */
2988 return 108;
2989 case 66: /* ctr */
2990 return 109;
2991 case 76: /* xer */
2992 return 101;
2993 case 109: /* vrsave */
2994 return 356;
2995 case 110: /* vscr */
2996 return 67;
2997 case 111: /* spe_acc */
2998 return 99;
2999 case 112: /* spefscr */
3000 return 612;
3001 default:
3002 return num;
3003 }
3004 }
3005 \f
3006
3007 /* Handling the various POWER/PowerPC variants. */
3008
3009 /* Information about a particular processor variant. */
3010
3011 struct variant
3012 {
3013 /* Name of this variant. */
3014 const char *name;
3015
3016 /* English description of the variant. */
3017 const char *description;
3018
3019 /* bfd_arch_info.arch corresponding to variant. */
3020 enum bfd_architecture arch;
3021
3022 /* bfd_arch_info.mach corresponding to variant. */
3023 unsigned long mach;
3024
3025 /* Target description for this variant. */
3026 struct target_desc **tdesc;
3027 };
3028
3029 static struct variant variants[] =
3030 {
3031 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
3032 bfd_mach_ppc, &tdesc_powerpc_altivec32},
3033 {"power", "POWER user-level", bfd_arch_rs6000,
3034 bfd_mach_rs6k, &tdesc_rs6000},
3035 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
3036 bfd_mach_ppc_403, &tdesc_powerpc_403},
3037 {"405", "IBM PowerPC 405", bfd_arch_powerpc,
3038 bfd_mach_ppc_405, &tdesc_powerpc_405},
3039 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
3040 bfd_mach_ppc_601, &tdesc_powerpc_601},
3041 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
3042 bfd_mach_ppc_602, &tdesc_powerpc_602},
3043 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
3044 bfd_mach_ppc_603, &tdesc_powerpc_603},
3045 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
3046 604, &tdesc_powerpc_604},
3047 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
3048 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
3049 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
3050 bfd_mach_ppc_505, &tdesc_powerpc_505},
3051 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
3052 bfd_mach_ppc_860, &tdesc_powerpc_860},
3053 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
3054 bfd_mach_ppc_750, &tdesc_powerpc_750},
3055 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
3056 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
3057 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
3058 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
3059
3060 /* 64-bit */
3061 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
3062 bfd_mach_ppc64, &tdesc_powerpc_altivec64},
3063 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
3064 bfd_mach_ppc_620, &tdesc_powerpc_64},
3065 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
3066 bfd_mach_ppc_630, &tdesc_powerpc_64},
3067 {"a35", "PowerPC A35", bfd_arch_powerpc,
3068 bfd_mach_ppc_a35, &tdesc_powerpc_64},
3069 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
3070 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
3071 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
3072 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
3073
3074 /* FIXME: I haven't checked the register sets of the following. */
3075 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
3076 bfd_mach_rs6k_rs1, &tdesc_rs6000},
3077 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
3078 bfd_mach_rs6k_rsc, &tdesc_rs6000},
3079 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
3080 bfd_mach_rs6k_rs2, &tdesc_rs6000},
3081
3082 {0, 0, (enum bfd_architecture) 0, 0, 0}
3083 };
3084
3085 /* Return the variant corresponding to architecture ARCH and machine number
3086 MACH. If no such variant exists, return null. */
3087
3088 static const struct variant *
3089 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
3090 {
3091 const struct variant *v;
3092
3093 for (v = variants; v->name; v++)
3094 if (arch == v->arch && mach == v->mach)
3095 return v;
3096
3097 return NULL;
3098 }
3099
3100 \f
3101 static CORE_ADDR
3102 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
3103 {
3104 return frame_unwind_register_unsigned (next_frame,
3105 gdbarch_pc_regnum (gdbarch));
3106 }
3107
3108 static struct frame_id
3109 rs6000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
3110 {
3111 return frame_id_build (get_frame_register_unsigned
3112 (this_frame, gdbarch_sp_regnum (gdbarch)),
3113 get_frame_pc (this_frame));
3114 }
3115
3116 struct rs6000_frame_cache
3117 {
3118 CORE_ADDR base;
3119 CORE_ADDR initial_sp;
3120 struct trad_frame_saved_reg *saved_regs;
3121
3122 /* Set BASE_P to true if this frame cache is properly initialized.
3123 Otherwise set to false because some registers or memory cannot
3124 collected. */
3125 int base_p;
3126 /* Cache PC for building unavailable frame. */
3127 CORE_ADDR pc;
3128 };
3129
3130 static struct rs6000_frame_cache *
3131 rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
3132 {
3133 struct rs6000_frame_cache *cache;
3134 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3135 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3136 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3137 struct rs6000_framedata fdata;
3138 int wordsize = tdep->wordsize;
3139 CORE_ADDR func = 0, pc = 0;
3140
3141 if ((*this_cache) != NULL)
3142 return (struct rs6000_frame_cache *) (*this_cache);
3143 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3144 (*this_cache) = cache;
3145 cache->pc = 0;
3146 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3147
3148 TRY
3149 {
3150 func = get_frame_func (this_frame);
3151 cache->pc = func;
3152 pc = get_frame_pc (this_frame);
3153 skip_prologue (gdbarch, func, pc, &fdata);
3154
3155 /* Figure out the parent's stack pointer. */
3156
3157 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3158 address of the current frame. Things might be easier if the
3159 ->frame pointed to the outer-most address of the frame. In
3160 the mean time, the address of the prev frame is used as the
3161 base address of this frame. */
3162 cache->base = get_frame_register_unsigned
3163 (this_frame, gdbarch_sp_regnum (gdbarch));
3164 }
3165 CATCH (ex, RETURN_MASK_ERROR)
3166 {
3167 if (ex.error != NOT_AVAILABLE_ERROR)
3168 throw_exception (ex);
3169 return (struct rs6000_frame_cache *) (*this_cache);
3170 }
3171 END_CATCH
3172
3173 /* If the function appears to be frameless, check a couple of likely
3174 indicators that we have simply failed to find the frame setup.
3175 Two common cases of this are missing symbols (i.e.
3176 get_frame_func returns the wrong address or 0), and assembly
3177 stubs which have a fast exit path but set up a frame on the slow
3178 path.
3179
3180 If the LR appears to return to this function, then presume that
3181 we have an ABI compliant frame that we failed to find. */
3182 if (fdata.frameless && fdata.lr_offset == 0)
3183 {
3184 CORE_ADDR saved_lr;
3185 int make_frame = 0;
3186
3187 saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3188 if (func == 0 && saved_lr == pc)
3189 make_frame = 1;
3190 else if (func != 0)
3191 {
3192 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3193 if (func == saved_func)
3194 make_frame = 1;
3195 }
3196
3197 if (make_frame)
3198 {
3199 fdata.frameless = 0;
3200 fdata.lr_offset = tdep->lr_frame_offset;
3201 }
3202 }
3203
3204 if (!fdata.frameless)
3205 {
3206 /* Frameless really means stackless. */
3207 ULONGEST backchain;
3208
3209 if (safe_read_memory_unsigned_integer (cache->base, wordsize,
3210 byte_order, &backchain))
3211 cache->base = (CORE_ADDR) backchain;
3212 }
3213
3214 trad_frame_set_value (cache->saved_regs,
3215 gdbarch_sp_regnum (gdbarch), cache->base);
3216
3217 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3218 All fpr's from saved_fpr to fp31 are saved. */
3219
3220 if (fdata.saved_fpr >= 0)
3221 {
3222 int i;
3223 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3224
3225 /* If skip_prologue says floating-point registers were saved,
3226 but the current architecture has no floating-point registers,
3227 then that's strange. But we have no indices to even record
3228 the addresses under, so we just ignore it. */
3229 if (ppc_floating_point_unit_p (gdbarch))
3230 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3231 {
3232 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3233 fpr_addr += 8;
3234 }
3235 }
3236
3237 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3238 All gpr's from saved_gpr to gpr31 are saved (except during the
3239 prologue). */
3240
3241 if (fdata.saved_gpr >= 0)
3242 {
3243 int i;
3244 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3245 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3246 {
3247 if (fdata.gpr_mask & (1U << i))
3248 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3249 gpr_addr += wordsize;
3250 }
3251 }
3252
3253 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3254 All vr's from saved_vr to vr31 are saved. */
3255 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3256 {
3257 if (fdata.saved_vr >= 0)
3258 {
3259 int i;
3260 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3261 for (i = fdata.saved_vr; i < 32; i++)
3262 {
3263 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3264 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3265 }
3266 }
3267 }
3268
3269 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3270 All vr's from saved_ev to ev31 are saved. ????? */
3271 if (tdep->ppc_ev0_regnum != -1)
3272 {
3273 if (fdata.saved_ev >= 0)
3274 {
3275 int i;
3276 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3277 CORE_ADDR off = (byte_order == BFD_ENDIAN_BIG ? 4 : 0);
3278
3279 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3280 {
3281 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3282 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + off;
3283 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3284 }
3285 }
3286 }
3287
3288 /* If != 0, fdata.cr_offset is the offset from the frame that
3289 holds the CR. */
3290 if (fdata.cr_offset != 0)
3291 cache->saved_regs[tdep->ppc_cr_regnum].addr
3292 = cache->base + fdata.cr_offset;
3293
3294 /* If != 0, fdata.lr_offset is the offset from the frame that
3295 holds the LR. */
3296 if (fdata.lr_offset != 0)
3297 cache->saved_regs[tdep->ppc_lr_regnum].addr
3298 = cache->base + fdata.lr_offset;
3299 else if (fdata.lr_register != -1)
3300 cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register;
3301 /* The PC is found in the link register. */
3302 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3303 cache->saved_regs[tdep->ppc_lr_regnum];
3304
3305 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3306 holds the VRSAVE. */
3307 if (fdata.vrsave_offset != 0)
3308 cache->saved_regs[tdep->ppc_vrsave_regnum].addr
3309 = cache->base + fdata.vrsave_offset;
3310
3311 if (fdata.alloca_reg < 0)
3312 /* If no alloca register used, then fi->frame is the value of the
3313 %sp for this frame, and it is good enough. */
3314 cache->initial_sp
3315 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3316 else
3317 cache->initial_sp
3318 = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
3319
3320 cache->base_p = 1;
3321 return cache;
3322 }
3323
3324 static void
3325 rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
3326 struct frame_id *this_id)
3327 {
3328 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3329 this_cache);
3330
3331 if (!info->base_p)
3332 {
3333 (*this_id) = frame_id_build_unavailable_stack (info->pc);
3334 return;
3335 }
3336
3337 /* This marks the outermost frame. */
3338 if (info->base == 0)
3339 return;
3340
3341 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3342 }
3343
3344 static struct value *
3345 rs6000_frame_prev_register (struct frame_info *this_frame,
3346 void **this_cache, int regnum)
3347 {
3348 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3349 this_cache);
3350 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3351 }
3352
3353 static const struct frame_unwind rs6000_frame_unwind =
3354 {
3355 NORMAL_FRAME,
3356 default_frame_unwind_stop_reason,
3357 rs6000_frame_this_id,
3358 rs6000_frame_prev_register,
3359 NULL,
3360 default_frame_sniffer
3361 };
3362
3363 /* Allocate and initialize a frame cache for an epilogue frame.
3364 SP is restored and prev-PC is stored in LR. */
3365
3366 static struct rs6000_frame_cache *
3367 rs6000_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
3368 {
3369 struct rs6000_frame_cache *cache;
3370 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3371 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3372
3373 if (*this_cache)
3374 return (struct rs6000_frame_cache *) *this_cache;
3375
3376 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3377 (*this_cache) = cache;
3378 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3379
3380 TRY
3381 {
3382 /* At this point the stack looks as if we just entered the
3383 function, and the return address is stored in LR. */
3384 CORE_ADDR sp, lr;
3385
3386 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3387 lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3388
3389 cache->base = sp;
3390 cache->initial_sp = sp;
3391
3392 trad_frame_set_value (cache->saved_regs,
3393 gdbarch_pc_regnum (gdbarch), lr);
3394 }
3395 CATCH (ex, RETURN_MASK_ERROR)
3396 {
3397 if (ex.error != NOT_AVAILABLE_ERROR)
3398 throw_exception (ex);
3399 }
3400 END_CATCH
3401
3402 return cache;
3403 }
3404
3405 /* Implementation of frame_unwind.this_id, as defined in frame_unwind.h.
3406 Return the frame ID of an epilogue frame. */
3407
3408 static void
3409 rs6000_epilogue_frame_this_id (struct frame_info *this_frame,
3410 void **this_cache, struct frame_id *this_id)
3411 {
3412 CORE_ADDR pc;
3413 struct rs6000_frame_cache *info =
3414 rs6000_epilogue_frame_cache (this_frame, this_cache);
3415
3416 pc = get_frame_func (this_frame);
3417 if (info->base == 0)
3418 (*this_id) = frame_id_build_unavailable_stack (pc);
3419 else
3420 (*this_id) = frame_id_build (info->base, pc);
3421 }
3422
3423 /* Implementation of frame_unwind.prev_register, as defined in frame_unwind.h.
3424 Return the register value of REGNUM in previous frame. */
3425
3426 static struct value *
3427 rs6000_epilogue_frame_prev_register (struct frame_info *this_frame,
3428 void **this_cache, int regnum)
3429 {
3430 struct rs6000_frame_cache *info =
3431 rs6000_epilogue_frame_cache (this_frame, this_cache);
3432 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3433 }
3434
3435 /* Implementation of frame_unwind.sniffer, as defined in frame_unwind.h.
3436 Check whether this an epilogue frame. */
3437
3438 static int
3439 rs6000_epilogue_frame_sniffer (const struct frame_unwind *self,
3440 struct frame_info *this_frame,
3441 void **this_prologue_cache)
3442 {
3443 if (frame_relative_level (this_frame) == 0)
3444 return rs6000_in_function_epilogue_frame_p (this_frame,
3445 get_frame_arch (this_frame),
3446 get_frame_pc (this_frame));
3447 else
3448 return 0;
3449 }
3450
3451 /* Frame unwinder for epilogue frame. This is required for reverse step-over
3452 a function without debug information. */
3453
3454 static const struct frame_unwind rs6000_epilogue_frame_unwind =
3455 {
3456 NORMAL_FRAME,
3457 default_frame_unwind_stop_reason,
3458 rs6000_epilogue_frame_this_id, rs6000_epilogue_frame_prev_register,
3459 NULL,
3460 rs6000_epilogue_frame_sniffer
3461 };
3462 \f
3463
3464 static CORE_ADDR
3465 rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
3466 {
3467 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3468 this_cache);
3469 return info->initial_sp;
3470 }
3471
3472 static const struct frame_base rs6000_frame_base = {
3473 &rs6000_frame_unwind,
3474 rs6000_frame_base_address,
3475 rs6000_frame_base_address,
3476 rs6000_frame_base_address
3477 };
3478
3479 static const struct frame_base *
3480 rs6000_frame_base_sniffer (struct frame_info *this_frame)
3481 {
3482 return &rs6000_frame_base;
3483 }
3484
3485 /* DWARF-2 frame support. Used to handle the detection of
3486 clobbered registers during function calls. */
3487
3488 static void
3489 ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3490 struct dwarf2_frame_state_reg *reg,
3491 struct frame_info *this_frame)
3492 {
3493 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3494
3495 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3496 non-volatile registers. We will use the same code for both. */
3497
3498 /* Call-saved GP registers. */
3499 if ((regnum >= tdep->ppc_gp0_regnum + 14
3500 && regnum <= tdep->ppc_gp0_regnum + 31)
3501 || (regnum == tdep->ppc_gp0_regnum + 1))
3502 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3503
3504 /* Call-clobbered GP registers. */
3505 if ((regnum >= tdep->ppc_gp0_regnum + 3
3506 && regnum <= tdep->ppc_gp0_regnum + 12)
3507 || (regnum == tdep->ppc_gp0_regnum))
3508 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3509
3510 /* Deal with FP registers, if supported. */
3511 if (tdep->ppc_fp0_regnum >= 0)
3512 {
3513 /* Call-saved FP registers. */
3514 if ((regnum >= tdep->ppc_fp0_regnum + 14
3515 && regnum <= tdep->ppc_fp0_regnum + 31))
3516 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3517
3518 /* Call-clobbered FP registers. */
3519 if ((regnum >= tdep->ppc_fp0_regnum
3520 && regnum <= tdep->ppc_fp0_regnum + 13))
3521 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3522 }
3523
3524 /* Deal with ALTIVEC registers, if supported. */
3525 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3526 {
3527 /* Call-saved Altivec registers. */
3528 if ((regnum >= tdep->ppc_vr0_regnum + 20
3529 && regnum <= tdep->ppc_vr0_regnum + 31)
3530 || regnum == tdep->ppc_vrsave_regnum)
3531 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3532
3533 /* Call-clobbered Altivec registers. */
3534 if ((regnum >= tdep->ppc_vr0_regnum
3535 && regnum <= tdep->ppc_vr0_regnum + 19))
3536 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3537 }
3538
3539 /* Handle PC register and Stack Pointer correctly. */
3540 if (regnum == gdbarch_pc_regnum (gdbarch))
3541 reg->how = DWARF2_FRAME_REG_RA;
3542 else if (regnum == gdbarch_sp_regnum (gdbarch))
3543 reg->how = DWARF2_FRAME_REG_CFA;
3544 }
3545
3546
3547 /* Return true if a .gnu_attributes section exists in BFD and it
3548 indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
3549 section exists in BFD and it indicates that SPE extensions are in
3550 use. Check the .gnu.attributes section first, as the binary might be
3551 compiled for SPE, but not actually using SPE instructions. */
3552
3553 static int
3554 bfd_uses_spe_extensions (bfd *abfd)
3555 {
3556 asection *sect;
3557 gdb_byte *contents = NULL;
3558 bfd_size_type size;
3559 gdb_byte *ptr;
3560 int success = 0;
3561 int vector_abi;
3562
3563 if (!abfd)
3564 return 0;
3565
3566 #ifdef HAVE_ELF
3567 /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
3568 could be using the SPE vector abi without actually using any spe
3569 bits whatsoever. But it's close enough for now. */
3570 vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
3571 Tag_GNU_Power_ABI_Vector);
3572 if (vector_abi == 3)
3573 return 1;
3574 #endif
3575
3576 sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
3577 if (!sect)
3578 return 0;
3579
3580 size = bfd_get_section_size (sect);
3581 contents = (gdb_byte *) xmalloc (size);
3582 if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
3583 {
3584 xfree (contents);
3585 return 0;
3586 }
3587
3588 /* Parse the .PPC.EMB.apuinfo section. The layout is as follows:
3589
3590 struct {
3591 uint32 name_len;
3592 uint32 data_len;
3593 uint32 type;
3594 char name[name_len rounded up to 4-byte alignment];
3595 char data[data_len];
3596 };
3597
3598 Technically, there's only supposed to be one such structure in a
3599 given apuinfo section, but the linker is not always vigilant about
3600 merging apuinfo sections from input files. Just go ahead and parse
3601 them all, exiting early when we discover the binary uses SPE
3602 insns.
3603
3604 It's not specified in what endianness the information in this
3605 section is stored. Assume that it's the endianness of the BFD. */
3606 ptr = contents;
3607 while (1)
3608 {
3609 unsigned int name_len;
3610 unsigned int data_len;
3611 unsigned int type;
3612
3613 /* If we can't read the first three fields, we're done. */
3614 if (size < 12)
3615 break;
3616
3617 name_len = bfd_get_32 (abfd, ptr);
3618 name_len = (name_len + 3) & ~3U; /* Round to 4 bytes. */
3619 data_len = bfd_get_32 (abfd, ptr + 4);
3620 type = bfd_get_32 (abfd, ptr + 8);
3621 ptr += 12;
3622
3623 /* The name must be "APUinfo\0". */
3624 if (name_len != 8
3625 && strcmp ((const char *) ptr, "APUinfo") != 0)
3626 break;
3627 ptr += name_len;
3628
3629 /* The type must be 2. */
3630 if (type != 2)
3631 break;
3632
3633 /* The data is stored as a series of uint32. The upper half of
3634 each uint32 indicates the particular APU used and the lower
3635 half indicates the revision of that APU. We just care about
3636 the upper half. */
3637
3638 /* Not 4-byte quantities. */
3639 if (data_len & 3U)
3640 break;
3641
3642 while (data_len)
3643 {
3644 unsigned int apuinfo = bfd_get_32 (abfd, ptr);
3645 unsigned int apu = apuinfo >> 16;
3646 ptr += 4;
3647 data_len -= 4;
3648
3649 /* The SPE APU is 0x100; the SPEFP APU is 0x101. Accept
3650 either. */
3651 if (apu == 0x100 || apu == 0x101)
3652 {
3653 success = 1;
3654 data_len = 0;
3655 }
3656 }
3657
3658 if (success)
3659 break;
3660 }
3661
3662 xfree (contents);
3663 return success;
3664 }
3665
3666 /* These are macros for parsing instruction fields (I.1.6.28) */
3667
3668 #define PPC_FIELD(value, from, len) \
3669 (((value) >> (32 - (from) - (len))) & ((1 << (len)) - 1))
3670 #define PPC_SEXT(v, bs) \
3671 ((((CORE_ADDR) (v) & (((CORE_ADDR) 1 << (bs)) - 1)) \
3672 ^ ((CORE_ADDR) 1 << ((bs) - 1))) \
3673 - ((CORE_ADDR) 1 << ((bs) - 1)))
3674 #define PPC_OP6(insn) PPC_FIELD (insn, 0, 6)
3675 #define PPC_EXTOP(insn) PPC_FIELD (insn, 21, 10)
3676 #define PPC_RT(insn) PPC_FIELD (insn, 6, 5)
3677 #define PPC_RS(insn) PPC_FIELD (insn, 6, 5)
3678 #define PPC_RA(insn) PPC_FIELD (insn, 11, 5)
3679 #define PPC_RB(insn) PPC_FIELD (insn, 16, 5)
3680 #define PPC_NB(insn) PPC_FIELD (insn, 16, 5)
3681 #define PPC_VRT(insn) PPC_FIELD (insn, 6, 5)
3682 #define PPC_FRT(insn) PPC_FIELD (insn, 6, 5)
3683 #define PPC_SPR(insn) (PPC_FIELD (insn, 11, 5) \
3684 | (PPC_FIELD (insn, 16, 5) << 5))
3685 #define PPC_BO(insn) PPC_FIELD (insn, 6, 5)
3686 #define PPC_T(insn) PPC_FIELD (insn, 6, 5)
3687 #define PPC_D(insn) PPC_SEXT (PPC_FIELD (insn, 16, 16), 16)
3688 #define PPC_DS(insn) PPC_SEXT (PPC_FIELD (insn, 16, 14), 14)
3689 #define PPC_DQ(insn) PPC_SEXT (PPC_FIELD (insn, 16, 12), 12)
3690 #define PPC_BIT(insn,n) ((insn & (1 << (31 - (n)))) ? 1 : 0)
3691 #define PPC_OE(insn) PPC_BIT (insn, 21)
3692 #define PPC_RC(insn) PPC_BIT (insn, 31)
3693 #define PPC_Rc(insn) PPC_BIT (insn, 21)
3694 #define PPC_LK(insn) PPC_BIT (insn, 31)
3695 #define PPC_TX(insn) PPC_BIT (insn, 31)
3696 #define PPC_LEV(insn) PPC_FIELD (insn, 20, 7)
3697
3698 #define PPC_XT(insn) ((PPC_TX (insn) << 5) | PPC_T (insn))
3699 #define PPC_XER_NB(xer) (xer & 0x7f)
3700
3701 /* Record Vector-Scalar Registers.
3702 For VSR less than 32, it's represented by an FPR and an VSR-upper register.
3703 Otherwise, it's just a VR register. Record them accordingly. */
3704
3705 static int
3706 ppc_record_vsr (struct regcache *regcache, struct gdbarch_tdep *tdep, int vsr)
3707 {
3708 if (vsr < 0 || vsr >= 64)
3709 return -1;
3710
3711 if (vsr >= 32)
3712 {
3713 if (tdep->ppc_vr0_regnum >= 0)
3714 record_full_arch_list_add_reg (regcache, tdep->ppc_vr0_regnum + vsr - 32);
3715 }
3716 else
3717 {
3718 if (tdep->ppc_fp0_regnum >= 0)
3719 record_full_arch_list_add_reg (regcache, tdep->ppc_fp0_regnum + vsr);
3720 if (tdep->ppc_vsr0_upper_regnum >= 0)
3721 record_full_arch_list_add_reg (regcache,
3722 tdep->ppc_vsr0_upper_regnum + vsr);
3723 }
3724
3725 return 0;
3726 }
3727
3728 /* Parse and record instructions primary opcode-4 at ADDR.
3729 Return 0 if successful. */
3730
3731 static int
3732 ppc_process_record_op4 (struct gdbarch *gdbarch, struct regcache *regcache,
3733 CORE_ADDR addr, uint32_t insn)
3734 {
3735 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3736 int ext = PPC_FIELD (insn, 21, 11);
3737 int vra = PPC_FIELD (insn, 11, 5);
3738
3739 switch (ext & 0x3f)
3740 {
3741 case 32: /* Vector Multiply-High-Add Signed Halfword Saturate */
3742 case 33: /* Vector Multiply-High-Round-Add Signed Halfword Saturate */
3743 case 39: /* Vector Multiply-Sum Unsigned Halfword Saturate */
3744 case 41: /* Vector Multiply-Sum Signed Halfword Saturate */
3745 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
3746 /* FALL-THROUGH */
3747 case 42: /* Vector Select */
3748 case 43: /* Vector Permute */
3749 case 59: /* Vector Permute Right-indexed */
3750 case 44: /* Vector Shift Left Double by Octet Immediate */
3751 case 45: /* Vector Permute and Exclusive-OR */
3752 case 60: /* Vector Add Extended Unsigned Quadword Modulo */
3753 case 61: /* Vector Add Extended & write Carry Unsigned Quadword */
3754 case 62: /* Vector Subtract Extended Unsigned Quadword Modulo */
3755 case 63: /* Vector Subtract Extended & write Carry Unsigned Quadword */
3756 case 34: /* Vector Multiply-Low-Add Unsigned Halfword Modulo */
3757 case 35: /* Vector Multiply-Sum Unsigned Doubleword Modulo */
3758 case 36: /* Vector Multiply-Sum Unsigned Byte Modulo */
3759 case 37: /* Vector Multiply-Sum Mixed Byte Modulo */
3760 case 38: /* Vector Multiply-Sum Unsigned Halfword Modulo */
3761 case 40: /* Vector Multiply-Sum Signed Halfword Modulo */
3762 case 46: /* Vector Multiply-Add Single-Precision */
3763 case 47: /* Vector Negative Multiply-Subtract Single-Precision */
3764 record_full_arch_list_add_reg (regcache,
3765 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3766 return 0;
3767
3768 case 48: /* Multiply-Add High Doubleword */
3769 case 49: /* Multiply-Add High Doubleword Unsigned */
3770 case 51: /* Multiply-Add Low Doubleword */
3771 record_full_arch_list_add_reg (regcache,
3772 tdep->ppc_gp0_regnum + PPC_RT (insn));
3773 return 0;
3774 }
3775
3776 switch ((ext & 0x1ff))
3777 {
3778 case 385:
3779 if (vra != 0 /* Decimal Convert To Signed Quadword */
3780 && vra != 2 /* Decimal Convert From Signed Quadword */
3781 && vra != 4 /* Decimal Convert To Zoned */
3782 && vra != 5 /* Decimal Convert To National */
3783 && vra != 6 /* Decimal Convert From Zoned */
3784 && vra != 7 /* Decimal Convert From National */
3785 && vra != 31) /* Decimal Set Sign */
3786 break;
3787 /* Fall through. */
3788 /* 5.16 Decimal Integer Arithmetic Instructions */
3789 case 1: /* Decimal Add Modulo */
3790 case 65: /* Decimal Subtract Modulo */
3791
3792 case 193: /* Decimal Shift */
3793 case 129: /* Decimal Unsigned Shift */
3794 case 449: /* Decimal Shift and Round */
3795
3796 case 257: /* Decimal Truncate */
3797 case 321: /* Decimal Unsigned Truncate */
3798
3799 /* Bit-21 should be set. */
3800 if (!PPC_BIT (insn, 21))
3801 break;
3802
3803 record_full_arch_list_add_reg (regcache,
3804 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3805 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
3806 return 0;
3807 }
3808
3809 /* Bit-21 is used for RC */
3810 switch (ext & 0x3ff)
3811 {
3812 case 6: /* Vector Compare Equal To Unsigned Byte */
3813 case 70: /* Vector Compare Equal To Unsigned Halfword */
3814 case 134: /* Vector Compare Equal To Unsigned Word */
3815 case 199: /* Vector Compare Equal To Unsigned Doubleword */
3816 case 774: /* Vector Compare Greater Than Signed Byte */
3817 case 838: /* Vector Compare Greater Than Signed Halfword */
3818 case 902: /* Vector Compare Greater Than Signed Word */
3819 case 967: /* Vector Compare Greater Than Signed Doubleword */
3820 case 518: /* Vector Compare Greater Than Unsigned Byte */
3821 case 646: /* Vector Compare Greater Than Unsigned Word */
3822 case 582: /* Vector Compare Greater Than Unsigned Halfword */
3823 case 711: /* Vector Compare Greater Than Unsigned Doubleword */
3824 case 966: /* Vector Compare Bounds Single-Precision */
3825 case 198: /* Vector Compare Equal To Single-Precision */
3826 case 454: /* Vector Compare Greater Than or Equal To Single-Precision */
3827 case 710: /* Vector Compare Greater Than Single-Precision */
3828 case 7: /* Vector Compare Not Equal Byte */
3829 case 71: /* Vector Compare Not Equal Halfword */
3830 case 135: /* Vector Compare Not Equal Word */
3831 case 263: /* Vector Compare Not Equal or Zero Byte */
3832 case 327: /* Vector Compare Not Equal or Zero Halfword */
3833 case 391: /* Vector Compare Not Equal or Zero Word */
3834 if (PPC_Rc (insn))
3835 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
3836 record_full_arch_list_add_reg (regcache,
3837 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3838 return 0;
3839 }
3840
3841 if (ext == 1538)
3842 {
3843 switch (vra)
3844 {
3845 case 0: /* Vector Count Leading Zero Least-Significant Bits
3846 Byte */
3847 case 1: /* Vector Count Trailing Zero Least-Significant Bits
3848 Byte */
3849 record_full_arch_list_add_reg (regcache,
3850 tdep->ppc_gp0_regnum + PPC_RT (insn));
3851 return 0;
3852
3853 case 6: /* Vector Negate Word */
3854 case 7: /* Vector Negate Doubleword */
3855 case 8: /* Vector Parity Byte Word */
3856 case 9: /* Vector Parity Byte Doubleword */
3857 case 10: /* Vector Parity Byte Quadword */
3858 case 16: /* Vector Extend Sign Byte To Word */
3859 case 17: /* Vector Extend Sign Halfword To Word */
3860 case 24: /* Vector Extend Sign Byte To Doubleword */
3861 case 25: /* Vector Extend Sign Halfword To Doubleword */
3862 case 26: /* Vector Extend Sign Word To Doubleword */
3863 case 28: /* Vector Count Trailing Zeros Byte */
3864 case 29: /* Vector Count Trailing Zeros Halfword */
3865 case 30: /* Vector Count Trailing Zeros Word */
3866 case 31: /* Vector Count Trailing Zeros Doubleword */
3867 record_full_arch_list_add_reg (regcache,
3868 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3869 return 0;
3870 }
3871 }
3872
3873 switch (ext)
3874 {
3875 case 142: /* Vector Pack Unsigned Halfword Unsigned Saturate */
3876 case 206: /* Vector Pack Unsigned Word Unsigned Saturate */
3877 case 270: /* Vector Pack Signed Halfword Unsigned Saturate */
3878 case 334: /* Vector Pack Signed Word Unsigned Saturate */
3879 case 398: /* Vector Pack Signed Halfword Signed Saturate */
3880 case 462: /* Vector Pack Signed Word Signed Saturate */
3881 case 1230: /* Vector Pack Unsigned Doubleword Unsigned Saturate */
3882 case 1358: /* Vector Pack Signed Doubleword Unsigned Saturate */
3883 case 1486: /* Vector Pack Signed Doubleword Signed Saturate */
3884 case 512: /* Vector Add Unsigned Byte Saturate */
3885 case 576: /* Vector Add Unsigned Halfword Saturate */
3886 case 640: /* Vector Add Unsigned Word Saturate */
3887 case 768: /* Vector Add Signed Byte Saturate */
3888 case 832: /* Vector Add Signed Halfword Saturate */
3889 case 896: /* Vector Add Signed Word Saturate */
3890 case 1536: /* Vector Subtract Unsigned Byte Saturate */
3891 case 1600: /* Vector Subtract Unsigned Halfword Saturate */
3892 case 1664: /* Vector Subtract Unsigned Word Saturate */
3893 case 1792: /* Vector Subtract Signed Byte Saturate */
3894 case 1856: /* Vector Subtract Signed Halfword Saturate */
3895 case 1920: /* Vector Subtract Signed Word Saturate */
3896
3897 case 1544: /* Vector Sum across Quarter Unsigned Byte Saturate */
3898 case 1800: /* Vector Sum across Quarter Signed Byte Saturate */
3899 case 1608: /* Vector Sum across Quarter Signed Halfword Saturate */
3900 case 1672: /* Vector Sum across Half Signed Word Saturate */
3901 case 1928: /* Vector Sum across Signed Word Saturate */
3902 case 970: /* Vector Convert To Signed Fixed-Point Word Saturate */
3903 case 906: /* Vector Convert To Unsigned Fixed-Point Word Saturate */
3904 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
3905 /* FALL-THROUGH */
3906 case 12: /* Vector Merge High Byte */
3907 case 14: /* Vector Pack Unsigned Halfword Unsigned Modulo */
3908 case 76: /* Vector Merge High Halfword */
3909 case 78: /* Vector Pack Unsigned Word Unsigned Modulo */
3910 case 140: /* Vector Merge High Word */
3911 case 268: /* Vector Merge Low Byte */
3912 case 332: /* Vector Merge Low Halfword */
3913 case 396: /* Vector Merge Low Word */
3914 case 526: /* Vector Unpack High Signed Byte */
3915 case 590: /* Vector Unpack High Signed Halfword */
3916 case 654: /* Vector Unpack Low Signed Byte */
3917 case 718: /* Vector Unpack Low Signed Halfword */
3918 case 782: /* Vector Pack Pixel */
3919 case 846: /* Vector Unpack High Pixel */
3920 case 974: /* Vector Unpack Low Pixel */
3921 case 1102: /* Vector Pack Unsigned Doubleword Unsigned Modulo */
3922 case 1614: /* Vector Unpack High Signed Word */
3923 case 1676: /* Vector Merge Odd Word */
3924 case 1742: /* Vector Unpack Low Signed Word */
3925 case 1932: /* Vector Merge Even Word */
3926 case 524: /* Vector Splat Byte */
3927 case 588: /* Vector Splat Halfword */
3928 case 652: /* Vector Splat Word */
3929 case 780: /* Vector Splat Immediate Signed Byte */
3930 case 844: /* Vector Splat Immediate Signed Halfword */
3931 case 908: /* Vector Splat Immediate Signed Word */
3932 case 452: /* Vector Shift Left */
3933 case 708: /* Vector Shift Right */
3934 case 1036: /* Vector Shift Left by Octet */
3935 case 1100: /* Vector Shift Right by Octet */
3936 case 0: /* Vector Add Unsigned Byte Modulo */
3937 case 64: /* Vector Add Unsigned Halfword Modulo */
3938 case 128: /* Vector Add Unsigned Word Modulo */
3939 case 192: /* Vector Add Unsigned Doubleword Modulo */
3940 case 256: /* Vector Add Unsigned Quadword Modulo */
3941 case 320: /* Vector Add & write Carry Unsigned Quadword */
3942 case 384: /* Vector Add and Write Carry-Out Unsigned Word */
3943 case 8: /* Vector Multiply Odd Unsigned Byte */
3944 case 72: /* Vector Multiply Odd Unsigned Halfword */
3945 case 136: /* Vector Multiply Odd Unsigned Word */
3946 case 264: /* Vector Multiply Odd Signed Byte */
3947 case 328: /* Vector Multiply Odd Signed Halfword */
3948 case 392: /* Vector Multiply Odd Signed Word */
3949 case 520: /* Vector Multiply Even Unsigned Byte */
3950 case 584: /* Vector Multiply Even Unsigned Halfword */
3951 case 648: /* Vector Multiply Even Unsigned Word */
3952 case 776: /* Vector Multiply Even Signed Byte */
3953 case 840: /* Vector Multiply Even Signed Halfword */
3954 case 904: /* Vector Multiply Even Signed Word */
3955 case 137: /* Vector Multiply Unsigned Word Modulo */
3956 case 1024: /* Vector Subtract Unsigned Byte Modulo */
3957 case 1088: /* Vector Subtract Unsigned Halfword Modulo */
3958 case 1152: /* Vector Subtract Unsigned Word Modulo */
3959 case 1216: /* Vector Subtract Unsigned Doubleword Modulo */
3960 case 1280: /* Vector Subtract Unsigned Quadword Modulo */
3961 case 1344: /* Vector Subtract & write Carry Unsigned Quadword */
3962 case 1408: /* Vector Subtract and Write Carry-Out Unsigned Word */
3963 case 1282: /* Vector Average Signed Byte */
3964 case 1346: /* Vector Average Signed Halfword */
3965 case 1410: /* Vector Average Signed Word */
3966 case 1026: /* Vector Average Unsigned Byte */
3967 case 1090: /* Vector Average Unsigned Halfword */
3968 case 1154: /* Vector Average Unsigned Word */
3969 case 258: /* Vector Maximum Signed Byte */
3970 case 322: /* Vector Maximum Signed Halfword */
3971 case 386: /* Vector Maximum Signed Word */
3972 case 450: /* Vector Maximum Signed Doubleword */
3973 case 2: /* Vector Maximum Unsigned Byte */
3974 case 66: /* Vector Maximum Unsigned Halfword */
3975 case 130: /* Vector Maximum Unsigned Word */
3976 case 194: /* Vector Maximum Unsigned Doubleword */
3977 case 770: /* Vector Minimum Signed Byte */
3978 case 834: /* Vector Minimum Signed Halfword */
3979 case 898: /* Vector Minimum Signed Word */
3980 case 962: /* Vector Minimum Signed Doubleword */
3981 case 514: /* Vector Minimum Unsigned Byte */
3982 case 578: /* Vector Minimum Unsigned Halfword */
3983 case 642: /* Vector Minimum Unsigned Word */
3984 case 706: /* Vector Minimum Unsigned Doubleword */
3985 case 1028: /* Vector Logical AND */
3986 case 1668: /* Vector Logical Equivalent */
3987 case 1092: /* Vector Logical AND with Complement */
3988 case 1412: /* Vector Logical NAND */
3989 case 1348: /* Vector Logical OR with Complement */
3990 case 1156: /* Vector Logical OR */
3991 case 1284: /* Vector Logical NOR */
3992 case 1220: /* Vector Logical XOR */
3993 case 4: /* Vector Rotate Left Byte */
3994 case 132: /* Vector Rotate Left Word VX-form */
3995 case 68: /* Vector Rotate Left Halfword */
3996 case 196: /* Vector Rotate Left Doubleword */
3997 case 260: /* Vector Shift Left Byte */
3998 case 388: /* Vector Shift Left Word */
3999 case 324: /* Vector Shift Left Halfword */
4000 case 1476: /* Vector Shift Left Doubleword */
4001 case 516: /* Vector Shift Right Byte */
4002 case 644: /* Vector Shift Right Word */
4003 case 580: /* Vector Shift Right Halfword */
4004 case 1732: /* Vector Shift Right Doubleword */
4005 case 772: /* Vector Shift Right Algebraic Byte */
4006 case 900: /* Vector Shift Right Algebraic Word */
4007 case 836: /* Vector Shift Right Algebraic Halfword */
4008 case 964: /* Vector Shift Right Algebraic Doubleword */
4009 case 10: /* Vector Add Single-Precision */
4010 case 74: /* Vector Subtract Single-Precision */
4011 case 1034: /* Vector Maximum Single-Precision */
4012 case 1098: /* Vector Minimum Single-Precision */
4013 case 842: /* Vector Convert From Signed Fixed-Point Word */
4014 case 778: /* Vector Convert From Unsigned Fixed-Point Word */
4015 case 714: /* Vector Round to Single-Precision Integer toward -Infinity */
4016 case 522: /* Vector Round to Single-Precision Integer Nearest */
4017 case 650: /* Vector Round to Single-Precision Integer toward +Infinity */
4018 case 586: /* Vector Round to Single-Precision Integer toward Zero */
4019 case 394: /* Vector 2 Raised to the Exponent Estimate Floating-Point */
4020 case 458: /* Vector Log Base 2 Estimate Floating-Point */
4021 case 266: /* Vector Reciprocal Estimate Single-Precision */
4022 case 330: /* Vector Reciprocal Square Root Estimate Single-Precision */
4023 case 1288: /* Vector AES Cipher */
4024 case 1289: /* Vector AES Cipher Last */
4025 case 1352: /* Vector AES Inverse Cipher */
4026 case 1353: /* Vector AES Inverse Cipher Last */
4027 case 1480: /* Vector AES SubBytes */
4028 case 1730: /* Vector SHA-512 Sigma Doubleword */
4029 case 1666: /* Vector SHA-256 Sigma Word */
4030 case 1032: /* Vector Polynomial Multiply-Sum Byte */
4031 case 1160: /* Vector Polynomial Multiply-Sum Word */
4032 case 1096: /* Vector Polynomial Multiply-Sum Halfword */
4033 case 1224: /* Vector Polynomial Multiply-Sum Doubleword */
4034 case 1292: /* Vector Gather Bits by Bytes by Doubleword */
4035 case 1794: /* Vector Count Leading Zeros Byte */
4036 case 1858: /* Vector Count Leading Zeros Halfword */
4037 case 1922: /* Vector Count Leading Zeros Word */
4038 case 1986: /* Vector Count Leading Zeros Doubleword */
4039 case 1795: /* Vector Population Count Byte */
4040 case 1859: /* Vector Population Count Halfword */
4041 case 1923: /* Vector Population Count Word */
4042 case 1987: /* Vector Population Count Doubleword */
4043 case 1356: /* Vector Bit Permute Quadword */
4044 case 1484: /* Vector Bit Permute Doubleword */
4045 case 513: /* Vector Multiply-by-10 Unsigned Quadword */
4046 case 1: /* Vector Multiply-by-10 & write Carry Unsigned
4047 Quadword */
4048 case 577: /* Vector Multiply-by-10 Extended Unsigned Quadword */
4049 case 65: /* Vector Multiply-by-10 Extended & write Carry
4050 Unsigned Quadword */
4051 case 1027: /* Vector Absolute Difference Unsigned Byte */
4052 case 1091: /* Vector Absolute Difference Unsigned Halfword */
4053 case 1155: /* Vector Absolute Difference Unsigned Word */
4054 case 1796: /* Vector Shift Right Variable */
4055 case 1860: /* Vector Shift Left Variable */
4056 case 133: /* Vector Rotate Left Word then Mask Insert */
4057 case 197: /* Vector Rotate Left Doubleword then Mask Insert */
4058 case 389: /* Vector Rotate Left Word then AND with Mask */
4059 case 453: /* Vector Rotate Left Doubleword then AND with Mask */
4060 case 525: /* Vector Extract Unsigned Byte */
4061 case 589: /* Vector Extract Unsigned Halfword */
4062 case 653: /* Vector Extract Unsigned Word */
4063 case 717: /* Vector Extract Doubleword */
4064 case 781: /* Vector Insert Byte */
4065 case 845: /* Vector Insert Halfword */
4066 case 909: /* Vector Insert Word */
4067 case 973: /* Vector Insert Doubleword */
4068 record_full_arch_list_add_reg (regcache,
4069 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4070 return 0;
4071
4072 case 1549: /* Vector Extract Unsigned Byte Left-Indexed */
4073 case 1613: /* Vector Extract Unsigned Halfword Left-Indexed */
4074 case 1677: /* Vector Extract Unsigned Word Left-Indexed */
4075 case 1805: /* Vector Extract Unsigned Byte Right-Indexed */
4076 case 1869: /* Vector Extract Unsigned Halfword Right-Indexed */
4077 case 1933: /* Vector Extract Unsigned Word Right-Indexed */
4078 record_full_arch_list_add_reg (regcache,
4079 tdep->ppc_gp0_regnum + PPC_RT (insn));
4080 return 0;
4081
4082 case 1604: /* Move To Vector Status and Control Register */
4083 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4084 return 0;
4085 case 1540: /* Move From Vector Status and Control Register */
4086 record_full_arch_list_add_reg (regcache,
4087 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4088 return 0;
4089 case 833: /* Decimal Copy Sign */
4090 record_full_arch_list_add_reg (regcache,
4091 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4092 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4093 return 0;
4094 }
4095
4096 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4097 "at %s, 4-%d.\n", insn, paddress (gdbarch, addr), ext);
4098 return -1;
4099 }
4100
4101 /* Parse and record instructions of primary opcode-19 at ADDR.
4102 Return 0 if successful. */
4103
4104 static int
4105 ppc_process_record_op19 (struct gdbarch *gdbarch, struct regcache *regcache,
4106 CORE_ADDR addr, uint32_t insn)
4107 {
4108 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4109 int ext = PPC_EXTOP (insn);
4110
4111 switch (ext & 0x01f)
4112 {
4113 case 2: /* Add PC Immediate Shifted */
4114 record_full_arch_list_add_reg (regcache,
4115 tdep->ppc_gp0_regnum + PPC_RT (insn));
4116 return 0;
4117 }
4118
4119 switch (ext)
4120 {
4121 case 0: /* Move Condition Register Field */
4122 case 33: /* Condition Register NOR */
4123 case 129: /* Condition Register AND with Complement */
4124 case 193: /* Condition Register XOR */
4125 case 225: /* Condition Register NAND */
4126 case 257: /* Condition Register AND */
4127 case 289: /* Condition Register Equivalent */
4128 case 417: /* Condition Register OR with Complement */
4129 case 449: /* Condition Register OR */
4130 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4131 return 0;
4132
4133 case 16: /* Branch Conditional */
4134 case 560: /* Branch Conditional to Branch Target Address Register */
4135 if ((PPC_BO (insn) & 0x4) == 0)
4136 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4137 /* FALL-THROUGH */
4138 case 528: /* Branch Conditional to Count Register */
4139 if (PPC_LK (insn))
4140 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4141 return 0;
4142
4143 case 150: /* Instruction Synchronize */
4144 /* Do nothing. */
4145 return 0;
4146 }
4147
4148 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4149 "at %s, 19-%d.\n", insn, paddress (gdbarch, addr), ext);
4150 return -1;
4151 }
4152
4153 /* Parse and record instructions of primary opcode-31 at ADDR.
4154 Return 0 if successful. */
4155
4156 static int
4157 ppc_process_record_op31 (struct gdbarch *gdbarch, struct regcache *regcache,
4158 CORE_ADDR addr, uint32_t insn)
4159 {
4160 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4161 int ext = PPC_EXTOP (insn);
4162 int tmp, nr, nb, i;
4163 CORE_ADDR at_dcsz, ea = 0;
4164 ULONGEST rb, ra, xer;
4165 int size = 0;
4166
4167 /* These instructions have OE bit. */
4168 switch (ext & 0x1ff)
4169 {
4170 /* These write RT and XER. Update CR if RC is set. */
4171 case 8: /* Subtract from carrying */
4172 case 10: /* Add carrying */
4173 case 136: /* Subtract from extended */
4174 case 138: /* Add extended */
4175 case 200: /* Subtract from zero extended */
4176 case 202: /* Add to zero extended */
4177 case 232: /* Subtract from minus one extended */
4178 case 234: /* Add to minus one extended */
4179 /* CA is always altered, but SO/OV are only altered when OE=1.
4180 In any case, XER is always altered. */
4181 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4182 if (PPC_RC (insn))
4183 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4184 record_full_arch_list_add_reg (regcache,
4185 tdep->ppc_gp0_regnum + PPC_RT (insn));
4186 return 0;
4187
4188 /* These write RT. Update CR if RC is set and update XER if OE is set. */
4189 case 40: /* Subtract from */
4190 case 104: /* Negate */
4191 case 233: /* Multiply low doubleword */
4192 case 235: /* Multiply low word */
4193 case 266: /* Add */
4194 case 393: /* Divide Doubleword Extended Unsigned */
4195 case 395: /* Divide Word Extended Unsigned */
4196 case 425: /* Divide Doubleword Extended */
4197 case 427: /* Divide Word Extended */
4198 case 457: /* Divide Doubleword Unsigned */
4199 case 459: /* Divide Word Unsigned */
4200 case 489: /* Divide Doubleword */
4201 case 491: /* Divide Word */
4202 if (PPC_OE (insn))
4203 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4204 /* FALL-THROUGH */
4205 case 9: /* Multiply High Doubleword Unsigned */
4206 case 11: /* Multiply High Word Unsigned */
4207 case 73: /* Multiply High Doubleword */
4208 case 75: /* Multiply High Word */
4209 if (PPC_RC (insn))
4210 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4211 record_full_arch_list_add_reg (regcache,
4212 tdep->ppc_gp0_regnum + PPC_RT (insn));
4213 return 0;
4214 }
4215
4216 if ((ext & 0x1f) == 15)
4217 {
4218 /* Integer Select. bit[16:20] is used for BC. */
4219 record_full_arch_list_add_reg (regcache,
4220 tdep->ppc_gp0_regnum + PPC_RT (insn));
4221 return 0;
4222 }
4223
4224 if ((ext & 0xff) == 170)
4225 {
4226 /* Add Extended using alternate carry bits */
4227 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4228 record_full_arch_list_add_reg (regcache,
4229 tdep->ppc_gp0_regnum + PPC_RT (insn));
4230 return 0;
4231 }
4232
4233 switch (ext)
4234 {
4235 case 78: /* Determine Leftmost Zero Byte */
4236 if (PPC_RC (insn))
4237 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4238 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4239 record_full_arch_list_add_reg (regcache,
4240 tdep->ppc_gp0_regnum + PPC_RT (insn));
4241 return 0;
4242
4243 /* These only write RT. */
4244 case 19: /* Move from condition register */
4245 /* Move From One Condition Register Field */
4246 case 74: /* Add and Generate Sixes */
4247 case 74 | 0x200: /* Add and Generate Sixes (bit-21 dont-care) */
4248 case 302: /* Move From Branch History Rolling Buffer */
4249 case 339: /* Move From Special Purpose Register */
4250 case 371: /* Move From Time Base [Phased-Out] */
4251 case 309: /* Load Doubleword Monitored Indexed */
4252 case 128: /* Set Boolean */
4253 case 755: /* Deliver A Random Number */
4254 record_full_arch_list_add_reg (regcache,
4255 tdep->ppc_gp0_regnum + PPC_RT (insn));
4256 return 0;
4257
4258 /* These only write to RA. */
4259 case 51: /* Move From VSR Doubleword */
4260 case 115: /* Move From VSR Word and Zero */
4261 case 122: /* Population count bytes */
4262 case 378: /* Population count words */
4263 case 506: /* Population count doublewords */
4264 case 154: /* Parity Word */
4265 case 186: /* Parity Doubleword */
4266 case 252: /* Bit Permute Doubleword */
4267 case 282: /* Convert Declets To Binary Coded Decimal */
4268 case 314: /* Convert Binary Coded Decimal To Declets */
4269 case 508: /* Compare bytes */
4270 case 307: /* Move From VSR Lower Doubleword */
4271 record_full_arch_list_add_reg (regcache,
4272 tdep->ppc_gp0_regnum + PPC_RA (insn));
4273 return 0;
4274
4275 /* These write CR and optional RA. */
4276 case 792: /* Shift Right Algebraic Word */
4277 case 794: /* Shift Right Algebraic Doubleword */
4278 case 824: /* Shift Right Algebraic Word Immediate */
4279 case 826: /* Shift Right Algebraic Doubleword Immediate (413) */
4280 case 826 | 1: /* Shift Right Algebraic Doubleword Immediate (413) */
4281 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4282 record_full_arch_list_add_reg (regcache,
4283 tdep->ppc_gp0_regnum + PPC_RA (insn));
4284 /* FALL-THROUGH */
4285 case 0: /* Compare */
4286 case 32: /* Compare logical */
4287 case 144: /* Move To Condition Register Fields */
4288 /* Move To One Condition Register Field */
4289 case 192: /* Compare Ranged Byte */
4290 case 224: /* Compare Equal Byte */
4291 case 576: /* Move XER to CR Extended */
4292 case 902: /* Paste (should always fail due to single-stepping and
4293 the memory location might not be accessible, so
4294 record only CR) */
4295 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4296 return 0;
4297
4298 /* These write to RT. Update RA if 'update indexed.' */
4299 case 53: /* Load Doubleword with Update Indexed */
4300 case 119: /* Load Byte and Zero with Update Indexed */
4301 case 311: /* Load Halfword and Zero with Update Indexed */
4302 case 55: /* Load Word and Zero with Update Indexed */
4303 case 375: /* Load Halfword Algebraic with Update Indexed */
4304 case 373: /* Load Word Algebraic with Update Indexed */
4305 record_full_arch_list_add_reg (regcache,
4306 tdep->ppc_gp0_regnum + PPC_RA (insn));
4307 /* FALL-THROUGH */
4308 case 21: /* Load Doubleword Indexed */
4309 case 52: /* Load Byte And Reserve Indexed */
4310 case 116: /* Load Halfword And Reserve Indexed */
4311 case 20: /* Load Word And Reserve Indexed */
4312 case 84: /* Load Doubleword And Reserve Indexed */
4313 case 87: /* Load Byte and Zero Indexed */
4314 case 279: /* Load Halfword and Zero Indexed */
4315 case 23: /* Load Word and Zero Indexed */
4316 case 343: /* Load Halfword Algebraic Indexed */
4317 case 341: /* Load Word Algebraic Indexed */
4318 case 790: /* Load Halfword Byte-Reverse Indexed */
4319 case 534: /* Load Word Byte-Reverse Indexed */
4320 case 532: /* Load Doubleword Byte-Reverse Indexed */
4321 case 582: /* Load Word Atomic */
4322 case 614: /* Load Doubleword Atomic */
4323 case 265: /* Modulo Unsigned Doubleword */
4324 case 777: /* Modulo Signed Doubleword */
4325 case 267: /* Modulo Unsigned Word */
4326 case 779: /* Modulo Signed Word */
4327 record_full_arch_list_add_reg (regcache,
4328 tdep->ppc_gp0_regnum + PPC_RT (insn));
4329 return 0;
4330
4331 case 597: /* Load String Word Immediate */
4332 case 533: /* Load String Word Indexed */
4333 if (ext == 597)
4334 {
4335 nr = PPC_NB (insn);
4336 if (nr == 0)
4337 nr = 32;
4338 }
4339 else
4340 {
4341 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4342 nr = PPC_XER_NB (xer);
4343 }
4344
4345 nr = (nr + 3) >> 2;
4346
4347 /* If n=0, the contents of register RT are undefined. */
4348 if (nr == 0)
4349 nr = 1;
4350
4351 for (i = 0; i < nr; i++)
4352 record_full_arch_list_add_reg (regcache,
4353 tdep->ppc_gp0_regnum
4354 + ((PPC_RT (insn) + i) & 0x1f));
4355 return 0;
4356
4357 case 276: /* Load Quadword And Reserve Indexed */
4358 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
4359 record_full_arch_list_add_reg (regcache, tmp);
4360 record_full_arch_list_add_reg (regcache, tmp + 1);
4361 return 0;
4362
4363 /* These write VRT. */
4364 case 6: /* Load Vector for Shift Left Indexed */
4365 case 38: /* Load Vector for Shift Right Indexed */
4366 case 7: /* Load Vector Element Byte Indexed */
4367 case 39: /* Load Vector Element Halfword Indexed */
4368 case 71: /* Load Vector Element Word Indexed */
4369 case 103: /* Load Vector Indexed */
4370 case 359: /* Load Vector Indexed LRU */
4371 record_full_arch_list_add_reg (regcache,
4372 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4373 return 0;
4374
4375 /* These write FRT. Update RA if 'update indexed.' */
4376 case 567: /* Load Floating-Point Single with Update Indexed */
4377 case 631: /* Load Floating-Point Double with Update Indexed */
4378 record_full_arch_list_add_reg (regcache,
4379 tdep->ppc_gp0_regnum + PPC_RA (insn));
4380 /* FALL-THROUGH */
4381 case 535: /* Load Floating-Point Single Indexed */
4382 case 599: /* Load Floating-Point Double Indexed */
4383 case 855: /* Load Floating-Point as Integer Word Algebraic Indexed */
4384 case 887: /* Load Floating-Point as Integer Word and Zero Indexed */
4385 record_full_arch_list_add_reg (regcache,
4386 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4387 return 0;
4388
4389 case 791: /* Load Floating-Point Double Pair Indexed */
4390 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
4391 record_full_arch_list_add_reg (regcache, tmp);
4392 record_full_arch_list_add_reg (regcache, tmp + 1);
4393 return 0;
4394
4395 case 179: /* Move To VSR Doubleword */
4396 case 211: /* Move To VSR Word Algebraic */
4397 case 243: /* Move To VSR Word and Zero */
4398 case 588: /* Load VSX Scalar Doubleword Indexed */
4399 case 524: /* Load VSX Scalar Single-Precision Indexed */
4400 case 76: /* Load VSX Scalar as Integer Word Algebraic Indexed */
4401 case 12: /* Load VSX Scalar as Integer Word and Zero Indexed */
4402 case 844: /* Load VSX Vector Doubleword*2 Indexed */
4403 case 332: /* Load VSX Vector Doubleword & Splat Indexed */
4404 case 780: /* Load VSX Vector Word*4 Indexed */
4405 case 268: /* Load VSX Vector Indexed */
4406 case 364: /* Load VSX Vector Word & Splat Indexed */
4407 case 812: /* Load VSX Vector Halfword*8 Indexed */
4408 case 876: /* Load VSX Vector Byte*16 Indexed */
4409 case 269: /* Load VSX Vector with Length */
4410 case 301: /* Load VSX Vector Left-justified with Length */
4411 case 781: /* Load VSX Scalar as Integer Byte & Zero Indexed */
4412 case 813: /* Load VSX Scalar as Integer Halfword & Zero Indexed */
4413 case 403: /* Move To VSR Word & Splat */
4414 case 435: /* Move To VSR Double Doubleword */
4415 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4416 return 0;
4417
4418 /* These write RA. Update CR if RC is set. */
4419 case 24: /* Shift Left Word */
4420 case 26: /* Count Leading Zeros Word */
4421 case 27: /* Shift Left Doubleword */
4422 case 28: /* AND */
4423 case 58: /* Count Leading Zeros Doubleword */
4424 case 60: /* AND with Complement */
4425 case 124: /* NOR */
4426 case 284: /* Equivalent */
4427 case 316: /* XOR */
4428 case 476: /* NAND */
4429 case 412: /* OR with Complement */
4430 case 444: /* OR */
4431 case 536: /* Shift Right Word */
4432 case 539: /* Shift Right Doubleword */
4433 case 922: /* Extend Sign Halfword */
4434 case 954: /* Extend Sign Byte */
4435 case 986: /* Extend Sign Word */
4436 case 538: /* Count Trailing Zeros Word */
4437 case 570: /* Count Trailing Zeros Doubleword */
4438 case 890: /* Extend-Sign Word and Shift Left Immediate (445) */
4439 case 890 | 1: /* Extend-Sign Word and Shift Left Immediate (445) */
4440 if (PPC_RC (insn))
4441 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4442 record_full_arch_list_add_reg (regcache,
4443 tdep->ppc_gp0_regnum + PPC_RA (insn));
4444 return 0;
4445
4446 /* Store memory. */
4447 case 181: /* Store Doubleword with Update Indexed */
4448 case 183: /* Store Word with Update Indexed */
4449 case 247: /* Store Byte with Update Indexed */
4450 case 439: /* Store Half Word with Update Indexed */
4451 case 695: /* Store Floating-Point Single with Update Indexed */
4452 case 759: /* Store Floating-Point Double with Update Indexed */
4453 record_full_arch_list_add_reg (regcache,
4454 tdep->ppc_gp0_regnum + PPC_RA (insn));
4455 /* FALL-THROUGH */
4456 case 135: /* Store Vector Element Byte Indexed */
4457 case 167: /* Store Vector Element Halfword Indexed */
4458 case 199: /* Store Vector Element Word Indexed */
4459 case 231: /* Store Vector Indexed */
4460 case 487: /* Store Vector Indexed LRU */
4461 case 716: /* Store VSX Scalar Doubleword Indexed */
4462 case 140: /* Store VSX Scalar as Integer Word Indexed */
4463 case 652: /* Store VSX Scalar Single-Precision Indexed */
4464 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4465 case 908: /* Store VSX Vector Word*4 Indexed */
4466 case 149: /* Store Doubleword Indexed */
4467 case 151: /* Store Word Indexed */
4468 case 215: /* Store Byte Indexed */
4469 case 407: /* Store Half Word Indexed */
4470 case 694: /* Store Byte Conditional Indexed */
4471 case 726: /* Store Halfword Conditional Indexed */
4472 case 150: /* Store Word Conditional Indexed */
4473 case 214: /* Store Doubleword Conditional Indexed */
4474 case 182: /* Store Quadword Conditional Indexed */
4475 case 662: /* Store Word Byte-Reverse Indexed */
4476 case 918: /* Store Halfword Byte-Reverse Indexed */
4477 case 660: /* Store Doubleword Byte-Reverse Indexed */
4478 case 663: /* Store Floating-Point Single Indexed */
4479 case 727: /* Store Floating-Point Double Indexed */
4480 case 919: /* Store Floating-Point Double Pair Indexed */
4481 case 983: /* Store Floating-Point as Integer Word Indexed */
4482 case 396: /* Store VSX Vector Indexed */
4483 case 940: /* Store VSX Vector Halfword*8 Indexed */
4484 case 1004: /* Store VSX Vector Byte*16 Indexed */
4485 case 909: /* Store VSX Scalar as Integer Byte Indexed */
4486 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
4487 if (ext == 694 || ext == 726 || ext == 150 || ext == 214 || ext == 182)
4488 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4489
4490 ra = 0;
4491 if (PPC_RA (insn) != 0)
4492 regcache_raw_read_unsigned (regcache,
4493 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4494 regcache_raw_read_unsigned (regcache,
4495 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4496 ea = ra + rb;
4497
4498 switch (ext)
4499 {
4500 case 183: /* Store Word with Update Indexed */
4501 case 199: /* Store Vector Element Word Indexed */
4502 case 140: /* Store VSX Scalar as Integer Word Indexed */
4503 case 652: /* Store VSX Scalar Single-Precision Indexed */
4504 case 151: /* Store Word Indexed */
4505 case 150: /* Store Word Conditional Indexed */
4506 case 662: /* Store Word Byte-Reverse Indexed */
4507 case 663: /* Store Floating-Point Single Indexed */
4508 case 695: /* Store Floating-Point Single with Update Indexed */
4509 case 983: /* Store Floating-Point as Integer Word Indexed */
4510 size = 4;
4511 break;
4512 case 247: /* Store Byte with Update Indexed */
4513 case 135: /* Store Vector Element Byte Indexed */
4514 case 215: /* Store Byte Indexed */
4515 case 694: /* Store Byte Conditional Indexed */
4516 case 909: /* Store VSX Scalar as Integer Byte Indexed */
4517 size = 1;
4518 break;
4519 case 439: /* Store Halfword with Update Indexed */
4520 case 167: /* Store Vector Element Halfword Indexed */
4521 case 407: /* Store Halfword Indexed */
4522 case 726: /* Store Halfword Conditional Indexed */
4523 case 918: /* Store Halfword Byte-Reverse Indexed */
4524 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
4525 size = 2;
4526 break;
4527 case 181: /* Store Doubleword with Update Indexed */
4528 case 716: /* Store VSX Scalar Doubleword Indexed */
4529 case 149: /* Store Doubleword Indexed */
4530 case 214: /* Store Doubleword Conditional Indexed */
4531 case 660: /* Store Doubleword Byte-Reverse Indexed */
4532 case 727: /* Store Floating-Point Double Indexed */
4533 case 759: /* Store Floating-Point Double with Update Indexed */
4534 size = 8;
4535 break;
4536 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4537 case 908: /* Store VSX Vector Word*4 Indexed */
4538 case 182: /* Store Quadword Conditional Indexed */
4539 case 231: /* Store Vector Indexed */
4540 case 487: /* Store Vector Indexed LRU */
4541 case 919: /* Store Floating-Point Double Pair Indexed */
4542 case 396: /* Store VSX Vector Indexed */
4543 case 940: /* Store VSX Vector Halfword*8 Indexed */
4544 case 1004: /* Store VSX Vector Byte*16 Indexed */
4545 size = 16;
4546 break;
4547 default:
4548 gdb_assert (0);
4549 }
4550
4551 /* Align address for Store Vector instructions. */
4552 switch (ext)
4553 {
4554 case 167: /* Store Vector Element Halfword Indexed */
4555 addr = addr & ~0x1ULL;
4556 break;
4557
4558 case 199: /* Store Vector Element Word Indexed */
4559 addr = addr & ~0x3ULL;
4560 break;
4561
4562 case 231: /* Store Vector Indexed */
4563 case 487: /* Store Vector Indexed LRU */
4564 addr = addr & ~0xfULL;
4565 break;
4566 }
4567
4568 record_full_arch_list_add_mem (addr, size);
4569 return 0;
4570
4571 case 397: /* Store VSX Vector with Length */
4572 case 429: /* Store VSX Vector Left-justified with Length */
4573 ra = 0;
4574 if (PPC_RA (insn) != 0)
4575 regcache_raw_read_unsigned (regcache,
4576 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4577 ea = ra;
4578 regcache_raw_read_unsigned (regcache,
4579 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4580 /* Store up to 16 bytes. */
4581 nb = (rb & 0xff) > 16 ? 16 : (rb & 0xff);
4582 if (nb > 0)
4583 record_full_arch_list_add_mem (ea, nb);
4584 return 0;
4585
4586 case 710: /* Store Word Atomic */
4587 case 742: /* Store Doubleword Atomic */
4588 ra = 0;
4589 if (PPC_RA (insn) != 0)
4590 regcache_raw_read_unsigned (regcache,
4591 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4592 ea = ra;
4593 switch (ext)
4594 {
4595 case 710: /* Store Word Atomic */
4596 size = 8;
4597 break;
4598 case 742: /* Store Doubleword Atomic */
4599 size = 16;
4600 break;
4601 default:
4602 gdb_assert (0);
4603 }
4604 record_full_arch_list_add_mem (ea, size);
4605 return 0;
4606
4607 case 725: /* Store String Word Immediate */
4608 ra = 0;
4609 if (PPC_RA (insn) != 0)
4610 regcache_raw_read_unsigned (regcache,
4611 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4612 ea += ra;
4613
4614 nb = PPC_NB (insn);
4615 if (nb == 0)
4616 nb = 32;
4617
4618 record_full_arch_list_add_mem (ea, nb);
4619
4620 return 0;
4621
4622 case 661: /* Store String Word Indexed */
4623 ra = 0;
4624 if (PPC_RA (insn) != 0)
4625 regcache_raw_read_unsigned (regcache,
4626 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4627 ea += ra;
4628
4629 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4630 nb = PPC_XER_NB (xer);
4631
4632 if (nb != 0)
4633 {
4634 regcache_raw_read_unsigned (regcache,
4635 tdep->ppc_gp0_regnum + PPC_RB (insn),
4636 &rb);
4637 ea += rb;
4638 record_full_arch_list_add_mem (ea, nb);
4639 }
4640
4641 return 0;
4642
4643 case 467: /* Move To Special Purpose Register */
4644 switch (PPC_SPR (insn))
4645 {
4646 case 1: /* XER */
4647 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4648 return 0;
4649 case 8: /* LR */
4650 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4651 return 0;
4652 case 9: /* CTR */
4653 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4654 return 0;
4655 case 256: /* VRSAVE */
4656 record_full_arch_list_add_reg (regcache, tdep->ppc_vrsave_regnum);
4657 return 0;
4658 }
4659
4660 goto UNKNOWN_OP;
4661
4662 case 147: /* Move To Split Little Endian */
4663 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
4664 return 0;
4665
4666 case 512: /* Move to Condition Register from XER */
4667 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4668 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4669 return 0;
4670
4671 case 4: /* Trap Word */
4672 case 68: /* Trap Doubleword */
4673 case 430: /* Clear BHRB */
4674 case 598: /* Synchronize */
4675 case 62: /* Wait for Interrupt */
4676 case 30: /* Wait */
4677 case 22: /* Instruction Cache Block Touch */
4678 case 854: /* Enforce In-order Execution of I/O */
4679 case 246: /* Data Cache Block Touch for Store */
4680 case 54: /* Data Cache Block Store */
4681 case 86: /* Data Cache Block Flush */
4682 case 278: /* Data Cache Block Touch */
4683 case 758: /* Data Cache Block Allocate */
4684 case 982: /* Instruction Cache Block Invalidate */
4685 case 774: /* Copy */
4686 case 838: /* CP_Abort */
4687 return 0;
4688
4689 case 654: /* Transaction Begin */
4690 case 686: /* Transaction End */
4691 case 750: /* Transaction Suspend or Resume */
4692 case 782: /* Transaction Abort Word Conditional */
4693 case 814: /* Transaction Abort Doubleword Conditional */
4694 case 846: /* Transaction Abort Word Conditional Immediate */
4695 case 878: /* Transaction Abort Doubleword Conditional Immediate */
4696 case 910: /* Transaction Abort */
4697 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
4698 /* FALL-THROUGH */
4699 case 718: /* Transaction Check */
4700 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4701 return 0;
4702
4703 case 1014: /* Data Cache Block set to Zero */
4704 if (target_auxv_search (target_stack, AT_DCACHEBSIZE, &at_dcsz) <= 0
4705 || at_dcsz == 0)
4706 at_dcsz = 128; /* Assume 128-byte cache line size (POWER8) */
4707
4708 ra = 0;
4709 if (PPC_RA (insn) != 0)
4710 regcache_raw_read_unsigned (regcache,
4711 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4712 regcache_raw_read_unsigned (regcache,
4713 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4714 ea = (ra + rb) & ~((ULONGEST) (at_dcsz - 1));
4715 record_full_arch_list_add_mem (ea, at_dcsz);
4716 return 0;
4717 }
4718
4719 UNKNOWN_OP:
4720 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4721 "at %s, 31-%d.\n", insn, paddress (gdbarch, addr), ext);
4722 return -1;
4723 }
4724
4725 /* Parse and record instructions of primary opcode-59 at ADDR.
4726 Return 0 if successful. */
4727
4728 static int
4729 ppc_process_record_op59 (struct gdbarch *gdbarch, struct regcache *regcache,
4730 CORE_ADDR addr, uint32_t insn)
4731 {
4732 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4733 int ext = PPC_EXTOP (insn);
4734
4735 switch (ext & 0x1f)
4736 {
4737 case 18: /* Floating Divide */
4738 case 20: /* Floating Subtract */
4739 case 21: /* Floating Add */
4740 case 22: /* Floating Square Root */
4741 case 24: /* Floating Reciprocal Estimate */
4742 case 25: /* Floating Multiply */
4743 case 26: /* Floating Reciprocal Square Root Estimate */
4744 case 28: /* Floating Multiply-Subtract */
4745 case 29: /* Floating Multiply-Add */
4746 case 30: /* Floating Negative Multiply-Subtract */
4747 case 31: /* Floating Negative Multiply-Add */
4748 record_full_arch_list_add_reg (regcache,
4749 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4750 if (PPC_RC (insn))
4751 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4752 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4753
4754 return 0;
4755 }
4756
4757 switch (ext)
4758 {
4759 case 2: /* DFP Add */
4760 case 3: /* DFP Quantize */
4761 case 34: /* DFP Multiply */
4762 case 35: /* DFP Reround */
4763 case 67: /* DFP Quantize Immediate */
4764 case 99: /* DFP Round To FP Integer With Inexact */
4765 case 227: /* DFP Round To FP Integer Without Inexact */
4766 case 258: /* DFP Convert To DFP Long! */
4767 case 290: /* DFP Convert To Fixed */
4768 case 514: /* DFP Subtract */
4769 case 546: /* DFP Divide */
4770 case 770: /* DFP Round To DFP Short! */
4771 case 802: /* DFP Convert From Fixed */
4772 case 834: /* DFP Encode BCD To DPD */
4773 if (PPC_RC (insn))
4774 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4775 record_full_arch_list_add_reg (regcache,
4776 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4777 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4778 return 0;
4779
4780 case 130: /* DFP Compare Ordered */
4781 case 162: /* DFP Test Exponent */
4782 case 194: /* DFP Test Data Class */
4783 case 226: /* DFP Test Data Group */
4784 case 642: /* DFP Compare Unordered */
4785 case 674: /* DFP Test Significance */
4786 case 675: /* DFP Test Significance Immediate */
4787 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4788 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4789 return 0;
4790
4791 case 66: /* DFP Shift Significand Left Immediate */
4792 case 98: /* DFP Shift Significand Right Immediate */
4793 case 322: /* DFP Decode DPD To BCD */
4794 case 354: /* DFP Extract Biased Exponent */
4795 case 866: /* DFP Insert Biased Exponent */
4796 record_full_arch_list_add_reg (regcache,
4797 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4798 if (PPC_RC (insn))
4799 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4800 return 0;
4801
4802 case 846: /* Floating Convert From Integer Doubleword Single */
4803 case 974: /* Floating Convert From Integer Doubleword Unsigned
4804 Single */
4805 record_full_arch_list_add_reg (regcache,
4806 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4807 if (PPC_RC (insn))
4808 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4809 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4810
4811 return 0;
4812 }
4813
4814 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4815 "at %s, 59-%d.\n", insn, paddress (gdbarch, addr), ext);
4816 return -1;
4817 }
4818
4819 /* Parse and record instructions of primary opcode-60 at ADDR.
4820 Return 0 if successful. */
4821
4822 static int
4823 ppc_process_record_op60 (struct gdbarch *gdbarch, struct regcache *regcache,
4824 CORE_ADDR addr, uint32_t insn)
4825 {
4826 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4827 int ext = PPC_EXTOP (insn);
4828
4829 switch (ext >> 2)
4830 {
4831 case 0: /* VSX Scalar Add Single-Precision */
4832 case 32: /* VSX Scalar Add Double-Precision */
4833 case 24: /* VSX Scalar Divide Single-Precision */
4834 case 56: /* VSX Scalar Divide Double-Precision */
4835 case 176: /* VSX Scalar Copy Sign Double-Precision */
4836 case 33: /* VSX Scalar Multiply-Add Double-Precision */
4837 case 41: /* ditto */
4838 case 1: /* VSX Scalar Multiply-Add Single-Precision */
4839 case 9: /* ditto */
4840 case 160: /* VSX Scalar Maximum Double-Precision */
4841 case 168: /* VSX Scalar Minimum Double-Precision */
4842 case 49: /* VSX Scalar Multiply-Subtract Double-Precision */
4843 case 57: /* ditto */
4844 case 17: /* VSX Scalar Multiply-Subtract Single-Precision */
4845 case 25: /* ditto */
4846 case 48: /* VSX Scalar Multiply Double-Precision */
4847 case 16: /* VSX Scalar Multiply Single-Precision */
4848 case 161: /* VSX Scalar Negative Multiply-Add Double-Precision */
4849 case 169: /* ditto */
4850 case 129: /* VSX Scalar Negative Multiply-Add Single-Precision */
4851 case 137: /* ditto */
4852 case 177: /* VSX Scalar Negative Multiply-Subtract Double-Precision */
4853 case 185: /* ditto */
4854 case 145: /* VSX Scalar Negative Multiply-Subtract Single-Precision */
4855 case 153: /* ditto */
4856 case 40: /* VSX Scalar Subtract Double-Precision */
4857 case 8: /* VSX Scalar Subtract Single-Precision */
4858 case 96: /* VSX Vector Add Double-Precision */
4859 case 64: /* VSX Vector Add Single-Precision */
4860 case 120: /* VSX Vector Divide Double-Precision */
4861 case 88: /* VSX Vector Divide Single-Precision */
4862 case 97: /* VSX Vector Multiply-Add Double-Precision */
4863 case 105: /* ditto */
4864 case 65: /* VSX Vector Multiply-Add Single-Precision */
4865 case 73: /* ditto */
4866 case 224: /* VSX Vector Maximum Double-Precision */
4867 case 192: /* VSX Vector Maximum Single-Precision */
4868 case 232: /* VSX Vector Minimum Double-Precision */
4869 case 200: /* VSX Vector Minimum Single-Precision */
4870 case 113: /* VSX Vector Multiply-Subtract Double-Precision */
4871 case 121: /* ditto */
4872 case 81: /* VSX Vector Multiply-Subtract Single-Precision */
4873 case 89: /* ditto */
4874 case 112: /* VSX Vector Multiply Double-Precision */
4875 case 80: /* VSX Vector Multiply Single-Precision */
4876 case 225: /* VSX Vector Negative Multiply-Add Double-Precision */
4877 case 233: /* ditto */
4878 case 193: /* VSX Vector Negative Multiply-Add Single-Precision */
4879 case 201: /* ditto */
4880 case 241: /* VSX Vector Negative Multiply-Subtract Double-Precision */
4881 case 249: /* ditto */
4882 case 209: /* VSX Vector Negative Multiply-Subtract Single-Precision */
4883 case 217: /* ditto */
4884 case 104: /* VSX Vector Subtract Double-Precision */
4885 case 72: /* VSX Vector Subtract Single-Precision */
4886 case 128: /* VSX Scalar Maximum Type-C Double-Precision */
4887 case 136: /* VSX Scalar Minimum Type-C Double-Precision */
4888 case 144: /* VSX Scalar Maximum Type-J Double-Precision */
4889 case 152: /* VSX Scalar Minimum Type-J Double-Precision */
4890 case 3: /* VSX Scalar Compare Equal Double-Precision */
4891 case 11: /* VSX Scalar Compare Greater Than Double-Precision */
4892 case 19: /* VSX Scalar Compare Greater Than or Equal
4893 Double-Precision */
4894 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4895 /* FALL-THROUGH */
4896 case 240: /* VSX Vector Copy Sign Double-Precision */
4897 case 208: /* VSX Vector Copy Sign Single-Precision */
4898 case 130: /* VSX Logical AND */
4899 case 138: /* VSX Logical AND with Complement */
4900 case 186: /* VSX Logical Equivalence */
4901 case 178: /* VSX Logical NAND */
4902 case 170: /* VSX Logical OR with Complement */
4903 case 162: /* VSX Logical NOR */
4904 case 146: /* VSX Logical OR */
4905 case 154: /* VSX Logical XOR */
4906 case 18: /* VSX Merge High Word */
4907 case 50: /* VSX Merge Low Word */
4908 case 10: /* VSX Permute Doubleword Immediate (DM=0) */
4909 case 10 | 0x20: /* VSX Permute Doubleword Immediate (DM=1) */
4910 case 10 | 0x40: /* VSX Permute Doubleword Immediate (DM=2) */
4911 case 10 | 0x60: /* VSX Permute Doubleword Immediate (DM=3) */
4912 case 2: /* VSX Shift Left Double by Word Immediate (SHW=0) */
4913 case 2 | 0x20: /* VSX Shift Left Double by Word Immediate (SHW=1) */
4914 case 2 | 0x40: /* VSX Shift Left Double by Word Immediate (SHW=2) */
4915 case 2 | 0x60: /* VSX Shift Left Double by Word Immediate (SHW=3) */
4916 case 216: /* VSX Vector Insert Exponent Single-Precision */
4917 case 248: /* VSX Vector Insert Exponent Double-Precision */
4918 case 26: /* VSX Vector Permute */
4919 case 58: /* VSX Vector Permute Right-indexed */
4920 case 213: /* VSX Vector Test Data Class Single-Precision (DC=0) */
4921 case 213 | 0x8: /* VSX Vector Test Data Class Single-Precision (DC=1) */
4922 case 245: /* VSX Vector Test Data Class Double-Precision (DC=0) */
4923 case 245 | 0x8: /* VSX Vector Test Data Class Double-Precision (DC=1) */
4924 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4925 return 0;
4926
4927 case 61: /* VSX Scalar Test for software Divide Double-Precision */
4928 case 125: /* VSX Vector Test for software Divide Double-Precision */
4929 case 93: /* VSX Vector Test for software Divide Single-Precision */
4930 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4931 return 0;
4932
4933 case 35: /* VSX Scalar Compare Unordered Double-Precision */
4934 case 43: /* VSX Scalar Compare Ordered Double-Precision */
4935 case 59: /* VSX Scalar Compare Exponents Double-Precision */
4936 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4937 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4938 return 0;
4939 }
4940
4941 switch ((ext >> 2) & 0x7f) /* Mask out Rc-bit. */
4942 {
4943 case 99: /* VSX Vector Compare Equal To Double-Precision */
4944 case 67: /* VSX Vector Compare Equal To Single-Precision */
4945 case 115: /* VSX Vector Compare Greater Than or
4946 Equal To Double-Precision */
4947 case 83: /* VSX Vector Compare Greater Than or
4948 Equal To Single-Precision */
4949 case 107: /* VSX Vector Compare Greater Than Double-Precision */
4950 case 75: /* VSX Vector Compare Greater Than Single-Precision */
4951 if (PPC_Rc (insn))
4952 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4953 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4954 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4955 return 0;
4956 }
4957
4958 switch (ext >> 1)
4959 {
4960 case 265: /* VSX Scalar round Double-Precision to
4961 Single-Precision and Convert to
4962 Single-Precision format */
4963 case 344: /* VSX Scalar truncate Double-Precision to
4964 Integer and Convert to Signed Integer
4965 Doubleword format with Saturate */
4966 case 88: /* VSX Scalar truncate Double-Precision to
4967 Integer and Convert to Signed Integer Word
4968 Format with Saturate */
4969 case 328: /* VSX Scalar truncate Double-Precision integer
4970 and Convert to Unsigned Integer Doubleword
4971 Format with Saturate */
4972 case 72: /* VSX Scalar truncate Double-Precision to
4973 Integer and Convert to Unsigned Integer Word
4974 Format with Saturate */
4975 case 329: /* VSX Scalar Convert Single-Precision to
4976 Double-Precision format */
4977 case 376: /* VSX Scalar Convert Signed Integer
4978 Doubleword to floating-point format and
4979 Round to Double-Precision format */
4980 case 312: /* VSX Scalar Convert Signed Integer
4981 Doubleword to floating-point format and
4982 round to Single-Precision */
4983 case 360: /* VSX Scalar Convert Unsigned Integer
4984 Doubleword to floating-point format and
4985 Round to Double-Precision format */
4986 case 296: /* VSX Scalar Convert Unsigned Integer
4987 Doubleword to floating-point format and
4988 Round to Single-Precision */
4989 case 73: /* VSX Scalar Round to Double-Precision Integer
4990 Using Round to Nearest Away */
4991 case 107: /* VSX Scalar Round to Double-Precision Integer
4992 Exact using Current rounding mode */
4993 case 121: /* VSX Scalar Round to Double-Precision Integer
4994 Using Round toward -Infinity */
4995 case 105: /* VSX Scalar Round to Double-Precision Integer
4996 Using Round toward +Infinity */
4997 case 89: /* VSX Scalar Round to Double-Precision Integer
4998 Using Round toward Zero */
4999 case 90: /* VSX Scalar Reciprocal Estimate Double-Precision */
5000 case 26: /* VSX Scalar Reciprocal Estimate Single-Precision */
5001 case 281: /* VSX Scalar Round to Single-Precision */
5002 case 74: /* VSX Scalar Reciprocal Square Root Estimate
5003 Double-Precision */
5004 case 10: /* VSX Scalar Reciprocal Square Root Estimate
5005 Single-Precision */
5006 case 75: /* VSX Scalar Square Root Double-Precision */
5007 case 11: /* VSX Scalar Square Root Single-Precision */
5008 case 393: /* VSX Vector round Double-Precision to
5009 Single-Precision and Convert to
5010 Single-Precision format */
5011 case 472: /* VSX Vector truncate Double-Precision to
5012 Integer and Convert to Signed Integer
5013 Doubleword format with Saturate */
5014 case 216: /* VSX Vector truncate Double-Precision to
5015 Integer and Convert to Signed Integer Word
5016 Format with Saturate */
5017 case 456: /* VSX Vector truncate Double-Precision to
5018 Integer and Convert to Unsigned Integer
5019 Doubleword format with Saturate */
5020 case 200: /* VSX Vector truncate Double-Precision to
5021 Integer and Convert to Unsigned Integer Word
5022 Format with Saturate */
5023 case 457: /* VSX Vector Convert Single-Precision to
5024 Double-Precision format */
5025 case 408: /* VSX Vector truncate Single-Precision to
5026 Integer and Convert to Signed Integer
5027 Doubleword format with Saturate */
5028 case 152: /* VSX Vector truncate Single-Precision to
5029 Integer and Convert to Signed Integer Word
5030 Format with Saturate */
5031 case 392: /* VSX Vector truncate Single-Precision to
5032 Integer and Convert to Unsigned Integer
5033 Doubleword format with Saturate */
5034 case 136: /* VSX Vector truncate Single-Precision to
5035 Integer and Convert to Unsigned Integer Word
5036 Format with Saturate */
5037 case 504: /* VSX Vector Convert and round Signed Integer
5038 Doubleword to Double-Precision format */
5039 case 440: /* VSX Vector Convert and round Signed Integer
5040 Doubleword to Single-Precision format */
5041 case 248: /* VSX Vector Convert Signed Integer Word to
5042 Double-Precision format */
5043 case 184: /* VSX Vector Convert and round Signed Integer
5044 Word to Single-Precision format */
5045 case 488: /* VSX Vector Convert and round Unsigned
5046 Integer Doubleword to Double-Precision format */
5047 case 424: /* VSX Vector Convert and round Unsigned
5048 Integer Doubleword to Single-Precision format */
5049 case 232: /* VSX Vector Convert and round Unsigned
5050 Integer Word to Double-Precision format */
5051 case 168: /* VSX Vector Convert and round Unsigned
5052 Integer Word to Single-Precision format */
5053 case 201: /* VSX Vector Round to Double-Precision
5054 Integer using round to Nearest Away */
5055 case 235: /* VSX Vector Round to Double-Precision
5056 Integer Exact using Current rounding mode */
5057 case 249: /* VSX Vector Round to Double-Precision
5058 Integer using round toward -Infinity */
5059 case 233: /* VSX Vector Round to Double-Precision
5060 Integer using round toward +Infinity */
5061 case 217: /* VSX Vector Round to Double-Precision
5062 Integer using round toward Zero */
5063 case 218: /* VSX Vector Reciprocal Estimate Double-Precision */
5064 case 154: /* VSX Vector Reciprocal Estimate Single-Precision */
5065 case 137: /* VSX Vector Round to Single-Precision Integer
5066 Using Round to Nearest Away */
5067 case 171: /* VSX Vector Round to Single-Precision Integer
5068 Exact Using Current rounding mode */
5069 case 185: /* VSX Vector Round to Single-Precision Integer
5070 Using Round toward -Infinity */
5071 case 169: /* VSX Vector Round to Single-Precision Integer
5072 Using Round toward +Infinity */
5073 case 153: /* VSX Vector Round to Single-Precision Integer
5074 Using round toward Zero */
5075 case 202: /* VSX Vector Reciprocal Square Root Estimate
5076 Double-Precision */
5077 case 138: /* VSX Vector Reciprocal Square Root Estimate
5078 Single-Precision */
5079 case 203: /* VSX Vector Square Root Double-Precision */
5080 case 139: /* VSX Vector Square Root Single-Precision */
5081 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5082 /* FALL-THROUGH */
5083 case 345: /* VSX Scalar Absolute Value Double-Precision */
5084 case 267: /* VSX Scalar Convert Scalar Single-Precision to
5085 Vector Single-Precision format Non-signalling */
5086 case 331: /* VSX Scalar Convert Single-Precision to
5087 Double-Precision format Non-signalling */
5088 case 361: /* VSX Scalar Negative Absolute Value Double-Precision */
5089 case 377: /* VSX Scalar Negate Double-Precision */
5090 case 473: /* VSX Vector Absolute Value Double-Precision */
5091 case 409: /* VSX Vector Absolute Value Single-Precision */
5092 case 489: /* VSX Vector Negative Absolute Value Double-Precision */
5093 case 425: /* VSX Vector Negative Absolute Value Single-Precision */
5094 case 505: /* VSX Vector Negate Double-Precision */
5095 case 441: /* VSX Vector Negate Single-Precision */
5096 case 164: /* VSX Splat Word */
5097 case 165: /* VSX Vector Extract Unsigned Word */
5098 case 181: /* VSX Vector Insert Word */
5099 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5100 return 0;
5101
5102 case 298: /* VSX Scalar Test Data Class Single-Precision */
5103 case 362: /* VSX Scalar Test Data Class Double-Precision */
5104 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5105 /* FALL-THROUGH */
5106 case 106: /* VSX Scalar Test for software Square Root
5107 Double-Precision */
5108 case 234: /* VSX Vector Test for software Square Root
5109 Double-Precision */
5110 case 170: /* VSX Vector Test for software Square Root
5111 Single-Precision */
5112 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5113 return 0;
5114
5115 case 347:
5116 switch (PPC_FIELD (insn, 11, 5))
5117 {
5118 case 0: /* VSX Scalar Extract Exponent Double-Precision */
5119 case 1: /* VSX Scalar Extract Significand Double-Precision */
5120 record_full_arch_list_add_reg (regcache,
5121 tdep->ppc_gp0_regnum + PPC_RT (insn));
5122 return 0;
5123 case 16: /* VSX Scalar Convert Half-Precision format to
5124 Double-Precision format */
5125 case 17: /* VSX Scalar round & Convert Double-Precision format
5126 to Half-Precision format */
5127 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5128 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5129 return 0;
5130 }
5131 break;
5132
5133 case 475:
5134 switch (PPC_FIELD (insn, 11, 5))
5135 {
5136 case 24: /* VSX Vector Convert Half-Precision format to
5137 Single-Precision format */
5138 case 25: /* VSX Vector round and Convert Single-Precision format
5139 to Half-Precision format */
5140 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5141 /* FALL-THROUGH */
5142 case 0: /* VSX Vector Extract Exponent Double-Precision */
5143 case 1: /* VSX Vector Extract Significand Double-Precision */
5144 case 7: /* VSX Vector Byte-Reverse Halfword */
5145 case 8: /* VSX Vector Extract Exponent Single-Precision */
5146 case 9: /* VSX Vector Extract Significand Single-Precision */
5147 case 15: /* VSX Vector Byte-Reverse Word */
5148 case 23: /* VSX Vector Byte-Reverse Doubleword */
5149 case 31: /* VSX Vector Byte-Reverse Quadword */
5150 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5151 return 0;
5152 }
5153 break;
5154 }
5155
5156 switch (ext)
5157 {
5158 case 360: /* VSX Vector Splat Immediate Byte */
5159 if (PPC_FIELD (insn, 11, 2) == 0)
5160 {
5161 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5162 return 0;
5163 }
5164 break;
5165 case 918: /* VSX Scalar Insert Exponent Double-Precision */
5166 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5167 return 0;
5168 }
5169
5170 if (((ext >> 3) & 0x3) == 3) /* VSX Select */
5171 {
5172 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5173 return 0;
5174 }
5175
5176 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5177 "at %s, 60-%d.\n", insn, paddress (gdbarch, addr), ext);
5178 return -1;
5179 }
5180
5181 /* Parse and record instructions of primary opcode-61 at ADDR.
5182 Return 0 if successful. */
5183
5184 static int
5185 ppc_process_record_op61 (struct gdbarch *gdbarch, struct regcache *regcache,
5186 CORE_ADDR addr, uint32_t insn)
5187 {
5188 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5189 ULONGEST ea = 0;
5190 int size;
5191
5192 switch (insn & 0x3)
5193 {
5194 case 0: /* Store Floating-Point Double Pair */
5195 case 2: /* Store VSX Scalar Doubleword */
5196 case 3: /* Store VSX Scalar Single */
5197 if (PPC_RA (insn) != 0)
5198 regcache_raw_read_unsigned (regcache,
5199 tdep->ppc_gp0_regnum + PPC_RA (insn),
5200 &ea);
5201 ea += PPC_DS (insn) << 2;
5202 switch (insn & 0x3)
5203 {
5204 case 0: /* Store Floating-Point Double Pair */
5205 size = 16;
5206 break;
5207 case 2: /* Store VSX Scalar Doubleword */
5208 size = 8;
5209 break;
5210 case 3: /* Store VSX Scalar Single */
5211 size = 4;
5212 break;
5213 default:
5214 gdb_assert (0);
5215 }
5216 record_full_arch_list_add_mem (ea, size);
5217 return 0;
5218 }
5219
5220 switch (insn & 0x7)
5221 {
5222 case 1: /* Load VSX Vector */
5223 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5224 return 0;
5225 case 5: /* Store VSX Vector */
5226 if (PPC_RA (insn) != 0)
5227 regcache_raw_read_unsigned (regcache,
5228 tdep->ppc_gp0_regnum + PPC_RA (insn),
5229 &ea);
5230 ea += PPC_DQ (insn) << 4;
5231 record_full_arch_list_add_mem (ea, 16);
5232 return 0;
5233 }
5234
5235 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5236 "at %s.\n", insn, paddress (gdbarch, addr));
5237 return -1;
5238 }
5239
5240 /* Parse and record instructions of primary opcode-63 at ADDR.
5241 Return 0 if successful. */
5242
5243 static int
5244 ppc_process_record_op63 (struct gdbarch *gdbarch, struct regcache *regcache,
5245 CORE_ADDR addr, uint32_t insn)
5246 {
5247 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5248 int ext = PPC_EXTOP (insn);
5249 int tmp;
5250
5251 switch (ext & 0x1f)
5252 {
5253 case 18: /* Floating Divide */
5254 case 20: /* Floating Subtract */
5255 case 21: /* Floating Add */
5256 case 22: /* Floating Square Root */
5257 case 24: /* Floating Reciprocal Estimate */
5258 case 25: /* Floating Multiply */
5259 case 26: /* Floating Reciprocal Square Root Estimate */
5260 case 28: /* Floating Multiply-Subtract */
5261 case 29: /* Floating Multiply-Add */
5262 case 30: /* Floating Negative Multiply-Subtract */
5263 case 31: /* Floating Negative Multiply-Add */
5264 record_full_arch_list_add_reg (regcache,
5265 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5266 if (PPC_RC (insn))
5267 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5268 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5269 return 0;
5270
5271 case 23: /* Floating Select */
5272 record_full_arch_list_add_reg (regcache,
5273 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5274 if (PPC_RC (insn))
5275 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5276 return 0;
5277 }
5278
5279 switch (ext & 0xff)
5280 {
5281 case 5: /* VSX Scalar Round to Quad-Precision Integer */
5282 case 37: /* VSX Scalar Round Quad-Precision to Double-Extended
5283 Precision */
5284 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5285 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5286 return 0;
5287 }
5288
5289 switch (ext)
5290 {
5291 case 2: /* DFP Add Quad */
5292 case 3: /* DFP Quantize Quad */
5293 case 34: /* DFP Multiply Quad */
5294 case 35: /* DFP Reround Quad */
5295 case 67: /* DFP Quantize Immediate Quad */
5296 case 99: /* DFP Round To FP Integer With Inexact Quad */
5297 case 227: /* DFP Round To FP Integer Without Inexact Quad */
5298 case 258: /* DFP Convert To DFP Extended Quad */
5299 case 514: /* DFP Subtract Quad */
5300 case 546: /* DFP Divide Quad */
5301 case 770: /* DFP Round To DFP Long Quad */
5302 case 802: /* DFP Convert From Fixed Quad */
5303 case 834: /* DFP Encode BCD To DPD Quad */
5304 if (PPC_RC (insn))
5305 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5306 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5307 record_full_arch_list_add_reg (regcache, tmp);
5308 record_full_arch_list_add_reg (regcache, tmp + 1);
5309 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5310 return 0;
5311
5312 case 130: /* DFP Compare Ordered Quad */
5313 case 162: /* DFP Test Exponent Quad */
5314 case 194: /* DFP Test Data Class Quad */
5315 case 226: /* DFP Test Data Group Quad */
5316 case 642: /* DFP Compare Unordered Quad */
5317 case 674: /* DFP Test Significance Quad */
5318 case 675: /* DFP Test Significance Immediate Quad */
5319 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5320 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5321 return 0;
5322
5323 case 66: /* DFP Shift Significand Left Immediate Quad */
5324 case 98: /* DFP Shift Significand Right Immediate Quad */
5325 case 322: /* DFP Decode DPD To BCD Quad */
5326 case 866: /* DFP Insert Biased Exponent Quad */
5327 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5328 record_full_arch_list_add_reg (regcache, tmp);
5329 record_full_arch_list_add_reg (regcache, tmp + 1);
5330 if (PPC_RC (insn))
5331 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5332 return 0;
5333
5334 case 290: /* DFP Convert To Fixed Quad */
5335 record_full_arch_list_add_reg (regcache,
5336 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5337 if (PPC_RC (insn))
5338 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5339 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5340 return 0;
5341
5342 case 354: /* DFP Extract Biased Exponent Quad */
5343 record_full_arch_list_add_reg (regcache,
5344 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5345 if (PPC_RC (insn))
5346 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5347 return 0;
5348
5349 case 12: /* Floating Round to Single-Precision */
5350 case 14: /* Floating Convert To Integer Word */
5351 case 15: /* Floating Convert To Integer Word
5352 with round toward Zero */
5353 case 142: /* Floating Convert To Integer Word Unsigned */
5354 case 143: /* Floating Convert To Integer Word Unsigned
5355 with round toward Zero */
5356 case 392: /* Floating Round to Integer Nearest */
5357 case 424: /* Floating Round to Integer Toward Zero */
5358 case 456: /* Floating Round to Integer Plus */
5359 case 488: /* Floating Round to Integer Minus */
5360 case 814: /* Floating Convert To Integer Doubleword */
5361 case 815: /* Floating Convert To Integer Doubleword
5362 with round toward Zero */
5363 case 846: /* Floating Convert From Integer Doubleword */
5364 case 942: /* Floating Convert To Integer Doubleword Unsigned */
5365 case 943: /* Floating Convert To Integer Doubleword Unsigned
5366 with round toward Zero */
5367 case 974: /* Floating Convert From Integer Doubleword Unsigned */
5368 record_full_arch_list_add_reg (regcache,
5369 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5370 if (PPC_RC (insn))
5371 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5372 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5373 return 0;
5374
5375 case 583:
5376 switch (PPC_FIELD (insn, 11, 5))
5377 {
5378 case 1: /* Move From FPSCR & Clear Enables */
5379 case 20: /* Move From FPSCR Control & set DRN */
5380 case 21: /* Move From FPSCR Control & set DRN Immediate */
5381 case 22: /* Move From FPSCR Control & set RN */
5382 case 23: /* Move From FPSCR Control & set RN Immediate */
5383 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5384 /* Fall through. */
5385 case 0: /* Move From FPSCR */
5386 case 24: /* Move From FPSCR Lightweight */
5387 if (PPC_FIELD (insn, 11, 5) == 0 && PPC_RC (insn))
5388 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5389 record_full_arch_list_add_reg (regcache,
5390 tdep->ppc_fp0_regnum
5391 + PPC_FRT (insn));
5392 return 0;
5393 }
5394 break;
5395
5396 case 8: /* Floating Copy Sign */
5397 case 40: /* Floating Negate */
5398 case 72: /* Floating Move Register */
5399 case 136: /* Floating Negative Absolute Value */
5400 case 264: /* Floating Absolute Value */
5401 record_full_arch_list_add_reg (regcache,
5402 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5403 if (PPC_RC (insn))
5404 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5405 return 0;
5406
5407 case 838: /* Floating Merge Odd Word */
5408 case 966: /* Floating Merge Even Word */
5409 record_full_arch_list_add_reg (regcache,
5410 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5411 return 0;
5412
5413 case 38: /* Move To FPSCR Bit 1 */
5414 case 70: /* Move To FPSCR Bit 0 */
5415 case 134: /* Move To FPSCR Field Immediate */
5416 case 711: /* Move To FPSCR Fields */
5417 if (PPC_RC (insn))
5418 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5419 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5420 return 0;
5421
5422 case 0: /* Floating Compare Unordered */
5423 case 32: /* Floating Compare Ordered */
5424 case 64: /* Move to Condition Register from FPSCR */
5425 case 132: /* VSX Scalar Compare Ordered Quad-Precision */
5426 case 164: /* VSX Scalar Compare Exponents Quad-Precision */
5427 case 644: /* VSX Scalar Compare Unordered Quad-Precision */
5428 case 708: /* VSX Scalar Test Data Class Quad-Precision */
5429 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5430 /* FALL-THROUGH */
5431 case 128: /* Floating Test for software Divide */
5432 case 160: /* Floating Test for software Square Root */
5433 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5434 return 0;
5435
5436 case 4: /* VSX Scalar Add Quad-Precision */
5437 case 36: /* VSX Scalar Multiply Quad-Precision */
5438 case 388: /* VSX Scalar Multiply-Add Quad-Precision */
5439 case 420: /* VSX Scalar Multiply-Subtract Quad-Precision */
5440 case 452: /* VSX Scalar Negative Multiply-Add Quad-Precision */
5441 case 484: /* VSX Scalar Negative Multiply-Subtract
5442 Quad-Precision */
5443 case 516: /* VSX Scalar Subtract Quad-Precision */
5444 case 548: /* VSX Scalar Divide Quad-Precision */
5445 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5446 /* FALL-THROUGH */
5447 case 100: /* VSX Scalar Copy Sign Quad-Precision */
5448 case 868: /* VSX Scalar Insert Exponent Quad-Precision */
5449 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5450 return 0;
5451
5452 case 804:
5453 switch (PPC_FIELD (insn, 11, 5))
5454 {
5455 case 27: /* VSX Scalar Square Root Quad-Precision */
5456 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5457 /* FALL-THROUGH */
5458 case 0: /* VSX Scalar Absolute Quad-Precision */
5459 case 2: /* VSX Scalar Extract Exponent Quad-Precision */
5460 case 8: /* VSX Scalar Negative Absolute Quad-Precision */
5461 case 16: /* VSX Scalar Negate Quad-Precision */
5462 case 18: /* VSX Scalar Extract Significand Quad-Precision */
5463 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5464 return 0;
5465 }
5466 break;
5467
5468 case 836:
5469 switch (PPC_FIELD (insn, 11, 5))
5470 {
5471 case 1: /* VSX Scalar truncate & Convert Quad-Precision format
5472 to Unsigned Word format */
5473 case 2: /* VSX Scalar Convert Unsigned Doubleword format to
5474 Quad-Precision format */
5475 case 9: /* VSX Scalar truncate & Convert Quad-Precision format
5476 to Signed Word format */
5477 case 10: /* VSX Scalar Convert Signed Doubleword format to
5478 Quad-Precision format */
5479 case 17: /* VSX Scalar truncate & Convert Quad-Precision format
5480 to Unsigned Doubleword format */
5481 case 20: /* VSX Scalar round & Convert Quad-Precision format to
5482 Double-Precision format */
5483 case 22: /* VSX Scalar Convert Double-Precision format to
5484 Quad-Precision format */
5485 case 25: /* VSX Scalar truncate & Convert Quad-Precision format
5486 to Signed Doubleword format */
5487 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5488 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5489 return 0;
5490 }
5491 }
5492
5493 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5494 "at %s, 63-%d.\n", insn, paddress (gdbarch, addr), ext);
5495 return -1;
5496 }
5497
5498 /* Parse the current instruction and record the values of the registers and
5499 memory that will be changed in current instruction to "record_arch_list".
5500 Return -1 if something wrong. */
5501
5502 int
5503 ppc_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5504 CORE_ADDR addr)
5505 {
5506 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5507 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5508 uint32_t insn;
5509 int op6, tmp, i;
5510
5511 insn = read_memory_unsigned_integer (addr, 4, byte_order);
5512 op6 = PPC_OP6 (insn);
5513
5514 switch (op6)
5515 {
5516 case 2: /* Trap Doubleword Immediate */
5517 case 3: /* Trap Word Immediate */
5518 /* Do nothing. */
5519 break;
5520
5521 case 4:
5522 if (ppc_process_record_op4 (gdbarch, regcache, addr, insn) != 0)
5523 return -1;
5524 break;
5525
5526 case 17: /* System call */
5527 if (PPC_LEV (insn) != 0)
5528 goto UNKNOWN_OP;
5529
5530 if (tdep->ppc_syscall_record != NULL)
5531 {
5532 if (tdep->ppc_syscall_record (regcache) != 0)
5533 return -1;
5534 }
5535 else
5536 {
5537 printf_unfiltered (_("no syscall record support\n"));
5538 return -1;
5539 }
5540 break;
5541
5542 case 7: /* Multiply Low Immediate */
5543 record_full_arch_list_add_reg (regcache,
5544 tdep->ppc_gp0_regnum + PPC_RT (insn));
5545 break;
5546
5547 case 8: /* Subtract From Immediate Carrying */
5548 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5549 record_full_arch_list_add_reg (regcache,
5550 tdep->ppc_gp0_regnum + PPC_RT (insn));
5551 break;
5552
5553 case 10: /* Compare Logical Immediate */
5554 case 11: /* Compare Immediate */
5555 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5556 break;
5557
5558 case 13: /* Add Immediate Carrying and Record */
5559 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5560 /* FALL-THROUGH */
5561 case 12: /* Add Immediate Carrying */
5562 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5563 /* FALL-THROUGH */
5564 case 14: /* Add Immediate */
5565 case 15: /* Add Immediate Shifted */
5566 record_full_arch_list_add_reg (regcache,
5567 tdep->ppc_gp0_regnum + PPC_RT (insn));
5568 break;
5569
5570 case 16: /* Branch Conditional */
5571 if ((PPC_BO (insn) & 0x4) == 0)
5572 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
5573 /* FALL-THROUGH */
5574 case 18: /* Branch */
5575 if (PPC_LK (insn))
5576 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
5577 break;
5578
5579 case 19:
5580 if (ppc_process_record_op19 (gdbarch, regcache, addr, insn) != 0)
5581 return -1;
5582 break;
5583
5584 case 20: /* Rotate Left Word Immediate then Mask Insert */
5585 case 21: /* Rotate Left Word Immediate then AND with Mask */
5586 case 23: /* Rotate Left Word then AND with Mask */
5587 case 30: /* Rotate Left Doubleword Immediate then Clear Left */
5588 /* Rotate Left Doubleword Immediate then Clear Right */
5589 /* Rotate Left Doubleword Immediate then Clear */
5590 /* Rotate Left Doubleword then Clear Left */
5591 /* Rotate Left Doubleword then Clear Right */
5592 /* Rotate Left Doubleword Immediate then Mask Insert */
5593 if (PPC_RC (insn))
5594 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5595 record_full_arch_list_add_reg (regcache,
5596 tdep->ppc_gp0_regnum + PPC_RA (insn));
5597 break;
5598
5599 case 28: /* AND Immediate */
5600 case 29: /* AND Immediate Shifted */
5601 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5602 /* FALL-THROUGH */
5603 case 24: /* OR Immediate */
5604 case 25: /* OR Immediate Shifted */
5605 case 26: /* XOR Immediate */
5606 case 27: /* XOR Immediate Shifted */
5607 record_full_arch_list_add_reg (regcache,
5608 tdep->ppc_gp0_regnum + PPC_RA (insn));
5609 break;
5610
5611 case 31:
5612 if (ppc_process_record_op31 (gdbarch, regcache, addr, insn) != 0)
5613 return -1;
5614 break;
5615
5616 case 33: /* Load Word and Zero with Update */
5617 case 35: /* Load Byte and Zero with Update */
5618 case 41: /* Load Halfword and Zero with Update */
5619 case 43: /* Load Halfword Algebraic with Update */
5620 record_full_arch_list_add_reg (regcache,
5621 tdep->ppc_gp0_regnum + PPC_RA (insn));
5622 /* FALL-THROUGH */
5623 case 32: /* Load Word and Zero */
5624 case 34: /* Load Byte and Zero */
5625 case 40: /* Load Halfword and Zero */
5626 case 42: /* Load Halfword Algebraic */
5627 record_full_arch_list_add_reg (regcache,
5628 tdep->ppc_gp0_regnum + PPC_RT (insn));
5629 break;
5630
5631 case 46: /* Load Multiple Word */
5632 for (i = PPC_RT (insn); i < 32; i++)
5633 record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i);
5634 break;
5635
5636 case 56: /* Load Quadword */
5637 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
5638 record_full_arch_list_add_reg (regcache, tmp);
5639 record_full_arch_list_add_reg (regcache, tmp + 1);
5640 break;
5641
5642 case 49: /* Load Floating-Point Single with Update */
5643 case 51: /* Load Floating-Point Double with Update */
5644 record_full_arch_list_add_reg (regcache,
5645 tdep->ppc_gp0_regnum + PPC_RA (insn));
5646 /* FALL-THROUGH */
5647 case 48: /* Load Floating-Point Single */
5648 case 50: /* Load Floating-Point Double */
5649 record_full_arch_list_add_reg (regcache,
5650 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5651 break;
5652
5653 case 47: /* Store Multiple Word */
5654 {
5655 ULONGEST addr = 0;
5656
5657 if (PPC_RA (insn) != 0)
5658 regcache_raw_read_unsigned (regcache,
5659 tdep->ppc_gp0_regnum + PPC_RA (insn),
5660 &addr);
5661
5662 addr += PPC_D (insn);
5663 record_full_arch_list_add_mem (addr, 4 * (32 - PPC_RS (insn)));
5664 }
5665 break;
5666
5667 case 37: /* Store Word with Update */
5668 case 39: /* Store Byte with Update */
5669 case 45: /* Store Halfword with Update */
5670 case 53: /* Store Floating-Point Single with Update */
5671 case 55: /* Store Floating-Point Double with Update */
5672 record_full_arch_list_add_reg (regcache,
5673 tdep->ppc_gp0_regnum + PPC_RA (insn));
5674 /* FALL-THROUGH */
5675 case 36: /* Store Word */
5676 case 38: /* Store Byte */
5677 case 44: /* Store Halfword */
5678 case 52: /* Store Floating-Point Single */
5679 case 54: /* Store Floating-Point Double */
5680 {
5681 ULONGEST addr = 0;
5682 int size = -1;
5683
5684 if (PPC_RA (insn) != 0)
5685 regcache_raw_read_unsigned (regcache,
5686 tdep->ppc_gp0_regnum + PPC_RA (insn),
5687 &addr);
5688 addr += PPC_D (insn);
5689
5690 if (op6 == 36 || op6 == 37 || op6 == 52 || op6 == 53)
5691 size = 4;
5692 else if (op6 == 54 || op6 == 55)
5693 size = 8;
5694 else if (op6 == 44 || op6 == 45)
5695 size = 2;
5696 else if (op6 == 38 || op6 == 39)
5697 size = 1;
5698 else
5699 gdb_assert (0);
5700
5701 record_full_arch_list_add_mem (addr, size);
5702 }
5703 break;
5704
5705 case 57:
5706 switch (insn & 0x3)
5707 {
5708 case 0: /* Load Floating-Point Double Pair */
5709 tmp = tdep->ppc_fp0_regnum + (PPC_RT (insn) & ~1);
5710 record_full_arch_list_add_reg (regcache, tmp);
5711 record_full_arch_list_add_reg (regcache, tmp + 1);
5712 break;
5713 case 2: /* Load VSX Scalar Doubleword */
5714 case 3: /* Load VSX Scalar Single */
5715 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5716 break;
5717 default:
5718 goto UNKNOWN_OP;
5719 }
5720 break;
5721
5722 case 58: /* Load Doubleword */
5723 /* Load Doubleword with Update */
5724 /* Load Word Algebraic */
5725 if (PPC_FIELD (insn, 30, 2) > 2)
5726 goto UNKNOWN_OP;
5727
5728 record_full_arch_list_add_reg (regcache,
5729 tdep->ppc_gp0_regnum + PPC_RT (insn));
5730 if (PPC_BIT (insn, 31))
5731 record_full_arch_list_add_reg (regcache,
5732 tdep->ppc_gp0_regnum + PPC_RA (insn));
5733 break;
5734
5735 case 59:
5736 if (ppc_process_record_op59 (gdbarch, regcache, addr, insn) != 0)
5737 return -1;
5738 break;
5739
5740 case 60:
5741 if (ppc_process_record_op60 (gdbarch, regcache, addr, insn) != 0)
5742 return -1;
5743 break;
5744
5745 case 61:
5746 if (ppc_process_record_op61 (gdbarch, regcache, addr, insn) != 0)
5747 return -1;
5748 break;
5749
5750 case 62: /* Store Doubleword */
5751 /* Store Doubleword with Update */
5752 /* Store Quadword with Update */
5753 {
5754 ULONGEST addr = 0;
5755 int size;
5756 int sub2 = PPC_FIELD (insn, 30, 2);
5757
5758 if (sub2 > 2)
5759 goto UNKNOWN_OP;
5760
5761 if (PPC_RA (insn) != 0)
5762 regcache_raw_read_unsigned (regcache,
5763 tdep->ppc_gp0_regnum + PPC_RA (insn),
5764 &addr);
5765
5766 size = (sub2 == 2) ? 16 : 8;
5767
5768 addr += PPC_DS (insn) << 2;
5769 record_full_arch_list_add_mem (addr, size);
5770
5771 if (op6 == 62 && sub2 == 1)
5772 record_full_arch_list_add_reg (regcache,
5773 tdep->ppc_gp0_regnum +
5774 PPC_RA (insn));
5775
5776 break;
5777 }
5778
5779 case 63:
5780 if (ppc_process_record_op63 (gdbarch, regcache, addr, insn) != 0)
5781 return -1;
5782 break;
5783
5784 default:
5785 UNKNOWN_OP:
5786 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5787 "at %s, %d.\n", insn, paddress (gdbarch, addr), op6);
5788 return -1;
5789 }
5790
5791 if (record_full_arch_list_add_reg (regcache, PPC_PC_REGNUM))
5792 return -1;
5793 if (record_full_arch_list_add_end ())
5794 return -1;
5795 return 0;
5796 }
5797
5798 /* Initialize the current architecture based on INFO. If possible, re-use an
5799 architecture from ARCHES, which is a list of architectures already created
5800 during this debugging session.
5801
5802 Called e.g. at program startup, when reading a core file, and when reading
5803 a binary file. */
5804
5805 static struct gdbarch *
5806 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5807 {
5808 struct gdbarch *gdbarch;
5809 struct gdbarch_tdep *tdep;
5810 int wordsize, from_xcoff_exec, from_elf_exec;
5811 enum bfd_architecture arch;
5812 unsigned long mach;
5813 bfd abfd;
5814 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
5815 int soft_float;
5816 enum powerpc_long_double_abi long_double_abi = POWERPC_LONG_DOUBLE_AUTO;
5817 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
5818 enum powerpc_elf_abi elf_abi = POWERPC_ELF_AUTO;
5819 int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0, have_dfp = 0,
5820 have_vsx = 0;
5821 int tdesc_wordsize = -1;
5822 const struct target_desc *tdesc = info.target_desc;
5823 struct tdesc_arch_data *tdesc_data = NULL;
5824 int num_pseudoregs = 0;
5825 int cur_reg;
5826
5827 /* INFO may refer to a binary that is not of the PowerPC architecture,
5828 e.g. when debugging a stand-alone SPE executable on a Cell/B.E. system.
5829 In this case, we must not attempt to infer properties of the (PowerPC
5830 side) of the target system from properties of that executable. Trust
5831 the target description instead. */
5832 if (info.abfd
5833 && bfd_get_arch (info.abfd) != bfd_arch_powerpc
5834 && bfd_get_arch (info.abfd) != bfd_arch_rs6000)
5835 info.abfd = NULL;
5836
5837 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
5838 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
5839
5840 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
5841 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
5842
5843 /* Check word size. If INFO is from a binary file, infer it from
5844 that, else choose a likely default. */
5845 if (from_xcoff_exec)
5846 {
5847 if (bfd_xcoff_is_xcoff64 (info.abfd))
5848 wordsize = 8;
5849 else
5850 wordsize = 4;
5851 }
5852 else if (from_elf_exec)
5853 {
5854 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5855 wordsize = 8;
5856 else
5857 wordsize = 4;
5858 }
5859 else if (tdesc_has_registers (tdesc))
5860 wordsize = -1;
5861 else
5862 {
5863 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
5864 wordsize = (info.bfd_arch_info->bits_per_word
5865 / info.bfd_arch_info->bits_per_byte);
5866 else
5867 wordsize = 4;
5868 }
5869
5870 /* Get the architecture and machine from the BFD. */
5871 arch = info.bfd_arch_info->arch;
5872 mach = info.bfd_arch_info->mach;
5873
5874 /* For e500 executables, the apuinfo section is of help here. Such
5875 section contains the identifier and revision number of each
5876 Application-specific Processing Unit that is present on the
5877 chip. The content of the section is determined by the assembler
5878 which looks at each instruction and determines which unit (and
5879 which version of it) can execute it. Grovel through the section
5880 looking for relevant e500 APUs. */
5881
5882 if (bfd_uses_spe_extensions (info.abfd))
5883 {
5884 arch = info.bfd_arch_info->arch;
5885 mach = bfd_mach_ppc_e500;
5886 bfd_default_set_arch_mach (&abfd, arch, mach);
5887 info.bfd_arch_info = bfd_get_arch_info (&abfd);
5888 }
5889
5890 /* Find a default target description which describes our register
5891 layout, if we do not already have one. */
5892 if (! tdesc_has_registers (tdesc))
5893 {
5894 const struct variant *v;
5895
5896 /* Choose variant. */
5897 v = find_variant_by_arch (arch, mach);
5898 if (!v)
5899 return NULL;
5900
5901 tdesc = *v->tdesc;
5902 }
5903
5904 gdb_assert (tdesc_has_registers (tdesc));
5905
5906 /* Check any target description for validity. */
5907 if (tdesc_has_registers (tdesc))
5908 {
5909 static const char *const gprs[] = {
5910 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
5911 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
5912 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
5913 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
5914 };
5915 const struct tdesc_feature *feature;
5916 int i, valid_p;
5917 static const char *const msr_names[] = { "msr", "ps" };
5918 static const char *const cr_names[] = { "cr", "cnd" };
5919 static const char *const ctr_names[] = { "ctr", "cnt" };
5920
5921 feature = tdesc_find_feature (tdesc,
5922 "org.gnu.gdb.power.core");
5923 if (feature == NULL)
5924 return NULL;
5925
5926 tdesc_data = tdesc_data_alloc ();
5927
5928 valid_p = 1;
5929 for (i = 0; i < ppc_num_gprs; i++)
5930 valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
5931 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
5932 "pc");
5933 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
5934 "lr");
5935 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
5936 "xer");
5937
5938 /* Allow alternate names for these registers, to accomodate GDB's
5939 historic naming. */
5940 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
5941 PPC_MSR_REGNUM, msr_names);
5942 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
5943 PPC_CR_REGNUM, cr_names);
5944 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
5945 PPC_CTR_REGNUM, ctr_names);
5946
5947 if (!valid_p)
5948 {
5949 tdesc_data_cleanup (tdesc_data);
5950 return NULL;
5951 }
5952
5953 have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
5954 "mq");
5955
5956 tdesc_wordsize = tdesc_register_size (feature, "pc") / 8;
5957 if (wordsize == -1)
5958 wordsize = tdesc_wordsize;
5959
5960 feature = tdesc_find_feature (tdesc,
5961 "org.gnu.gdb.power.fpu");
5962 if (feature != NULL)
5963 {
5964 static const char *const fprs[] = {
5965 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
5966 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
5967 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
5968 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
5969 };
5970 valid_p = 1;
5971 for (i = 0; i < ppc_num_fprs; i++)
5972 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5973 PPC_F0_REGNUM + i, fprs[i]);
5974 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5975 PPC_FPSCR_REGNUM, "fpscr");
5976
5977 if (!valid_p)
5978 {
5979 tdesc_data_cleanup (tdesc_data);
5980 return NULL;
5981 }
5982 have_fpu = 1;
5983
5984 /* The fpscr register was expanded in isa 2.05 to 64 bits
5985 along with the addition of the decimal floating point
5986 facility. */
5987 if (tdesc_register_size (feature, "fpscr") > 32)
5988 have_dfp = 1;
5989 }
5990 else
5991 have_fpu = 0;
5992
5993 feature = tdesc_find_feature (tdesc,
5994 "org.gnu.gdb.power.altivec");
5995 if (feature != NULL)
5996 {
5997 static const char *const vector_regs[] = {
5998 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
5999 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
6000 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
6001 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
6002 };
6003
6004 valid_p = 1;
6005 for (i = 0; i < ppc_num_gprs; i++)
6006 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6007 PPC_VR0_REGNUM + i,
6008 vector_regs[i]);
6009 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6010 PPC_VSCR_REGNUM, "vscr");
6011 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6012 PPC_VRSAVE_REGNUM, "vrsave");
6013
6014 if (have_spe || !valid_p)
6015 {
6016 tdesc_data_cleanup (tdesc_data);
6017 return NULL;
6018 }
6019 have_altivec = 1;
6020 }
6021 else
6022 have_altivec = 0;
6023
6024 /* Check for POWER7 VSX registers support. */
6025 feature = tdesc_find_feature (tdesc,
6026 "org.gnu.gdb.power.vsx");
6027
6028 if (feature != NULL)
6029 {
6030 static const char *const vsx_regs[] = {
6031 "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
6032 "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
6033 "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
6034 "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
6035 "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
6036 "vs30h", "vs31h"
6037 };
6038
6039 valid_p = 1;
6040
6041 for (i = 0; i < ppc_num_vshrs; i++)
6042 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6043 PPC_VSR0_UPPER_REGNUM + i,
6044 vsx_regs[i]);
6045 if (!valid_p)
6046 {
6047 tdesc_data_cleanup (tdesc_data);
6048 return NULL;
6049 }
6050
6051 have_vsx = 1;
6052 }
6053 else
6054 have_vsx = 0;
6055
6056 /* On machines supporting the SPE APU, the general-purpose registers
6057 are 64 bits long. There are SIMD vector instructions to treat them
6058 as pairs of floats, but the rest of the instruction set treats them
6059 as 32-bit registers, and only operates on their lower halves.
6060
6061 In the GDB regcache, we treat their high and low halves as separate
6062 registers. The low halves we present as the general-purpose
6063 registers, and then we have pseudo-registers that stitch together
6064 the upper and lower halves and present them as pseudo-registers.
6065
6066 Thus, the target description is expected to supply the upper
6067 halves separately. */
6068
6069 feature = tdesc_find_feature (tdesc,
6070 "org.gnu.gdb.power.spe");
6071 if (feature != NULL)
6072 {
6073 static const char *const upper_spe[] = {
6074 "ev0h", "ev1h", "ev2h", "ev3h",
6075 "ev4h", "ev5h", "ev6h", "ev7h",
6076 "ev8h", "ev9h", "ev10h", "ev11h",
6077 "ev12h", "ev13h", "ev14h", "ev15h",
6078 "ev16h", "ev17h", "ev18h", "ev19h",
6079 "ev20h", "ev21h", "ev22h", "ev23h",
6080 "ev24h", "ev25h", "ev26h", "ev27h",
6081 "ev28h", "ev29h", "ev30h", "ev31h"
6082 };
6083
6084 valid_p = 1;
6085 for (i = 0; i < ppc_num_gprs; i++)
6086 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6087 PPC_SPE_UPPER_GP0_REGNUM + i,
6088 upper_spe[i]);
6089 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6090 PPC_SPE_ACC_REGNUM, "acc");
6091 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6092 PPC_SPE_FSCR_REGNUM, "spefscr");
6093
6094 if (have_mq || have_fpu || !valid_p)
6095 {
6096 tdesc_data_cleanup (tdesc_data);
6097 return NULL;
6098 }
6099 have_spe = 1;
6100 }
6101 else
6102 have_spe = 0;
6103 }
6104
6105 /* If we have a 64-bit binary on a 32-bit target, complain. Also
6106 complain for a 32-bit binary on a 64-bit target; we do not yet
6107 support that. For instance, the 32-bit ABI routines expect
6108 32-bit GPRs.
6109
6110 As long as there isn't an explicit target description, we'll
6111 choose one based on the BFD architecture and get a word size
6112 matching the binary (probably powerpc:common or
6113 powerpc:common64). So there is only trouble if a 64-bit target
6114 supplies a 64-bit description while debugging a 32-bit
6115 binary. */
6116 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
6117 {
6118 tdesc_data_cleanup (tdesc_data);
6119 return NULL;
6120 }
6121
6122 #ifdef HAVE_ELF
6123 if (from_elf_exec)
6124 {
6125 switch (elf_elfheader (info.abfd)->e_flags & EF_PPC64_ABI)
6126 {
6127 case 1:
6128 elf_abi = POWERPC_ELF_V1;
6129 break;
6130 case 2:
6131 elf_abi = POWERPC_ELF_V2;
6132 break;
6133 default:
6134 break;
6135 }
6136 }
6137
6138 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
6139 {
6140 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6141 Tag_GNU_Power_ABI_FP) & 3)
6142 {
6143 case 1:
6144 soft_float_flag = AUTO_BOOLEAN_FALSE;
6145 break;
6146 case 2:
6147 soft_float_flag = AUTO_BOOLEAN_TRUE;
6148 break;
6149 default:
6150 break;
6151 }
6152 }
6153
6154 if (long_double_abi == POWERPC_LONG_DOUBLE_AUTO && from_elf_exec)
6155 {
6156 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6157 Tag_GNU_Power_ABI_FP) >> 2)
6158 {
6159 case 1:
6160 long_double_abi = POWERPC_LONG_DOUBLE_IBM128;
6161 break;
6162 case 3:
6163 long_double_abi = POWERPC_LONG_DOUBLE_IEEE128;
6164 break;
6165 default:
6166 break;
6167 }
6168 }
6169
6170 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
6171 {
6172 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6173 Tag_GNU_Power_ABI_Vector))
6174 {
6175 case 1:
6176 vector_abi = POWERPC_VEC_GENERIC;
6177 break;
6178 case 2:
6179 vector_abi = POWERPC_VEC_ALTIVEC;
6180 break;
6181 case 3:
6182 vector_abi = POWERPC_VEC_SPE;
6183 break;
6184 default:
6185 break;
6186 }
6187 }
6188 #endif
6189
6190 /* At this point, the only supported ELF-based 64-bit little-endian
6191 operating system is GNU/Linux, and this uses the ELFv2 ABI by
6192 default. All other supported ELF-based operating systems use the
6193 ELFv1 ABI by default. Therefore, if the ABI marker is missing,
6194 e.g. because we run a legacy binary, or have attached to a process
6195 and have not found any associated binary file, set the default
6196 according to this heuristic. */
6197 if (elf_abi == POWERPC_ELF_AUTO)
6198 {
6199 if (wordsize == 8 && info.byte_order == BFD_ENDIAN_LITTLE)
6200 elf_abi = POWERPC_ELF_V2;
6201 else
6202 elf_abi = POWERPC_ELF_V1;
6203 }
6204
6205 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
6206 soft_float = 1;
6207 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
6208 soft_float = 0;
6209 else
6210 soft_float = !have_fpu;
6211
6212 /* If we have a hard float binary or setting but no floating point
6213 registers, downgrade to soft float anyway. We're still somewhat
6214 useful in this scenario. */
6215 if (!soft_float && !have_fpu)
6216 soft_float = 1;
6217
6218 /* Similarly for vector registers. */
6219 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
6220 vector_abi = POWERPC_VEC_GENERIC;
6221
6222 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
6223 vector_abi = POWERPC_VEC_GENERIC;
6224
6225 if (vector_abi == POWERPC_VEC_AUTO)
6226 {
6227 if (have_altivec)
6228 vector_abi = POWERPC_VEC_ALTIVEC;
6229 else if (have_spe)
6230 vector_abi = POWERPC_VEC_SPE;
6231 else
6232 vector_abi = POWERPC_VEC_GENERIC;
6233 }
6234
6235 /* Do not limit the vector ABI based on available hardware, since we
6236 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
6237
6238 /* Find a candidate among extant architectures. */
6239 for (arches = gdbarch_list_lookup_by_info (arches, &info);
6240 arches != NULL;
6241 arches = gdbarch_list_lookup_by_info (arches->next, &info))
6242 {
6243 /* Word size in the various PowerPC bfd_arch_info structs isn't
6244 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
6245 separate word size check. */
6246 tdep = gdbarch_tdep (arches->gdbarch);
6247 if (tdep && tdep->elf_abi != elf_abi)
6248 continue;
6249 if (tdep && tdep->soft_float != soft_float)
6250 continue;
6251 if (tdep && tdep->long_double_abi != long_double_abi)
6252 continue;
6253 if (tdep && tdep->vector_abi != vector_abi)
6254 continue;
6255 if (tdep && tdep->wordsize == wordsize)
6256 {
6257 if (tdesc_data != NULL)
6258 tdesc_data_cleanup (tdesc_data);
6259 return arches->gdbarch;
6260 }
6261 }
6262
6263 /* None found, create a new architecture from INFO, whose bfd_arch_info
6264 validity depends on the source:
6265 - executable useless
6266 - rs6000_host_arch() good
6267 - core file good
6268 - "set arch" trust blindly
6269 - GDB startup useless but harmless */
6270
6271 tdep = XCNEW (struct gdbarch_tdep);
6272 tdep->wordsize = wordsize;
6273 tdep->elf_abi = elf_abi;
6274 tdep->soft_float = soft_float;
6275 tdep->long_double_abi = long_double_abi;
6276 tdep->vector_abi = vector_abi;
6277
6278 gdbarch = gdbarch_alloc (&info, tdep);
6279
6280 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
6281 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
6282 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
6283 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
6284 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
6285 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
6286 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
6287 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
6288
6289 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
6290 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
6291 tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
6292 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
6293 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
6294 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
6295 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
6296 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
6297
6298 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
6299 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
6300 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
6301 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
6302
6303 /* The XML specification for PowerPC sensibly calls the MSR "msr".
6304 GDB traditionally called it "ps", though, so let GDB add an
6305 alias. */
6306 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
6307
6308 if (wordsize == 8)
6309 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
6310 else
6311 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
6312
6313 /* Set lr_frame_offset. */
6314 if (wordsize == 8)
6315 tdep->lr_frame_offset = 16;
6316 else
6317 tdep->lr_frame_offset = 4;
6318
6319 if (have_spe || have_dfp || have_vsx)
6320 {
6321 set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
6322 set_gdbarch_pseudo_register_write (gdbarch,
6323 rs6000_pseudo_register_write);
6324 set_gdbarch_ax_pseudo_register_collect (gdbarch,
6325 rs6000_ax_pseudo_register_collect);
6326 }
6327
6328 set_gdbarch_gen_return_address (gdbarch, rs6000_gen_return_address);
6329
6330 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
6331
6332 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
6333
6334 if (have_spe)
6335 num_pseudoregs += 32;
6336 if (have_dfp)
6337 num_pseudoregs += 16;
6338 if (have_vsx)
6339 /* Include both VSX and Extended FP registers. */
6340 num_pseudoregs += 96;
6341
6342 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
6343
6344 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
6345 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
6346 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
6347 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
6348 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
6349 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
6350 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
6351 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
6352 set_gdbarch_char_signed (gdbarch, 0);
6353
6354 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
6355 if (wordsize == 8)
6356 /* PPC64 SYSV. */
6357 set_gdbarch_frame_red_zone_size (gdbarch, 288);
6358
6359 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
6360 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
6361 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
6362
6363 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
6364 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
6365
6366 if (wordsize == 4)
6367 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
6368 else if (wordsize == 8)
6369 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
6370
6371 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
6372 set_gdbarch_stack_frame_destroyed_p (gdbarch, rs6000_stack_frame_destroyed_p);
6373 set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
6374
6375 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
6376
6377 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
6378 rs6000_breakpoint::kind_from_pc);
6379 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
6380 rs6000_breakpoint::bp_from_kind);
6381
6382 /* The value of symbols of type N_SO and N_FUN maybe null when
6383 it shouldn't be. */
6384 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
6385
6386 /* Handles single stepping of atomic sequences. */
6387 set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
6388
6389 /* Not sure on this. FIXMEmgo */
6390 set_gdbarch_frame_args_skip (gdbarch, 8);
6391
6392 /* Helpers for function argument information. */
6393 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
6394
6395 /* Trampoline. */
6396 set_gdbarch_in_solib_return_trampoline
6397 (gdbarch, rs6000_in_solib_return_trampoline);
6398 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
6399
6400 /* Hook in the DWARF CFI frame unwinder. */
6401 dwarf2_append_unwinders (gdbarch);
6402 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
6403
6404 /* Frame handling. */
6405 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
6406
6407 /* Setup displaced stepping. */
6408 set_gdbarch_displaced_step_copy_insn (gdbarch,
6409 ppc_displaced_step_copy_insn);
6410 set_gdbarch_displaced_step_hw_singlestep (gdbarch,
6411 ppc_displaced_step_hw_singlestep);
6412 set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
6413 set_gdbarch_displaced_step_location (gdbarch,
6414 displaced_step_at_entry_point);
6415
6416 set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
6417
6418 /* Hook in ABI-specific overrides, if they have been registered. */
6419 info.target_desc = tdesc;
6420 info.tdesc_data = tdesc_data;
6421 gdbarch_init_osabi (info, gdbarch);
6422
6423 switch (info.osabi)
6424 {
6425 case GDB_OSABI_LINUX:
6426 case GDB_OSABI_NETBSD:
6427 case GDB_OSABI_UNKNOWN:
6428 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
6429 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
6430 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
6431 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
6432 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
6433 break;
6434 default:
6435 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
6436
6437 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
6438 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
6439 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
6440 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
6441 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
6442 }
6443
6444 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
6445 set_tdesc_pseudo_register_reggroup_p (gdbarch,
6446 rs6000_pseudo_register_reggroup_p);
6447 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
6448
6449 /* Override the normal target description method to make the SPE upper
6450 halves anonymous. */
6451 set_gdbarch_register_name (gdbarch, rs6000_register_name);
6452
6453 /* Choose register numbers for all supported pseudo-registers. */
6454 tdep->ppc_ev0_regnum = -1;
6455 tdep->ppc_dl0_regnum = -1;
6456 tdep->ppc_vsr0_regnum = -1;
6457 tdep->ppc_efpr0_regnum = -1;
6458
6459 cur_reg = gdbarch_num_regs (gdbarch);
6460
6461 if (have_spe)
6462 {
6463 tdep->ppc_ev0_regnum = cur_reg;
6464 cur_reg += 32;
6465 }
6466 if (have_dfp)
6467 {
6468 tdep->ppc_dl0_regnum = cur_reg;
6469 cur_reg += 16;
6470 }
6471 if (have_vsx)
6472 {
6473 tdep->ppc_vsr0_regnum = cur_reg;
6474 cur_reg += 64;
6475 tdep->ppc_efpr0_regnum = cur_reg;
6476 cur_reg += 32;
6477 }
6478
6479 gdb_assert (gdbarch_num_regs (gdbarch)
6480 + gdbarch_num_pseudo_regs (gdbarch) == cur_reg);
6481
6482 /* Register the ravenscar_arch_ops. */
6483 if (mach == bfd_mach_ppc_e500)
6484 register_e500_ravenscar_ops (gdbarch);
6485 else
6486 register_ppc_ravenscar_ops (gdbarch);
6487
6488 set_gdbarch_disassembler_options (gdbarch, &powerpc_disassembler_options);
6489 set_gdbarch_valid_disassembler_options (gdbarch,
6490 disassembler_options_powerpc ());
6491
6492 return gdbarch;
6493 }
6494
6495 static void
6496 rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
6497 {
6498 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6499
6500 if (tdep == NULL)
6501 return;
6502
6503 /* FIXME: Dump gdbarch_tdep. */
6504 }
6505
6506 /* PowerPC-specific commands. */
6507
6508 static void
6509 set_powerpc_command (const char *args, int from_tty)
6510 {
6511 printf_unfiltered (_("\
6512 \"set powerpc\" must be followed by an appropriate subcommand.\n"));
6513 help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout);
6514 }
6515
6516 static void
6517 show_powerpc_command (const char *args, int from_tty)
6518 {
6519 cmd_show_list (showpowerpccmdlist, from_tty, "");
6520 }
6521
6522 static void
6523 powerpc_set_soft_float (const char *args, int from_tty,
6524 struct cmd_list_element *c)
6525 {
6526 struct gdbarch_info info;
6527
6528 /* Update the architecture. */
6529 gdbarch_info_init (&info);
6530 if (!gdbarch_update_p (info))
6531 internal_error (__FILE__, __LINE__, _("could not update architecture"));
6532 }
6533
6534 static void
6535 powerpc_set_vector_abi (const char *args, int from_tty,
6536 struct cmd_list_element *c)
6537 {
6538 struct gdbarch_info info;
6539 int vector_abi;
6540
6541 for (vector_abi = POWERPC_VEC_AUTO;
6542 vector_abi != POWERPC_VEC_LAST;
6543 vector_abi++)
6544 if (strcmp (powerpc_vector_abi_string,
6545 powerpc_vector_strings[vector_abi]) == 0)
6546 {
6547 powerpc_vector_abi_global = (enum powerpc_vector_abi) vector_abi;
6548 break;
6549 }
6550
6551 if (vector_abi == POWERPC_VEC_LAST)
6552 internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
6553 powerpc_vector_abi_string);
6554
6555 /* Update the architecture. */
6556 gdbarch_info_init (&info);
6557 if (!gdbarch_update_p (info))
6558 internal_error (__FILE__, __LINE__, _("could not update architecture"));
6559 }
6560
6561 /* Show the current setting of the exact watchpoints flag. */
6562
6563 static void
6564 show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
6565 struct cmd_list_element *c,
6566 const char *value)
6567 {
6568 fprintf_filtered (file, _("Use of exact watchpoints is %s.\n"), value);
6569 }
6570
6571 /* Read a PPC instruction from memory. */
6572
6573 static unsigned int
6574 read_insn (struct frame_info *frame, CORE_ADDR pc)
6575 {
6576 struct gdbarch *gdbarch = get_frame_arch (frame);
6577 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6578
6579 return read_memory_unsigned_integer (pc, 4, byte_order);
6580 }
6581
6582 /* Return non-zero if the instructions at PC match the series
6583 described in PATTERN, or zero otherwise. PATTERN is an array of
6584 'struct ppc_insn_pattern' objects, terminated by an entry whose
6585 mask is zero.
6586
6587 When the match is successful, fill INSNS[i] with what PATTERN[i]
6588 matched. If PATTERN[i] is optional, and the instruction wasn't
6589 present, set INSNS[i] to 0 (which is not a valid PPC instruction).
6590 INSNS should have as many elements as PATTERN, minus the terminator.
6591 Note that, if PATTERN contains optional instructions which aren't
6592 present in memory, then INSNS will have holes, so INSNS[i] isn't
6593 necessarily the i'th instruction in memory. */
6594
6595 int
6596 ppc_insns_match_pattern (struct frame_info *frame, CORE_ADDR pc,
6597 const struct ppc_insn_pattern *pattern,
6598 unsigned int *insns)
6599 {
6600 int i;
6601 unsigned int insn;
6602
6603 for (i = 0, insn = 0; pattern[i].mask; i++)
6604 {
6605 if (insn == 0)
6606 insn = read_insn (frame, pc);
6607 insns[i] = 0;
6608 if ((insn & pattern[i].mask) == pattern[i].data)
6609 {
6610 insns[i] = insn;
6611 pc += 4;
6612 insn = 0;
6613 }
6614 else if (!pattern[i].optional)
6615 return 0;
6616 }
6617
6618 return 1;
6619 }
6620
6621 /* Return the 'd' field of the d-form instruction INSN, properly
6622 sign-extended. */
6623
6624 CORE_ADDR
6625 ppc_insn_d_field (unsigned int insn)
6626 {
6627 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
6628 }
6629
6630 /* Return the 'ds' field of the ds-form instruction INSN, with the two
6631 zero bits concatenated at the right, and properly
6632 sign-extended. */
6633
6634 CORE_ADDR
6635 ppc_insn_ds_field (unsigned int insn)
6636 {
6637 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
6638 }
6639
6640 /* Initialization code. */
6641
6642 void
6643 _initialize_rs6000_tdep (void)
6644 {
6645 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
6646 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
6647
6648 /* Initialize the standard target descriptions. */
6649 initialize_tdesc_powerpc_32 ();
6650 initialize_tdesc_powerpc_altivec32 ();
6651 initialize_tdesc_powerpc_vsx32 ();
6652 initialize_tdesc_powerpc_403 ();
6653 initialize_tdesc_powerpc_403gc ();
6654 initialize_tdesc_powerpc_405 ();
6655 initialize_tdesc_powerpc_505 ();
6656 initialize_tdesc_powerpc_601 ();
6657 initialize_tdesc_powerpc_602 ();
6658 initialize_tdesc_powerpc_603 ();
6659 initialize_tdesc_powerpc_604 ();
6660 initialize_tdesc_powerpc_64 ();
6661 initialize_tdesc_powerpc_altivec64 ();
6662 initialize_tdesc_powerpc_vsx64 ();
6663 initialize_tdesc_powerpc_7400 ();
6664 initialize_tdesc_powerpc_750 ();
6665 initialize_tdesc_powerpc_860 ();
6666 initialize_tdesc_powerpc_e500 ();
6667 initialize_tdesc_rs6000 ();
6668
6669 /* Add root prefix command for all "set powerpc"/"show powerpc"
6670 commands. */
6671 add_prefix_cmd ("powerpc", no_class, set_powerpc_command,
6672 _("Various PowerPC-specific commands."),
6673 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
6674
6675 add_prefix_cmd ("powerpc", no_class, show_powerpc_command,
6676 _("Various PowerPC-specific commands."),
6677 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
6678
6679 /* Add a command to allow the user to force the ABI. */
6680 add_setshow_auto_boolean_cmd ("soft-float", class_support,
6681 &powerpc_soft_float_global,
6682 _("Set whether to use a soft-float ABI."),
6683 _("Show whether to use a soft-float ABI."),
6684 NULL,
6685 powerpc_set_soft_float, NULL,
6686 &setpowerpccmdlist, &showpowerpccmdlist);
6687
6688 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
6689 &powerpc_vector_abi_string,
6690 _("Set the vector ABI."),
6691 _("Show the vector ABI."),
6692 NULL, powerpc_set_vector_abi, NULL,
6693 &setpowerpccmdlist, &showpowerpccmdlist);
6694
6695 add_setshow_boolean_cmd ("exact-watchpoints", class_support,
6696 &target_exact_watchpoints,
6697 _("\
6698 Set whether to use just one debug register for watchpoints on scalars."),
6699 _("\
6700 Show whether to use just one debug register for watchpoints on scalars."),
6701 _("\
6702 If true, GDB will use only one debug register when watching a variable of\n\
6703 scalar type, thus assuming that the variable is accessed through the address\n\
6704 of its first byte."),
6705 NULL, show_powerpc_exact_watchpoints,
6706 &setpowerpccmdlist, &showpowerpccmdlist);
6707 }
This page took 0.254608 seconds and 4 git commands to generate.