Formatting fixes in rust-exp.y
[deliverable/binutils-gdb.git] / gdb / rust-exp.y
1 /* Bison parser for Rust expressions, for GDB.
2 Copyright (C) 2016-2018 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 /* Removing the last conflict seems difficult. */
20 %expect 1
21
22 %{
23
24 #include "defs.h"
25
26 #include "block.h"
27 #include "charset.h"
28 #include "cp-support.h"
29 #include "gdb_obstack.h"
30 #include "gdb_regex.h"
31 #include "rust-lang.h"
32 #include "parser-defs.h"
33 #include "selftest.h"
34 #include "value.h"
35 #include "vec.h"
36
37 #define GDB_YY_REMAP_PREFIX rust
38 #include "yy-remap.h"
39
40 #define RUSTSTYPE YYSTYPE
41
42 struct rust_op;
43 typedef std::vector<const struct rust_op *> rust_op_vector;
44
45 /* A typed integer constant. */
46
47 struct typed_val_int
48 {
49 LONGEST val;
50 struct type *type;
51 };
52
53 /* A typed floating point constant. */
54
55 struct typed_val_float
56 {
57 gdb_byte val[16];
58 struct type *type;
59 };
60
61 /* An identifier and an expression. This is used to represent one
62 element of a struct initializer. */
63
64 struct set_field
65 {
66 struct stoken name;
67 const struct rust_op *init;
68 };
69
70 typedef std::vector<set_field> rust_set_vector;
71
72 static int rustyylex (void);
73 static void rust_push_back (char c);
74 static const char *rust_copy_name (const char *, int);
75 static struct stoken rust_concat3 (const char *, const char *, const char *);
76 static struct stoken make_stoken (const char *);
77 static struct block_symbol rust_lookup_symbol (const char *name,
78 const struct block *block,
79 const domain_enum domain);
80 static struct type *rust_lookup_type (const char *name,
81 const struct block *block);
82 static struct type *rust_type (const char *name);
83
84 static const struct rust_op *crate_name (const struct rust_op *name);
85 static const struct rust_op *super_name (const struct rust_op *name,
86 unsigned int n_supers);
87
88 static const struct rust_op *ast_operation (enum exp_opcode opcode,
89 const struct rust_op *left,
90 const struct rust_op *right);
91 static const struct rust_op *ast_compound_assignment
92 (enum exp_opcode opcode, const struct rust_op *left,
93 const struct rust_op *rust_op);
94 static const struct rust_op *ast_literal (struct typed_val_int val);
95 static const struct rust_op *ast_dliteral (struct typed_val_float val);
96 static const struct rust_op *ast_structop (const struct rust_op *left,
97 const char *name,
98 int completing);
99 static const struct rust_op *ast_structop_anonymous
100 (const struct rust_op *left, struct typed_val_int number);
101 static const struct rust_op *ast_unary (enum exp_opcode opcode,
102 const struct rust_op *expr);
103 static const struct rust_op *ast_cast (const struct rust_op *expr,
104 const struct rust_op *type);
105 static const struct rust_op *ast_call_ish (enum exp_opcode opcode,
106 const struct rust_op *expr,
107 rust_op_vector *params);
108 static const struct rust_op *ast_path (struct stoken name,
109 rust_op_vector *params);
110 static const struct rust_op *ast_string (struct stoken str);
111 static const struct rust_op *ast_struct (const struct rust_op *name,
112 rust_set_vector *fields);
113 static const struct rust_op *ast_range (const struct rust_op *lhs,
114 const struct rust_op *rhs);
115 static const struct rust_op *ast_array_type (const struct rust_op *lhs,
116 struct typed_val_int val);
117 static const struct rust_op *ast_slice_type (const struct rust_op *type);
118 static const struct rust_op *ast_reference_type (const struct rust_op *type);
119 static const struct rust_op *ast_pointer_type (const struct rust_op *type,
120 int is_mut);
121 static const struct rust_op *ast_function_type (const struct rust_op *result,
122 rust_op_vector *params);
123 static const struct rust_op *ast_tuple_type (rust_op_vector *params);
124
125 /* The current rust parser. */
126
127 struct rust_parser;
128 static rust_parser *current_parser;
129
130 /* A regular expression for matching Rust numbers. This is split up
131 since it is very long and this gives us a way to comment the
132 sections. */
133
134 static const char *number_regex_text =
135 /* subexpression 1: allows use of alternation, otherwise uninteresting */
136 "^("
137 /* First comes floating point. */
138 /* Recognize number after the decimal point, with optional
139 exponent and optional type suffix.
140 subexpression 2: allows "?", otherwise uninteresting
141 subexpression 3: if present, type suffix
142 */
143 "[0-9][0-9_]*\\.[0-9][0-9_]*([eE][-+]?[0-9][0-9_]*)?(f32|f64)?"
144 #define FLOAT_TYPE1 3
145 "|"
146 /* Recognize exponent without decimal point, with optional type
147 suffix.
148 subexpression 4: if present, type suffix
149 */
150 #define FLOAT_TYPE2 4
151 "[0-9][0-9_]*[eE][-+]?[0-9][0-9_]*(f32|f64)?"
152 "|"
153 /* "23." is a valid floating point number, but "23.e5" and
154 "23.f32" are not. So, handle the trailing-. case
155 separately. */
156 "[0-9][0-9_]*\\."
157 "|"
158 /* Finally come integers.
159 subexpression 5: text of integer
160 subexpression 6: if present, type suffix
161 subexpression 7: allows use of alternation, otherwise uninteresting
162 */
163 #define INT_TEXT 5
164 #define INT_TYPE 6
165 "(0x[a-fA-F0-9_]+|0o[0-7_]+|0b[01_]+|[0-9][0-9_]*)"
166 "([iu](size|8|16|32|64))?"
167 ")";
168 /* The number of subexpressions to allocate space for, including the
169 "0th" whole match subexpression. */
170 #define NUM_SUBEXPRESSIONS 8
171
172 /* The compiled number-matching regex. */
173
174 static regex_t number_regex;
175
176 /* Obstack for data temporarily allocated during parsing. Points to
177 the obstack in the rust_parser, or to a temporary obstack during
178 unit testing. */
179
180 static auto_obstack *work_obstack;
181
182 /* An instance of this is created before parsing, and destroyed when
183 parsing is finished. */
184
185 struct rust_parser
186 {
187 rust_parser (struct parser_state *state)
188 : rust_ast (nullptr),
189 pstate (state)
190 {
191 gdb_assert (current_parser == nullptr);
192 current_parser = this;
193 work_obstack = &obstack;
194 }
195
196 ~rust_parser ()
197 {
198 /* Clean up the globals we set. */
199 current_parser = nullptr;
200 work_obstack = nullptr;
201 }
202
203 /* Create a new rust_set_vector. The storage for the new vector is
204 managed by this class. */
205 rust_set_vector *new_set_vector ()
206 {
207 rust_set_vector *result = new rust_set_vector;
208 set_vectors.push_back (std::unique_ptr<rust_set_vector> (result));
209 return result;
210 }
211
212 /* Create a new rust_ops_vector. The storage for the new vector is
213 managed by this class. */
214 rust_op_vector *new_op_vector ()
215 {
216 rust_op_vector *result = new rust_op_vector;
217 op_vectors.push_back (std::unique_ptr<rust_op_vector> (result));
218 return result;
219 }
220
221 /* Return the parser's language. */
222 const struct language_defn *language () const
223 {
224 return parse_language (pstate);
225 }
226
227 /* Return the parser's gdbarch. */
228 struct gdbarch *arch () const
229 {
230 return parse_gdbarch (pstate);
231 }
232
233 /* A pointer to this is installed globally. */
234 auto_obstack obstack;
235
236 /* Result of parsing. Points into obstack. */
237 const struct rust_op *rust_ast;
238
239 /* This keeps track of the various vectors we allocate. */
240 std::vector<std::unique_ptr<rust_set_vector>> set_vectors;
241 std::vector<std::unique_ptr<rust_op_vector>> op_vectors;
242
243 /* The parser state gdb gave us. */
244 struct parser_state *pstate;
245 };
246
247 %}
248
249 %union
250 {
251 /* A typed integer constant. */
252 struct typed_val_int typed_val_int;
253
254 /* A typed floating point constant. */
255 struct typed_val_float typed_val_float;
256
257 /* An identifier or string. */
258 struct stoken sval;
259
260 /* A token representing an opcode, like "==". */
261 enum exp_opcode opcode;
262
263 /* A list of expressions; for example, the arguments to a function
264 call. */
265 rust_op_vector *params;
266
267 /* A list of field initializers. */
268 rust_set_vector *field_inits;
269
270 /* A single field initializer. */
271 struct set_field one_field_init;
272
273 /* An expression. */
274 const struct rust_op *op;
275
276 /* A plain integer, for example used to count the number of
277 "super::" prefixes on a path. */
278 unsigned int depth;
279 }
280
281 %{
282
283 /* Rust AST operations. We build a tree of these; then lower them
284 to gdb expressions when parsing has completed. */
285
286 struct rust_op
287 {
288 /* The opcode. */
289 enum exp_opcode opcode;
290 /* If OPCODE is OP_TYPE, then this holds information about what type
291 is described by this node. */
292 enum type_code typecode;
293 /* Indicates whether OPCODE actually represents a compound
294 assignment. For example, if OPCODE is GTGT and this is false,
295 then this rust_op represents an ordinary ">>"; but if this is
296 true, then this rust_op represents ">>=". Unused in other
297 cases. */
298 unsigned int compound_assignment : 1;
299 /* Only used by a field expression; if set, indicates that the field
300 name occurred at the end of the expression and is eligible for
301 completion. */
302 unsigned int completing : 1;
303 /* Operands of expression. Which one is used and how depends on the
304 particular opcode. */
305 RUSTSTYPE left;
306 RUSTSTYPE right;
307 };
308
309 %}
310
311 %token <sval> GDBVAR
312 %token <sval> IDENT
313 %token <sval> COMPLETE
314 %token <typed_val_int> INTEGER
315 %token <typed_val_int> DECIMAL_INTEGER
316 %token <sval> STRING
317 %token <sval> BYTESTRING
318 %token <typed_val_float> FLOAT
319 %token <opcode> COMPOUND_ASSIGN
320
321 /* Keyword tokens. */
322 %token <voidval> KW_AS
323 %token <voidval> KW_IF
324 %token <voidval> KW_TRUE
325 %token <voidval> KW_FALSE
326 %token <voidval> KW_SUPER
327 %token <voidval> KW_SELF
328 %token <voidval> KW_MUT
329 %token <voidval> KW_EXTERN
330 %token <voidval> KW_CONST
331 %token <voidval> KW_FN
332 %token <voidval> KW_SIZEOF
333
334 /* Operator tokens. */
335 %token <voidval> DOTDOT
336 %token <voidval> OROR
337 %token <voidval> ANDAND
338 %token <voidval> EQEQ
339 %token <voidval> NOTEQ
340 %token <voidval> LTEQ
341 %token <voidval> GTEQ
342 %token <voidval> LSH RSH
343 %token <voidval> COLONCOLON
344 %token <voidval> ARROW
345
346 %type <op> type
347 %type <op> path_for_expr
348 %type <op> identifier_path_for_expr
349 %type <op> path_for_type
350 %type <op> identifier_path_for_type
351 %type <op> just_identifiers_for_type
352
353 %type <params> maybe_type_list
354 %type <params> type_list
355
356 %type <depth> super_path
357
358 %type <op> literal
359 %type <op> expr
360 %type <op> field_expr
361 %type <op> idx_expr
362 %type <op> unop_expr
363 %type <op> binop_expr
364 %type <op> binop_expr_expr
365 %type <op> type_cast_expr
366 %type <op> assignment_expr
367 %type <op> compound_assignment_expr
368 %type <op> paren_expr
369 %type <op> call_expr
370 %type <op> path_expr
371 %type <op> tuple_expr
372 %type <op> unit_expr
373 %type <op> struct_expr
374 %type <op> array_expr
375 %type <op> range_expr
376
377 %type <params> expr_list
378 %type <params> maybe_expr_list
379 %type <params> paren_expr_list
380
381 %type <field_inits> struct_expr_list
382 %type <one_field_init> struct_expr_tail
383
384 /* Precedence. */
385 %nonassoc DOTDOT
386 %right '=' COMPOUND_ASSIGN
387 %left OROR
388 %left ANDAND
389 %nonassoc EQEQ NOTEQ '<' '>' LTEQ GTEQ
390 %left '|'
391 %left '^'
392 %left '&'
393 %left LSH RSH
394 %left '@'
395 %left '+' '-'
396 %left '*' '/' '%'
397 /* These could be %precedence in Bison, but that isn't a yacc
398 feature. */
399 %left KW_AS
400 %left UNARY
401 %left '[' '.' '('
402
403 %%
404
405 start:
406 expr
407 {
408 /* If we are completing and see a valid parse,
409 rust_ast will already have been set. */
410 if (current_parser->rust_ast == NULL)
411 current_parser->rust_ast = $1;
412 }
413 ;
414
415 /* Note that the Rust grammar includes a method_call_expr, but we
416 handle this differently, to avoid a shift/reduce conflict with
417 call_expr. */
418 expr:
419 literal
420 | path_expr
421 | tuple_expr
422 | unit_expr
423 | struct_expr
424 | field_expr
425 | array_expr
426 | idx_expr
427 | range_expr
428 | unop_expr /* Must precede call_expr because of ambiguity with
429 sizeof. */
430 | binop_expr
431 | paren_expr
432 | call_expr
433 ;
434
435 tuple_expr:
436 '(' expr ',' maybe_expr_list ')'
437 {
438 $4->push_back ($2);
439 error (_("Tuple expressions not supported yet"));
440 }
441 ;
442
443 unit_expr:
444 '(' ')'
445 {
446 struct typed_val_int val;
447
448 val.type
449 = (language_lookup_primitive_type
450 (current_parser->language (), current_parser->arch (),
451 "()"));
452 val.val = 0;
453 $$ = ast_literal (val);
454 }
455 ;
456
457 /* To avoid a shift/reduce conflict with call_expr, we don't handle
458 tuple struct expressions here, but instead when examining the
459 AST. */
460 struct_expr:
461 path_for_expr '{' struct_expr_list '}'
462 { $$ = ast_struct ($1, $3); }
463 ;
464
465 struct_expr_tail:
466 DOTDOT expr
467 {
468 struct set_field sf;
469
470 sf.name.ptr = NULL;
471 sf.name.length = 0;
472 sf.init = $2;
473
474 $$ = sf;
475 }
476 | IDENT ':' expr
477 {
478 struct set_field sf;
479
480 sf.name = $1;
481 sf.init = $3;
482 $$ = sf;
483 }
484 ;
485
486 struct_expr_list:
487 /* %empty */
488 {
489 $$ = current_parser->new_set_vector ();
490 }
491 | struct_expr_tail
492 {
493 rust_set_vector *result = current_parser->new_set_vector ();
494 result->push_back ($1);
495 $$ = result;
496 }
497 | IDENT ':' expr ',' struct_expr_list
498 {
499 struct set_field sf;
500
501 sf.name = $1;
502 sf.init = $3;
503 $5->push_back (sf);
504 $$ = $5;
505 }
506 ;
507
508 array_expr:
509 '[' KW_MUT expr_list ']'
510 { $$ = ast_call_ish (OP_ARRAY, NULL, $3); }
511 | '[' expr_list ']'
512 { $$ = ast_call_ish (OP_ARRAY, NULL, $2); }
513 | '[' KW_MUT expr ';' expr ']'
514 { $$ = ast_operation (OP_RUST_ARRAY, $3, $5); }
515 | '[' expr ';' expr ']'
516 { $$ = ast_operation (OP_RUST_ARRAY, $2, $4); }
517 ;
518
519 range_expr:
520 expr DOTDOT
521 { $$ = ast_range ($1, NULL); }
522 | expr DOTDOT expr
523 { $$ = ast_range ($1, $3); }
524 | DOTDOT expr
525 { $$ = ast_range (NULL, $2); }
526 | DOTDOT
527 { $$ = ast_range (NULL, NULL); }
528 ;
529
530 literal:
531 INTEGER
532 { $$ = ast_literal ($1); }
533 | DECIMAL_INTEGER
534 { $$ = ast_literal ($1); }
535 | FLOAT
536 { $$ = ast_dliteral ($1); }
537 | STRING
538 {
539 const struct rust_op *str = ast_string ($1);
540 struct set_field field;
541 struct typed_val_int val;
542 struct stoken token;
543
544 rust_set_vector *fields = current_parser->new_set_vector ();
545
546 /* Wrap the raw string in the &str struct. */
547 field.name.ptr = "data_ptr";
548 field.name.length = strlen (field.name.ptr);
549 field.init = ast_unary (UNOP_ADDR, ast_string ($1));
550 fields->push_back (field);
551
552 val.type = rust_type ("usize");
553 val.val = $1.length;
554
555 field.name.ptr = "length";
556 field.name.length = strlen (field.name.ptr);
557 field.init = ast_literal (val);
558 fields->push_back (field);
559
560 token.ptr = "&str";
561 token.length = strlen (token.ptr);
562 $$ = ast_struct (ast_path (token, NULL), fields);
563 }
564 | BYTESTRING
565 { $$ = ast_string ($1); }
566 | KW_TRUE
567 {
568 struct typed_val_int val;
569
570 val.type = language_bool_type (current_parser->language (),
571 current_parser->arch ());
572 val.val = 1;
573 $$ = ast_literal (val);
574 }
575 | KW_FALSE
576 {
577 struct typed_val_int val;
578
579 val.type = language_bool_type (current_parser->language (),
580 current_parser->arch ());
581 val.val = 0;
582 $$ = ast_literal (val);
583 }
584 ;
585
586 field_expr:
587 expr '.' IDENT
588 { $$ = ast_structop ($1, $3.ptr, 0); }
589 | expr '.' COMPLETE
590 {
591 $$ = ast_structop ($1, $3.ptr, 1);
592 current_parser->rust_ast = $$;
593 }
594 | expr '.' DECIMAL_INTEGER
595 { $$ = ast_structop_anonymous ($1, $3); }
596 ;
597
598 idx_expr:
599 expr '[' expr ']'
600 { $$ = ast_operation (BINOP_SUBSCRIPT, $1, $3); }
601 ;
602
603 unop_expr:
604 '+' expr %prec UNARY
605 { $$ = ast_unary (UNOP_PLUS, $2); }
606
607 | '-' expr %prec UNARY
608 { $$ = ast_unary (UNOP_NEG, $2); }
609
610 | '!' expr %prec UNARY
611 {
612 /* Note that we provide a Rust-specific evaluator
613 override for UNOP_COMPLEMENT, so it can do the
614 right thing for both bool and integral
615 values. */
616 $$ = ast_unary (UNOP_COMPLEMENT, $2);
617 }
618
619 | '*' expr %prec UNARY
620 { $$ = ast_unary (UNOP_IND, $2); }
621
622 | '&' expr %prec UNARY
623 { $$ = ast_unary (UNOP_ADDR, $2); }
624
625 | '&' KW_MUT expr %prec UNARY
626 { $$ = ast_unary (UNOP_ADDR, $3); }
627 | KW_SIZEOF '(' expr ')' %prec UNARY
628 { $$ = ast_unary (UNOP_SIZEOF, $3); }
629 ;
630
631 binop_expr:
632 binop_expr_expr
633 | type_cast_expr
634 | assignment_expr
635 | compound_assignment_expr
636 ;
637
638 binop_expr_expr:
639 expr '*' expr
640 { $$ = ast_operation (BINOP_MUL, $1, $3); }
641
642 | expr '@' expr
643 { $$ = ast_operation (BINOP_REPEAT, $1, $3); }
644
645 | expr '/' expr
646 { $$ = ast_operation (BINOP_DIV, $1, $3); }
647
648 | expr '%' expr
649 { $$ = ast_operation (BINOP_REM, $1, $3); }
650
651 | expr '<' expr
652 { $$ = ast_operation (BINOP_LESS, $1, $3); }
653
654 | expr '>' expr
655 { $$ = ast_operation (BINOP_GTR, $1, $3); }
656
657 | expr '&' expr
658 { $$ = ast_operation (BINOP_BITWISE_AND, $1, $3); }
659
660 | expr '|' expr
661 { $$ = ast_operation (BINOP_BITWISE_IOR, $1, $3); }
662
663 | expr '^' expr
664 { $$ = ast_operation (BINOP_BITWISE_XOR, $1, $3); }
665
666 | expr '+' expr
667 { $$ = ast_operation (BINOP_ADD, $1, $3); }
668
669 | expr '-' expr
670 { $$ = ast_operation (BINOP_SUB, $1, $3); }
671
672 | expr OROR expr
673 { $$ = ast_operation (BINOP_LOGICAL_OR, $1, $3); }
674
675 | expr ANDAND expr
676 { $$ = ast_operation (BINOP_LOGICAL_AND, $1, $3); }
677
678 | expr EQEQ expr
679 { $$ = ast_operation (BINOP_EQUAL, $1, $3); }
680
681 | expr NOTEQ expr
682 { $$ = ast_operation (BINOP_NOTEQUAL, $1, $3); }
683
684 | expr LTEQ expr
685 { $$ = ast_operation (BINOP_LEQ, $1, $3); }
686
687 | expr GTEQ expr
688 { $$ = ast_operation (BINOP_GEQ, $1, $3); }
689
690 | expr LSH expr
691 { $$ = ast_operation (BINOP_LSH, $1, $3); }
692
693 | expr RSH expr
694 { $$ = ast_operation (BINOP_RSH, $1, $3); }
695 ;
696
697 type_cast_expr:
698 expr KW_AS type
699 { $$ = ast_cast ($1, $3); }
700 ;
701
702 assignment_expr:
703 expr '=' expr
704 { $$ = ast_operation (BINOP_ASSIGN, $1, $3); }
705 ;
706
707 compound_assignment_expr:
708 expr COMPOUND_ASSIGN expr
709 { $$ = ast_compound_assignment ($2, $1, $3); }
710
711 ;
712
713 paren_expr:
714 '(' expr ')'
715 { $$ = $2; }
716 ;
717
718 expr_list:
719 expr
720 {
721 $$ = current_parser->new_op_vector ();
722 $$->push_back ($1);
723 }
724 | expr_list ',' expr
725 {
726 $1->push_back ($3);
727 $$ = $1;
728 }
729 ;
730
731 maybe_expr_list:
732 /* %empty */
733 {
734 /* The result can't be NULL. */
735 $$ = current_parser->new_op_vector ();
736 }
737 | expr_list
738 { $$ = $1; }
739 ;
740
741 paren_expr_list:
742 '(' maybe_expr_list ')'
743 { $$ = $2; }
744 ;
745
746 call_expr:
747 expr paren_expr_list
748 { $$ = ast_call_ish (OP_FUNCALL, $1, $2); }
749 ;
750
751 maybe_self_path:
752 /* %empty */
753 | KW_SELF COLONCOLON
754 ;
755
756 super_path:
757 KW_SUPER COLONCOLON
758 { $$ = 1; }
759 | super_path KW_SUPER COLONCOLON
760 { $$ = $1 + 1; }
761 ;
762
763 path_expr:
764 path_for_expr
765 { $$ = $1; }
766 | GDBVAR
767 { $$ = ast_path ($1, NULL); }
768 | KW_SELF
769 { $$ = ast_path (make_stoken ("self"), NULL); }
770 ;
771
772 path_for_expr:
773 identifier_path_for_expr
774 | KW_SELF COLONCOLON identifier_path_for_expr
775 { $$ = super_name ($3, 0); }
776 | maybe_self_path super_path identifier_path_for_expr
777 { $$ = super_name ($3, $2); }
778 | COLONCOLON identifier_path_for_expr
779 { $$ = crate_name ($2); }
780 | KW_EXTERN identifier_path_for_expr
781 {
782 /* This is a gdb extension to make it possible to
783 refer to items in other crates. It just bypasses
784 adding the current crate to the front of the
785 name. */
786 $$ = ast_path (rust_concat3 ("::", $2->left.sval.ptr, NULL),
787 $2->right.params);
788 }
789 ;
790
791 identifier_path_for_expr:
792 IDENT
793 { $$ = ast_path ($1, NULL); }
794 | identifier_path_for_expr COLONCOLON IDENT
795 {
796 $$ = ast_path (rust_concat3 ($1->left.sval.ptr, "::",
797 $3.ptr),
798 NULL);
799 }
800 | identifier_path_for_expr COLONCOLON '<' type_list '>'
801 { $$ = ast_path ($1->left.sval, $4); }
802 | identifier_path_for_expr COLONCOLON '<' type_list RSH
803 {
804 $$ = ast_path ($1->left.sval, $4);
805 rust_push_back ('>');
806 }
807 ;
808
809 path_for_type:
810 identifier_path_for_type
811 | KW_SELF COLONCOLON identifier_path_for_type
812 { $$ = super_name ($3, 0); }
813 | maybe_self_path super_path identifier_path_for_type
814 { $$ = super_name ($3, $2); }
815 | COLONCOLON identifier_path_for_type
816 { $$ = crate_name ($2); }
817 | KW_EXTERN identifier_path_for_type
818 {
819 /* This is a gdb extension to make it possible to
820 refer to items in other crates. It just bypasses
821 adding the current crate to the front of the
822 name. */
823 $$ = ast_path (rust_concat3 ("::", $2->left.sval.ptr, NULL),
824 $2->right.params);
825 }
826 ;
827
828 just_identifiers_for_type:
829 IDENT
830 { $$ = ast_path ($1, NULL); }
831 | just_identifiers_for_type COLONCOLON IDENT
832 {
833 $$ = ast_path (rust_concat3 ($1->left.sval.ptr, "::",
834 $3.ptr),
835 NULL);
836 }
837 ;
838
839 identifier_path_for_type:
840 just_identifiers_for_type
841 | just_identifiers_for_type '<' type_list '>'
842 { $$ = ast_path ($1->left.sval, $3); }
843 | just_identifiers_for_type '<' type_list RSH
844 {
845 $$ = ast_path ($1->left.sval, $3);
846 rust_push_back ('>');
847 }
848 ;
849
850 type:
851 path_for_type
852 | '[' type ';' INTEGER ']'
853 { $$ = ast_array_type ($2, $4); }
854 | '[' type ';' DECIMAL_INTEGER ']'
855 { $$ = ast_array_type ($2, $4); }
856 | '&' '[' type ']'
857 { $$ = ast_slice_type ($3); }
858 | '&' type
859 { $$ = ast_reference_type ($2); }
860 | '*' KW_MUT type
861 { $$ = ast_pointer_type ($3, 1); }
862 | '*' KW_CONST type
863 { $$ = ast_pointer_type ($3, 0); }
864 | KW_FN '(' maybe_type_list ')' ARROW type
865 { $$ = ast_function_type ($6, $3); }
866 | '(' maybe_type_list ')'
867 { $$ = ast_tuple_type ($2); }
868 ;
869
870 maybe_type_list:
871 /* %empty */
872 { $$ = NULL; }
873 | type_list
874 { $$ = $1; }
875 ;
876
877 type_list:
878 type
879 {
880 rust_op_vector *result = current_parser->new_op_vector ();
881 result->push_back ($1);
882 $$ = result;
883 }
884 | type_list ',' type
885 {
886 $1->push_back ($3);
887 $$ = $1;
888 }
889 ;
890
891 %%
892
893 /* A struct of this type is used to describe a token. */
894
895 struct token_info
896 {
897 const char *name;
898 int value;
899 enum exp_opcode opcode;
900 };
901
902 /* Identifier tokens. */
903
904 static const struct token_info identifier_tokens[] =
905 {
906 { "as", KW_AS, OP_NULL },
907 { "false", KW_FALSE, OP_NULL },
908 { "if", 0, OP_NULL },
909 { "mut", KW_MUT, OP_NULL },
910 { "const", KW_CONST, OP_NULL },
911 { "self", KW_SELF, OP_NULL },
912 { "super", KW_SUPER, OP_NULL },
913 { "true", KW_TRUE, OP_NULL },
914 { "extern", KW_EXTERN, OP_NULL },
915 { "fn", KW_FN, OP_NULL },
916 { "sizeof", KW_SIZEOF, OP_NULL },
917 };
918
919 /* Operator tokens, sorted longest first. */
920
921 static const struct token_info operator_tokens[] =
922 {
923 { ">>=", COMPOUND_ASSIGN, BINOP_RSH },
924 { "<<=", COMPOUND_ASSIGN, BINOP_LSH },
925
926 { "<<", LSH, OP_NULL },
927 { ">>", RSH, OP_NULL },
928 { "&&", ANDAND, OP_NULL },
929 { "||", OROR, OP_NULL },
930 { "==", EQEQ, OP_NULL },
931 { "!=", NOTEQ, OP_NULL },
932 { "<=", LTEQ, OP_NULL },
933 { ">=", GTEQ, OP_NULL },
934 { "+=", COMPOUND_ASSIGN, BINOP_ADD },
935 { "-=", COMPOUND_ASSIGN, BINOP_SUB },
936 { "*=", COMPOUND_ASSIGN, BINOP_MUL },
937 { "/=", COMPOUND_ASSIGN, BINOP_DIV },
938 { "%=", COMPOUND_ASSIGN, BINOP_REM },
939 { "&=", COMPOUND_ASSIGN, BINOP_BITWISE_AND },
940 { "|=", COMPOUND_ASSIGN, BINOP_BITWISE_IOR },
941 { "^=", COMPOUND_ASSIGN, BINOP_BITWISE_XOR },
942
943 { "::", COLONCOLON, OP_NULL },
944 { "..", DOTDOT, OP_NULL },
945 { "->", ARROW, OP_NULL }
946 };
947
948 /* Helper function to copy to the name obstack. */
949
950 static const char *
951 rust_copy_name (const char *name, int len)
952 {
953 return (const char *) obstack_copy0 (work_obstack, name, len);
954 }
955
956 /* Helper function to make an stoken from a C string. */
957
958 static struct stoken
959 make_stoken (const char *p)
960 {
961 struct stoken result;
962
963 result.ptr = p;
964 result.length = strlen (result.ptr);
965 return result;
966 }
967
968 /* Helper function to concatenate three strings on the name
969 obstack. */
970
971 static struct stoken
972 rust_concat3 (const char *s1, const char *s2, const char *s3)
973 {
974 return make_stoken (obconcat (work_obstack, s1, s2, s3, (char *) NULL));
975 }
976
977 /* Return an AST node referring to NAME, but relative to the crate's
978 name. */
979
980 static const struct rust_op *
981 crate_name (const struct rust_op *name)
982 {
983 std::string crate = rust_crate_for_block (expression_context_block);
984 struct stoken result;
985
986 gdb_assert (name->opcode == OP_VAR_VALUE);
987
988 if (crate.empty ())
989 error (_("Could not find crate for current location"));
990 result = make_stoken (obconcat (work_obstack, "::", crate.c_str (), "::",
991 name->left.sval.ptr, (char *) NULL));
992
993 return ast_path (result, name->right.params);
994 }
995
996 /* Create an AST node referring to a "super::" qualified name. IDENT
997 is the base name and N_SUPERS is how many "super::"s were
998 provided. N_SUPERS can be zero. */
999
1000 static const struct rust_op *
1001 super_name (const struct rust_op *ident, unsigned int n_supers)
1002 {
1003 const char *scope = block_scope (expression_context_block);
1004 int offset;
1005
1006 gdb_assert (ident->opcode == OP_VAR_VALUE);
1007
1008 if (scope[0] == '\0')
1009 error (_("Couldn't find namespace scope for self::"));
1010
1011 if (n_supers > 0)
1012 {
1013 int len;
1014 std::vector<int> offsets;
1015 unsigned int current_len;
1016
1017 current_len = cp_find_first_component (scope);
1018 while (scope[current_len] != '\0')
1019 {
1020 offsets.push_back (current_len);
1021 gdb_assert (scope[current_len] == ':');
1022 /* The "::". */
1023 current_len += 2;
1024 current_len += cp_find_first_component (scope
1025 + current_len);
1026 }
1027
1028 len = offsets.size ();
1029 if (n_supers >= len)
1030 error (_("Too many super:: uses from '%s'"), scope);
1031
1032 offset = offsets[len - n_supers];
1033 }
1034 else
1035 offset = strlen (scope);
1036
1037 obstack_grow (work_obstack, "::", 2);
1038 obstack_grow (work_obstack, scope, offset);
1039 obstack_grow (work_obstack, "::", 2);
1040 obstack_grow0 (work_obstack, ident->left.sval.ptr, ident->left.sval.length);
1041
1042 return ast_path (make_stoken ((const char *) obstack_finish (work_obstack)),
1043 ident->right.params);
1044 }
1045
1046 /* A helper that updates the innermost block as appropriate. */
1047
1048 static void
1049 update_innermost_block (struct block_symbol sym)
1050 {
1051 if (symbol_read_needs_frame (sym.symbol))
1052 innermost_block.update (sym);
1053 }
1054
1055 /* A helper to look up a Rust type, or fail. This only works for
1056 types defined by rust_language_arch_info. */
1057
1058 static struct type *
1059 rust_type (const char *name)
1060 {
1061 struct type *type;
1062
1063 type = language_lookup_primitive_type (current_parser->language (),
1064 current_parser->arch (),
1065 name);
1066 if (type == NULL)
1067 error (_("Could not find Rust type %s"), name);
1068 return type;
1069 }
1070
1071 /* Lex a hex number with at least MIN digits and at most MAX
1072 digits. */
1073
1074 static uint32_t
1075 lex_hex (int min, int max)
1076 {
1077 uint32_t result = 0;
1078 int len = 0;
1079 /* We only want to stop at MAX if we're lexing a byte escape. */
1080 int check_max = min == max;
1081
1082 while ((check_max ? len <= max : 1)
1083 && ((lexptr[0] >= 'a' && lexptr[0] <= 'f')
1084 || (lexptr[0] >= 'A' && lexptr[0] <= 'F')
1085 || (lexptr[0] >= '0' && lexptr[0] <= '9')))
1086 {
1087 result *= 16;
1088 if (lexptr[0] >= 'a' && lexptr[0] <= 'f')
1089 result = result + 10 + lexptr[0] - 'a';
1090 else if (lexptr[0] >= 'A' && lexptr[0] <= 'F')
1091 result = result + 10 + lexptr[0] - 'A';
1092 else
1093 result = result + lexptr[0] - '0';
1094 ++lexptr;
1095 ++len;
1096 }
1097
1098 if (len < min)
1099 error (_("Not enough hex digits seen"));
1100 if (len > max)
1101 {
1102 gdb_assert (min != max);
1103 error (_("Overlong hex escape"));
1104 }
1105
1106 return result;
1107 }
1108
1109 /* Lex an escape. IS_BYTE is true if we're lexing a byte escape;
1110 otherwise we're lexing a character escape. */
1111
1112 static uint32_t
1113 lex_escape (int is_byte)
1114 {
1115 uint32_t result;
1116
1117 gdb_assert (lexptr[0] == '\\');
1118 ++lexptr;
1119 switch (lexptr[0])
1120 {
1121 case 'x':
1122 ++lexptr;
1123 result = lex_hex (2, 2);
1124 break;
1125
1126 case 'u':
1127 if (is_byte)
1128 error (_("Unicode escape in byte literal"));
1129 ++lexptr;
1130 if (lexptr[0] != '{')
1131 error (_("Missing '{' in Unicode escape"));
1132 ++lexptr;
1133 result = lex_hex (1, 6);
1134 /* Could do range checks here. */
1135 if (lexptr[0] != '}')
1136 error (_("Missing '}' in Unicode escape"));
1137 ++lexptr;
1138 break;
1139
1140 case 'n':
1141 result = '\n';
1142 ++lexptr;
1143 break;
1144 case 'r':
1145 result = '\r';
1146 ++lexptr;
1147 break;
1148 case 't':
1149 result = '\t';
1150 ++lexptr;
1151 break;
1152 case '\\':
1153 result = '\\';
1154 ++lexptr;
1155 break;
1156 case '0':
1157 result = '\0';
1158 ++lexptr;
1159 break;
1160 case '\'':
1161 result = '\'';
1162 ++lexptr;
1163 break;
1164 case '"':
1165 result = '"';
1166 ++lexptr;
1167 break;
1168
1169 default:
1170 error (_("Invalid escape \\%c in literal"), lexptr[0]);
1171 }
1172
1173 return result;
1174 }
1175
1176 /* Lex a character constant. */
1177
1178 static int
1179 lex_character (void)
1180 {
1181 int is_byte = 0;
1182 uint32_t value;
1183
1184 if (lexptr[0] == 'b')
1185 {
1186 is_byte = 1;
1187 ++lexptr;
1188 }
1189 gdb_assert (lexptr[0] == '\'');
1190 ++lexptr;
1191 /* This should handle UTF-8 here. */
1192 if (lexptr[0] == '\\')
1193 value = lex_escape (is_byte);
1194 else
1195 {
1196 value = lexptr[0] & 0xff;
1197 ++lexptr;
1198 }
1199
1200 if (lexptr[0] != '\'')
1201 error (_("Unterminated character literal"));
1202 ++lexptr;
1203
1204 rustyylval.typed_val_int.val = value;
1205 rustyylval.typed_val_int.type = rust_type (is_byte ? "u8" : "char");
1206
1207 return INTEGER;
1208 }
1209
1210 /* Return the offset of the double quote if STR looks like the start
1211 of a raw string, or 0 if STR does not start a raw string. */
1212
1213 static int
1214 starts_raw_string (const char *str)
1215 {
1216 const char *save = str;
1217
1218 if (str[0] != 'r')
1219 return 0;
1220 ++str;
1221 while (str[0] == '#')
1222 ++str;
1223 if (str[0] == '"')
1224 return str - save;
1225 return 0;
1226 }
1227
1228 /* Return true if STR looks like the end of a raw string that had N
1229 hashes at the start. */
1230
1231 static bool
1232 ends_raw_string (const char *str, int n)
1233 {
1234 int i;
1235
1236 gdb_assert (str[0] == '"');
1237 for (i = 0; i < n; ++i)
1238 if (str[i + 1] != '#')
1239 return false;
1240 return true;
1241 }
1242
1243 /* Lex a string constant. */
1244
1245 static int
1246 lex_string (void)
1247 {
1248 int is_byte = lexptr[0] == 'b';
1249 int raw_length;
1250
1251 if (is_byte)
1252 ++lexptr;
1253 raw_length = starts_raw_string (lexptr);
1254 lexptr += raw_length;
1255 gdb_assert (lexptr[0] == '"');
1256 ++lexptr;
1257
1258 while (1)
1259 {
1260 uint32_t value;
1261
1262 if (raw_length > 0)
1263 {
1264 if (lexptr[0] == '"' && ends_raw_string (lexptr, raw_length - 1))
1265 {
1266 /* Exit with lexptr pointing after the final "#". */
1267 lexptr += raw_length;
1268 break;
1269 }
1270 else if (lexptr[0] == '\0')
1271 error (_("Unexpected EOF in string"));
1272
1273 value = lexptr[0] & 0xff;
1274 if (is_byte && value > 127)
1275 error (_("Non-ASCII value in raw byte string"));
1276 obstack_1grow (work_obstack, value);
1277
1278 ++lexptr;
1279 }
1280 else if (lexptr[0] == '"')
1281 {
1282 /* Make sure to skip the quote. */
1283 ++lexptr;
1284 break;
1285 }
1286 else if (lexptr[0] == '\\')
1287 {
1288 value = lex_escape (is_byte);
1289
1290 if (is_byte)
1291 obstack_1grow (work_obstack, value);
1292 else
1293 convert_between_encodings ("UTF-32", "UTF-8", (gdb_byte *) &value,
1294 sizeof (value), sizeof (value),
1295 work_obstack, translit_none);
1296 }
1297 else if (lexptr[0] == '\0')
1298 error (_("Unexpected EOF in string"));
1299 else
1300 {
1301 value = lexptr[0] & 0xff;
1302 if (is_byte && value > 127)
1303 error (_("Non-ASCII value in byte string"));
1304 obstack_1grow (work_obstack, value);
1305 ++lexptr;
1306 }
1307 }
1308
1309 rustyylval.sval.length = obstack_object_size (work_obstack);
1310 rustyylval.sval.ptr = (const char *) obstack_finish (work_obstack);
1311 return is_byte ? BYTESTRING : STRING;
1312 }
1313
1314 /* Return true if STRING starts with whitespace followed by a digit. */
1315
1316 static bool
1317 space_then_number (const char *string)
1318 {
1319 const char *p = string;
1320
1321 while (p[0] == ' ' || p[0] == '\t')
1322 ++p;
1323 if (p == string)
1324 return false;
1325
1326 return *p >= '0' && *p <= '9';
1327 }
1328
1329 /* Return true if C can start an identifier. */
1330
1331 static bool
1332 rust_identifier_start_p (char c)
1333 {
1334 return ((c >= 'a' && c <= 'z')
1335 || (c >= 'A' && c <= 'Z')
1336 || c == '_'
1337 || c == '$');
1338 }
1339
1340 /* Lex an identifier. */
1341
1342 static int
1343 lex_identifier (void)
1344 {
1345 const char *start = lexptr;
1346 unsigned int length;
1347 const struct token_info *token;
1348 int i;
1349 int is_gdb_var = lexptr[0] == '$';
1350
1351 gdb_assert (rust_identifier_start_p (lexptr[0]));
1352
1353 ++lexptr;
1354
1355 /* For the time being this doesn't handle Unicode rules. Non-ASCII
1356 identifiers are gated anyway. */
1357 while ((lexptr[0] >= 'a' && lexptr[0] <= 'z')
1358 || (lexptr[0] >= 'A' && lexptr[0] <= 'Z')
1359 || lexptr[0] == '_'
1360 || (is_gdb_var && lexptr[0] == '$')
1361 || (lexptr[0] >= '0' && lexptr[0] <= '9'))
1362 ++lexptr;
1363
1364
1365 length = lexptr - start;
1366 token = NULL;
1367 for (i = 0; i < ARRAY_SIZE (identifier_tokens); ++i)
1368 {
1369 if (length == strlen (identifier_tokens[i].name)
1370 && strncmp (identifier_tokens[i].name, start, length) == 0)
1371 {
1372 token = &identifier_tokens[i];
1373 break;
1374 }
1375 }
1376
1377 if (token != NULL)
1378 {
1379 if (token->value == 0)
1380 {
1381 /* Leave the terminating token alone. */
1382 lexptr = start;
1383 return 0;
1384 }
1385 }
1386 else if (token == NULL
1387 && (strncmp (start, "thread", length) == 0
1388 || strncmp (start, "task", length) == 0)
1389 && space_then_number (lexptr))
1390 {
1391 /* "task" or "thread" followed by a number terminates the
1392 parse, per gdb rules. */
1393 lexptr = start;
1394 return 0;
1395 }
1396
1397 if (token == NULL || (parse_completion && lexptr[0] == '\0'))
1398 rustyylval.sval = make_stoken (rust_copy_name (start, length));
1399
1400 if (parse_completion && lexptr[0] == '\0')
1401 {
1402 /* Prevent rustyylex from returning two COMPLETE tokens. */
1403 prev_lexptr = lexptr;
1404 return COMPLETE;
1405 }
1406
1407 if (token != NULL)
1408 return token->value;
1409 if (is_gdb_var)
1410 return GDBVAR;
1411 return IDENT;
1412 }
1413
1414 /* Lex an operator. */
1415
1416 static int
1417 lex_operator (void)
1418 {
1419 const struct token_info *token = NULL;
1420 int i;
1421
1422 for (i = 0; i < ARRAY_SIZE (operator_tokens); ++i)
1423 {
1424 if (strncmp (operator_tokens[i].name, lexptr,
1425 strlen (operator_tokens[i].name)) == 0)
1426 {
1427 lexptr += strlen (operator_tokens[i].name);
1428 token = &operator_tokens[i];
1429 break;
1430 }
1431 }
1432
1433 if (token != NULL)
1434 {
1435 rustyylval.opcode = token->opcode;
1436 return token->value;
1437 }
1438
1439 return *lexptr++;
1440 }
1441
1442 /* Lex a number. */
1443
1444 static int
1445 lex_number (void)
1446 {
1447 regmatch_t subexps[NUM_SUBEXPRESSIONS];
1448 int match;
1449 int is_integer = 0;
1450 int could_be_decimal = 1;
1451 int implicit_i32 = 0;
1452 const char *type_name = NULL;
1453 struct type *type;
1454 int end_index;
1455 int type_index = -1;
1456 int i;
1457
1458 match = regexec (&number_regex, lexptr, ARRAY_SIZE (subexps), subexps, 0);
1459 /* Failure means the regexp is broken. */
1460 gdb_assert (match == 0);
1461
1462 if (subexps[INT_TEXT].rm_so != -1)
1463 {
1464 /* Integer part matched. */
1465 is_integer = 1;
1466 end_index = subexps[INT_TEXT].rm_eo;
1467 if (subexps[INT_TYPE].rm_so == -1)
1468 {
1469 type_name = "i32";
1470 implicit_i32 = 1;
1471 }
1472 else
1473 {
1474 type_index = INT_TYPE;
1475 could_be_decimal = 0;
1476 }
1477 }
1478 else if (subexps[FLOAT_TYPE1].rm_so != -1)
1479 {
1480 /* Found floating point type suffix. */
1481 end_index = subexps[FLOAT_TYPE1].rm_so;
1482 type_index = FLOAT_TYPE1;
1483 }
1484 else if (subexps[FLOAT_TYPE2].rm_so != -1)
1485 {
1486 /* Found floating point type suffix. */
1487 end_index = subexps[FLOAT_TYPE2].rm_so;
1488 type_index = FLOAT_TYPE2;
1489 }
1490 else
1491 {
1492 /* Any other floating point match. */
1493 end_index = subexps[0].rm_eo;
1494 type_name = "f64";
1495 }
1496
1497 /* We need a special case if the final character is ".". In this
1498 case we might need to parse an integer. For example, "23.f()" is
1499 a request for a trait method call, not a syntax error involving
1500 the floating point number "23.". */
1501 gdb_assert (subexps[0].rm_eo > 0);
1502 if (lexptr[subexps[0].rm_eo - 1] == '.')
1503 {
1504 const char *next = skip_spaces (&lexptr[subexps[0].rm_eo]);
1505
1506 if (rust_identifier_start_p (*next) || *next == '.')
1507 {
1508 --subexps[0].rm_eo;
1509 is_integer = 1;
1510 end_index = subexps[0].rm_eo;
1511 type_name = "i32";
1512 could_be_decimal = 1;
1513 implicit_i32 = 1;
1514 }
1515 }
1516
1517 /* Compute the type name if we haven't already. */
1518 std::string type_name_holder;
1519 if (type_name == NULL)
1520 {
1521 gdb_assert (type_index != -1);
1522 type_name_holder = std::string (lexptr + subexps[type_index].rm_so,
1523 (subexps[type_index].rm_eo
1524 - subexps[type_index].rm_so));
1525 type_name = type_name_holder.c_str ();
1526 }
1527
1528 /* Look up the type. */
1529 type = rust_type (type_name);
1530
1531 /* Copy the text of the number and remove the "_"s. */
1532 std::string number;
1533 for (i = 0; i < end_index && lexptr[i]; ++i)
1534 {
1535 if (lexptr[i] == '_')
1536 could_be_decimal = 0;
1537 else
1538 number.push_back (lexptr[i]);
1539 }
1540
1541 /* Advance past the match. */
1542 lexptr += subexps[0].rm_eo;
1543
1544 /* Parse the number. */
1545 if (is_integer)
1546 {
1547 uint64_t value;
1548 int radix = 10;
1549 int offset = 0;
1550
1551 if (number[0] == '0')
1552 {
1553 if (number[1] == 'x')
1554 radix = 16;
1555 else if (number[1] == 'o')
1556 radix = 8;
1557 else if (number[1] == 'b')
1558 radix = 2;
1559 if (radix != 10)
1560 {
1561 offset = 2;
1562 could_be_decimal = 0;
1563 }
1564 }
1565
1566 value = strtoul (number.c_str () + offset, NULL, radix);
1567 if (implicit_i32 && value >= ((uint64_t) 1) << 31)
1568 type = rust_type ("i64");
1569
1570 rustyylval.typed_val_int.val = value;
1571 rustyylval.typed_val_int.type = type;
1572 }
1573 else
1574 {
1575 rustyylval.typed_val_float.type = type;
1576 bool parsed = parse_float (number.c_str (), number.length (),
1577 rustyylval.typed_val_float.type,
1578 rustyylval.typed_val_float.val);
1579 gdb_assert (parsed);
1580 }
1581
1582 return is_integer ? (could_be_decimal ? DECIMAL_INTEGER : INTEGER) : FLOAT;
1583 }
1584
1585 /* The lexer. */
1586
1587 static int
1588 rustyylex (void)
1589 {
1590 /* Skip all leading whitespace. */
1591 while (lexptr[0] == ' ' || lexptr[0] == '\t' || lexptr[0] == '\r'
1592 || lexptr[0] == '\n')
1593 ++lexptr;
1594
1595 /* If we hit EOF and we're completing, then return COMPLETE -- maybe
1596 we're completing an empty string at the end of a field_expr.
1597 But, we don't want to return two COMPLETE tokens in a row. */
1598 if (lexptr[0] == '\0' && lexptr == prev_lexptr)
1599 return 0;
1600 prev_lexptr = lexptr;
1601 if (lexptr[0] == '\0')
1602 {
1603 if (parse_completion)
1604 {
1605 rustyylval.sval = make_stoken ("");
1606 return COMPLETE;
1607 }
1608 return 0;
1609 }
1610
1611 if (lexptr[0] >= '0' && lexptr[0] <= '9')
1612 return lex_number ();
1613 else if (lexptr[0] == 'b' && lexptr[1] == '\'')
1614 return lex_character ();
1615 else if (lexptr[0] == 'b' && lexptr[1] == '"')
1616 return lex_string ();
1617 else if (lexptr[0] == 'b' && starts_raw_string (lexptr + 1))
1618 return lex_string ();
1619 else if (starts_raw_string (lexptr))
1620 return lex_string ();
1621 else if (rust_identifier_start_p (lexptr[0]))
1622 return lex_identifier ();
1623 else if (lexptr[0] == '"')
1624 return lex_string ();
1625 else if (lexptr[0] == '\'')
1626 return lex_character ();
1627 else if (lexptr[0] == '}' || lexptr[0] == ']')
1628 {
1629 /* Falls through to lex_operator. */
1630 --paren_depth;
1631 }
1632 else if (lexptr[0] == '(' || lexptr[0] == '{')
1633 {
1634 /* Falls through to lex_operator. */
1635 ++paren_depth;
1636 }
1637 else if (lexptr[0] == ',' && comma_terminates && paren_depth == 0)
1638 return 0;
1639
1640 return lex_operator ();
1641 }
1642
1643 /* Push back a single character to be re-lexed. */
1644
1645 static void
1646 rust_push_back (char c)
1647 {
1648 /* Can't be called before any lexing. */
1649 gdb_assert (prev_lexptr != NULL);
1650
1651 --lexptr;
1652 gdb_assert (*lexptr == c);
1653 }
1654
1655 \f
1656
1657 /* Make an arbitrary operation and fill in the fields. */
1658
1659 static const struct rust_op *
1660 ast_operation (enum exp_opcode opcode, const struct rust_op *left,
1661 const struct rust_op *right)
1662 {
1663 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1664
1665 result->opcode = opcode;
1666 result->left.op = left;
1667 result->right.op = right;
1668
1669 return result;
1670 }
1671
1672 /* Make a compound assignment operation. */
1673
1674 static const struct rust_op *
1675 ast_compound_assignment (enum exp_opcode opcode, const struct rust_op *left,
1676 const struct rust_op *right)
1677 {
1678 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1679
1680 result->opcode = opcode;
1681 result->compound_assignment = 1;
1682 result->left.op = left;
1683 result->right.op = right;
1684
1685 return result;
1686 }
1687
1688 /* Make a typed integer literal operation. */
1689
1690 static const struct rust_op *
1691 ast_literal (struct typed_val_int val)
1692 {
1693 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1694
1695 result->opcode = OP_LONG;
1696 result->left.typed_val_int = val;
1697
1698 return result;
1699 }
1700
1701 /* Make a typed floating point literal operation. */
1702
1703 static const struct rust_op *
1704 ast_dliteral (struct typed_val_float val)
1705 {
1706 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1707
1708 result->opcode = OP_FLOAT;
1709 result->left.typed_val_float = val;
1710
1711 return result;
1712 }
1713
1714 /* Make a unary operation. */
1715
1716 static const struct rust_op *
1717 ast_unary (enum exp_opcode opcode, const struct rust_op *expr)
1718 {
1719 return ast_operation (opcode, expr, NULL);
1720 }
1721
1722 /* Make a cast operation. */
1723
1724 static const struct rust_op *
1725 ast_cast (const struct rust_op *expr, const struct rust_op *type)
1726 {
1727 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1728
1729 result->opcode = UNOP_CAST;
1730 result->left.op = expr;
1731 result->right.op = type;
1732
1733 return result;
1734 }
1735
1736 /* Make a call-like operation. This is nominally a function call, but
1737 when lowering we may discover that it actually represents the
1738 creation of a tuple struct. */
1739
1740 static const struct rust_op *
1741 ast_call_ish (enum exp_opcode opcode, const struct rust_op *expr,
1742 rust_op_vector *params)
1743 {
1744 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1745
1746 result->opcode = opcode;
1747 result->left.op = expr;
1748 result->right.params = params;
1749
1750 return result;
1751 }
1752
1753 /* Make a structure creation operation. */
1754
1755 static const struct rust_op *
1756 ast_struct (const struct rust_op *name, rust_set_vector *fields)
1757 {
1758 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1759
1760 result->opcode = OP_AGGREGATE;
1761 result->left.op = name;
1762 result->right.field_inits = fields;
1763
1764 return result;
1765 }
1766
1767 /* Make an identifier path. */
1768
1769 static const struct rust_op *
1770 ast_path (struct stoken path, rust_op_vector *params)
1771 {
1772 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1773
1774 result->opcode = OP_VAR_VALUE;
1775 result->left.sval = path;
1776 result->right.params = params;
1777
1778 return result;
1779 }
1780
1781 /* Make a string constant operation. */
1782
1783 static const struct rust_op *
1784 ast_string (struct stoken str)
1785 {
1786 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1787
1788 result->opcode = OP_STRING;
1789 result->left.sval = str;
1790
1791 return result;
1792 }
1793
1794 /* Make a field expression. */
1795
1796 static const struct rust_op *
1797 ast_structop (const struct rust_op *left, const char *name, int completing)
1798 {
1799 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1800
1801 result->opcode = STRUCTOP_STRUCT;
1802 result->completing = completing;
1803 result->left.op = left;
1804 result->right.sval = make_stoken (name);
1805
1806 return result;
1807 }
1808
1809 /* Make an anonymous struct operation, like 'x.0'. */
1810
1811 static const struct rust_op *
1812 ast_structop_anonymous (const struct rust_op *left,
1813 struct typed_val_int number)
1814 {
1815 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1816
1817 result->opcode = STRUCTOP_ANONYMOUS;
1818 result->left.op = left;
1819 result->right.typed_val_int = number;
1820
1821 return result;
1822 }
1823
1824 /* Make a range operation. */
1825
1826 static const struct rust_op *
1827 ast_range (const struct rust_op *lhs, const struct rust_op *rhs)
1828 {
1829 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1830
1831 result->opcode = OP_RANGE;
1832 result->left.op = lhs;
1833 result->right.op = rhs;
1834
1835 return result;
1836 }
1837
1838 /* A helper function to make a type-related AST node. */
1839
1840 static struct rust_op *
1841 ast_basic_type (enum type_code typecode)
1842 {
1843 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1844
1845 result->opcode = OP_TYPE;
1846 result->typecode = typecode;
1847 return result;
1848 }
1849
1850 /* Create an AST node describing an array type. */
1851
1852 static const struct rust_op *
1853 ast_array_type (const struct rust_op *lhs, struct typed_val_int val)
1854 {
1855 struct rust_op *result = ast_basic_type (TYPE_CODE_ARRAY);
1856
1857 result->left.op = lhs;
1858 result->right.typed_val_int = val;
1859 return result;
1860 }
1861
1862 /* Create an AST node describing a reference type. */
1863
1864 static const struct rust_op *
1865 ast_slice_type (const struct rust_op *type)
1866 {
1867 /* Use TYPE_CODE_COMPLEX just because it is handy. */
1868 struct rust_op *result = ast_basic_type (TYPE_CODE_COMPLEX);
1869
1870 result->left.op = type;
1871 return result;
1872 }
1873
1874 /* Create an AST node describing a reference type. */
1875
1876 static const struct rust_op *
1877 ast_reference_type (const struct rust_op *type)
1878 {
1879 struct rust_op *result = ast_basic_type (TYPE_CODE_REF);
1880
1881 result->left.op = type;
1882 return result;
1883 }
1884
1885 /* Create an AST node describing a pointer type. */
1886
1887 static const struct rust_op *
1888 ast_pointer_type (const struct rust_op *type, int is_mut)
1889 {
1890 struct rust_op *result = ast_basic_type (TYPE_CODE_PTR);
1891
1892 result->left.op = type;
1893 /* For the time being we ignore is_mut. */
1894 return result;
1895 }
1896
1897 /* Create an AST node describing a function type. */
1898
1899 static const struct rust_op *
1900 ast_function_type (const struct rust_op *rtype, rust_op_vector *params)
1901 {
1902 struct rust_op *result = ast_basic_type (TYPE_CODE_FUNC);
1903
1904 result->left.op = rtype;
1905 result->right.params = params;
1906 return result;
1907 }
1908
1909 /* Create an AST node describing a tuple type. */
1910
1911 static const struct rust_op *
1912 ast_tuple_type (rust_op_vector *params)
1913 {
1914 struct rust_op *result = ast_basic_type (TYPE_CODE_STRUCT);
1915
1916 result->left.params = params;
1917 return result;
1918 }
1919
1920 /* A helper to appropriately munge NAME and BLOCK depending on the
1921 presence of a leading "::". */
1922
1923 static void
1924 munge_name_and_block (const char **name, const struct block **block)
1925 {
1926 /* If it is a global reference, skip the current block in favor of
1927 the static block. */
1928 if (strncmp (*name, "::", 2) == 0)
1929 {
1930 *name += 2;
1931 *block = block_static_block (*block);
1932 }
1933 }
1934
1935 /* Like lookup_symbol, but handles Rust namespace conventions, and
1936 doesn't require field_of_this_result. */
1937
1938 static struct block_symbol
1939 rust_lookup_symbol (const char *name, const struct block *block,
1940 const domain_enum domain)
1941 {
1942 struct block_symbol result;
1943
1944 munge_name_and_block (&name, &block);
1945
1946 result = lookup_symbol (name, block, domain, NULL);
1947 if (result.symbol != NULL)
1948 update_innermost_block (result);
1949 return result;
1950 }
1951
1952 /* Look up a type, following Rust namespace conventions. */
1953
1954 static struct type *
1955 rust_lookup_type (const char *name, const struct block *block)
1956 {
1957 struct block_symbol result;
1958 struct type *type;
1959
1960 munge_name_and_block (&name, &block);
1961
1962 result = lookup_symbol (name, block, STRUCT_DOMAIN, NULL);
1963 if (result.symbol != NULL)
1964 {
1965 update_innermost_block (result);
1966 return SYMBOL_TYPE (result.symbol);
1967 }
1968
1969 type = lookup_typename (current_parser->language (), current_parser->arch (),
1970 name, NULL, 1);
1971 if (type != NULL)
1972 return type;
1973
1974 /* Last chance, try a built-in type. */
1975 return language_lookup_primitive_type (current_parser->language (),
1976 current_parser->arch (),
1977 name);
1978 }
1979
1980 static struct type *convert_ast_to_type (struct parser_state *state,
1981 const struct rust_op *operation);
1982 static const char *convert_name (struct parser_state *state,
1983 const struct rust_op *operation);
1984
1985 /* Convert a vector of rust_ops representing types to a vector of
1986 types. */
1987
1988 static std::vector<struct type *>
1989 convert_params_to_types (struct parser_state *state, rust_op_vector *params)
1990 {
1991 std::vector<struct type *> result;
1992
1993 for (const rust_op *op : *params)
1994 result.push_back (convert_ast_to_type (state, op));
1995
1996 return result;
1997 }
1998
1999 /* Convert a rust_op representing a type to a struct type *. */
2000
2001 static struct type *
2002 convert_ast_to_type (struct parser_state *state,
2003 const struct rust_op *operation)
2004 {
2005 struct type *type, *result = NULL;
2006
2007 if (operation->opcode == OP_VAR_VALUE)
2008 {
2009 const char *varname = convert_name (state, operation);
2010
2011 result = rust_lookup_type (varname, expression_context_block);
2012 if (result == NULL)
2013 error (_("No typed name '%s' in current context"), varname);
2014 return result;
2015 }
2016
2017 gdb_assert (operation->opcode == OP_TYPE);
2018
2019 switch (operation->typecode)
2020 {
2021 case TYPE_CODE_ARRAY:
2022 type = convert_ast_to_type (state, operation->left.op);
2023 if (operation->right.typed_val_int.val < 0)
2024 error (_("Negative array length"));
2025 result = lookup_array_range_type (type, 0,
2026 operation->right.typed_val_int.val - 1);
2027 break;
2028
2029 case TYPE_CODE_COMPLEX:
2030 {
2031 struct type *usize = rust_type ("usize");
2032
2033 type = convert_ast_to_type (state, operation->left.op);
2034 result = rust_slice_type ("&[*gdb*]", type, usize);
2035 }
2036 break;
2037
2038 case TYPE_CODE_REF:
2039 case TYPE_CODE_PTR:
2040 /* For now we treat &x and *x identically. */
2041 type = convert_ast_to_type (state, operation->left.op);
2042 result = lookup_pointer_type (type);
2043 break;
2044
2045 case TYPE_CODE_FUNC:
2046 {
2047 std::vector<struct type *> args
2048 (convert_params_to_types (state, operation->right.params));
2049 struct type **argtypes = NULL;
2050
2051 type = convert_ast_to_type (state, operation->left.op);
2052 if (!args.empty ())
2053 argtypes = args.data ();
2054
2055 result
2056 = lookup_function_type_with_arguments (type, args.size (),
2057 argtypes);
2058 result = lookup_pointer_type (result);
2059 }
2060 break;
2061
2062 case TYPE_CODE_STRUCT:
2063 {
2064 std::vector<struct type *> args
2065 (convert_params_to_types (state, operation->left.params));
2066 int i;
2067 const char *name;
2068
2069 obstack_1grow (work_obstack, '(');
2070 for (i = 0; i < args.size (); ++i)
2071 {
2072 std::string type_name = type_to_string (args[i]);
2073
2074 if (i > 0)
2075 obstack_1grow (work_obstack, ',');
2076 obstack_grow_str (work_obstack, type_name.c_str ());
2077 }
2078
2079 obstack_grow_str0 (work_obstack, ")");
2080 name = (const char *) obstack_finish (work_obstack);
2081
2082 /* We don't allow creating new tuple types (yet), but we do
2083 allow looking up existing tuple types. */
2084 result = rust_lookup_type (name, expression_context_block);
2085 if (result == NULL)
2086 error (_("could not find tuple type '%s'"), name);
2087 }
2088 break;
2089
2090 default:
2091 gdb_assert_not_reached ("unhandled opcode in convert_ast_to_type");
2092 }
2093
2094 gdb_assert (result != NULL);
2095 return result;
2096 }
2097
2098 /* A helper function to turn a rust_op representing a name into a full
2099 name. This applies generic arguments as needed. The returned name
2100 is allocated on the work obstack. */
2101
2102 static const char *
2103 convert_name (struct parser_state *state, const struct rust_op *operation)
2104 {
2105 int i;
2106
2107 gdb_assert (operation->opcode == OP_VAR_VALUE);
2108
2109 if (operation->right.params == NULL)
2110 return operation->left.sval.ptr;
2111
2112 std::vector<struct type *> types
2113 (convert_params_to_types (state, operation->right.params));
2114
2115 obstack_grow_str (work_obstack, operation->left.sval.ptr);
2116 obstack_1grow (work_obstack, '<');
2117 for (i = 0; i < types.size (); ++i)
2118 {
2119 std::string type_name = type_to_string (types[i]);
2120
2121 if (i > 0)
2122 obstack_1grow (work_obstack, ',');
2123
2124 obstack_grow_str (work_obstack, type_name.c_str ());
2125 }
2126 obstack_grow_str0 (work_obstack, ">");
2127
2128 return (const char *) obstack_finish (work_obstack);
2129 }
2130
2131 static void convert_ast_to_expression (struct parser_state *state,
2132 const struct rust_op *operation,
2133 const struct rust_op *top,
2134 bool want_type = false);
2135
2136 /* A helper function that converts a vec of rust_ops to a gdb
2137 expression. */
2138
2139 static void
2140 convert_params_to_expression (struct parser_state *state,
2141 rust_op_vector *params,
2142 const struct rust_op *top)
2143 {
2144 for (const rust_op *elem : *params)
2145 convert_ast_to_expression (state, elem, top);
2146 }
2147
2148 /* Lower a rust_op to a gdb expression. STATE is the parser state.
2149 OPERATION is the operation to lower. TOP is a pointer to the
2150 top-most operation; it is used to handle the special case where the
2151 top-most expression is an identifier and can be optionally lowered
2152 to OP_TYPE. WANT_TYPE is a flag indicating that, if the expression
2153 is the name of a type, then emit an OP_TYPE for it (rather than
2154 erroring). If WANT_TYPE is set, then the similar TOP handling is
2155 not done. */
2156
2157 static void
2158 convert_ast_to_expression (struct parser_state *state,
2159 const struct rust_op *operation,
2160 const struct rust_op *top,
2161 bool want_type)
2162 {
2163 switch (operation->opcode)
2164 {
2165 case OP_LONG:
2166 write_exp_elt_opcode (state, OP_LONG);
2167 write_exp_elt_type (state, operation->left.typed_val_int.type);
2168 write_exp_elt_longcst (state, operation->left.typed_val_int.val);
2169 write_exp_elt_opcode (state, OP_LONG);
2170 break;
2171
2172 case OP_FLOAT:
2173 write_exp_elt_opcode (state, OP_FLOAT);
2174 write_exp_elt_type (state, operation->left.typed_val_float.type);
2175 write_exp_elt_floatcst (state, operation->left.typed_val_float.val);
2176 write_exp_elt_opcode (state, OP_FLOAT);
2177 break;
2178
2179 case STRUCTOP_STRUCT:
2180 {
2181 convert_ast_to_expression (state, operation->left.op, top);
2182
2183 if (operation->completing)
2184 mark_struct_expression (state);
2185 write_exp_elt_opcode (state, STRUCTOP_STRUCT);
2186 write_exp_string (state, operation->right.sval);
2187 write_exp_elt_opcode (state, STRUCTOP_STRUCT);
2188 }
2189 break;
2190
2191 case STRUCTOP_ANONYMOUS:
2192 {
2193 convert_ast_to_expression (state, operation->left.op, top);
2194
2195 write_exp_elt_opcode (state, STRUCTOP_ANONYMOUS);
2196 write_exp_elt_longcst (state, operation->right.typed_val_int.val);
2197 write_exp_elt_opcode (state, STRUCTOP_ANONYMOUS);
2198 }
2199 break;
2200
2201 case UNOP_SIZEOF:
2202 convert_ast_to_expression (state, operation->left.op, top, true);
2203 write_exp_elt_opcode (state, UNOP_SIZEOF);
2204 break;
2205
2206 case UNOP_PLUS:
2207 case UNOP_NEG:
2208 case UNOP_COMPLEMENT:
2209 case UNOP_IND:
2210 case UNOP_ADDR:
2211 convert_ast_to_expression (state, operation->left.op, top);
2212 write_exp_elt_opcode (state, operation->opcode);
2213 break;
2214
2215 case BINOP_SUBSCRIPT:
2216 case BINOP_MUL:
2217 case BINOP_REPEAT:
2218 case BINOP_DIV:
2219 case BINOP_REM:
2220 case BINOP_LESS:
2221 case BINOP_GTR:
2222 case BINOP_BITWISE_AND:
2223 case BINOP_BITWISE_IOR:
2224 case BINOP_BITWISE_XOR:
2225 case BINOP_ADD:
2226 case BINOP_SUB:
2227 case BINOP_LOGICAL_OR:
2228 case BINOP_LOGICAL_AND:
2229 case BINOP_EQUAL:
2230 case BINOP_NOTEQUAL:
2231 case BINOP_LEQ:
2232 case BINOP_GEQ:
2233 case BINOP_LSH:
2234 case BINOP_RSH:
2235 case BINOP_ASSIGN:
2236 case OP_RUST_ARRAY:
2237 convert_ast_to_expression (state, operation->left.op, top);
2238 convert_ast_to_expression (state, operation->right.op, top);
2239 if (operation->compound_assignment)
2240 {
2241 write_exp_elt_opcode (state, BINOP_ASSIGN_MODIFY);
2242 write_exp_elt_opcode (state, operation->opcode);
2243 write_exp_elt_opcode (state, BINOP_ASSIGN_MODIFY);
2244 }
2245 else
2246 write_exp_elt_opcode (state, operation->opcode);
2247
2248 if (operation->compound_assignment
2249 || operation->opcode == BINOP_ASSIGN)
2250 {
2251 struct type *type;
2252
2253 type = language_lookup_primitive_type (parse_language (state),
2254 parse_gdbarch (state),
2255 "()");
2256
2257 write_exp_elt_opcode (state, OP_LONG);
2258 write_exp_elt_type (state, type);
2259 write_exp_elt_longcst (state, 0);
2260 write_exp_elt_opcode (state, OP_LONG);
2261
2262 write_exp_elt_opcode (state, BINOP_COMMA);
2263 }
2264 break;
2265
2266 case UNOP_CAST:
2267 {
2268 struct type *type = convert_ast_to_type (state, operation->right.op);
2269
2270 convert_ast_to_expression (state, operation->left.op, top);
2271 write_exp_elt_opcode (state, UNOP_CAST);
2272 write_exp_elt_type (state, type);
2273 write_exp_elt_opcode (state, UNOP_CAST);
2274 }
2275 break;
2276
2277 case OP_FUNCALL:
2278 {
2279 if (operation->left.op->opcode == OP_VAR_VALUE)
2280 {
2281 struct type *type;
2282 const char *varname = convert_name (state, operation->left.op);
2283
2284 type = rust_lookup_type (varname, expression_context_block);
2285 if (type != NULL)
2286 {
2287 /* This is actually a tuple struct expression, not a
2288 call expression. */
2289 rust_op_vector *params = operation->right.params;
2290
2291 if (TYPE_CODE (type) != TYPE_CODE_NAMESPACE)
2292 {
2293 if (!rust_tuple_struct_type_p (type))
2294 error (_("Type %s is not a tuple struct"), varname);
2295
2296 for (int i = 0; i < params->size (); ++i)
2297 {
2298 char *cell = get_print_cell ();
2299
2300 xsnprintf (cell, PRINT_CELL_SIZE, "__%d", i);
2301 write_exp_elt_opcode (state, OP_NAME);
2302 write_exp_string (state, make_stoken (cell));
2303 write_exp_elt_opcode (state, OP_NAME);
2304
2305 convert_ast_to_expression (state, (*params)[i], top);
2306 }
2307
2308 write_exp_elt_opcode (state, OP_AGGREGATE);
2309 write_exp_elt_type (state, type);
2310 write_exp_elt_longcst (state, 2 * params->size ());
2311 write_exp_elt_opcode (state, OP_AGGREGATE);
2312 break;
2313 }
2314 }
2315 }
2316 convert_ast_to_expression (state, operation->left.op, top);
2317 convert_params_to_expression (state, operation->right.params, top);
2318 write_exp_elt_opcode (state, OP_FUNCALL);
2319 write_exp_elt_longcst (state, operation->right.params->size ());
2320 write_exp_elt_longcst (state, OP_FUNCALL);
2321 }
2322 break;
2323
2324 case OP_ARRAY:
2325 gdb_assert (operation->left.op == NULL);
2326 convert_params_to_expression (state, operation->right.params, top);
2327 write_exp_elt_opcode (state, OP_ARRAY);
2328 write_exp_elt_longcst (state, 0);
2329 write_exp_elt_longcst (state, operation->right.params->size () - 1);
2330 write_exp_elt_longcst (state, OP_ARRAY);
2331 break;
2332
2333 case OP_VAR_VALUE:
2334 {
2335 struct block_symbol sym;
2336 const char *varname;
2337
2338 if (operation->left.sval.ptr[0] == '$')
2339 {
2340 write_dollar_variable (state, operation->left.sval);
2341 break;
2342 }
2343
2344 varname = convert_name (state, operation);
2345 sym = rust_lookup_symbol (varname, expression_context_block,
2346 VAR_DOMAIN);
2347 if (sym.symbol != NULL && SYMBOL_CLASS (sym.symbol) != LOC_TYPEDEF)
2348 {
2349 write_exp_elt_opcode (state, OP_VAR_VALUE);
2350 write_exp_elt_block (state, sym.block);
2351 write_exp_elt_sym (state, sym.symbol);
2352 write_exp_elt_opcode (state, OP_VAR_VALUE);
2353 }
2354 else
2355 {
2356 struct type *type = NULL;
2357
2358 if (sym.symbol != NULL)
2359 {
2360 gdb_assert (SYMBOL_CLASS (sym.symbol) == LOC_TYPEDEF);
2361 type = SYMBOL_TYPE (sym.symbol);
2362 }
2363 if (type == NULL)
2364 type = rust_lookup_type (varname, expression_context_block);
2365 if (type == NULL)
2366 error (_("No symbol '%s' in current context"), varname);
2367
2368 if (!want_type
2369 && TYPE_CODE (type) == TYPE_CODE_STRUCT
2370 && TYPE_NFIELDS (type) == 0)
2371 {
2372 /* A unit-like struct. */
2373 write_exp_elt_opcode (state, OP_AGGREGATE);
2374 write_exp_elt_type (state, type);
2375 write_exp_elt_longcst (state, 0);
2376 write_exp_elt_opcode (state, OP_AGGREGATE);
2377 }
2378 else if (want_type || operation == top)
2379 {
2380 write_exp_elt_opcode (state, OP_TYPE);
2381 write_exp_elt_type (state, type);
2382 write_exp_elt_opcode (state, OP_TYPE);
2383 }
2384 else
2385 error (_("Found type '%s', which can't be "
2386 "evaluated in this context"),
2387 varname);
2388 }
2389 }
2390 break;
2391
2392 case OP_AGGREGATE:
2393 {
2394 int length;
2395 rust_set_vector *fields = operation->right.field_inits;
2396 struct type *type;
2397 const char *name;
2398
2399 length = 0;
2400 for (const set_field &init : *fields)
2401 {
2402 if (init.name.ptr != NULL)
2403 {
2404 write_exp_elt_opcode (state, OP_NAME);
2405 write_exp_string (state, init.name);
2406 write_exp_elt_opcode (state, OP_NAME);
2407 ++length;
2408 }
2409
2410 convert_ast_to_expression (state, init.init, top);
2411 ++length;
2412
2413 if (init.name.ptr == NULL)
2414 {
2415 /* This is handled differently from Ada in our
2416 evaluator. */
2417 write_exp_elt_opcode (state, OP_OTHERS);
2418 }
2419 }
2420
2421 name = convert_name (state, operation->left.op);
2422 type = rust_lookup_type (name, expression_context_block);
2423 if (type == NULL)
2424 error (_("Could not find type '%s'"), operation->left.sval.ptr);
2425
2426 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
2427 || rust_tuple_type_p (type)
2428 || rust_tuple_struct_type_p (type))
2429 error (_("Struct expression applied to non-struct type"));
2430
2431 write_exp_elt_opcode (state, OP_AGGREGATE);
2432 write_exp_elt_type (state, type);
2433 write_exp_elt_longcst (state, length);
2434 write_exp_elt_opcode (state, OP_AGGREGATE);
2435 }
2436 break;
2437
2438 case OP_STRING:
2439 {
2440 write_exp_elt_opcode (state, OP_STRING);
2441 write_exp_string (state, operation->left.sval);
2442 write_exp_elt_opcode (state, OP_STRING);
2443 }
2444 break;
2445
2446 case OP_RANGE:
2447 {
2448 enum range_type kind = BOTH_BOUND_DEFAULT;
2449
2450 if (operation->left.op != NULL)
2451 {
2452 convert_ast_to_expression (state, operation->left.op, top);
2453 kind = HIGH_BOUND_DEFAULT;
2454 }
2455 if (operation->right.op != NULL)
2456 {
2457 convert_ast_to_expression (state, operation->right.op, top);
2458 if (kind == BOTH_BOUND_DEFAULT)
2459 kind = LOW_BOUND_DEFAULT;
2460 else
2461 {
2462 gdb_assert (kind == HIGH_BOUND_DEFAULT);
2463 kind = NONE_BOUND_DEFAULT;
2464 }
2465 }
2466 write_exp_elt_opcode (state, OP_RANGE);
2467 write_exp_elt_longcst (state, kind);
2468 write_exp_elt_opcode (state, OP_RANGE);
2469 }
2470 break;
2471
2472 default:
2473 gdb_assert_not_reached ("unhandled opcode in convert_ast_to_expression");
2474 }
2475 }
2476
2477 \f
2478
2479 /* The parser as exposed to gdb. */
2480
2481 int
2482 rust_parse (struct parser_state *state)
2483 {
2484 int result;
2485
2486 /* This sets various globals and also clears them on
2487 destruction. */
2488 rust_parser parser (state);
2489
2490 result = rustyyparse ();
2491
2492 if (!result || (parse_completion && parser.rust_ast != NULL))
2493 convert_ast_to_expression (state, parser.rust_ast, parser.rust_ast);
2494
2495 return result;
2496 }
2497
2498 /* The parser error handler. */
2499
2500 void
2501 rustyyerror (const char *msg)
2502 {
2503 const char *where = prev_lexptr ? prev_lexptr : lexptr;
2504 error (_("%s in expression, near `%s'."), (msg ? msg : "Error"), where);
2505 }
2506
2507 \f
2508
2509 #if GDB_SELF_TEST
2510
2511 /* Initialize the lexer for testing. */
2512
2513 static void
2514 rust_lex_test_init (const char *input)
2515 {
2516 prev_lexptr = NULL;
2517 lexptr = input;
2518 paren_depth = 0;
2519 }
2520
2521 /* A test helper that lexes a string, expecting a single token. It
2522 returns the lexer data for this token. */
2523
2524 static RUSTSTYPE
2525 rust_lex_test_one (const char *input, int expected)
2526 {
2527 int token;
2528 RUSTSTYPE result;
2529
2530 rust_lex_test_init (input);
2531
2532 token = rustyylex ();
2533 SELF_CHECK (token == expected);
2534 result = rustyylval;
2535
2536 if (token)
2537 {
2538 token = rustyylex ();
2539 SELF_CHECK (token == 0);
2540 }
2541
2542 return result;
2543 }
2544
2545 /* Test that INPUT lexes as the integer VALUE. */
2546
2547 static void
2548 rust_lex_int_test (const char *input, int value, int kind)
2549 {
2550 RUSTSTYPE result = rust_lex_test_one (input, kind);
2551 SELF_CHECK (result.typed_val_int.val == value);
2552 }
2553
2554 /* Test that INPUT throws an exception with text ERR. */
2555
2556 static void
2557 rust_lex_exception_test (const char *input, const char *err)
2558 {
2559 TRY
2560 {
2561 /* The "kind" doesn't matter. */
2562 rust_lex_test_one (input, DECIMAL_INTEGER);
2563 SELF_CHECK (0);
2564 }
2565 CATCH (except, RETURN_MASK_ERROR)
2566 {
2567 SELF_CHECK (strcmp (except.message, err) == 0);
2568 }
2569 END_CATCH
2570 }
2571
2572 /* Test that INPUT lexes as the identifier, string, or byte-string
2573 VALUE. KIND holds the expected token kind. */
2574
2575 static void
2576 rust_lex_stringish_test (const char *input, const char *value, int kind)
2577 {
2578 RUSTSTYPE result = rust_lex_test_one (input, kind);
2579 SELF_CHECK (result.sval.length == strlen (value));
2580 SELF_CHECK (strncmp (result.sval.ptr, value, result.sval.length) == 0);
2581 }
2582
2583 /* Helper to test that a string parses as a given token sequence. */
2584
2585 static void
2586 rust_lex_test_sequence (const char *input, int len, const int expected[])
2587 {
2588 int i;
2589
2590 lexptr = input;
2591 paren_depth = 0;
2592
2593 for (i = 0; i < len; ++i)
2594 {
2595 int token = rustyylex ();
2596
2597 SELF_CHECK (token == expected[i]);
2598 }
2599 }
2600
2601 /* Tests for an integer-parsing corner case. */
2602
2603 static void
2604 rust_lex_test_trailing_dot (void)
2605 {
2606 const int expected1[] = { DECIMAL_INTEGER, '.', IDENT, '(', ')', 0 };
2607 const int expected2[] = { INTEGER, '.', IDENT, '(', ')', 0 };
2608 const int expected3[] = { FLOAT, EQEQ, '(', ')', 0 };
2609 const int expected4[] = { DECIMAL_INTEGER, DOTDOT, DECIMAL_INTEGER, 0 };
2610
2611 rust_lex_test_sequence ("23.g()", ARRAY_SIZE (expected1), expected1);
2612 rust_lex_test_sequence ("23_0.g()", ARRAY_SIZE (expected2), expected2);
2613 rust_lex_test_sequence ("23.==()", ARRAY_SIZE (expected3), expected3);
2614 rust_lex_test_sequence ("23..25", ARRAY_SIZE (expected4), expected4);
2615 }
2616
2617 /* Tests of completion. */
2618
2619 static void
2620 rust_lex_test_completion (void)
2621 {
2622 const int expected[] = { IDENT, '.', COMPLETE, 0 };
2623
2624 parse_completion = 1;
2625
2626 rust_lex_test_sequence ("something.wha", ARRAY_SIZE (expected), expected);
2627 rust_lex_test_sequence ("something.", ARRAY_SIZE (expected), expected);
2628
2629 parse_completion = 0;
2630 }
2631
2632 /* Test pushback. */
2633
2634 static void
2635 rust_lex_test_push_back (void)
2636 {
2637 int token;
2638
2639 rust_lex_test_init (">>=");
2640
2641 token = rustyylex ();
2642 SELF_CHECK (token == COMPOUND_ASSIGN);
2643 SELF_CHECK (rustyylval.opcode == BINOP_RSH);
2644
2645 rust_push_back ('=');
2646
2647 token = rustyylex ();
2648 SELF_CHECK (token == '=');
2649
2650 token = rustyylex ();
2651 SELF_CHECK (token == 0);
2652 }
2653
2654 /* Unit test the lexer. */
2655
2656 static void
2657 rust_lex_tests (void)
2658 {
2659 int i;
2660
2661 auto_obstack test_obstack;
2662 scoped_restore obstack_holder = make_scoped_restore (&work_obstack,
2663 &test_obstack);
2664
2665 // Set up dummy "parser", so that rust_type works.
2666 struct parser_state ps (0, &rust_language_defn, target_gdbarch ());
2667 rust_parser parser (&ps);
2668
2669 rust_lex_test_one ("", 0);
2670 rust_lex_test_one (" \t \n \r ", 0);
2671 rust_lex_test_one ("thread 23", 0);
2672 rust_lex_test_one ("task 23", 0);
2673 rust_lex_test_one ("th 104", 0);
2674 rust_lex_test_one ("ta 97", 0);
2675
2676 rust_lex_int_test ("'z'", 'z', INTEGER);
2677 rust_lex_int_test ("'\\xff'", 0xff, INTEGER);
2678 rust_lex_int_test ("'\\u{1016f}'", 0x1016f, INTEGER);
2679 rust_lex_int_test ("b'z'", 'z', INTEGER);
2680 rust_lex_int_test ("b'\\xfe'", 0xfe, INTEGER);
2681 rust_lex_int_test ("b'\\xFE'", 0xfe, INTEGER);
2682 rust_lex_int_test ("b'\\xfE'", 0xfe, INTEGER);
2683
2684 /* Test all escapes in both modes. */
2685 rust_lex_int_test ("'\\n'", '\n', INTEGER);
2686 rust_lex_int_test ("'\\r'", '\r', INTEGER);
2687 rust_lex_int_test ("'\\t'", '\t', INTEGER);
2688 rust_lex_int_test ("'\\\\'", '\\', INTEGER);
2689 rust_lex_int_test ("'\\0'", '\0', INTEGER);
2690 rust_lex_int_test ("'\\''", '\'', INTEGER);
2691 rust_lex_int_test ("'\\\"'", '"', INTEGER);
2692
2693 rust_lex_int_test ("b'\\n'", '\n', INTEGER);
2694 rust_lex_int_test ("b'\\r'", '\r', INTEGER);
2695 rust_lex_int_test ("b'\\t'", '\t', INTEGER);
2696 rust_lex_int_test ("b'\\\\'", '\\', INTEGER);
2697 rust_lex_int_test ("b'\\0'", '\0', INTEGER);
2698 rust_lex_int_test ("b'\\''", '\'', INTEGER);
2699 rust_lex_int_test ("b'\\\"'", '"', INTEGER);
2700
2701 rust_lex_exception_test ("'z", "Unterminated character literal");
2702 rust_lex_exception_test ("b'\\x0'", "Not enough hex digits seen");
2703 rust_lex_exception_test ("b'\\u{0}'", "Unicode escape in byte literal");
2704 rust_lex_exception_test ("'\\x0'", "Not enough hex digits seen");
2705 rust_lex_exception_test ("'\\u0'", "Missing '{' in Unicode escape");
2706 rust_lex_exception_test ("'\\u{0", "Missing '}' in Unicode escape");
2707 rust_lex_exception_test ("'\\u{0000007}", "Overlong hex escape");
2708 rust_lex_exception_test ("'\\u{}", "Not enough hex digits seen");
2709 rust_lex_exception_test ("'\\Q'", "Invalid escape \\Q in literal");
2710 rust_lex_exception_test ("b'\\Q'", "Invalid escape \\Q in literal");
2711
2712 rust_lex_int_test ("23", 23, DECIMAL_INTEGER);
2713 rust_lex_int_test ("2_344__29", 234429, INTEGER);
2714 rust_lex_int_test ("0x1f", 0x1f, INTEGER);
2715 rust_lex_int_test ("23usize", 23, INTEGER);
2716 rust_lex_int_test ("23i32", 23, INTEGER);
2717 rust_lex_int_test ("0x1_f", 0x1f, INTEGER);
2718 rust_lex_int_test ("0b1_101011__", 0x6b, INTEGER);
2719 rust_lex_int_test ("0o001177i64", 639, INTEGER);
2720
2721 rust_lex_test_trailing_dot ();
2722
2723 rust_lex_test_one ("23.", FLOAT);
2724 rust_lex_test_one ("23.99f32", FLOAT);
2725 rust_lex_test_one ("23e7", FLOAT);
2726 rust_lex_test_one ("23E-7", FLOAT);
2727 rust_lex_test_one ("23e+7", FLOAT);
2728 rust_lex_test_one ("23.99e+7f64", FLOAT);
2729 rust_lex_test_one ("23.82f32", FLOAT);
2730
2731 rust_lex_stringish_test ("hibob", "hibob", IDENT);
2732 rust_lex_stringish_test ("hibob__93", "hibob__93", IDENT);
2733 rust_lex_stringish_test ("thread", "thread", IDENT);
2734
2735 rust_lex_stringish_test ("\"string\"", "string", STRING);
2736 rust_lex_stringish_test ("\"str\\ting\"", "str\ting", STRING);
2737 rust_lex_stringish_test ("\"str\\\"ing\"", "str\"ing", STRING);
2738 rust_lex_stringish_test ("r\"str\\ing\"", "str\\ing", STRING);
2739 rust_lex_stringish_test ("r#\"str\\ting\"#", "str\\ting", STRING);
2740 rust_lex_stringish_test ("r###\"str\\\"ing\"###", "str\\\"ing", STRING);
2741
2742 rust_lex_stringish_test ("b\"string\"", "string", BYTESTRING);
2743 rust_lex_stringish_test ("b\"\x73tring\"", "string", BYTESTRING);
2744 rust_lex_stringish_test ("b\"str\\\"ing\"", "str\"ing", BYTESTRING);
2745 rust_lex_stringish_test ("br####\"\\x73tring\"####", "\\x73tring",
2746 BYTESTRING);
2747
2748 for (i = 0; i < ARRAY_SIZE (identifier_tokens); ++i)
2749 rust_lex_test_one (identifier_tokens[i].name, identifier_tokens[i].value);
2750
2751 for (i = 0; i < ARRAY_SIZE (operator_tokens); ++i)
2752 rust_lex_test_one (operator_tokens[i].name, operator_tokens[i].value);
2753
2754 rust_lex_test_completion ();
2755 rust_lex_test_push_back ();
2756 }
2757
2758 #endif /* GDB_SELF_TEST */
2759
2760 void
2761 _initialize_rust_exp (void)
2762 {
2763 int code = regcomp (&number_regex, number_regex_text, REG_EXTENDED);
2764 /* If the regular expression was incorrect, it was a programming
2765 error. */
2766 gdb_assert (code == 0);
2767
2768 #if GDB_SELF_TEST
2769 selftests::register_test ("rust-lex", rust_lex_tests);
2770 #endif
2771 }
This page took 0.149998 seconds and 5 git commands to generate.