C++-ify parser_state
[deliverable/binutils-gdb.git] / gdb / rust-exp.y
1 /* Bison parser for Rust expressions, for GDB.
2 Copyright (C) 2016-2017 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 /* Removing the last conflict seems difficult. */
20 %expect 1
21
22 %{
23
24 #include "defs.h"
25
26 #include "block.h"
27 #include "charset.h"
28 #include "cp-support.h"
29 #include "gdb_obstack.h"
30 #include "gdb_regex.h"
31 #include "rust-lang.h"
32 #include "parser-defs.h"
33 #include "selftest.h"
34 #include "value.h"
35 #include "vec.h"
36
37 #define GDB_YY_REMAP_PREFIX rust
38 #include "yy-remap.h"
39
40 #define RUSTSTYPE YYSTYPE
41
42 struct rust_op;
43 typedef std::vector<const struct rust_op *> rust_op_vector;
44
45 /* A typed integer constant. */
46
47 struct typed_val_int
48 {
49 LONGEST val;
50 struct type *type;
51 };
52
53 /* A typed floating point constant. */
54
55 struct typed_val_float
56 {
57 gdb_byte val[16];
58 struct type *type;
59 };
60
61 /* An identifier and an expression. This is used to represent one
62 element of a struct initializer. */
63
64 struct set_field
65 {
66 struct stoken name;
67 const struct rust_op *init;
68 };
69
70 typedef std::vector<set_field> rust_set_vector;
71
72 static int rustyylex (void);
73 static void rust_push_back (char c);
74 static const char *rust_copy_name (const char *, int);
75 static struct stoken rust_concat3 (const char *, const char *, const char *);
76 static struct stoken make_stoken (const char *);
77 static struct block_symbol rust_lookup_symbol (const char *name,
78 const struct block *block,
79 const domain_enum domain);
80 static struct type *rust_lookup_type (const char *name,
81 const struct block *block);
82 static struct type *rust_type (const char *name);
83
84 static const struct rust_op *crate_name (const struct rust_op *name);
85 static const struct rust_op *super_name (const struct rust_op *name,
86 unsigned int n_supers);
87
88 static const struct rust_op *ast_operation (enum exp_opcode opcode,
89 const struct rust_op *left,
90 const struct rust_op *right);
91 static const struct rust_op *ast_compound_assignment
92 (enum exp_opcode opcode, const struct rust_op *left,
93 const struct rust_op *rust_op);
94 static const struct rust_op *ast_literal (struct typed_val_int val);
95 static const struct rust_op *ast_dliteral (struct typed_val_float val);
96 static const struct rust_op *ast_structop (const struct rust_op *left,
97 const char *name,
98 int completing);
99 static const struct rust_op *ast_structop_anonymous
100 (const struct rust_op *left, struct typed_val_int number);
101 static const struct rust_op *ast_unary (enum exp_opcode opcode,
102 const struct rust_op *expr);
103 static const struct rust_op *ast_cast (const struct rust_op *expr,
104 const struct rust_op *type);
105 static const struct rust_op *ast_call_ish (enum exp_opcode opcode,
106 const struct rust_op *expr,
107 rust_op_vector *params);
108 static const struct rust_op *ast_path (struct stoken name,
109 rust_op_vector *params);
110 static const struct rust_op *ast_string (struct stoken str);
111 static const struct rust_op *ast_struct (const struct rust_op *name,
112 rust_set_vector *fields);
113 static const struct rust_op *ast_range (const struct rust_op *lhs,
114 const struct rust_op *rhs);
115 static const struct rust_op *ast_array_type (const struct rust_op *lhs,
116 struct typed_val_int val);
117 static const struct rust_op *ast_slice_type (const struct rust_op *type);
118 static const struct rust_op *ast_reference_type (const struct rust_op *type);
119 static const struct rust_op *ast_pointer_type (const struct rust_op *type,
120 int is_mut);
121 static const struct rust_op *ast_function_type (const struct rust_op *result,
122 rust_op_vector *params);
123 static const struct rust_op *ast_tuple_type (rust_op_vector *params);
124
125 /* The current rust parser. */
126
127 struct rust_parser;
128 static rust_parser *current_parser;
129
130 /* A regular expression for matching Rust numbers. This is split up
131 since it is very long and this gives us a way to comment the
132 sections. */
133
134 static const char *number_regex_text =
135 /* subexpression 1: allows use of alternation, otherwise uninteresting */
136 "^("
137 /* First comes floating point. */
138 /* Recognize number after the decimal point, with optional
139 exponent and optional type suffix.
140 subexpression 2: allows "?", otherwise uninteresting
141 subexpression 3: if present, type suffix
142 */
143 "[0-9][0-9_]*\\.[0-9][0-9_]*([eE][-+]?[0-9][0-9_]*)?(f32|f64)?"
144 #define FLOAT_TYPE1 3
145 "|"
146 /* Recognize exponent without decimal point, with optional type
147 suffix.
148 subexpression 4: if present, type suffix
149 */
150 #define FLOAT_TYPE2 4
151 "[0-9][0-9_]*[eE][-+]?[0-9][0-9_]*(f32|f64)?"
152 "|"
153 /* "23." is a valid floating point number, but "23.e5" and
154 "23.f32" are not. So, handle the trailing-. case
155 separately. */
156 "[0-9][0-9_]*\\."
157 "|"
158 /* Finally come integers.
159 subexpression 5: text of integer
160 subexpression 6: if present, type suffix
161 subexpression 7: allows use of alternation, otherwise uninteresting
162 */
163 #define INT_TEXT 5
164 #define INT_TYPE 6
165 "(0x[a-fA-F0-9_]+|0o[0-7_]+|0b[01_]+|[0-9][0-9_]*)"
166 "([iu](size|8|16|32|64))?"
167 ")";
168 /* The number of subexpressions to allocate space for, including the
169 "0th" whole match subexpression. */
170 #define NUM_SUBEXPRESSIONS 8
171
172 /* The compiled number-matching regex. */
173
174 static regex_t number_regex;
175
176 /* Obstack for data temporarily allocated during parsing. Points to
177 the obstack in the rust_parser, or to a temporary obstack during
178 unit testing. */
179
180 static auto_obstack *work_obstack;
181
182 /* An instance of this is created before parsing, and destroyed when
183 parsing is finished. */
184
185 struct rust_parser
186 {
187 rust_parser (struct parser_state *state)
188 : rust_ast (nullptr),
189 pstate (state)
190 {
191 gdb_assert (current_parser == nullptr);
192 current_parser = this;
193 work_obstack = &obstack;
194 }
195
196 ~rust_parser ()
197 {
198 /* Clean up the globals we set. */
199 current_parser = nullptr;
200 work_obstack = nullptr;
201 }
202
203 /* Create a new rust_set_vector. The storage for the new vector is
204 managed by this class. */
205 rust_set_vector *new_set_vector ()
206 {
207 rust_set_vector *result = new rust_set_vector;
208 set_vectors.push_back (std::unique_ptr<rust_set_vector> (result));
209 return result;
210 }
211
212 /* Create a new rust_ops_vector. The storage for the new vector is
213 managed by this class. */
214 rust_op_vector *new_op_vector ()
215 {
216 rust_op_vector *result = new rust_op_vector;
217 op_vectors.push_back (std::unique_ptr<rust_op_vector> (result));
218 return result;
219 }
220
221 /* Return the parser's language. */
222 const struct language_defn *language () const
223 {
224 return parse_language (pstate);
225 }
226
227 /* Return the parser's gdbarch. */
228 struct gdbarch *arch () const
229 {
230 return parse_gdbarch (pstate);
231 }
232
233 /* A pointer to this is installed globally. */
234 auto_obstack obstack;
235
236 /* Result of parsing. Points into obstack. */
237 const struct rust_op *rust_ast;
238
239 /* This keeps track of the various vectors we allocate. */
240 std::vector<std::unique_ptr<rust_set_vector>> set_vectors;
241 std::vector<std::unique_ptr<rust_op_vector>> op_vectors;
242
243 /* The parser state gdb gave us. */
244 struct parser_state *pstate;
245 };
246
247 %}
248
249 %union
250 {
251 /* A typed integer constant. */
252 struct typed_val_int typed_val_int;
253
254 /* A typed floating point constant. */
255 struct typed_val_float typed_val_float;
256
257 /* An identifier or string. */
258 struct stoken sval;
259
260 /* A token representing an opcode, like "==". */
261 enum exp_opcode opcode;
262
263 /* A list of expressions; for example, the arguments to a function
264 call. */
265 rust_op_vector *params;
266
267 /* A list of field initializers. */
268 rust_set_vector *field_inits;
269
270 /* A single field initializer. */
271 struct set_field one_field_init;
272
273 /* An expression. */
274 const struct rust_op *op;
275
276 /* A plain integer, for example used to count the number of
277 "super::" prefixes on a path. */
278 unsigned int depth;
279 }
280
281 %{
282
283 /* Rust AST operations. We build a tree of these; then lower them
284 to gdb expressions when parsing has completed. */
285
286 struct rust_op
287 {
288 /* The opcode. */
289 enum exp_opcode opcode;
290 /* If OPCODE is OP_TYPE, then this holds information about what type
291 is described by this node. */
292 enum type_code typecode;
293 /* Indicates whether OPCODE actually represents a compound
294 assignment. For example, if OPCODE is GTGT and this is false,
295 then this rust_op represents an ordinary ">>"; but if this is
296 true, then this rust_op represents ">>=". Unused in other
297 cases. */
298 unsigned int compound_assignment : 1;
299 /* Only used by a field expression; if set, indicates that the field
300 name occurred at the end of the expression and is eligible for
301 completion. */
302 unsigned int completing : 1;
303 /* Operands of expression. Which one is used and how depends on the
304 particular opcode. */
305 RUSTSTYPE left;
306 RUSTSTYPE right;
307 };
308
309 %}
310
311 %token <sval> GDBVAR
312 %token <sval> IDENT
313 %token <sval> COMPLETE
314 %token <typed_val_int> INTEGER
315 %token <typed_val_int> DECIMAL_INTEGER
316 %token <sval> STRING
317 %token <sval> BYTESTRING
318 %token <typed_val_float> FLOAT
319 %token <opcode> COMPOUND_ASSIGN
320
321 /* Keyword tokens. */
322 %token <voidval> KW_AS
323 %token <voidval> KW_IF
324 %token <voidval> KW_TRUE
325 %token <voidval> KW_FALSE
326 %token <voidval> KW_SUPER
327 %token <voidval> KW_SELF
328 %token <voidval> KW_MUT
329 %token <voidval> KW_EXTERN
330 %token <voidval> KW_CONST
331 %token <voidval> KW_FN
332 %token <voidval> KW_SIZEOF
333
334 /* Operator tokens. */
335 %token <voidval> DOTDOT
336 %token <voidval> OROR
337 %token <voidval> ANDAND
338 %token <voidval> EQEQ
339 %token <voidval> NOTEQ
340 %token <voidval> LTEQ
341 %token <voidval> GTEQ
342 %token <voidval> LSH RSH
343 %token <voidval> COLONCOLON
344 %token <voidval> ARROW
345
346 %type <op> type
347 %type <op> path_for_expr
348 %type <op> identifier_path_for_expr
349 %type <op> path_for_type
350 %type <op> identifier_path_for_type
351 %type <op> just_identifiers_for_type
352
353 %type <params> maybe_type_list
354 %type <params> type_list
355
356 %type <depth> super_path
357
358 %type <op> literal
359 %type <op> expr
360 %type <op> field_expr
361 %type <op> idx_expr
362 %type <op> unop_expr
363 %type <op> binop_expr
364 %type <op> binop_expr_expr
365 %type <op> type_cast_expr
366 %type <op> assignment_expr
367 %type <op> compound_assignment_expr
368 %type <op> paren_expr
369 %type <op> call_expr
370 %type <op> path_expr
371 %type <op> tuple_expr
372 %type <op> unit_expr
373 %type <op> struct_expr
374 %type <op> array_expr
375 %type <op> range_expr
376
377 %type <params> expr_list
378 %type <params> maybe_expr_list
379 %type <params> paren_expr_list
380
381 %type <field_inits> struct_expr_list
382 %type <one_field_init> struct_expr_tail
383
384 /* Precedence. */
385 %nonassoc DOTDOT
386 %right '=' COMPOUND_ASSIGN
387 %left OROR
388 %left ANDAND
389 %nonassoc EQEQ NOTEQ '<' '>' LTEQ GTEQ
390 %left '|'
391 %left '^'
392 %left '&'
393 %left LSH RSH
394 %left '@'
395 %left '+' '-'
396 %left '*' '/' '%'
397 /* These could be %precedence in Bison, but that isn't a yacc
398 feature. */
399 %left KW_AS
400 %left UNARY
401 %left '[' '.' '('
402
403 %%
404
405 start:
406 expr
407 {
408 /* If we are completing and see a valid parse,
409 rust_ast will already have been set. */
410 if (current_parser->rust_ast == NULL)
411 current_parser->rust_ast = $1;
412 }
413 ;
414
415 /* Note that the Rust grammar includes a method_call_expr, but we
416 handle this differently, to avoid a shift/reduce conflict with
417 call_expr. */
418 expr:
419 literal
420 | path_expr
421 | tuple_expr
422 | unit_expr
423 | struct_expr
424 | field_expr
425 | array_expr
426 | idx_expr
427 | range_expr
428 | unop_expr /* Must precede call_expr because of ambiguity with sizeof. */
429 | binop_expr
430 | paren_expr
431 | call_expr
432 ;
433
434 tuple_expr:
435 '(' expr ',' maybe_expr_list ')'
436 {
437 $4->push_back ($2);
438 error (_("Tuple expressions not supported yet"));
439 }
440 ;
441
442 unit_expr:
443 '(' ')'
444 {
445 struct typed_val_int val;
446
447 val.type
448 = language_lookup_primitive_type (current_parser->language (),
449 current_parser->arch (),
450 "()");
451 val.val = 0;
452 $$ = ast_literal (val);
453 }
454 ;
455
456 /* To avoid a shift/reduce conflict with call_expr, we don't handle
457 tuple struct expressions here, but instead when examining the
458 AST. */
459 struct_expr:
460 path_for_expr '{' struct_expr_list '}'
461 { $$ = ast_struct ($1, $3); }
462 ;
463
464 struct_expr_tail:
465 DOTDOT expr
466 {
467 struct set_field sf;
468
469 sf.name.ptr = NULL;
470 sf.name.length = 0;
471 sf.init = $2;
472
473 $$ = sf;
474 }
475 | IDENT ':' expr
476 {
477 struct set_field sf;
478
479 sf.name = $1;
480 sf.init = $3;
481 $$ = sf;
482 }
483 ;
484
485 struct_expr_list:
486 /* %empty */
487 {
488 $$ = current_parser->new_set_vector ();
489 }
490 | struct_expr_tail
491 {
492 rust_set_vector *result = current_parser->new_set_vector ();
493 result->push_back ($1);
494 $$ = result;
495 }
496 | IDENT ':' expr ',' struct_expr_list
497 {
498 struct set_field sf;
499
500 sf.name = $1;
501 sf.init = $3;
502 $5->push_back (sf);
503 $$ = $5;
504 }
505 ;
506
507 array_expr:
508 '[' KW_MUT expr_list ']'
509 { $$ = ast_call_ish (OP_ARRAY, NULL, $3); }
510 | '[' expr_list ']'
511 { $$ = ast_call_ish (OP_ARRAY, NULL, $2); }
512 | '[' KW_MUT expr ';' expr ']'
513 { $$ = ast_operation (OP_RUST_ARRAY, $3, $5); }
514 | '[' expr ';' expr ']'
515 { $$ = ast_operation (OP_RUST_ARRAY, $2, $4); }
516 ;
517
518 range_expr:
519 expr DOTDOT
520 { $$ = ast_range ($1, NULL); }
521 | expr DOTDOT expr
522 { $$ = ast_range ($1, $3); }
523 | DOTDOT expr
524 { $$ = ast_range (NULL, $2); }
525 | DOTDOT
526 { $$ = ast_range (NULL, NULL); }
527 ;
528
529 literal:
530 INTEGER
531 { $$ = ast_literal ($1); }
532 | DECIMAL_INTEGER
533 { $$ = ast_literal ($1); }
534 | FLOAT
535 { $$ = ast_dliteral ($1); }
536 | STRING
537 {
538 const struct rust_op *str = ast_string ($1);
539 struct set_field field;
540 struct typed_val_int val;
541 struct stoken token;
542
543 rust_set_vector *fields = current_parser->new_set_vector ();
544
545 /* Wrap the raw string in the &str struct. */
546 field.name.ptr = "data_ptr";
547 field.name.length = strlen (field.name.ptr);
548 field.init = ast_unary (UNOP_ADDR, ast_string ($1));
549 fields->push_back (field);
550
551 val.type = rust_type ("usize");
552 val.val = $1.length;
553
554 field.name.ptr = "length";
555 field.name.length = strlen (field.name.ptr);
556 field.init = ast_literal (val);
557 fields->push_back (field);
558
559 token.ptr = "&str";
560 token.length = strlen (token.ptr);
561 $$ = ast_struct (ast_path (token, NULL), fields);
562 }
563 | BYTESTRING
564 { $$ = ast_string ($1); }
565 | KW_TRUE
566 {
567 struct typed_val_int val;
568
569 val.type = language_bool_type (current_parser->language (),
570 current_parser->arch ());
571 val.val = 1;
572 $$ = ast_literal (val);
573 }
574 | KW_FALSE
575 {
576 struct typed_val_int val;
577
578 val.type = language_bool_type (current_parser->language (),
579 current_parser->arch ());
580 val.val = 0;
581 $$ = ast_literal (val);
582 }
583 ;
584
585 field_expr:
586 expr '.' IDENT
587 { $$ = ast_structop ($1, $3.ptr, 0); }
588 | expr '.' COMPLETE
589 {
590 $$ = ast_structop ($1, $3.ptr, 1);
591 current_parser->rust_ast = $$;
592 }
593 | expr '.' DECIMAL_INTEGER
594 { $$ = ast_structop_anonymous ($1, $3); }
595 ;
596
597 idx_expr:
598 expr '[' expr ']'
599 { $$ = ast_operation (BINOP_SUBSCRIPT, $1, $3); }
600 ;
601
602 unop_expr:
603 '+' expr %prec UNARY
604 { $$ = ast_unary (UNOP_PLUS, $2); }
605
606 | '-' expr %prec UNARY
607 { $$ = ast_unary (UNOP_NEG, $2); }
608
609 | '!' expr %prec UNARY
610 {
611 /* Note that we provide a Rust-specific evaluator
612 override for UNOP_COMPLEMENT, so it can do the
613 right thing for both bool and integral
614 values. */
615 $$ = ast_unary (UNOP_COMPLEMENT, $2);
616 }
617
618 | '*' expr %prec UNARY
619 { $$ = ast_unary (UNOP_IND, $2); }
620
621 | '&' expr %prec UNARY
622 { $$ = ast_unary (UNOP_ADDR, $2); }
623
624 | '&' KW_MUT expr %prec UNARY
625 { $$ = ast_unary (UNOP_ADDR, $3); }
626 | KW_SIZEOF '(' expr ')' %prec UNARY
627 { $$ = ast_unary (UNOP_SIZEOF, $3); }
628 ;
629
630 binop_expr:
631 binop_expr_expr
632 | type_cast_expr
633 | assignment_expr
634 | compound_assignment_expr
635 ;
636
637 binop_expr_expr:
638 expr '*' expr
639 { $$ = ast_operation (BINOP_MUL, $1, $3); }
640
641 | expr '@' expr
642 { $$ = ast_operation (BINOP_REPEAT, $1, $3); }
643
644 | expr '/' expr
645 { $$ = ast_operation (BINOP_DIV, $1, $3); }
646
647 | expr '%' expr
648 { $$ = ast_operation (BINOP_REM, $1, $3); }
649
650 | expr '<' expr
651 { $$ = ast_operation (BINOP_LESS, $1, $3); }
652
653 | expr '>' expr
654 { $$ = ast_operation (BINOP_GTR, $1, $3); }
655
656 | expr '&' expr
657 { $$ = ast_operation (BINOP_BITWISE_AND, $1, $3); }
658
659 | expr '|' expr
660 { $$ = ast_operation (BINOP_BITWISE_IOR, $1, $3); }
661
662 | expr '^' expr
663 { $$ = ast_operation (BINOP_BITWISE_XOR, $1, $3); }
664
665 | expr '+' expr
666 { $$ = ast_operation (BINOP_ADD, $1, $3); }
667
668 | expr '-' expr
669 { $$ = ast_operation (BINOP_SUB, $1, $3); }
670
671 | expr OROR expr
672 { $$ = ast_operation (BINOP_LOGICAL_OR, $1, $3); }
673
674 | expr ANDAND expr
675 { $$ = ast_operation (BINOP_LOGICAL_AND, $1, $3); }
676
677 | expr EQEQ expr
678 { $$ = ast_operation (BINOP_EQUAL, $1, $3); }
679
680 | expr NOTEQ expr
681 { $$ = ast_operation (BINOP_NOTEQUAL, $1, $3); }
682
683 | expr LTEQ expr
684 { $$ = ast_operation (BINOP_LEQ, $1, $3); }
685
686 | expr GTEQ expr
687 { $$ = ast_operation (BINOP_GEQ, $1, $3); }
688
689 | expr LSH expr
690 { $$ = ast_operation (BINOP_LSH, $1, $3); }
691
692 | expr RSH expr
693 { $$ = ast_operation (BINOP_RSH, $1, $3); }
694 ;
695
696 type_cast_expr:
697 expr KW_AS type
698 { $$ = ast_cast ($1, $3); }
699 ;
700
701 assignment_expr:
702 expr '=' expr
703 { $$ = ast_operation (BINOP_ASSIGN, $1, $3); }
704 ;
705
706 compound_assignment_expr:
707 expr COMPOUND_ASSIGN expr
708 { $$ = ast_compound_assignment ($2, $1, $3); }
709
710 ;
711
712 paren_expr:
713 '(' expr ')'
714 { $$ = $2; }
715 ;
716
717 expr_list:
718 expr
719 {
720 $$ = current_parser->new_op_vector ();
721 $$->push_back ($1);
722 }
723 | expr_list ',' expr
724 {
725 $1->push_back ($3);
726 $$ = $1;
727 }
728 ;
729
730 maybe_expr_list:
731 /* %empty */
732 {
733 /* The result can't be NULL. */
734 $$ = current_parser->new_op_vector ();
735 }
736 | expr_list
737 { $$ = $1; }
738 ;
739
740 paren_expr_list:
741 '('
742 maybe_expr_list
743 ')'
744 { $$ = $2; }
745 ;
746
747 call_expr:
748 expr paren_expr_list
749 { $$ = ast_call_ish (OP_FUNCALL, $1, $2); }
750 ;
751
752 maybe_self_path:
753 /* %empty */
754 | KW_SELF COLONCOLON
755 ;
756
757 super_path:
758 KW_SUPER COLONCOLON
759 { $$ = 1; }
760 | super_path KW_SUPER COLONCOLON
761 { $$ = $1 + 1; }
762 ;
763
764 path_expr:
765 path_for_expr
766 { $$ = $1; }
767 | GDBVAR
768 { $$ = ast_path ($1, NULL); }
769 | KW_SELF
770 { $$ = ast_path (make_stoken ("self"), NULL); }
771 ;
772
773 path_for_expr:
774 identifier_path_for_expr
775 | KW_SELF COLONCOLON identifier_path_for_expr
776 { $$ = super_name ($3, 0); }
777 | maybe_self_path super_path identifier_path_for_expr
778 { $$ = super_name ($3, $2); }
779 | COLONCOLON identifier_path_for_expr
780 { $$ = crate_name ($2); }
781 | KW_EXTERN identifier_path_for_expr
782 {
783 /* This is a gdb extension to make it possible to
784 refer to items in other crates. It just bypasses
785 adding the current crate to the front of the
786 name. */
787 $$ = ast_path (rust_concat3 ("::", $2->left.sval.ptr, NULL),
788 $2->right.params);
789 }
790 ;
791
792 identifier_path_for_expr:
793 IDENT
794 { $$ = ast_path ($1, NULL); }
795 | identifier_path_for_expr COLONCOLON IDENT
796 {
797 $$ = ast_path (rust_concat3 ($1->left.sval.ptr, "::",
798 $3.ptr),
799 NULL);
800 }
801 | identifier_path_for_expr COLONCOLON '<' type_list '>'
802 { $$ = ast_path ($1->left.sval, $4); }
803 | identifier_path_for_expr COLONCOLON '<' type_list RSH
804 {
805 $$ = ast_path ($1->left.sval, $4);
806 rust_push_back ('>');
807 }
808 ;
809
810 path_for_type:
811 identifier_path_for_type
812 | KW_SELF COLONCOLON identifier_path_for_type
813 { $$ = super_name ($3, 0); }
814 | maybe_self_path super_path identifier_path_for_type
815 { $$ = super_name ($3, $2); }
816 | COLONCOLON identifier_path_for_type
817 { $$ = crate_name ($2); }
818 | KW_EXTERN identifier_path_for_type
819 {
820 /* This is a gdb extension to make it possible to
821 refer to items in other crates. It just bypasses
822 adding the current crate to the front of the
823 name. */
824 $$ = ast_path (rust_concat3 ("::", $2->left.sval.ptr, NULL),
825 $2->right.params);
826 }
827 ;
828
829 just_identifiers_for_type:
830 IDENT
831 { $$ = ast_path ($1, NULL); }
832 | just_identifiers_for_type COLONCOLON IDENT
833 {
834 $$ = ast_path (rust_concat3 ($1->left.sval.ptr, "::",
835 $3.ptr),
836 NULL);
837 }
838 ;
839
840 identifier_path_for_type:
841 just_identifiers_for_type
842 | just_identifiers_for_type '<' type_list '>'
843 { $$ = ast_path ($1->left.sval, $3); }
844 | just_identifiers_for_type '<' type_list RSH
845 {
846 $$ = ast_path ($1->left.sval, $3);
847 rust_push_back ('>');
848 }
849 ;
850
851 type:
852 path_for_type
853 | '[' type ';' INTEGER ']'
854 { $$ = ast_array_type ($2, $4); }
855 | '[' type ';' DECIMAL_INTEGER ']'
856 { $$ = ast_array_type ($2, $4); }
857 | '&' '[' type ']'
858 { $$ = ast_slice_type ($3); }
859 | '&' type
860 { $$ = ast_reference_type ($2); }
861 | '*' KW_MUT type
862 { $$ = ast_pointer_type ($3, 1); }
863 | '*' KW_CONST type
864 { $$ = ast_pointer_type ($3, 0); }
865 | KW_FN '(' maybe_type_list ')' ARROW type
866 { $$ = ast_function_type ($6, $3); }
867 | '(' maybe_type_list ')'
868 { $$ = ast_tuple_type ($2); }
869 ;
870
871 maybe_type_list:
872 /* %empty */
873 { $$ = NULL; }
874 | type_list
875 { $$ = $1; }
876 ;
877
878 type_list:
879 type
880 {
881 rust_op_vector *result = current_parser->new_op_vector ();
882 result->push_back ($1);
883 $$ = result;
884 }
885 | type_list ',' type
886 {
887 $1->push_back ($3);
888 $$ = $1;
889 }
890 ;
891
892 %%
893
894 /* A struct of this type is used to describe a token. */
895
896 struct token_info
897 {
898 const char *name;
899 int value;
900 enum exp_opcode opcode;
901 };
902
903 /* Identifier tokens. */
904
905 static const struct token_info identifier_tokens[] =
906 {
907 { "as", KW_AS, OP_NULL },
908 { "false", KW_FALSE, OP_NULL },
909 { "if", 0, OP_NULL },
910 { "mut", KW_MUT, OP_NULL },
911 { "const", KW_CONST, OP_NULL },
912 { "self", KW_SELF, OP_NULL },
913 { "super", KW_SUPER, OP_NULL },
914 { "true", KW_TRUE, OP_NULL },
915 { "extern", KW_EXTERN, OP_NULL },
916 { "fn", KW_FN, OP_NULL },
917 { "sizeof", KW_SIZEOF, OP_NULL },
918 };
919
920 /* Operator tokens, sorted longest first. */
921
922 static const struct token_info operator_tokens[] =
923 {
924 { ">>=", COMPOUND_ASSIGN, BINOP_RSH },
925 { "<<=", COMPOUND_ASSIGN, BINOP_LSH },
926
927 { "<<", LSH, OP_NULL },
928 { ">>", RSH, OP_NULL },
929 { "&&", ANDAND, OP_NULL },
930 { "||", OROR, OP_NULL },
931 { "==", EQEQ, OP_NULL },
932 { "!=", NOTEQ, OP_NULL },
933 { "<=", LTEQ, OP_NULL },
934 { ">=", GTEQ, OP_NULL },
935 { "+=", COMPOUND_ASSIGN, BINOP_ADD },
936 { "-=", COMPOUND_ASSIGN, BINOP_SUB },
937 { "*=", COMPOUND_ASSIGN, BINOP_MUL },
938 { "/=", COMPOUND_ASSIGN, BINOP_DIV },
939 { "%=", COMPOUND_ASSIGN, BINOP_REM },
940 { "&=", COMPOUND_ASSIGN, BINOP_BITWISE_AND },
941 { "|=", COMPOUND_ASSIGN, BINOP_BITWISE_IOR },
942 { "^=", COMPOUND_ASSIGN, BINOP_BITWISE_XOR },
943
944 { "::", COLONCOLON, OP_NULL },
945 { "..", DOTDOT, OP_NULL },
946 { "->", ARROW, OP_NULL }
947 };
948
949 /* Helper function to copy to the name obstack. */
950
951 static const char *
952 rust_copy_name (const char *name, int len)
953 {
954 return (const char *) obstack_copy0 (work_obstack, name, len);
955 }
956
957 /* Helper function to make an stoken from a C string. */
958
959 static struct stoken
960 make_stoken (const char *p)
961 {
962 struct stoken result;
963
964 result.ptr = p;
965 result.length = strlen (result.ptr);
966 return result;
967 }
968
969 /* Helper function to concatenate three strings on the name
970 obstack. */
971
972 static struct stoken
973 rust_concat3 (const char *s1, const char *s2, const char *s3)
974 {
975 return make_stoken (obconcat (work_obstack, s1, s2, s3, (char *) NULL));
976 }
977
978 /* Return an AST node referring to NAME, but relative to the crate's
979 name. */
980
981 static const struct rust_op *
982 crate_name (const struct rust_op *name)
983 {
984 std::string crate = rust_crate_for_block (expression_context_block);
985 struct stoken result;
986
987 gdb_assert (name->opcode == OP_VAR_VALUE);
988
989 if (crate.empty ())
990 error (_("Could not find crate for current location"));
991 result = make_stoken (obconcat (work_obstack, "::", crate.c_str (), "::",
992 name->left.sval.ptr, (char *) NULL));
993
994 return ast_path (result, name->right.params);
995 }
996
997 /* Create an AST node referring to a "super::" qualified name. IDENT
998 is the base name and N_SUPERS is how many "super::"s were
999 provided. N_SUPERS can be zero. */
1000
1001 static const struct rust_op *
1002 super_name (const struct rust_op *ident, unsigned int n_supers)
1003 {
1004 const char *scope = block_scope (expression_context_block);
1005 int offset;
1006
1007 gdb_assert (ident->opcode == OP_VAR_VALUE);
1008
1009 if (scope[0] == '\0')
1010 error (_("Couldn't find namespace scope for self::"));
1011
1012 if (n_supers > 0)
1013 {
1014 int len;
1015 std::vector<int> offsets;
1016 unsigned int current_len;
1017
1018 current_len = cp_find_first_component (scope);
1019 while (scope[current_len] != '\0')
1020 {
1021 offsets.push_back (current_len);
1022 gdb_assert (scope[current_len] == ':');
1023 /* The "::". */
1024 current_len += 2;
1025 current_len += cp_find_first_component (scope
1026 + current_len);
1027 }
1028
1029 len = offsets.size ();
1030 if (n_supers >= len)
1031 error (_("Too many super:: uses from '%s'"), scope);
1032
1033 offset = offsets[len - n_supers];
1034 }
1035 else
1036 offset = strlen (scope);
1037
1038 obstack_grow (work_obstack, "::", 2);
1039 obstack_grow (work_obstack, scope, offset);
1040 obstack_grow (work_obstack, "::", 2);
1041 obstack_grow0 (work_obstack, ident->left.sval.ptr, ident->left.sval.length);
1042
1043 return ast_path (make_stoken ((const char *) obstack_finish (work_obstack)),
1044 ident->right.params);
1045 }
1046
1047 /* A helper that updates innermost_block as appropriate. */
1048
1049 static void
1050 update_innermost_block (struct block_symbol sym)
1051 {
1052 if (symbol_read_needs_frame (sym.symbol)
1053 && (innermost_block == NULL
1054 || contained_in (sym.block, innermost_block)))
1055 innermost_block = sym.block;
1056 }
1057
1058 /* A helper to look up a Rust type, or fail. This only works for
1059 types defined by rust_language_arch_info. */
1060
1061 static struct type *
1062 rust_type (const char *name)
1063 {
1064 struct type *type;
1065
1066 type = language_lookup_primitive_type (current_parser->language (),
1067 current_parser->arch (),
1068 name);
1069 if (type == NULL)
1070 error (_("Could not find Rust type %s"), name);
1071 return type;
1072 }
1073
1074 /* Lex a hex number with at least MIN digits and at most MAX
1075 digits. */
1076
1077 static uint32_t
1078 lex_hex (int min, int max)
1079 {
1080 uint32_t result = 0;
1081 int len = 0;
1082 /* We only want to stop at MAX if we're lexing a byte escape. */
1083 int check_max = min == max;
1084
1085 while ((check_max ? len <= max : 1)
1086 && ((lexptr[0] >= 'a' && lexptr[0] <= 'f')
1087 || (lexptr[0] >= 'A' && lexptr[0] <= 'F')
1088 || (lexptr[0] >= '0' && lexptr[0] <= '9')))
1089 {
1090 result *= 16;
1091 if (lexptr[0] >= 'a' && lexptr[0] <= 'f')
1092 result = result + 10 + lexptr[0] - 'a';
1093 else if (lexptr[0] >= 'A' && lexptr[0] <= 'F')
1094 result = result + 10 + lexptr[0] - 'A';
1095 else
1096 result = result + lexptr[0] - '0';
1097 ++lexptr;
1098 ++len;
1099 }
1100
1101 if (len < min)
1102 error (_("Not enough hex digits seen"));
1103 if (len > max)
1104 {
1105 gdb_assert (min != max);
1106 error (_("Overlong hex escape"));
1107 }
1108
1109 return result;
1110 }
1111
1112 /* Lex an escape. IS_BYTE is true if we're lexing a byte escape;
1113 otherwise we're lexing a character escape. */
1114
1115 static uint32_t
1116 lex_escape (int is_byte)
1117 {
1118 uint32_t result;
1119
1120 gdb_assert (lexptr[0] == '\\');
1121 ++lexptr;
1122 switch (lexptr[0])
1123 {
1124 case 'x':
1125 ++lexptr;
1126 result = lex_hex (2, 2);
1127 break;
1128
1129 case 'u':
1130 if (is_byte)
1131 error (_("Unicode escape in byte literal"));
1132 ++lexptr;
1133 if (lexptr[0] != '{')
1134 error (_("Missing '{' in Unicode escape"));
1135 ++lexptr;
1136 result = lex_hex (1, 6);
1137 /* Could do range checks here. */
1138 if (lexptr[0] != '}')
1139 error (_("Missing '}' in Unicode escape"));
1140 ++lexptr;
1141 break;
1142
1143 case 'n':
1144 result = '\n';
1145 ++lexptr;
1146 break;
1147 case 'r':
1148 result = '\r';
1149 ++lexptr;
1150 break;
1151 case 't':
1152 result = '\t';
1153 ++lexptr;
1154 break;
1155 case '\\':
1156 result = '\\';
1157 ++lexptr;
1158 break;
1159 case '0':
1160 result = '\0';
1161 ++lexptr;
1162 break;
1163 case '\'':
1164 result = '\'';
1165 ++lexptr;
1166 break;
1167 case '"':
1168 result = '"';
1169 ++lexptr;
1170 break;
1171
1172 default:
1173 error (_("Invalid escape \\%c in literal"), lexptr[0]);
1174 }
1175
1176 return result;
1177 }
1178
1179 /* Lex a character constant. */
1180
1181 static int
1182 lex_character (void)
1183 {
1184 int is_byte = 0;
1185 uint32_t value;
1186
1187 if (lexptr[0] == 'b')
1188 {
1189 is_byte = 1;
1190 ++lexptr;
1191 }
1192 gdb_assert (lexptr[0] == '\'');
1193 ++lexptr;
1194 /* This should handle UTF-8 here. */
1195 if (lexptr[0] == '\\')
1196 value = lex_escape (is_byte);
1197 else
1198 {
1199 value = lexptr[0] & 0xff;
1200 ++lexptr;
1201 }
1202
1203 if (lexptr[0] != '\'')
1204 error (_("Unterminated character literal"));
1205 ++lexptr;
1206
1207 rustyylval.typed_val_int.val = value;
1208 rustyylval.typed_val_int.type = rust_type (is_byte ? "u8" : "char");
1209
1210 return INTEGER;
1211 }
1212
1213 /* Return the offset of the double quote if STR looks like the start
1214 of a raw string, or 0 if STR does not start a raw string. */
1215
1216 static int
1217 starts_raw_string (const char *str)
1218 {
1219 const char *save = str;
1220
1221 if (str[0] != 'r')
1222 return 0;
1223 ++str;
1224 while (str[0] == '#')
1225 ++str;
1226 if (str[0] == '"')
1227 return str - save;
1228 return 0;
1229 }
1230
1231 /* Return true if STR looks like the end of a raw string that had N
1232 hashes at the start. */
1233
1234 static bool
1235 ends_raw_string (const char *str, int n)
1236 {
1237 int i;
1238
1239 gdb_assert (str[0] == '"');
1240 for (i = 0; i < n; ++i)
1241 if (str[i + 1] != '#')
1242 return false;
1243 return true;
1244 }
1245
1246 /* Lex a string constant. */
1247
1248 static int
1249 lex_string (void)
1250 {
1251 int is_byte = lexptr[0] == 'b';
1252 int raw_length;
1253
1254 if (is_byte)
1255 ++lexptr;
1256 raw_length = starts_raw_string (lexptr);
1257 lexptr += raw_length;
1258 gdb_assert (lexptr[0] == '"');
1259 ++lexptr;
1260
1261 while (1)
1262 {
1263 uint32_t value;
1264
1265 if (raw_length > 0)
1266 {
1267 if (lexptr[0] == '"' && ends_raw_string (lexptr, raw_length - 1))
1268 {
1269 /* Exit with lexptr pointing after the final "#". */
1270 lexptr += raw_length;
1271 break;
1272 }
1273 else if (lexptr[0] == '\0')
1274 error (_("Unexpected EOF in string"));
1275
1276 value = lexptr[0] & 0xff;
1277 if (is_byte && value > 127)
1278 error (_("Non-ASCII value in raw byte string"));
1279 obstack_1grow (work_obstack, value);
1280
1281 ++lexptr;
1282 }
1283 else if (lexptr[0] == '"')
1284 {
1285 /* Make sure to skip the quote. */
1286 ++lexptr;
1287 break;
1288 }
1289 else if (lexptr[0] == '\\')
1290 {
1291 value = lex_escape (is_byte);
1292
1293 if (is_byte)
1294 obstack_1grow (work_obstack, value);
1295 else
1296 convert_between_encodings ("UTF-32", "UTF-8", (gdb_byte *) &value,
1297 sizeof (value), sizeof (value),
1298 work_obstack, translit_none);
1299 }
1300 else if (lexptr[0] == '\0')
1301 error (_("Unexpected EOF in string"));
1302 else
1303 {
1304 value = lexptr[0] & 0xff;
1305 if (is_byte && value > 127)
1306 error (_("Non-ASCII value in byte string"));
1307 obstack_1grow (work_obstack, value);
1308 ++lexptr;
1309 }
1310 }
1311
1312 rustyylval.sval.length = obstack_object_size (work_obstack);
1313 rustyylval.sval.ptr = (const char *) obstack_finish (work_obstack);
1314 return is_byte ? BYTESTRING : STRING;
1315 }
1316
1317 /* Return true if STRING starts with whitespace followed by a digit. */
1318
1319 static bool
1320 space_then_number (const char *string)
1321 {
1322 const char *p = string;
1323
1324 while (p[0] == ' ' || p[0] == '\t')
1325 ++p;
1326 if (p == string)
1327 return false;
1328
1329 return *p >= '0' && *p <= '9';
1330 }
1331
1332 /* Return true if C can start an identifier. */
1333
1334 static bool
1335 rust_identifier_start_p (char c)
1336 {
1337 return ((c >= 'a' && c <= 'z')
1338 || (c >= 'A' && c <= 'Z')
1339 || c == '_'
1340 || c == '$');
1341 }
1342
1343 /* Lex an identifier. */
1344
1345 static int
1346 lex_identifier (void)
1347 {
1348 const char *start = lexptr;
1349 unsigned int length;
1350 const struct token_info *token;
1351 int i;
1352 int is_gdb_var = lexptr[0] == '$';
1353
1354 gdb_assert (rust_identifier_start_p (lexptr[0]));
1355
1356 ++lexptr;
1357
1358 /* For the time being this doesn't handle Unicode rules. Non-ASCII
1359 identifiers are gated anyway. */
1360 while ((lexptr[0] >= 'a' && lexptr[0] <= 'z')
1361 || (lexptr[0] >= 'A' && lexptr[0] <= 'Z')
1362 || lexptr[0] == '_'
1363 || (is_gdb_var && lexptr[0] == '$')
1364 || (lexptr[0] >= '0' && lexptr[0] <= '9'))
1365 ++lexptr;
1366
1367
1368 length = lexptr - start;
1369 token = NULL;
1370 for (i = 0; i < ARRAY_SIZE (identifier_tokens); ++i)
1371 {
1372 if (length == strlen (identifier_tokens[i].name)
1373 && strncmp (identifier_tokens[i].name, start, length) == 0)
1374 {
1375 token = &identifier_tokens[i];
1376 break;
1377 }
1378 }
1379
1380 if (token != NULL)
1381 {
1382 if (token->value == 0)
1383 {
1384 /* Leave the terminating token alone. */
1385 lexptr = start;
1386 return 0;
1387 }
1388 }
1389 else if (token == NULL
1390 && (strncmp (start, "thread", length) == 0
1391 || strncmp (start, "task", length) == 0)
1392 && space_then_number (lexptr))
1393 {
1394 /* "task" or "thread" followed by a number terminates the
1395 parse, per gdb rules. */
1396 lexptr = start;
1397 return 0;
1398 }
1399
1400 if (token == NULL || (parse_completion && lexptr[0] == '\0'))
1401 rustyylval.sval = make_stoken (rust_copy_name (start, length));
1402
1403 if (parse_completion && lexptr[0] == '\0')
1404 {
1405 /* Prevent rustyylex from returning two COMPLETE tokens. */
1406 prev_lexptr = lexptr;
1407 return COMPLETE;
1408 }
1409
1410 if (token != NULL)
1411 return token->value;
1412 if (is_gdb_var)
1413 return GDBVAR;
1414 return IDENT;
1415 }
1416
1417 /* Lex an operator. */
1418
1419 static int
1420 lex_operator (void)
1421 {
1422 const struct token_info *token = NULL;
1423 int i;
1424
1425 for (i = 0; i < ARRAY_SIZE (operator_tokens); ++i)
1426 {
1427 if (strncmp (operator_tokens[i].name, lexptr,
1428 strlen (operator_tokens[i].name)) == 0)
1429 {
1430 lexptr += strlen (operator_tokens[i].name);
1431 token = &operator_tokens[i];
1432 break;
1433 }
1434 }
1435
1436 if (token != NULL)
1437 {
1438 rustyylval.opcode = token->opcode;
1439 return token->value;
1440 }
1441
1442 return *lexptr++;
1443 }
1444
1445 /* Lex a number. */
1446
1447 static int
1448 lex_number (void)
1449 {
1450 regmatch_t subexps[NUM_SUBEXPRESSIONS];
1451 int match;
1452 int is_integer = 0;
1453 int could_be_decimal = 1;
1454 int implicit_i32 = 0;
1455 const char *type_name = NULL;
1456 struct type *type;
1457 int end_index;
1458 int type_index = -1;
1459 int i;
1460
1461 match = regexec (&number_regex, lexptr, ARRAY_SIZE (subexps), subexps, 0);
1462 /* Failure means the regexp is broken. */
1463 gdb_assert (match == 0);
1464
1465 if (subexps[INT_TEXT].rm_so != -1)
1466 {
1467 /* Integer part matched. */
1468 is_integer = 1;
1469 end_index = subexps[INT_TEXT].rm_eo;
1470 if (subexps[INT_TYPE].rm_so == -1)
1471 {
1472 type_name = "i32";
1473 implicit_i32 = 1;
1474 }
1475 else
1476 {
1477 type_index = INT_TYPE;
1478 could_be_decimal = 0;
1479 }
1480 }
1481 else if (subexps[FLOAT_TYPE1].rm_so != -1)
1482 {
1483 /* Found floating point type suffix. */
1484 end_index = subexps[FLOAT_TYPE1].rm_so;
1485 type_index = FLOAT_TYPE1;
1486 }
1487 else if (subexps[FLOAT_TYPE2].rm_so != -1)
1488 {
1489 /* Found floating point type suffix. */
1490 end_index = subexps[FLOAT_TYPE2].rm_so;
1491 type_index = FLOAT_TYPE2;
1492 }
1493 else
1494 {
1495 /* Any other floating point match. */
1496 end_index = subexps[0].rm_eo;
1497 type_name = "f64";
1498 }
1499
1500 /* We need a special case if the final character is ".". In this
1501 case we might need to parse an integer. For example, "23.f()" is
1502 a request for a trait method call, not a syntax error involving
1503 the floating point number "23.". */
1504 gdb_assert (subexps[0].rm_eo > 0);
1505 if (lexptr[subexps[0].rm_eo - 1] == '.')
1506 {
1507 const char *next = skip_spaces (&lexptr[subexps[0].rm_eo]);
1508
1509 if (rust_identifier_start_p (*next) || *next == '.')
1510 {
1511 --subexps[0].rm_eo;
1512 is_integer = 1;
1513 end_index = subexps[0].rm_eo;
1514 type_name = "i32";
1515 could_be_decimal = 1;
1516 implicit_i32 = 1;
1517 }
1518 }
1519
1520 /* Compute the type name if we haven't already. */
1521 std::string type_name_holder;
1522 if (type_name == NULL)
1523 {
1524 gdb_assert (type_index != -1);
1525 type_name_holder = std::string (lexptr + subexps[type_index].rm_so,
1526 (subexps[type_index].rm_eo
1527 - subexps[type_index].rm_so));
1528 type_name = type_name_holder.c_str ();
1529 }
1530
1531 /* Look up the type. */
1532 type = rust_type (type_name);
1533
1534 /* Copy the text of the number and remove the "_"s. */
1535 std::string number;
1536 for (i = 0; i < end_index && lexptr[i]; ++i)
1537 {
1538 if (lexptr[i] == '_')
1539 could_be_decimal = 0;
1540 else
1541 number.push_back (lexptr[i]);
1542 }
1543
1544 /* Advance past the match. */
1545 lexptr += subexps[0].rm_eo;
1546
1547 /* Parse the number. */
1548 if (is_integer)
1549 {
1550 uint64_t value;
1551 int radix = 10;
1552 int offset = 0;
1553
1554 if (number[0] == '0')
1555 {
1556 if (number[1] == 'x')
1557 radix = 16;
1558 else if (number[1] == 'o')
1559 radix = 8;
1560 else if (number[1] == 'b')
1561 radix = 2;
1562 if (radix != 10)
1563 {
1564 offset = 2;
1565 could_be_decimal = 0;
1566 }
1567 }
1568
1569 value = strtoul (number.c_str () + offset, NULL, radix);
1570 if (implicit_i32 && value >= ((uint64_t) 1) << 31)
1571 type = rust_type ("i64");
1572
1573 rustyylval.typed_val_int.val = value;
1574 rustyylval.typed_val_int.type = type;
1575 }
1576 else
1577 {
1578 rustyylval.typed_val_float.type = type;
1579 bool parsed = parse_float (number.c_str (), number.length (),
1580 rustyylval.typed_val_float.type,
1581 rustyylval.typed_val_float.val);
1582 gdb_assert (parsed);
1583 }
1584
1585 return is_integer ? (could_be_decimal ? DECIMAL_INTEGER : INTEGER) : FLOAT;
1586 }
1587
1588 /* The lexer. */
1589
1590 static int
1591 rustyylex (void)
1592 {
1593 /* Skip all leading whitespace. */
1594 while (lexptr[0] == ' ' || lexptr[0] == '\t' || lexptr[0] == '\r'
1595 || lexptr[0] == '\n')
1596 ++lexptr;
1597
1598 /* If we hit EOF and we're completing, then return COMPLETE -- maybe
1599 we're completing an empty string at the end of a field_expr.
1600 But, we don't want to return two COMPLETE tokens in a row. */
1601 if (lexptr[0] == '\0' && lexptr == prev_lexptr)
1602 return 0;
1603 prev_lexptr = lexptr;
1604 if (lexptr[0] == '\0')
1605 {
1606 if (parse_completion)
1607 {
1608 rustyylval.sval = make_stoken ("");
1609 return COMPLETE;
1610 }
1611 return 0;
1612 }
1613
1614 if (lexptr[0] >= '0' && lexptr[0] <= '9')
1615 return lex_number ();
1616 else if (lexptr[0] == 'b' && lexptr[1] == '\'')
1617 return lex_character ();
1618 else if (lexptr[0] == 'b' && lexptr[1] == '"')
1619 return lex_string ();
1620 else if (lexptr[0] == 'b' && starts_raw_string (lexptr + 1))
1621 return lex_string ();
1622 else if (starts_raw_string (lexptr))
1623 return lex_string ();
1624 else if (rust_identifier_start_p (lexptr[0]))
1625 return lex_identifier ();
1626 else if (lexptr[0] == '"')
1627 return lex_string ();
1628 else if (lexptr[0] == '\'')
1629 return lex_character ();
1630 else if (lexptr[0] == '}' || lexptr[0] == ']')
1631 {
1632 /* Falls through to lex_operator. */
1633 --paren_depth;
1634 }
1635 else if (lexptr[0] == '(' || lexptr[0] == '{')
1636 {
1637 /* Falls through to lex_operator. */
1638 ++paren_depth;
1639 }
1640 else if (lexptr[0] == ',' && comma_terminates && paren_depth == 0)
1641 return 0;
1642
1643 return lex_operator ();
1644 }
1645
1646 /* Push back a single character to be re-lexed. */
1647
1648 static void
1649 rust_push_back (char c)
1650 {
1651 /* Can't be called before any lexing. */
1652 gdb_assert (prev_lexptr != NULL);
1653
1654 --lexptr;
1655 gdb_assert (*lexptr == c);
1656 }
1657
1658 \f
1659
1660 /* Make an arbitrary operation and fill in the fields. */
1661
1662 static const struct rust_op *
1663 ast_operation (enum exp_opcode opcode, const struct rust_op *left,
1664 const struct rust_op *right)
1665 {
1666 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1667
1668 result->opcode = opcode;
1669 result->left.op = left;
1670 result->right.op = right;
1671
1672 return result;
1673 }
1674
1675 /* Make a compound assignment operation. */
1676
1677 static const struct rust_op *
1678 ast_compound_assignment (enum exp_opcode opcode, const struct rust_op *left,
1679 const struct rust_op *right)
1680 {
1681 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1682
1683 result->opcode = opcode;
1684 result->compound_assignment = 1;
1685 result->left.op = left;
1686 result->right.op = right;
1687
1688 return result;
1689 }
1690
1691 /* Make a typed integer literal operation. */
1692
1693 static const struct rust_op *
1694 ast_literal (struct typed_val_int val)
1695 {
1696 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1697
1698 result->opcode = OP_LONG;
1699 result->left.typed_val_int = val;
1700
1701 return result;
1702 }
1703
1704 /* Make a typed floating point literal operation. */
1705
1706 static const struct rust_op *
1707 ast_dliteral (struct typed_val_float val)
1708 {
1709 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1710
1711 result->opcode = OP_FLOAT;
1712 result->left.typed_val_float = val;
1713
1714 return result;
1715 }
1716
1717 /* Make a unary operation. */
1718
1719 static const struct rust_op *
1720 ast_unary (enum exp_opcode opcode, const struct rust_op *expr)
1721 {
1722 return ast_operation (opcode, expr, NULL);
1723 }
1724
1725 /* Make a cast operation. */
1726
1727 static const struct rust_op *
1728 ast_cast (const struct rust_op *expr, const struct rust_op *type)
1729 {
1730 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1731
1732 result->opcode = UNOP_CAST;
1733 result->left.op = expr;
1734 result->right.op = type;
1735
1736 return result;
1737 }
1738
1739 /* Make a call-like operation. This is nominally a function call, but
1740 when lowering we may discover that it actually represents the
1741 creation of a tuple struct. */
1742
1743 static const struct rust_op *
1744 ast_call_ish (enum exp_opcode opcode, const struct rust_op *expr,
1745 rust_op_vector *params)
1746 {
1747 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1748
1749 result->opcode = opcode;
1750 result->left.op = expr;
1751 result->right.params = params;
1752
1753 return result;
1754 }
1755
1756 /* Make a structure creation operation. */
1757
1758 static const struct rust_op *
1759 ast_struct (const struct rust_op *name, rust_set_vector *fields)
1760 {
1761 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1762
1763 result->opcode = OP_AGGREGATE;
1764 result->left.op = name;
1765 result->right.field_inits = fields;
1766
1767 return result;
1768 }
1769
1770 /* Make an identifier path. */
1771
1772 static const struct rust_op *
1773 ast_path (struct stoken path, rust_op_vector *params)
1774 {
1775 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1776
1777 result->opcode = OP_VAR_VALUE;
1778 result->left.sval = path;
1779 result->right.params = params;
1780
1781 return result;
1782 }
1783
1784 /* Make a string constant operation. */
1785
1786 static const struct rust_op *
1787 ast_string (struct stoken str)
1788 {
1789 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1790
1791 result->opcode = OP_STRING;
1792 result->left.sval = str;
1793
1794 return result;
1795 }
1796
1797 /* Make a field expression. */
1798
1799 static const struct rust_op *
1800 ast_structop (const struct rust_op *left, const char *name, int completing)
1801 {
1802 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1803
1804 result->opcode = STRUCTOP_STRUCT;
1805 result->completing = completing;
1806 result->left.op = left;
1807 result->right.sval = make_stoken (name);
1808
1809 return result;
1810 }
1811
1812 /* Make an anonymous struct operation, like 'x.0'. */
1813
1814 static const struct rust_op *
1815 ast_structop_anonymous (const struct rust_op *left,
1816 struct typed_val_int number)
1817 {
1818 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1819
1820 result->opcode = STRUCTOP_ANONYMOUS;
1821 result->left.op = left;
1822 result->right.typed_val_int = number;
1823
1824 return result;
1825 }
1826
1827 /* Make a range operation. */
1828
1829 static const struct rust_op *
1830 ast_range (const struct rust_op *lhs, const struct rust_op *rhs)
1831 {
1832 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1833
1834 result->opcode = OP_RANGE;
1835 result->left.op = lhs;
1836 result->right.op = rhs;
1837
1838 return result;
1839 }
1840
1841 /* A helper function to make a type-related AST node. */
1842
1843 static struct rust_op *
1844 ast_basic_type (enum type_code typecode)
1845 {
1846 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1847
1848 result->opcode = OP_TYPE;
1849 result->typecode = typecode;
1850 return result;
1851 }
1852
1853 /* Create an AST node describing an array type. */
1854
1855 static const struct rust_op *
1856 ast_array_type (const struct rust_op *lhs, struct typed_val_int val)
1857 {
1858 struct rust_op *result = ast_basic_type (TYPE_CODE_ARRAY);
1859
1860 result->left.op = lhs;
1861 result->right.typed_val_int = val;
1862 return result;
1863 }
1864
1865 /* Create an AST node describing a reference type. */
1866
1867 static const struct rust_op *
1868 ast_slice_type (const struct rust_op *type)
1869 {
1870 /* Use TYPE_CODE_COMPLEX just because it is handy. */
1871 struct rust_op *result = ast_basic_type (TYPE_CODE_COMPLEX);
1872
1873 result->left.op = type;
1874 return result;
1875 }
1876
1877 /* Create an AST node describing a reference type. */
1878
1879 static const struct rust_op *
1880 ast_reference_type (const struct rust_op *type)
1881 {
1882 struct rust_op *result = ast_basic_type (TYPE_CODE_REF);
1883
1884 result->left.op = type;
1885 return result;
1886 }
1887
1888 /* Create an AST node describing a pointer type. */
1889
1890 static const struct rust_op *
1891 ast_pointer_type (const struct rust_op *type, int is_mut)
1892 {
1893 struct rust_op *result = ast_basic_type (TYPE_CODE_PTR);
1894
1895 result->left.op = type;
1896 /* For the time being we ignore is_mut. */
1897 return result;
1898 }
1899
1900 /* Create an AST node describing a function type. */
1901
1902 static const struct rust_op *
1903 ast_function_type (const struct rust_op *rtype, rust_op_vector *params)
1904 {
1905 struct rust_op *result = ast_basic_type (TYPE_CODE_FUNC);
1906
1907 result->left.op = rtype;
1908 result->right.params = params;
1909 return result;
1910 }
1911
1912 /* Create an AST node describing a tuple type. */
1913
1914 static const struct rust_op *
1915 ast_tuple_type (rust_op_vector *params)
1916 {
1917 struct rust_op *result = ast_basic_type (TYPE_CODE_STRUCT);
1918
1919 result->left.params = params;
1920 return result;
1921 }
1922
1923 /* A helper to appropriately munge NAME and BLOCK depending on the
1924 presence of a leading "::". */
1925
1926 static void
1927 munge_name_and_block (const char **name, const struct block **block)
1928 {
1929 /* If it is a global reference, skip the current block in favor of
1930 the static block. */
1931 if (strncmp (*name, "::", 2) == 0)
1932 {
1933 *name += 2;
1934 *block = block_static_block (*block);
1935 }
1936 }
1937
1938 /* Like lookup_symbol, but handles Rust namespace conventions, and
1939 doesn't require field_of_this_result. */
1940
1941 static struct block_symbol
1942 rust_lookup_symbol (const char *name, const struct block *block,
1943 const domain_enum domain)
1944 {
1945 struct block_symbol result;
1946
1947 munge_name_and_block (&name, &block);
1948
1949 result = lookup_symbol (name, block, domain, NULL);
1950 if (result.symbol != NULL)
1951 update_innermost_block (result);
1952 return result;
1953 }
1954
1955 /* Look up a type, following Rust namespace conventions. */
1956
1957 static struct type *
1958 rust_lookup_type (const char *name, const struct block *block)
1959 {
1960 struct block_symbol result;
1961 struct type *type;
1962
1963 munge_name_and_block (&name, &block);
1964
1965 result = lookup_symbol (name, block, STRUCT_DOMAIN, NULL);
1966 if (result.symbol != NULL)
1967 {
1968 update_innermost_block (result);
1969 return SYMBOL_TYPE (result.symbol);
1970 }
1971
1972 type = lookup_typename (current_parser->language (), current_parser->arch (),
1973 name, NULL, 1);
1974 if (type != NULL)
1975 return type;
1976
1977 /* Last chance, try a built-in type. */
1978 return language_lookup_primitive_type (current_parser->language (),
1979 current_parser->arch (),
1980 name);
1981 }
1982
1983 static struct type *convert_ast_to_type (struct parser_state *state,
1984 const struct rust_op *operation);
1985 static const char *convert_name (struct parser_state *state,
1986 const struct rust_op *operation);
1987
1988 /* Convert a vector of rust_ops representing types to a vector of
1989 types. */
1990
1991 static std::vector<struct type *>
1992 convert_params_to_types (struct parser_state *state, rust_op_vector *params)
1993 {
1994 std::vector<struct type *> result;
1995
1996 for (const rust_op *op : *params)
1997 result.push_back (convert_ast_to_type (state, op));
1998
1999 return result;
2000 }
2001
2002 /* Convert a rust_op representing a type to a struct type *. */
2003
2004 static struct type *
2005 convert_ast_to_type (struct parser_state *state,
2006 const struct rust_op *operation)
2007 {
2008 struct type *type, *result = NULL;
2009
2010 if (operation->opcode == OP_VAR_VALUE)
2011 {
2012 const char *varname = convert_name (state, operation);
2013
2014 result = rust_lookup_type (varname, expression_context_block);
2015 if (result == NULL)
2016 error (_("No typed name '%s' in current context"), varname);
2017 return result;
2018 }
2019
2020 gdb_assert (operation->opcode == OP_TYPE);
2021
2022 switch (operation->typecode)
2023 {
2024 case TYPE_CODE_ARRAY:
2025 type = convert_ast_to_type (state, operation->left.op);
2026 if (operation->right.typed_val_int.val < 0)
2027 error (_("Negative array length"));
2028 result = lookup_array_range_type (type, 0,
2029 operation->right.typed_val_int.val - 1);
2030 break;
2031
2032 case TYPE_CODE_COMPLEX:
2033 {
2034 struct type *usize = rust_type ("usize");
2035
2036 type = convert_ast_to_type (state, operation->left.op);
2037 result = rust_slice_type ("&[*gdb*]", type, usize);
2038 }
2039 break;
2040
2041 case TYPE_CODE_REF:
2042 case TYPE_CODE_PTR:
2043 /* For now we treat &x and *x identically. */
2044 type = convert_ast_to_type (state, operation->left.op);
2045 result = lookup_pointer_type (type);
2046 break;
2047
2048 case TYPE_CODE_FUNC:
2049 {
2050 std::vector<struct type *> args
2051 (convert_params_to_types (state, operation->right.params));
2052 struct type **argtypes = NULL;
2053
2054 type = convert_ast_to_type (state, operation->left.op);
2055 if (!args.empty ())
2056 argtypes = args.data ();
2057
2058 result
2059 = lookup_function_type_with_arguments (type, args.size (),
2060 argtypes);
2061 result = lookup_pointer_type (result);
2062 }
2063 break;
2064
2065 case TYPE_CODE_STRUCT:
2066 {
2067 std::vector<struct type *> args
2068 (convert_params_to_types (state, operation->left.params));
2069 int i;
2070 const char *name;
2071
2072 obstack_1grow (work_obstack, '(');
2073 for (i = 0; i < args.size (); ++i)
2074 {
2075 std::string type_name = type_to_string (args[i]);
2076
2077 if (i > 0)
2078 obstack_1grow (work_obstack, ',');
2079 obstack_grow_str (work_obstack, type_name.c_str ());
2080 }
2081
2082 obstack_grow_str0 (work_obstack, ")");
2083 name = (const char *) obstack_finish (work_obstack);
2084
2085 /* We don't allow creating new tuple types (yet), but we do
2086 allow looking up existing tuple types. */
2087 result = rust_lookup_type (name, expression_context_block);
2088 if (result == NULL)
2089 error (_("could not find tuple type '%s'"), name);
2090 }
2091 break;
2092
2093 default:
2094 gdb_assert_not_reached ("unhandled opcode in convert_ast_to_type");
2095 }
2096
2097 gdb_assert (result != NULL);
2098 return result;
2099 }
2100
2101 /* A helper function to turn a rust_op representing a name into a full
2102 name. This applies generic arguments as needed. The returned name
2103 is allocated on the work obstack. */
2104
2105 static const char *
2106 convert_name (struct parser_state *state, const struct rust_op *operation)
2107 {
2108 int i;
2109
2110 gdb_assert (operation->opcode == OP_VAR_VALUE);
2111
2112 if (operation->right.params == NULL)
2113 return operation->left.sval.ptr;
2114
2115 std::vector<struct type *> types
2116 (convert_params_to_types (state, operation->right.params));
2117
2118 obstack_grow_str (work_obstack, operation->left.sval.ptr);
2119 obstack_1grow (work_obstack, '<');
2120 for (i = 0; i < types.size (); ++i)
2121 {
2122 std::string type_name = type_to_string (types[i]);
2123
2124 if (i > 0)
2125 obstack_1grow (work_obstack, ',');
2126
2127 obstack_grow_str (work_obstack, type_name.c_str ());
2128 }
2129 obstack_grow_str0 (work_obstack, ">");
2130
2131 return (const char *) obstack_finish (work_obstack);
2132 }
2133
2134 static void convert_ast_to_expression (struct parser_state *state,
2135 const struct rust_op *operation,
2136 const struct rust_op *top,
2137 bool want_type = false);
2138
2139 /* A helper function that converts a vec of rust_ops to a gdb
2140 expression. */
2141
2142 static void
2143 convert_params_to_expression (struct parser_state *state,
2144 rust_op_vector *params,
2145 const struct rust_op *top)
2146 {
2147 for (const rust_op *elem : *params)
2148 convert_ast_to_expression (state, elem, top);
2149 }
2150
2151 /* Lower a rust_op to a gdb expression. STATE is the parser state.
2152 OPERATION is the operation to lower. TOP is a pointer to the
2153 top-most operation; it is used to handle the special case where the
2154 top-most expression is an identifier and can be optionally lowered
2155 to OP_TYPE. WANT_TYPE is a flag indicating that, if the expression
2156 is the name of a type, then emit an OP_TYPE for it (rather than
2157 erroring). If WANT_TYPE is set, then the similar TOP handling is
2158 not done. */
2159
2160 static void
2161 convert_ast_to_expression (struct parser_state *state,
2162 const struct rust_op *operation,
2163 const struct rust_op *top,
2164 bool want_type)
2165 {
2166 switch (operation->opcode)
2167 {
2168 case OP_LONG:
2169 write_exp_elt_opcode (state, OP_LONG);
2170 write_exp_elt_type (state, operation->left.typed_val_int.type);
2171 write_exp_elt_longcst (state, operation->left.typed_val_int.val);
2172 write_exp_elt_opcode (state, OP_LONG);
2173 break;
2174
2175 case OP_FLOAT:
2176 write_exp_elt_opcode (state, OP_FLOAT);
2177 write_exp_elt_type (state, operation->left.typed_val_float.type);
2178 write_exp_elt_floatcst (state, operation->left.typed_val_float.val);
2179 write_exp_elt_opcode (state, OP_FLOAT);
2180 break;
2181
2182 case STRUCTOP_STRUCT:
2183 {
2184 convert_ast_to_expression (state, operation->left.op, top);
2185
2186 if (operation->completing)
2187 mark_struct_expression (state);
2188 write_exp_elt_opcode (state, STRUCTOP_STRUCT);
2189 write_exp_string (state, operation->right.sval);
2190 write_exp_elt_opcode (state, STRUCTOP_STRUCT);
2191 }
2192 break;
2193
2194 case STRUCTOP_ANONYMOUS:
2195 {
2196 convert_ast_to_expression (state, operation->left.op, top);
2197
2198 write_exp_elt_opcode (state, STRUCTOP_ANONYMOUS);
2199 write_exp_elt_longcst (state, operation->right.typed_val_int.val);
2200 write_exp_elt_opcode (state, STRUCTOP_ANONYMOUS);
2201 }
2202 break;
2203
2204 case UNOP_SIZEOF:
2205 convert_ast_to_expression (state, operation->left.op, top, true);
2206 write_exp_elt_opcode (state, UNOP_SIZEOF);
2207 break;
2208
2209 case UNOP_PLUS:
2210 case UNOP_NEG:
2211 case UNOP_COMPLEMENT:
2212 case UNOP_IND:
2213 case UNOP_ADDR:
2214 convert_ast_to_expression (state, operation->left.op, top);
2215 write_exp_elt_opcode (state, operation->opcode);
2216 break;
2217
2218 case BINOP_SUBSCRIPT:
2219 case BINOP_MUL:
2220 case BINOP_REPEAT:
2221 case BINOP_DIV:
2222 case BINOP_REM:
2223 case BINOP_LESS:
2224 case BINOP_GTR:
2225 case BINOP_BITWISE_AND:
2226 case BINOP_BITWISE_IOR:
2227 case BINOP_BITWISE_XOR:
2228 case BINOP_ADD:
2229 case BINOP_SUB:
2230 case BINOP_LOGICAL_OR:
2231 case BINOP_LOGICAL_AND:
2232 case BINOP_EQUAL:
2233 case BINOP_NOTEQUAL:
2234 case BINOP_LEQ:
2235 case BINOP_GEQ:
2236 case BINOP_LSH:
2237 case BINOP_RSH:
2238 case BINOP_ASSIGN:
2239 case OP_RUST_ARRAY:
2240 convert_ast_to_expression (state, operation->left.op, top);
2241 convert_ast_to_expression (state, operation->right.op, top);
2242 if (operation->compound_assignment)
2243 {
2244 write_exp_elt_opcode (state, BINOP_ASSIGN_MODIFY);
2245 write_exp_elt_opcode (state, operation->opcode);
2246 write_exp_elt_opcode (state, BINOP_ASSIGN_MODIFY);
2247 }
2248 else
2249 write_exp_elt_opcode (state, operation->opcode);
2250
2251 if (operation->compound_assignment
2252 || operation->opcode == BINOP_ASSIGN)
2253 {
2254 struct type *type;
2255
2256 type = language_lookup_primitive_type (parse_language (state),
2257 parse_gdbarch (state),
2258 "()");
2259
2260 write_exp_elt_opcode (state, OP_LONG);
2261 write_exp_elt_type (state, type);
2262 write_exp_elt_longcst (state, 0);
2263 write_exp_elt_opcode (state, OP_LONG);
2264
2265 write_exp_elt_opcode (state, BINOP_COMMA);
2266 }
2267 break;
2268
2269 case UNOP_CAST:
2270 {
2271 struct type *type = convert_ast_to_type (state, operation->right.op);
2272
2273 convert_ast_to_expression (state, operation->left.op, top);
2274 write_exp_elt_opcode (state, UNOP_CAST);
2275 write_exp_elt_type (state, type);
2276 write_exp_elt_opcode (state, UNOP_CAST);
2277 }
2278 break;
2279
2280 case OP_FUNCALL:
2281 {
2282 if (operation->left.op->opcode == OP_VAR_VALUE)
2283 {
2284 struct type *type;
2285 const char *varname = convert_name (state, operation->left.op);
2286
2287 type = rust_lookup_type (varname, expression_context_block);
2288 if (type != NULL)
2289 {
2290 /* This is actually a tuple struct expression, not a
2291 call expression. */
2292 rust_op_vector *params = operation->right.params;
2293
2294 if (TYPE_CODE (type) != TYPE_CODE_NAMESPACE)
2295 {
2296 if (!rust_tuple_struct_type_p (type))
2297 error (_("Type %s is not a tuple struct"), varname);
2298
2299 for (int i = 0; i < params->size (); ++i)
2300 {
2301 char *cell = get_print_cell ();
2302
2303 xsnprintf (cell, PRINT_CELL_SIZE, "__%d", i);
2304 write_exp_elt_opcode (state, OP_NAME);
2305 write_exp_string (state, make_stoken (cell));
2306 write_exp_elt_opcode (state, OP_NAME);
2307
2308 convert_ast_to_expression (state, (*params)[i], top);
2309 }
2310
2311 write_exp_elt_opcode (state, OP_AGGREGATE);
2312 write_exp_elt_type (state, type);
2313 write_exp_elt_longcst (state, 2 * params->size ());
2314 write_exp_elt_opcode (state, OP_AGGREGATE);
2315 break;
2316 }
2317 }
2318 }
2319 convert_ast_to_expression (state, operation->left.op, top);
2320 convert_params_to_expression (state, operation->right.params, top);
2321 write_exp_elt_opcode (state, OP_FUNCALL);
2322 write_exp_elt_longcst (state, operation->right.params->size ());
2323 write_exp_elt_longcst (state, OP_FUNCALL);
2324 }
2325 break;
2326
2327 case OP_ARRAY:
2328 gdb_assert (operation->left.op == NULL);
2329 convert_params_to_expression (state, operation->right.params, top);
2330 write_exp_elt_opcode (state, OP_ARRAY);
2331 write_exp_elt_longcst (state, 0);
2332 write_exp_elt_longcst (state, operation->right.params->size () - 1);
2333 write_exp_elt_longcst (state, OP_ARRAY);
2334 break;
2335
2336 case OP_VAR_VALUE:
2337 {
2338 struct block_symbol sym;
2339 const char *varname;
2340
2341 if (operation->left.sval.ptr[0] == '$')
2342 {
2343 write_dollar_variable (state, operation->left.sval);
2344 break;
2345 }
2346
2347 varname = convert_name (state, operation);
2348 sym = rust_lookup_symbol (varname, expression_context_block,
2349 VAR_DOMAIN);
2350 if (sym.symbol != NULL && SYMBOL_CLASS (sym.symbol) != LOC_TYPEDEF)
2351 {
2352 write_exp_elt_opcode (state, OP_VAR_VALUE);
2353 write_exp_elt_block (state, sym.block);
2354 write_exp_elt_sym (state, sym.symbol);
2355 write_exp_elt_opcode (state, OP_VAR_VALUE);
2356 }
2357 else
2358 {
2359 struct type *type = NULL;
2360
2361 if (sym.symbol != NULL)
2362 {
2363 gdb_assert (SYMBOL_CLASS (sym.symbol) == LOC_TYPEDEF);
2364 type = SYMBOL_TYPE (sym.symbol);
2365 }
2366 if (type == NULL)
2367 type = rust_lookup_type (varname, expression_context_block);
2368 if (type == NULL)
2369 error (_("No symbol '%s' in current context"), varname);
2370
2371 if (!want_type
2372 && TYPE_CODE (type) == TYPE_CODE_STRUCT
2373 && TYPE_NFIELDS (type) == 0)
2374 {
2375 /* A unit-like struct. */
2376 write_exp_elt_opcode (state, OP_AGGREGATE);
2377 write_exp_elt_type (state, type);
2378 write_exp_elt_longcst (state, 0);
2379 write_exp_elt_opcode (state, OP_AGGREGATE);
2380 }
2381 else if (want_type || operation == top)
2382 {
2383 write_exp_elt_opcode (state, OP_TYPE);
2384 write_exp_elt_type (state, type);
2385 write_exp_elt_opcode (state, OP_TYPE);
2386 }
2387 else
2388 error (_("Found type '%s', which can't be "
2389 "evaluated in this context"),
2390 varname);
2391 }
2392 }
2393 break;
2394
2395 case OP_AGGREGATE:
2396 {
2397 int length;
2398 rust_set_vector *fields = operation->right.field_inits;
2399 struct type *type;
2400 const char *name;
2401
2402 length = 0;
2403 for (const set_field &init : *fields)
2404 {
2405 if (init.name.ptr != NULL)
2406 {
2407 write_exp_elt_opcode (state, OP_NAME);
2408 write_exp_string (state, init.name);
2409 write_exp_elt_opcode (state, OP_NAME);
2410 ++length;
2411 }
2412
2413 convert_ast_to_expression (state, init.init, top);
2414 ++length;
2415
2416 if (init.name.ptr == NULL)
2417 {
2418 /* This is handled differently from Ada in our
2419 evaluator. */
2420 write_exp_elt_opcode (state, OP_OTHERS);
2421 }
2422 }
2423
2424 name = convert_name (state, operation->left.op);
2425 type = rust_lookup_type (name, expression_context_block);
2426 if (type == NULL)
2427 error (_("Could not find type '%s'"), operation->left.sval.ptr);
2428
2429 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
2430 || rust_tuple_type_p (type)
2431 || rust_tuple_struct_type_p (type))
2432 error (_("Struct expression applied to non-struct type"));
2433
2434 write_exp_elt_opcode (state, OP_AGGREGATE);
2435 write_exp_elt_type (state, type);
2436 write_exp_elt_longcst (state, length);
2437 write_exp_elt_opcode (state, OP_AGGREGATE);
2438 }
2439 break;
2440
2441 case OP_STRING:
2442 {
2443 write_exp_elt_opcode (state, OP_STRING);
2444 write_exp_string (state, operation->left.sval);
2445 write_exp_elt_opcode (state, OP_STRING);
2446 }
2447 break;
2448
2449 case OP_RANGE:
2450 {
2451 enum range_type kind = BOTH_BOUND_DEFAULT;
2452
2453 if (operation->left.op != NULL)
2454 {
2455 convert_ast_to_expression (state, operation->left.op, top);
2456 kind = HIGH_BOUND_DEFAULT;
2457 }
2458 if (operation->right.op != NULL)
2459 {
2460 convert_ast_to_expression (state, operation->right.op, top);
2461 if (kind == BOTH_BOUND_DEFAULT)
2462 kind = LOW_BOUND_DEFAULT;
2463 else
2464 {
2465 gdb_assert (kind == HIGH_BOUND_DEFAULT);
2466 kind = NONE_BOUND_DEFAULT;
2467 }
2468 }
2469 write_exp_elt_opcode (state, OP_RANGE);
2470 write_exp_elt_longcst (state, kind);
2471 write_exp_elt_opcode (state, OP_RANGE);
2472 }
2473 break;
2474
2475 default:
2476 gdb_assert_not_reached ("unhandled opcode in convert_ast_to_expression");
2477 }
2478 }
2479
2480 \f
2481
2482 /* The parser as exposed to gdb. */
2483
2484 int
2485 rust_parse (struct parser_state *state)
2486 {
2487 int result;
2488
2489 /* This sets various globals and also clears them on
2490 destruction. */
2491 rust_parser parser (state);
2492
2493 result = rustyyparse ();
2494
2495 if (!result || (parse_completion && parser.rust_ast != NULL))
2496 convert_ast_to_expression (state, parser.rust_ast, parser.rust_ast);
2497
2498 return result;
2499 }
2500
2501 /* The parser error handler. */
2502
2503 void
2504 rustyyerror (const char *msg)
2505 {
2506 const char *where = prev_lexptr ? prev_lexptr : lexptr;
2507 error (_("%s in expression, near `%s'."), (msg ? msg : "Error"), where);
2508 }
2509
2510 \f
2511
2512 #if GDB_SELF_TEST
2513
2514 /* Initialize the lexer for testing. */
2515
2516 static void
2517 rust_lex_test_init (const char *input)
2518 {
2519 prev_lexptr = NULL;
2520 lexptr = input;
2521 paren_depth = 0;
2522 }
2523
2524 /* A test helper that lexes a string, expecting a single token. It
2525 returns the lexer data for this token. */
2526
2527 static RUSTSTYPE
2528 rust_lex_test_one (const char *input, int expected)
2529 {
2530 int token;
2531 RUSTSTYPE result;
2532
2533 rust_lex_test_init (input);
2534
2535 token = rustyylex ();
2536 SELF_CHECK (token == expected);
2537 result = rustyylval;
2538
2539 if (token)
2540 {
2541 token = rustyylex ();
2542 SELF_CHECK (token == 0);
2543 }
2544
2545 return result;
2546 }
2547
2548 /* Test that INPUT lexes as the integer VALUE. */
2549
2550 static void
2551 rust_lex_int_test (const char *input, int value, int kind)
2552 {
2553 RUSTSTYPE result = rust_lex_test_one (input, kind);
2554 SELF_CHECK (result.typed_val_int.val == value);
2555 }
2556
2557 /* Test that INPUT throws an exception with text ERR. */
2558
2559 static void
2560 rust_lex_exception_test (const char *input, const char *err)
2561 {
2562 TRY
2563 {
2564 /* The "kind" doesn't matter. */
2565 rust_lex_test_one (input, DECIMAL_INTEGER);
2566 SELF_CHECK (0);
2567 }
2568 CATCH (except, RETURN_MASK_ERROR)
2569 {
2570 SELF_CHECK (strcmp (except.message, err) == 0);
2571 }
2572 END_CATCH
2573 }
2574
2575 /* Test that INPUT lexes as the identifier, string, or byte-string
2576 VALUE. KIND holds the expected token kind. */
2577
2578 static void
2579 rust_lex_stringish_test (const char *input, const char *value, int kind)
2580 {
2581 RUSTSTYPE result = rust_lex_test_one (input, kind);
2582 SELF_CHECK (result.sval.length == strlen (value));
2583 SELF_CHECK (strncmp (result.sval.ptr, value, result.sval.length) == 0);
2584 }
2585
2586 /* Helper to test that a string parses as a given token sequence. */
2587
2588 static void
2589 rust_lex_test_sequence (const char *input, int len, const int expected[])
2590 {
2591 int i;
2592
2593 lexptr = input;
2594 paren_depth = 0;
2595
2596 for (i = 0; i < len; ++i)
2597 {
2598 int token = rustyylex ();
2599
2600 SELF_CHECK (token == expected[i]);
2601 }
2602 }
2603
2604 /* Tests for an integer-parsing corner case. */
2605
2606 static void
2607 rust_lex_test_trailing_dot (void)
2608 {
2609 const int expected1[] = { DECIMAL_INTEGER, '.', IDENT, '(', ')', 0 };
2610 const int expected2[] = { INTEGER, '.', IDENT, '(', ')', 0 };
2611 const int expected3[] = { FLOAT, EQEQ, '(', ')', 0 };
2612 const int expected4[] = { DECIMAL_INTEGER, DOTDOT, DECIMAL_INTEGER, 0 };
2613
2614 rust_lex_test_sequence ("23.g()", ARRAY_SIZE (expected1), expected1);
2615 rust_lex_test_sequence ("23_0.g()", ARRAY_SIZE (expected2), expected2);
2616 rust_lex_test_sequence ("23.==()", ARRAY_SIZE (expected3), expected3);
2617 rust_lex_test_sequence ("23..25", ARRAY_SIZE (expected4), expected4);
2618 }
2619
2620 /* Tests of completion. */
2621
2622 static void
2623 rust_lex_test_completion (void)
2624 {
2625 const int expected[] = { IDENT, '.', COMPLETE, 0 };
2626
2627 parse_completion = 1;
2628
2629 rust_lex_test_sequence ("something.wha", ARRAY_SIZE (expected), expected);
2630 rust_lex_test_sequence ("something.", ARRAY_SIZE (expected), expected);
2631
2632 parse_completion = 0;
2633 }
2634
2635 /* Test pushback. */
2636
2637 static void
2638 rust_lex_test_push_back (void)
2639 {
2640 int token;
2641
2642 rust_lex_test_init (">>=");
2643
2644 token = rustyylex ();
2645 SELF_CHECK (token == COMPOUND_ASSIGN);
2646 SELF_CHECK (rustyylval.opcode == BINOP_RSH);
2647
2648 rust_push_back ('=');
2649
2650 token = rustyylex ();
2651 SELF_CHECK (token == '=');
2652
2653 token = rustyylex ();
2654 SELF_CHECK (token == 0);
2655 }
2656
2657 /* Unit test the lexer. */
2658
2659 static void
2660 rust_lex_tests (void)
2661 {
2662 int i;
2663
2664 auto_obstack test_obstack;
2665 scoped_restore obstack_holder = make_scoped_restore (&work_obstack,
2666 &test_obstack);
2667
2668 // Set up dummy "parser", so that rust_type works.
2669 struct parser_state ps (0, &rust_language_defn, target_gdbarch ());
2670 rust_parser parser (&ps);
2671
2672 rust_lex_test_one ("", 0);
2673 rust_lex_test_one (" \t \n \r ", 0);
2674 rust_lex_test_one ("thread 23", 0);
2675 rust_lex_test_one ("task 23", 0);
2676 rust_lex_test_one ("th 104", 0);
2677 rust_lex_test_one ("ta 97", 0);
2678
2679 rust_lex_int_test ("'z'", 'z', INTEGER);
2680 rust_lex_int_test ("'\\xff'", 0xff, INTEGER);
2681 rust_lex_int_test ("'\\u{1016f}'", 0x1016f, INTEGER);
2682 rust_lex_int_test ("b'z'", 'z', INTEGER);
2683 rust_lex_int_test ("b'\\xfe'", 0xfe, INTEGER);
2684 rust_lex_int_test ("b'\\xFE'", 0xfe, INTEGER);
2685 rust_lex_int_test ("b'\\xfE'", 0xfe, INTEGER);
2686
2687 /* Test all escapes in both modes. */
2688 rust_lex_int_test ("'\\n'", '\n', INTEGER);
2689 rust_lex_int_test ("'\\r'", '\r', INTEGER);
2690 rust_lex_int_test ("'\\t'", '\t', INTEGER);
2691 rust_lex_int_test ("'\\\\'", '\\', INTEGER);
2692 rust_lex_int_test ("'\\0'", '\0', INTEGER);
2693 rust_lex_int_test ("'\\''", '\'', INTEGER);
2694 rust_lex_int_test ("'\\\"'", '"', INTEGER);
2695
2696 rust_lex_int_test ("b'\\n'", '\n', INTEGER);
2697 rust_lex_int_test ("b'\\r'", '\r', INTEGER);
2698 rust_lex_int_test ("b'\\t'", '\t', INTEGER);
2699 rust_lex_int_test ("b'\\\\'", '\\', INTEGER);
2700 rust_lex_int_test ("b'\\0'", '\0', INTEGER);
2701 rust_lex_int_test ("b'\\''", '\'', INTEGER);
2702 rust_lex_int_test ("b'\\\"'", '"', INTEGER);
2703
2704 rust_lex_exception_test ("'z", "Unterminated character literal");
2705 rust_lex_exception_test ("b'\\x0'", "Not enough hex digits seen");
2706 rust_lex_exception_test ("b'\\u{0}'", "Unicode escape in byte literal");
2707 rust_lex_exception_test ("'\\x0'", "Not enough hex digits seen");
2708 rust_lex_exception_test ("'\\u0'", "Missing '{' in Unicode escape");
2709 rust_lex_exception_test ("'\\u{0", "Missing '}' in Unicode escape");
2710 rust_lex_exception_test ("'\\u{0000007}", "Overlong hex escape");
2711 rust_lex_exception_test ("'\\u{}", "Not enough hex digits seen");
2712 rust_lex_exception_test ("'\\Q'", "Invalid escape \\Q in literal");
2713 rust_lex_exception_test ("b'\\Q'", "Invalid escape \\Q in literal");
2714
2715 rust_lex_int_test ("23", 23, DECIMAL_INTEGER);
2716 rust_lex_int_test ("2_344__29", 234429, INTEGER);
2717 rust_lex_int_test ("0x1f", 0x1f, INTEGER);
2718 rust_lex_int_test ("23usize", 23, INTEGER);
2719 rust_lex_int_test ("23i32", 23, INTEGER);
2720 rust_lex_int_test ("0x1_f", 0x1f, INTEGER);
2721 rust_lex_int_test ("0b1_101011__", 0x6b, INTEGER);
2722 rust_lex_int_test ("0o001177i64", 639, INTEGER);
2723
2724 rust_lex_test_trailing_dot ();
2725
2726 rust_lex_test_one ("23.", FLOAT);
2727 rust_lex_test_one ("23.99f32", FLOAT);
2728 rust_lex_test_one ("23e7", FLOAT);
2729 rust_lex_test_one ("23E-7", FLOAT);
2730 rust_lex_test_one ("23e+7", FLOAT);
2731 rust_lex_test_one ("23.99e+7f64", FLOAT);
2732 rust_lex_test_one ("23.82f32", FLOAT);
2733
2734 rust_lex_stringish_test ("hibob", "hibob", IDENT);
2735 rust_lex_stringish_test ("hibob__93", "hibob__93", IDENT);
2736 rust_lex_stringish_test ("thread", "thread", IDENT);
2737
2738 rust_lex_stringish_test ("\"string\"", "string", STRING);
2739 rust_lex_stringish_test ("\"str\\ting\"", "str\ting", STRING);
2740 rust_lex_stringish_test ("\"str\\\"ing\"", "str\"ing", STRING);
2741 rust_lex_stringish_test ("r\"str\\ing\"", "str\\ing", STRING);
2742 rust_lex_stringish_test ("r#\"str\\ting\"#", "str\\ting", STRING);
2743 rust_lex_stringish_test ("r###\"str\\\"ing\"###", "str\\\"ing", STRING);
2744
2745 rust_lex_stringish_test ("b\"string\"", "string", BYTESTRING);
2746 rust_lex_stringish_test ("b\"\x73tring\"", "string", BYTESTRING);
2747 rust_lex_stringish_test ("b\"str\\\"ing\"", "str\"ing", BYTESTRING);
2748 rust_lex_stringish_test ("br####\"\\x73tring\"####", "\\x73tring",
2749 BYTESTRING);
2750
2751 for (i = 0; i < ARRAY_SIZE (identifier_tokens); ++i)
2752 rust_lex_test_one (identifier_tokens[i].name, identifier_tokens[i].value);
2753
2754 for (i = 0; i < ARRAY_SIZE (operator_tokens); ++i)
2755 rust_lex_test_one (operator_tokens[i].name, operator_tokens[i].value);
2756
2757 rust_lex_test_completion ();
2758 rust_lex_test_push_back ();
2759 }
2760
2761 #endif /* GDB_SELF_TEST */
2762
2763 void
2764 _initialize_rust_exp (void)
2765 {
2766 int code = regcomp (&number_regex, number_regex_text, REG_EXTENDED);
2767 /* If the regular expression was incorrect, it was a programming
2768 error. */
2769 gdb_assert (code == 0);
2770
2771 #if GDB_SELF_TEST
2772 selftests::register_test ("rust-lex", rust_lex_tests);
2773 #endif
2774 }
This page took 0.102274 seconds and 5 git commands to generate.