Rename _const functions to use overloading instead
[deliverable/binutils-gdb.git] / gdb / rust-exp.y
1 /* Bison parser for Rust expressions, for GDB.
2 Copyright (C) 2016-2017 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 /* Removing the last conflict seems difficult. */
20 %expect 1
21
22 %{
23
24 #include "defs.h"
25
26 #include "block.h"
27 #include "charset.h"
28 #include "cp-support.h"
29 #include "gdb_obstack.h"
30 #include "gdb_regex.h"
31 #include "rust-lang.h"
32 #include "parser-defs.h"
33 #include "selftest.h"
34 #include "value.h"
35 #include "vec.h"
36
37 #define GDB_YY_REMAP_PREFIX rust
38 #include "yy-remap.h"
39
40 #define RUSTSTYPE YYSTYPE
41
42 struct rust_op;
43 typedef std::vector<const struct rust_op *> rust_op_vector;
44
45 /* A typed integer constant. */
46
47 struct typed_val_int
48 {
49 LONGEST val;
50 struct type *type;
51 };
52
53 /* A typed floating point constant. */
54
55 struct typed_val_float
56 {
57 DOUBLEST dval;
58 struct type *type;
59 };
60
61 /* An identifier and an expression. This is used to represent one
62 element of a struct initializer. */
63
64 struct set_field
65 {
66 struct stoken name;
67 const struct rust_op *init;
68 };
69
70 typedef std::vector<set_field> rust_set_vector;
71
72 static int rustyylex (void);
73 static void rust_push_back (char c);
74 static const char *rust_copy_name (const char *, int);
75 static struct stoken rust_concat3 (const char *, const char *, const char *);
76 static struct stoken make_stoken (const char *);
77 static struct block_symbol rust_lookup_symbol (const char *name,
78 const struct block *block,
79 const domain_enum domain);
80 static struct type *rust_lookup_type (const char *name,
81 const struct block *block);
82 static struct type *rust_type (const char *name);
83
84 static const struct rust_op *crate_name (const struct rust_op *name);
85 static const struct rust_op *super_name (const struct rust_op *name,
86 unsigned int n_supers);
87
88 static const struct rust_op *ast_operation (enum exp_opcode opcode,
89 const struct rust_op *left,
90 const struct rust_op *right);
91 static const struct rust_op *ast_compound_assignment
92 (enum exp_opcode opcode, const struct rust_op *left,
93 const struct rust_op *rust_op);
94 static const struct rust_op *ast_literal (struct typed_val_int val);
95 static const struct rust_op *ast_dliteral (struct typed_val_float val);
96 static const struct rust_op *ast_structop (const struct rust_op *left,
97 const char *name,
98 int completing);
99 static const struct rust_op *ast_structop_anonymous
100 (const struct rust_op *left, struct typed_val_int number);
101 static const struct rust_op *ast_unary (enum exp_opcode opcode,
102 const struct rust_op *expr);
103 static const struct rust_op *ast_cast (const struct rust_op *expr,
104 const struct rust_op *type);
105 static const struct rust_op *ast_call_ish (enum exp_opcode opcode,
106 const struct rust_op *expr,
107 rust_op_vector *params);
108 static const struct rust_op *ast_path (struct stoken name,
109 rust_op_vector *params);
110 static const struct rust_op *ast_string (struct stoken str);
111 static const struct rust_op *ast_struct (const struct rust_op *name,
112 rust_set_vector *fields);
113 static const struct rust_op *ast_range (const struct rust_op *lhs,
114 const struct rust_op *rhs);
115 static const struct rust_op *ast_array_type (const struct rust_op *lhs,
116 struct typed_val_int val);
117 static const struct rust_op *ast_slice_type (const struct rust_op *type);
118 static const struct rust_op *ast_reference_type (const struct rust_op *type);
119 static const struct rust_op *ast_pointer_type (const struct rust_op *type,
120 int is_mut);
121 static const struct rust_op *ast_function_type (const struct rust_op *result,
122 rust_op_vector *params);
123 static const struct rust_op *ast_tuple_type (rust_op_vector *params);
124
125 /* The current rust parser. */
126
127 struct rust_parser;
128 static rust_parser *current_parser;
129
130 /* A regular expression for matching Rust numbers. This is split up
131 since it is very long and this gives us a way to comment the
132 sections. */
133
134 static const char *number_regex_text =
135 /* subexpression 1: allows use of alternation, otherwise uninteresting */
136 "^("
137 /* First comes floating point. */
138 /* Recognize number after the decimal point, with optional
139 exponent and optional type suffix.
140 subexpression 2: allows "?", otherwise uninteresting
141 subexpression 3: if present, type suffix
142 */
143 "[0-9][0-9_]*\\.[0-9][0-9_]*([eE][-+]?[0-9][0-9_]*)?(f32|f64)?"
144 #define FLOAT_TYPE1 3
145 "|"
146 /* Recognize exponent without decimal point, with optional type
147 suffix.
148 subexpression 4: if present, type suffix
149 */
150 #define FLOAT_TYPE2 4
151 "[0-9][0-9_]*[eE][-+]?[0-9][0-9_]*(f32|f64)?"
152 "|"
153 /* "23." is a valid floating point number, but "23.e5" and
154 "23.f32" are not. So, handle the trailing-. case
155 separately. */
156 "[0-9][0-9_]*\\."
157 "|"
158 /* Finally come integers.
159 subexpression 5: text of integer
160 subexpression 6: if present, type suffix
161 subexpression 7: allows use of alternation, otherwise uninteresting
162 */
163 #define INT_TEXT 5
164 #define INT_TYPE 6
165 "(0x[a-fA-F0-9_]+|0o[0-7_]+|0b[01_]+|[0-9][0-9_]*)"
166 "([iu](size|8|16|32|64))?"
167 ")";
168 /* The number of subexpressions to allocate space for, including the
169 "0th" whole match subexpression. */
170 #define NUM_SUBEXPRESSIONS 8
171
172 /* The compiled number-matching regex. */
173
174 static regex_t number_regex;
175
176 /* True if we're running unit tests. */
177
178 static int unit_testing;
179
180 /* Obstack for data temporarily allocated during parsing. Points to
181 the obstack in the rust_parser, or to a temporary obstack during
182 unit testing. */
183
184 static auto_obstack *work_obstack;
185
186 /* An instance of this is created before parsing, and destroyed when
187 parsing is finished. */
188
189 struct rust_parser
190 {
191 rust_parser (struct parser_state *state)
192 : rust_ast (nullptr),
193 pstate (state)
194 {
195 gdb_assert (current_parser == nullptr);
196 current_parser = this;
197 work_obstack = &obstack;
198 }
199
200 ~rust_parser ()
201 {
202 /* Clean up the globals we set. */
203 current_parser = nullptr;
204 work_obstack = nullptr;
205 }
206
207 /* Create a new rust_set_vector. The storage for the new vector is
208 managed by this class. */
209 rust_set_vector *new_set_vector ()
210 {
211 rust_set_vector *result = new rust_set_vector;
212 set_vectors.push_back (std::unique_ptr<rust_set_vector> (result));
213 return result;
214 }
215
216 /* Create a new rust_ops_vector. The storage for the new vector is
217 managed by this class. */
218 rust_op_vector *new_op_vector ()
219 {
220 rust_op_vector *result = new rust_op_vector;
221 op_vectors.push_back (std::unique_ptr<rust_op_vector> (result));
222 return result;
223 }
224
225 /* Return the parser's language. */
226 const struct language_defn *language () const
227 {
228 return parse_language (pstate);
229 }
230
231 /* Return the parser's gdbarch. */
232 struct gdbarch *arch () const
233 {
234 return parse_gdbarch (pstate);
235 }
236
237 /* A pointer to this is installed globally. */
238 auto_obstack obstack;
239
240 /* Result of parsing. Points into obstack. */
241 const struct rust_op *rust_ast;
242
243 /* This keeps track of the various vectors we allocate. */
244 std::vector<std::unique_ptr<rust_set_vector>> set_vectors;
245 std::vector<std::unique_ptr<rust_op_vector>> op_vectors;
246
247 /* The parser state gdb gave us. */
248 struct parser_state *pstate;
249 };
250
251 %}
252
253 %union
254 {
255 /* A typed integer constant. */
256 struct typed_val_int typed_val_int;
257
258 /* A typed floating point constant. */
259 struct typed_val_float typed_val_float;
260
261 /* An identifier or string. */
262 struct stoken sval;
263
264 /* A token representing an opcode, like "==". */
265 enum exp_opcode opcode;
266
267 /* A list of expressions; for example, the arguments to a function
268 call. */
269 rust_op_vector *params;
270
271 /* A list of field initializers. */
272 rust_set_vector *field_inits;
273
274 /* A single field initializer. */
275 struct set_field one_field_init;
276
277 /* An expression. */
278 const struct rust_op *op;
279
280 /* A plain integer, for example used to count the number of
281 "super::" prefixes on a path. */
282 unsigned int depth;
283 }
284
285 %{
286
287 /* Rust AST operations. We build a tree of these; then lower them
288 to gdb expressions when parsing has completed. */
289
290 struct rust_op
291 {
292 /* The opcode. */
293 enum exp_opcode opcode;
294 /* If OPCODE is OP_TYPE, then this holds information about what type
295 is described by this node. */
296 enum type_code typecode;
297 /* Indicates whether OPCODE actually represents a compound
298 assignment. For example, if OPCODE is GTGT and this is false,
299 then this rust_op represents an ordinary ">>"; but if this is
300 true, then this rust_op represents ">>=". Unused in other
301 cases. */
302 unsigned int compound_assignment : 1;
303 /* Only used by a field expression; if set, indicates that the field
304 name occurred at the end of the expression and is eligible for
305 completion. */
306 unsigned int completing : 1;
307 /* Operands of expression. Which one is used and how depends on the
308 particular opcode. */
309 RUSTSTYPE left;
310 RUSTSTYPE right;
311 };
312
313 %}
314
315 %token <sval> GDBVAR
316 %token <sval> IDENT
317 %token <sval> COMPLETE
318 %token <typed_val_int> INTEGER
319 %token <typed_val_int> DECIMAL_INTEGER
320 %token <sval> STRING
321 %token <sval> BYTESTRING
322 %token <typed_val_float> FLOAT
323 %token <opcode> COMPOUND_ASSIGN
324
325 /* Keyword tokens. */
326 %token <voidval> KW_AS
327 %token <voidval> KW_IF
328 %token <voidval> KW_TRUE
329 %token <voidval> KW_FALSE
330 %token <voidval> KW_SUPER
331 %token <voidval> KW_SELF
332 %token <voidval> KW_MUT
333 %token <voidval> KW_EXTERN
334 %token <voidval> KW_CONST
335 %token <voidval> KW_FN
336 %token <voidval> KW_SIZEOF
337
338 /* Operator tokens. */
339 %token <voidval> DOTDOT
340 %token <voidval> OROR
341 %token <voidval> ANDAND
342 %token <voidval> EQEQ
343 %token <voidval> NOTEQ
344 %token <voidval> LTEQ
345 %token <voidval> GTEQ
346 %token <voidval> LSH RSH
347 %token <voidval> COLONCOLON
348 %token <voidval> ARROW
349
350 %type <op> type
351 %type <op> path_for_expr
352 %type <op> identifier_path_for_expr
353 %type <op> path_for_type
354 %type <op> identifier_path_for_type
355 %type <op> just_identifiers_for_type
356
357 %type <params> maybe_type_list
358 %type <params> type_list
359
360 %type <depth> super_path
361
362 %type <op> literal
363 %type <op> expr
364 %type <op> field_expr
365 %type <op> idx_expr
366 %type <op> unop_expr
367 %type <op> binop_expr
368 %type <op> binop_expr_expr
369 %type <op> type_cast_expr
370 %type <op> assignment_expr
371 %type <op> compound_assignment_expr
372 %type <op> paren_expr
373 %type <op> call_expr
374 %type <op> path_expr
375 %type <op> tuple_expr
376 %type <op> unit_expr
377 %type <op> struct_expr
378 %type <op> array_expr
379 %type <op> range_expr
380
381 %type <params> expr_list
382 %type <params> maybe_expr_list
383 %type <params> paren_expr_list
384
385 %type <field_inits> struct_expr_list
386 %type <one_field_init> struct_expr_tail
387
388 /* Precedence. */
389 %nonassoc DOTDOT
390 %right '=' COMPOUND_ASSIGN
391 %left OROR
392 %left ANDAND
393 %nonassoc EQEQ NOTEQ '<' '>' LTEQ GTEQ
394 %left '|'
395 %left '^'
396 %left '&'
397 %left LSH RSH
398 %left '@'
399 %left '+' '-'
400 %left '*' '/' '%'
401 /* These could be %precedence in Bison, but that isn't a yacc
402 feature. */
403 %left KW_AS
404 %left UNARY
405 %left '[' '.' '('
406
407 %%
408
409 start:
410 expr
411 {
412 /* If we are completing and see a valid parse,
413 rust_ast will already have been set. */
414 if (current_parser->rust_ast == NULL)
415 current_parser->rust_ast = $1;
416 }
417 ;
418
419 /* Note that the Rust grammar includes a method_call_expr, but we
420 handle this differently, to avoid a shift/reduce conflict with
421 call_expr. */
422 expr:
423 literal
424 | path_expr
425 | tuple_expr
426 | unit_expr
427 | struct_expr
428 | field_expr
429 | array_expr
430 | idx_expr
431 | range_expr
432 | unop_expr /* Must precede call_expr because of ambiguity with sizeof. */
433 | binop_expr
434 | paren_expr
435 | call_expr
436 ;
437
438 tuple_expr:
439 '(' expr ',' maybe_expr_list ')'
440 {
441 $4->push_back ($2);
442 error (_("Tuple expressions not supported yet"));
443 }
444 ;
445
446 unit_expr:
447 '(' ')'
448 {
449 struct typed_val_int val;
450
451 val.type
452 = language_lookup_primitive_type (current_parser->language (),
453 current_parser->arch (),
454 "()");
455 val.val = 0;
456 $$ = ast_literal (val);
457 }
458 ;
459
460 /* To avoid a shift/reduce conflict with call_expr, we don't handle
461 tuple struct expressions here, but instead when examining the
462 AST. */
463 struct_expr:
464 path_for_expr '{' struct_expr_list '}'
465 { $$ = ast_struct ($1, $3); }
466 ;
467
468 struct_expr_tail:
469 DOTDOT expr
470 {
471 struct set_field sf;
472
473 sf.name.ptr = NULL;
474 sf.name.length = 0;
475 sf.init = $2;
476
477 $$ = sf;
478 }
479 | IDENT ':' expr
480 {
481 struct set_field sf;
482
483 sf.name = $1;
484 sf.init = $3;
485 $$ = sf;
486 }
487 ;
488
489 struct_expr_list:
490 /* %empty */
491 {
492 $$ = current_parser->new_set_vector ();
493 }
494 | struct_expr_tail
495 {
496 rust_set_vector *result = current_parser->new_set_vector ();
497 result->push_back ($1);
498 $$ = result;
499 }
500 | IDENT ':' expr ',' struct_expr_list
501 {
502 struct set_field sf;
503
504 sf.name = $1;
505 sf.init = $3;
506 $5->push_back (sf);
507 $$ = $5;
508 }
509 ;
510
511 array_expr:
512 '[' KW_MUT expr_list ']'
513 { $$ = ast_call_ish (OP_ARRAY, NULL, $3); }
514 | '[' expr_list ']'
515 { $$ = ast_call_ish (OP_ARRAY, NULL, $2); }
516 | '[' KW_MUT expr ';' expr ']'
517 { $$ = ast_operation (OP_RUST_ARRAY, $3, $5); }
518 | '[' expr ';' expr ']'
519 { $$ = ast_operation (OP_RUST_ARRAY, $2, $4); }
520 ;
521
522 range_expr:
523 expr DOTDOT
524 { $$ = ast_range ($1, NULL); }
525 | expr DOTDOT expr
526 { $$ = ast_range ($1, $3); }
527 | DOTDOT expr
528 { $$ = ast_range (NULL, $2); }
529 | DOTDOT
530 { $$ = ast_range (NULL, NULL); }
531 ;
532
533 literal:
534 INTEGER
535 { $$ = ast_literal ($1); }
536 | DECIMAL_INTEGER
537 { $$ = ast_literal ($1); }
538 | FLOAT
539 { $$ = ast_dliteral ($1); }
540 | STRING
541 {
542 const struct rust_op *str = ast_string ($1);
543 struct set_field field;
544 struct typed_val_int val;
545 struct stoken token;
546
547 rust_set_vector *fields = current_parser->new_set_vector ();
548
549 /* Wrap the raw string in the &str struct. */
550 field.name.ptr = "data_ptr";
551 field.name.length = strlen (field.name.ptr);
552 field.init = ast_unary (UNOP_ADDR, ast_string ($1));
553 fields->push_back (field);
554
555 val.type = rust_type ("usize");
556 val.val = $1.length;
557
558 field.name.ptr = "length";
559 field.name.length = strlen (field.name.ptr);
560 field.init = ast_literal (val);
561 fields->push_back (field);
562
563 token.ptr = "&str";
564 token.length = strlen (token.ptr);
565 $$ = ast_struct (ast_path (token, NULL), fields);
566 }
567 | BYTESTRING
568 { $$ = ast_string ($1); }
569 | KW_TRUE
570 {
571 struct typed_val_int val;
572
573 val.type = language_bool_type (current_parser->language (),
574 current_parser->arch ());
575 val.val = 1;
576 $$ = ast_literal (val);
577 }
578 | KW_FALSE
579 {
580 struct typed_val_int val;
581
582 val.type = language_bool_type (current_parser->language (),
583 current_parser->arch ());
584 val.val = 0;
585 $$ = ast_literal (val);
586 }
587 ;
588
589 field_expr:
590 expr '.' IDENT
591 { $$ = ast_structop ($1, $3.ptr, 0); }
592 | expr '.' COMPLETE
593 {
594 $$ = ast_structop ($1, $3.ptr, 1);
595 current_parser->rust_ast = $$;
596 }
597 | expr '.' DECIMAL_INTEGER
598 { $$ = ast_structop_anonymous ($1, $3); }
599 ;
600
601 idx_expr:
602 expr '[' expr ']'
603 { $$ = ast_operation (BINOP_SUBSCRIPT, $1, $3); }
604 ;
605
606 unop_expr:
607 '+' expr %prec UNARY
608 { $$ = ast_unary (UNOP_PLUS, $2); }
609
610 | '-' expr %prec UNARY
611 { $$ = ast_unary (UNOP_NEG, $2); }
612
613 | '!' expr %prec UNARY
614 {
615 /* Note that we provide a Rust-specific evaluator
616 override for UNOP_COMPLEMENT, so it can do the
617 right thing for both bool and integral
618 values. */
619 $$ = ast_unary (UNOP_COMPLEMENT, $2);
620 }
621
622 | '*' expr %prec UNARY
623 { $$ = ast_unary (UNOP_IND, $2); }
624
625 | '&' expr %prec UNARY
626 { $$ = ast_unary (UNOP_ADDR, $2); }
627
628 | '&' KW_MUT expr %prec UNARY
629 { $$ = ast_unary (UNOP_ADDR, $3); }
630 | KW_SIZEOF '(' expr ')' %prec UNARY
631 { $$ = ast_unary (UNOP_SIZEOF, $3); }
632 ;
633
634 binop_expr:
635 binop_expr_expr
636 | type_cast_expr
637 | assignment_expr
638 | compound_assignment_expr
639 ;
640
641 binop_expr_expr:
642 expr '*' expr
643 { $$ = ast_operation (BINOP_MUL, $1, $3); }
644
645 | expr '@' expr
646 { $$ = ast_operation (BINOP_REPEAT, $1, $3); }
647
648 | expr '/' expr
649 { $$ = ast_operation (BINOP_DIV, $1, $3); }
650
651 | expr '%' expr
652 { $$ = ast_operation (BINOP_REM, $1, $3); }
653
654 | expr '<' expr
655 { $$ = ast_operation (BINOP_LESS, $1, $3); }
656
657 | expr '>' expr
658 { $$ = ast_operation (BINOP_GTR, $1, $3); }
659
660 | expr '&' expr
661 { $$ = ast_operation (BINOP_BITWISE_AND, $1, $3); }
662
663 | expr '|' expr
664 { $$ = ast_operation (BINOP_BITWISE_IOR, $1, $3); }
665
666 | expr '^' expr
667 { $$ = ast_operation (BINOP_BITWISE_XOR, $1, $3); }
668
669 | expr '+' expr
670 { $$ = ast_operation (BINOP_ADD, $1, $3); }
671
672 | expr '-' expr
673 { $$ = ast_operation (BINOP_SUB, $1, $3); }
674
675 | expr OROR expr
676 { $$ = ast_operation (BINOP_LOGICAL_OR, $1, $3); }
677
678 | expr ANDAND expr
679 { $$ = ast_operation (BINOP_LOGICAL_AND, $1, $3); }
680
681 | expr EQEQ expr
682 { $$ = ast_operation (BINOP_EQUAL, $1, $3); }
683
684 | expr NOTEQ expr
685 { $$ = ast_operation (BINOP_NOTEQUAL, $1, $3); }
686
687 | expr LTEQ expr
688 { $$ = ast_operation (BINOP_LEQ, $1, $3); }
689
690 | expr GTEQ expr
691 { $$ = ast_operation (BINOP_GEQ, $1, $3); }
692
693 | expr LSH expr
694 { $$ = ast_operation (BINOP_LSH, $1, $3); }
695
696 | expr RSH expr
697 { $$ = ast_operation (BINOP_RSH, $1, $3); }
698 ;
699
700 type_cast_expr:
701 expr KW_AS type
702 { $$ = ast_cast ($1, $3); }
703 ;
704
705 assignment_expr:
706 expr '=' expr
707 { $$ = ast_operation (BINOP_ASSIGN, $1, $3); }
708 ;
709
710 compound_assignment_expr:
711 expr COMPOUND_ASSIGN expr
712 { $$ = ast_compound_assignment ($2, $1, $3); }
713
714 ;
715
716 paren_expr:
717 '(' expr ')'
718 { $$ = $2; }
719 ;
720
721 expr_list:
722 expr
723 {
724 $$ = current_parser->new_op_vector ();
725 $$->push_back ($1);
726 }
727 | expr_list ',' expr
728 {
729 $1->push_back ($3);
730 $$ = $1;
731 }
732 ;
733
734 maybe_expr_list:
735 /* %empty */
736 {
737 /* The result can't be NULL. */
738 $$ = current_parser->new_op_vector ();
739 }
740 | expr_list
741 { $$ = $1; }
742 ;
743
744 paren_expr_list:
745 '('
746 maybe_expr_list
747 ')'
748 { $$ = $2; }
749 ;
750
751 call_expr:
752 expr paren_expr_list
753 { $$ = ast_call_ish (OP_FUNCALL, $1, $2); }
754 ;
755
756 maybe_self_path:
757 /* %empty */
758 | KW_SELF COLONCOLON
759 ;
760
761 super_path:
762 KW_SUPER COLONCOLON
763 { $$ = 1; }
764 | super_path KW_SUPER COLONCOLON
765 { $$ = $1 + 1; }
766 ;
767
768 path_expr:
769 path_for_expr
770 { $$ = $1; }
771 | GDBVAR
772 { $$ = ast_path ($1, NULL); }
773 | KW_SELF
774 { $$ = ast_path (make_stoken ("self"), NULL); }
775 ;
776
777 path_for_expr:
778 identifier_path_for_expr
779 | KW_SELF COLONCOLON identifier_path_for_expr
780 { $$ = super_name ($3, 0); }
781 | maybe_self_path super_path identifier_path_for_expr
782 { $$ = super_name ($3, $2); }
783 | COLONCOLON identifier_path_for_expr
784 { $$ = crate_name ($2); }
785 | KW_EXTERN identifier_path_for_expr
786 {
787 /* This is a gdb extension to make it possible to
788 refer to items in other crates. It just bypasses
789 adding the current crate to the front of the
790 name. */
791 $$ = ast_path (rust_concat3 ("::", $2->left.sval.ptr, NULL),
792 $2->right.params);
793 }
794 ;
795
796 identifier_path_for_expr:
797 IDENT
798 { $$ = ast_path ($1, NULL); }
799 | identifier_path_for_expr COLONCOLON IDENT
800 {
801 $$ = ast_path (rust_concat3 ($1->left.sval.ptr, "::",
802 $3.ptr),
803 NULL);
804 }
805 | identifier_path_for_expr COLONCOLON '<' type_list '>'
806 { $$ = ast_path ($1->left.sval, $4); }
807 | identifier_path_for_expr COLONCOLON '<' type_list RSH
808 {
809 $$ = ast_path ($1->left.sval, $4);
810 rust_push_back ('>');
811 }
812 ;
813
814 path_for_type:
815 identifier_path_for_type
816 | KW_SELF COLONCOLON identifier_path_for_type
817 { $$ = super_name ($3, 0); }
818 | maybe_self_path super_path identifier_path_for_type
819 { $$ = super_name ($3, $2); }
820 | COLONCOLON identifier_path_for_type
821 { $$ = crate_name ($2); }
822 | KW_EXTERN identifier_path_for_type
823 {
824 /* This is a gdb extension to make it possible to
825 refer to items in other crates. It just bypasses
826 adding the current crate to the front of the
827 name. */
828 $$ = ast_path (rust_concat3 ("::", $2->left.sval.ptr, NULL),
829 $2->right.params);
830 }
831 ;
832
833 just_identifiers_for_type:
834 IDENT
835 { $$ = ast_path ($1, NULL); }
836 | just_identifiers_for_type COLONCOLON IDENT
837 {
838 $$ = ast_path (rust_concat3 ($1->left.sval.ptr, "::",
839 $3.ptr),
840 NULL);
841 }
842 ;
843
844 identifier_path_for_type:
845 just_identifiers_for_type
846 | just_identifiers_for_type '<' type_list '>'
847 { $$ = ast_path ($1->left.sval, $3); }
848 | just_identifiers_for_type '<' type_list RSH
849 {
850 $$ = ast_path ($1->left.sval, $3);
851 rust_push_back ('>');
852 }
853 ;
854
855 type:
856 path_for_type
857 | '[' type ';' INTEGER ']'
858 { $$ = ast_array_type ($2, $4); }
859 | '[' type ';' DECIMAL_INTEGER ']'
860 { $$ = ast_array_type ($2, $4); }
861 | '&' '[' type ']'
862 { $$ = ast_slice_type ($3); }
863 | '&' type
864 { $$ = ast_reference_type ($2); }
865 | '*' KW_MUT type
866 { $$ = ast_pointer_type ($3, 1); }
867 | '*' KW_CONST type
868 { $$ = ast_pointer_type ($3, 0); }
869 | KW_FN '(' maybe_type_list ')' ARROW type
870 { $$ = ast_function_type ($6, $3); }
871 | '(' maybe_type_list ')'
872 { $$ = ast_tuple_type ($2); }
873 ;
874
875 maybe_type_list:
876 /* %empty */
877 { $$ = NULL; }
878 | type_list
879 { $$ = $1; }
880 ;
881
882 type_list:
883 type
884 {
885 rust_op_vector *result = current_parser->new_op_vector ();
886 result->push_back ($1);
887 $$ = result;
888 }
889 | type_list ',' type
890 {
891 $1->push_back ($3);
892 $$ = $1;
893 }
894 ;
895
896 %%
897
898 /* A struct of this type is used to describe a token. */
899
900 struct token_info
901 {
902 const char *name;
903 int value;
904 enum exp_opcode opcode;
905 };
906
907 /* Identifier tokens. */
908
909 static const struct token_info identifier_tokens[] =
910 {
911 { "as", KW_AS, OP_NULL },
912 { "false", KW_FALSE, OP_NULL },
913 { "if", 0, OP_NULL },
914 { "mut", KW_MUT, OP_NULL },
915 { "const", KW_CONST, OP_NULL },
916 { "self", KW_SELF, OP_NULL },
917 { "super", KW_SUPER, OP_NULL },
918 { "true", KW_TRUE, OP_NULL },
919 { "extern", KW_EXTERN, OP_NULL },
920 { "fn", KW_FN, OP_NULL },
921 { "sizeof", KW_SIZEOF, OP_NULL },
922 };
923
924 /* Operator tokens, sorted longest first. */
925
926 static const struct token_info operator_tokens[] =
927 {
928 { ">>=", COMPOUND_ASSIGN, BINOP_RSH },
929 { "<<=", COMPOUND_ASSIGN, BINOP_LSH },
930
931 { "<<", LSH, OP_NULL },
932 { ">>", RSH, OP_NULL },
933 { "&&", ANDAND, OP_NULL },
934 { "||", OROR, OP_NULL },
935 { "==", EQEQ, OP_NULL },
936 { "!=", NOTEQ, OP_NULL },
937 { "<=", LTEQ, OP_NULL },
938 { ">=", GTEQ, OP_NULL },
939 { "+=", COMPOUND_ASSIGN, BINOP_ADD },
940 { "-=", COMPOUND_ASSIGN, BINOP_SUB },
941 { "*=", COMPOUND_ASSIGN, BINOP_MUL },
942 { "/=", COMPOUND_ASSIGN, BINOP_DIV },
943 { "%=", COMPOUND_ASSIGN, BINOP_REM },
944 { "&=", COMPOUND_ASSIGN, BINOP_BITWISE_AND },
945 { "|=", COMPOUND_ASSIGN, BINOP_BITWISE_IOR },
946 { "^=", COMPOUND_ASSIGN, BINOP_BITWISE_XOR },
947
948 { "::", COLONCOLON, OP_NULL },
949 { "..", DOTDOT, OP_NULL },
950 { "->", ARROW, OP_NULL }
951 };
952
953 /* Helper function to copy to the name obstack. */
954
955 static const char *
956 rust_copy_name (const char *name, int len)
957 {
958 return (const char *) obstack_copy0 (work_obstack, name, len);
959 }
960
961 /* Helper function to make an stoken from a C string. */
962
963 static struct stoken
964 make_stoken (const char *p)
965 {
966 struct stoken result;
967
968 result.ptr = p;
969 result.length = strlen (result.ptr);
970 return result;
971 }
972
973 /* Helper function to concatenate three strings on the name
974 obstack. */
975
976 static struct stoken
977 rust_concat3 (const char *s1, const char *s2, const char *s3)
978 {
979 return make_stoken (obconcat (work_obstack, s1, s2, s3, (char *) NULL));
980 }
981
982 /* Return an AST node referring to NAME, but relative to the crate's
983 name. */
984
985 static const struct rust_op *
986 crate_name (const struct rust_op *name)
987 {
988 std::string crate = rust_crate_for_block (expression_context_block);
989 struct stoken result;
990
991 gdb_assert (name->opcode == OP_VAR_VALUE);
992
993 if (crate.empty ())
994 error (_("Could not find crate for current location"));
995 result = make_stoken (obconcat (work_obstack, "::", crate.c_str (), "::",
996 name->left.sval.ptr, (char *) NULL));
997
998 return ast_path (result, name->right.params);
999 }
1000
1001 /* Create an AST node referring to a "super::" qualified name. IDENT
1002 is the base name and N_SUPERS is how many "super::"s were
1003 provided. N_SUPERS can be zero. */
1004
1005 static const struct rust_op *
1006 super_name (const struct rust_op *ident, unsigned int n_supers)
1007 {
1008 const char *scope = block_scope (expression_context_block);
1009 int offset;
1010
1011 gdb_assert (ident->opcode == OP_VAR_VALUE);
1012
1013 if (scope[0] == '\0')
1014 error (_("Couldn't find namespace scope for self::"));
1015
1016 if (n_supers > 0)
1017 {
1018 int i;
1019 int len;
1020 std::vector<int> offsets;
1021 unsigned int current_len;
1022
1023 current_len = cp_find_first_component (scope);
1024 while (scope[current_len] != '\0')
1025 {
1026 offsets.push_back (current_len);
1027 gdb_assert (scope[current_len] == ':');
1028 /* The "::". */
1029 current_len += 2;
1030 current_len += cp_find_first_component (scope
1031 + current_len);
1032 }
1033
1034 len = offsets.size ();
1035 if (n_supers >= len)
1036 error (_("Too many super:: uses from '%s'"), scope);
1037
1038 offset = offsets[len - n_supers];
1039 }
1040 else
1041 offset = strlen (scope);
1042
1043 obstack_grow (work_obstack, "::", 2);
1044 obstack_grow (work_obstack, scope, offset);
1045 obstack_grow (work_obstack, "::", 2);
1046 obstack_grow0 (work_obstack, ident->left.sval.ptr, ident->left.sval.length);
1047
1048 return ast_path (make_stoken ((const char *) obstack_finish (work_obstack)),
1049 ident->right.params);
1050 }
1051
1052 /* A helper that updates innermost_block as appropriate. */
1053
1054 static void
1055 update_innermost_block (struct block_symbol sym)
1056 {
1057 if (symbol_read_needs_frame (sym.symbol)
1058 && (innermost_block == NULL
1059 || contained_in (sym.block, innermost_block)))
1060 innermost_block = sym.block;
1061 }
1062
1063 /* A helper to look up a Rust type, or fail. This only works for
1064 types defined by rust_language_arch_info. */
1065
1066 static struct type *
1067 rust_type (const char *name)
1068 {
1069 struct type *type;
1070
1071 /* When unit testing, we don't bother checking the types, so avoid a
1072 possibly-failing lookup here. */
1073 if (unit_testing)
1074 return NULL;
1075
1076 type = language_lookup_primitive_type (current_parser->language (),
1077 current_parser->arch (),
1078 name);
1079 if (type == NULL)
1080 error (_("Could not find Rust type %s"), name);
1081 return type;
1082 }
1083
1084 /* Lex a hex number with at least MIN digits and at most MAX
1085 digits. */
1086
1087 static uint32_t
1088 lex_hex (int min, int max)
1089 {
1090 uint32_t result = 0;
1091 int len = 0;
1092 /* We only want to stop at MAX if we're lexing a byte escape. */
1093 int check_max = min == max;
1094
1095 while ((check_max ? len <= max : 1)
1096 && ((lexptr[0] >= 'a' && lexptr[0] <= 'f')
1097 || (lexptr[0] >= 'A' && lexptr[0] <= 'F')
1098 || (lexptr[0] >= '0' && lexptr[0] <= '9')))
1099 {
1100 result *= 16;
1101 if (lexptr[0] >= 'a' && lexptr[0] <= 'f')
1102 result = result + 10 + lexptr[0] - 'a';
1103 else if (lexptr[0] >= 'A' && lexptr[0] <= 'F')
1104 result = result + 10 + lexptr[0] - 'A';
1105 else
1106 result = result + lexptr[0] - '0';
1107 ++lexptr;
1108 ++len;
1109 }
1110
1111 if (len < min)
1112 error (_("Not enough hex digits seen"));
1113 if (len > max)
1114 {
1115 gdb_assert (min != max);
1116 error (_("Overlong hex escape"));
1117 }
1118
1119 return result;
1120 }
1121
1122 /* Lex an escape. IS_BYTE is true if we're lexing a byte escape;
1123 otherwise we're lexing a character escape. */
1124
1125 static uint32_t
1126 lex_escape (int is_byte)
1127 {
1128 uint32_t result;
1129
1130 gdb_assert (lexptr[0] == '\\');
1131 ++lexptr;
1132 switch (lexptr[0])
1133 {
1134 case 'x':
1135 ++lexptr;
1136 result = lex_hex (2, 2);
1137 break;
1138
1139 case 'u':
1140 if (is_byte)
1141 error (_("Unicode escape in byte literal"));
1142 ++lexptr;
1143 if (lexptr[0] != '{')
1144 error (_("Missing '{' in Unicode escape"));
1145 ++lexptr;
1146 result = lex_hex (1, 6);
1147 /* Could do range checks here. */
1148 if (lexptr[0] != '}')
1149 error (_("Missing '}' in Unicode escape"));
1150 ++lexptr;
1151 break;
1152
1153 case 'n':
1154 result = '\n';
1155 ++lexptr;
1156 break;
1157 case 'r':
1158 result = '\r';
1159 ++lexptr;
1160 break;
1161 case 't':
1162 result = '\t';
1163 ++lexptr;
1164 break;
1165 case '\\':
1166 result = '\\';
1167 ++lexptr;
1168 break;
1169 case '0':
1170 result = '\0';
1171 ++lexptr;
1172 break;
1173 case '\'':
1174 result = '\'';
1175 ++lexptr;
1176 break;
1177 case '"':
1178 result = '"';
1179 ++lexptr;
1180 break;
1181
1182 default:
1183 error (_("Invalid escape \\%c in literal"), lexptr[0]);
1184 }
1185
1186 return result;
1187 }
1188
1189 /* Lex a character constant. */
1190
1191 static int
1192 lex_character (void)
1193 {
1194 int is_byte = 0;
1195 uint32_t value;
1196
1197 if (lexptr[0] == 'b')
1198 {
1199 is_byte = 1;
1200 ++lexptr;
1201 }
1202 gdb_assert (lexptr[0] == '\'');
1203 ++lexptr;
1204 /* This should handle UTF-8 here. */
1205 if (lexptr[0] == '\\')
1206 value = lex_escape (is_byte);
1207 else
1208 {
1209 value = lexptr[0] & 0xff;
1210 ++lexptr;
1211 }
1212
1213 if (lexptr[0] != '\'')
1214 error (_("Unterminated character literal"));
1215 ++lexptr;
1216
1217 rustyylval.typed_val_int.val = value;
1218 rustyylval.typed_val_int.type = rust_type (is_byte ? "u8" : "char");
1219
1220 return INTEGER;
1221 }
1222
1223 /* Return the offset of the double quote if STR looks like the start
1224 of a raw string, or 0 if STR does not start a raw string. */
1225
1226 static int
1227 starts_raw_string (const char *str)
1228 {
1229 const char *save = str;
1230
1231 if (str[0] != 'r')
1232 return 0;
1233 ++str;
1234 while (str[0] == '#')
1235 ++str;
1236 if (str[0] == '"')
1237 return str - save;
1238 return 0;
1239 }
1240
1241 /* Return true if STR looks like the end of a raw string that had N
1242 hashes at the start. */
1243
1244 static bool
1245 ends_raw_string (const char *str, int n)
1246 {
1247 int i;
1248
1249 gdb_assert (str[0] == '"');
1250 for (i = 0; i < n; ++i)
1251 if (str[i + 1] != '#')
1252 return false;
1253 return true;
1254 }
1255
1256 /* Lex a string constant. */
1257
1258 static int
1259 lex_string (void)
1260 {
1261 int is_byte = lexptr[0] == 'b';
1262 int raw_length;
1263 int len_in_chars = 0;
1264
1265 if (is_byte)
1266 ++lexptr;
1267 raw_length = starts_raw_string (lexptr);
1268 lexptr += raw_length;
1269 gdb_assert (lexptr[0] == '"');
1270 ++lexptr;
1271
1272 while (1)
1273 {
1274 uint32_t value;
1275
1276 if (raw_length > 0)
1277 {
1278 if (lexptr[0] == '"' && ends_raw_string (lexptr, raw_length - 1))
1279 {
1280 /* Exit with lexptr pointing after the final "#". */
1281 lexptr += raw_length;
1282 break;
1283 }
1284 else if (lexptr[0] == '\0')
1285 error (_("Unexpected EOF in string"));
1286
1287 value = lexptr[0] & 0xff;
1288 if (is_byte && value > 127)
1289 error (_("Non-ASCII value in raw byte string"));
1290 obstack_1grow (work_obstack, value);
1291
1292 ++lexptr;
1293 }
1294 else if (lexptr[0] == '"')
1295 {
1296 /* Make sure to skip the quote. */
1297 ++lexptr;
1298 break;
1299 }
1300 else if (lexptr[0] == '\\')
1301 {
1302 value = lex_escape (is_byte);
1303
1304 if (is_byte)
1305 obstack_1grow (work_obstack, value);
1306 else
1307 convert_between_encodings ("UTF-32", "UTF-8", (gdb_byte *) &value,
1308 sizeof (value), sizeof (value),
1309 work_obstack, translit_none);
1310 }
1311 else if (lexptr[0] == '\0')
1312 error (_("Unexpected EOF in string"));
1313 else
1314 {
1315 value = lexptr[0] & 0xff;
1316 if (is_byte && value > 127)
1317 error (_("Non-ASCII value in byte string"));
1318 obstack_1grow (work_obstack, value);
1319 ++lexptr;
1320 }
1321 }
1322
1323 rustyylval.sval.length = obstack_object_size (work_obstack);
1324 rustyylval.sval.ptr = (const char *) obstack_finish (work_obstack);
1325 return is_byte ? BYTESTRING : STRING;
1326 }
1327
1328 /* Return true if STRING starts with whitespace followed by a digit. */
1329
1330 static bool
1331 space_then_number (const char *string)
1332 {
1333 const char *p = string;
1334
1335 while (p[0] == ' ' || p[0] == '\t')
1336 ++p;
1337 if (p == string)
1338 return false;
1339
1340 return *p >= '0' && *p <= '9';
1341 }
1342
1343 /* Return true if C can start an identifier. */
1344
1345 static bool
1346 rust_identifier_start_p (char c)
1347 {
1348 return ((c >= 'a' && c <= 'z')
1349 || (c >= 'A' && c <= 'Z')
1350 || c == '_'
1351 || c == '$');
1352 }
1353
1354 /* Lex an identifier. */
1355
1356 static int
1357 lex_identifier (void)
1358 {
1359 const char *start = lexptr;
1360 unsigned int length;
1361 const struct token_info *token;
1362 int i;
1363 int is_gdb_var = lexptr[0] == '$';
1364
1365 gdb_assert (rust_identifier_start_p (lexptr[0]));
1366
1367 ++lexptr;
1368
1369 /* For the time being this doesn't handle Unicode rules. Non-ASCII
1370 identifiers are gated anyway. */
1371 while ((lexptr[0] >= 'a' && lexptr[0] <= 'z')
1372 || (lexptr[0] >= 'A' && lexptr[0] <= 'Z')
1373 || lexptr[0] == '_'
1374 || (is_gdb_var && lexptr[0] == '$')
1375 || (lexptr[0] >= '0' && lexptr[0] <= '9'))
1376 ++lexptr;
1377
1378
1379 length = lexptr - start;
1380 token = NULL;
1381 for (i = 0; i < ARRAY_SIZE (identifier_tokens); ++i)
1382 {
1383 if (length == strlen (identifier_tokens[i].name)
1384 && strncmp (identifier_tokens[i].name, start, length) == 0)
1385 {
1386 token = &identifier_tokens[i];
1387 break;
1388 }
1389 }
1390
1391 if (token != NULL)
1392 {
1393 if (token->value == 0)
1394 {
1395 /* Leave the terminating token alone. */
1396 lexptr = start;
1397 return 0;
1398 }
1399 }
1400 else if (token == NULL
1401 && (strncmp (start, "thread", length) == 0
1402 || strncmp (start, "task", length) == 0)
1403 && space_then_number (lexptr))
1404 {
1405 /* "task" or "thread" followed by a number terminates the
1406 parse, per gdb rules. */
1407 lexptr = start;
1408 return 0;
1409 }
1410
1411 if (token == NULL || (parse_completion && lexptr[0] == '\0'))
1412 rustyylval.sval = make_stoken (rust_copy_name (start, length));
1413
1414 if (parse_completion && lexptr[0] == '\0')
1415 {
1416 /* Prevent rustyylex from returning two COMPLETE tokens. */
1417 prev_lexptr = lexptr;
1418 return COMPLETE;
1419 }
1420
1421 if (token != NULL)
1422 return token->value;
1423 if (is_gdb_var)
1424 return GDBVAR;
1425 return IDENT;
1426 }
1427
1428 /* Lex an operator. */
1429
1430 static int
1431 lex_operator (void)
1432 {
1433 const struct token_info *token = NULL;
1434 int i;
1435
1436 for (i = 0; i < ARRAY_SIZE (operator_tokens); ++i)
1437 {
1438 if (strncmp (operator_tokens[i].name, lexptr,
1439 strlen (operator_tokens[i].name)) == 0)
1440 {
1441 lexptr += strlen (operator_tokens[i].name);
1442 token = &operator_tokens[i];
1443 break;
1444 }
1445 }
1446
1447 if (token != NULL)
1448 {
1449 rustyylval.opcode = token->opcode;
1450 return token->value;
1451 }
1452
1453 return *lexptr++;
1454 }
1455
1456 /* Lex a number. */
1457
1458 static int
1459 lex_number (void)
1460 {
1461 regmatch_t subexps[NUM_SUBEXPRESSIONS];
1462 int match;
1463 int is_integer = 0;
1464 int could_be_decimal = 1;
1465 int implicit_i32 = 0;
1466 const char *type_name = NULL;
1467 struct type *type;
1468 int end_index;
1469 int type_index = -1;
1470 int i;
1471
1472 match = regexec (&number_regex, lexptr, ARRAY_SIZE (subexps), subexps, 0);
1473 /* Failure means the regexp is broken. */
1474 gdb_assert (match == 0);
1475
1476 if (subexps[INT_TEXT].rm_so != -1)
1477 {
1478 /* Integer part matched. */
1479 is_integer = 1;
1480 end_index = subexps[INT_TEXT].rm_eo;
1481 if (subexps[INT_TYPE].rm_so == -1)
1482 {
1483 type_name = "i32";
1484 implicit_i32 = 1;
1485 }
1486 else
1487 {
1488 type_index = INT_TYPE;
1489 could_be_decimal = 0;
1490 }
1491 }
1492 else if (subexps[FLOAT_TYPE1].rm_so != -1)
1493 {
1494 /* Found floating point type suffix. */
1495 end_index = subexps[FLOAT_TYPE1].rm_so;
1496 type_index = FLOAT_TYPE1;
1497 }
1498 else if (subexps[FLOAT_TYPE2].rm_so != -1)
1499 {
1500 /* Found floating point type suffix. */
1501 end_index = subexps[FLOAT_TYPE2].rm_so;
1502 type_index = FLOAT_TYPE2;
1503 }
1504 else
1505 {
1506 /* Any other floating point match. */
1507 end_index = subexps[0].rm_eo;
1508 type_name = "f64";
1509 }
1510
1511 /* We need a special case if the final character is ".". In this
1512 case we might need to parse an integer. For example, "23.f()" is
1513 a request for a trait method call, not a syntax error involving
1514 the floating point number "23.". */
1515 gdb_assert (subexps[0].rm_eo > 0);
1516 if (lexptr[subexps[0].rm_eo - 1] == '.')
1517 {
1518 const char *next = skip_spaces (&lexptr[subexps[0].rm_eo]);
1519
1520 if (rust_identifier_start_p (*next) || *next == '.')
1521 {
1522 --subexps[0].rm_eo;
1523 is_integer = 1;
1524 end_index = subexps[0].rm_eo;
1525 type_name = "i32";
1526 could_be_decimal = 1;
1527 implicit_i32 = 1;
1528 }
1529 }
1530
1531 /* Compute the type name if we haven't already. */
1532 std::string type_name_holder;
1533 if (type_name == NULL)
1534 {
1535 gdb_assert (type_index != -1);
1536 type_name_holder = std::string (lexptr + subexps[type_index].rm_so,
1537 (subexps[type_index].rm_eo
1538 - subexps[type_index].rm_so));
1539 type_name = type_name_holder.c_str ();
1540 }
1541
1542 /* Look up the type. */
1543 type = rust_type (type_name);
1544
1545 /* Copy the text of the number and remove the "_"s. */
1546 std::string number;
1547 for (i = 0; i < end_index && lexptr[i]; ++i)
1548 {
1549 if (lexptr[i] == '_')
1550 could_be_decimal = 0;
1551 else
1552 number.push_back (lexptr[i]);
1553 }
1554
1555 /* Advance past the match. */
1556 lexptr += subexps[0].rm_eo;
1557
1558 /* Parse the number. */
1559 if (is_integer)
1560 {
1561 uint64_t value;
1562 int radix = 10;
1563 int offset = 0;
1564
1565 if (number[0] == '0')
1566 {
1567 if (number[1] == 'x')
1568 radix = 16;
1569 else if (number[1] == 'o')
1570 radix = 8;
1571 else if (number[1] == 'b')
1572 radix = 2;
1573 if (radix != 10)
1574 {
1575 offset = 2;
1576 could_be_decimal = 0;
1577 }
1578 }
1579
1580 value = strtoul (number.c_str () + offset, NULL, radix);
1581 if (implicit_i32 && value >= ((uint64_t) 1) << 31)
1582 type = rust_type ("i64");
1583
1584 rustyylval.typed_val_int.val = value;
1585 rustyylval.typed_val_int.type = type;
1586 }
1587 else
1588 {
1589 rustyylval.typed_val_float.dval = strtod (number.c_str (), NULL);
1590 rustyylval.typed_val_float.type = type;
1591 }
1592
1593 return is_integer ? (could_be_decimal ? DECIMAL_INTEGER : INTEGER) : FLOAT;
1594 }
1595
1596 /* The lexer. */
1597
1598 static int
1599 rustyylex (void)
1600 {
1601 /* Skip all leading whitespace. */
1602 while (lexptr[0] == ' ' || lexptr[0] == '\t' || lexptr[0] == '\r'
1603 || lexptr[0] == '\n')
1604 ++lexptr;
1605
1606 /* If we hit EOF and we're completing, then return COMPLETE -- maybe
1607 we're completing an empty string at the end of a field_expr.
1608 But, we don't want to return two COMPLETE tokens in a row. */
1609 if (lexptr[0] == '\0' && lexptr == prev_lexptr)
1610 return 0;
1611 prev_lexptr = lexptr;
1612 if (lexptr[0] == '\0')
1613 {
1614 if (parse_completion)
1615 {
1616 rustyylval.sval = make_stoken ("");
1617 return COMPLETE;
1618 }
1619 return 0;
1620 }
1621
1622 if (lexptr[0] >= '0' && lexptr[0] <= '9')
1623 return lex_number ();
1624 else if (lexptr[0] == 'b' && lexptr[1] == '\'')
1625 return lex_character ();
1626 else if (lexptr[0] == 'b' && lexptr[1] == '"')
1627 return lex_string ();
1628 else if (lexptr[0] == 'b' && starts_raw_string (lexptr + 1))
1629 return lex_string ();
1630 else if (starts_raw_string (lexptr))
1631 return lex_string ();
1632 else if (rust_identifier_start_p (lexptr[0]))
1633 return lex_identifier ();
1634 else if (lexptr[0] == '"')
1635 return lex_string ();
1636 else if (lexptr[0] == '\'')
1637 return lex_character ();
1638 else if (lexptr[0] == '}' || lexptr[0] == ']')
1639 {
1640 /* Falls through to lex_operator. */
1641 --paren_depth;
1642 }
1643 else if (lexptr[0] == '(' || lexptr[0] == '{')
1644 {
1645 /* Falls through to lex_operator. */
1646 ++paren_depth;
1647 }
1648 else if (lexptr[0] == ',' && comma_terminates && paren_depth == 0)
1649 return 0;
1650
1651 return lex_operator ();
1652 }
1653
1654 /* Push back a single character to be re-lexed. */
1655
1656 static void
1657 rust_push_back (char c)
1658 {
1659 /* Can't be called before any lexing. */
1660 gdb_assert (prev_lexptr != NULL);
1661
1662 --lexptr;
1663 gdb_assert (*lexptr == c);
1664 }
1665
1666 \f
1667
1668 /* Make an arbitrary operation and fill in the fields. */
1669
1670 static const struct rust_op *
1671 ast_operation (enum exp_opcode opcode, const struct rust_op *left,
1672 const struct rust_op *right)
1673 {
1674 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1675
1676 result->opcode = opcode;
1677 result->left.op = left;
1678 result->right.op = right;
1679
1680 return result;
1681 }
1682
1683 /* Make a compound assignment operation. */
1684
1685 static const struct rust_op *
1686 ast_compound_assignment (enum exp_opcode opcode, const struct rust_op *left,
1687 const struct rust_op *right)
1688 {
1689 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1690
1691 result->opcode = opcode;
1692 result->compound_assignment = 1;
1693 result->left.op = left;
1694 result->right.op = right;
1695
1696 return result;
1697 }
1698
1699 /* Make a typed integer literal operation. */
1700
1701 static const struct rust_op *
1702 ast_literal (struct typed_val_int val)
1703 {
1704 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1705
1706 result->opcode = OP_LONG;
1707 result->left.typed_val_int = val;
1708
1709 return result;
1710 }
1711
1712 /* Make a typed floating point literal operation. */
1713
1714 static const struct rust_op *
1715 ast_dliteral (struct typed_val_float val)
1716 {
1717 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1718
1719 result->opcode = OP_DOUBLE;
1720 result->left.typed_val_float = val;
1721
1722 return result;
1723 }
1724
1725 /* Make a unary operation. */
1726
1727 static const struct rust_op *
1728 ast_unary (enum exp_opcode opcode, const struct rust_op *expr)
1729 {
1730 return ast_operation (opcode, expr, NULL);
1731 }
1732
1733 /* Make a cast operation. */
1734
1735 static const struct rust_op *
1736 ast_cast (const struct rust_op *expr, const struct rust_op *type)
1737 {
1738 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1739
1740 result->opcode = UNOP_CAST;
1741 result->left.op = expr;
1742 result->right.op = type;
1743
1744 return result;
1745 }
1746
1747 /* Make a call-like operation. This is nominally a function call, but
1748 when lowering we may discover that it actually represents the
1749 creation of a tuple struct. */
1750
1751 static const struct rust_op *
1752 ast_call_ish (enum exp_opcode opcode, const struct rust_op *expr,
1753 rust_op_vector *params)
1754 {
1755 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1756
1757 result->opcode = opcode;
1758 result->left.op = expr;
1759 result->right.params = params;
1760
1761 return result;
1762 }
1763
1764 /* Make a structure creation operation. */
1765
1766 static const struct rust_op *
1767 ast_struct (const struct rust_op *name, rust_set_vector *fields)
1768 {
1769 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1770
1771 result->opcode = OP_AGGREGATE;
1772 result->left.op = name;
1773 result->right.field_inits = fields;
1774
1775 return result;
1776 }
1777
1778 /* Make an identifier path. */
1779
1780 static const struct rust_op *
1781 ast_path (struct stoken path, rust_op_vector *params)
1782 {
1783 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1784
1785 result->opcode = OP_VAR_VALUE;
1786 result->left.sval = path;
1787 result->right.params = params;
1788
1789 return result;
1790 }
1791
1792 /* Make a string constant operation. */
1793
1794 static const struct rust_op *
1795 ast_string (struct stoken str)
1796 {
1797 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1798
1799 result->opcode = OP_STRING;
1800 result->left.sval = str;
1801
1802 return result;
1803 }
1804
1805 /* Make a field expression. */
1806
1807 static const struct rust_op *
1808 ast_structop (const struct rust_op *left, const char *name, int completing)
1809 {
1810 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1811
1812 result->opcode = STRUCTOP_STRUCT;
1813 result->completing = completing;
1814 result->left.op = left;
1815 result->right.sval = make_stoken (name);
1816
1817 return result;
1818 }
1819
1820 /* Make an anonymous struct operation, like 'x.0'. */
1821
1822 static const struct rust_op *
1823 ast_structop_anonymous (const struct rust_op *left,
1824 struct typed_val_int number)
1825 {
1826 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1827
1828 result->opcode = STRUCTOP_ANONYMOUS;
1829 result->left.op = left;
1830 result->right.typed_val_int = number;
1831
1832 return result;
1833 }
1834
1835 /* Make a range operation. */
1836
1837 static const struct rust_op *
1838 ast_range (const struct rust_op *lhs, const struct rust_op *rhs)
1839 {
1840 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1841
1842 result->opcode = OP_RANGE;
1843 result->left.op = lhs;
1844 result->right.op = rhs;
1845
1846 return result;
1847 }
1848
1849 /* A helper function to make a type-related AST node. */
1850
1851 static struct rust_op *
1852 ast_basic_type (enum type_code typecode)
1853 {
1854 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1855
1856 result->opcode = OP_TYPE;
1857 result->typecode = typecode;
1858 return result;
1859 }
1860
1861 /* Create an AST node describing an array type. */
1862
1863 static const struct rust_op *
1864 ast_array_type (const struct rust_op *lhs, struct typed_val_int val)
1865 {
1866 struct rust_op *result = ast_basic_type (TYPE_CODE_ARRAY);
1867
1868 result->left.op = lhs;
1869 result->right.typed_val_int = val;
1870 return result;
1871 }
1872
1873 /* Create an AST node describing a reference type. */
1874
1875 static const struct rust_op *
1876 ast_slice_type (const struct rust_op *type)
1877 {
1878 /* Use TYPE_CODE_COMPLEX just because it is handy. */
1879 struct rust_op *result = ast_basic_type (TYPE_CODE_COMPLEX);
1880
1881 result->left.op = type;
1882 return result;
1883 }
1884
1885 /* Create an AST node describing a reference type. */
1886
1887 static const struct rust_op *
1888 ast_reference_type (const struct rust_op *type)
1889 {
1890 struct rust_op *result = ast_basic_type (TYPE_CODE_REF);
1891
1892 result->left.op = type;
1893 return result;
1894 }
1895
1896 /* Create an AST node describing a pointer type. */
1897
1898 static const struct rust_op *
1899 ast_pointer_type (const struct rust_op *type, int is_mut)
1900 {
1901 struct rust_op *result = ast_basic_type (TYPE_CODE_PTR);
1902
1903 result->left.op = type;
1904 /* For the time being we ignore is_mut. */
1905 return result;
1906 }
1907
1908 /* Create an AST node describing a function type. */
1909
1910 static const struct rust_op *
1911 ast_function_type (const struct rust_op *rtype, rust_op_vector *params)
1912 {
1913 struct rust_op *result = ast_basic_type (TYPE_CODE_FUNC);
1914
1915 result->left.op = rtype;
1916 result->right.params = params;
1917 return result;
1918 }
1919
1920 /* Create an AST node describing a tuple type. */
1921
1922 static const struct rust_op *
1923 ast_tuple_type (rust_op_vector *params)
1924 {
1925 struct rust_op *result = ast_basic_type (TYPE_CODE_STRUCT);
1926
1927 result->left.params = params;
1928 return result;
1929 }
1930
1931 /* A helper to appropriately munge NAME and BLOCK depending on the
1932 presence of a leading "::". */
1933
1934 static void
1935 munge_name_and_block (const char **name, const struct block **block)
1936 {
1937 /* If it is a global reference, skip the current block in favor of
1938 the static block. */
1939 if (strncmp (*name, "::", 2) == 0)
1940 {
1941 *name += 2;
1942 *block = block_static_block (*block);
1943 }
1944 }
1945
1946 /* Like lookup_symbol, but handles Rust namespace conventions, and
1947 doesn't require field_of_this_result. */
1948
1949 static struct block_symbol
1950 rust_lookup_symbol (const char *name, const struct block *block,
1951 const domain_enum domain)
1952 {
1953 struct block_symbol result;
1954
1955 munge_name_and_block (&name, &block);
1956
1957 result = lookup_symbol (name, block, domain, NULL);
1958 if (result.symbol != NULL)
1959 update_innermost_block (result);
1960 return result;
1961 }
1962
1963 /* Look up a type, following Rust namespace conventions. */
1964
1965 static struct type *
1966 rust_lookup_type (const char *name, const struct block *block)
1967 {
1968 struct block_symbol result;
1969 struct type *type;
1970
1971 munge_name_and_block (&name, &block);
1972
1973 result = lookup_symbol (name, block, STRUCT_DOMAIN, NULL);
1974 if (result.symbol != NULL)
1975 {
1976 update_innermost_block (result);
1977 return SYMBOL_TYPE (result.symbol);
1978 }
1979
1980 type = lookup_typename (current_parser->language (), current_parser->arch (),
1981 name, NULL, 1);
1982 if (type != NULL)
1983 return type;
1984
1985 /* Last chance, try a built-in type. */
1986 return language_lookup_primitive_type (current_parser->language (),
1987 current_parser->arch (),
1988 name);
1989 }
1990
1991 static struct type *convert_ast_to_type (struct parser_state *state,
1992 const struct rust_op *operation);
1993 static const char *convert_name (struct parser_state *state,
1994 const struct rust_op *operation);
1995
1996 /* Convert a vector of rust_ops representing types to a vector of
1997 types. */
1998
1999 static std::vector<struct type *>
2000 convert_params_to_types (struct parser_state *state, rust_op_vector *params)
2001 {
2002 std::vector<struct type *> result;
2003
2004 for (const rust_op *op : *params)
2005 result.push_back (convert_ast_to_type (state, op));
2006
2007 return result;
2008 }
2009
2010 /* Convert a rust_op representing a type to a struct type *. */
2011
2012 static struct type *
2013 convert_ast_to_type (struct parser_state *state,
2014 const struct rust_op *operation)
2015 {
2016 struct type *type, *result = NULL;
2017
2018 if (operation->opcode == OP_VAR_VALUE)
2019 {
2020 const char *varname = convert_name (state, operation);
2021
2022 result = rust_lookup_type (varname, expression_context_block);
2023 if (result == NULL)
2024 error (_("No typed name '%s' in current context"), varname);
2025 return result;
2026 }
2027
2028 gdb_assert (operation->opcode == OP_TYPE);
2029
2030 switch (operation->typecode)
2031 {
2032 case TYPE_CODE_ARRAY:
2033 type = convert_ast_to_type (state, operation->left.op);
2034 if (operation->right.typed_val_int.val < 0)
2035 error (_("Negative array length"));
2036 result = lookup_array_range_type (type, 0,
2037 operation->right.typed_val_int.val - 1);
2038 break;
2039
2040 case TYPE_CODE_COMPLEX:
2041 {
2042 struct type *usize = rust_type ("usize");
2043
2044 type = convert_ast_to_type (state, operation->left.op);
2045 result = rust_slice_type ("&[*gdb*]", type, usize);
2046 }
2047 break;
2048
2049 case TYPE_CODE_REF:
2050 case TYPE_CODE_PTR:
2051 /* For now we treat &x and *x identically. */
2052 type = convert_ast_to_type (state, operation->left.op);
2053 result = lookup_pointer_type (type);
2054 break;
2055
2056 case TYPE_CODE_FUNC:
2057 {
2058 std::vector<struct type *> args
2059 (convert_params_to_types (state, operation->right.params));
2060 struct type **argtypes = NULL;
2061
2062 type = convert_ast_to_type (state, operation->left.op);
2063 if (!args.empty ())
2064 argtypes = args.data ();
2065
2066 result
2067 = lookup_function_type_with_arguments (type, args.size (),
2068 argtypes);
2069 result = lookup_pointer_type (result);
2070 }
2071 break;
2072
2073 case TYPE_CODE_STRUCT:
2074 {
2075 std::vector<struct type *> args
2076 (convert_params_to_types (state, operation->left.params));
2077 int i;
2078 struct type *type;
2079 const char *name;
2080
2081 obstack_1grow (work_obstack, '(');
2082 for (i = 0; i < args.size (); ++i)
2083 {
2084 std::string type_name = type_to_string (args[i]);
2085
2086 if (i > 0)
2087 obstack_1grow (work_obstack, ',');
2088 obstack_grow_str (work_obstack, type_name.c_str ());
2089 }
2090
2091 obstack_grow_str0 (work_obstack, ")");
2092 name = (const char *) obstack_finish (work_obstack);
2093
2094 /* We don't allow creating new tuple types (yet), but we do
2095 allow looking up existing tuple types. */
2096 result = rust_lookup_type (name, expression_context_block);
2097 if (result == NULL)
2098 error (_("could not find tuple type '%s'"), name);
2099 }
2100 break;
2101
2102 default:
2103 gdb_assert_not_reached ("unhandled opcode in convert_ast_to_type");
2104 }
2105
2106 gdb_assert (result != NULL);
2107 return result;
2108 }
2109
2110 /* A helper function to turn a rust_op representing a name into a full
2111 name. This applies generic arguments as needed. The returned name
2112 is allocated on the work obstack. */
2113
2114 static const char *
2115 convert_name (struct parser_state *state, const struct rust_op *operation)
2116 {
2117 int i;
2118
2119 gdb_assert (operation->opcode == OP_VAR_VALUE);
2120
2121 if (operation->right.params == NULL)
2122 return operation->left.sval.ptr;
2123
2124 std::vector<struct type *> types
2125 (convert_params_to_types (state, operation->right.params));
2126
2127 obstack_grow_str (work_obstack, operation->left.sval.ptr);
2128 obstack_1grow (work_obstack, '<');
2129 for (i = 0; i < types.size (); ++i)
2130 {
2131 std::string type_name = type_to_string (types[i]);
2132
2133 if (i > 0)
2134 obstack_1grow (work_obstack, ',');
2135
2136 obstack_grow_str (work_obstack, type_name.c_str ());
2137 }
2138 obstack_grow_str0 (work_obstack, ">");
2139
2140 return (const char *) obstack_finish (work_obstack);
2141 }
2142
2143 static void convert_ast_to_expression (struct parser_state *state,
2144 const struct rust_op *operation,
2145 const struct rust_op *top,
2146 bool want_type = false);
2147
2148 /* A helper function that converts a vec of rust_ops to a gdb
2149 expression. */
2150
2151 static void
2152 convert_params_to_expression (struct parser_state *state,
2153 rust_op_vector *params,
2154 const struct rust_op *top)
2155 {
2156 for (const rust_op *elem : *params)
2157 convert_ast_to_expression (state, elem, top);
2158 }
2159
2160 /* Lower a rust_op to a gdb expression. STATE is the parser state.
2161 OPERATION is the operation to lower. TOP is a pointer to the
2162 top-most operation; it is used to handle the special case where the
2163 top-most expression is an identifier and can be optionally lowered
2164 to OP_TYPE. WANT_TYPE is a flag indicating that, if the expression
2165 is the name of a type, then emit an OP_TYPE for it (rather than
2166 erroring). If WANT_TYPE is set, then the similar TOP handling is
2167 not done. */
2168
2169 static void
2170 convert_ast_to_expression (struct parser_state *state,
2171 const struct rust_op *operation,
2172 const struct rust_op *top,
2173 bool want_type)
2174 {
2175 switch (operation->opcode)
2176 {
2177 case OP_LONG:
2178 write_exp_elt_opcode (state, OP_LONG);
2179 write_exp_elt_type (state, operation->left.typed_val_int.type);
2180 write_exp_elt_longcst (state, operation->left.typed_val_int.val);
2181 write_exp_elt_opcode (state, OP_LONG);
2182 break;
2183
2184 case OP_DOUBLE:
2185 write_exp_elt_opcode (state, OP_DOUBLE);
2186 write_exp_elt_type (state, operation->left.typed_val_float.type);
2187 write_exp_elt_dblcst (state, operation->left.typed_val_float.dval);
2188 write_exp_elt_opcode (state, OP_DOUBLE);
2189 break;
2190
2191 case STRUCTOP_STRUCT:
2192 {
2193 convert_ast_to_expression (state, operation->left.op, top);
2194
2195 if (operation->completing)
2196 mark_struct_expression (state);
2197 write_exp_elt_opcode (state, STRUCTOP_STRUCT);
2198 write_exp_string (state, operation->right.sval);
2199 write_exp_elt_opcode (state, STRUCTOP_STRUCT);
2200 }
2201 break;
2202
2203 case STRUCTOP_ANONYMOUS:
2204 {
2205 convert_ast_to_expression (state, operation->left.op, top);
2206
2207 write_exp_elt_opcode (state, STRUCTOP_ANONYMOUS);
2208 write_exp_elt_longcst (state, operation->right.typed_val_int.val);
2209 write_exp_elt_opcode (state, STRUCTOP_ANONYMOUS);
2210 }
2211 break;
2212
2213 case UNOP_SIZEOF:
2214 convert_ast_to_expression (state, operation->left.op, top, true);
2215 write_exp_elt_opcode (state, UNOP_SIZEOF);
2216 break;
2217
2218 case UNOP_PLUS:
2219 case UNOP_NEG:
2220 case UNOP_COMPLEMENT:
2221 case UNOP_IND:
2222 case UNOP_ADDR:
2223 convert_ast_to_expression (state, operation->left.op, top);
2224 write_exp_elt_opcode (state, operation->opcode);
2225 break;
2226
2227 case BINOP_SUBSCRIPT:
2228 case BINOP_MUL:
2229 case BINOP_REPEAT:
2230 case BINOP_DIV:
2231 case BINOP_REM:
2232 case BINOP_LESS:
2233 case BINOP_GTR:
2234 case BINOP_BITWISE_AND:
2235 case BINOP_BITWISE_IOR:
2236 case BINOP_BITWISE_XOR:
2237 case BINOP_ADD:
2238 case BINOP_SUB:
2239 case BINOP_LOGICAL_OR:
2240 case BINOP_LOGICAL_AND:
2241 case BINOP_EQUAL:
2242 case BINOP_NOTEQUAL:
2243 case BINOP_LEQ:
2244 case BINOP_GEQ:
2245 case BINOP_LSH:
2246 case BINOP_RSH:
2247 case BINOP_ASSIGN:
2248 case OP_RUST_ARRAY:
2249 convert_ast_to_expression (state, operation->left.op, top);
2250 convert_ast_to_expression (state, operation->right.op, top);
2251 if (operation->compound_assignment)
2252 {
2253 write_exp_elt_opcode (state, BINOP_ASSIGN_MODIFY);
2254 write_exp_elt_opcode (state, operation->opcode);
2255 write_exp_elt_opcode (state, BINOP_ASSIGN_MODIFY);
2256 }
2257 else
2258 write_exp_elt_opcode (state, operation->opcode);
2259
2260 if (operation->compound_assignment
2261 || operation->opcode == BINOP_ASSIGN)
2262 {
2263 struct type *type;
2264
2265 type = language_lookup_primitive_type (parse_language (state),
2266 parse_gdbarch (state),
2267 "()");
2268
2269 write_exp_elt_opcode (state, OP_LONG);
2270 write_exp_elt_type (state, type);
2271 write_exp_elt_longcst (state, 0);
2272 write_exp_elt_opcode (state, OP_LONG);
2273
2274 write_exp_elt_opcode (state, BINOP_COMMA);
2275 }
2276 break;
2277
2278 case UNOP_CAST:
2279 {
2280 struct type *type = convert_ast_to_type (state, operation->right.op);
2281
2282 convert_ast_to_expression (state, operation->left.op, top);
2283 write_exp_elt_opcode (state, UNOP_CAST);
2284 write_exp_elt_type (state, type);
2285 write_exp_elt_opcode (state, UNOP_CAST);
2286 }
2287 break;
2288
2289 case OP_FUNCALL:
2290 {
2291 if (operation->left.op->opcode == OP_VAR_VALUE)
2292 {
2293 struct type *type;
2294 const char *varname = convert_name (state, operation->left.op);
2295
2296 type = rust_lookup_type (varname, expression_context_block);
2297 if (type != NULL)
2298 {
2299 /* This is actually a tuple struct expression, not a
2300 call expression. */
2301 rust_op_vector *params = operation->right.params;
2302
2303 if (TYPE_CODE (type) != TYPE_CODE_NAMESPACE)
2304 {
2305 if (!rust_tuple_struct_type_p (type))
2306 error (_("Type %s is not a tuple struct"), varname);
2307
2308 for (int i = 0; i < params->size (); ++i)
2309 {
2310 char *cell = get_print_cell ();
2311
2312 xsnprintf (cell, PRINT_CELL_SIZE, "__%d", i);
2313 write_exp_elt_opcode (state, OP_NAME);
2314 write_exp_string (state, make_stoken (cell));
2315 write_exp_elt_opcode (state, OP_NAME);
2316
2317 convert_ast_to_expression (state, (*params)[i], top);
2318 }
2319
2320 write_exp_elt_opcode (state, OP_AGGREGATE);
2321 write_exp_elt_type (state, type);
2322 write_exp_elt_longcst (state, 2 * params->size ());
2323 write_exp_elt_opcode (state, OP_AGGREGATE);
2324 break;
2325 }
2326 }
2327 }
2328 convert_ast_to_expression (state, operation->left.op, top);
2329 convert_params_to_expression (state, operation->right.params, top);
2330 write_exp_elt_opcode (state, OP_FUNCALL);
2331 write_exp_elt_longcst (state, operation->right.params->size ());
2332 write_exp_elt_longcst (state, OP_FUNCALL);
2333 }
2334 break;
2335
2336 case OP_ARRAY:
2337 gdb_assert (operation->left.op == NULL);
2338 convert_params_to_expression (state, operation->right.params, top);
2339 write_exp_elt_opcode (state, OP_ARRAY);
2340 write_exp_elt_longcst (state, 0);
2341 write_exp_elt_longcst (state, operation->right.params->size () - 1);
2342 write_exp_elt_longcst (state, OP_ARRAY);
2343 break;
2344
2345 case OP_VAR_VALUE:
2346 {
2347 struct block_symbol sym;
2348 const char *varname;
2349
2350 if (operation->left.sval.ptr[0] == '$')
2351 {
2352 write_dollar_variable (state, operation->left.sval);
2353 break;
2354 }
2355
2356 varname = convert_name (state, operation);
2357 sym = rust_lookup_symbol (varname, expression_context_block,
2358 VAR_DOMAIN);
2359 if (sym.symbol != NULL && SYMBOL_CLASS (sym.symbol) != LOC_TYPEDEF)
2360 {
2361 write_exp_elt_opcode (state, OP_VAR_VALUE);
2362 write_exp_elt_block (state, sym.block);
2363 write_exp_elt_sym (state, sym.symbol);
2364 write_exp_elt_opcode (state, OP_VAR_VALUE);
2365 }
2366 else
2367 {
2368 struct type *type = NULL;
2369
2370 if (sym.symbol != NULL)
2371 {
2372 gdb_assert (SYMBOL_CLASS (sym.symbol) == LOC_TYPEDEF);
2373 type = SYMBOL_TYPE (sym.symbol);
2374 }
2375 if (type == NULL)
2376 type = rust_lookup_type (varname, expression_context_block);
2377 if (type == NULL)
2378 error (_("No symbol '%s' in current context"), varname);
2379
2380 if (!want_type
2381 && TYPE_CODE (type) == TYPE_CODE_STRUCT
2382 && TYPE_NFIELDS (type) == 0)
2383 {
2384 /* A unit-like struct. */
2385 write_exp_elt_opcode (state, OP_AGGREGATE);
2386 write_exp_elt_type (state, type);
2387 write_exp_elt_longcst (state, 0);
2388 write_exp_elt_opcode (state, OP_AGGREGATE);
2389 }
2390 else if (want_type || operation == top)
2391 {
2392 write_exp_elt_opcode (state, OP_TYPE);
2393 write_exp_elt_type (state, type);
2394 write_exp_elt_opcode (state, OP_TYPE);
2395 }
2396 else
2397 error (_("Found type '%s', which can't be "
2398 "evaluated in this context"),
2399 varname);
2400 }
2401 }
2402 break;
2403
2404 case OP_AGGREGATE:
2405 {
2406 int i;
2407 int length;
2408 rust_set_vector *fields = operation->right.field_inits;
2409 struct type *type;
2410 const char *name;
2411
2412 length = 0;
2413 for (const set_field &init : *fields)
2414 {
2415 if (init.name.ptr != NULL)
2416 {
2417 write_exp_elt_opcode (state, OP_NAME);
2418 write_exp_string (state, init.name);
2419 write_exp_elt_opcode (state, OP_NAME);
2420 ++length;
2421 }
2422
2423 convert_ast_to_expression (state, init.init, top);
2424 ++length;
2425
2426 if (init.name.ptr == NULL)
2427 {
2428 /* This is handled differently from Ada in our
2429 evaluator. */
2430 write_exp_elt_opcode (state, OP_OTHERS);
2431 }
2432 }
2433
2434 name = convert_name (state, operation->left.op);
2435 type = rust_lookup_type (name, expression_context_block);
2436 if (type == NULL)
2437 error (_("Could not find type '%s'"), operation->left.sval.ptr);
2438
2439 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
2440 || rust_tuple_type_p (type)
2441 || rust_tuple_struct_type_p (type))
2442 error (_("Struct expression applied to non-struct type"));
2443
2444 write_exp_elt_opcode (state, OP_AGGREGATE);
2445 write_exp_elt_type (state, type);
2446 write_exp_elt_longcst (state, length);
2447 write_exp_elt_opcode (state, OP_AGGREGATE);
2448 }
2449 break;
2450
2451 case OP_STRING:
2452 {
2453 write_exp_elt_opcode (state, OP_STRING);
2454 write_exp_string (state, operation->left.sval);
2455 write_exp_elt_opcode (state, OP_STRING);
2456 }
2457 break;
2458
2459 case OP_RANGE:
2460 {
2461 enum range_type kind = BOTH_BOUND_DEFAULT;
2462
2463 if (operation->left.op != NULL)
2464 {
2465 convert_ast_to_expression (state, operation->left.op, top);
2466 kind = HIGH_BOUND_DEFAULT;
2467 }
2468 if (operation->right.op != NULL)
2469 {
2470 convert_ast_to_expression (state, operation->right.op, top);
2471 if (kind == BOTH_BOUND_DEFAULT)
2472 kind = LOW_BOUND_DEFAULT;
2473 else
2474 {
2475 gdb_assert (kind == HIGH_BOUND_DEFAULT);
2476 kind = NONE_BOUND_DEFAULT;
2477 }
2478 }
2479 write_exp_elt_opcode (state, OP_RANGE);
2480 write_exp_elt_longcst (state, kind);
2481 write_exp_elt_opcode (state, OP_RANGE);
2482 }
2483 break;
2484
2485 default:
2486 gdb_assert_not_reached ("unhandled opcode in convert_ast_to_expression");
2487 }
2488 }
2489
2490 \f
2491
2492 /* The parser as exposed to gdb. */
2493
2494 int
2495 rust_parse (struct parser_state *state)
2496 {
2497 int result;
2498
2499 /* This sets various globals and also clears them on
2500 destruction. */
2501 rust_parser parser (state);
2502
2503 result = rustyyparse ();
2504
2505 if (!result || (parse_completion && parser.rust_ast != NULL))
2506 convert_ast_to_expression (state, parser.rust_ast, parser.rust_ast);
2507
2508 return result;
2509 }
2510
2511 /* The parser error handler. */
2512
2513 void
2514 rustyyerror (const char *msg)
2515 {
2516 const char *where = prev_lexptr ? prev_lexptr : lexptr;
2517 error (_("%s in expression, near `%s'."), (msg ? msg : "Error"), where);
2518 }
2519
2520 \f
2521
2522 #if GDB_SELF_TEST
2523
2524 /* Initialize the lexer for testing. */
2525
2526 static void
2527 rust_lex_test_init (const char *input)
2528 {
2529 prev_lexptr = NULL;
2530 lexptr = input;
2531 paren_depth = 0;
2532 }
2533
2534 /* A test helper that lexes a string, expecting a single token. It
2535 returns the lexer data for this token. */
2536
2537 static RUSTSTYPE
2538 rust_lex_test_one (const char *input, int expected)
2539 {
2540 int token;
2541 RUSTSTYPE result;
2542
2543 rust_lex_test_init (input);
2544
2545 token = rustyylex ();
2546 SELF_CHECK (token == expected);
2547 result = rustyylval;
2548
2549 if (token)
2550 {
2551 token = rustyylex ();
2552 SELF_CHECK (token == 0);
2553 }
2554
2555 return result;
2556 }
2557
2558 /* Test that INPUT lexes as the integer VALUE. */
2559
2560 static void
2561 rust_lex_int_test (const char *input, int value, int kind)
2562 {
2563 RUSTSTYPE result = rust_lex_test_one (input, kind);
2564 SELF_CHECK (result.typed_val_int.val == value);
2565 }
2566
2567 /* Test that INPUT throws an exception with text ERR. */
2568
2569 static void
2570 rust_lex_exception_test (const char *input, const char *err)
2571 {
2572 TRY
2573 {
2574 /* The "kind" doesn't matter. */
2575 rust_lex_test_one (input, DECIMAL_INTEGER);
2576 SELF_CHECK (0);
2577 }
2578 CATCH (except, RETURN_MASK_ERROR)
2579 {
2580 SELF_CHECK (strcmp (except.message, err) == 0);
2581 }
2582 END_CATCH
2583 }
2584
2585 /* Test that INPUT lexes as the identifier, string, or byte-string
2586 VALUE. KIND holds the expected token kind. */
2587
2588 static void
2589 rust_lex_stringish_test (const char *input, const char *value, int kind)
2590 {
2591 RUSTSTYPE result = rust_lex_test_one (input, kind);
2592 SELF_CHECK (result.sval.length == strlen (value));
2593 SELF_CHECK (strncmp (result.sval.ptr, value, result.sval.length) == 0);
2594 }
2595
2596 /* Helper to test that a string parses as a given token sequence. */
2597
2598 static void
2599 rust_lex_test_sequence (const char *input, int len, const int expected[])
2600 {
2601 int i;
2602
2603 lexptr = input;
2604 paren_depth = 0;
2605
2606 for (i = 0; i < len; ++i)
2607 {
2608 int token = rustyylex ();
2609
2610 SELF_CHECK (token == expected[i]);
2611 }
2612 }
2613
2614 /* Tests for an integer-parsing corner case. */
2615
2616 static void
2617 rust_lex_test_trailing_dot (void)
2618 {
2619 const int expected1[] = { DECIMAL_INTEGER, '.', IDENT, '(', ')', 0 };
2620 const int expected2[] = { INTEGER, '.', IDENT, '(', ')', 0 };
2621 const int expected3[] = { FLOAT, EQEQ, '(', ')', 0 };
2622 const int expected4[] = { DECIMAL_INTEGER, DOTDOT, DECIMAL_INTEGER, 0 };
2623
2624 rust_lex_test_sequence ("23.g()", ARRAY_SIZE (expected1), expected1);
2625 rust_lex_test_sequence ("23_0.g()", ARRAY_SIZE (expected2), expected2);
2626 rust_lex_test_sequence ("23.==()", ARRAY_SIZE (expected3), expected3);
2627 rust_lex_test_sequence ("23..25", ARRAY_SIZE (expected4), expected4);
2628 }
2629
2630 /* Tests of completion. */
2631
2632 static void
2633 rust_lex_test_completion (void)
2634 {
2635 const int expected[] = { IDENT, '.', COMPLETE, 0 };
2636
2637 parse_completion = 1;
2638
2639 rust_lex_test_sequence ("something.wha", ARRAY_SIZE (expected), expected);
2640 rust_lex_test_sequence ("something.", ARRAY_SIZE (expected), expected);
2641
2642 parse_completion = 0;
2643 }
2644
2645 /* Test pushback. */
2646
2647 static void
2648 rust_lex_test_push_back (void)
2649 {
2650 int token;
2651
2652 rust_lex_test_init (">>=");
2653
2654 token = rustyylex ();
2655 SELF_CHECK (token == COMPOUND_ASSIGN);
2656 SELF_CHECK (rustyylval.opcode == BINOP_RSH);
2657
2658 rust_push_back ('=');
2659
2660 token = rustyylex ();
2661 SELF_CHECK (token == '=');
2662
2663 token = rustyylex ();
2664 SELF_CHECK (token == 0);
2665 }
2666
2667 /* Unit test the lexer. */
2668
2669 static void
2670 rust_lex_tests (void)
2671 {
2672 int i;
2673
2674 auto_obstack test_obstack;
2675 scoped_restore obstack_holder = make_scoped_restore (&work_obstack,
2676 &test_obstack);
2677
2678 unit_testing = 1;
2679
2680 rust_lex_test_one ("", 0);
2681 rust_lex_test_one (" \t \n \r ", 0);
2682 rust_lex_test_one ("thread 23", 0);
2683 rust_lex_test_one ("task 23", 0);
2684 rust_lex_test_one ("th 104", 0);
2685 rust_lex_test_one ("ta 97", 0);
2686
2687 rust_lex_int_test ("'z'", 'z', INTEGER);
2688 rust_lex_int_test ("'\\xff'", 0xff, INTEGER);
2689 rust_lex_int_test ("'\\u{1016f}'", 0x1016f, INTEGER);
2690 rust_lex_int_test ("b'z'", 'z', INTEGER);
2691 rust_lex_int_test ("b'\\xfe'", 0xfe, INTEGER);
2692 rust_lex_int_test ("b'\\xFE'", 0xfe, INTEGER);
2693 rust_lex_int_test ("b'\\xfE'", 0xfe, INTEGER);
2694
2695 /* Test all escapes in both modes. */
2696 rust_lex_int_test ("'\\n'", '\n', INTEGER);
2697 rust_lex_int_test ("'\\r'", '\r', INTEGER);
2698 rust_lex_int_test ("'\\t'", '\t', INTEGER);
2699 rust_lex_int_test ("'\\\\'", '\\', INTEGER);
2700 rust_lex_int_test ("'\\0'", '\0', INTEGER);
2701 rust_lex_int_test ("'\\''", '\'', INTEGER);
2702 rust_lex_int_test ("'\\\"'", '"', INTEGER);
2703
2704 rust_lex_int_test ("b'\\n'", '\n', INTEGER);
2705 rust_lex_int_test ("b'\\r'", '\r', INTEGER);
2706 rust_lex_int_test ("b'\\t'", '\t', INTEGER);
2707 rust_lex_int_test ("b'\\\\'", '\\', INTEGER);
2708 rust_lex_int_test ("b'\\0'", '\0', INTEGER);
2709 rust_lex_int_test ("b'\\''", '\'', INTEGER);
2710 rust_lex_int_test ("b'\\\"'", '"', INTEGER);
2711
2712 rust_lex_exception_test ("'z", "Unterminated character literal");
2713 rust_lex_exception_test ("b'\\x0'", "Not enough hex digits seen");
2714 rust_lex_exception_test ("b'\\u{0}'", "Unicode escape in byte literal");
2715 rust_lex_exception_test ("'\\x0'", "Not enough hex digits seen");
2716 rust_lex_exception_test ("'\\u0'", "Missing '{' in Unicode escape");
2717 rust_lex_exception_test ("'\\u{0", "Missing '}' in Unicode escape");
2718 rust_lex_exception_test ("'\\u{0000007}", "Overlong hex escape");
2719 rust_lex_exception_test ("'\\u{}", "Not enough hex digits seen");
2720 rust_lex_exception_test ("'\\Q'", "Invalid escape \\Q in literal");
2721 rust_lex_exception_test ("b'\\Q'", "Invalid escape \\Q in literal");
2722
2723 rust_lex_int_test ("23", 23, DECIMAL_INTEGER);
2724 rust_lex_int_test ("2_344__29", 234429, INTEGER);
2725 rust_lex_int_test ("0x1f", 0x1f, INTEGER);
2726 rust_lex_int_test ("23usize", 23, INTEGER);
2727 rust_lex_int_test ("23i32", 23, INTEGER);
2728 rust_lex_int_test ("0x1_f", 0x1f, INTEGER);
2729 rust_lex_int_test ("0b1_101011__", 0x6b, INTEGER);
2730 rust_lex_int_test ("0o001177i64", 639, INTEGER);
2731
2732 rust_lex_test_trailing_dot ();
2733
2734 rust_lex_test_one ("23.", FLOAT);
2735 rust_lex_test_one ("23.99f32", FLOAT);
2736 rust_lex_test_one ("23e7", FLOAT);
2737 rust_lex_test_one ("23E-7", FLOAT);
2738 rust_lex_test_one ("23e+7", FLOAT);
2739 rust_lex_test_one ("23.99e+7f64", FLOAT);
2740 rust_lex_test_one ("23.82f32", FLOAT);
2741
2742 rust_lex_stringish_test ("hibob", "hibob", IDENT);
2743 rust_lex_stringish_test ("hibob__93", "hibob__93", IDENT);
2744 rust_lex_stringish_test ("thread", "thread", IDENT);
2745
2746 rust_lex_stringish_test ("\"string\"", "string", STRING);
2747 rust_lex_stringish_test ("\"str\\ting\"", "str\ting", STRING);
2748 rust_lex_stringish_test ("\"str\\\"ing\"", "str\"ing", STRING);
2749 rust_lex_stringish_test ("r\"str\\ing\"", "str\\ing", STRING);
2750 rust_lex_stringish_test ("r#\"str\\ting\"#", "str\\ting", STRING);
2751 rust_lex_stringish_test ("r###\"str\\\"ing\"###", "str\\\"ing", STRING);
2752
2753 rust_lex_stringish_test ("b\"string\"", "string", BYTESTRING);
2754 rust_lex_stringish_test ("b\"\x73tring\"", "string", BYTESTRING);
2755 rust_lex_stringish_test ("b\"str\\\"ing\"", "str\"ing", BYTESTRING);
2756 rust_lex_stringish_test ("br####\"\\x73tring\"####", "\\x73tring",
2757 BYTESTRING);
2758
2759 for (i = 0; i < ARRAY_SIZE (identifier_tokens); ++i)
2760 rust_lex_test_one (identifier_tokens[i].name, identifier_tokens[i].value);
2761
2762 for (i = 0; i < ARRAY_SIZE (operator_tokens); ++i)
2763 rust_lex_test_one (operator_tokens[i].name, operator_tokens[i].value);
2764
2765 rust_lex_test_completion ();
2766 rust_lex_test_push_back ();
2767
2768 unit_testing = 0;
2769 }
2770
2771 #endif /* GDB_SELF_TEST */
2772
2773 void
2774 _initialize_rust_exp (void)
2775 {
2776 int code = regcomp (&number_regex, number_regex_text, REG_EXTENDED);
2777 /* If the regular expression was incorrect, it was a programming
2778 error. */
2779 gdb_assert (code == 0);
2780
2781 #if GDB_SELF_TEST
2782 selftests::register_test (rust_lex_tests);
2783 #endif
2784 }
This page took 0.116245 seconds and 5 git commands to generate.