Fix s390 GNU/Linux build after enum __ptrace_request changes
[deliverable/binutils-gdb.git] / gdb / s390-linux-nat.c
1 /* S390 native-dependent code for GDB, the GNU debugger.
2 Copyright (C) 2001-2015 Free Software Foundation, Inc.
3
4 Contributed by D.J. Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
5 for IBM Deutschland Entwicklung GmbH, IBM Corporation.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "regcache.h"
24 #include "inferior.h"
25 #include "target.h"
26 #include "linux-nat.h"
27 #include "auxv.h"
28 #include "gregset.h"
29 #include "regset.h"
30 #include "nat/linux-ptrace.h"
31
32 #include "s390-linux-tdep.h"
33 #include "elf/common.h"
34
35 #include <asm/ptrace.h>
36 #include "nat/gdb_ptrace.h"
37 #include <asm/types.h>
38 #include <sys/procfs.h>
39 #include <sys/ucontext.h>
40 #include <elf.h>
41
42 /* Per-thread arch-specific data. */
43
44 struct arch_lwp_info
45 {
46 /* Non-zero if the thread's PER info must be re-written. */
47 int per_info_changed;
48 };
49
50 static int have_regset_last_break = 0;
51 static int have_regset_system_call = 0;
52 static int have_regset_tdb = 0;
53 static int have_regset_vxrs = 0;
54
55 /* Register map for 32-bit executables running under a 64-bit
56 kernel. */
57
58 #ifdef __s390x__
59 static const struct regcache_map_entry s390_64_regmap_gregset[] =
60 {
61 /* Skip PSWM and PSWA, since they must be handled specially. */
62 { 2, REGCACHE_MAP_SKIP, 8 },
63 { 1, S390_R0_UPPER_REGNUM, 4 }, { 1, S390_R0_REGNUM, 4 },
64 { 1, S390_R1_UPPER_REGNUM, 4 }, { 1, S390_R1_REGNUM, 4 },
65 { 1, S390_R2_UPPER_REGNUM, 4 }, { 1, S390_R2_REGNUM, 4 },
66 { 1, S390_R3_UPPER_REGNUM, 4 }, { 1, S390_R3_REGNUM, 4 },
67 { 1, S390_R4_UPPER_REGNUM, 4 }, { 1, S390_R4_REGNUM, 4 },
68 { 1, S390_R5_UPPER_REGNUM, 4 }, { 1, S390_R5_REGNUM, 4 },
69 { 1, S390_R6_UPPER_REGNUM, 4 }, { 1, S390_R6_REGNUM, 4 },
70 { 1, S390_R7_UPPER_REGNUM, 4 }, { 1, S390_R7_REGNUM, 4 },
71 { 1, S390_R8_UPPER_REGNUM, 4 }, { 1, S390_R8_REGNUM, 4 },
72 { 1, S390_R9_UPPER_REGNUM, 4 }, { 1, S390_R9_REGNUM, 4 },
73 { 1, S390_R10_UPPER_REGNUM, 4 }, { 1, S390_R10_REGNUM, 4 },
74 { 1, S390_R11_UPPER_REGNUM, 4 }, { 1, S390_R11_REGNUM, 4 },
75 { 1, S390_R12_UPPER_REGNUM, 4 }, { 1, S390_R12_REGNUM, 4 },
76 { 1, S390_R13_UPPER_REGNUM, 4 }, { 1, S390_R13_REGNUM, 4 },
77 { 1, S390_R14_UPPER_REGNUM, 4 }, { 1, S390_R14_REGNUM, 4 },
78 { 1, S390_R15_UPPER_REGNUM, 4 }, { 1, S390_R15_REGNUM, 4 },
79 { 16, S390_A0_REGNUM, 4 },
80 { 1, REGCACHE_MAP_SKIP, 4 }, { 1, S390_ORIG_R2_REGNUM, 4 },
81 { 0 }
82 };
83
84 static const struct regset s390_64_gregset =
85 {
86 s390_64_regmap_gregset,
87 regcache_supply_regset,
88 regcache_collect_regset
89 };
90
91 #define S390_PSWM_OFFSET 0
92 #define S390_PSWA_OFFSET 8
93 #endif
94
95 /* Fill GDB's register array with the general-purpose register values
96 in *REGP.
97
98 When debugging a 32-bit executable running under a 64-bit kernel,
99 we have to fix up the 64-bit registers we get from the kernel to
100 make them look like 32-bit registers. */
101
102 void
103 supply_gregset (struct regcache *regcache, const gregset_t *regp)
104 {
105 #ifdef __s390x__
106 struct gdbarch *gdbarch = get_regcache_arch (regcache);
107 if (gdbarch_ptr_bit (gdbarch) == 32)
108 {
109 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
110 ULONGEST pswm, pswa;
111 gdb_byte buf[4];
112
113 regcache_supply_regset (&s390_64_gregset, regcache, -1,
114 regp, sizeof (gregset_t));
115 pswm = extract_unsigned_integer ((const gdb_byte *) regp
116 + S390_PSWM_OFFSET, 8, byte_order);
117 pswa = extract_unsigned_integer ((const gdb_byte *) regp
118 + S390_PSWA_OFFSET, 8, byte_order);
119 store_unsigned_integer (buf, 4, byte_order, (pswm >> 32) | 0x80000);
120 regcache_raw_supply (regcache, S390_PSWM_REGNUM, buf);
121 store_unsigned_integer (buf, 4, byte_order,
122 (pswa & 0x7fffffff) | (pswm & 0x80000000));
123 regcache_raw_supply (regcache, S390_PSWA_REGNUM, buf);
124 return;
125 }
126 #endif
127
128 regcache_supply_regset (&s390_gregset, regcache, -1, regp,
129 sizeof (gregset_t));
130 }
131
132 /* Fill register REGNO (if it is a general-purpose register) in
133 *REGP with the value in GDB's register array. If REGNO is -1,
134 do this for all registers. */
135
136 void
137 fill_gregset (const struct regcache *regcache, gregset_t *regp, int regno)
138 {
139 #ifdef __s390x__
140 struct gdbarch *gdbarch = get_regcache_arch (regcache);
141 if (gdbarch_ptr_bit (gdbarch) == 32)
142 {
143 regcache_collect_regset (&s390_64_gregset, regcache, regno,
144 regp, sizeof (gregset_t));
145
146 if (regno == -1
147 || regno == S390_PSWM_REGNUM || regno == S390_PSWA_REGNUM)
148 {
149 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
150 ULONGEST pswa, pswm;
151 gdb_byte buf[4];
152 gdb_byte *pswm_p = (gdb_byte *) regp + S390_PSWM_OFFSET;
153 gdb_byte *pswa_p = (gdb_byte *) regp + S390_PSWA_OFFSET;
154
155 pswm = extract_unsigned_integer (pswm_p, 8, byte_order);
156
157 if (regno == -1 || regno == S390_PSWM_REGNUM)
158 {
159 pswm &= 0x80000000;
160 regcache_raw_collect (regcache, S390_PSWM_REGNUM, buf);
161 pswm |= (extract_unsigned_integer (buf, 4, byte_order)
162 & 0xfff7ffff) << 32;
163 }
164
165 if (regno == -1 || regno == S390_PSWA_REGNUM)
166 {
167 regcache_raw_collect (regcache, S390_PSWA_REGNUM, buf);
168 pswa = extract_unsigned_integer (buf, 4, byte_order);
169 pswm ^= (pswm ^ pswa) & 0x80000000;
170 pswa &= 0x7fffffff;
171 store_unsigned_integer (pswa_p, 8, byte_order, pswa);
172 }
173
174 store_unsigned_integer (pswm_p, 8, byte_order, pswm);
175 }
176 return;
177 }
178 #endif
179
180 regcache_collect_regset (&s390_gregset, regcache, regno, regp,
181 sizeof (gregset_t));
182 }
183
184 /* Fill GDB's register array with the floating-point register values
185 in *REGP. */
186 void
187 supply_fpregset (struct regcache *regcache, const fpregset_t *regp)
188 {
189 regcache_supply_regset (&s390_fpregset, regcache, -1, regp,
190 sizeof (fpregset_t));
191 }
192
193 /* Fill register REGNO (if it is a general-purpose register) in
194 *REGP with the value in GDB's register array. If REGNO is -1,
195 do this for all registers. */
196 void
197 fill_fpregset (const struct regcache *regcache, fpregset_t *regp, int regno)
198 {
199 regcache_collect_regset (&s390_fpregset, regcache, regno, regp,
200 sizeof (fpregset_t));
201 }
202
203 /* Find the TID for the current inferior thread to use with ptrace. */
204 static int
205 s390_inferior_tid (void)
206 {
207 /* GNU/Linux LWP ID's are process ID's. */
208 int tid = ptid_get_lwp (inferior_ptid);
209 if (tid == 0)
210 tid = ptid_get_pid (inferior_ptid); /* Not a threaded program. */
211
212 return tid;
213 }
214
215 /* Fetch all general-purpose registers from process/thread TID and
216 store their values in GDB's register cache. */
217 static void
218 fetch_regs (struct regcache *regcache, int tid)
219 {
220 gregset_t regs;
221 ptrace_area parea;
222
223 parea.len = sizeof (regs);
224 parea.process_addr = (addr_t) &regs;
225 parea.kernel_addr = offsetof (struct user_regs_struct, psw);
226 if (ptrace (PTRACE_PEEKUSR_AREA, tid, (long) &parea, 0) < 0)
227 perror_with_name (_("Couldn't get registers"));
228
229 supply_gregset (regcache, (const gregset_t *) &regs);
230 }
231
232 /* Store all valid general-purpose registers in GDB's register cache
233 into the process/thread specified by TID. */
234 static void
235 store_regs (const struct regcache *regcache, int tid, int regnum)
236 {
237 gregset_t regs;
238 ptrace_area parea;
239
240 parea.len = sizeof (regs);
241 parea.process_addr = (addr_t) &regs;
242 parea.kernel_addr = offsetof (struct user_regs_struct, psw);
243 if (ptrace (PTRACE_PEEKUSR_AREA, tid, (long) &parea, 0) < 0)
244 perror_with_name (_("Couldn't get registers"));
245
246 fill_gregset (regcache, &regs, regnum);
247
248 if (ptrace (PTRACE_POKEUSR_AREA, tid, (long) &parea, 0) < 0)
249 perror_with_name (_("Couldn't write registers"));
250 }
251
252 /* Fetch all floating-point registers from process/thread TID and store
253 their values in GDB's register cache. */
254 static void
255 fetch_fpregs (struct regcache *regcache, int tid)
256 {
257 fpregset_t fpregs;
258 ptrace_area parea;
259
260 parea.len = sizeof (fpregs);
261 parea.process_addr = (addr_t) &fpregs;
262 parea.kernel_addr = offsetof (struct user_regs_struct, fp_regs);
263 if (ptrace (PTRACE_PEEKUSR_AREA, tid, (long) &parea, 0) < 0)
264 perror_with_name (_("Couldn't get floating point status"));
265
266 supply_fpregset (regcache, (const fpregset_t *) &fpregs);
267 }
268
269 /* Store all valid floating-point registers in GDB's register cache
270 into the process/thread specified by TID. */
271 static void
272 store_fpregs (const struct regcache *regcache, int tid, int regnum)
273 {
274 fpregset_t fpregs;
275 ptrace_area parea;
276
277 parea.len = sizeof (fpregs);
278 parea.process_addr = (addr_t) &fpregs;
279 parea.kernel_addr = offsetof (struct user_regs_struct, fp_regs);
280 if (ptrace (PTRACE_PEEKUSR_AREA, tid, (long) &parea, 0) < 0)
281 perror_with_name (_("Couldn't get floating point status"));
282
283 fill_fpregset (regcache, &fpregs, regnum);
284
285 if (ptrace (PTRACE_POKEUSR_AREA, tid, (long) &parea, 0) < 0)
286 perror_with_name (_("Couldn't write floating point status"));
287 }
288
289 /* Fetch all registers in the kernel's register set whose number is
290 REGSET_ID, whose size is REGSIZE, and whose layout is described by
291 REGSET, from process/thread TID and store their values in GDB's
292 register cache. */
293 static void
294 fetch_regset (struct regcache *regcache, int tid,
295 int regset_id, int regsize, const struct regset *regset)
296 {
297 gdb_byte *buf = alloca (regsize);
298 struct iovec iov;
299
300 iov.iov_base = buf;
301 iov.iov_len = regsize;
302
303 if (ptrace (PTRACE_GETREGSET, tid, (long) regset_id, (long) &iov) < 0)
304 {
305 if (errno == ENODATA)
306 regcache_supply_regset (regset, regcache, -1, NULL, regsize);
307 else
308 perror_with_name (_("Couldn't get register set"));
309 }
310 else
311 regcache_supply_regset (regset, regcache, -1, buf, regsize);
312 }
313
314 /* Store all registers in the kernel's register set whose number is
315 REGSET_ID, whose size is REGSIZE, and whose layout is described by
316 REGSET, from GDB's register cache back to process/thread TID. */
317 static void
318 store_regset (struct regcache *regcache, int tid,
319 int regset_id, int regsize, const struct regset *regset)
320 {
321 gdb_byte *buf = alloca (regsize);
322 struct iovec iov;
323
324 iov.iov_base = buf;
325 iov.iov_len = regsize;
326
327 if (ptrace (PTRACE_GETREGSET, tid, (long) regset_id, (long) &iov) < 0)
328 perror_with_name (_("Couldn't get register set"));
329
330 regcache_collect_regset (regset, regcache, -1, buf, regsize);
331
332 if (ptrace (PTRACE_SETREGSET, tid, (long) regset_id, (long) &iov) < 0)
333 perror_with_name (_("Couldn't set register set"));
334 }
335
336 /* Check whether the kernel provides a register set with number REGSET
337 of size REGSIZE for process/thread TID. */
338 static int
339 check_regset (int tid, int regset, int regsize)
340 {
341 gdb_byte *buf = alloca (regsize);
342 struct iovec iov;
343
344 iov.iov_base = buf;
345 iov.iov_len = regsize;
346
347 if (ptrace (PTRACE_GETREGSET, tid, (long) regset, (long) &iov) >= 0
348 || errno == ENODATA)
349 return 1;
350 return 0;
351 }
352
353 /* Fetch register REGNUM from the child process. If REGNUM is -1, do
354 this for all registers. */
355 static void
356 s390_linux_fetch_inferior_registers (struct target_ops *ops,
357 struct regcache *regcache, int regnum)
358 {
359 int tid = s390_inferior_tid ();
360
361 if (regnum == -1 || S390_IS_GREGSET_REGNUM (regnum))
362 fetch_regs (regcache, tid);
363
364 if (regnum == -1 || S390_IS_FPREGSET_REGNUM (regnum))
365 fetch_fpregs (regcache, tid);
366
367 if (have_regset_last_break)
368 if (regnum == -1 || regnum == S390_LAST_BREAK_REGNUM)
369 fetch_regset (regcache, tid, NT_S390_LAST_BREAK, 8,
370 (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 32
371 ? &s390_last_break_regset : &s390x_last_break_regset));
372
373 if (have_regset_system_call)
374 if (regnum == -1 || regnum == S390_SYSTEM_CALL_REGNUM)
375 fetch_regset (regcache, tid, NT_S390_SYSTEM_CALL, 4,
376 &s390_system_call_regset);
377
378 if (have_regset_tdb)
379 if (regnum == -1 || S390_IS_TDBREGSET_REGNUM (regnum))
380 fetch_regset (regcache, tid, NT_S390_TDB, s390_sizeof_tdbregset,
381 &s390_tdb_regset);
382
383 if (have_regset_vxrs)
384 {
385 if (regnum == -1 || (regnum >= S390_V0_LOWER_REGNUM
386 && regnum <= S390_V15_LOWER_REGNUM))
387 fetch_regset (regcache, tid, NT_S390_VXRS_LOW, 16 * 8,
388 &s390_vxrs_low_regset);
389 if (regnum == -1 || (regnum >= S390_V16_REGNUM
390 && regnum <= S390_V31_REGNUM))
391 fetch_regset (regcache, tid, NT_S390_VXRS_HIGH, 16 * 16,
392 &s390_vxrs_high_regset);
393 }
394 }
395
396 /* Store register REGNUM back into the child process. If REGNUM is
397 -1, do this for all registers. */
398 static void
399 s390_linux_store_inferior_registers (struct target_ops *ops,
400 struct regcache *regcache, int regnum)
401 {
402 int tid = s390_inferior_tid ();
403
404 if (regnum == -1 || S390_IS_GREGSET_REGNUM (regnum))
405 store_regs (regcache, tid, regnum);
406
407 if (regnum == -1 || S390_IS_FPREGSET_REGNUM (regnum))
408 store_fpregs (regcache, tid, regnum);
409
410 /* S390_LAST_BREAK_REGNUM is read-only. */
411
412 if (have_regset_system_call)
413 if (regnum == -1 || regnum == S390_SYSTEM_CALL_REGNUM)
414 store_regset (regcache, tid, NT_S390_SYSTEM_CALL, 4,
415 &s390_system_call_regset);
416
417 if (have_regset_vxrs)
418 {
419 if (regnum == -1 || (regnum >= S390_V0_LOWER_REGNUM
420 && regnum <= S390_V15_LOWER_REGNUM))
421 store_regset (regcache, tid, NT_S390_VXRS_LOW, 16 * 8,
422 &s390_vxrs_low_regset);
423 if (regnum == -1 || (regnum >= S390_V16_REGNUM
424 && regnum <= S390_V31_REGNUM))
425 store_regset (regcache, tid, NT_S390_VXRS_HIGH, 16 * 16,
426 &s390_vxrs_high_regset);
427 }
428 }
429
430
431 /* Hardware-assisted watchpoint handling. */
432
433 /* We maintain a list of all currently active watchpoints in order
434 to properly handle watchpoint removal.
435
436 The only thing we actually need is the total address space area
437 spanned by the watchpoints. */
438
439 struct watch_area
440 {
441 struct watch_area *next;
442 CORE_ADDR lo_addr;
443 CORE_ADDR hi_addr;
444 };
445
446 static struct watch_area *watch_base = NULL;
447
448 static int
449 s390_stopped_by_watchpoint (struct target_ops *ops)
450 {
451 per_lowcore_bits per_lowcore;
452 ptrace_area parea;
453 int result;
454
455 /* Speed up common case. */
456 if (!watch_base)
457 return 0;
458
459 parea.len = sizeof (per_lowcore);
460 parea.process_addr = (addr_t) & per_lowcore;
461 parea.kernel_addr = offsetof (struct user_regs_struct, per_info.lowcore);
462 if (ptrace (PTRACE_PEEKUSR_AREA, s390_inferior_tid (), &parea, 0) < 0)
463 perror_with_name (_("Couldn't retrieve watchpoint status"));
464
465 result = (per_lowcore.perc_storage_alteration == 1
466 && per_lowcore.perc_store_real_address == 0);
467
468 if (result)
469 {
470 /* Do not report this watchpoint again. */
471 memset (&per_lowcore, 0, sizeof (per_lowcore));
472 if (ptrace (PTRACE_POKEUSR_AREA, s390_inferior_tid (), &parea, 0) < 0)
473 perror_with_name (_("Couldn't clear watchpoint status"));
474 }
475
476 return result;
477 }
478
479 /* Each time before resuming a thread, update its PER info. */
480
481 static void
482 s390_prepare_to_resume (struct lwp_info *lp)
483 {
484 int tid;
485
486 per_struct per_info;
487 ptrace_area parea;
488
489 CORE_ADDR watch_lo_addr = (CORE_ADDR)-1, watch_hi_addr = 0;
490 struct watch_area *area;
491
492 if (lp->arch_private == NULL
493 || !lp->arch_private->per_info_changed)
494 return;
495
496 lp->arch_private->per_info_changed = 0;
497
498 tid = ptid_get_lwp (lp->ptid);
499 if (tid == 0)
500 tid = ptid_get_pid (lp->ptid);
501
502 for (area = watch_base; area; area = area->next)
503 {
504 watch_lo_addr = min (watch_lo_addr, area->lo_addr);
505 watch_hi_addr = max (watch_hi_addr, area->hi_addr);
506 }
507
508 parea.len = sizeof (per_info);
509 parea.process_addr = (addr_t) & per_info;
510 parea.kernel_addr = offsetof (struct user_regs_struct, per_info);
511 if (ptrace (PTRACE_PEEKUSR_AREA, tid, &parea, 0) < 0)
512 perror_with_name (_("Couldn't retrieve watchpoint status"));
513
514 if (watch_base)
515 {
516 per_info.control_regs.bits.em_storage_alteration = 1;
517 per_info.control_regs.bits.storage_alt_space_ctl = 1;
518 }
519 else
520 {
521 per_info.control_regs.bits.em_storage_alteration = 0;
522 per_info.control_regs.bits.storage_alt_space_ctl = 0;
523 }
524 per_info.starting_addr = watch_lo_addr;
525 per_info.ending_addr = watch_hi_addr;
526
527 if (ptrace (PTRACE_POKEUSR_AREA, tid, &parea, 0) < 0)
528 perror_with_name (_("Couldn't modify watchpoint status"));
529 }
530
531 /* Make sure that LP is stopped and mark its PER info as changed, so
532 the next resume will update it. */
533
534 static void
535 s390_refresh_per_info (struct lwp_info *lp)
536 {
537 if (lp->arch_private == NULL)
538 lp->arch_private = XCNEW (struct arch_lwp_info);
539
540 lp->arch_private->per_info_changed = 1;
541
542 if (!lp->stopped)
543 linux_stop_lwp (lp);
544 }
545
546 /* When attaching to a new thread, mark its PER info as changed. */
547
548 static void
549 s390_new_thread (struct lwp_info *lp)
550 {
551 lp->arch_private = XCNEW (struct arch_lwp_info);
552 lp->arch_private->per_info_changed = 1;
553 }
554
555 static int
556 s390_insert_watchpoint (struct target_ops *self,
557 CORE_ADDR addr, int len, int type,
558 struct expression *cond)
559 {
560 struct lwp_info *lp;
561 struct watch_area *area = xmalloc (sizeof (struct watch_area));
562
563 if (!area)
564 return -1;
565
566 area->lo_addr = addr;
567 area->hi_addr = addr + len - 1;
568
569 area->next = watch_base;
570 watch_base = area;
571
572 ALL_LWPS (lp)
573 s390_refresh_per_info (lp);
574 return 0;
575 }
576
577 static int
578 s390_remove_watchpoint (struct target_ops *self,
579 CORE_ADDR addr, int len, int type,
580 struct expression *cond)
581 {
582 struct lwp_info *lp;
583 struct watch_area *area, **parea;
584
585 for (parea = &watch_base; *parea; parea = &(*parea)->next)
586 if ((*parea)->lo_addr == addr
587 && (*parea)->hi_addr == addr + len - 1)
588 break;
589
590 if (!*parea)
591 {
592 fprintf_unfiltered (gdb_stderr,
593 "Attempt to remove nonexistent watchpoint.\n");
594 return -1;
595 }
596
597 area = *parea;
598 *parea = area->next;
599 xfree (area);
600
601 ALL_LWPS (lp)
602 s390_refresh_per_info (lp);
603 return 0;
604 }
605
606 static int
607 s390_can_use_hw_breakpoint (struct target_ops *self,
608 int type, int cnt, int othertype)
609 {
610 return type == bp_hardware_watchpoint;
611 }
612
613 static int
614 s390_region_ok_for_hw_watchpoint (struct target_ops *self,
615 CORE_ADDR addr, int cnt)
616 {
617 return 1;
618 }
619
620 static int
621 s390_target_wordsize (void)
622 {
623 int wordsize = 4;
624
625 /* Check for 64-bit inferior process. This is the case when the host is
626 64-bit, and in addition bit 32 of the PSW mask is set. */
627 #ifdef __s390x__
628 long pswm;
629
630 errno = 0;
631 pswm = (long) ptrace (PTRACE_PEEKUSER, s390_inferior_tid (), PT_PSWMASK, 0);
632 if (errno == 0 && (pswm & 0x100000000ul) != 0)
633 wordsize = 8;
634 #endif
635
636 return wordsize;
637 }
638
639 static int
640 s390_auxv_parse (struct target_ops *ops, gdb_byte **readptr,
641 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
642 {
643 int sizeof_auxv_field = s390_target_wordsize ();
644 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
645 gdb_byte *ptr = *readptr;
646
647 if (endptr == ptr)
648 return 0;
649
650 if (endptr - ptr < sizeof_auxv_field * 2)
651 return -1;
652
653 *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
654 ptr += sizeof_auxv_field;
655 *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
656 ptr += sizeof_auxv_field;
657
658 *readptr = ptr;
659 return 1;
660 }
661
662 static const struct target_desc *
663 s390_read_description (struct target_ops *ops)
664 {
665 int tid = s390_inferior_tid ();
666
667 have_regset_last_break
668 = check_regset (tid, NT_S390_LAST_BREAK, 8);
669 have_regset_system_call
670 = check_regset (tid, NT_S390_SYSTEM_CALL, 4);
671
672 /* If GDB itself is compiled as 64-bit, we are running on a machine in
673 z/Architecture mode. If the target is running in 64-bit addressing
674 mode, report s390x architecture. If the target is running in 31-bit
675 addressing mode, but the kernel supports using 64-bit registers in
676 that mode, report s390 architecture with 64-bit GPRs. */
677 #ifdef __s390x__
678 {
679 CORE_ADDR hwcap = 0;
680
681 target_auxv_search (&current_target, AT_HWCAP, &hwcap);
682 have_regset_tdb = (hwcap & HWCAP_S390_TE)
683 && check_regset (tid, NT_S390_TDB, s390_sizeof_tdbregset);
684
685 have_regset_vxrs = (hwcap & HWCAP_S390_VX)
686 && check_regset (tid, NT_S390_VXRS_LOW, 16 * 8)
687 && check_regset (tid, NT_S390_VXRS_HIGH, 16 * 16);
688
689 if (s390_target_wordsize () == 8)
690 return (have_regset_vxrs ?
691 (have_regset_tdb ? tdesc_s390x_tevx_linux64 :
692 tdesc_s390x_vx_linux64) :
693 have_regset_tdb ? tdesc_s390x_te_linux64 :
694 have_regset_system_call ? tdesc_s390x_linux64v2 :
695 have_regset_last_break ? tdesc_s390x_linux64v1 :
696 tdesc_s390x_linux64);
697
698 if (hwcap & HWCAP_S390_HIGH_GPRS)
699 return (have_regset_vxrs ?
700 (have_regset_tdb ? tdesc_s390_tevx_linux64 :
701 tdesc_s390_vx_linux64) :
702 have_regset_tdb ? tdesc_s390_te_linux64 :
703 have_regset_system_call ? tdesc_s390_linux64v2 :
704 have_regset_last_break ? tdesc_s390_linux64v1 :
705 tdesc_s390_linux64);
706 }
707 #endif
708
709 /* If GDB itself is compiled as 31-bit, or if we're running a 31-bit inferior
710 on a 64-bit kernel that does not support using 64-bit registers in 31-bit
711 mode, report s390 architecture with 32-bit GPRs. */
712 return (have_regset_system_call? tdesc_s390_linux32v2 :
713 have_regset_last_break? tdesc_s390_linux32v1 :
714 tdesc_s390_linux32);
715 }
716
717 void _initialize_s390_nat (void);
718
719 void
720 _initialize_s390_nat (void)
721 {
722 struct target_ops *t;
723
724 /* Fill in the generic GNU/Linux methods. */
725 t = linux_target ();
726
727 /* Add our register access methods. */
728 t->to_fetch_registers = s390_linux_fetch_inferior_registers;
729 t->to_store_registers = s390_linux_store_inferior_registers;
730
731 /* Add our watchpoint methods. */
732 t->to_can_use_hw_breakpoint = s390_can_use_hw_breakpoint;
733 t->to_region_ok_for_hw_watchpoint = s390_region_ok_for_hw_watchpoint;
734 t->to_have_continuable_watchpoint = 1;
735 t->to_stopped_by_watchpoint = s390_stopped_by_watchpoint;
736 t->to_insert_watchpoint = s390_insert_watchpoint;
737 t->to_remove_watchpoint = s390_remove_watchpoint;
738
739 /* Detect target architecture. */
740 t->to_read_description = s390_read_description;
741 t->to_auxv_parse = s390_auxv_parse;
742
743 /* Register the target. */
744 linux_nat_add_target (t);
745 linux_nat_set_new_thread (t, s390_new_thread);
746 linux_nat_set_prepare_to_resume (t, s390_prepare_to_resume);
747 }
This page took 0.047653 seconds and 5 git commands to generate.