windows-nat: Don't change current_event.dwThreadId in handle_output_debug_string()
[deliverable/binutils-gdb.git] / gdb / s390-linux-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 2001-2015 Free Software Foundation, Inc.
4
5 Contributed by D.J. Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
6 for IBM Deutschland Entwicklung GmbH, IBM Corporation.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "arch-utils.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "infrun.h"
28 #include "symtab.h"
29 #include "target.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "floatformat.h"
34 #include "regcache.h"
35 #include "trad-frame.h"
36 #include "frame-base.h"
37 #include "frame-unwind.h"
38 #include "dwarf2-frame.h"
39 #include "reggroups.h"
40 #include "regset.h"
41 #include "value.h"
42 #include "dis-asm.h"
43 #include "solib-svr4.h"
44 #include "prologue-value.h"
45 #include "linux-tdep.h"
46 #include "s390-linux-tdep.h"
47 #include "auxv.h"
48 #include "xml-syscall.h"
49
50 #include "stap-probe.h"
51 #include "ax.h"
52 #include "ax-gdb.h"
53 #include "user-regs.h"
54 #include "cli/cli-utils.h"
55 #include <ctype.h>
56 #include "elf/common.h"
57
58 #include "features/s390-linux32.c"
59 #include "features/s390-linux32v1.c"
60 #include "features/s390-linux32v2.c"
61 #include "features/s390-linux64.c"
62 #include "features/s390-linux64v1.c"
63 #include "features/s390-linux64v2.c"
64 #include "features/s390-te-linux64.c"
65 #include "features/s390-vx-linux64.c"
66 #include "features/s390-tevx-linux64.c"
67 #include "features/s390x-linux64.c"
68 #include "features/s390x-linux64v1.c"
69 #include "features/s390x-linux64v2.c"
70 #include "features/s390x-te-linux64.c"
71 #include "features/s390x-vx-linux64.c"
72 #include "features/s390x-tevx-linux64.c"
73
74 #define XML_SYSCALL_FILENAME_S390 "syscalls/s390-linux.xml"
75 #define XML_SYSCALL_FILENAME_S390X "syscalls/s390x-linux.xml"
76
77 enum s390_abi_kind
78 {
79 ABI_LINUX_S390,
80 ABI_LINUX_ZSERIES
81 };
82
83 /* The tdep structure. */
84
85 struct gdbarch_tdep
86 {
87 /* ABI version. */
88 enum s390_abi_kind abi;
89
90 /* Pseudo register numbers. */
91 int gpr_full_regnum;
92 int pc_regnum;
93 int cc_regnum;
94 int v0_full_regnum;
95
96 int have_linux_v1;
97 int have_linux_v2;
98 int have_tdb;
99 };
100
101
102 /* ABI call-saved register information. */
103
104 static int
105 s390_register_call_saved (struct gdbarch *gdbarch, int regnum)
106 {
107 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
108
109 switch (tdep->abi)
110 {
111 case ABI_LINUX_S390:
112 if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
113 || regnum == S390_F4_REGNUM || regnum == S390_F6_REGNUM
114 || regnum == S390_A0_REGNUM)
115 return 1;
116
117 break;
118
119 case ABI_LINUX_ZSERIES:
120 if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
121 || (regnum >= S390_F8_REGNUM && regnum <= S390_F15_REGNUM)
122 || (regnum >= S390_A0_REGNUM && regnum <= S390_A1_REGNUM))
123 return 1;
124
125 break;
126 }
127
128 return 0;
129 }
130
131 static int
132 s390_cannot_store_register (struct gdbarch *gdbarch, int regnum)
133 {
134 /* The last-break address is read-only. */
135 return regnum == S390_LAST_BREAK_REGNUM;
136 }
137
138 static void
139 s390_write_pc (struct regcache *regcache, CORE_ADDR pc)
140 {
141 struct gdbarch *gdbarch = get_regcache_arch (regcache);
142 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
143
144 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
145
146 /* Set special SYSTEM_CALL register to 0 to prevent the kernel from
147 messing with the PC we just installed, if we happen to be within
148 an interrupted system call that the kernel wants to restart.
149
150 Note that after we return from the dummy call, the SYSTEM_CALL and
151 ORIG_R2 registers will be automatically restored, and the kernel
152 continues to restart the system call at this point. */
153 if (register_size (gdbarch, S390_SYSTEM_CALL_REGNUM) > 0)
154 regcache_cooked_write_unsigned (regcache, S390_SYSTEM_CALL_REGNUM, 0);
155 }
156
157
158 /* DWARF Register Mapping. */
159
160 static const short s390_dwarf_regmap[] =
161 {
162 /* 0-15: General Purpose Registers. */
163 S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM,
164 S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM,
165 S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM,
166 S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM,
167
168 /* 16-31: Floating Point Registers / Vector Registers 0-15. */
169 S390_F0_REGNUM, S390_F2_REGNUM, S390_F4_REGNUM, S390_F6_REGNUM,
170 S390_F1_REGNUM, S390_F3_REGNUM, S390_F5_REGNUM, S390_F7_REGNUM,
171 S390_F8_REGNUM, S390_F10_REGNUM, S390_F12_REGNUM, S390_F14_REGNUM,
172 S390_F9_REGNUM, S390_F11_REGNUM, S390_F13_REGNUM, S390_F15_REGNUM,
173
174 /* 32-47: Control Registers (not mapped). */
175 -1, -1, -1, -1, -1, -1, -1, -1,
176 -1, -1, -1, -1, -1, -1, -1, -1,
177
178 /* 48-63: Access Registers. */
179 S390_A0_REGNUM, S390_A1_REGNUM, S390_A2_REGNUM, S390_A3_REGNUM,
180 S390_A4_REGNUM, S390_A5_REGNUM, S390_A6_REGNUM, S390_A7_REGNUM,
181 S390_A8_REGNUM, S390_A9_REGNUM, S390_A10_REGNUM, S390_A11_REGNUM,
182 S390_A12_REGNUM, S390_A13_REGNUM, S390_A14_REGNUM, S390_A15_REGNUM,
183
184 /* 64-65: Program Status Word. */
185 S390_PSWM_REGNUM,
186 S390_PSWA_REGNUM,
187
188 /* 66-67: Reserved. */
189 -1, -1,
190
191 /* 68-83: Vector Registers 16-31. */
192 S390_V16_REGNUM, S390_V18_REGNUM, S390_V20_REGNUM, S390_V22_REGNUM,
193 S390_V17_REGNUM, S390_V19_REGNUM, S390_V21_REGNUM, S390_V23_REGNUM,
194 S390_V24_REGNUM, S390_V26_REGNUM, S390_V28_REGNUM, S390_V30_REGNUM,
195 S390_V25_REGNUM, S390_V27_REGNUM, S390_V29_REGNUM, S390_V31_REGNUM,
196
197 /* End of "official" DWARF registers. The remainder of the map is
198 for GDB internal use only. */
199
200 /* GPR Lower Half Access. */
201 S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM,
202 S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM,
203 S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM,
204 S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM,
205 };
206
207 enum { s390_dwarf_reg_r0l = ARRAY_SIZE (s390_dwarf_regmap) - 16 };
208
209 /* Convert DWARF register number REG to the appropriate register
210 number used by GDB. */
211 static int
212 s390_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
213 {
214 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
215 int gdb_reg = -1;
216
217 /* In a 32-on-64 debug scenario, debug info refers to the full
218 64-bit GPRs. Note that call frame information still refers to
219 the 32-bit lower halves, because s390_adjust_frame_regnum uses
220 special register numbers to access GPRs. */
221 if (tdep->gpr_full_regnum != -1 && reg >= 0 && reg < 16)
222 return tdep->gpr_full_regnum + reg;
223
224 if (reg >= 0 && reg < ARRAY_SIZE (s390_dwarf_regmap))
225 gdb_reg = s390_dwarf_regmap[reg];
226
227 if (tdep->v0_full_regnum == -1)
228 {
229 if (gdb_reg >= S390_V16_REGNUM && gdb_reg <= S390_V31_REGNUM)
230 gdb_reg = -1;
231 }
232 else
233 {
234 if (gdb_reg >= S390_F0_REGNUM && gdb_reg <= S390_F15_REGNUM)
235 gdb_reg = gdb_reg - S390_F0_REGNUM + tdep->v0_full_regnum;
236 }
237
238 return gdb_reg;
239 }
240
241 /* Translate a .eh_frame register to DWARF register, or adjust a
242 .debug_frame register. */
243 static int
244 s390_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
245 {
246 /* See s390_dwarf_reg_to_regnum for comments. */
247 return (num >= 0 && num < 16) ? num + s390_dwarf_reg_r0l : num;
248 }
249
250
251 /* Pseudo registers. */
252
253 static int
254 regnum_is_gpr_full (struct gdbarch_tdep *tdep, int regnum)
255 {
256 return (tdep->gpr_full_regnum != -1
257 && regnum >= tdep->gpr_full_regnum
258 && regnum <= tdep->gpr_full_regnum + 15);
259 }
260
261 /* Check whether REGNUM indicates a full vector register (v0-v15).
262 These pseudo-registers are composed of f0-f15 and v0l-v15l. */
263
264 static int
265 regnum_is_vxr_full (struct gdbarch_tdep *tdep, int regnum)
266 {
267 return (tdep->v0_full_regnum != -1
268 && regnum >= tdep->v0_full_regnum
269 && regnum <= tdep->v0_full_regnum + 15);
270 }
271
272 /* Return the name of register REGNO. Return the empty string for
273 registers that shouldn't be visible. */
274
275 static const char *
276 s390_register_name (struct gdbarch *gdbarch, int regnum)
277 {
278 if (regnum >= S390_V0_LOWER_REGNUM
279 && regnum <= S390_V15_LOWER_REGNUM)
280 return "";
281 return tdesc_register_name (gdbarch, regnum);
282 }
283
284 static const char *
285 s390_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
286 {
287 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
288
289 if (regnum == tdep->pc_regnum)
290 return "pc";
291
292 if (regnum == tdep->cc_regnum)
293 return "cc";
294
295 if (regnum_is_gpr_full (tdep, regnum))
296 {
297 static const char *full_name[] = {
298 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
299 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
300 };
301 return full_name[regnum - tdep->gpr_full_regnum];
302 }
303
304 if (regnum_is_vxr_full (tdep, regnum))
305 {
306 static const char *full_name[] = {
307 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
308 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15"
309 };
310 return full_name[regnum - tdep->v0_full_regnum];
311 }
312
313 internal_error (__FILE__, __LINE__, _("invalid regnum"));
314 }
315
316 static struct type *
317 s390_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
318 {
319 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
320
321 if (regnum == tdep->pc_regnum)
322 return builtin_type (gdbarch)->builtin_func_ptr;
323
324 if (regnum == tdep->cc_regnum)
325 return builtin_type (gdbarch)->builtin_int;
326
327 if (regnum_is_gpr_full (tdep, regnum))
328 return builtin_type (gdbarch)->builtin_uint64;
329
330 if (regnum_is_vxr_full (tdep, regnum))
331 return tdesc_find_type (gdbarch, "vec128");
332
333 internal_error (__FILE__, __LINE__, _("invalid regnum"));
334 }
335
336 static enum register_status
337 s390_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
338 int regnum, gdb_byte *buf)
339 {
340 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
341 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
342 int regsize = register_size (gdbarch, regnum);
343 ULONGEST val;
344
345 if (regnum == tdep->pc_regnum)
346 {
347 enum register_status status;
348
349 status = regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &val);
350 if (status == REG_VALID)
351 {
352 if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
353 val &= 0x7fffffff;
354 store_unsigned_integer (buf, regsize, byte_order, val);
355 }
356 return status;
357 }
358
359 if (regnum == tdep->cc_regnum)
360 {
361 enum register_status status;
362
363 status = regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &val);
364 if (status == REG_VALID)
365 {
366 if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
367 val = (val >> 12) & 3;
368 else
369 val = (val >> 44) & 3;
370 store_unsigned_integer (buf, regsize, byte_order, val);
371 }
372 return status;
373 }
374
375 if (regnum_is_gpr_full (tdep, regnum))
376 {
377 enum register_status status;
378 ULONGEST val_upper;
379
380 regnum -= tdep->gpr_full_regnum;
381
382 status = regcache_raw_read_unsigned (regcache, S390_R0_REGNUM + regnum, &val);
383 if (status == REG_VALID)
384 status = regcache_raw_read_unsigned (regcache, S390_R0_UPPER_REGNUM + regnum,
385 &val_upper);
386 if (status == REG_VALID)
387 {
388 val |= val_upper << 32;
389 store_unsigned_integer (buf, regsize, byte_order, val);
390 }
391 return status;
392 }
393
394 if (regnum_is_vxr_full (tdep, regnum))
395 {
396 enum register_status status;
397
398 regnum -= tdep->v0_full_regnum;
399
400 status = regcache_raw_read (regcache, S390_F0_REGNUM + regnum, buf);
401 if (status == REG_VALID)
402 status = regcache_raw_read (regcache,
403 S390_V0_LOWER_REGNUM + regnum, buf + 8);
404 return status;
405 }
406
407 internal_error (__FILE__, __LINE__, _("invalid regnum"));
408 }
409
410 static void
411 s390_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
412 int regnum, const gdb_byte *buf)
413 {
414 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
415 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
416 int regsize = register_size (gdbarch, regnum);
417 ULONGEST val, psw;
418
419 if (regnum == tdep->pc_regnum)
420 {
421 val = extract_unsigned_integer (buf, regsize, byte_order);
422 if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
423 {
424 regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &psw);
425 val = (psw & 0x80000000) | (val & 0x7fffffff);
426 }
427 regcache_raw_write_unsigned (regcache, S390_PSWA_REGNUM, val);
428 return;
429 }
430
431 if (regnum == tdep->cc_regnum)
432 {
433 val = extract_unsigned_integer (buf, regsize, byte_order);
434 regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &psw);
435 if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
436 val = (psw & ~((ULONGEST)3 << 12)) | ((val & 3) << 12);
437 else
438 val = (psw & ~((ULONGEST)3 << 44)) | ((val & 3) << 44);
439 regcache_raw_write_unsigned (regcache, S390_PSWM_REGNUM, val);
440 return;
441 }
442
443 if (regnum_is_gpr_full (tdep, regnum))
444 {
445 regnum -= tdep->gpr_full_regnum;
446 val = extract_unsigned_integer (buf, regsize, byte_order);
447 regcache_raw_write_unsigned (regcache, S390_R0_REGNUM + regnum,
448 val & 0xffffffff);
449 regcache_raw_write_unsigned (regcache, S390_R0_UPPER_REGNUM + regnum,
450 val >> 32);
451 return;
452 }
453
454 if (regnum_is_vxr_full (tdep, regnum))
455 {
456 regnum -= tdep->v0_full_regnum;
457 regcache_raw_write (regcache, S390_F0_REGNUM + regnum, buf);
458 regcache_raw_write (regcache, S390_V0_LOWER_REGNUM + regnum, buf + 8);
459 return;
460 }
461
462 internal_error (__FILE__, __LINE__, _("invalid regnum"));
463 }
464
465 /* 'float' values are stored in the upper half of floating-point
466 registers, even though we are otherwise a big-endian platform. The
467 same applies to a 'float' value within a vector. */
468
469 static struct value *
470 s390_value_from_register (struct gdbarch *gdbarch, struct type *type,
471 int regnum, struct frame_id frame_id)
472 {
473 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
474 struct value *value = default_value_from_register (gdbarch, type,
475 regnum, frame_id);
476 check_typedef (type);
477
478 if ((regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM
479 && TYPE_LENGTH (type) < 8)
480 || regnum_is_vxr_full (tdep, regnum)
481 || (regnum >= S390_V16_REGNUM && regnum <= S390_V31_REGNUM))
482 set_value_offset (value, 0);
483
484 return value;
485 }
486
487 /* Register groups. */
488
489 static int
490 s390_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
491 struct reggroup *group)
492 {
493 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
494
495 /* We usually save/restore the whole PSW, which includes PC and CC.
496 However, some older gdbservers may not support saving/restoring
497 the whole PSW yet, and will return an XML register description
498 excluding those from the save/restore register groups. In those
499 cases, we still need to explicitly save/restore PC and CC in order
500 to push or pop frames. Since this doesn't hurt anything if we
501 already save/restore the whole PSW (it's just redundant), we add
502 PC and CC at this point unconditionally. */
503 if (group == save_reggroup || group == restore_reggroup)
504 return regnum == tdep->pc_regnum || regnum == tdep->cc_regnum;
505
506 if (group == vector_reggroup)
507 return regnum_is_vxr_full (tdep, regnum);
508
509 if (group == general_reggroup && regnum_is_vxr_full (tdep, regnum))
510 return 0;
511
512 return default_register_reggroup_p (gdbarch, regnum, group);
513 }
514
515
516 /* Maps for register sets. */
517
518 static const struct regcache_map_entry s390_gregmap[] =
519 {
520 { 1, S390_PSWM_REGNUM },
521 { 1, S390_PSWA_REGNUM },
522 { 16, S390_R0_REGNUM },
523 { 16, S390_A0_REGNUM },
524 { 1, S390_ORIG_R2_REGNUM },
525 { 0 }
526 };
527
528 static const struct regcache_map_entry s390_fpregmap[] =
529 {
530 { 1, S390_FPC_REGNUM, 8 },
531 { 16, S390_F0_REGNUM, 8 },
532 { 0 }
533 };
534
535 static const struct regcache_map_entry s390_regmap_upper[] =
536 {
537 { 16, S390_R0_UPPER_REGNUM, 4 },
538 { 0 }
539 };
540
541 static const struct regcache_map_entry s390_regmap_last_break[] =
542 {
543 { 1, REGCACHE_MAP_SKIP, 4 },
544 { 1, S390_LAST_BREAK_REGNUM, 4 },
545 { 0 }
546 };
547
548 static const struct regcache_map_entry s390x_regmap_last_break[] =
549 {
550 { 1, S390_LAST_BREAK_REGNUM, 8 },
551 { 0 }
552 };
553
554 static const struct regcache_map_entry s390_regmap_system_call[] =
555 {
556 { 1, S390_SYSTEM_CALL_REGNUM, 4 },
557 { 0 }
558 };
559
560 static const struct regcache_map_entry s390_regmap_tdb[] =
561 {
562 { 1, S390_TDB_DWORD0_REGNUM, 8 },
563 { 1, S390_TDB_ABORT_CODE_REGNUM, 8 },
564 { 1, S390_TDB_CONFLICT_TOKEN_REGNUM, 8 },
565 { 1, S390_TDB_ATIA_REGNUM, 8 },
566 { 12, REGCACHE_MAP_SKIP, 8 },
567 { 16, S390_TDB_R0_REGNUM, 8 },
568 { 0 }
569 };
570
571 static const struct regcache_map_entry s390_regmap_vxrs_low[] =
572 {
573 { 16, S390_V0_LOWER_REGNUM, 8 },
574 { 0 }
575 };
576
577 static const struct regcache_map_entry s390_regmap_vxrs_high[] =
578 {
579 { 16, S390_V16_REGNUM, 16 },
580 { 0 }
581 };
582
583
584 /* Supply the TDB regset. Like regcache_supply_regset, but invalidate
585 the TDB registers unless the TDB format field is valid. */
586
587 static void
588 s390_supply_tdb_regset (const struct regset *regset, struct regcache *regcache,
589 int regnum, const void *regs, size_t len)
590 {
591 ULONGEST tdw;
592 enum register_status ret;
593 int i;
594
595 regcache_supply_regset (regset, regcache, regnum, regs, len);
596 ret = regcache_cooked_read_unsigned (regcache, S390_TDB_DWORD0_REGNUM, &tdw);
597 if (ret != REG_VALID || (tdw >> 56) != 1)
598 regcache_supply_regset (regset, regcache, regnum, NULL, len);
599 }
600
601 const struct regset s390_gregset = {
602 s390_gregmap,
603 regcache_supply_regset,
604 regcache_collect_regset
605 };
606
607 const struct regset s390_fpregset = {
608 s390_fpregmap,
609 regcache_supply_regset,
610 regcache_collect_regset
611 };
612
613 static const struct regset s390_upper_regset = {
614 s390_regmap_upper,
615 regcache_supply_regset,
616 regcache_collect_regset
617 };
618
619 const struct regset s390_last_break_regset = {
620 s390_regmap_last_break,
621 regcache_supply_regset,
622 regcache_collect_regset
623 };
624
625 const struct regset s390x_last_break_regset = {
626 s390x_regmap_last_break,
627 regcache_supply_regset,
628 regcache_collect_regset
629 };
630
631 const struct regset s390_system_call_regset = {
632 s390_regmap_system_call,
633 regcache_supply_regset,
634 regcache_collect_regset
635 };
636
637 const struct regset s390_tdb_regset = {
638 s390_regmap_tdb,
639 s390_supply_tdb_regset,
640 regcache_collect_regset
641 };
642
643 const struct regset s390_vxrs_low_regset = {
644 s390_regmap_vxrs_low,
645 regcache_supply_regset,
646 regcache_collect_regset
647 };
648
649 const struct regset s390_vxrs_high_regset = {
650 s390_regmap_vxrs_high,
651 regcache_supply_regset,
652 regcache_collect_regset
653 };
654
655 /* Iterate over supported core file register note sections. */
656
657 static void
658 s390_iterate_over_regset_sections (struct gdbarch *gdbarch,
659 iterate_over_regset_sections_cb *cb,
660 void *cb_data,
661 const struct regcache *regcache)
662 {
663 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
664 const int gregset_size = (tdep->abi == ABI_LINUX_S390 ?
665 s390_sizeof_gregset : s390x_sizeof_gregset);
666
667 cb (".reg", gregset_size, &s390_gregset, NULL, cb_data);
668 cb (".reg2", s390_sizeof_fpregset, &s390_fpregset, NULL, cb_data);
669
670 if (tdep->abi == ABI_LINUX_S390 && tdep->gpr_full_regnum != -1)
671 cb (".reg-s390-high-gprs", 16 * 4, &s390_upper_regset,
672 "s390 GPR upper halves", cb_data);
673
674 if (tdep->have_linux_v1)
675 cb (".reg-s390-last-break", 8,
676 (gdbarch_ptr_bit (gdbarch) == 32
677 ? &s390_last_break_regset : &s390x_last_break_regset),
678 "s930 last-break address", cb_data);
679
680 if (tdep->have_linux_v2)
681 cb (".reg-s390-system-call", 4, &s390_system_call_regset,
682 "s390 system-call", cb_data);
683
684 /* If regcache is set, we are in "write" (gcore) mode. In this
685 case, don't iterate over the TDB unless its registers are
686 available. */
687 if (tdep->have_tdb
688 && (regcache == NULL
689 || REG_VALID == regcache_register_status (regcache,
690 S390_TDB_DWORD0_REGNUM)))
691 cb (".reg-s390-tdb", s390_sizeof_tdbregset, &s390_tdb_regset,
692 "s390 TDB", cb_data);
693
694 if (tdep->v0_full_regnum != -1)
695 {
696 cb (".reg-s390-vxrs-low", 16 * 8, &s390_vxrs_low_regset,
697 "s390 vector registers 0-15 lower half", cb_data);
698 cb (".reg-s390-vxrs-high", 16 * 16, &s390_vxrs_high_regset,
699 "s390 vector registers 16-31", cb_data);
700 }
701 }
702
703 static const struct target_desc *
704 s390_core_read_description (struct gdbarch *gdbarch,
705 struct target_ops *target, bfd *abfd)
706 {
707 asection *section = bfd_get_section_by_name (abfd, ".reg");
708 CORE_ADDR hwcap = 0;
709 int high_gprs, v1, v2, te, vx;
710
711 target_auxv_search (target, AT_HWCAP, &hwcap);
712 if (!section)
713 return NULL;
714
715 high_gprs = (bfd_get_section_by_name (abfd, ".reg-s390-high-gprs")
716 != NULL);
717 v1 = (bfd_get_section_by_name (abfd, ".reg-s390-last-break") != NULL);
718 v2 = (bfd_get_section_by_name (abfd, ".reg-s390-system-call") != NULL);
719 vx = (hwcap & HWCAP_S390_VX);
720 te = (hwcap & HWCAP_S390_TE);
721
722 switch (bfd_section_size (abfd, section))
723 {
724 case s390_sizeof_gregset:
725 if (high_gprs)
726 return (te && vx ? tdesc_s390_tevx_linux64 :
727 vx ? tdesc_s390_vx_linux64 :
728 te ? tdesc_s390_te_linux64 :
729 v2 ? tdesc_s390_linux64v2 :
730 v1 ? tdesc_s390_linux64v1 : tdesc_s390_linux64);
731 else
732 return (v2 ? tdesc_s390_linux32v2 :
733 v1 ? tdesc_s390_linux32v1 : tdesc_s390_linux32);
734
735 case s390x_sizeof_gregset:
736 return (te && vx ? tdesc_s390x_tevx_linux64 :
737 vx ? tdesc_s390x_vx_linux64 :
738 te ? tdesc_s390x_te_linux64 :
739 v2 ? tdesc_s390x_linux64v2 :
740 v1 ? tdesc_s390x_linux64v1 : tdesc_s390x_linux64);
741
742 default:
743 return NULL;
744 }
745 }
746
747
748 /* Decoding S/390 instructions. */
749
750 /* Named opcode values for the S/390 instructions we recognize. Some
751 instructions have their opcode split across two fields; those are the
752 op1_* and op2_* enums. */
753 enum
754 {
755 op1_lhi = 0xa7, op2_lhi = 0x08,
756 op1_lghi = 0xa7, op2_lghi = 0x09,
757 op1_lgfi = 0xc0, op2_lgfi = 0x01,
758 op_lr = 0x18,
759 op_lgr = 0xb904,
760 op_l = 0x58,
761 op1_ly = 0xe3, op2_ly = 0x58,
762 op1_lg = 0xe3, op2_lg = 0x04,
763 op_lm = 0x98,
764 op1_lmy = 0xeb, op2_lmy = 0x98,
765 op1_lmg = 0xeb, op2_lmg = 0x04,
766 op_st = 0x50,
767 op1_sty = 0xe3, op2_sty = 0x50,
768 op1_stg = 0xe3, op2_stg = 0x24,
769 op_std = 0x60,
770 op_stm = 0x90,
771 op1_stmy = 0xeb, op2_stmy = 0x90,
772 op1_stmg = 0xeb, op2_stmg = 0x24,
773 op1_aghi = 0xa7, op2_aghi = 0x0b,
774 op1_ahi = 0xa7, op2_ahi = 0x0a,
775 op1_agfi = 0xc2, op2_agfi = 0x08,
776 op1_afi = 0xc2, op2_afi = 0x09,
777 op1_algfi= 0xc2, op2_algfi= 0x0a,
778 op1_alfi = 0xc2, op2_alfi = 0x0b,
779 op_ar = 0x1a,
780 op_agr = 0xb908,
781 op_a = 0x5a,
782 op1_ay = 0xe3, op2_ay = 0x5a,
783 op1_ag = 0xe3, op2_ag = 0x08,
784 op1_slgfi= 0xc2, op2_slgfi= 0x04,
785 op1_slfi = 0xc2, op2_slfi = 0x05,
786 op_sr = 0x1b,
787 op_sgr = 0xb909,
788 op_s = 0x5b,
789 op1_sy = 0xe3, op2_sy = 0x5b,
790 op1_sg = 0xe3, op2_sg = 0x09,
791 op_nr = 0x14,
792 op_ngr = 0xb980,
793 op_la = 0x41,
794 op1_lay = 0xe3, op2_lay = 0x71,
795 op1_larl = 0xc0, op2_larl = 0x00,
796 op_basr = 0x0d,
797 op_bas = 0x4d,
798 op_bcr = 0x07,
799 op_bc = 0x0d,
800 op_bctr = 0x06,
801 op_bctgr = 0xb946,
802 op_bct = 0x46,
803 op1_bctg = 0xe3, op2_bctg = 0x46,
804 op_bxh = 0x86,
805 op1_bxhg = 0xeb, op2_bxhg = 0x44,
806 op_bxle = 0x87,
807 op1_bxleg= 0xeb, op2_bxleg= 0x45,
808 op1_bras = 0xa7, op2_bras = 0x05,
809 op1_brasl= 0xc0, op2_brasl= 0x05,
810 op1_brc = 0xa7, op2_brc = 0x04,
811 op1_brcl = 0xc0, op2_brcl = 0x04,
812 op1_brct = 0xa7, op2_brct = 0x06,
813 op1_brctg= 0xa7, op2_brctg= 0x07,
814 op_brxh = 0x84,
815 op1_brxhg= 0xec, op2_brxhg= 0x44,
816 op_brxle = 0x85,
817 op1_brxlg= 0xec, op2_brxlg= 0x45,
818 op_svc = 0x0a,
819 };
820
821
822 /* Read a single instruction from address AT. */
823
824 #define S390_MAX_INSTR_SIZE 6
825 static int
826 s390_readinstruction (bfd_byte instr[], CORE_ADDR at)
827 {
828 static int s390_instrlen[] = { 2, 4, 4, 6 };
829 int instrlen;
830
831 if (target_read_memory (at, &instr[0], 2))
832 return -1;
833 instrlen = s390_instrlen[instr[0] >> 6];
834 if (instrlen > 2)
835 {
836 if (target_read_memory (at + 2, &instr[2], instrlen - 2))
837 return -1;
838 }
839 return instrlen;
840 }
841
842
843 /* The functions below are for recognizing and decoding S/390
844 instructions of various formats. Each of them checks whether INSN
845 is an instruction of the given format, with the specified opcodes.
846 If it is, it sets the remaining arguments to the values of the
847 instruction's fields, and returns a non-zero value; otherwise, it
848 returns zero.
849
850 These functions' arguments appear in the order they appear in the
851 instruction, not in the machine-language form. So, opcodes always
852 come first, even though they're sometimes scattered around the
853 instructions. And displacements appear before base and extension
854 registers, as they do in the assembly syntax, not at the end, as
855 they do in the machine language. */
856 static int
857 is_ri (bfd_byte *insn, int op1, int op2, unsigned int *r1, int *i2)
858 {
859 if (insn[0] == op1 && (insn[1] & 0xf) == op2)
860 {
861 *r1 = (insn[1] >> 4) & 0xf;
862 /* i2 is a 16-bit signed quantity. */
863 *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
864 return 1;
865 }
866 else
867 return 0;
868 }
869
870
871 static int
872 is_ril (bfd_byte *insn, int op1, int op2,
873 unsigned int *r1, int *i2)
874 {
875 if (insn[0] == op1 && (insn[1] & 0xf) == op2)
876 {
877 *r1 = (insn[1] >> 4) & 0xf;
878 /* i2 is a signed quantity. If the host 'int' is 32 bits long,
879 no sign extension is necessary, but we don't want to assume
880 that. */
881 *i2 = (((insn[2] << 24)
882 | (insn[3] << 16)
883 | (insn[4] << 8)
884 | (insn[5])) ^ 0x80000000) - 0x80000000;
885 return 1;
886 }
887 else
888 return 0;
889 }
890
891
892 static int
893 is_rr (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
894 {
895 if (insn[0] == op)
896 {
897 *r1 = (insn[1] >> 4) & 0xf;
898 *r2 = insn[1] & 0xf;
899 return 1;
900 }
901 else
902 return 0;
903 }
904
905
906 static int
907 is_rre (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
908 {
909 if (((insn[0] << 8) | insn[1]) == op)
910 {
911 /* Yes, insn[3]. insn[2] is unused in RRE format. */
912 *r1 = (insn[3] >> 4) & 0xf;
913 *r2 = insn[3] & 0xf;
914 return 1;
915 }
916 else
917 return 0;
918 }
919
920
921 static int
922 is_rs (bfd_byte *insn, int op,
923 unsigned int *r1, unsigned int *r3, int *d2, unsigned int *b2)
924 {
925 if (insn[0] == op)
926 {
927 *r1 = (insn[1] >> 4) & 0xf;
928 *r3 = insn[1] & 0xf;
929 *b2 = (insn[2] >> 4) & 0xf;
930 *d2 = ((insn[2] & 0xf) << 8) | insn[3];
931 return 1;
932 }
933 else
934 return 0;
935 }
936
937
938 static int
939 is_rsy (bfd_byte *insn, int op1, int op2,
940 unsigned int *r1, unsigned int *r3, int *d2, unsigned int *b2)
941 {
942 if (insn[0] == op1
943 && insn[5] == op2)
944 {
945 *r1 = (insn[1] >> 4) & 0xf;
946 *r3 = insn[1] & 0xf;
947 *b2 = (insn[2] >> 4) & 0xf;
948 /* The 'long displacement' is a 20-bit signed integer. */
949 *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12))
950 ^ 0x80000) - 0x80000;
951 return 1;
952 }
953 else
954 return 0;
955 }
956
957
958 static int
959 is_rsi (bfd_byte *insn, int op,
960 unsigned int *r1, unsigned int *r3, int *i2)
961 {
962 if (insn[0] == op)
963 {
964 *r1 = (insn[1] >> 4) & 0xf;
965 *r3 = insn[1] & 0xf;
966 /* i2 is a 16-bit signed quantity. */
967 *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
968 return 1;
969 }
970 else
971 return 0;
972 }
973
974
975 static int
976 is_rie (bfd_byte *insn, int op1, int op2,
977 unsigned int *r1, unsigned int *r3, int *i2)
978 {
979 if (insn[0] == op1
980 && insn[5] == op2)
981 {
982 *r1 = (insn[1] >> 4) & 0xf;
983 *r3 = insn[1] & 0xf;
984 /* i2 is a 16-bit signed quantity. */
985 *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
986 return 1;
987 }
988 else
989 return 0;
990 }
991
992
993 static int
994 is_rx (bfd_byte *insn, int op,
995 unsigned int *r1, int *d2, unsigned int *x2, unsigned int *b2)
996 {
997 if (insn[0] == op)
998 {
999 *r1 = (insn[1] >> 4) & 0xf;
1000 *x2 = insn[1] & 0xf;
1001 *b2 = (insn[2] >> 4) & 0xf;
1002 *d2 = ((insn[2] & 0xf) << 8) | insn[3];
1003 return 1;
1004 }
1005 else
1006 return 0;
1007 }
1008
1009
1010 static int
1011 is_rxy (bfd_byte *insn, int op1, int op2,
1012 unsigned int *r1, int *d2, unsigned int *x2, unsigned int *b2)
1013 {
1014 if (insn[0] == op1
1015 && insn[5] == op2)
1016 {
1017 *r1 = (insn[1] >> 4) & 0xf;
1018 *x2 = insn[1] & 0xf;
1019 *b2 = (insn[2] >> 4) & 0xf;
1020 /* The 'long displacement' is a 20-bit signed integer. */
1021 *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12))
1022 ^ 0x80000) - 0x80000;
1023 return 1;
1024 }
1025 else
1026 return 0;
1027 }
1028
1029
1030 /* Prologue analysis. */
1031
1032 #define S390_NUM_GPRS 16
1033 #define S390_NUM_FPRS 16
1034
1035 struct s390_prologue_data {
1036
1037 /* The stack. */
1038 struct pv_area *stack;
1039
1040 /* The size and byte-order of a GPR or FPR. */
1041 int gpr_size;
1042 int fpr_size;
1043 enum bfd_endian byte_order;
1044
1045 /* The general-purpose registers. */
1046 pv_t gpr[S390_NUM_GPRS];
1047
1048 /* The floating-point registers. */
1049 pv_t fpr[S390_NUM_FPRS];
1050
1051 /* The offset relative to the CFA where the incoming GPR N was saved
1052 by the function prologue. 0 if not saved or unknown. */
1053 int gpr_slot[S390_NUM_GPRS];
1054
1055 /* Likewise for FPRs. */
1056 int fpr_slot[S390_NUM_FPRS];
1057
1058 /* Nonzero if the backchain was saved. This is assumed to be the
1059 case when the incoming SP is saved at the current SP location. */
1060 int back_chain_saved_p;
1061 };
1062
1063 /* Return the effective address for an X-style instruction, like:
1064
1065 L R1, D2(X2, B2)
1066
1067 Here, X2 and B2 are registers, and D2 is a signed 20-bit
1068 constant; the effective address is the sum of all three. If either
1069 X2 or B2 are zero, then it doesn't contribute to the sum --- this
1070 means that r0 can't be used as either X2 or B2. */
1071 static pv_t
1072 s390_addr (struct s390_prologue_data *data,
1073 int d2, unsigned int x2, unsigned int b2)
1074 {
1075 pv_t result;
1076
1077 result = pv_constant (d2);
1078 if (x2)
1079 result = pv_add (result, data->gpr[x2]);
1080 if (b2)
1081 result = pv_add (result, data->gpr[b2]);
1082
1083 return result;
1084 }
1085
1086 /* Do a SIZE-byte store of VALUE to D2(X2,B2). */
1087 static void
1088 s390_store (struct s390_prologue_data *data,
1089 int d2, unsigned int x2, unsigned int b2, CORE_ADDR size,
1090 pv_t value)
1091 {
1092 pv_t addr = s390_addr (data, d2, x2, b2);
1093 pv_t offset;
1094
1095 /* Check whether we are storing the backchain. */
1096 offset = pv_subtract (data->gpr[S390_SP_REGNUM - S390_R0_REGNUM], addr);
1097
1098 if (pv_is_constant (offset) && offset.k == 0)
1099 if (size == data->gpr_size
1100 && pv_is_register_k (value, S390_SP_REGNUM, 0))
1101 {
1102 data->back_chain_saved_p = 1;
1103 return;
1104 }
1105
1106
1107 /* Check whether we are storing a register into the stack. */
1108 if (!pv_area_store_would_trash (data->stack, addr))
1109 pv_area_store (data->stack, addr, size, value);
1110
1111
1112 /* Note: If this is some store we cannot identify, you might think we
1113 should forget our cached values, as any of those might have been hit.
1114
1115 However, we make the assumption that the register save areas are only
1116 ever stored to once in any given function, and we do recognize these
1117 stores. Thus every store we cannot recognize does not hit our data. */
1118 }
1119
1120 /* Do a SIZE-byte load from D2(X2,B2). */
1121 static pv_t
1122 s390_load (struct s390_prologue_data *data,
1123 int d2, unsigned int x2, unsigned int b2, CORE_ADDR size)
1124
1125 {
1126 pv_t addr = s390_addr (data, d2, x2, b2);
1127
1128 /* If it's a load from an in-line constant pool, then we can
1129 simulate that, under the assumption that the code isn't
1130 going to change between the time the processor actually
1131 executed it creating the current frame, and the time when
1132 we're analyzing the code to unwind past that frame. */
1133 if (pv_is_constant (addr))
1134 {
1135 struct target_section *secp;
1136 secp = target_section_by_addr (&current_target, addr.k);
1137 if (secp != NULL
1138 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1139 secp->the_bfd_section)
1140 & SEC_READONLY))
1141 return pv_constant (read_memory_integer (addr.k, size,
1142 data->byte_order));
1143 }
1144
1145 /* Check whether we are accessing one of our save slots. */
1146 return pv_area_fetch (data->stack, addr, size);
1147 }
1148
1149 /* Function for finding saved registers in a 'struct pv_area'; we pass
1150 this to pv_area_scan.
1151
1152 If VALUE is a saved register, ADDR says it was saved at a constant
1153 offset from the frame base, and SIZE indicates that the whole
1154 register was saved, record its offset in the reg_offset table in
1155 PROLOGUE_UNTYPED. */
1156 static void
1157 s390_check_for_saved (void *data_untyped, pv_t addr,
1158 CORE_ADDR size, pv_t value)
1159 {
1160 struct s390_prologue_data *data = data_untyped;
1161 int i, offset;
1162
1163 if (!pv_is_register (addr, S390_SP_REGNUM))
1164 return;
1165
1166 offset = 16 * data->gpr_size + 32 - addr.k;
1167
1168 /* If we are storing the original value of a register, we want to
1169 record the CFA offset. If the same register is stored multiple
1170 times, the stack slot with the highest address counts. */
1171
1172 for (i = 0; i < S390_NUM_GPRS; i++)
1173 if (size == data->gpr_size
1174 && pv_is_register_k (value, S390_R0_REGNUM + i, 0))
1175 if (data->gpr_slot[i] == 0
1176 || data->gpr_slot[i] > offset)
1177 {
1178 data->gpr_slot[i] = offset;
1179 return;
1180 }
1181
1182 for (i = 0; i < S390_NUM_FPRS; i++)
1183 if (size == data->fpr_size
1184 && pv_is_register_k (value, S390_F0_REGNUM + i, 0))
1185 if (data->fpr_slot[i] == 0
1186 || data->fpr_slot[i] > offset)
1187 {
1188 data->fpr_slot[i] = offset;
1189 return;
1190 }
1191 }
1192
1193 /* Analyze the prologue of the function starting at START_PC,
1194 continuing at most until CURRENT_PC. Initialize DATA to
1195 hold all information we find out about the state of the registers
1196 and stack slots. Return the address of the instruction after
1197 the last one that changed the SP, FP, or back chain; or zero
1198 on error. */
1199 static CORE_ADDR
1200 s390_analyze_prologue (struct gdbarch *gdbarch,
1201 CORE_ADDR start_pc,
1202 CORE_ADDR current_pc,
1203 struct s390_prologue_data *data)
1204 {
1205 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1206
1207 /* Our return value:
1208 The address of the instruction after the last one that changed
1209 the SP, FP, or back chain; zero if we got an error trying to
1210 read memory. */
1211 CORE_ADDR result = start_pc;
1212
1213 /* The current PC for our abstract interpretation. */
1214 CORE_ADDR pc;
1215
1216 /* The address of the next instruction after that. */
1217 CORE_ADDR next_pc;
1218
1219 /* Set up everything's initial value. */
1220 {
1221 int i;
1222
1223 data->stack = make_pv_area (S390_SP_REGNUM, gdbarch_addr_bit (gdbarch));
1224
1225 /* For the purpose of prologue tracking, we consider the GPR size to
1226 be equal to the ABI word size, even if it is actually larger
1227 (i.e. when running a 32-bit binary under a 64-bit kernel). */
1228 data->gpr_size = word_size;
1229 data->fpr_size = 8;
1230 data->byte_order = gdbarch_byte_order (gdbarch);
1231
1232 for (i = 0; i < S390_NUM_GPRS; i++)
1233 data->gpr[i] = pv_register (S390_R0_REGNUM + i, 0);
1234
1235 for (i = 0; i < S390_NUM_FPRS; i++)
1236 data->fpr[i] = pv_register (S390_F0_REGNUM + i, 0);
1237
1238 for (i = 0; i < S390_NUM_GPRS; i++)
1239 data->gpr_slot[i] = 0;
1240
1241 for (i = 0; i < S390_NUM_FPRS; i++)
1242 data->fpr_slot[i] = 0;
1243
1244 data->back_chain_saved_p = 0;
1245 }
1246
1247 /* Start interpreting instructions, until we hit the frame's
1248 current PC or the first branch instruction. */
1249 for (pc = start_pc; pc > 0 && pc < current_pc; pc = next_pc)
1250 {
1251 bfd_byte insn[S390_MAX_INSTR_SIZE];
1252 int insn_len = s390_readinstruction (insn, pc);
1253
1254 bfd_byte dummy[S390_MAX_INSTR_SIZE] = { 0 };
1255 bfd_byte *insn32 = word_size == 4 ? insn : dummy;
1256 bfd_byte *insn64 = word_size == 8 ? insn : dummy;
1257
1258 /* Fields for various kinds of instructions. */
1259 unsigned int b2, r1, r2, x2, r3;
1260 int i2, d2;
1261
1262 /* The values of SP and FP before this instruction,
1263 for detecting instructions that change them. */
1264 pv_t pre_insn_sp, pre_insn_fp;
1265 /* Likewise for the flag whether the back chain was saved. */
1266 int pre_insn_back_chain_saved_p;
1267
1268 /* If we got an error trying to read the instruction, report it. */
1269 if (insn_len < 0)
1270 {
1271 result = 0;
1272 break;
1273 }
1274
1275 next_pc = pc + insn_len;
1276
1277 pre_insn_sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
1278 pre_insn_fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
1279 pre_insn_back_chain_saved_p = data->back_chain_saved_p;
1280
1281
1282 /* LHI r1, i2 --- load halfword immediate. */
1283 /* LGHI r1, i2 --- load halfword immediate (64-bit version). */
1284 /* LGFI r1, i2 --- load fullword immediate. */
1285 if (is_ri (insn32, op1_lhi, op2_lhi, &r1, &i2)
1286 || is_ri (insn64, op1_lghi, op2_lghi, &r1, &i2)
1287 || is_ril (insn, op1_lgfi, op2_lgfi, &r1, &i2))
1288 data->gpr[r1] = pv_constant (i2);
1289
1290 /* LR r1, r2 --- load from register. */
1291 /* LGR r1, r2 --- load from register (64-bit version). */
1292 else if (is_rr (insn32, op_lr, &r1, &r2)
1293 || is_rre (insn64, op_lgr, &r1, &r2))
1294 data->gpr[r1] = data->gpr[r2];
1295
1296 /* L r1, d2(x2, b2) --- load. */
1297 /* LY r1, d2(x2, b2) --- load (long-displacement version). */
1298 /* LG r1, d2(x2, b2) --- load (64-bit version). */
1299 else if (is_rx (insn32, op_l, &r1, &d2, &x2, &b2)
1300 || is_rxy (insn32, op1_ly, op2_ly, &r1, &d2, &x2, &b2)
1301 || is_rxy (insn64, op1_lg, op2_lg, &r1, &d2, &x2, &b2))
1302 data->gpr[r1] = s390_load (data, d2, x2, b2, data->gpr_size);
1303
1304 /* ST r1, d2(x2, b2) --- store. */
1305 /* STY r1, d2(x2, b2) --- store (long-displacement version). */
1306 /* STG r1, d2(x2, b2) --- store (64-bit version). */
1307 else if (is_rx (insn32, op_st, &r1, &d2, &x2, &b2)
1308 || is_rxy (insn32, op1_sty, op2_sty, &r1, &d2, &x2, &b2)
1309 || is_rxy (insn64, op1_stg, op2_stg, &r1, &d2, &x2, &b2))
1310 s390_store (data, d2, x2, b2, data->gpr_size, data->gpr[r1]);
1311
1312 /* STD r1, d2(x2,b2) --- store floating-point register. */
1313 else if (is_rx (insn, op_std, &r1, &d2, &x2, &b2))
1314 s390_store (data, d2, x2, b2, data->fpr_size, data->fpr[r1]);
1315
1316 /* STM r1, r3, d2(b2) --- store multiple. */
1317 /* STMY r1, r3, d2(b2) --- store multiple (long-displacement
1318 version). */
1319 /* STMG r1, r3, d2(b2) --- store multiple (64-bit version). */
1320 else if (is_rs (insn32, op_stm, &r1, &r3, &d2, &b2)
1321 || is_rsy (insn32, op1_stmy, op2_stmy, &r1, &r3, &d2, &b2)
1322 || is_rsy (insn64, op1_stmg, op2_stmg, &r1, &r3, &d2, &b2))
1323 {
1324 for (; r1 <= r3; r1++, d2 += data->gpr_size)
1325 s390_store (data, d2, 0, b2, data->gpr_size, data->gpr[r1]);
1326 }
1327
1328 /* AHI r1, i2 --- add halfword immediate. */
1329 /* AGHI r1, i2 --- add halfword immediate (64-bit version). */
1330 /* AFI r1, i2 --- add fullword immediate. */
1331 /* AGFI r1, i2 --- add fullword immediate (64-bit version). */
1332 else if (is_ri (insn32, op1_ahi, op2_ahi, &r1, &i2)
1333 || is_ri (insn64, op1_aghi, op2_aghi, &r1, &i2)
1334 || is_ril (insn32, op1_afi, op2_afi, &r1, &i2)
1335 || is_ril (insn64, op1_agfi, op2_agfi, &r1, &i2))
1336 data->gpr[r1] = pv_add_constant (data->gpr[r1], i2);
1337
1338 /* ALFI r1, i2 --- add logical immediate. */
1339 /* ALGFI r1, i2 --- add logical immediate (64-bit version). */
1340 else if (is_ril (insn32, op1_alfi, op2_alfi, &r1, &i2)
1341 || is_ril (insn64, op1_algfi, op2_algfi, &r1, &i2))
1342 data->gpr[r1] = pv_add_constant (data->gpr[r1],
1343 (CORE_ADDR)i2 & 0xffffffff);
1344
1345 /* AR r1, r2 -- add register. */
1346 /* AGR r1, r2 -- add register (64-bit version). */
1347 else if (is_rr (insn32, op_ar, &r1, &r2)
1348 || is_rre (insn64, op_agr, &r1, &r2))
1349 data->gpr[r1] = pv_add (data->gpr[r1], data->gpr[r2]);
1350
1351 /* A r1, d2(x2, b2) -- add. */
1352 /* AY r1, d2(x2, b2) -- add (long-displacement version). */
1353 /* AG r1, d2(x2, b2) -- add (64-bit version). */
1354 else if (is_rx (insn32, op_a, &r1, &d2, &x2, &b2)
1355 || is_rxy (insn32, op1_ay, op2_ay, &r1, &d2, &x2, &b2)
1356 || is_rxy (insn64, op1_ag, op2_ag, &r1, &d2, &x2, &b2))
1357 data->gpr[r1] = pv_add (data->gpr[r1],
1358 s390_load (data, d2, x2, b2, data->gpr_size));
1359
1360 /* SLFI r1, i2 --- subtract logical immediate. */
1361 /* SLGFI r1, i2 --- subtract logical immediate (64-bit version). */
1362 else if (is_ril (insn32, op1_slfi, op2_slfi, &r1, &i2)
1363 || is_ril (insn64, op1_slgfi, op2_slgfi, &r1, &i2))
1364 data->gpr[r1] = pv_add_constant (data->gpr[r1],
1365 -((CORE_ADDR)i2 & 0xffffffff));
1366
1367 /* SR r1, r2 -- subtract register. */
1368 /* SGR r1, r2 -- subtract register (64-bit version). */
1369 else if (is_rr (insn32, op_sr, &r1, &r2)
1370 || is_rre (insn64, op_sgr, &r1, &r2))
1371 data->gpr[r1] = pv_subtract (data->gpr[r1], data->gpr[r2]);
1372
1373 /* S r1, d2(x2, b2) -- subtract. */
1374 /* SY r1, d2(x2, b2) -- subtract (long-displacement version). */
1375 /* SG r1, d2(x2, b2) -- subtract (64-bit version). */
1376 else if (is_rx (insn32, op_s, &r1, &d2, &x2, &b2)
1377 || is_rxy (insn32, op1_sy, op2_sy, &r1, &d2, &x2, &b2)
1378 || is_rxy (insn64, op1_sg, op2_sg, &r1, &d2, &x2, &b2))
1379 data->gpr[r1] = pv_subtract (data->gpr[r1],
1380 s390_load (data, d2, x2, b2, data->gpr_size));
1381
1382 /* LA r1, d2(x2, b2) --- load address. */
1383 /* LAY r1, d2(x2, b2) --- load address (long-displacement version). */
1384 else if (is_rx (insn, op_la, &r1, &d2, &x2, &b2)
1385 || is_rxy (insn, op1_lay, op2_lay, &r1, &d2, &x2, &b2))
1386 data->gpr[r1] = s390_addr (data, d2, x2, b2);
1387
1388 /* LARL r1, i2 --- load address relative long. */
1389 else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2))
1390 data->gpr[r1] = pv_constant (pc + i2 * 2);
1391
1392 /* BASR r1, 0 --- branch and save.
1393 Since r2 is zero, this saves the PC in r1, but doesn't branch. */
1394 else if (is_rr (insn, op_basr, &r1, &r2)
1395 && r2 == 0)
1396 data->gpr[r1] = pv_constant (next_pc);
1397
1398 /* BRAS r1, i2 --- branch relative and save. */
1399 else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2))
1400 {
1401 data->gpr[r1] = pv_constant (next_pc);
1402 next_pc = pc + i2 * 2;
1403
1404 /* We'd better not interpret any backward branches. We'll
1405 never terminate. */
1406 if (next_pc <= pc)
1407 break;
1408 }
1409
1410 /* Terminate search when hitting any other branch instruction. */
1411 else if (is_rr (insn, op_basr, &r1, &r2)
1412 || is_rx (insn, op_bas, &r1, &d2, &x2, &b2)
1413 || is_rr (insn, op_bcr, &r1, &r2)
1414 || is_rx (insn, op_bc, &r1, &d2, &x2, &b2)
1415 || is_ri (insn, op1_brc, op2_brc, &r1, &i2)
1416 || is_ril (insn, op1_brcl, op2_brcl, &r1, &i2)
1417 || is_ril (insn, op1_brasl, op2_brasl, &r2, &i2))
1418 break;
1419
1420 else
1421 {
1422 /* An instruction we don't know how to simulate. The only
1423 safe thing to do would be to set every value we're tracking
1424 to 'unknown'. Instead, we'll be optimistic: we assume that
1425 we *can* interpret every instruction that the compiler uses
1426 to manipulate any of the data we're interested in here --
1427 then we can just ignore anything else. */
1428 }
1429
1430 /* Record the address after the last instruction that changed
1431 the FP, SP, or backlink. Ignore instructions that changed
1432 them back to their original values --- those are probably
1433 restore instructions. (The back chain is never restored,
1434 just popped.) */
1435 {
1436 pv_t sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
1437 pv_t fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
1438
1439 if ((! pv_is_identical (pre_insn_sp, sp)
1440 && ! pv_is_register_k (sp, S390_SP_REGNUM, 0)
1441 && sp.kind != pvk_unknown)
1442 || (! pv_is_identical (pre_insn_fp, fp)
1443 && ! pv_is_register_k (fp, S390_FRAME_REGNUM, 0)
1444 && fp.kind != pvk_unknown)
1445 || pre_insn_back_chain_saved_p != data->back_chain_saved_p)
1446 result = next_pc;
1447 }
1448 }
1449
1450 /* Record where all the registers were saved. */
1451 pv_area_scan (data->stack, s390_check_for_saved, data);
1452
1453 free_pv_area (data->stack);
1454 data->stack = NULL;
1455
1456 return result;
1457 }
1458
1459 /* Advance PC across any function entry prologue instructions to reach
1460 some "real" code. */
1461 static CORE_ADDR
1462 s390_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1463 {
1464 struct s390_prologue_data data;
1465 CORE_ADDR skip_pc, func_addr;
1466
1467 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
1468 {
1469 CORE_ADDR post_prologue_pc
1470 = skip_prologue_using_sal (gdbarch, func_addr);
1471 if (post_prologue_pc != 0)
1472 return max (pc, post_prologue_pc);
1473 }
1474
1475 skip_pc = s390_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
1476 return skip_pc ? skip_pc : pc;
1477 }
1478
1479 /* Return true if we are in the functin's epilogue, i.e. after the
1480 instruction that destroyed the function's stack frame. */
1481 static int
1482 s390_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1483 {
1484 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1485
1486 /* In frameless functions, there's not frame to destroy and thus
1487 we don't care about the epilogue.
1488
1489 In functions with frame, the epilogue sequence is a pair of
1490 a LM-type instruction that restores (amongst others) the
1491 return register %r14 and the stack pointer %r15, followed
1492 by a branch 'br %r14' --or equivalent-- that effects the
1493 actual return.
1494
1495 In that situation, this function needs to return 'true' in
1496 exactly one case: when pc points to that branch instruction.
1497
1498 Thus we try to disassemble the one instructions immediately
1499 preceding pc and check whether it is an LM-type instruction
1500 modifying the stack pointer.
1501
1502 Note that disassembling backwards is not reliable, so there
1503 is a slight chance of false positives here ... */
1504
1505 bfd_byte insn[6];
1506 unsigned int r1, r3, b2;
1507 int d2;
1508
1509 if (word_size == 4
1510 && !target_read_memory (pc - 4, insn, 4)
1511 && is_rs (insn, op_lm, &r1, &r3, &d2, &b2)
1512 && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
1513 return 1;
1514
1515 if (word_size == 4
1516 && !target_read_memory (pc - 6, insn, 6)
1517 && is_rsy (insn, op1_lmy, op2_lmy, &r1, &r3, &d2, &b2)
1518 && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
1519 return 1;
1520
1521 if (word_size == 8
1522 && !target_read_memory (pc - 6, insn, 6)
1523 && is_rsy (insn, op1_lmg, op2_lmg, &r1, &r3, &d2, &b2)
1524 && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
1525 return 1;
1526
1527 return 0;
1528 }
1529
1530 /* Displaced stepping. */
1531
1532 /* Fix up the state of registers and memory after having single-stepped
1533 a displaced instruction. */
1534 static void
1535 s390_displaced_step_fixup (struct gdbarch *gdbarch,
1536 struct displaced_step_closure *closure,
1537 CORE_ADDR from, CORE_ADDR to,
1538 struct regcache *regs)
1539 {
1540 /* Since we use simple_displaced_step_copy_insn, our closure is a
1541 copy of the instruction. */
1542 gdb_byte *insn = (gdb_byte *) closure;
1543 static int s390_instrlen[] = { 2, 4, 4, 6 };
1544 int insnlen = s390_instrlen[insn[0] >> 6];
1545
1546 /* Fields for various kinds of instructions. */
1547 unsigned int b2, r1, r2, x2, r3;
1548 int i2, d2;
1549
1550 /* Get current PC and addressing mode bit. */
1551 CORE_ADDR pc = regcache_read_pc (regs);
1552 ULONGEST amode = 0;
1553
1554 if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
1555 {
1556 regcache_cooked_read_unsigned (regs, S390_PSWA_REGNUM, &amode);
1557 amode &= 0x80000000;
1558 }
1559
1560 if (debug_displaced)
1561 fprintf_unfiltered (gdb_stdlog,
1562 "displaced: (s390) fixup (%s, %s) pc %s len %d amode 0x%x\n",
1563 paddress (gdbarch, from), paddress (gdbarch, to),
1564 paddress (gdbarch, pc), insnlen, (int) amode);
1565
1566 /* Handle absolute branch and save instructions. */
1567 if (is_rr (insn, op_basr, &r1, &r2)
1568 || is_rx (insn, op_bas, &r1, &d2, &x2, &b2))
1569 {
1570 /* Recompute saved return address in R1. */
1571 regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
1572 amode | (from + insnlen));
1573 }
1574
1575 /* Handle absolute branch instructions. */
1576 else if (is_rr (insn, op_bcr, &r1, &r2)
1577 || is_rx (insn, op_bc, &r1, &d2, &x2, &b2)
1578 || is_rr (insn, op_bctr, &r1, &r2)
1579 || is_rre (insn, op_bctgr, &r1, &r2)
1580 || is_rx (insn, op_bct, &r1, &d2, &x2, &b2)
1581 || is_rxy (insn, op1_bctg, op2_brctg, &r1, &d2, &x2, &b2)
1582 || is_rs (insn, op_bxh, &r1, &r3, &d2, &b2)
1583 || is_rsy (insn, op1_bxhg, op2_bxhg, &r1, &r3, &d2, &b2)
1584 || is_rs (insn, op_bxle, &r1, &r3, &d2, &b2)
1585 || is_rsy (insn, op1_bxleg, op2_bxleg, &r1, &r3, &d2, &b2))
1586 {
1587 /* Update PC iff branch was *not* taken. */
1588 if (pc == to + insnlen)
1589 regcache_write_pc (regs, from + insnlen);
1590 }
1591
1592 /* Handle PC-relative branch and save instructions. */
1593 else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2)
1594 || is_ril (insn, op1_brasl, op2_brasl, &r1, &i2))
1595 {
1596 /* Update PC. */
1597 regcache_write_pc (regs, pc - to + from);
1598 /* Recompute saved return address in R1. */
1599 regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
1600 amode | (from + insnlen));
1601 }
1602
1603 /* Handle PC-relative branch instructions. */
1604 else if (is_ri (insn, op1_brc, op2_brc, &r1, &i2)
1605 || is_ril (insn, op1_brcl, op2_brcl, &r1, &i2)
1606 || is_ri (insn, op1_brct, op2_brct, &r1, &i2)
1607 || is_ri (insn, op1_brctg, op2_brctg, &r1, &i2)
1608 || is_rsi (insn, op_brxh, &r1, &r3, &i2)
1609 || is_rie (insn, op1_brxhg, op2_brxhg, &r1, &r3, &i2)
1610 || is_rsi (insn, op_brxle, &r1, &r3, &i2)
1611 || is_rie (insn, op1_brxlg, op2_brxlg, &r1, &r3, &i2))
1612 {
1613 /* Update PC. */
1614 regcache_write_pc (regs, pc - to + from);
1615 }
1616
1617 /* Handle LOAD ADDRESS RELATIVE LONG. */
1618 else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2))
1619 {
1620 /* Update PC. */
1621 regcache_write_pc (regs, from + insnlen);
1622 /* Recompute output address in R1. */
1623 regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
1624 amode | (from + i2 * 2));
1625 }
1626
1627 /* If we executed a breakpoint instruction, point PC right back at it. */
1628 else if (insn[0] == 0x0 && insn[1] == 0x1)
1629 regcache_write_pc (regs, from);
1630
1631 /* For any other insn, PC points right after the original instruction. */
1632 else
1633 regcache_write_pc (regs, from + insnlen);
1634
1635 if (debug_displaced)
1636 fprintf_unfiltered (gdb_stdlog,
1637 "displaced: (s390) pc is now %s\n",
1638 paddress (gdbarch, regcache_read_pc (regs)));
1639 }
1640
1641
1642 /* Helper routine to unwind pseudo registers. */
1643
1644 static struct value *
1645 s390_unwind_pseudo_register (struct frame_info *this_frame, int regnum)
1646 {
1647 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1648 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1649 struct type *type = register_type (gdbarch, regnum);
1650
1651 /* Unwind PC via PSW address. */
1652 if (regnum == tdep->pc_regnum)
1653 {
1654 struct value *val;
1655
1656 val = frame_unwind_register_value (this_frame, S390_PSWA_REGNUM);
1657 if (!value_optimized_out (val))
1658 {
1659 LONGEST pswa = value_as_long (val);
1660
1661 if (TYPE_LENGTH (type) == 4)
1662 return value_from_pointer (type, pswa & 0x7fffffff);
1663 else
1664 return value_from_pointer (type, pswa);
1665 }
1666 }
1667
1668 /* Unwind CC via PSW mask. */
1669 if (regnum == tdep->cc_regnum)
1670 {
1671 struct value *val;
1672
1673 val = frame_unwind_register_value (this_frame, S390_PSWM_REGNUM);
1674 if (!value_optimized_out (val))
1675 {
1676 LONGEST pswm = value_as_long (val);
1677
1678 if (TYPE_LENGTH (type) == 4)
1679 return value_from_longest (type, (pswm >> 12) & 3);
1680 else
1681 return value_from_longest (type, (pswm >> 44) & 3);
1682 }
1683 }
1684
1685 /* Unwind full GPRs to show at least the lower halves (as the
1686 upper halves are undefined). */
1687 if (regnum_is_gpr_full (tdep, regnum))
1688 {
1689 int reg = regnum - tdep->gpr_full_regnum;
1690 struct value *val;
1691
1692 val = frame_unwind_register_value (this_frame, S390_R0_REGNUM + reg);
1693 if (!value_optimized_out (val))
1694 return value_cast (type, val);
1695 }
1696
1697 return allocate_optimized_out_value (type);
1698 }
1699
1700 static struct value *
1701 s390_trad_frame_prev_register (struct frame_info *this_frame,
1702 struct trad_frame_saved_reg saved_regs[],
1703 int regnum)
1704 {
1705 if (regnum < S390_NUM_REGS)
1706 return trad_frame_get_prev_register (this_frame, saved_regs, regnum);
1707 else
1708 return s390_unwind_pseudo_register (this_frame, regnum);
1709 }
1710
1711
1712 /* Normal stack frames. */
1713
1714 struct s390_unwind_cache {
1715
1716 CORE_ADDR func;
1717 CORE_ADDR frame_base;
1718 CORE_ADDR local_base;
1719
1720 struct trad_frame_saved_reg *saved_regs;
1721 };
1722
1723 static int
1724 s390_prologue_frame_unwind_cache (struct frame_info *this_frame,
1725 struct s390_unwind_cache *info)
1726 {
1727 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1728 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1729 struct s390_prologue_data data;
1730 pv_t *fp = &data.gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
1731 pv_t *sp = &data.gpr[S390_SP_REGNUM - S390_R0_REGNUM];
1732 int i;
1733 CORE_ADDR cfa;
1734 CORE_ADDR func;
1735 CORE_ADDR result;
1736 ULONGEST reg;
1737 CORE_ADDR prev_sp;
1738 int frame_pointer;
1739 int size;
1740 struct frame_info *next_frame;
1741
1742 /* Try to find the function start address. If we can't find it, we don't
1743 bother searching for it -- with modern compilers this would be mostly
1744 pointless anyway. Trust that we'll either have valid DWARF-2 CFI data
1745 or else a valid backchain ... */
1746 func = get_frame_func (this_frame);
1747 if (!func)
1748 return 0;
1749
1750 /* Try to analyze the prologue. */
1751 result = s390_analyze_prologue (gdbarch, func,
1752 get_frame_pc (this_frame), &data);
1753 if (!result)
1754 return 0;
1755
1756 /* If this was successful, we should have found the instruction that
1757 sets the stack pointer register to the previous value of the stack
1758 pointer minus the frame size. */
1759 if (!pv_is_register (*sp, S390_SP_REGNUM))
1760 return 0;
1761
1762 /* A frame size of zero at this point can mean either a real
1763 frameless function, or else a failure to find the prologue.
1764 Perform some sanity checks to verify we really have a
1765 frameless function. */
1766 if (sp->k == 0)
1767 {
1768 /* If the next frame is a NORMAL_FRAME, this frame *cannot* have frame
1769 size zero. This is only possible if the next frame is a sentinel
1770 frame, a dummy frame, or a signal trampoline frame. */
1771 /* FIXME: cagney/2004-05-01: This sanity check shouldn't be
1772 needed, instead the code should simpliy rely on its
1773 analysis. */
1774 next_frame = get_next_frame (this_frame);
1775 while (next_frame && get_frame_type (next_frame) == INLINE_FRAME)
1776 next_frame = get_next_frame (next_frame);
1777 if (next_frame
1778 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME)
1779 return 0;
1780
1781 /* If we really have a frameless function, %r14 must be valid
1782 -- in particular, it must point to a different function. */
1783 reg = get_frame_register_unsigned (this_frame, S390_RETADDR_REGNUM);
1784 reg = gdbarch_addr_bits_remove (gdbarch, reg) - 1;
1785 if (get_pc_function_start (reg) == func)
1786 {
1787 /* However, there is one case where it *is* valid for %r14
1788 to point to the same function -- if this is a recursive
1789 call, and we have stopped in the prologue *before* the
1790 stack frame was allocated.
1791
1792 Recognize this case by looking ahead a bit ... */
1793
1794 struct s390_prologue_data data2;
1795 pv_t *sp = &data2.gpr[S390_SP_REGNUM - S390_R0_REGNUM];
1796
1797 if (!(s390_analyze_prologue (gdbarch, func, (CORE_ADDR)-1, &data2)
1798 && pv_is_register (*sp, S390_SP_REGNUM)
1799 && sp->k != 0))
1800 return 0;
1801 }
1802 }
1803
1804
1805 /* OK, we've found valid prologue data. */
1806 size = -sp->k;
1807
1808 /* If the frame pointer originally also holds the same value
1809 as the stack pointer, we're probably using it. If it holds
1810 some other value -- even a constant offset -- it is most
1811 likely used as temp register. */
1812 if (pv_is_identical (*sp, *fp))
1813 frame_pointer = S390_FRAME_REGNUM;
1814 else
1815 frame_pointer = S390_SP_REGNUM;
1816
1817 /* If we've detected a function with stack frame, we'll still have to
1818 treat it as frameless if we're currently within the function epilog
1819 code at a point where the frame pointer has already been restored.
1820 This can only happen in an innermost frame. */
1821 /* FIXME: cagney/2004-05-01: This sanity check shouldn't be needed,
1822 instead the code should simpliy rely on its analysis. */
1823 next_frame = get_next_frame (this_frame);
1824 while (next_frame && get_frame_type (next_frame) == INLINE_FRAME)
1825 next_frame = get_next_frame (next_frame);
1826 if (size > 0
1827 && (next_frame == NULL
1828 || get_frame_type (get_next_frame (this_frame)) != NORMAL_FRAME))
1829 {
1830 /* See the comment in s390_in_function_epilogue_p on why this is
1831 not completely reliable ... */
1832 if (s390_in_function_epilogue_p (gdbarch, get_frame_pc (this_frame)))
1833 {
1834 memset (&data, 0, sizeof (data));
1835 size = 0;
1836 frame_pointer = S390_SP_REGNUM;
1837 }
1838 }
1839
1840 /* Once we know the frame register and the frame size, we can unwind
1841 the current value of the frame register from the next frame, and
1842 add back the frame size to arrive that the previous frame's
1843 stack pointer value. */
1844 prev_sp = get_frame_register_unsigned (this_frame, frame_pointer) + size;
1845 cfa = prev_sp + 16*word_size + 32;
1846
1847 /* Set up ABI call-saved/call-clobbered registers. */
1848 for (i = 0; i < S390_NUM_REGS; i++)
1849 if (!s390_register_call_saved (gdbarch, i))
1850 trad_frame_set_unknown (info->saved_regs, i);
1851
1852 /* CC is always call-clobbered. */
1853 trad_frame_set_unknown (info->saved_regs, S390_PSWM_REGNUM);
1854
1855 /* Record the addresses of all register spill slots the prologue parser
1856 has recognized. Consider only registers defined as call-saved by the
1857 ABI; for call-clobbered registers the parser may have recognized
1858 spurious stores. */
1859
1860 for (i = 0; i < 16; i++)
1861 if (s390_register_call_saved (gdbarch, S390_R0_REGNUM + i)
1862 && data.gpr_slot[i] != 0)
1863 info->saved_regs[S390_R0_REGNUM + i].addr = cfa - data.gpr_slot[i];
1864
1865 for (i = 0; i < 16; i++)
1866 if (s390_register_call_saved (gdbarch, S390_F0_REGNUM + i)
1867 && data.fpr_slot[i] != 0)
1868 info->saved_regs[S390_F0_REGNUM + i].addr = cfa - data.fpr_slot[i];
1869
1870 /* Function return will set PC to %r14. */
1871 info->saved_regs[S390_PSWA_REGNUM] = info->saved_regs[S390_RETADDR_REGNUM];
1872
1873 /* In frameless functions, we unwind simply by moving the return
1874 address to the PC. However, if we actually stored to the
1875 save area, use that -- we might only think the function frameless
1876 because we're in the middle of the prologue ... */
1877 if (size == 0
1878 && !trad_frame_addr_p (info->saved_regs, S390_PSWA_REGNUM))
1879 {
1880 info->saved_regs[S390_PSWA_REGNUM].realreg = S390_RETADDR_REGNUM;
1881 }
1882
1883 /* Another sanity check: unless this is a frameless function,
1884 we should have found spill slots for SP and PC.
1885 If not, we cannot unwind further -- this happens e.g. in
1886 libc's thread_start routine. */
1887 if (size > 0)
1888 {
1889 if (!trad_frame_addr_p (info->saved_regs, S390_SP_REGNUM)
1890 || !trad_frame_addr_p (info->saved_regs, S390_PSWA_REGNUM))
1891 prev_sp = -1;
1892 }
1893
1894 /* We use the current value of the frame register as local_base,
1895 and the top of the register save area as frame_base. */
1896 if (prev_sp != -1)
1897 {
1898 info->frame_base = prev_sp + 16*word_size + 32;
1899 info->local_base = prev_sp - size;
1900 }
1901
1902 info->func = func;
1903 return 1;
1904 }
1905
1906 static void
1907 s390_backchain_frame_unwind_cache (struct frame_info *this_frame,
1908 struct s390_unwind_cache *info)
1909 {
1910 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1911 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1912 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1913 CORE_ADDR backchain;
1914 ULONGEST reg;
1915 LONGEST sp;
1916 int i;
1917
1918 /* Set up ABI call-saved/call-clobbered registers. */
1919 for (i = 0; i < S390_NUM_REGS; i++)
1920 if (!s390_register_call_saved (gdbarch, i))
1921 trad_frame_set_unknown (info->saved_regs, i);
1922
1923 /* CC is always call-clobbered. */
1924 trad_frame_set_unknown (info->saved_regs, S390_PSWM_REGNUM);
1925
1926 /* Get the backchain. */
1927 reg = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
1928 backchain = read_memory_unsigned_integer (reg, word_size, byte_order);
1929
1930 /* A zero backchain terminates the frame chain. As additional
1931 sanity check, let's verify that the spill slot for SP in the
1932 save area pointed to by the backchain in fact links back to
1933 the save area. */
1934 if (backchain != 0
1935 && safe_read_memory_integer (backchain + 15*word_size,
1936 word_size, byte_order, &sp)
1937 && (CORE_ADDR)sp == backchain)
1938 {
1939 /* We don't know which registers were saved, but it will have
1940 to be at least %r14 and %r15. This will allow us to continue
1941 unwinding, but other prev-frame registers may be incorrect ... */
1942 info->saved_regs[S390_SP_REGNUM].addr = backchain + 15*word_size;
1943 info->saved_regs[S390_RETADDR_REGNUM].addr = backchain + 14*word_size;
1944
1945 /* Function return will set PC to %r14. */
1946 info->saved_regs[S390_PSWA_REGNUM]
1947 = info->saved_regs[S390_RETADDR_REGNUM];
1948
1949 /* We use the current value of the frame register as local_base,
1950 and the top of the register save area as frame_base. */
1951 info->frame_base = backchain + 16*word_size + 32;
1952 info->local_base = reg;
1953 }
1954
1955 info->func = get_frame_pc (this_frame);
1956 }
1957
1958 static struct s390_unwind_cache *
1959 s390_frame_unwind_cache (struct frame_info *this_frame,
1960 void **this_prologue_cache)
1961 {
1962 struct s390_unwind_cache *info;
1963
1964 if (*this_prologue_cache)
1965 return *this_prologue_cache;
1966
1967 info = FRAME_OBSTACK_ZALLOC (struct s390_unwind_cache);
1968 *this_prologue_cache = info;
1969 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1970 info->func = -1;
1971 info->frame_base = -1;
1972 info->local_base = -1;
1973
1974 TRY
1975 {
1976 /* Try to use prologue analysis to fill the unwind cache.
1977 If this fails, fall back to reading the stack backchain. */
1978 if (!s390_prologue_frame_unwind_cache (this_frame, info))
1979 s390_backchain_frame_unwind_cache (this_frame, info);
1980 }
1981 CATCH (ex, RETURN_MASK_ERROR)
1982 {
1983 if (ex.error != NOT_AVAILABLE_ERROR)
1984 throw_exception (ex);
1985 }
1986 END_CATCH
1987
1988 return info;
1989 }
1990
1991 static void
1992 s390_frame_this_id (struct frame_info *this_frame,
1993 void **this_prologue_cache,
1994 struct frame_id *this_id)
1995 {
1996 struct s390_unwind_cache *info
1997 = s390_frame_unwind_cache (this_frame, this_prologue_cache);
1998
1999 if (info->frame_base == -1)
2000 return;
2001
2002 *this_id = frame_id_build (info->frame_base, info->func);
2003 }
2004
2005 static struct value *
2006 s390_frame_prev_register (struct frame_info *this_frame,
2007 void **this_prologue_cache, int regnum)
2008 {
2009 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2010 struct s390_unwind_cache *info
2011 = s390_frame_unwind_cache (this_frame, this_prologue_cache);
2012
2013 return s390_trad_frame_prev_register (this_frame, info->saved_regs, regnum);
2014 }
2015
2016 static const struct frame_unwind s390_frame_unwind = {
2017 NORMAL_FRAME,
2018 default_frame_unwind_stop_reason,
2019 s390_frame_this_id,
2020 s390_frame_prev_register,
2021 NULL,
2022 default_frame_sniffer
2023 };
2024
2025
2026 /* Code stubs and their stack frames. For things like PLTs and NULL
2027 function calls (where there is no true frame and the return address
2028 is in the RETADDR register). */
2029
2030 struct s390_stub_unwind_cache
2031 {
2032 CORE_ADDR frame_base;
2033 struct trad_frame_saved_reg *saved_regs;
2034 };
2035
2036 static struct s390_stub_unwind_cache *
2037 s390_stub_frame_unwind_cache (struct frame_info *this_frame,
2038 void **this_prologue_cache)
2039 {
2040 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2041 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
2042 struct s390_stub_unwind_cache *info;
2043 ULONGEST reg;
2044
2045 if (*this_prologue_cache)
2046 return *this_prologue_cache;
2047
2048 info = FRAME_OBSTACK_ZALLOC (struct s390_stub_unwind_cache);
2049 *this_prologue_cache = info;
2050 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2051
2052 /* The return address is in register %r14. */
2053 info->saved_regs[S390_PSWA_REGNUM].realreg = S390_RETADDR_REGNUM;
2054
2055 /* Retrieve stack pointer and determine our frame base. */
2056 reg = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
2057 info->frame_base = reg + 16*word_size + 32;
2058
2059 return info;
2060 }
2061
2062 static void
2063 s390_stub_frame_this_id (struct frame_info *this_frame,
2064 void **this_prologue_cache,
2065 struct frame_id *this_id)
2066 {
2067 struct s390_stub_unwind_cache *info
2068 = s390_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2069 *this_id = frame_id_build (info->frame_base, get_frame_pc (this_frame));
2070 }
2071
2072 static struct value *
2073 s390_stub_frame_prev_register (struct frame_info *this_frame,
2074 void **this_prologue_cache, int regnum)
2075 {
2076 struct s390_stub_unwind_cache *info
2077 = s390_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2078 return s390_trad_frame_prev_register (this_frame, info->saved_regs, regnum);
2079 }
2080
2081 static int
2082 s390_stub_frame_sniffer (const struct frame_unwind *self,
2083 struct frame_info *this_frame,
2084 void **this_prologue_cache)
2085 {
2086 CORE_ADDR addr_in_block;
2087 bfd_byte insn[S390_MAX_INSTR_SIZE];
2088
2089 /* If the current PC points to non-readable memory, we assume we
2090 have trapped due to an invalid function pointer call. We handle
2091 the non-existing current function like a PLT stub. */
2092 addr_in_block = get_frame_address_in_block (this_frame);
2093 if (in_plt_section (addr_in_block)
2094 || s390_readinstruction (insn, get_frame_pc (this_frame)) < 0)
2095 return 1;
2096 return 0;
2097 }
2098
2099 static const struct frame_unwind s390_stub_frame_unwind = {
2100 NORMAL_FRAME,
2101 default_frame_unwind_stop_reason,
2102 s390_stub_frame_this_id,
2103 s390_stub_frame_prev_register,
2104 NULL,
2105 s390_stub_frame_sniffer
2106 };
2107
2108
2109 /* Signal trampoline stack frames. */
2110
2111 struct s390_sigtramp_unwind_cache {
2112 CORE_ADDR frame_base;
2113 struct trad_frame_saved_reg *saved_regs;
2114 };
2115
2116 static struct s390_sigtramp_unwind_cache *
2117 s390_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
2118 void **this_prologue_cache)
2119 {
2120 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2121 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2122 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
2123 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2124 struct s390_sigtramp_unwind_cache *info;
2125 ULONGEST this_sp, prev_sp;
2126 CORE_ADDR next_ra, next_cfa, sigreg_ptr, sigreg_high_off;
2127 int i;
2128
2129 if (*this_prologue_cache)
2130 return *this_prologue_cache;
2131
2132 info = FRAME_OBSTACK_ZALLOC (struct s390_sigtramp_unwind_cache);
2133 *this_prologue_cache = info;
2134 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2135
2136 this_sp = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
2137 next_ra = get_frame_pc (this_frame);
2138 next_cfa = this_sp + 16*word_size + 32;
2139
2140 /* New-style RT frame:
2141 retcode + alignment (8 bytes)
2142 siginfo (128 bytes)
2143 ucontext (contains sigregs at offset 5 words). */
2144 if (next_ra == next_cfa)
2145 {
2146 sigreg_ptr = next_cfa + 8 + 128 + align_up (5*word_size, 8);
2147 /* sigregs are followed by uc_sigmask (8 bytes), then by the
2148 upper GPR halves if present. */
2149 sigreg_high_off = 8;
2150 }
2151
2152 /* Old-style RT frame and all non-RT frames:
2153 old signal mask (8 bytes)
2154 pointer to sigregs. */
2155 else
2156 {
2157 sigreg_ptr = read_memory_unsigned_integer (next_cfa + 8,
2158 word_size, byte_order);
2159 /* sigregs are followed by signo (4 bytes), then by the
2160 upper GPR halves if present. */
2161 sigreg_high_off = 4;
2162 }
2163
2164 /* The sigregs structure looks like this:
2165 long psw_mask;
2166 long psw_addr;
2167 long gprs[16];
2168 int acrs[16];
2169 int fpc;
2170 int __pad;
2171 double fprs[16]; */
2172
2173 /* PSW mask and address. */
2174 info->saved_regs[S390_PSWM_REGNUM].addr = sigreg_ptr;
2175 sigreg_ptr += word_size;
2176 info->saved_regs[S390_PSWA_REGNUM].addr = sigreg_ptr;
2177 sigreg_ptr += word_size;
2178
2179 /* Then the GPRs. */
2180 for (i = 0; i < 16; i++)
2181 {
2182 info->saved_regs[S390_R0_REGNUM + i].addr = sigreg_ptr;
2183 sigreg_ptr += word_size;
2184 }
2185
2186 /* Then the ACRs. */
2187 for (i = 0; i < 16; i++)
2188 {
2189 info->saved_regs[S390_A0_REGNUM + i].addr = sigreg_ptr;
2190 sigreg_ptr += 4;
2191 }
2192
2193 /* The floating-point control word. */
2194 info->saved_regs[S390_FPC_REGNUM].addr = sigreg_ptr;
2195 sigreg_ptr += 8;
2196
2197 /* And finally the FPRs. */
2198 for (i = 0; i < 16; i++)
2199 {
2200 info->saved_regs[S390_F0_REGNUM + i].addr = sigreg_ptr;
2201 sigreg_ptr += 8;
2202 }
2203
2204 /* If we have them, the GPR upper halves are appended at the end. */
2205 sigreg_ptr += sigreg_high_off;
2206 if (tdep->gpr_full_regnum != -1)
2207 for (i = 0; i < 16; i++)
2208 {
2209 info->saved_regs[S390_R0_UPPER_REGNUM + i].addr = sigreg_ptr;
2210 sigreg_ptr += 4;
2211 }
2212
2213 /* Restore the previous frame's SP. */
2214 prev_sp = read_memory_unsigned_integer (
2215 info->saved_regs[S390_SP_REGNUM].addr,
2216 word_size, byte_order);
2217
2218 /* Determine our frame base. */
2219 info->frame_base = prev_sp + 16*word_size + 32;
2220
2221 return info;
2222 }
2223
2224 static void
2225 s390_sigtramp_frame_this_id (struct frame_info *this_frame,
2226 void **this_prologue_cache,
2227 struct frame_id *this_id)
2228 {
2229 struct s390_sigtramp_unwind_cache *info
2230 = s390_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
2231 *this_id = frame_id_build (info->frame_base, get_frame_pc (this_frame));
2232 }
2233
2234 static struct value *
2235 s390_sigtramp_frame_prev_register (struct frame_info *this_frame,
2236 void **this_prologue_cache, int regnum)
2237 {
2238 struct s390_sigtramp_unwind_cache *info
2239 = s390_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
2240 return s390_trad_frame_prev_register (this_frame, info->saved_regs, regnum);
2241 }
2242
2243 static int
2244 s390_sigtramp_frame_sniffer (const struct frame_unwind *self,
2245 struct frame_info *this_frame,
2246 void **this_prologue_cache)
2247 {
2248 CORE_ADDR pc = get_frame_pc (this_frame);
2249 bfd_byte sigreturn[2];
2250
2251 if (target_read_memory (pc, sigreturn, 2))
2252 return 0;
2253
2254 if (sigreturn[0] != op_svc)
2255 return 0;
2256
2257 if (sigreturn[1] != 119 /* sigreturn */
2258 && sigreturn[1] != 173 /* rt_sigreturn */)
2259 return 0;
2260
2261 return 1;
2262 }
2263
2264 static const struct frame_unwind s390_sigtramp_frame_unwind = {
2265 SIGTRAMP_FRAME,
2266 default_frame_unwind_stop_reason,
2267 s390_sigtramp_frame_this_id,
2268 s390_sigtramp_frame_prev_register,
2269 NULL,
2270 s390_sigtramp_frame_sniffer
2271 };
2272
2273 /* Retrieve the syscall number at a ptrace syscall-stop. Return -1
2274 upon error. */
2275
2276 static LONGEST
2277 s390_linux_get_syscall_number (struct gdbarch *gdbarch,
2278 ptid_t ptid)
2279 {
2280 struct regcache *regs = get_thread_regcache (ptid);
2281 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2282 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2283 ULONGEST pc;
2284 ULONGEST svc_number = -1;
2285 unsigned opcode;
2286
2287 /* Assume that the PC points after the 2-byte SVC instruction. We
2288 don't currently support SVC via EXECUTE. */
2289 regcache_cooked_read_unsigned (regs, tdep->pc_regnum, &pc);
2290 pc -= 2;
2291 opcode = read_memory_unsigned_integer ((CORE_ADDR) pc, 1, byte_order);
2292 if (opcode != op_svc)
2293 return -1;
2294
2295 svc_number = read_memory_unsigned_integer ((CORE_ADDR) pc + 1, 1,
2296 byte_order);
2297 if (svc_number == 0)
2298 regcache_cooked_read_unsigned (regs, S390_R1_REGNUM, &svc_number);
2299
2300 return svc_number;
2301 }
2302
2303
2304 /* Frame base handling. */
2305
2306 static CORE_ADDR
2307 s390_frame_base_address (struct frame_info *this_frame, void **this_cache)
2308 {
2309 struct s390_unwind_cache *info
2310 = s390_frame_unwind_cache (this_frame, this_cache);
2311 return info->frame_base;
2312 }
2313
2314 static CORE_ADDR
2315 s390_local_base_address (struct frame_info *this_frame, void **this_cache)
2316 {
2317 struct s390_unwind_cache *info
2318 = s390_frame_unwind_cache (this_frame, this_cache);
2319 return info->local_base;
2320 }
2321
2322 static const struct frame_base s390_frame_base = {
2323 &s390_frame_unwind,
2324 s390_frame_base_address,
2325 s390_local_base_address,
2326 s390_local_base_address
2327 };
2328
2329 static CORE_ADDR
2330 s390_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2331 {
2332 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2333 ULONGEST pc;
2334 pc = frame_unwind_register_unsigned (next_frame, tdep->pc_regnum);
2335 return gdbarch_addr_bits_remove (gdbarch, pc);
2336 }
2337
2338 static CORE_ADDR
2339 s390_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2340 {
2341 ULONGEST sp;
2342 sp = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM);
2343 return gdbarch_addr_bits_remove (gdbarch, sp);
2344 }
2345
2346
2347 /* DWARF-2 frame support. */
2348
2349 static struct value *
2350 s390_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache,
2351 int regnum)
2352 {
2353 return s390_unwind_pseudo_register (this_frame, regnum);
2354 }
2355
2356 static void
2357 s390_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
2358 struct dwarf2_frame_state_reg *reg,
2359 struct frame_info *this_frame)
2360 {
2361 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2362
2363 /* The condition code (and thus PSW mask) is call-clobbered. */
2364 if (regnum == S390_PSWM_REGNUM)
2365 reg->how = DWARF2_FRAME_REG_UNDEFINED;
2366
2367 /* The PSW address unwinds to the return address. */
2368 else if (regnum == S390_PSWA_REGNUM)
2369 reg->how = DWARF2_FRAME_REG_RA;
2370
2371 /* Fixed registers are call-saved or call-clobbered
2372 depending on the ABI in use. */
2373 else if (regnum < S390_NUM_REGS)
2374 {
2375 if (s390_register_call_saved (gdbarch, regnum))
2376 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
2377 else
2378 reg->how = DWARF2_FRAME_REG_UNDEFINED;
2379 }
2380
2381 /* We install a special function to unwind pseudos. */
2382 else
2383 {
2384 reg->how = DWARF2_FRAME_REG_FN;
2385 reg->loc.fn = s390_dwarf2_prev_register;
2386 }
2387 }
2388
2389
2390 /* Dummy function calls. */
2391
2392 /* Return non-zero if TYPE is an integer-like type, zero otherwise.
2393 "Integer-like" types are those that should be passed the way
2394 integers are: integers, enums, ranges, characters, and booleans. */
2395 static int
2396 is_integer_like (struct type *type)
2397 {
2398 enum type_code code = TYPE_CODE (type);
2399
2400 return (code == TYPE_CODE_INT
2401 || code == TYPE_CODE_ENUM
2402 || code == TYPE_CODE_RANGE
2403 || code == TYPE_CODE_CHAR
2404 || code == TYPE_CODE_BOOL);
2405 }
2406
2407 /* Return non-zero if TYPE is a pointer-like type, zero otherwise.
2408 "Pointer-like" types are those that should be passed the way
2409 pointers are: pointers and references. */
2410 static int
2411 is_pointer_like (struct type *type)
2412 {
2413 enum type_code code = TYPE_CODE (type);
2414
2415 return (code == TYPE_CODE_PTR
2416 || code == TYPE_CODE_REF);
2417 }
2418
2419
2420 /* Return non-zero if TYPE is a `float singleton' or `double
2421 singleton', zero otherwise.
2422
2423 A `T singleton' is a struct type with one member, whose type is
2424 either T or a `T singleton'. So, the following are all float
2425 singletons:
2426
2427 struct { float x };
2428 struct { struct { float x; } x; };
2429 struct { struct { struct { float x; } x; } x; };
2430
2431 ... and so on.
2432
2433 All such structures are passed as if they were floats or doubles,
2434 as the (revised) ABI says. */
2435 static int
2436 is_float_singleton (struct type *type)
2437 {
2438 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2439 {
2440 struct type *singleton_type = TYPE_FIELD_TYPE (type, 0);
2441 CHECK_TYPEDEF (singleton_type);
2442
2443 return (TYPE_CODE (singleton_type) == TYPE_CODE_FLT
2444 || TYPE_CODE (singleton_type) == TYPE_CODE_DECFLOAT
2445 || is_float_singleton (singleton_type));
2446 }
2447
2448 return 0;
2449 }
2450
2451
2452 /* Return non-zero if TYPE is a struct-like type, zero otherwise.
2453 "Struct-like" types are those that should be passed as structs are:
2454 structs and unions.
2455
2456 As an odd quirk, not mentioned in the ABI, GCC passes float and
2457 double singletons as if they were a plain float, double, etc. (The
2458 corresponding union types are handled normally.) So we exclude
2459 those types here. *shrug* */
2460 static int
2461 is_struct_like (struct type *type)
2462 {
2463 enum type_code code = TYPE_CODE (type);
2464
2465 return (code == TYPE_CODE_UNION
2466 || (code == TYPE_CODE_STRUCT && ! is_float_singleton (type)));
2467 }
2468
2469
2470 /* Return non-zero if TYPE is a float-like type, zero otherwise.
2471 "Float-like" types are those that should be passed as
2472 floating-point values are.
2473
2474 You'd think this would just be floats, doubles, long doubles, etc.
2475 But as an odd quirk, not mentioned in the ABI, GCC passes float and
2476 double singletons as if they were a plain float, double, etc. (The
2477 corresponding union types are handled normally.) So we include
2478 those types here. *shrug* */
2479 static int
2480 is_float_like (struct type *type)
2481 {
2482 return (TYPE_CODE (type) == TYPE_CODE_FLT
2483 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2484 || is_float_singleton (type));
2485 }
2486
2487
2488 static int
2489 is_power_of_two (unsigned int n)
2490 {
2491 return ((n & (n - 1)) == 0);
2492 }
2493
2494 /* Return non-zero if TYPE should be passed as a pointer to a copy,
2495 zero otherwise. */
2496 static int
2497 s390_function_arg_pass_by_reference (struct type *type)
2498 {
2499 if (TYPE_LENGTH (type) > 8)
2500 return 1;
2501
2502 return (is_struct_like (type) && !is_power_of_two (TYPE_LENGTH (type)))
2503 || TYPE_CODE (type) == TYPE_CODE_COMPLEX
2504 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type));
2505 }
2506
2507 /* Return non-zero if TYPE should be passed in a float register
2508 if possible. */
2509 static int
2510 s390_function_arg_float (struct type *type)
2511 {
2512 if (TYPE_LENGTH (type) > 8)
2513 return 0;
2514
2515 return is_float_like (type);
2516 }
2517
2518 /* Return non-zero if TYPE should be passed in an integer register
2519 (or a pair of integer registers) if possible. */
2520 static int
2521 s390_function_arg_integer (struct type *type)
2522 {
2523 if (TYPE_LENGTH (type) > 8)
2524 return 0;
2525
2526 return is_integer_like (type)
2527 || is_pointer_like (type)
2528 || (is_struct_like (type) && is_power_of_two (TYPE_LENGTH (type)));
2529 }
2530
2531 /* Return ARG, a `SIMPLE_ARG', sign-extended or zero-extended to a full
2532 word as required for the ABI. */
2533 static LONGEST
2534 extend_simple_arg (struct gdbarch *gdbarch, struct value *arg)
2535 {
2536 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2537 struct type *type = check_typedef (value_type (arg));
2538
2539 /* Even structs get passed in the least significant bits of the
2540 register / memory word. It's not really right to extract them as
2541 an integer, but it does take care of the extension. */
2542 if (TYPE_UNSIGNED (type))
2543 return extract_unsigned_integer (value_contents (arg),
2544 TYPE_LENGTH (type), byte_order);
2545 else
2546 return extract_signed_integer (value_contents (arg),
2547 TYPE_LENGTH (type), byte_order);
2548 }
2549
2550
2551 /* Return the alignment required by TYPE. */
2552 static int
2553 alignment_of (struct type *type)
2554 {
2555 int alignment;
2556
2557 if (is_integer_like (type)
2558 || is_pointer_like (type)
2559 || TYPE_CODE (type) == TYPE_CODE_FLT
2560 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
2561 alignment = TYPE_LENGTH (type);
2562 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2563 || TYPE_CODE (type) == TYPE_CODE_UNION)
2564 {
2565 int i;
2566
2567 alignment = 1;
2568 for (i = 0; i < TYPE_NFIELDS (type); i++)
2569 {
2570 int field_alignment
2571 = alignment_of (check_typedef (TYPE_FIELD_TYPE (type, i)));
2572
2573 if (field_alignment > alignment)
2574 alignment = field_alignment;
2575 }
2576 }
2577 else
2578 alignment = 1;
2579
2580 /* Check that everything we ever return is a power of two. Lots of
2581 code doesn't want to deal with aligning things to arbitrary
2582 boundaries. */
2583 gdb_assert ((alignment & (alignment - 1)) == 0);
2584
2585 return alignment;
2586 }
2587
2588
2589 /* Put the actual parameter values pointed to by ARGS[0..NARGS-1] in
2590 place to be passed to a function, as specified by the "GNU/Linux
2591 for S/390 ELF Application Binary Interface Supplement".
2592
2593 SP is the current stack pointer. We must put arguments, links,
2594 padding, etc. whereever they belong, and return the new stack
2595 pointer value.
2596
2597 If STRUCT_RETURN is non-zero, then the function we're calling is
2598 going to return a structure by value; STRUCT_ADDR is the address of
2599 a block we've allocated for it on the stack.
2600
2601 Our caller has taken care of any type promotions needed to satisfy
2602 prototypes or the old K&R argument-passing rules. */
2603 static CORE_ADDR
2604 s390_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2605 struct regcache *regcache, CORE_ADDR bp_addr,
2606 int nargs, struct value **args, CORE_ADDR sp,
2607 int struct_return, CORE_ADDR struct_addr)
2608 {
2609 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2610 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
2611 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2612 int i;
2613
2614 /* If the i'th argument is passed as a reference to a copy, then
2615 copy_addr[i] is the address of the copy we made. */
2616 CORE_ADDR *copy_addr = alloca (nargs * sizeof (CORE_ADDR));
2617
2618 /* Reserve space for the reference-to-copy area. */
2619 for (i = 0; i < nargs; i++)
2620 {
2621 struct value *arg = args[i];
2622 struct type *type = check_typedef (value_type (arg));
2623
2624 if (s390_function_arg_pass_by_reference (type))
2625 {
2626 sp -= TYPE_LENGTH (type);
2627 sp = align_down (sp, alignment_of (type));
2628 copy_addr[i] = sp;
2629 }
2630 }
2631
2632 /* Reserve space for the parameter area. As a conservative
2633 simplification, we assume that everything will be passed on the
2634 stack. Since every argument larger than 8 bytes will be
2635 passed by reference, we use this simple upper bound. */
2636 sp -= nargs * 8;
2637
2638 /* After all that, make sure it's still aligned on an eight-byte
2639 boundary. */
2640 sp = align_down (sp, 8);
2641
2642 /* Allocate the standard frame areas: the register save area, the
2643 word reserved for the compiler (which seems kind of meaningless),
2644 and the back chain pointer. */
2645 sp -= 16*word_size + 32;
2646
2647 /* Now we have the final SP value. Make sure we didn't underflow;
2648 on 31-bit, this would result in addresses with the high bit set,
2649 which causes confusion elsewhere. Note that if we error out
2650 here, stack and registers remain untouched. */
2651 if (gdbarch_addr_bits_remove (gdbarch, sp) != sp)
2652 error (_("Stack overflow"));
2653
2654
2655 /* Finally, place the actual parameters, working from SP towards
2656 higher addresses. The code above is supposed to reserve enough
2657 space for this. */
2658 {
2659 int fr = 0;
2660 int gr = 2;
2661 CORE_ADDR starg = sp + 16*word_size + 32;
2662
2663 /* A struct is returned using general register 2. */
2664 if (struct_return)
2665 {
2666 regcache_cooked_write_unsigned (regcache, S390_R0_REGNUM + gr,
2667 struct_addr);
2668 gr++;
2669 }
2670
2671 for (i = 0; i < nargs; i++)
2672 {
2673 struct value *arg = args[i];
2674 struct type *type = check_typedef (value_type (arg));
2675 unsigned length = TYPE_LENGTH (type);
2676
2677 if (s390_function_arg_pass_by_reference (type))
2678 {
2679 /* Actually copy the argument contents to the stack slot
2680 that was reserved above. */
2681 write_memory (copy_addr[i], value_contents (arg), length);
2682
2683 if (gr <= 6)
2684 {
2685 regcache_cooked_write_unsigned (regcache, S390_R0_REGNUM + gr,
2686 copy_addr[i]);
2687 gr++;
2688 }
2689 else
2690 {
2691 write_memory_unsigned_integer (starg, word_size, byte_order,
2692 copy_addr[i]);
2693 starg += word_size;
2694 }
2695 }
2696 else if (s390_function_arg_float (type))
2697 {
2698 /* The GNU/Linux for S/390 ABI uses FPRs 0 and 2 to pass arguments,
2699 the GNU/Linux for zSeries ABI uses 0, 2, 4, and 6. */
2700 if (fr <= (tdep->abi == ABI_LINUX_S390 ? 2 : 6))
2701 {
2702 /* When we store a single-precision value in an FP register,
2703 it occupies the leftmost bits. */
2704 regcache_cooked_write_part (regcache, S390_F0_REGNUM + fr,
2705 0, length, value_contents (arg));
2706 fr += 2;
2707 }
2708 else
2709 {
2710 /* When we store a single-precision value in a stack slot,
2711 it occupies the rightmost bits. */
2712 starg = align_up (starg + length, word_size);
2713 write_memory (starg - length, value_contents (arg), length);
2714 }
2715 }
2716 else if (s390_function_arg_integer (type) && length <= word_size)
2717 {
2718 if (gr <= 6)
2719 {
2720 /* Integer arguments are always extended to word size. */
2721 regcache_cooked_write_signed (regcache, S390_R0_REGNUM + gr,
2722 extend_simple_arg (gdbarch,
2723 arg));
2724 gr++;
2725 }
2726 else
2727 {
2728 /* Integer arguments are always extended to word size. */
2729 write_memory_signed_integer (starg, word_size, byte_order,
2730 extend_simple_arg (gdbarch, arg));
2731 starg += word_size;
2732 }
2733 }
2734 else if (s390_function_arg_integer (type) && length == 2*word_size)
2735 {
2736 if (gr <= 5)
2737 {
2738 regcache_cooked_write (regcache, S390_R0_REGNUM + gr,
2739 value_contents (arg));
2740 regcache_cooked_write (regcache, S390_R0_REGNUM + gr + 1,
2741 value_contents (arg) + word_size);
2742 gr += 2;
2743 }
2744 else
2745 {
2746 /* If we skipped r6 because we couldn't fit a DOUBLE_ARG
2747 in it, then don't go back and use it again later. */
2748 gr = 7;
2749
2750 write_memory (starg, value_contents (arg), length);
2751 starg += length;
2752 }
2753 }
2754 else
2755 internal_error (__FILE__, __LINE__, _("unknown argument type"));
2756 }
2757 }
2758
2759 /* Store return PSWA. In 31-bit mode, keep addressing mode bit. */
2760 if (word_size == 4)
2761 {
2762 ULONGEST pswa;
2763 regcache_cooked_read_unsigned (regcache, S390_PSWA_REGNUM, &pswa);
2764 bp_addr = (bp_addr & 0x7fffffff) | (pswa & 0x80000000);
2765 }
2766 regcache_cooked_write_unsigned (regcache, S390_RETADDR_REGNUM, bp_addr);
2767
2768 /* Store updated stack pointer. */
2769 regcache_cooked_write_unsigned (regcache, S390_SP_REGNUM, sp);
2770
2771 /* We need to return the 'stack part' of the frame ID,
2772 which is actually the top of the register save area. */
2773 return sp + 16*word_size + 32;
2774 }
2775
2776 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
2777 dummy frame. The frame ID's base needs to match the TOS value
2778 returned by push_dummy_call, and the PC match the dummy frame's
2779 breakpoint. */
2780 static struct frame_id
2781 s390_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2782 {
2783 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
2784 CORE_ADDR sp = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
2785 sp = gdbarch_addr_bits_remove (gdbarch, sp);
2786
2787 return frame_id_build (sp + 16*word_size + 32,
2788 get_frame_pc (this_frame));
2789 }
2790
2791 static CORE_ADDR
2792 s390_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2793 {
2794 /* Both the 32- and 64-bit ABI's say that the stack pointer should
2795 always be aligned on an eight-byte boundary. */
2796 return (addr & -8);
2797 }
2798
2799
2800 /* Function return value access. */
2801
2802 static enum return_value_convention
2803 s390_return_value_convention (struct gdbarch *gdbarch, struct type *type)
2804 {
2805 if (TYPE_LENGTH (type) > 8)
2806 return RETURN_VALUE_STRUCT_CONVENTION;
2807
2808 switch (TYPE_CODE (type))
2809 {
2810 case TYPE_CODE_STRUCT:
2811 case TYPE_CODE_UNION:
2812 case TYPE_CODE_ARRAY:
2813 case TYPE_CODE_COMPLEX:
2814 return RETURN_VALUE_STRUCT_CONVENTION;
2815
2816 default:
2817 return RETURN_VALUE_REGISTER_CONVENTION;
2818 }
2819 }
2820
2821 static enum return_value_convention
2822 s390_return_value (struct gdbarch *gdbarch, struct value *function,
2823 struct type *type, struct regcache *regcache,
2824 gdb_byte *out, const gdb_byte *in)
2825 {
2826 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2827 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
2828 enum return_value_convention rvc;
2829 int length;
2830
2831 type = check_typedef (type);
2832 rvc = s390_return_value_convention (gdbarch, type);
2833 length = TYPE_LENGTH (type);
2834
2835 if (in)
2836 {
2837 switch (rvc)
2838 {
2839 case RETURN_VALUE_REGISTER_CONVENTION:
2840 if (TYPE_CODE (type) == TYPE_CODE_FLT
2841 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
2842 {
2843 /* When we store a single-precision value in an FP register,
2844 it occupies the leftmost bits. */
2845 regcache_cooked_write_part (regcache, S390_F0_REGNUM,
2846 0, length, in);
2847 }
2848 else if (length <= word_size)
2849 {
2850 /* Integer arguments are always extended to word size. */
2851 if (TYPE_UNSIGNED (type))
2852 regcache_cooked_write_unsigned (regcache, S390_R2_REGNUM,
2853 extract_unsigned_integer (in, length, byte_order));
2854 else
2855 regcache_cooked_write_signed (regcache, S390_R2_REGNUM,
2856 extract_signed_integer (in, length, byte_order));
2857 }
2858 else if (length == 2*word_size)
2859 {
2860 regcache_cooked_write (regcache, S390_R2_REGNUM, in);
2861 regcache_cooked_write (regcache, S390_R3_REGNUM, in + word_size);
2862 }
2863 else
2864 internal_error (__FILE__, __LINE__, _("invalid return type"));
2865 break;
2866
2867 case RETURN_VALUE_STRUCT_CONVENTION:
2868 error (_("Cannot set function return value."));
2869 break;
2870 }
2871 }
2872 else if (out)
2873 {
2874 switch (rvc)
2875 {
2876 case RETURN_VALUE_REGISTER_CONVENTION:
2877 if (TYPE_CODE (type) == TYPE_CODE_FLT
2878 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
2879 {
2880 /* When we store a single-precision value in an FP register,
2881 it occupies the leftmost bits. */
2882 regcache_cooked_read_part (regcache, S390_F0_REGNUM,
2883 0, length, out);
2884 }
2885 else if (length <= word_size)
2886 {
2887 /* Integer arguments occupy the rightmost bits. */
2888 regcache_cooked_read_part (regcache, S390_R2_REGNUM,
2889 word_size - length, length, out);
2890 }
2891 else if (length == 2*word_size)
2892 {
2893 regcache_cooked_read (regcache, S390_R2_REGNUM, out);
2894 regcache_cooked_read (regcache, S390_R3_REGNUM, out + word_size);
2895 }
2896 else
2897 internal_error (__FILE__, __LINE__, _("invalid return type"));
2898 break;
2899
2900 case RETURN_VALUE_STRUCT_CONVENTION:
2901 error (_("Function return value unknown."));
2902 break;
2903 }
2904 }
2905
2906 return rvc;
2907 }
2908
2909
2910 /* Breakpoints. */
2911
2912 static const gdb_byte *
2913 s390_breakpoint_from_pc (struct gdbarch *gdbarch,
2914 CORE_ADDR *pcptr, int *lenptr)
2915 {
2916 static const gdb_byte breakpoint[] = { 0x0, 0x1 };
2917
2918 *lenptr = sizeof (breakpoint);
2919 return breakpoint;
2920 }
2921
2922
2923 /* Address handling. */
2924
2925 static CORE_ADDR
2926 s390_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
2927 {
2928 return addr & 0x7fffffff;
2929 }
2930
2931 static int
2932 s390_address_class_type_flags (int byte_size, int dwarf2_addr_class)
2933 {
2934 if (byte_size == 4)
2935 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
2936 else
2937 return 0;
2938 }
2939
2940 static const char *
2941 s390_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
2942 {
2943 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
2944 return "mode32";
2945 else
2946 return NULL;
2947 }
2948
2949 static int
2950 s390_address_class_name_to_type_flags (struct gdbarch *gdbarch,
2951 const char *name,
2952 int *type_flags_ptr)
2953 {
2954 if (strcmp (name, "mode32") == 0)
2955 {
2956 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
2957 return 1;
2958 }
2959 else
2960 return 0;
2961 }
2962
2963 /* Implement gdbarch_gcc_target_options. GCC does not know "-m32" or
2964 "-mcmodel=large". */
2965
2966 static char *
2967 s390_gcc_target_options (struct gdbarch *gdbarch)
2968 {
2969 return xstrdup (gdbarch_ptr_bit (gdbarch) == 64 ? "-m64" : "-m31");
2970 }
2971
2972 /* Implement gdbarch_gnu_triplet_regexp. Target triplets are "s390-*"
2973 for 31-bit and "s390x-*" for 64-bit, while the BFD arch name is
2974 always "s390". Note that an s390x compiler supports "-m31" as
2975 well. */
2976
2977 static const char *
2978 s390_gnu_triplet_regexp (struct gdbarch *gdbarch)
2979 {
2980 return "s390x?";
2981 }
2982
2983 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
2984 gdbarch.h. */
2985
2986 static int
2987 s390_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
2988 {
2989 return ((isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement
2990 or indirection. */
2991 || *s == '%' /* Register access. */
2992 || isdigit (*s)); /* Literal number. */
2993 }
2994
2995 /* Set up gdbarch struct. */
2996
2997 static struct gdbarch *
2998 s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2999 {
3000 const struct target_desc *tdesc = info.target_desc;
3001 struct tdesc_arch_data *tdesc_data = NULL;
3002 struct gdbarch *gdbarch;
3003 struct gdbarch_tdep *tdep;
3004 int tdep_abi;
3005 int have_upper = 0;
3006 int have_linux_v1 = 0;
3007 int have_linux_v2 = 0;
3008 int have_tdb = 0;
3009 int have_vx = 0;
3010 int first_pseudo_reg, last_pseudo_reg;
3011 static const char *const stap_register_prefixes[] = { "%", NULL };
3012 static const char *const stap_register_indirection_prefixes[] = { "(",
3013 NULL };
3014 static const char *const stap_register_indirection_suffixes[] = { ")",
3015 NULL };
3016
3017 /* Default ABI and register size. */
3018 switch (info.bfd_arch_info->mach)
3019 {
3020 case bfd_mach_s390_31:
3021 tdep_abi = ABI_LINUX_S390;
3022 break;
3023
3024 case bfd_mach_s390_64:
3025 tdep_abi = ABI_LINUX_ZSERIES;
3026 break;
3027
3028 default:
3029 return NULL;
3030 }
3031
3032 /* Use default target description if none provided by the target. */
3033 if (!tdesc_has_registers (tdesc))
3034 {
3035 if (tdep_abi == ABI_LINUX_S390)
3036 tdesc = tdesc_s390_linux32;
3037 else
3038 tdesc = tdesc_s390x_linux64;
3039 }
3040
3041 /* Check any target description for validity. */
3042 if (tdesc_has_registers (tdesc))
3043 {
3044 static const char *const gprs[] = {
3045 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
3046 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3047 };
3048 static const char *const fprs[] = {
3049 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
3050 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15"
3051 };
3052 static const char *const acrs[] = {
3053 "acr0", "acr1", "acr2", "acr3", "acr4", "acr5", "acr6", "acr7",
3054 "acr8", "acr9", "acr10", "acr11", "acr12", "acr13", "acr14", "acr15"
3055 };
3056 static const char *const gprs_lower[] = {
3057 "r0l", "r1l", "r2l", "r3l", "r4l", "r5l", "r6l", "r7l",
3058 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l"
3059 };
3060 static const char *const gprs_upper[] = {
3061 "r0h", "r1h", "r2h", "r3h", "r4h", "r5h", "r6h", "r7h",
3062 "r8h", "r9h", "r10h", "r11h", "r12h", "r13h", "r14h", "r15h"
3063 };
3064 static const char *const tdb_regs[] = {
3065 "tdb0", "tac", "tct", "atia",
3066 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
3067 "tr8", "tr9", "tr10", "tr11", "tr12", "tr13", "tr14", "tr15"
3068 };
3069 static const char *const vxrs_low[] = {
3070 "v0l", "v1l", "v2l", "v3l", "v4l", "v5l", "v6l", "v7l", "v8l",
3071 "v9l", "v10l", "v11l", "v12l", "v13l", "v14l", "v15l",
3072 };
3073 static const char *const vxrs_high[] = {
3074 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24",
3075 "v25", "v26", "v27", "v28", "v29", "v30", "v31",
3076 };
3077 const struct tdesc_feature *feature;
3078 int i, valid_p = 1;
3079
3080 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.core");
3081 if (feature == NULL)
3082 return NULL;
3083
3084 tdesc_data = tdesc_data_alloc ();
3085
3086 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3087 S390_PSWM_REGNUM, "pswm");
3088 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3089 S390_PSWA_REGNUM, "pswa");
3090
3091 if (tdesc_unnumbered_register (feature, "r0"))
3092 {
3093 for (i = 0; i < 16; i++)
3094 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3095 S390_R0_REGNUM + i, gprs[i]);
3096 }
3097 else
3098 {
3099 have_upper = 1;
3100
3101 for (i = 0; i < 16; i++)
3102 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3103 S390_R0_REGNUM + i,
3104 gprs_lower[i]);
3105 for (i = 0; i < 16; i++)
3106 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3107 S390_R0_UPPER_REGNUM + i,
3108 gprs_upper[i]);
3109 }
3110
3111 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.fpr");
3112 if (feature == NULL)
3113 {
3114 tdesc_data_cleanup (tdesc_data);
3115 return NULL;
3116 }
3117
3118 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3119 S390_FPC_REGNUM, "fpc");
3120 for (i = 0; i < 16; i++)
3121 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3122 S390_F0_REGNUM + i, fprs[i]);
3123
3124 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.acr");
3125 if (feature == NULL)
3126 {
3127 tdesc_data_cleanup (tdesc_data);
3128 return NULL;
3129 }
3130
3131 for (i = 0; i < 16; i++)
3132 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3133 S390_A0_REGNUM + i, acrs[i]);
3134
3135 /* Optional GNU/Linux-specific "registers". */
3136 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.linux");
3137 if (feature)
3138 {
3139 tdesc_numbered_register (feature, tdesc_data,
3140 S390_ORIG_R2_REGNUM, "orig_r2");
3141
3142 if (tdesc_numbered_register (feature, tdesc_data,
3143 S390_LAST_BREAK_REGNUM, "last_break"))
3144 have_linux_v1 = 1;
3145
3146 if (tdesc_numbered_register (feature, tdesc_data,
3147 S390_SYSTEM_CALL_REGNUM, "system_call"))
3148 have_linux_v2 = 1;
3149
3150 if (have_linux_v2 > have_linux_v1)
3151 valid_p = 0;
3152 }
3153
3154 /* Transaction diagnostic block. */
3155 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.tdb");
3156 if (feature)
3157 {
3158 for (i = 0; i < ARRAY_SIZE (tdb_regs); i++)
3159 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3160 S390_TDB_DWORD0_REGNUM + i,
3161 tdb_regs[i]);
3162 have_tdb = 1;
3163 }
3164
3165 /* Vector registers. */
3166 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.vx");
3167 if (feature)
3168 {
3169 for (i = 0; i < 16; i++)
3170 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3171 S390_V0_LOWER_REGNUM + i,
3172 vxrs_low[i]);
3173 for (i = 0; i < 16; i++)
3174 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3175 S390_V16_REGNUM + i,
3176 vxrs_high[i]);
3177 have_vx = 1;
3178 }
3179
3180 if (!valid_p)
3181 {
3182 tdesc_data_cleanup (tdesc_data);
3183 return NULL;
3184 }
3185 }
3186
3187 /* Find a candidate among extant architectures. */
3188 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3189 arches != NULL;
3190 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3191 {
3192 tdep = gdbarch_tdep (arches->gdbarch);
3193 if (!tdep)
3194 continue;
3195 if (tdep->abi != tdep_abi)
3196 continue;
3197 if ((tdep->gpr_full_regnum != -1) != have_upper)
3198 continue;
3199 if (tdesc_data != NULL)
3200 tdesc_data_cleanup (tdesc_data);
3201 return arches->gdbarch;
3202 }
3203
3204 /* Otherwise create a new gdbarch for the specified machine type. */
3205 tdep = XCNEW (struct gdbarch_tdep);
3206 tdep->abi = tdep_abi;
3207 tdep->have_linux_v1 = have_linux_v1;
3208 tdep->have_linux_v2 = have_linux_v2;
3209 tdep->have_tdb = have_tdb;
3210 gdbarch = gdbarch_alloc (&info, tdep);
3211
3212 set_gdbarch_believe_pcc_promotion (gdbarch, 0);
3213 set_gdbarch_char_signed (gdbarch, 0);
3214
3215 /* S/390 GNU/Linux uses either 64-bit or 128-bit long doubles.
3216 We can safely let them default to 128-bit, since the debug info
3217 will give the size of type actually used in each case. */
3218 set_gdbarch_long_double_bit (gdbarch, 128);
3219 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
3220
3221 /* Amount PC must be decremented by after a breakpoint. This is
3222 often the number of bytes returned by gdbarch_breakpoint_from_pc but not
3223 always. */
3224 set_gdbarch_decr_pc_after_break (gdbarch, 2);
3225 /* Stack grows downward. */
3226 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3227 set_gdbarch_breakpoint_from_pc (gdbarch, s390_breakpoint_from_pc);
3228 set_gdbarch_skip_prologue (gdbarch, s390_skip_prologue);
3229 set_gdbarch_in_function_epilogue_p (gdbarch, s390_in_function_epilogue_p);
3230
3231 set_gdbarch_num_regs (gdbarch, S390_NUM_REGS);
3232 set_gdbarch_sp_regnum (gdbarch, S390_SP_REGNUM);
3233 set_gdbarch_fp0_regnum (gdbarch, S390_F0_REGNUM);
3234 set_gdbarch_stab_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
3235 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
3236 set_gdbarch_value_from_register (gdbarch, s390_value_from_register);
3237 set_gdbarch_core_read_description (gdbarch, s390_core_read_description);
3238 set_gdbarch_iterate_over_regset_sections (gdbarch,
3239 s390_iterate_over_regset_sections);
3240 set_gdbarch_cannot_store_register (gdbarch, s390_cannot_store_register);
3241 set_gdbarch_write_pc (gdbarch, s390_write_pc);
3242 set_gdbarch_pseudo_register_read (gdbarch, s390_pseudo_register_read);
3243 set_gdbarch_pseudo_register_write (gdbarch, s390_pseudo_register_write);
3244 set_tdesc_pseudo_register_name (gdbarch, s390_pseudo_register_name);
3245 set_tdesc_pseudo_register_type (gdbarch, s390_pseudo_register_type);
3246 set_tdesc_pseudo_register_reggroup_p (gdbarch,
3247 s390_pseudo_register_reggroup_p);
3248 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
3249 set_gdbarch_register_name (gdbarch, s390_register_name);
3250
3251 /* Assign pseudo register numbers. */
3252 first_pseudo_reg = gdbarch_num_regs (gdbarch);
3253 last_pseudo_reg = first_pseudo_reg;
3254 tdep->gpr_full_regnum = -1;
3255 if (have_upper)
3256 {
3257 tdep->gpr_full_regnum = last_pseudo_reg;
3258 last_pseudo_reg += 16;
3259 }
3260 tdep->v0_full_regnum = -1;
3261 if (have_vx)
3262 {
3263 tdep->v0_full_regnum = last_pseudo_reg;
3264 last_pseudo_reg += 16;
3265 }
3266 tdep->pc_regnum = last_pseudo_reg++;
3267 tdep->cc_regnum = last_pseudo_reg++;
3268 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
3269 set_gdbarch_num_pseudo_regs (gdbarch, last_pseudo_reg - first_pseudo_reg);
3270
3271 /* Inferior function calls. */
3272 set_gdbarch_push_dummy_call (gdbarch, s390_push_dummy_call);
3273 set_gdbarch_dummy_id (gdbarch, s390_dummy_id);
3274 set_gdbarch_frame_align (gdbarch, s390_frame_align);
3275 set_gdbarch_return_value (gdbarch, s390_return_value);
3276
3277 /* Syscall handling. */
3278 set_gdbarch_get_syscall_number (gdbarch, s390_linux_get_syscall_number);
3279
3280 /* Frame handling. */
3281 dwarf2_frame_set_init_reg (gdbarch, s390_dwarf2_frame_init_reg);
3282 dwarf2_frame_set_adjust_regnum (gdbarch, s390_adjust_frame_regnum);
3283 dwarf2_append_unwinders (gdbarch);
3284 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
3285 frame_unwind_append_unwinder (gdbarch, &s390_stub_frame_unwind);
3286 frame_unwind_append_unwinder (gdbarch, &s390_sigtramp_frame_unwind);
3287 frame_unwind_append_unwinder (gdbarch, &s390_frame_unwind);
3288 frame_base_set_default (gdbarch, &s390_frame_base);
3289 set_gdbarch_unwind_pc (gdbarch, s390_unwind_pc);
3290 set_gdbarch_unwind_sp (gdbarch, s390_unwind_sp);
3291
3292 /* Displaced stepping. */
3293 set_gdbarch_displaced_step_copy_insn (gdbarch,
3294 simple_displaced_step_copy_insn);
3295 set_gdbarch_displaced_step_fixup (gdbarch, s390_displaced_step_fixup);
3296 set_gdbarch_displaced_step_free_closure (gdbarch,
3297 simple_displaced_step_free_closure);
3298 set_gdbarch_displaced_step_location (gdbarch, linux_displaced_step_location);
3299 set_gdbarch_max_insn_length (gdbarch, S390_MAX_INSTR_SIZE);
3300
3301 /* Note that GNU/Linux is the only OS supported on this
3302 platform. */
3303 linux_init_abi (info, gdbarch);
3304
3305 switch (tdep->abi)
3306 {
3307 case ABI_LINUX_S390:
3308 set_gdbarch_addr_bits_remove (gdbarch, s390_addr_bits_remove);
3309 set_solib_svr4_fetch_link_map_offsets
3310 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
3311
3312 set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_S390);
3313 break;
3314
3315 case ABI_LINUX_ZSERIES:
3316 set_gdbarch_long_bit (gdbarch, 64);
3317 set_gdbarch_long_long_bit (gdbarch, 64);
3318 set_gdbarch_ptr_bit (gdbarch, 64);
3319 set_solib_svr4_fetch_link_map_offsets
3320 (gdbarch, svr4_lp64_fetch_link_map_offsets);
3321 set_gdbarch_address_class_type_flags (gdbarch,
3322 s390_address_class_type_flags);
3323 set_gdbarch_address_class_type_flags_to_name (gdbarch,
3324 s390_address_class_type_flags_to_name);
3325 set_gdbarch_address_class_name_to_type_flags (gdbarch,
3326 s390_address_class_name_to_type_flags);
3327 set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_S390X);
3328 break;
3329 }
3330
3331 set_gdbarch_print_insn (gdbarch, print_insn_s390);
3332
3333 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3334
3335 /* Enable TLS support. */
3336 set_gdbarch_fetch_tls_load_module_address (gdbarch,
3337 svr4_fetch_objfile_link_map);
3338
3339 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
3340
3341 /* SystemTap functions. */
3342 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
3343 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
3344 stap_register_indirection_prefixes);
3345 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
3346 stap_register_indirection_suffixes);
3347 set_gdbarch_stap_is_single_operand (gdbarch, s390_stap_is_single_operand);
3348 set_gdbarch_gcc_target_options (gdbarch, s390_gcc_target_options);
3349 set_gdbarch_gnu_triplet_regexp (gdbarch, s390_gnu_triplet_regexp);
3350
3351 return gdbarch;
3352 }
3353
3354
3355 extern initialize_file_ftype _initialize_s390_tdep; /* -Wmissing-prototypes */
3356
3357 void
3358 _initialize_s390_tdep (void)
3359 {
3360 /* Hook us into the gdbarch mechanism. */
3361 register_gdbarch_init (bfd_arch_s390, s390_gdbarch_init);
3362
3363 /* Initialize the GNU/Linux target descriptions. */
3364 initialize_tdesc_s390_linux32 ();
3365 initialize_tdesc_s390_linux32v1 ();
3366 initialize_tdesc_s390_linux32v2 ();
3367 initialize_tdesc_s390_linux64 ();
3368 initialize_tdesc_s390_linux64v1 ();
3369 initialize_tdesc_s390_linux64v2 ();
3370 initialize_tdesc_s390_te_linux64 ();
3371 initialize_tdesc_s390_vx_linux64 ();
3372 initialize_tdesc_s390_tevx_linux64 ();
3373 initialize_tdesc_s390x_linux64 ();
3374 initialize_tdesc_s390x_linux64v1 ();
3375 initialize_tdesc_s390x_linux64v2 ();
3376 initialize_tdesc_s390x_te_linux64 ();
3377 initialize_tdesc_s390x_vx_linux64 ();
3378 initialize_tdesc_s390x_tevx_linux64 ();
3379 }
This page took 0.110018 seconds and 4 git commands to generate.