2011-01-11 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / s390-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 Contributed by D.J. Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
7 for IBM Deutschland Entwicklung GmbH, IBM Corporation.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "symtab.h"
29 #include "target.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "floatformat.h"
34 #include "regcache.h"
35 #include "trad-frame.h"
36 #include "frame-base.h"
37 #include "frame-unwind.h"
38 #include "dwarf2-frame.h"
39 #include "reggroups.h"
40 #include "regset.h"
41 #include "value.h"
42 #include "gdb_assert.h"
43 #include "dis-asm.h"
44 #include "solib-svr4.h"
45 #include "prologue-value.h"
46 #include "linux-tdep.h"
47 #include "s390-tdep.h"
48
49 #include "features/s390-linux32.c"
50 #include "features/s390-linux64.c"
51 #include "features/s390x-linux64.c"
52
53
54 /* The tdep structure. */
55
56 struct gdbarch_tdep
57 {
58 /* ABI version. */
59 enum { ABI_LINUX_S390, ABI_LINUX_ZSERIES } abi;
60
61 /* Pseudo register numbers. */
62 int gpr_full_regnum;
63 int pc_regnum;
64 int cc_regnum;
65
66 /* Core file register sets. */
67 const struct regset *gregset;
68 int sizeof_gregset;
69
70 const struct regset *fpregset;
71 int sizeof_fpregset;
72 };
73
74
75 /* ABI call-saved register information. */
76
77 static int
78 s390_register_call_saved (struct gdbarch *gdbarch, int regnum)
79 {
80 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
81
82 switch (tdep->abi)
83 {
84 case ABI_LINUX_S390:
85 if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
86 || regnum == S390_F4_REGNUM || regnum == S390_F6_REGNUM
87 || regnum == S390_A0_REGNUM)
88 return 1;
89
90 break;
91
92 case ABI_LINUX_ZSERIES:
93 if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
94 || (regnum >= S390_F8_REGNUM && regnum <= S390_F15_REGNUM)
95 || (regnum >= S390_A0_REGNUM && regnum <= S390_A1_REGNUM))
96 return 1;
97
98 break;
99 }
100
101 return 0;
102 }
103
104
105 /* DWARF Register Mapping. */
106
107 static int s390_dwarf_regmap[] =
108 {
109 /* General Purpose Registers. */
110 S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM,
111 S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM,
112 S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM,
113 S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM,
114
115 /* Floating Point Registers. */
116 S390_F0_REGNUM, S390_F2_REGNUM, S390_F4_REGNUM, S390_F6_REGNUM,
117 S390_F1_REGNUM, S390_F3_REGNUM, S390_F5_REGNUM, S390_F7_REGNUM,
118 S390_F8_REGNUM, S390_F10_REGNUM, S390_F12_REGNUM, S390_F14_REGNUM,
119 S390_F9_REGNUM, S390_F11_REGNUM, S390_F13_REGNUM, S390_F15_REGNUM,
120
121 /* Control Registers (not mapped). */
122 -1, -1, -1, -1, -1, -1, -1, -1,
123 -1, -1, -1, -1, -1, -1, -1, -1,
124
125 /* Access Registers. */
126 S390_A0_REGNUM, S390_A1_REGNUM, S390_A2_REGNUM, S390_A3_REGNUM,
127 S390_A4_REGNUM, S390_A5_REGNUM, S390_A6_REGNUM, S390_A7_REGNUM,
128 S390_A8_REGNUM, S390_A9_REGNUM, S390_A10_REGNUM, S390_A11_REGNUM,
129 S390_A12_REGNUM, S390_A13_REGNUM, S390_A14_REGNUM, S390_A15_REGNUM,
130
131 /* Program Status Word. */
132 S390_PSWM_REGNUM,
133 S390_PSWA_REGNUM,
134
135 /* GPR Lower Half Access. */
136 S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM,
137 S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM,
138 S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM,
139 S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM,
140 };
141
142 /* Convert DWARF register number REG to the appropriate register
143 number used by GDB. */
144 static int
145 s390_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
146 {
147 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
148
149 /* In a 32-on-64 debug scenario, debug info refers to the full 64-bit
150 GPRs. Note that call frame information still refers to the 32-bit
151 lower halves, because s390_adjust_frame_regnum uses register numbers
152 66 .. 81 to access GPRs. */
153 if (tdep->gpr_full_regnum != -1 && reg >= 0 && reg < 16)
154 return tdep->gpr_full_regnum + reg;
155
156 if (reg >= 0 && reg < ARRAY_SIZE (s390_dwarf_regmap))
157 return s390_dwarf_regmap[reg];
158
159 warning (_("Unmapped DWARF Register #%d encountered."), reg);
160 return -1;
161 }
162
163 /* Translate a .eh_frame register to DWARF register, or adjust a
164 .debug_frame register. */
165 static int
166 s390_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
167 {
168 /* See s390_dwarf_reg_to_regnum for comments. */
169 return (num >= 0 && num < 16)? num + 66 : num;
170 }
171
172
173 /* Pseudo registers. */
174
175 static const char *
176 s390_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
177 {
178 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
179
180 if (regnum == tdep->pc_regnum)
181 return "pc";
182
183 if (regnum == tdep->cc_regnum)
184 return "cc";
185
186 if (tdep->gpr_full_regnum != -1
187 && regnum >= tdep->gpr_full_regnum
188 && regnum < tdep->gpr_full_regnum + 16)
189 {
190 static const char *full_name[] = {
191 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
192 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
193 };
194 return full_name[regnum - tdep->gpr_full_regnum];
195 }
196
197 internal_error (__FILE__, __LINE__, _("invalid regnum"));
198 }
199
200 static struct type *
201 s390_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
202 {
203 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
204
205 if (regnum == tdep->pc_regnum)
206 return builtin_type (gdbarch)->builtin_func_ptr;
207
208 if (regnum == tdep->cc_regnum)
209 return builtin_type (gdbarch)->builtin_int;
210
211 if (tdep->gpr_full_regnum != -1
212 && regnum >= tdep->gpr_full_regnum
213 && regnum < tdep->gpr_full_regnum + 16)
214 return builtin_type (gdbarch)->builtin_uint64;
215
216 internal_error (__FILE__, __LINE__, _("invalid regnum"));
217 }
218
219 static void
220 s390_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
221 int regnum, gdb_byte *buf)
222 {
223 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
224 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
225 int regsize = register_size (gdbarch, regnum);
226 ULONGEST val;
227
228 if (regnum == tdep->pc_regnum)
229 {
230 regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &val);
231 if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
232 val &= 0x7fffffff;
233 store_unsigned_integer (buf, regsize, byte_order, val);
234 return;
235 }
236
237 if (regnum == tdep->cc_regnum)
238 {
239 regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &val);
240 if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
241 val = (val >> 12) & 3;
242 else
243 val = (val >> 44) & 3;
244 store_unsigned_integer (buf, regsize, byte_order, val);
245 return;
246 }
247
248 if (tdep->gpr_full_regnum != -1
249 && regnum >= tdep->gpr_full_regnum
250 && regnum < tdep->gpr_full_regnum + 16)
251 {
252 ULONGEST val_upper;
253 regnum -= tdep->gpr_full_regnum;
254
255 regcache_raw_read_unsigned (regcache, S390_R0_REGNUM + regnum, &val);
256 regcache_raw_read_unsigned (regcache, S390_R0_UPPER_REGNUM + regnum,
257 &val_upper);
258 val |= val_upper << 32;
259 store_unsigned_integer (buf, regsize, byte_order, val);
260 return;
261 }
262
263 internal_error (__FILE__, __LINE__, _("invalid regnum"));
264 }
265
266 static void
267 s390_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
268 int regnum, const gdb_byte *buf)
269 {
270 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
271 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
272 int regsize = register_size (gdbarch, regnum);
273 ULONGEST val, psw;
274
275 if (regnum == tdep->pc_regnum)
276 {
277 val = extract_unsigned_integer (buf, regsize, byte_order);
278 if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
279 {
280 regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &psw);
281 val = (psw & 0x80000000) | (val & 0x7fffffff);
282 }
283 regcache_raw_write_unsigned (regcache, S390_PSWA_REGNUM, val);
284 return;
285 }
286
287 if (regnum == tdep->cc_regnum)
288 {
289 val = extract_unsigned_integer (buf, regsize, byte_order);
290 regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &psw);
291 if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
292 val = (psw & ~((ULONGEST)3 << 12)) | ((val & 3) << 12);
293 else
294 val = (psw & ~((ULONGEST)3 << 44)) | ((val & 3) << 44);
295 regcache_raw_write_unsigned (regcache, S390_PSWM_REGNUM, val);
296 return;
297 }
298
299 if (tdep->gpr_full_regnum != -1
300 && regnum >= tdep->gpr_full_regnum
301 && regnum < tdep->gpr_full_regnum + 16)
302 {
303 regnum -= tdep->gpr_full_regnum;
304 val = extract_unsigned_integer (buf, regsize, byte_order);
305 regcache_raw_write_unsigned (regcache, S390_R0_REGNUM + regnum,
306 val & 0xffffffff);
307 regcache_raw_write_unsigned (regcache, S390_R0_UPPER_REGNUM + regnum,
308 val >> 32);
309 return;
310 }
311
312 internal_error (__FILE__, __LINE__, _("invalid regnum"));
313 }
314
315 /* 'float' values are stored in the upper half of floating-point
316 registers, even though we are otherwise a big-endian platform. */
317
318 static struct value *
319 s390_value_from_register (struct type *type, int regnum,
320 struct frame_info *frame)
321 {
322 struct value *value = default_value_from_register (type, regnum, frame);
323 int len = TYPE_LENGTH (type);
324
325 if (regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM && len < 8)
326 set_value_offset (value, 0);
327
328 return value;
329 }
330
331 /* Register groups. */
332
333 static int
334 s390_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
335 struct reggroup *group)
336 {
337 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
338
339 /* PC and CC pseudo registers need to be saved/restored in order to
340 push or pop frames. */
341 if (group == save_reggroup || group == restore_reggroup)
342 return regnum == tdep->pc_regnum || regnum == tdep->cc_regnum;
343
344 return default_register_reggroup_p (gdbarch, regnum, group);
345 }
346
347
348 /* Core file register sets. */
349
350 int s390_regmap_gregset[S390_NUM_REGS] =
351 {
352 /* Program Status Word. */
353 0x00, 0x04,
354 /* General Purpose Registers. */
355 0x08, 0x0c, 0x10, 0x14,
356 0x18, 0x1c, 0x20, 0x24,
357 0x28, 0x2c, 0x30, 0x34,
358 0x38, 0x3c, 0x40, 0x44,
359 /* Access Registers. */
360 0x48, 0x4c, 0x50, 0x54,
361 0x58, 0x5c, 0x60, 0x64,
362 0x68, 0x6c, 0x70, 0x74,
363 0x78, 0x7c, 0x80, 0x84,
364 /* Floating Point Control Word. */
365 -1,
366 /* Floating Point Registers. */
367 -1, -1, -1, -1, -1, -1, -1, -1,
368 -1, -1, -1, -1, -1, -1, -1, -1,
369 /* GPR Uppper Halves. */
370 -1, -1, -1, -1, -1, -1, -1, -1,
371 -1, -1, -1, -1, -1, -1, -1, -1,
372 };
373
374 int s390x_regmap_gregset[S390_NUM_REGS] =
375 {
376 /* Program Status Word. */
377 0x00, 0x08,
378 /* General Purpose Registers. */
379 0x10, 0x18, 0x20, 0x28,
380 0x30, 0x38, 0x40, 0x48,
381 0x50, 0x58, 0x60, 0x68,
382 0x70, 0x78, 0x80, 0x88,
383 /* Access Registers. */
384 0x90, 0x94, 0x98, 0x9c,
385 0xa0, 0xa4, 0xa8, 0xac,
386 0xb0, 0xb4, 0xb8, 0xbc,
387 0xc0, 0xc4, 0xc8, 0xcc,
388 /* Floating Point Control Word. */
389 -1,
390 /* Floating Point Registers. */
391 -1, -1, -1, -1, -1, -1, -1, -1,
392 -1, -1, -1, -1, -1, -1, -1, -1,
393 /* GPR Uppper Halves. */
394 0x10, 0x18, 0x20, 0x28,
395 0x30, 0x38, 0x40, 0x48,
396 0x50, 0x58, 0x60, 0x68,
397 0x70, 0x78, 0x80, 0x88,
398 };
399
400 int s390_regmap_fpregset[S390_NUM_REGS] =
401 {
402 /* Program Status Word. */
403 -1, -1,
404 /* General Purpose Registers. */
405 -1, -1, -1, -1, -1, -1, -1, -1,
406 -1, -1, -1, -1, -1, -1, -1, -1,
407 /* Access Registers. */
408 -1, -1, -1, -1, -1, -1, -1, -1,
409 -1, -1, -1, -1, -1, -1, -1, -1,
410 /* Floating Point Control Word. */
411 0x00,
412 /* Floating Point Registers. */
413 0x08, 0x10, 0x18, 0x20,
414 0x28, 0x30, 0x38, 0x40,
415 0x48, 0x50, 0x58, 0x60,
416 0x68, 0x70, 0x78, 0x80,
417 /* GPR Uppper Halves. */
418 -1, -1, -1, -1, -1, -1, -1, -1,
419 -1, -1, -1, -1, -1, -1, -1, -1,
420 };
421
422 int s390_regmap_upper[S390_NUM_REGS] =
423 {
424 /* Program Status Word. */
425 -1, -1,
426 /* General Purpose Registers. */
427 -1, -1, -1, -1, -1, -1, -1, -1,
428 -1, -1, -1, -1, -1, -1, -1, -1,
429 /* Access Registers. */
430 -1, -1, -1, -1, -1, -1, -1, -1,
431 -1, -1, -1, -1, -1, -1, -1, -1,
432 /* Floating Point Control Word. */
433 -1,
434 /* Floating Point Registers. */
435 -1, -1, -1, -1, -1, -1, -1, -1,
436 -1, -1, -1, -1, -1, -1, -1, -1,
437 /* GPR Uppper Halves. */
438 0x00, 0x04, 0x08, 0x0c,
439 0x10, 0x14, 0x18, 0x1c,
440 0x20, 0x24, 0x28, 0x2c,
441 0x30, 0x34, 0x38, 0x3c,
442 };
443
444 /* Supply register REGNUM from the register set REGSET to register cache
445 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
446 static void
447 s390_supply_regset (const struct regset *regset, struct regcache *regcache,
448 int regnum, const void *regs, size_t len)
449 {
450 const int *offset = regset->descr;
451 int i;
452
453 for (i = 0; i < S390_NUM_REGS; i++)
454 {
455 if ((regnum == i || regnum == -1) && offset[i] != -1)
456 regcache_raw_supply (regcache, i, (const char *)regs + offset[i]);
457 }
458 }
459
460 /* Collect register REGNUM from the register cache REGCACHE and store
461 it in the buffer specified by REGS and LEN as described by the
462 general-purpose register set REGSET. If REGNUM is -1, do this for
463 all registers in REGSET. */
464 static void
465 s390_collect_regset (const struct regset *regset,
466 const struct regcache *regcache,
467 int regnum, void *regs, size_t len)
468 {
469 const int *offset = regset->descr;
470 int i;
471
472 for (i = 0; i < S390_NUM_REGS; i++)
473 {
474 if ((regnum == i || regnum == -1) && offset[i] != -1)
475 regcache_raw_collect (regcache, i, (char *)regs + offset[i]);
476 }
477 }
478
479 static const struct regset s390_gregset = {
480 s390_regmap_gregset,
481 s390_supply_regset,
482 s390_collect_regset
483 };
484
485 static const struct regset s390x_gregset = {
486 s390x_regmap_gregset,
487 s390_supply_regset,
488 s390_collect_regset
489 };
490
491 static const struct regset s390_fpregset = {
492 s390_regmap_fpregset,
493 s390_supply_regset,
494 s390_collect_regset
495 };
496
497 static const struct regset s390_upper_regset = {
498 s390_regmap_upper,
499 s390_supply_regset,
500 s390_collect_regset
501 };
502
503 static struct core_regset_section s390_upper_regset_sections[] =
504 {
505 { ".reg", s390_sizeof_gregset, "general-purpose" },
506 { ".reg2", s390_sizeof_fpregset, "floating-point" },
507 { ".reg-s390-high-gprs", 16*4, "s390 GPR upper halves" },
508 { NULL, 0}
509 };
510
511 /* Return the appropriate register set for the core section identified
512 by SECT_NAME and SECT_SIZE. */
513 static const struct regset *
514 s390_regset_from_core_section (struct gdbarch *gdbarch,
515 const char *sect_name, size_t sect_size)
516 {
517 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
518
519 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
520 return tdep->gregset;
521
522 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
523 return tdep->fpregset;
524
525 if (strcmp (sect_name, ".reg-s390-high-gprs") == 0 && sect_size >= 16*4)
526 return &s390_upper_regset;
527
528 return NULL;
529 }
530
531 static const struct target_desc *
532 s390_core_read_description (struct gdbarch *gdbarch,
533 struct target_ops *target, bfd *abfd)
534 {
535 asection *high_gprs = bfd_get_section_by_name (abfd, ".reg-s390-high-gprs");
536 asection *section = bfd_get_section_by_name (abfd, ".reg");
537 if (!section)
538 return NULL;
539
540 switch (bfd_section_size (abfd, section))
541 {
542 case s390_sizeof_gregset:
543 return high_gprs? tdesc_s390_linux64 : tdesc_s390_linux32;
544
545 case s390x_sizeof_gregset:
546 return tdesc_s390x_linux64;
547
548 default:
549 return NULL;
550 }
551 }
552
553
554 /* Decoding S/390 instructions. */
555
556 /* Named opcode values for the S/390 instructions we recognize. Some
557 instructions have their opcode split across two fields; those are the
558 op1_* and op2_* enums. */
559 enum
560 {
561 op1_lhi = 0xa7, op2_lhi = 0x08,
562 op1_lghi = 0xa7, op2_lghi = 0x09,
563 op1_lgfi = 0xc0, op2_lgfi = 0x01,
564 op_lr = 0x18,
565 op_lgr = 0xb904,
566 op_l = 0x58,
567 op1_ly = 0xe3, op2_ly = 0x58,
568 op1_lg = 0xe3, op2_lg = 0x04,
569 op_lm = 0x98,
570 op1_lmy = 0xeb, op2_lmy = 0x98,
571 op1_lmg = 0xeb, op2_lmg = 0x04,
572 op_st = 0x50,
573 op1_sty = 0xe3, op2_sty = 0x50,
574 op1_stg = 0xe3, op2_stg = 0x24,
575 op_std = 0x60,
576 op_stm = 0x90,
577 op1_stmy = 0xeb, op2_stmy = 0x90,
578 op1_stmg = 0xeb, op2_stmg = 0x24,
579 op1_aghi = 0xa7, op2_aghi = 0x0b,
580 op1_ahi = 0xa7, op2_ahi = 0x0a,
581 op1_agfi = 0xc2, op2_agfi = 0x08,
582 op1_afi = 0xc2, op2_afi = 0x09,
583 op1_algfi= 0xc2, op2_algfi= 0x0a,
584 op1_alfi = 0xc2, op2_alfi = 0x0b,
585 op_ar = 0x1a,
586 op_agr = 0xb908,
587 op_a = 0x5a,
588 op1_ay = 0xe3, op2_ay = 0x5a,
589 op1_ag = 0xe3, op2_ag = 0x08,
590 op1_slgfi= 0xc2, op2_slgfi= 0x04,
591 op1_slfi = 0xc2, op2_slfi = 0x05,
592 op_sr = 0x1b,
593 op_sgr = 0xb909,
594 op_s = 0x5b,
595 op1_sy = 0xe3, op2_sy = 0x5b,
596 op1_sg = 0xe3, op2_sg = 0x09,
597 op_nr = 0x14,
598 op_ngr = 0xb980,
599 op_la = 0x41,
600 op1_lay = 0xe3, op2_lay = 0x71,
601 op1_larl = 0xc0, op2_larl = 0x00,
602 op_basr = 0x0d,
603 op_bas = 0x4d,
604 op_bcr = 0x07,
605 op_bc = 0x0d,
606 op_bctr = 0x06,
607 op_bctgr = 0xb946,
608 op_bct = 0x46,
609 op1_bctg = 0xe3, op2_bctg = 0x46,
610 op_bxh = 0x86,
611 op1_bxhg = 0xeb, op2_bxhg = 0x44,
612 op_bxle = 0x87,
613 op1_bxleg= 0xeb, op2_bxleg= 0x45,
614 op1_bras = 0xa7, op2_bras = 0x05,
615 op1_brasl= 0xc0, op2_brasl= 0x05,
616 op1_brc = 0xa7, op2_brc = 0x04,
617 op1_brcl = 0xc0, op2_brcl = 0x04,
618 op1_brct = 0xa7, op2_brct = 0x06,
619 op1_brctg= 0xa7, op2_brctg= 0x07,
620 op_brxh = 0x84,
621 op1_brxhg= 0xec, op2_brxhg= 0x44,
622 op_brxle = 0x85,
623 op1_brxlg= 0xec, op2_brxlg= 0x45,
624 };
625
626
627 /* Read a single instruction from address AT. */
628
629 #define S390_MAX_INSTR_SIZE 6
630 static int
631 s390_readinstruction (bfd_byte instr[], CORE_ADDR at)
632 {
633 static int s390_instrlen[] = { 2, 4, 4, 6 };
634 int instrlen;
635
636 if (target_read_memory (at, &instr[0], 2))
637 return -1;
638 instrlen = s390_instrlen[instr[0] >> 6];
639 if (instrlen > 2)
640 {
641 if (target_read_memory (at + 2, &instr[2], instrlen - 2))
642 return -1;
643 }
644 return instrlen;
645 }
646
647
648 /* The functions below are for recognizing and decoding S/390
649 instructions of various formats. Each of them checks whether INSN
650 is an instruction of the given format, with the specified opcodes.
651 If it is, it sets the remaining arguments to the values of the
652 instruction's fields, and returns a non-zero value; otherwise, it
653 returns zero.
654
655 These functions' arguments appear in the order they appear in the
656 instruction, not in the machine-language form. So, opcodes always
657 come first, even though they're sometimes scattered around the
658 instructions. And displacements appear before base and extension
659 registers, as they do in the assembly syntax, not at the end, as
660 they do in the machine language. */
661 static int
662 is_ri (bfd_byte *insn, int op1, int op2, unsigned int *r1, int *i2)
663 {
664 if (insn[0] == op1 && (insn[1] & 0xf) == op2)
665 {
666 *r1 = (insn[1] >> 4) & 0xf;
667 /* i2 is a 16-bit signed quantity. */
668 *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
669 return 1;
670 }
671 else
672 return 0;
673 }
674
675
676 static int
677 is_ril (bfd_byte *insn, int op1, int op2,
678 unsigned int *r1, int *i2)
679 {
680 if (insn[0] == op1 && (insn[1] & 0xf) == op2)
681 {
682 *r1 = (insn[1] >> 4) & 0xf;
683 /* i2 is a signed quantity. If the host 'int' is 32 bits long,
684 no sign extension is necessary, but we don't want to assume
685 that. */
686 *i2 = (((insn[2] << 24)
687 | (insn[3] << 16)
688 | (insn[4] << 8)
689 | (insn[5])) ^ 0x80000000) - 0x80000000;
690 return 1;
691 }
692 else
693 return 0;
694 }
695
696
697 static int
698 is_rr (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
699 {
700 if (insn[0] == op)
701 {
702 *r1 = (insn[1] >> 4) & 0xf;
703 *r2 = insn[1] & 0xf;
704 return 1;
705 }
706 else
707 return 0;
708 }
709
710
711 static int
712 is_rre (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
713 {
714 if (((insn[0] << 8) | insn[1]) == op)
715 {
716 /* Yes, insn[3]. insn[2] is unused in RRE format. */
717 *r1 = (insn[3] >> 4) & 0xf;
718 *r2 = insn[3] & 0xf;
719 return 1;
720 }
721 else
722 return 0;
723 }
724
725
726 static int
727 is_rs (bfd_byte *insn, int op,
728 unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2)
729 {
730 if (insn[0] == op)
731 {
732 *r1 = (insn[1] >> 4) & 0xf;
733 *r3 = insn[1] & 0xf;
734 *b2 = (insn[2] >> 4) & 0xf;
735 *d2 = ((insn[2] & 0xf) << 8) | insn[3];
736 return 1;
737 }
738 else
739 return 0;
740 }
741
742
743 static int
744 is_rsy (bfd_byte *insn, int op1, int op2,
745 unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2)
746 {
747 if (insn[0] == op1
748 && insn[5] == op2)
749 {
750 *r1 = (insn[1] >> 4) & 0xf;
751 *r3 = insn[1] & 0xf;
752 *b2 = (insn[2] >> 4) & 0xf;
753 /* The 'long displacement' is a 20-bit signed integer. */
754 *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12))
755 ^ 0x80000) - 0x80000;
756 return 1;
757 }
758 else
759 return 0;
760 }
761
762
763 static int
764 is_rsi (bfd_byte *insn, int op,
765 unsigned int *r1, unsigned int *r3, int *i2)
766 {
767 if (insn[0] == op)
768 {
769 *r1 = (insn[1] >> 4) & 0xf;
770 *r3 = insn[1] & 0xf;
771 /* i2 is a 16-bit signed quantity. */
772 *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
773 return 1;
774 }
775 else
776 return 0;
777 }
778
779
780 static int
781 is_rie (bfd_byte *insn, int op1, int op2,
782 unsigned int *r1, unsigned int *r3, int *i2)
783 {
784 if (insn[0] == op1
785 && insn[5] == op2)
786 {
787 *r1 = (insn[1] >> 4) & 0xf;
788 *r3 = insn[1] & 0xf;
789 /* i2 is a 16-bit signed quantity. */
790 *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
791 return 1;
792 }
793 else
794 return 0;
795 }
796
797
798 static int
799 is_rx (bfd_byte *insn, int op,
800 unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2)
801 {
802 if (insn[0] == op)
803 {
804 *r1 = (insn[1] >> 4) & 0xf;
805 *x2 = insn[1] & 0xf;
806 *b2 = (insn[2] >> 4) & 0xf;
807 *d2 = ((insn[2] & 0xf) << 8) | insn[3];
808 return 1;
809 }
810 else
811 return 0;
812 }
813
814
815 static int
816 is_rxy (bfd_byte *insn, int op1, int op2,
817 unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2)
818 {
819 if (insn[0] == op1
820 && insn[5] == op2)
821 {
822 *r1 = (insn[1] >> 4) & 0xf;
823 *x2 = insn[1] & 0xf;
824 *b2 = (insn[2] >> 4) & 0xf;
825 /* The 'long displacement' is a 20-bit signed integer. */
826 *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12))
827 ^ 0x80000) - 0x80000;
828 return 1;
829 }
830 else
831 return 0;
832 }
833
834
835 /* Prologue analysis. */
836
837 #define S390_NUM_GPRS 16
838 #define S390_NUM_FPRS 16
839
840 struct s390_prologue_data {
841
842 /* The stack. */
843 struct pv_area *stack;
844
845 /* The size and byte-order of a GPR or FPR. */
846 int gpr_size;
847 int fpr_size;
848 enum bfd_endian byte_order;
849
850 /* The general-purpose registers. */
851 pv_t gpr[S390_NUM_GPRS];
852
853 /* The floating-point registers. */
854 pv_t fpr[S390_NUM_FPRS];
855
856 /* The offset relative to the CFA where the incoming GPR N was saved
857 by the function prologue. 0 if not saved or unknown. */
858 int gpr_slot[S390_NUM_GPRS];
859
860 /* Likewise for FPRs. */
861 int fpr_slot[S390_NUM_FPRS];
862
863 /* Nonzero if the backchain was saved. This is assumed to be the
864 case when the incoming SP is saved at the current SP location. */
865 int back_chain_saved_p;
866 };
867
868 /* Return the effective address for an X-style instruction, like:
869
870 L R1, D2(X2, B2)
871
872 Here, X2 and B2 are registers, and D2 is a signed 20-bit
873 constant; the effective address is the sum of all three. If either
874 X2 or B2 are zero, then it doesn't contribute to the sum --- this
875 means that r0 can't be used as either X2 or B2. */
876 static pv_t
877 s390_addr (struct s390_prologue_data *data,
878 int d2, unsigned int x2, unsigned int b2)
879 {
880 pv_t result;
881
882 result = pv_constant (d2);
883 if (x2)
884 result = pv_add (result, data->gpr[x2]);
885 if (b2)
886 result = pv_add (result, data->gpr[b2]);
887
888 return result;
889 }
890
891 /* Do a SIZE-byte store of VALUE to D2(X2,B2). */
892 static void
893 s390_store (struct s390_prologue_data *data,
894 int d2, unsigned int x2, unsigned int b2, CORE_ADDR size,
895 pv_t value)
896 {
897 pv_t addr = s390_addr (data, d2, x2, b2);
898 pv_t offset;
899
900 /* Check whether we are storing the backchain. */
901 offset = pv_subtract (data->gpr[S390_SP_REGNUM - S390_R0_REGNUM], addr);
902
903 if (pv_is_constant (offset) && offset.k == 0)
904 if (size == data->gpr_size
905 && pv_is_register_k (value, S390_SP_REGNUM, 0))
906 {
907 data->back_chain_saved_p = 1;
908 return;
909 }
910
911
912 /* Check whether we are storing a register into the stack. */
913 if (!pv_area_store_would_trash (data->stack, addr))
914 pv_area_store (data->stack, addr, size, value);
915
916
917 /* Note: If this is some store we cannot identify, you might think we
918 should forget our cached values, as any of those might have been hit.
919
920 However, we make the assumption that the register save areas are only
921 ever stored to once in any given function, and we do recognize these
922 stores. Thus every store we cannot recognize does not hit our data. */
923 }
924
925 /* Do a SIZE-byte load from D2(X2,B2). */
926 static pv_t
927 s390_load (struct s390_prologue_data *data,
928 int d2, unsigned int x2, unsigned int b2, CORE_ADDR size)
929
930 {
931 pv_t addr = s390_addr (data, d2, x2, b2);
932 pv_t offset;
933
934 /* If it's a load from an in-line constant pool, then we can
935 simulate that, under the assumption that the code isn't
936 going to change between the time the processor actually
937 executed it creating the current frame, and the time when
938 we're analyzing the code to unwind past that frame. */
939 if (pv_is_constant (addr))
940 {
941 struct target_section *secp;
942 secp = target_section_by_addr (&current_target, addr.k);
943 if (secp != NULL
944 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
945 & SEC_READONLY))
946 return pv_constant (read_memory_integer (addr.k, size,
947 data->byte_order));
948 }
949
950 /* Check whether we are accessing one of our save slots. */
951 return pv_area_fetch (data->stack, addr, size);
952 }
953
954 /* Function for finding saved registers in a 'struct pv_area'; we pass
955 this to pv_area_scan.
956
957 If VALUE is a saved register, ADDR says it was saved at a constant
958 offset from the frame base, and SIZE indicates that the whole
959 register was saved, record its offset in the reg_offset table in
960 PROLOGUE_UNTYPED. */
961 static void
962 s390_check_for_saved (void *data_untyped, pv_t addr,
963 CORE_ADDR size, pv_t value)
964 {
965 struct s390_prologue_data *data = data_untyped;
966 int i, offset;
967
968 if (!pv_is_register (addr, S390_SP_REGNUM))
969 return;
970
971 offset = 16 * data->gpr_size + 32 - addr.k;
972
973 /* If we are storing the original value of a register, we want to
974 record the CFA offset. If the same register is stored multiple
975 times, the stack slot with the highest address counts. */
976
977 for (i = 0; i < S390_NUM_GPRS; i++)
978 if (size == data->gpr_size
979 && pv_is_register_k (value, S390_R0_REGNUM + i, 0))
980 if (data->gpr_slot[i] == 0
981 || data->gpr_slot[i] > offset)
982 {
983 data->gpr_slot[i] = offset;
984 return;
985 }
986
987 for (i = 0; i < S390_NUM_FPRS; i++)
988 if (size == data->fpr_size
989 && pv_is_register_k (value, S390_F0_REGNUM + i, 0))
990 if (data->fpr_slot[i] == 0
991 || data->fpr_slot[i] > offset)
992 {
993 data->fpr_slot[i] = offset;
994 return;
995 }
996 }
997
998 /* Analyze the prologue of the function starting at START_PC,
999 continuing at most until CURRENT_PC. Initialize DATA to
1000 hold all information we find out about the state of the registers
1001 and stack slots. Return the address of the instruction after
1002 the last one that changed the SP, FP, or back chain; or zero
1003 on error. */
1004 static CORE_ADDR
1005 s390_analyze_prologue (struct gdbarch *gdbarch,
1006 CORE_ADDR start_pc,
1007 CORE_ADDR current_pc,
1008 struct s390_prologue_data *data)
1009 {
1010 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1011
1012 /* Our return value:
1013 The address of the instruction after the last one that changed
1014 the SP, FP, or back chain; zero if we got an error trying to
1015 read memory. */
1016 CORE_ADDR result = start_pc;
1017
1018 /* The current PC for our abstract interpretation. */
1019 CORE_ADDR pc;
1020
1021 /* The address of the next instruction after that. */
1022 CORE_ADDR next_pc;
1023
1024 /* Set up everything's initial value. */
1025 {
1026 int i;
1027
1028 data->stack = make_pv_area (S390_SP_REGNUM, gdbarch_addr_bit (gdbarch));
1029
1030 /* For the purpose of prologue tracking, we consider the GPR size to
1031 be equal to the ABI word size, even if it is actually larger
1032 (i.e. when running a 32-bit binary under a 64-bit kernel). */
1033 data->gpr_size = word_size;
1034 data->fpr_size = 8;
1035 data->byte_order = gdbarch_byte_order (gdbarch);
1036
1037 for (i = 0; i < S390_NUM_GPRS; i++)
1038 data->gpr[i] = pv_register (S390_R0_REGNUM + i, 0);
1039
1040 for (i = 0; i < S390_NUM_FPRS; i++)
1041 data->fpr[i] = pv_register (S390_F0_REGNUM + i, 0);
1042
1043 for (i = 0; i < S390_NUM_GPRS; i++)
1044 data->gpr_slot[i] = 0;
1045
1046 for (i = 0; i < S390_NUM_FPRS; i++)
1047 data->fpr_slot[i] = 0;
1048
1049 data->back_chain_saved_p = 0;
1050 }
1051
1052 /* Start interpreting instructions, until we hit the frame's
1053 current PC or the first branch instruction. */
1054 for (pc = start_pc; pc > 0 && pc < current_pc; pc = next_pc)
1055 {
1056 bfd_byte insn[S390_MAX_INSTR_SIZE];
1057 int insn_len = s390_readinstruction (insn, pc);
1058
1059 bfd_byte dummy[S390_MAX_INSTR_SIZE] = { 0 };
1060 bfd_byte *insn32 = word_size == 4 ? insn : dummy;
1061 bfd_byte *insn64 = word_size == 8 ? insn : dummy;
1062
1063 /* Fields for various kinds of instructions. */
1064 unsigned int b2, r1, r2, x2, r3;
1065 int i2, d2;
1066
1067 /* The values of SP and FP before this instruction,
1068 for detecting instructions that change them. */
1069 pv_t pre_insn_sp, pre_insn_fp;
1070 /* Likewise for the flag whether the back chain was saved. */
1071 int pre_insn_back_chain_saved_p;
1072
1073 /* If we got an error trying to read the instruction, report it. */
1074 if (insn_len < 0)
1075 {
1076 result = 0;
1077 break;
1078 }
1079
1080 next_pc = pc + insn_len;
1081
1082 pre_insn_sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
1083 pre_insn_fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
1084 pre_insn_back_chain_saved_p = data->back_chain_saved_p;
1085
1086
1087 /* LHI r1, i2 --- load halfword immediate. */
1088 /* LGHI r1, i2 --- load halfword immediate (64-bit version). */
1089 /* LGFI r1, i2 --- load fullword immediate. */
1090 if (is_ri (insn32, op1_lhi, op2_lhi, &r1, &i2)
1091 || is_ri (insn64, op1_lghi, op2_lghi, &r1, &i2)
1092 || is_ril (insn, op1_lgfi, op2_lgfi, &r1, &i2))
1093 data->gpr[r1] = pv_constant (i2);
1094
1095 /* LR r1, r2 --- load from register. */
1096 /* LGR r1, r2 --- load from register (64-bit version). */
1097 else if (is_rr (insn32, op_lr, &r1, &r2)
1098 || is_rre (insn64, op_lgr, &r1, &r2))
1099 data->gpr[r1] = data->gpr[r2];
1100
1101 /* L r1, d2(x2, b2) --- load. */
1102 /* LY r1, d2(x2, b2) --- load (long-displacement version). */
1103 /* LG r1, d2(x2, b2) --- load (64-bit version). */
1104 else if (is_rx (insn32, op_l, &r1, &d2, &x2, &b2)
1105 || is_rxy (insn32, op1_ly, op2_ly, &r1, &d2, &x2, &b2)
1106 || is_rxy (insn64, op1_lg, op2_lg, &r1, &d2, &x2, &b2))
1107 data->gpr[r1] = s390_load (data, d2, x2, b2, data->gpr_size);
1108
1109 /* ST r1, d2(x2, b2) --- store. */
1110 /* STY r1, d2(x2, b2) --- store (long-displacement version). */
1111 /* STG r1, d2(x2, b2) --- store (64-bit version). */
1112 else if (is_rx (insn32, op_st, &r1, &d2, &x2, &b2)
1113 || is_rxy (insn32, op1_sty, op2_sty, &r1, &d2, &x2, &b2)
1114 || is_rxy (insn64, op1_stg, op2_stg, &r1, &d2, &x2, &b2))
1115 s390_store (data, d2, x2, b2, data->gpr_size, data->gpr[r1]);
1116
1117 /* STD r1, d2(x2,b2) --- store floating-point register. */
1118 else if (is_rx (insn, op_std, &r1, &d2, &x2, &b2))
1119 s390_store (data, d2, x2, b2, data->fpr_size, data->fpr[r1]);
1120
1121 /* STM r1, r3, d2(b2) --- store multiple. */
1122 /* STMY r1, r3, d2(b2) --- store multiple (long-displacement
1123 version). */
1124 /* STMG r1, r3, d2(b2) --- store multiple (64-bit version). */
1125 else if (is_rs (insn32, op_stm, &r1, &r3, &d2, &b2)
1126 || is_rsy (insn32, op1_stmy, op2_stmy, &r1, &r3, &d2, &b2)
1127 || is_rsy (insn64, op1_stmg, op2_stmg, &r1, &r3, &d2, &b2))
1128 {
1129 for (; r1 <= r3; r1++, d2 += data->gpr_size)
1130 s390_store (data, d2, 0, b2, data->gpr_size, data->gpr[r1]);
1131 }
1132
1133 /* AHI r1, i2 --- add halfword immediate. */
1134 /* AGHI r1, i2 --- add halfword immediate (64-bit version). */
1135 /* AFI r1, i2 --- add fullword immediate. */
1136 /* AGFI r1, i2 --- add fullword immediate (64-bit version). */
1137 else if (is_ri (insn32, op1_ahi, op2_ahi, &r1, &i2)
1138 || is_ri (insn64, op1_aghi, op2_aghi, &r1, &i2)
1139 || is_ril (insn32, op1_afi, op2_afi, &r1, &i2)
1140 || is_ril (insn64, op1_agfi, op2_agfi, &r1, &i2))
1141 data->gpr[r1] = pv_add_constant (data->gpr[r1], i2);
1142
1143 /* ALFI r1, i2 --- add logical immediate. */
1144 /* ALGFI r1, i2 --- add logical immediate (64-bit version). */
1145 else if (is_ril (insn32, op1_alfi, op2_alfi, &r1, &i2)
1146 || is_ril (insn64, op1_algfi, op2_algfi, &r1, &i2))
1147 data->gpr[r1] = pv_add_constant (data->gpr[r1],
1148 (CORE_ADDR)i2 & 0xffffffff);
1149
1150 /* AR r1, r2 -- add register. */
1151 /* AGR r1, r2 -- add register (64-bit version). */
1152 else if (is_rr (insn32, op_ar, &r1, &r2)
1153 || is_rre (insn64, op_agr, &r1, &r2))
1154 data->gpr[r1] = pv_add (data->gpr[r1], data->gpr[r2]);
1155
1156 /* A r1, d2(x2, b2) -- add. */
1157 /* AY r1, d2(x2, b2) -- add (long-displacement version). */
1158 /* AG r1, d2(x2, b2) -- add (64-bit version). */
1159 else if (is_rx (insn32, op_a, &r1, &d2, &x2, &b2)
1160 || is_rxy (insn32, op1_ay, op2_ay, &r1, &d2, &x2, &b2)
1161 || is_rxy (insn64, op1_ag, op2_ag, &r1, &d2, &x2, &b2))
1162 data->gpr[r1] = pv_add (data->gpr[r1],
1163 s390_load (data, d2, x2, b2, data->gpr_size));
1164
1165 /* SLFI r1, i2 --- subtract logical immediate. */
1166 /* SLGFI r1, i2 --- subtract logical immediate (64-bit version). */
1167 else if (is_ril (insn32, op1_slfi, op2_slfi, &r1, &i2)
1168 || is_ril (insn64, op1_slgfi, op2_slgfi, &r1, &i2))
1169 data->gpr[r1] = pv_add_constant (data->gpr[r1],
1170 -((CORE_ADDR)i2 & 0xffffffff));
1171
1172 /* SR r1, r2 -- subtract register. */
1173 /* SGR r1, r2 -- subtract register (64-bit version). */
1174 else if (is_rr (insn32, op_sr, &r1, &r2)
1175 || is_rre (insn64, op_sgr, &r1, &r2))
1176 data->gpr[r1] = pv_subtract (data->gpr[r1], data->gpr[r2]);
1177
1178 /* S r1, d2(x2, b2) -- subtract. */
1179 /* SY r1, d2(x2, b2) -- subtract (long-displacement version). */
1180 /* SG r1, d2(x2, b2) -- subtract (64-bit version). */
1181 else if (is_rx (insn32, op_s, &r1, &d2, &x2, &b2)
1182 || is_rxy (insn32, op1_sy, op2_sy, &r1, &d2, &x2, &b2)
1183 || is_rxy (insn64, op1_sg, op2_sg, &r1, &d2, &x2, &b2))
1184 data->gpr[r1] = pv_subtract (data->gpr[r1],
1185 s390_load (data, d2, x2, b2, data->gpr_size));
1186
1187 /* LA r1, d2(x2, b2) --- load address. */
1188 /* LAY r1, d2(x2, b2) --- load address (long-displacement version). */
1189 else if (is_rx (insn, op_la, &r1, &d2, &x2, &b2)
1190 || is_rxy (insn, op1_lay, op2_lay, &r1, &d2, &x2, &b2))
1191 data->gpr[r1] = s390_addr (data, d2, x2, b2);
1192
1193 /* LARL r1, i2 --- load address relative long. */
1194 else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2))
1195 data->gpr[r1] = pv_constant (pc + i2 * 2);
1196
1197 /* BASR r1, 0 --- branch and save.
1198 Since r2 is zero, this saves the PC in r1, but doesn't branch. */
1199 else if (is_rr (insn, op_basr, &r1, &r2)
1200 && r2 == 0)
1201 data->gpr[r1] = pv_constant (next_pc);
1202
1203 /* BRAS r1, i2 --- branch relative and save. */
1204 else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2))
1205 {
1206 data->gpr[r1] = pv_constant (next_pc);
1207 next_pc = pc + i2 * 2;
1208
1209 /* We'd better not interpret any backward branches. We'll
1210 never terminate. */
1211 if (next_pc <= pc)
1212 break;
1213 }
1214
1215 /* Terminate search when hitting any other branch instruction. */
1216 else if (is_rr (insn, op_basr, &r1, &r2)
1217 || is_rx (insn, op_bas, &r1, &d2, &x2, &b2)
1218 || is_rr (insn, op_bcr, &r1, &r2)
1219 || is_rx (insn, op_bc, &r1, &d2, &x2, &b2)
1220 || is_ri (insn, op1_brc, op2_brc, &r1, &i2)
1221 || is_ril (insn, op1_brcl, op2_brcl, &r1, &i2)
1222 || is_ril (insn, op1_brasl, op2_brasl, &r2, &i2))
1223 break;
1224
1225 else
1226 /* An instruction we don't know how to simulate. The only
1227 safe thing to do would be to set every value we're tracking
1228 to 'unknown'. Instead, we'll be optimistic: we assume that
1229 we *can* interpret every instruction that the compiler uses
1230 to manipulate any of the data we're interested in here --
1231 then we can just ignore anything else. */
1232 ;
1233
1234 /* Record the address after the last instruction that changed
1235 the FP, SP, or backlink. Ignore instructions that changed
1236 them back to their original values --- those are probably
1237 restore instructions. (The back chain is never restored,
1238 just popped.) */
1239 {
1240 pv_t sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
1241 pv_t fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
1242
1243 if ((! pv_is_identical (pre_insn_sp, sp)
1244 && ! pv_is_register_k (sp, S390_SP_REGNUM, 0)
1245 && sp.kind != pvk_unknown)
1246 || (! pv_is_identical (pre_insn_fp, fp)
1247 && ! pv_is_register_k (fp, S390_FRAME_REGNUM, 0)
1248 && fp.kind != pvk_unknown)
1249 || pre_insn_back_chain_saved_p != data->back_chain_saved_p)
1250 result = next_pc;
1251 }
1252 }
1253
1254 /* Record where all the registers were saved. */
1255 pv_area_scan (data->stack, s390_check_for_saved, data);
1256
1257 free_pv_area (data->stack);
1258 data->stack = NULL;
1259
1260 return result;
1261 }
1262
1263 /* Advance PC across any function entry prologue instructions to reach
1264 some "real" code. */
1265 static CORE_ADDR
1266 s390_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1267 {
1268 struct s390_prologue_data data;
1269 CORE_ADDR skip_pc;
1270 skip_pc = s390_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
1271 return skip_pc ? skip_pc : pc;
1272 }
1273
1274 /* Return true if we are in the functin's epilogue, i.e. after the
1275 instruction that destroyed the function's stack frame. */
1276 static int
1277 s390_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1278 {
1279 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1280
1281 /* In frameless functions, there's not frame to destroy and thus
1282 we don't care about the epilogue.
1283
1284 In functions with frame, the epilogue sequence is a pair of
1285 a LM-type instruction that restores (amongst others) the
1286 return register %r14 and the stack pointer %r15, followed
1287 by a branch 'br %r14' --or equivalent-- that effects the
1288 actual return.
1289
1290 In that situation, this function needs to return 'true' in
1291 exactly one case: when pc points to that branch instruction.
1292
1293 Thus we try to disassemble the one instructions immediately
1294 preceeding pc and check whether it is an LM-type instruction
1295 modifying the stack pointer.
1296
1297 Note that disassembling backwards is not reliable, so there
1298 is a slight chance of false positives here ... */
1299
1300 bfd_byte insn[6];
1301 unsigned int r1, r3, b2;
1302 int d2;
1303
1304 if (word_size == 4
1305 && !target_read_memory (pc - 4, insn, 4)
1306 && is_rs (insn, op_lm, &r1, &r3, &d2, &b2)
1307 && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
1308 return 1;
1309
1310 if (word_size == 4
1311 && !target_read_memory (pc - 6, insn, 6)
1312 && is_rsy (insn, op1_lmy, op2_lmy, &r1, &r3, &d2, &b2)
1313 && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
1314 return 1;
1315
1316 if (word_size == 8
1317 && !target_read_memory (pc - 6, insn, 6)
1318 && is_rsy (insn, op1_lmg, op2_lmg, &r1, &r3, &d2, &b2)
1319 && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
1320 return 1;
1321
1322 return 0;
1323 }
1324
1325 /* Displaced stepping. */
1326
1327 /* Fix up the state of registers and memory after having single-stepped
1328 a displaced instruction. */
1329 static void
1330 s390_displaced_step_fixup (struct gdbarch *gdbarch,
1331 struct displaced_step_closure *closure,
1332 CORE_ADDR from, CORE_ADDR to,
1333 struct regcache *regs)
1334 {
1335 /* Since we use simple_displaced_step_copy_insn, our closure is a
1336 copy of the instruction. */
1337 gdb_byte *insn = (gdb_byte *) closure;
1338 static int s390_instrlen[] = { 2, 4, 4, 6 };
1339 int insnlen = s390_instrlen[insn[0] >> 6];
1340
1341 /* Fields for various kinds of instructions. */
1342 unsigned int b2, r1, r2, x2, r3;
1343 int i2, d2;
1344
1345 /* Get current PC and addressing mode bit. */
1346 CORE_ADDR pc = regcache_read_pc (regs);
1347 ULONGEST amode = 0;
1348
1349 if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
1350 {
1351 regcache_cooked_read_unsigned (regs, S390_PSWA_REGNUM, &amode);
1352 amode &= 0x80000000;
1353 }
1354
1355 if (debug_displaced)
1356 fprintf_unfiltered (gdb_stdlog,
1357 "displaced: (s390) fixup (%s, %s) pc %s amode 0x%x\n",
1358 paddress (gdbarch, from), paddress (gdbarch, to),
1359 paddress (gdbarch, pc), (int) amode);
1360
1361 /* Handle absolute branch and save instructions. */
1362 if (is_rr (insn, op_basr, &r1, &r2)
1363 || is_rx (insn, op_bas, &r1, &d2, &x2, &b2))
1364 {
1365 /* Recompute saved return address in R1. */
1366 regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
1367 amode | (from + insnlen));
1368 }
1369
1370 /* Handle absolute branch instructions. */
1371 else if (is_rr (insn, op_bcr, &r1, &r2)
1372 || is_rx (insn, op_bc, &r1, &d2, &x2, &b2)
1373 || is_rr (insn, op_bctr, &r1, &r2)
1374 || is_rre (insn, op_bctgr, &r1, &r2)
1375 || is_rx (insn, op_bct, &r1, &d2, &x2, &b2)
1376 || is_rxy (insn, op1_bctg, op2_brctg, &r1, &d2, &x2, &b2)
1377 || is_rs (insn, op_bxh, &r1, &r3, &d2, &b2)
1378 || is_rsy (insn, op1_bxhg, op2_bxhg, &r1, &r3, &d2, &b2)
1379 || is_rs (insn, op_bxle, &r1, &r3, &d2, &b2)
1380 || is_rsy (insn, op1_bxleg, op2_bxleg, &r1, &r3, &d2, &b2))
1381 {
1382 /* Update PC iff branch was *not* taken. */
1383 if (pc == to + insnlen)
1384 regcache_write_pc (regs, from + insnlen);
1385 }
1386
1387 /* Handle PC-relative branch and save instructions. */
1388 else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2)
1389 || is_ril (insn, op1_brasl, op2_brasl, &r1, &i2))
1390 {
1391 /* Update PC. */
1392 regcache_write_pc (regs, pc - to + from);
1393 /* Recompute saved return address in R1. */
1394 regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
1395 amode | (from + insnlen));
1396 }
1397
1398 /* Handle PC-relative branch instructions. */
1399 else if (is_ri (insn, op1_brc, op2_brc, &r1, &i2)
1400 || is_ril (insn, op1_brcl, op2_brcl, &r1, &i2)
1401 || is_ri (insn, op1_brct, op2_brct, &r1, &i2)
1402 || is_ri (insn, op1_brctg, op2_brctg, &r1, &i2)
1403 || is_rsi (insn, op_brxh, &r1, &r3, &i2)
1404 || is_rie (insn, op1_brxhg, op2_brxhg, &r1, &r3, &i2)
1405 || is_rsi (insn, op_brxle, &r1, &r3, &i2)
1406 || is_rie (insn, op1_brxlg, op2_brxlg, &r1, &r3, &i2))
1407 {
1408 /* Update PC. */
1409 regcache_write_pc (regs, pc - to + from);
1410 }
1411
1412 /* Handle LOAD ADDRESS RELATIVE LONG. */
1413 else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2))
1414 {
1415 /* Recompute output address in R1. */
1416 regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
1417 amode | (from + insnlen + i2*2));
1418 }
1419
1420 /* If we executed a breakpoint instruction, point PC right back at it. */
1421 else if (insn[0] == 0x0 && insn[1] == 0x1)
1422 regcache_write_pc (regs, from);
1423
1424 /* For any other insn, PC points right after the original instruction. */
1425 else
1426 regcache_write_pc (regs, from + insnlen);
1427 }
1428
1429 /* Normal stack frames. */
1430
1431 struct s390_unwind_cache {
1432
1433 CORE_ADDR func;
1434 CORE_ADDR frame_base;
1435 CORE_ADDR local_base;
1436
1437 struct trad_frame_saved_reg *saved_regs;
1438 };
1439
1440 static int
1441 s390_prologue_frame_unwind_cache (struct frame_info *this_frame,
1442 struct s390_unwind_cache *info)
1443 {
1444 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1445 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1446 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1447 struct s390_prologue_data data;
1448 pv_t *fp = &data.gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
1449 pv_t *sp = &data.gpr[S390_SP_REGNUM - S390_R0_REGNUM];
1450 int i;
1451 CORE_ADDR cfa;
1452 CORE_ADDR func;
1453 CORE_ADDR result;
1454 ULONGEST reg;
1455 CORE_ADDR prev_sp;
1456 int frame_pointer;
1457 int size;
1458 struct frame_info *next_frame;
1459
1460 /* Try to find the function start address. If we can't find it, we don't
1461 bother searching for it -- with modern compilers this would be mostly
1462 pointless anyway. Trust that we'll either have valid DWARF-2 CFI data
1463 or else a valid backchain ... */
1464 func = get_frame_func (this_frame);
1465 if (!func)
1466 return 0;
1467
1468 /* Try to analyze the prologue. */
1469 result = s390_analyze_prologue (gdbarch, func,
1470 get_frame_pc (this_frame), &data);
1471 if (!result)
1472 return 0;
1473
1474 /* If this was successful, we should have found the instruction that
1475 sets the stack pointer register to the previous value of the stack
1476 pointer minus the frame size. */
1477 if (!pv_is_register (*sp, S390_SP_REGNUM))
1478 return 0;
1479
1480 /* A frame size of zero at this point can mean either a real
1481 frameless function, or else a failure to find the prologue.
1482 Perform some sanity checks to verify we really have a
1483 frameless function. */
1484 if (sp->k == 0)
1485 {
1486 /* If the next frame is a NORMAL_FRAME, this frame *cannot* have frame
1487 size zero. This is only possible if the next frame is a sentinel
1488 frame, a dummy frame, or a signal trampoline frame. */
1489 /* FIXME: cagney/2004-05-01: This sanity check shouldn't be
1490 needed, instead the code should simpliy rely on its
1491 analysis. */
1492 next_frame = get_next_frame (this_frame);
1493 while (next_frame && get_frame_type (next_frame) == INLINE_FRAME)
1494 next_frame = get_next_frame (next_frame);
1495 if (next_frame
1496 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME)
1497 return 0;
1498
1499 /* If we really have a frameless function, %r14 must be valid
1500 -- in particular, it must point to a different function. */
1501 reg = get_frame_register_unsigned (this_frame, S390_RETADDR_REGNUM);
1502 reg = gdbarch_addr_bits_remove (gdbarch, reg) - 1;
1503 if (get_pc_function_start (reg) == func)
1504 {
1505 /* However, there is one case where it *is* valid for %r14
1506 to point to the same function -- if this is a recursive
1507 call, and we have stopped in the prologue *before* the
1508 stack frame was allocated.
1509
1510 Recognize this case by looking ahead a bit ... */
1511
1512 struct s390_prologue_data data2;
1513 pv_t *sp = &data2.gpr[S390_SP_REGNUM - S390_R0_REGNUM];
1514
1515 if (!(s390_analyze_prologue (gdbarch, func, (CORE_ADDR)-1, &data2)
1516 && pv_is_register (*sp, S390_SP_REGNUM)
1517 && sp->k != 0))
1518 return 0;
1519 }
1520 }
1521
1522
1523 /* OK, we've found valid prologue data. */
1524 size = -sp->k;
1525
1526 /* If the frame pointer originally also holds the same value
1527 as the stack pointer, we're probably using it. If it holds
1528 some other value -- even a constant offset -- it is most
1529 likely used as temp register. */
1530 if (pv_is_identical (*sp, *fp))
1531 frame_pointer = S390_FRAME_REGNUM;
1532 else
1533 frame_pointer = S390_SP_REGNUM;
1534
1535 /* If we've detected a function with stack frame, we'll still have to
1536 treat it as frameless if we're currently within the function epilog
1537 code at a point where the frame pointer has already been restored.
1538 This can only happen in an innermost frame. */
1539 /* FIXME: cagney/2004-05-01: This sanity check shouldn't be needed,
1540 instead the code should simpliy rely on its analysis. */
1541 next_frame = get_next_frame (this_frame);
1542 while (next_frame && get_frame_type (next_frame) == INLINE_FRAME)
1543 next_frame = get_next_frame (next_frame);
1544 if (size > 0
1545 && (next_frame == NULL
1546 || get_frame_type (get_next_frame (this_frame)) != NORMAL_FRAME))
1547 {
1548 /* See the comment in s390_in_function_epilogue_p on why this is
1549 not completely reliable ... */
1550 if (s390_in_function_epilogue_p (gdbarch, get_frame_pc (this_frame)))
1551 {
1552 memset (&data, 0, sizeof (data));
1553 size = 0;
1554 frame_pointer = S390_SP_REGNUM;
1555 }
1556 }
1557
1558 /* Once we know the frame register and the frame size, we can unwind
1559 the current value of the frame register from the next frame, and
1560 add back the frame size to arrive that the previous frame's
1561 stack pointer value. */
1562 prev_sp = get_frame_register_unsigned (this_frame, frame_pointer) + size;
1563 cfa = prev_sp + 16*word_size + 32;
1564
1565 /* Set up ABI call-saved/call-clobbered registers. */
1566 for (i = 0; i < S390_NUM_REGS; i++)
1567 if (!s390_register_call_saved (gdbarch, i))
1568 trad_frame_set_unknown (info->saved_regs, i);
1569
1570 /* CC is always call-clobbered. */
1571 trad_frame_set_unknown (info->saved_regs, tdep->cc_regnum);
1572
1573 /* Record the addresses of all register spill slots the prologue parser
1574 has recognized. Consider only registers defined as call-saved by the
1575 ABI; for call-clobbered registers the parser may have recognized
1576 spurious stores. */
1577
1578 for (i = 0; i < 16; i++)
1579 if (s390_register_call_saved (gdbarch, S390_R0_REGNUM + i)
1580 && data.gpr_slot[i] != 0)
1581 info->saved_regs[S390_R0_REGNUM + i].addr = cfa - data.gpr_slot[i];
1582
1583 for (i = 0; i < 16; i++)
1584 if (s390_register_call_saved (gdbarch, S390_F0_REGNUM + i)
1585 && data.fpr_slot[i] != 0)
1586 info->saved_regs[S390_F0_REGNUM + i].addr = cfa - data.fpr_slot[i];
1587
1588 /* Function return will set PC to %r14. */
1589 info->saved_regs[tdep->pc_regnum] = info->saved_regs[S390_RETADDR_REGNUM];
1590
1591 /* In frameless functions, we unwind simply by moving the return
1592 address to the PC. However, if we actually stored to the
1593 save area, use that -- we might only think the function frameless
1594 because we're in the middle of the prologue ... */
1595 if (size == 0
1596 && !trad_frame_addr_p (info->saved_regs, tdep->pc_regnum))
1597 {
1598 info->saved_regs[tdep->pc_regnum].realreg = S390_RETADDR_REGNUM;
1599 }
1600
1601 /* Another sanity check: unless this is a frameless function,
1602 we should have found spill slots for SP and PC.
1603 If not, we cannot unwind further -- this happens e.g. in
1604 libc's thread_start routine. */
1605 if (size > 0)
1606 {
1607 if (!trad_frame_addr_p (info->saved_regs, S390_SP_REGNUM)
1608 || !trad_frame_addr_p (info->saved_regs, tdep->pc_regnum))
1609 prev_sp = -1;
1610 }
1611
1612 /* We use the current value of the frame register as local_base,
1613 and the top of the register save area as frame_base. */
1614 if (prev_sp != -1)
1615 {
1616 info->frame_base = prev_sp + 16*word_size + 32;
1617 info->local_base = prev_sp - size;
1618 }
1619
1620 info->func = func;
1621 return 1;
1622 }
1623
1624 static void
1625 s390_backchain_frame_unwind_cache (struct frame_info *this_frame,
1626 struct s390_unwind_cache *info)
1627 {
1628 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1629 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1630 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1631 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1632 CORE_ADDR backchain;
1633 ULONGEST reg;
1634 LONGEST sp;
1635 int i;
1636
1637 /* Set up ABI call-saved/call-clobbered registers. */
1638 for (i = 0; i < S390_NUM_REGS; i++)
1639 if (!s390_register_call_saved (gdbarch, i))
1640 trad_frame_set_unknown (info->saved_regs, i);
1641
1642 /* CC is always call-clobbered. */
1643 trad_frame_set_unknown (info->saved_regs, tdep->cc_regnum);
1644
1645 /* Get the backchain. */
1646 reg = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
1647 backchain = read_memory_unsigned_integer (reg, word_size, byte_order);
1648
1649 /* A zero backchain terminates the frame chain. As additional
1650 sanity check, let's verify that the spill slot for SP in the
1651 save area pointed to by the backchain in fact links back to
1652 the save area. */
1653 if (backchain != 0
1654 && safe_read_memory_integer (backchain + 15*word_size,
1655 word_size, byte_order, &sp)
1656 && (CORE_ADDR)sp == backchain)
1657 {
1658 /* We don't know which registers were saved, but it will have
1659 to be at least %r14 and %r15. This will allow us to continue
1660 unwinding, but other prev-frame registers may be incorrect ... */
1661 info->saved_regs[S390_SP_REGNUM].addr = backchain + 15*word_size;
1662 info->saved_regs[S390_RETADDR_REGNUM].addr = backchain + 14*word_size;
1663
1664 /* Function return will set PC to %r14. */
1665 info->saved_regs[tdep->pc_regnum]
1666 = info->saved_regs[S390_RETADDR_REGNUM];
1667
1668 /* We use the current value of the frame register as local_base,
1669 and the top of the register save area as frame_base. */
1670 info->frame_base = backchain + 16*word_size + 32;
1671 info->local_base = reg;
1672 }
1673
1674 info->func = get_frame_pc (this_frame);
1675 }
1676
1677 static struct s390_unwind_cache *
1678 s390_frame_unwind_cache (struct frame_info *this_frame,
1679 void **this_prologue_cache)
1680 {
1681 struct s390_unwind_cache *info;
1682 if (*this_prologue_cache)
1683 return *this_prologue_cache;
1684
1685 info = FRAME_OBSTACK_ZALLOC (struct s390_unwind_cache);
1686 *this_prologue_cache = info;
1687 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1688 info->func = -1;
1689 info->frame_base = -1;
1690 info->local_base = -1;
1691
1692 /* Try to use prologue analysis to fill the unwind cache.
1693 If this fails, fall back to reading the stack backchain. */
1694 if (!s390_prologue_frame_unwind_cache (this_frame, info))
1695 s390_backchain_frame_unwind_cache (this_frame, info);
1696
1697 return info;
1698 }
1699
1700 static void
1701 s390_frame_this_id (struct frame_info *this_frame,
1702 void **this_prologue_cache,
1703 struct frame_id *this_id)
1704 {
1705 struct s390_unwind_cache *info
1706 = s390_frame_unwind_cache (this_frame, this_prologue_cache);
1707
1708 if (info->frame_base == -1)
1709 return;
1710
1711 *this_id = frame_id_build (info->frame_base, info->func);
1712 }
1713
1714 static struct value *
1715 s390_frame_prev_register (struct frame_info *this_frame,
1716 void **this_prologue_cache, int regnum)
1717 {
1718 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1719 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1720 struct s390_unwind_cache *info
1721 = s390_frame_unwind_cache (this_frame, this_prologue_cache);
1722
1723 /* Unwind full GPRs to show at least the lower halves (as the
1724 upper halves are undefined). */
1725 if (tdep->gpr_full_regnum != -1
1726 && regnum >= tdep->gpr_full_regnum
1727 && regnum < tdep->gpr_full_regnum + 16)
1728 {
1729 int reg = regnum - tdep->gpr_full_regnum + S390_R0_REGNUM;
1730 struct value *val, *newval;
1731
1732 val = trad_frame_get_prev_register (this_frame, info->saved_regs, reg);
1733 newval = value_cast (register_type (gdbarch, regnum), val);
1734 if (value_optimized_out (val))
1735 set_value_optimized_out (newval, 1);
1736
1737 return newval;
1738 }
1739
1740 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1741 }
1742
1743 static const struct frame_unwind s390_frame_unwind = {
1744 NORMAL_FRAME,
1745 s390_frame_this_id,
1746 s390_frame_prev_register,
1747 NULL,
1748 default_frame_sniffer
1749 };
1750
1751
1752 /* Code stubs and their stack frames. For things like PLTs and NULL
1753 function calls (where there is no true frame and the return address
1754 is in the RETADDR register). */
1755
1756 struct s390_stub_unwind_cache
1757 {
1758 CORE_ADDR frame_base;
1759 struct trad_frame_saved_reg *saved_regs;
1760 };
1761
1762 static struct s390_stub_unwind_cache *
1763 s390_stub_frame_unwind_cache (struct frame_info *this_frame,
1764 void **this_prologue_cache)
1765 {
1766 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1767 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1768 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1769 struct s390_stub_unwind_cache *info;
1770 ULONGEST reg;
1771
1772 if (*this_prologue_cache)
1773 return *this_prologue_cache;
1774
1775 info = FRAME_OBSTACK_ZALLOC (struct s390_stub_unwind_cache);
1776 *this_prologue_cache = info;
1777 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1778
1779 /* The return address is in register %r14. */
1780 info->saved_regs[tdep->pc_regnum].realreg = S390_RETADDR_REGNUM;
1781
1782 /* Retrieve stack pointer and determine our frame base. */
1783 reg = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
1784 info->frame_base = reg + 16*word_size + 32;
1785
1786 return info;
1787 }
1788
1789 static void
1790 s390_stub_frame_this_id (struct frame_info *this_frame,
1791 void **this_prologue_cache,
1792 struct frame_id *this_id)
1793 {
1794 struct s390_stub_unwind_cache *info
1795 = s390_stub_frame_unwind_cache (this_frame, this_prologue_cache);
1796 *this_id = frame_id_build (info->frame_base, get_frame_pc (this_frame));
1797 }
1798
1799 static struct value *
1800 s390_stub_frame_prev_register (struct frame_info *this_frame,
1801 void **this_prologue_cache, int regnum)
1802 {
1803 struct s390_stub_unwind_cache *info
1804 = s390_stub_frame_unwind_cache (this_frame, this_prologue_cache);
1805 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1806 }
1807
1808 static int
1809 s390_stub_frame_sniffer (const struct frame_unwind *self,
1810 struct frame_info *this_frame,
1811 void **this_prologue_cache)
1812 {
1813 CORE_ADDR addr_in_block;
1814 bfd_byte insn[S390_MAX_INSTR_SIZE];
1815
1816 /* If the current PC points to non-readable memory, we assume we
1817 have trapped due to an invalid function pointer call. We handle
1818 the non-existing current function like a PLT stub. */
1819 addr_in_block = get_frame_address_in_block (this_frame);
1820 if (in_plt_section (addr_in_block, NULL)
1821 || s390_readinstruction (insn, get_frame_pc (this_frame)) < 0)
1822 return 1;
1823 return 0;
1824 }
1825
1826 static const struct frame_unwind s390_stub_frame_unwind = {
1827 NORMAL_FRAME,
1828 s390_stub_frame_this_id,
1829 s390_stub_frame_prev_register,
1830 NULL,
1831 s390_stub_frame_sniffer
1832 };
1833
1834
1835 /* Signal trampoline stack frames. */
1836
1837 struct s390_sigtramp_unwind_cache {
1838 CORE_ADDR frame_base;
1839 struct trad_frame_saved_reg *saved_regs;
1840 };
1841
1842 static struct s390_sigtramp_unwind_cache *
1843 s390_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
1844 void **this_prologue_cache)
1845 {
1846 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1847 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1848 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1849 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1850 struct s390_sigtramp_unwind_cache *info;
1851 ULONGEST this_sp, prev_sp;
1852 CORE_ADDR next_ra, next_cfa, sigreg_ptr, sigreg_high_off;
1853 ULONGEST pswm;
1854 int i;
1855
1856 if (*this_prologue_cache)
1857 return *this_prologue_cache;
1858
1859 info = FRAME_OBSTACK_ZALLOC (struct s390_sigtramp_unwind_cache);
1860 *this_prologue_cache = info;
1861 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1862
1863 this_sp = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
1864 next_ra = get_frame_pc (this_frame);
1865 next_cfa = this_sp + 16*word_size + 32;
1866
1867 /* New-style RT frame:
1868 retcode + alignment (8 bytes)
1869 siginfo (128 bytes)
1870 ucontext (contains sigregs at offset 5 words). */
1871 if (next_ra == next_cfa)
1872 {
1873 sigreg_ptr = next_cfa + 8 + 128 + align_up (5*word_size, 8);
1874 /* sigregs are followed by uc_sigmask (8 bytes), then by the
1875 upper GPR halves if present. */
1876 sigreg_high_off = 8;
1877 }
1878
1879 /* Old-style RT frame and all non-RT frames:
1880 old signal mask (8 bytes)
1881 pointer to sigregs. */
1882 else
1883 {
1884 sigreg_ptr = read_memory_unsigned_integer (next_cfa + 8,
1885 word_size, byte_order);
1886 /* sigregs are followed by signo (4 bytes), then by the
1887 upper GPR halves if present. */
1888 sigreg_high_off = 4;
1889 }
1890
1891 /* The sigregs structure looks like this:
1892 long psw_mask;
1893 long psw_addr;
1894 long gprs[16];
1895 int acrs[16];
1896 int fpc;
1897 int __pad;
1898 double fprs[16]; */
1899
1900 /* PSW mask and address. */
1901 info->saved_regs[S390_PSWM_REGNUM].addr = sigreg_ptr;
1902 sigreg_ptr += word_size;
1903 info->saved_regs[S390_PSWA_REGNUM].addr = sigreg_ptr;
1904 sigreg_ptr += word_size;
1905
1906 /* Point PC to PSWA as well. */
1907 info->saved_regs[tdep->pc_regnum] = info->saved_regs[S390_PSWA_REGNUM];
1908
1909 /* Extract CC from PSWM. */
1910 pswm = read_memory_unsigned_integer (
1911 info->saved_regs[S390_PSWM_REGNUM].addr,
1912 word_size, byte_order);
1913 trad_frame_set_value (info->saved_regs, tdep->cc_regnum,
1914 (pswm >> (8 * word_size - 20)) & 3);
1915
1916 /* Then the GPRs. */
1917 for (i = 0; i < 16; i++)
1918 {
1919 info->saved_regs[S390_R0_REGNUM + i].addr = sigreg_ptr;
1920 sigreg_ptr += word_size;
1921 }
1922
1923 /* Then the ACRs. */
1924 for (i = 0; i < 16; i++)
1925 {
1926 info->saved_regs[S390_A0_REGNUM + i].addr = sigreg_ptr;
1927 sigreg_ptr += 4;
1928 }
1929
1930 /* The floating-point control word. */
1931 info->saved_regs[S390_FPC_REGNUM].addr = sigreg_ptr;
1932 sigreg_ptr += 8;
1933
1934 /* And finally the FPRs. */
1935 for (i = 0; i < 16; i++)
1936 {
1937 info->saved_regs[S390_F0_REGNUM + i].addr = sigreg_ptr;
1938 sigreg_ptr += 8;
1939 }
1940
1941 /* If we have them, the GPR upper halves are appended at the end. */
1942 sigreg_ptr += sigreg_high_off;
1943 if (tdep->gpr_full_regnum != -1)
1944 for (i = 0; i < 16; i++)
1945 {
1946 info->saved_regs[S390_R0_UPPER_REGNUM + i].addr = sigreg_ptr;
1947 sigreg_ptr += 4;
1948 }
1949
1950 /* Provide read-only copies of the full registers. */
1951 if (tdep->gpr_full_regnum != -1)
1952 for (i = 0; i < 16; i++)
1953 {
1954 ULONGEST low, high;
1955 low = read_memory_unsigned_integer (
1956 info->saved_regs[S390_R0_REGNUM + i].addr,
1957 4, byte_order);
1958 high = read_memory_unsigned_integer (
1959 info->saved_regs[S390_R0_UPPER_REGNUM + i].addr,
1960 4, byte_order);
1961
1962 trad_frame_set_value (info->saved_regs, tdep->gpr_full_regnum + i,
1963 (high << 32) | low);
1964 }
1965
1966 /* Restore the previous frame's SP. */
1967 prev_sp = read_memory_unsigned_integer (
1968 info->saved_regs[S390_SP_REGNUM].addr,
1969 word_size, byte_order);
1970
1971 /* Determine our frame base. */
1972 info->frame_base = prev_sp + 16*word_size + 32;
1973
1974 return info;
1975 }
1976
1977 static void
1978 s390_sigtramp_frame_this_id (struct frame_info *this_frame,
1979 void **this_prologue_cache,
1980 struct frame_id *this_id)
1981 {
1982 struct s390_sigtramp_unwind_cache *info
1983 = s390_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
1984 *this_id = frame_id_build (info->frame_base, get_frame_pc (this_frame));
1985 }
1986
1987 static struct value *
1988 s390_sigtramp_frame_prev_register (struct frame_info *this_frame,
1989 void **this_prologue_cache, int regnum)
1990 {
1991 struct s390_sigtramp_unwind_cache *info
1992 = s390_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
1993 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1994 }
1995
1996 static int
1997 s390_sigtramp_frame_sniffer (const struct frame_unwind *self,
1998 struct frame_info *this_frame,
1999 void **this_prologue_cache)
2000 {
2001 CORE_ADDR pc = get_frame_pc (this_frame);
2002 bfd_byte sigreturn[2];
2003
2004 if (target_read_memory (pc, sigreturn, 2))
2005 return 0;
2006
2007 if (sigreturn[0] != 0x0a /* svc */)
2008 return 0;
2009
2010 if (sigreturn[1] != 119 /* sigreturn */
2011 && sigreturn[1] != 173 /* rt_sigreturn */)
2012 return 0;
2013
2014 return 1;
2015 }
2016
2017 static const struct frame_unwind s390_sigtramp_frame_unwind = {
2018 SIGTRAMP_FRAME,
2019 s390_sigtramp_frame_this_id,
2020 s390_sigtramp_frame_prev_register,
2021 NULL,
2022 s390_sigtramp_frame_sniffer
2023 };
2024
2025
2026 /* Frame base handling. */
2027
2028 static CORE_ADDR
2029 s390_frame_base_address (struct frame_info *this_frame, void **this_cache)
2030 {
2031 struct s390_unwind_cache *info
2032 = s390_frame_unwind_cache (this_frame, this_cache);
2033 return info->frame_base;
2034 }
2035
2036 static CORE_ADDR
2037 s390_local_base_address (struct frame_info *this_frame, void **this_cache)
2038 {
2039 struct s390_unwind_cache *info
2040 = s390_frame_unwind_cache (this_frame, this_cache);
2041 return info->local_base;
2042 }
2043
2044 static const struct frame_base s390_frame_base = {
2045 &s390_frame_unwind,
2046 s390_frame_base_address,
2047 s390_local_base_address,
2048 s390_local_base_address
2049 };
2050
2051 static CORE_ADDR
2052 s390_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2053 {
2054 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2055 ULONGEST pc;
2056 pc = frame_unwind_register_unsigned (next_frame, tdep->pc_regnum);
2057 return gdbarch_addr_bits_remove (gdbarch, pc);
2058 }
2059
2060 static CORE_ADDR
2061 s390_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2062 {
2063 ULONGEST sp;
2064 sp = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM);
2065 return gdbarch_addr_bits_remove (gdbarch, sp);
2066 }
2067
2068
2069 /* DWARF-2 frame support. */
2070
2071 static struct value *
2072 s390_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache,
2073 int regnum)
2074 {
2075 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2076 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2077 int reg = regnum - tdep->gpr_full_regnum;
2078 struct value *val, *newval;
2079
2080 val = frame_unwind_register_value (this_frame, S390_R0_REGNUM + reg);
2081 newval = value_cast (register_type (gdbarch, regnum), val);
2082 if (value_optimized_out (val))
2083 set_value_optimized_out (newval, 1);
2084
2085 return newval;
2086 }
2087
2088 static void
2089 s390_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
2090 struct dwarf2_frame_state_reg *reg,
2091 struct frame_info *this_frame)
2092 {
2093 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2094
2095 /* Fixed registers are call-saved or call-clobbered
2096 depending on the ABI in use. */
2097 if (regnum >= 0 && regnum < S390_NUM_REGS)
2098 {
2099 if (s390_register_call_saved (gdbarch, regnum))
2100 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
2101 else
2102 reg->how = DWARF2_FRAME_REG_UNDEFINED;
2103 }
2104
2105 /* The CC pseudo register is call-clobbered. */
2106 else if (regnum == tdep->cc_regnum)
2107 reg->how = DWARF2_FRAME_REG_UNDEFINED;
2108
2109 /* The PC register unwinds to the return address. */
2110 else if (regnum == tdep->pc_regnum)
2111 reg->how = DWARF2_FRAME_REG_RA;
2112
2113 /* We install a special function to unwind full GPRs to show at
2114 least the lower halves (as the upper halves are undefined). */
2115 else if (tdep->gpr_full_regnum != -1
2116 && regnum >= tdep->gpr_full_regnum
2117 && regnum < tdep->gpr_full_regnum + 16)
2118 {
2119 reg->how = DWARF2_FRAME_REG_FN;
2120 reg->loc.fn = s390_dwarf2_prev_register;
2121 }
2122 }
2123
2124
2125 /* Dummy function calls. */
2126
2127 /* Return non-zero if TYPE is an integer-like type, zero otherwise.
2128 "Integer-like" types are those that should be passed the way
2129 integers are: integers, enums, ranges, characters, and booleans. */
2130 static int
2131 is_integer_like (struct type *type)
2132 {
2133 enum type_code code = TYPE_CODE (type);
2134
2135 return (code == TYPE_CODE_INT
2136 || code == TYPE_CODE_ENUM
2137 || code == TYPE_CODE_RANGE
2138 || code == TYPE_CODE_CHAR
2139 || code == TYPE_CODE_BOOL);
2140 }
2141
2142 /* Return non-zero if TYPE is a pointer-like type, zero otherwise.
2143 "Pointer-like" types are those that should be passed the way
2144 pointers are: pointers and references. */
2145 static int
2146 is_pointer_like (struct type *type)
2147 {
2148 enum type_code code = TYPE_CODE (type);
2149
2150 return (code == TYPE_CODE_PTR
2151 || code == TYPE_CODE_REF);
2152 }
2153
2154
2155 /* Return non-zero if TYPE is a `float singleton' or `double
2156 singleton', zero otherwise.
2157
2158 A `T singleton' is a struct type with one member, whose type is
2159 either T or a `T singleton'. So, the following are all float
2160 singletons:
2161
2162 struct { float x };
2163 struct { struct { float x; } x; };
2164 struct { struct { struct { float x; } x; } x; };
2165
2166 ... and so on.
2167
2168 All such structures are passed as if they were floats or doubles,
2169 as the (revised) ABI says. */
2170 static int
2171 is_float_singleton (struct type *type)
2172 {
2173 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2174 {
2175 struct type *singleton_type = TYPE_FIELD_TYPE (type, 0);
2176 CHECK_TYPEDEF (singleton_type);
2177
2178 return (TYPE_CODE (singleton_type) == TYPE_CODE_FLT
2179 || TYPE_CODE (singleton_type) == TYPE_CODE_DECFLOAT
2180 || is_float_singleton (singleton_type));
2181 }
2182
2183 return 0;
2184 }
2185
2186
2187 /* Return non-zero if TYPE is a struct-like type, zero otherwise.
2188 "Struct-like" types are those that should be passed as structs are:
2189 structs and unions.
2190
2191 As an odd quirk, not mentioned in the ABI, GCC passes float and
2192 double singletons as if they were a plain float, double, etc. (The
2193 corresponding union types are handled normally.) So we exclude
2194 those types here. *shrug* */
2195 static int
2196 is_struct_like (struct type *type)
2197 {
2198 enum type_code code = TYPE_CODE (type);
2199
2200 return (code == TYPE_CODE_UNION
2201 || (code == TYPE_CODE_STRUCT && ! is_float_singleton (type)));
2202 }
2203
2204
2205 /* Return non-zero if TYPE is a float-like type, zero otherwise.
2206 "Float-like" types are those that should be passed as
2207 floating-point values are.
2208
2209 You'd think this would just be floats, doubles, long doubles, etc.
2210 But as an odd quirk, not mentioned in the ABI, GCC passes float and
2211 double singletons as if they were a plain float, double, etc. (The
2212 corresponding union types are handled normally.) So we include
2213 those types here. *shrug* */
2214 static int
2215 is_float_like (struct type *type)
2216 {
2217 return (TYPE_CODE (type) == TYPE_CODE_FLT
2218 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2219 || is_float_singleton (type));
2220 }
2221
2222
2223 static int
2224 is_power_of_two (unsigned int n)
2225 {
2226 return ((n & (n - 1)) == 0);
2227 }
2228
2229 /* Return non-zero if TYPE should be passed as a pointer to a copy,
2230 zero otherwise. */
2231 static int
2232 s390_function_arg_pass_by_reference (struct type *type)
2233 {
2234 unsigned length = TYPE_LENGTH (type);
2235 if (length > 8)
2236 return 1;
2237
2238 /* FIXME: All complex and vector types are also returned by reference. */
2239 return is_struct_like (type) && !is_power_of_two (length);
2240 }
2241
2242 /* Return non-zero if TYPE should be passed in a float register
2243 if possible. */
2244 static int
2245 s390_function_arg_float (struct type *type)
2246 {
2247 unsigned length = TYPE_LENGTH (type);
2248 if (length > 8)
2249 return 0;
2250
2251 return is_float_like (type);
2252 }
2253
2254 /* Return non-zero if TYPE should be passed in an integer register
2255 (or a pair of integer registers) if possible. */
2256 static int
2257 s390_function_arg_integer (struct type *type)
2258 {
2259 unsigned length = TYPE_LENGTH (type);
2260 if (length > 8)
2261 return 0;
2262
2263 return is_integer_like (type)
2264 || is_pointer_like (type)
2265 || (is_struct_like (type) && is_power_of_two (length));
2266 }
2267
2268 /* Return ARG, a `SIMPLE_ARG', sign-extended or zero-extended to a full
2269 word as required for the ABI. */
2270 static LONGEST
2271 extend_simple_arg (struct gdbarch *gdbarch, struct value *arg)
2272 {
2273 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2274 struct type *type = value_type (arg);
2275
2276 /* Even structs get passed in the least significant bits of the
2277 register / memory word. It's not really right to extract them as
2278 an integer, but it does take care of the extension. */
2279 if (TYPE_UNSIGNED (type))
2280 return extract_unsigned_integer (value_contents (arg),
2281 TYPE_LENGTH (type), byte_order);
2282 else
2283 return extract_signed_integer (value_contents (arg),
2284 TYPE_LENGTH (type), byte_order);
2285 }
2286
2287
2288 /* Return the alignment required by TYPE. */
2289 static int
2290 alignment_of (struct type *type)
2291 {
2292 int alignment;
2293
2294 if (is_integer_like (type)
2295 || is_pointer_like (type)
2296 || TYPE_CODE (type) == TYPE_CODE_FLT
2297 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
2298 alignment = TYPE_LENGTH (type);
2299 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2300 || TYPE_CODE (type) == TYPE_CODE_UNION)
2301 {
2302 int i;
2303
2304 alignment = 1;
2305 for (i = 0; i < TYPE_NFIELDS (type); i++)
2306 {
2307 int field_alignment = alignment_of (TYPE_FIELD_TYPE (type, i));
2308
2309 if (field_alignment > alignment)
2310 alignment = field_alignment;
2311 }
2312 }
2313 else
2314 alignment = 1;
2315
2316 /* Check that everything we ever return is a power of two. Lots of
2317 code doesn't want to deal with aligning things to arbitrary
2318 boundaries. */
2319 gdb_assert ((alignment & (alignment - 1)) == 0);
2320
2321 return alignment;
2322 }
2323
2324
2325 /* Put the actual parameter values pointed to by ARGS[0..NARGS-1] in
2326 place to be passed to a function, as specified by the "GNU/Linux
2327 for S/390 ELF Application Binary Interface Supplement".
2328
2329 SP is the current stack pointer. We must put arguments, links,
2330 padding, etc. whereever they belong, and return the new stack
2331 pointer value.
2332
2333 If STRUCT_RETURN is non-zero, then the function we're calling is
2334 going to return a structure by value; STRUCT_ADDR is the address of
2335 a block we've allocated for it on the stack.
2336
2337 Our caller has taken care of any type promotions needed to satisfy
2338 prototypes or the old K&R argument-passing rules. */
2339 static CORE_ADDR
2340 s390_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2341 struct regcache *regcache, CORE_ADDR bp_addr,
2342 int nargs, struct value **args, CORE_ADDR sp,
2343 int struct_return, CORE_ADDR struct_addr)
2344 {
2345 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2346 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
2347 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2348 int i;
2349
2350 /* If the i'th argument is passed as a reference to a copy, then
2351 copy_addr[i] is the address of the copy we made. */
2352 CORE_ADDR *copy_addr = alloca (nargs * sizeof (CORE_ADDR));
2353
2354 /* Reserve space for the reference-to-copy area. */
2355 for (i = 0; i < nargs; i++)
2356 {
2357 struct value *arg = args[i];
2358 struct type *type = value_type (arg);
2359 unsigned length = TYPE_LENGTH (type);
2360
2361 if (s390_function_arg_pass_by_reference (type))
2362 {
2363 sp -= length;
2364 sp = align_down (sp, alignment_of (type));
2365 copy_addr[i] = sp;
2366 }
2367 }
2368
2369 /* Reserve space for the parameter area. As a conservative
2370 simplification, we assume that everything will be passed on the
2371 stack. Since every argument larger than 8 bytes will be
2372 passed by reference, we use this simple upper bound. */
2373 sp -= nargs * 8;
2374
2375 /* After all that, make sure it's still aligned on an eight-byte
2376 boundary. */
2377 sp = align_down (sp, 8);
2378
2379 /* Allocate the standard frame areas: the register save area, the
2380 word reserved for the compiler (which seems kind of meaningless),
2381 and the back chain pointer. */
2382 sp -= 16*word_size + 32;
2383
2384 /* Now we have the final SP value. Make sure we didn't underflow;
2385 on 31-bit, this would result in addresses with the high bit set,
2386 which causes confusion elsewhere. Note that if we error out
2387 here, stack and registers remain untouched. */
2388 if (gdbarch_addr_bits_remove (gdbarch, sp) != sp)
2389 error (_("Stack overflow"));
2390
2391
2392 /* Finally, place the actual parameters, working from SP towards
2393 higher addresses. The code above is supposed to reserve enough
2394 space for this. */
2395 {
2396 int fr = 0;
2397 int gr = 2;
2398 CORE_ADDR starg = sp + 16*word_size + 32;
2399
2400 /* A struct is returned using general register 2. */
2401 if (struct_return)
2402 {
2403 regcache_cooked_write_unsigned (regcache, S390_R0_REGNUM + gr,
2404 struct_addr);
2405 gr++;
2406 }
2407
2408 for (i = 0; i < nargs; i++)
2409 {
2410 struct value *arg = args[i];
2411 struct type *type = value_type (arg);
2412 unsigned length = TYPE_LENGTH (type);
2413
2414 if (s390_function_arg_pass_by_reference (type))
2415 {
2416 /* Actually copy the argument contents to the stack slot
2417 that was reserved above. */
2418 write_memory (copy_addr[i], value_contents (arg), length);
2419
2420 if (gr <= 6)
2421 {
2422 regcache_cooked_write_unsigned (regcache, S390_R0_REGNUM + gr,
2423 copy_addr[i]);
2424 gr++;
2425 }
2426 else
2427 {
2428 write_memory_unsigned_integer (starg, word_size, byte_order,
2429 copy_addr[i]);
2430 starg += word_size;
2431 }
2432 }
2433 else if (s390_function_arg_float (type))
2434 {
2435 /* The GNU/Linux for S/390 ABI uses FPRs 0 and 2 to pass arguments,
2436 the GNU/Linux for zSeries ABI uses 0, 2, 4, and 6. */
2437 if (fr <= (tdep->abi == ABI_LINUX_S390 ? 2 : 6))
2438 {
2439 /* When we store a single-precision value in an FP register,
2440 it occupies the leftmost bits. */
2441 regcache_cooked_write_part (regcache, S390_F0_REGNUM + fr,
2442 0, length, value_contents (arg));
2443 fr += 2;
2444 }
2445 else
2446 {
2447 /* When we store a single-precision value in a stack slot,
2448 it occupies the rightmost bits. */
2449 starg = align_up (starg + length, word_size);
2450 write_memory (starg - length, value_contents (arg), length);
2451 }
2452 }
2453 else if (s390_function_arg_integer (type) && length <= word_size)
2454 {
2455 if (gr <= 6)
2456 {
2457 /* Integer arguments are always extended to word size. */
2458 regcache_cooked_write_signed (regcache, S390_R0_REGNUM + gr,
2459 extend_simple_arg (gdbarch,
2460 arg));
2461 gr++;
2462 }
2463 else
2464 {
2465 /* Integer arguments are always extended to word size. */
2466 write_memory_signed_integer (starg, word_size, byte_order,
2467 extend_simple_arg (gdbarch, arg));
2468 starg += word_size;
2469 }
2470 }
2471 else if (s390_function_arg_integer (type) && length == 2*word_size)
2472 {
2473 if (gr <= 5)
2474 {
2475 regcache_cooked_write (regcache, S390_R0_REGNUM + gr,
2476 value_contents (arg));
2477 regcache_cooked_write (regcache, S390_R0_REGNUM + gr + 1,
2478 value_contents (arg) + word_size);
2479 gr += 2;
2480 }
2481 else
2482 {
2483 /* If we skipped r6 because we couldn't fit a DOUBLE_ARG
2484 in it, then don't go back and use it again later. */
2485 gr = 7;
2486
2487 write_memory (starg, value_contents (arg), length);
2488 starg += length;
2489 }
2490 }
2491 else
2492 internal_error (__FILE__, __LINE__, _("unknown argument type"));
2493 }
2494 }
2495
2496 /* Store return address. */
2497 regcache_cooked_write_unsigned (regcache, S390_RETADDR_REGNUM, bp_addr);
2498
2499 /* Store updated stack pointer. */
2500 regcache_cooked_write_unsigned (regcache, S390_SP_REGNUM, sp);
2501
2502 /* We need to return the 'stack part' of the frame ID,
2503 which is actually the top of the register save area. */
2504 return sp + 16*word_size + 32;
2505 }
2506
2507 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
2508 dummy frame. The frame ID's base needs to match the TOS value
2509 returned by push_dummy_call, and the PC match the dummy frame's
2510 breakpoint. */
2511 static struct frame_id
2512 s390_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2513 {
2514 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
2515 CORE_ADDR sp = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
2516 sp = gdbarch_addr_bits_remove (gdbarch, sp);
2517
2518 return frame_id_build (sp + 16*word_size + 32,
2519 get_frame_pc (this_frame));
2520 }
2521
2522 static CORE_ADDR
2523 s390_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2524 {
2525 /* Both the 32- and 64-bit ABI's say that the stack pointer should
2526 always be aligned on an eight-byte boundary. */
2527 return (addr & -8);
2528 }
2529
2530
2531 /* Function return value access. */
2532
2533 static enum return_value_convention
2534 s390_return_value_convention (struct gdbarch *gdbarch, struct type *type)
2535 {
2536 int length = TYPE_LENGTH (type);
2537 if (length > 8)
2538 return RETURN_VALUE_STRUCT_CONVENTION;
2539
2540 switch (TYPE_CODE (type))
2541 {
2542 case TYPE_CODE_STRUCT:
2543 case TYPE_CODE_UNION:
2544 case TYPE_CODE_ARRAY:
2545 return RETURN_VALUE_STRUCT_CONVENTION;
2546
2547 default:
2548 return RETURN_VALUE_REGISTER_CONVENTION;
2549 }
2550 }
2551
2552 static enum return_value_convention
2553 s390_return_value (struct gdbarch *gdbarch, struct type *func_type,
2554 struct type *type, struct regcache *regcache,
2555 gdb_byte *out, const gdb_byte *in)
2556 {
2557 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2558 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
2559 int length = TYPE_LENGTH (type);
2560 enum return_value_convention rvc =
2561 s390_return_value_convention (gdbarch, type);
2562 if (in)
2563 {
2564 switch (rvc)
2565 {
2566 case RETURN_VALUE_REGISTER_CONVENTION:
2567 if (TYPE_CODE (type) == TYPE_CODE_FLT
2568 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
2569 {
2570 /* When we store a single-precision value in an FP register,
2571 it occupies the leftmost bits. */
2572 regcache_cooked_write_part (regcache, S390_F0_REGNUM,
2573 0, length, in);
2574 }
2575 else if (length <= word_size)
2576 {
2577 /* Integer arguments are always extended to word size. */
2578 if (TYPE_UNSIGNED (type))
2579 regcache_cooked_write_unsigned (regcache, S390_R2_REGNUM,
2580 extract_unsigned_integer (in, length, byte_order));
2581 else
2582 regcache_cooked_write_signed (regcache, S390_R2_REGNUM,
2583 extract_signed_integer (in, length, byte_order));
2584 }
2585 else if (length == 2*word_size)
2586 {
2587 regcache_cooked_write (regcache, S390_R2_REGNUM, in);
2588 regcache_cooked_write (regcache, S390_R3_REGNUM, in + word_size);
2589 }
2590 else
2591 internal_error (__FILE__, __LINE__, _("invalid return type"));
2592 break;
2593
2594 case RETURN_VALUE_STRUCT_CONVENTION:
2595 error (_("Cannot set function return value."));
2596 break;
2597 }
2598 }
2599 else if (out)
2600 {
2601 switch (rvc)
2602 {
2603 case RETURN_VALUE_REGISTER_CONVENTION:
2604 if (TYPE_CODE (type) == TYPE_CODE_FLT
2605 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
2606 {
2607 /* When we store a single-precision value in an FP register,
2608 it occupies the leftmost bits. */
2609 regcache_cooked_read_part (regcache, S390_F0_REGNUM,
2610 0, length, out);
2611 }
2612 else if (length <= word_size)
2613 {
2614 /* Integer arguments occupy the rightmost bits. */
2615 regcache_cooked_read_part (regcache, S390_R2_REGNUM,
2616 word_size - length, length, out);
2617 }
2618 else if (length == 2*word_size)
2619 {
2620 regcache_cooked_read (regcache, S390_R2_REGNUM, out);
2621 regcache_cooked_read (regcache, S390_R3_REGNUM, out + word_size);
2622 }
2623 else
2624 internal_error (__FILE__, __LINE__, _("invalid return type"));
2625 break;
2626
2627 case RETURN_VALUE_STRUCT_CONVENTION:
2628 error (_("Function return value unknown."));
2629 break;
2630 }
2631 }
2632
2633 return rvc;
2634 }
2635
2636
2637 /* Breakpoints. */
2638
2639 static const gdb_byte *
2640 s390_breakpoint_from_pc (struct gdbarch *gdbarch,
2641 CORE_ADDR *pcptr, int *lenptr)
2642 {
2643 static const gdb_byte breakpoint[] = { 0x0, 0x1 };
2644
2645 *lenptr = sizeof (breakpoint);
2646 return breakpoint;
2647 }
2648
2649
2650 /* Address handling. */
2651
2652 static CORE_ADDR
2653 s390_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
2654 {
2655 return addr & 0x7fffffff;
2656 }
2657
2658 static int
2659 s390_address_class_type_flags (int byte_size, int dwarf2_addr_class)
2660 {
2661 if (byte_size == 4)
2662 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
2663 else
2664 return 0;
2665 }
2666
2667 static const char *
2668 s390_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
2669 {
2670 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
2671 return "mode32";
2672 else
2673 return NULL;
2674 }
2675
2676 static int
2677 s390_address_class_name_to_type_flags (struct gdbarch *gdbarch,
2678 const char *name,
2679 int *type_flags_ptr)
2680 {
2681 if (strcmp (name, "mode32") == 0)
2682 {
2683 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
2684 return 1;
2685 }
2686 else
2687 return 0;
2688 }
2689
2690 /* Set up gdbarch struct. */
2691
2692 static struct gdbarch *
2693 s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2694 {
2695 const struct target_desc *tdesc = info.target_desc;
2696 struct tdesc_arch_data *tdesc_data = NULL;
2697 struct gdbarch *gdbarch;
2698 struct gdbarch_tdep *tdep;
2699 int tdep_abi;
2700 int have_upper = 0;
2701 int first_pseudo_reg, last_pseudo_reg;
2702
2703 /* Default ABI and register size. */
2704 switch (info.bfd_arch_info->mach)
2705 {
2706 case bfd_mach_s390_31:
2707 tdep_abi = ABI_LINUX_S390;
2708 break;
2709
2710 case bfd_mach_s390_64:
2711 tdep_abi = ABI_LINUX_ZSERIES;
2712 break;
2713
2714 default:
2715 return NULL;
2716 }
2717
2718 /* Use default target description if none provided by the target. */
2719 if (!tdesc_has_registers (tdesc))
2720 {
2721 if (tdep_abi == ABI_LINUX_S390)
2722 tdesc = tdesc_s390_linux32;
2723 else
2724 tdesc = tdesc_s390x_linux64;
2725 }
2726
2727 /* Check any target description for validity. */
2728 if (tdesc_has_registers (tdesc))
2729 {
2730 static const char *const gprs[] = {
2731 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2732 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
2733 };
2734 static const char *const fprs[] = {
2735 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
2736 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15"
2737 };
2738 static const char *const acrs[] = {
2739 "acr0", "acr1", "acr2", "acr3", "acr4", "acr5", "acr6", "acr7",
2740 "acr8", "acr9", "acr10", "acr11", "acr12", "acr13", "acr14", "acr15"
2741 };
2742 static const char *const gprs_lower[] = {
2743 "r0l", "r1l", "r2l", "r3l", "r4l", "r5l", "r6l", "r7l",
2744 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l"
2745 };
2746 static const char *const gprs_upper[] = {
2747 "r0h", "r1h", "r2h", "r3h", "r4h", "r5h", "r6h", "r7h",
2748 "r8h", "r9h", "r10h", "r11h", "r12h", "r13h", "r14h", "r15h"
2749 };
2750 const struct tdesc_feature *feature;
2751 int i, valid_p = 1;
2752
2753 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.core");
2754 if (feature == NULL)
2755 return NULL;
2756
2757 tdesc_data = tdesc_data_alloc ();
2758
2759 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2760 S390_PSWM_REGNUM, "pswm");
2761 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2762 S390_PSWA_REGNUM, "pswa");
2763
2764 if (tdesc_unnumbered_register (feature, "r0"))
2765 {
2766 for (i = 0; i < 16; i++)
2767 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2768 S390_R0_REGNUM + i, gprs[i]);
2769 }
2770 else
2771 {
2772 have_upper = 1;
2773
2774 for (i = 0; i < 16; i++)
2775 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2776 S390_R0_REGNUM + i,
2777 gprs_lower[i]);
2778 for (i = 0; i < 16; i++)
2779 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2780 S390_R0_UPPER_REGNUM + i,
2781 gprs_upper[i]);
2782 }
2783
2784 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.fpr");
2785 if (feature == NULL)
2786 {
2787 tdesc_data_cleanup (tdesc_data);
2788 return NULL;
2789 }
2790
2791 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2792 S390_FPC_REGNUM, "fpc");
2793 for (i = 0; i < 16; i++)
2794 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2795 S390_F0_REGNUM + i, fprs[i]);
2796
2797 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.acr");
2798 if (feature == NULL)
2799 {
2800 tdesc_data_cleanup (tdesc_data);
2801 return NULL;
2802 }
2803
2804 for (i = 0; i < 16; i++)
2805 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2806 S390_A0_REGNUM + i, acrs[i]);
2807
2808 if (!valid_p)
2809 {
2810 tdesc_data_cleanup (tdesc_data);
2811 return NULL;
2812 }
2813 }
2814
2815 /* Find a candidate among extant architectures. */
2816 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2817 arches != NULL;
2818 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2819 {
2820 tdep = gdbarch_tdep (arches->gdbarch);
2821 if (!tdep)
2822 continue;
2823 if (tdep->abi != tdep_abi)
2824 continue;
2825 if ((tdep->gpr_full_regnum != -1) != have_upper)
2826 continue;
2827 if (tdesc_data != NULL)
2828 tdesc_data_cleanup (tdesc_data);
2829 return arches->gdbarch;
2830 }
2831
2832 /* Otherwise create a new gdbarch for the specified machine type. */
2833 tdep = XCALLOC (1, struct gdbarch_tdep);
2834 tdep->abi = tdep_abi;
2835 gdbarch = gdbarch_alloc (&info, tdep);
2836
2837 set_gdbarch_believe_pcc_promotion (gdbarch, 0);
2838 set_gdbarch_char_signed (gdbarch, 0);
2839
2840 /* S/390 GNU/Linux uses either 64-bit or 128-bit long doubles.
2841 We can safely let them default to 128-bit, since the debug info
2842 will give the size of type actually used in each case. */
2843 set_gdbarch_long_double_bit (gdbarch, 128);
2844 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
2845
2846 /* Amount PC must be decremented by after a breakpoint. This is
2847 often the number of bytes returned by gdbarch_breakpoint_from_pc but not
2848 always. */
2849 set_gdbarch_decr_pc_after_break (gdbarch, 2);
2850 /* Stack grows downward. */
2851 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2852 set_gdbarch_breakpoint_from_pc (gdbarch, s390_breakpoint_from_pc);
2853 set_gdbarch_skip_prologue (gdbarch, s390_skip_prologue);
2854 set_gdbarch_in_function_epilogue_p (gdbarch, s390_in_function_epilogue_p);
2855
2856 set_gdbarch_num_regs (gdbarch, S390_NUM_REGS);
2857 set_gdbarch_sp_regnum (gdbarch, S390_SP_REGNUM);
2858 set_gdbarch_fp0_regnum (gdbarch, S390_F0_REGNUM);
2859 set_gdbarch_stab_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
2860 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
2861 set_gdbarch_value_from_register (gdbarch, s390_value_from_register);
2862 set_gdbarch_regset_from_core_section (gdbarch,
2863 s390_regset_from_core_section);
2864 set_gdbarch_core_read_description (gdbarch, s390_core_read_description);
2865 if (have_upper)
2866 set_gdbarch_core_regset_sections (gdbarch, s390_upper_regset_sections);
2867 set_gdbarch_pseudo_register_read (gdbarch, s390_pseudo_register_read);
2868 set_gdbarch_pseudo_register_write (gdbarch, s390_pseudo_register_write);
2869 set_tdesc_pseudo_register_name (gdbarch, s390_pseudo_register_name);
2870 set_tdesc_pseudo_register_type (gdbarch, s390_pseudo_register_type);
2871 set_tdesc_pseudo_register_reggroup_p (gdbarch,
2872 s390_pseudo_register_reggroup_p);
2873 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
2874
2875 /* Assign pseudo register numbers. */
2876 first_pseudo_reg = gdbarch_num_regs (gdbarch);
2877 last_pseudo_reg = first_pseudo_reg;
2878 tdep->gpr_full_regnum = -1;
2879 if (have_upper)
2880 {
2881 tdep->gpr_full_regnum = last_pseudo_reg;
2882 last_pseudo_reg += 16;
2883 }
2884 tdep->pc_regnum = last_pseudo_reg++;
2885 tdep->cc_regnum = last_pseudo_reg++;
2886 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
2887 set_gdbarch_num_pseudo_regs (gdbarch, last_pseudo_reg - first_pseudo_reg);
2888
2889 /* Inferior function calls. */
2890 set_gdbarch_push_dummy_call (gdbarch, s390_push_dummy_call);
2891 set_gdbarch_dummy_id (gdbarch, s390_dummy_id);
2892 set_gdbarch_frame_align (gdbarch, s390_frame_align);
2893 set_gdbarch_return_value (gdbarch, s390_return_value);
2894
2895 /* Frame handling. */
2896 dwarf2_frame_set_init_reg (gdbarch, s390_dwarf2_frame_init_reg);
2897 dwarf2_frame_set_adjust_regnum (gdbarch, s390_adjust_frame_regnum);
2898 dwarf2_append_unwinders (gdbarch);
2899 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
2900 frame_unwind_append_unwinder (gdbarch, &s390_stub_frame_unwind);
2901 frame_unwind_append_unwinder (gdbarch, &s390_sigtramp_frame_unwind);
2902 frame_unwind_append_unwinder (gdbarch, &s390_frame_unwind);
2903 frame_base_set_default (gdbarch, &s390_frame_base);
2904 set_gdbarch_unwind_pc (gdbarch, s390_unwind_pc);
2905 set_gdbarch_unwind_sp (gdbarch, s390_unwind_sp);
2906
2907 /* Displaced stepping. */
2908 set_gdbarch_displaced_step_copy_insn (gdbarch,
2909 simple_displaced_step_copy_insn);
2910 set_gdbarch_displaced_step_fixup (gdbarch, s390_displaced_step_fixup);
2911 set_gdbarch_displaced_step_free_closure (gdbarch,
2912 simple_displaced_step_free_closure);
2913 set_gdbarch_displaced_step_location (gdbarch,
2914 displaced_step_at_entry_point);
2915 set_gdbarch_max_insn_length (gdbarch, S390_MAX_INSTR_SIZE);
2916
2917 /* Note that GNU/Linux is the only OS supported on this
2918 platform. */
2919 linux_init_abi (info, gdbarch);
2920
2921 switch (tdep->abi)
2922 {
2923 case ABI_LINUX_S390:
2924 tdep->gregset = &s390_gregset;
2925 tdep->sizeof_gregset = s390_sizeof_gregset;
2926 tdep->fpregset = &s390_fpregset;
2927 tdep->sizeof_fpregset = s390_sizeof_fpregset;
2928
2929 set_gdbarch_addr_bits_remove (gdbarch, s390_addr_bits_remove);
2930 set_solib_svr4_fetch_link_map_offsets
2931 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
2932 break;
2933
2934 case ABI_LINUX_ZSERIES:
2935 tdep->gregset = &s390x_gregset;
2936 tdep->sizeof_gregset = s390x_sizeof_gregset;
2937 tdep->fpregset = &s390_fpregset;
2938 tdep->sizeof_fpregset = s390_sizeof_fpregset;
2939
2940 set_gdbarch_long_bit (gdbarch, 64);
2941 set_gdbarch_long_long_bit (gdbarch, 64);
2942 set_gdbarch_ptr_bit (gdbarch, 64);
2943 set_solib_svr4_fetch_link_map_offsets
2944 (gdbarch, svr4_lp64_fetch_link_map_offsets);
2945 set_gdbarch_address_class_type_flags (gdbarch,
2946 s390_address_class_type_flags);
2947 set_gdbarch_address_class_type_flags_to_name (gdbarch,
2948 s390_address_class_type_flags_to_name);
2949 set_gdbarch_address_class_name_to_type_flags (gdbarch,
2950 s390_address_class_name_to_type_flags);
2951 break;
2952 }
2953
2954 set_gdbarch_print_insn (gdbarch, print_insn_s390);
2955
2956 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2957
2958 /* Enable TLS support. */
2959 set_gdbarch_fetch_tls_load_module_address (gdbarch,
2960 svr4_fetch_objfile_link_map);
2961
2962 return gdbarch;
2963 }
2964
2965
2966 extern initialize_file_ftype _initialize_s390_tdep; /* -Wmissing-prototypes */
2967
2968 void
2969 _initialize_s390_tdep (void)
2970 {
2971 /* Hook us into the gdbarch mechanism. */
2972 register_gdbarch_init (bfd_arch_s390, s390_gdbarch_init);
2973
2974 /* Initialize the Linux target descriptions. */
2975 initialize_tdesc_s390_linux32 ();
2976 initialize_tdesc_s390_linux64 ();
2977 initialize_tdesc_s390x_linux64 ();
2978 }
This page took 0.08991 seconds and 5 git commands to generate.