Update year range in copyright notice of all files owned by the GDB project.
[deliverable/binutils-gdb.git] / gdb / sh-tdep.c
1 /* Target-dependent code for Renesas Super-H, for GDB.
2
3 Copyright (C) 1993-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Contributed by Steve Chamberlain
21 sac@cygnus.com. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "dwarf2-frame.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "value.h"
33 #include "dis-asm.h"
34 #include "inferior.h"
35 #include "arch-utils.h"
36 #include "floatformat.h"
37 #include "regcache.h"
38 #include "doublest.h"
39 #include "osabi.h"
40 #include "reggroups.h"
41 #include "regset.h"
42 #include "objfiles.h"
43
44 #include "sh-tdep.h"
45 #include "sh64-tdep.h"
46
47 #include "elf-bfd.h"
48 #include "solib-svr4.h"
49
50 /* sh flags */
51 #include "elf/sh.h"
52 #include "dwarf2.h"
53 /* registers numbers shared with the simulator. */
54 #include "gdb/sim-sh.h"
55
56 /* List of "set sh ..." and "show sh ..." commands. */
57 static struct cmd_list_element *setshcmdlist = NULL;
58 static struct cmd_list_element *showshcmdlist = NULL;
59
60 static const char sh_cc_gcc[] = "gcc";
61 static const char sh_cc_renesas[] = "renesas";
62 static const char *const sh_cc_enum[] = {
63 sh_cc_gcc,
64 sh_cc_renesas,
65 NULL
66 };
67
68 static const char *sh_active_calling_convention = sh_cc_gcc;
69
70 #define SH_NUM_REGS 67
71
72 struct sh_frame_cache
73 {
74 /* Base address. */
75 CORE_ADDR base;
76 LONGEST sp_offset;
77 CORE_ADDR pc;
78
79 /* Flag showing that a frame has been created in the prologue code. */
80 int uses_fp;
81
82 /* Saved registers. */
83 CORE_ADDR saved_regs[SH_NUM_REGS];
84 CORE_ADDR saved_sp;
85 };
86
87 static int
88 sh_is_renesas_calling_convention (struct type *func_type)
89 {
90 int val = 0;
91
92 if (func_type)
93 {
94 func_type = check_typedef (func_type);
95
96 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
97 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
98
99 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
100 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GNU_renesas_sh)
101 val = 1;
102 }
103
104 if (sh_active_calling_convention == sh_cc_renesas)
105 val = 1;
106
107 return val;
108 }
109
110 static const char *
111 sh_sh_register_name (struct gdbarch *gdbarch, int reg_nr)
112 {
113 static char *register_names[] = {
114 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
115 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
116 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
117 "", "",
118 "", "", "", "", "", "", "", "",
119 "", "", "", "", "", "", "", "",
120 "", "",
121 "", "", "", "", "", "", "", "",
122 "", "", "", "", "", "", "", "",
123 "", "", "", "", "", "", "", "",
124 };
125 if (reg_nr < 0)
126 return NULL;
127 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
128 return NULL;
129 return register_names[reg_nr];
130 }
131
132 static const char *
133 sh_sh3_register_name (struct gdbarch *gdbarch, int reg_nr)
134 {
135 static char *register_names[] = {
136 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
137 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
138 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
139 "", "",
140 "", "", "", "", "", "", "", "",
141 "", "", "", "", "", "", "", "",
142 "ssr", "spc",
143 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
144 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1"
145 "", "", "", "", "", "", "", "",
146 };
147 if (reg_nr < 0)
148 return NULL;
149 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
150 return NULL;
151 return register_names[reg_nr];
152 }
153
154 static const char *
155 sh_sh3e_register_name (struct gdbarch *gdbarch, int reg_nr)
156 {
157 static char *register_names[] = {
158 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
159 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
160 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
161 "fpul", "fpscr",
162 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
163 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
164 "ssr", "spc",
165 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
166 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
167 "", "", "", "", "", "", "", "",
168 };
169 if (reg_nr < 0)
170 return NULL;
171 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
172 return NULL;
173 return register_names[reg_nr];
174 }
175
176 static const char *
177 sh_sh2e_register_name (struct gdbarch *gdbarch, int reg_nr)
178 {
179 static char *register_names[] = {
180 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
181 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
182 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
183 "fpul", "fpscr",
184 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
185 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
186 "", "",
187 "", "", "", "", "", "", "", "",
188 "", "", "", "", "", "", "", "",
189 "", "", "", "", "", "", "", "",
190 };
191 if (reg_nr < 0)
192 return NULL;
193 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
194 return NULL;
195 return register_names[reg_nr];
196 }
197
198 static const char *
199 sh_sh2a_register_name (struct gdbarch *gdbarch, int reg_nr)
200 {
201 static char *register_names[] = {
202 /* general registers 0-15 */
203 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
204 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
205 /* 16 - 22 */
206 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
207 /* 23, 24 */
208 "fpul", "fpscr",
209 /* floating point registers 25 - 40 */
210 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
211 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
212 /* 41, 42 */
213 "", "",
214 /* 43 - 62. Banked registers. The bank number used is determined by
215 the bank register (63). */
216 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
217 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
218 "machb", "ivnb", "prb", "gbrb", "maclb",
219 /* 63: register bank number, not a real register but used to
220 communicate the register bank currently get/set. This register
221 is hidden to the user, who manipulates it using the pseudo
222 register called "bank" (67). See below. */
223 "",
224 /* 64 - 66 */
225 "ibcr", "ibnr", "tbr",
226 /* 67: register bank number, the user visible pseudo register. */
227 "bank",
228 /* double precision (pseudo) 68 - 75 */
229 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
230 };
231 if (reg_nr < 0)
232 return NULL;
233 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
234 return NULL;
235 return register_names[reg_nr];
236 }
237
238 static const char *
239 sh_sh2a_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
240 {
241 static char *register_names[] = {
242 /* general registers 0-15 */
243 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
244 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
245 /* 16 - 22 */
246 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
247 /* 23, 24 */
248 "", "",
249 /* floating point registers 25 - 40 */
250 "", "", "", "", "", "", "", "",
251 "", "", "", "", "", "", "", "",
252 /* 41, 42 */
253 "", "",
254 /* 43 - 62. Banked registers. The bank number used is determined by
255 the bank register (63). */
256 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
257 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
258 "machb", "ivnb", "prb", "gbrb", "maclb",
259 /* 63: register bank number, not a real register but used to
260 communicate the register bank currently get/set. This register
261 is hidden to the user, who manipulates it using the pseudo
262 register called "bank" (67). See below. */
263 "",
264 /* 64 - 66 */
265 "ibcr", "ibnr", "tbr",
266 /* 67: register bank number, the user visible pseudo register. */
267 "bank",
268 /* double precision (pseudo) 68 - 75 */
269 "", "", "", "", "", "", "", "",
270 };
271 if (reg_nr < 0)
272 return NULL;
273 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
274 return NULL;
275 return register_names[reg_nr];
276 }
277
278 static const char *
279 sh_sh_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
280 {
281 static char *register_names[] = {
282 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
283 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
284 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
285 "", "dsr",
286 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
287 "y0", "y1", "", "", "", "", "", "mod",
288 "", "",
289 "rs", "re", "", "", "", "", "", "",
290 "", "", "", "", "", "", "", "",
291 "", "", "", "", "", "", "", "",
292 };
293 if (reg_nr < 0)
294 return NULL;
295 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
296 return NULL;
297 return register_names[reg_nr];
298 }
299
300 static const char *
301 sh_sh3_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
302 {
303 static char *register_names[] = {
304 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
305 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
306 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
307 "", "dsr",
308 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
309 "y0", "y1", "", "", "", "", "", "mod",
310 "ssr", "spc",
311 "rs", "re", "", "", "", "", "", "",
312 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
313 "", "", "", "", "", "", "", "",
314 "", "", "", "", "", "", "", "",
315 };
316 if (reg_nr < 0)
317 return NULL;
318 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
319 return NULL;
320 return register_names[reg_nr];
321 }
322
323 static const char *
324 sh_sh4_register_name (struct gdbarch *gdbarch, int reg_nr)
325 {
326 static char *register_names[] = {
327 /* general registers 0-15 */
328 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
329 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
330 /* 16 - 22 */
331 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
332 /* 23, 24 */
333 "fpul", "fpscr",
334 /* floating point registers 25 - 40 */
335 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
336 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
337 /* 41, 42 */
338 "ssr", "spc",
339 /* bank 0 43 - 50 */
340 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
341 /* bank 1 51 - 58 */
342 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
343 /* 59 - 66 */
344 "", "", "", "", "", "", "", "",
345 /* pseudo bank register. */
346 "",
347 /* double precision (pseudo) 68 - 75 */
348 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
349 /* vectors (pseudo) 76 - 79 */
350 "fv0", "fv4", "fv8", "fv12",
351 /* FIXME: missing XF */
352 /* FIXME: missing XD */
353 };
354 if (reg_nr < 0)
355 return NULL;
356 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
357 return NULL;
358 return register_names[reg_nr];
359 }
360
361 static const char *
362 sh_sh4_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
363 {
364 static char *register_names[] = {
365 /* general registers 0-15 */
366 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
367 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
368 /* 16 - 22 */
369 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
370 /* 23, 24 */
371 "", "",
372 /* floating point registers 25 - 40 -- not for nofpu target */
373 "", "", "", "", "", "", "", "",
374 "", "", "", "", "", "", "", "",
375 /* 41, 42 */
376 "ssr", "spc",
377 /* bank 0 43 - 50 */
378 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
379 /* bank 1 51 - 58 */
380 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
381 /* 59 - 66 */
382 "", "", "", "", "", "", "", "",
383 /* pseudo bank register. */
384 "",
385 /* double precision (pseudo) 68 - 75 -- not for nofpu target */
386 "", "", "", "", "", "", "", "",
387 /* vectors (pseudo) 76 - 79 -- not for nofpu target */
388 "", "", "", "",
389 };
390 if (reg_nr < 0)
391 return NULL;
392 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
393 return NULL;
394 return register_names[reg_nr];
395 }
396
397 static const char *
398 sh_sh4al_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
399 {
400 static char *register_names[] = {
401 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
402 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
403 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
404 "", "dsr",
405 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
406 "y0", "y1", "", "", "", "", "", "mod",
407 "ssr", "spc",
408 "rs", "re", "", "", "", "", "", "",
409 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
410 "", "", "", "", "", "", "", "",
411 "", "", "", "", "", "", "", "",
412 };
413 if (reg_nr < 0)
414 return NULL;
415 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
416 return NULL;
417 return register_names[reg_nr];
418 }
419
420 static const unsigned char *
421 sh_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
422 {
423 /* 0xc3c3 is trapa #c3, and it works in big and little endian modes. */
424 static unsigned char breakpoint[] = { 0xc3, 0xc3 };
425
426 /* For remote stub targets, trapa #20 is used. */
427 if (strcmp (target_shortname, "remote") == 0)
428 {
429 static unsigned char big_remote_breakpoint[] = { 0xc3, 0x20 };
430 static unsigned char little_remote_breakpoint[] = { 0x20, 0xc3 };
431
432 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
433 {
434 *lenptr = sizeof (big_remote_breakpoint);
435 return big_remote_breakpoint;
436 }
437 else
438 {
439 *lenptr = sizeof (little_remote_breakpoint);
440 return little_remote_breakpoint;
441 }
442 }
443
444 *lenptr = sizeof (breakpoint);
445 return breakpoint;
446 }
447
448 /* Prologue looks like
449 mov.l r14,@-r15
450 sts.l pr,@-r15
451 mov.l <regs>,@-r15
452 sub <room_for_loca_vars>,r15
453 mov r15,r14
454
455 Actually it can be more complicated than this but that's it, basically. */
456
457 #define GET_SOURCE_REG(x) (((x) >> 4) & 0xf)
458 #define GET_TARGET_REG(x) (((x) >> 8) & 0xf)
459
460 /* JSR @Rm 0100mmmm00001011 */
461 #define IS_JSR(x) (((x) & 0xf0ff) == 0x400b)
462
463 /* STS.L PR,@-r15 0100111100100010
464 r15-4-->r15, PR-->(r15) */
465 #define IS_STS(x) ((x) == 0x4f22)
466
467 /* STS.L MACL,@-r15 0100111100010010
468 r15-4-->r15, MACL-->(r15) */
469 #define IS_MACL_STS(x) ((x) == 0x4f12)
470
471 /* MOV.L Rm,@-r15 00101111mmmm0110
472 r15-4-->r15, Rm-->(R15) */
473 #define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06)
474
475 /* MOV r15,r14 0110111011110011
476 r15-->r14 */
477 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
478
479 /* ADD #imm,r15 01111111iiiiiiii
480 r15+imm-->r15 */
481 #define IS_ADD_IMM_SP(x) (((x) & 0xff00) == 0x7f00)
482
483 #define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00)
484 #define IS_SHLL_R3(x) ((x) == 0x4300)
485
486 /* ADD r3,r15 0011111100111100
487 r15+r3-->r15 */
488 #define IS_ADD_R3SP(x) ((x) == 0x3f3c)
489
490 /* FMOV.S FRm,@-Rn Rn-4-->Rn, FRm-->(Rn) 1111nnnnmmmm1011
491 FMOV DRm,@-Rn Rn-8-->Rn, DRm-->(Rn) 1111nnnnmmm01011
492 FMOV XDm,@-Rn Rn-8-->Rn, XDm-->(Rn) 1111nnnnmmm11011 */
493 /* CV, 2003-08-28: Only suitable with Rn == SP, therefore name changed to
494 make this entirely clear. */
495 /* #define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b) */
496 #define IS_FPUSH(x) (((x) & 0xff0f) == 0xff0b)
497
498 /* MOV Rm,Rn Rm-->Rn 0110nnnnmmmm0011 4 <= m <= 7 */
499 #define IS_MOV_ARG_TO_REG(x) \
500 (((x) & 0xf00f) == 0x6003 && \
501 ((x) & 0x00f0) >= 0x0040 && \
502 ((x) & 0x00f0) <= 0x0070)
503 /* MOV.L Rm,@Rn 0010nnnnmmmm0010 n = 14, 4 <= m <= 7 */
504 #define IS_MOV_ARG_TO_IND_R14(x) \
505 (((x) & 0xff0f) == 0x2e02 && \
506 ((x) & 0x00f0) >= 0x0040 && \
507 ((x) & 0x00f0) <= 0x0070)
508 /* MOV.L Rm,@(disp*4,Rn) 00011110mmmmdddd n = 14, 4 <= m <= 7 */
509 #define IS_MOV_ARG_TO_IND_R14_WITH_DISP(x) \
510 (((x) & 0xff00) == 0x1e00 && \
511 ((x) & 0x00f0) >= 0x0040 && \
512 ((x) & 0x00f0) <= 0x0070)
513
514 /* MOV.W @(disp*2,PC),Rn 1001nnnndddddddd */
515 #define IS_MOVW_PCREL_TO_REG(x) (((x) & 0xf000) == 0x9000)
516 /* MOV.L @(disp*4,PC),Rn 1101nnnndddddddd */
517 #define IS_MOVL_PCREL_TO_REG(x) (((x) & 0xf000) == 0xd000)
518 /* MOVI20 #imm20,Rn 0000nnnniiii0000 */
519 #define IS_MOVI20(x) (((x) & 0xf00f) == 0x0000)
520 /* SUB Rn,R15 00111111nnnn1000 */
521 #define IS_SUB_REG_FROM_SP(x) (((x) & 0xff0f) == 0x3f08)
522
523 #define FPSCR_SZ (1 << 20)
524
525 /* The following instructions are used for epilogue testing. */
526 #define IS_RESTORE_FP(x) ((x) == 0x6ef6)
527 #define IS_RTS(x) ((x) == 0x000b)
528 #define IS_LDS(x) ((x) == 0x4f26)
529 #define IS_MACL_LDS(x) ((x) == 0x4f16)
530 #define IS_MOV_FP_SP(x) ((x) == 0x6fe3)
531 #define IS_ADD_REG_TO_FP(x) (((x) & 0xff0f) == 0x3e0c)
532 #define IS_ADD_IMM_FP(x) (((x) & 0xff00) == 0x7e00)
533
534 static CORE_ADDR
535 sh_analyze_prologue (struct gdbarch *gdbarch,
536 CORE_ADDR pc, CORE_ADDR limit_pc,
537 struct sh_frame_cache *cache, ULONGEST fpscr)
538 {
539 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
540 ULONGEST inst;
541 int offset;
542 int sav_offset = 0;
543 int r3_val = 0;
544 int reg, sav_reg = -1;
545
546 cache->uses_fp = 0;
547 for (; pc < limit_pc; pc += 2)
548 {
549 inst = read_memory_unsigned_integer (pc, 2, byte_order);
550 /* See where the registers will be saved to. */
551 if (IS_PUSH (inst))
552 {
553 cache->saved_regs[GET_SOURCE_REG (inst)] = cache->sp_offset;
554 cache->sp_offset += 4;
555 }
556 else if (IS_STS (inst))
557 {
558 cache->saved_regs[PR_REGNUM] = cache->sp_offset;
559 cache->sp_offset += 4;
560 }
561 else if (IS_MACL_STS (inst))
562 {
563 cache->saved_regs[MACL_REGNUM] = cache->sp_offset;
564 cache->sp_offset += 4;
565 }
566 else if (IS_MOV_R3 (inst))
567 {
568 r3_val = ((inst & 0xff) ^ 0x80) - 0x80;
569 }
570 else if (IS_SHLL_R3 (inst))
571 {
572 r3_val <<= 1;
573 }
574 else if (IS_ADD_R3SP (inst))
575 {
576 cache->sp_offset += -r3_val;
577 }
578 else if (IS_ADD_IMM_SP (inst))
579 {
580 offset = ((inst & 0xff) ^ 0x80) - 0x80;
581 cache->sp_offset -= offset;
582 }
583 else if (IS_MOVW_PCREL_TO_REG (inst))
584 {
585 if (sav_reg < 0)
586 {
587 reg = GET_TARGET_REG (inst);
588 if (reg < 14)
589 {
590 sav_reg = reg;
591 offset = (inst & 0xff) << 1;
592 sav_offset =
593 read_memory_integer ((pc + 4) + offset, 2, byte_order);
594 }
595 }
596 }
597 else if (IS_MOVL_PCREL_TO_REG (inst))
598 {
599 if (sav_reg < 0)
600 {
601 reg = GET_TARGET_REG (inst);
602 if (reg < 14)
603 {
604 sav_reg = reg;
605 offset = (inst & 0xff) << 2;
606 sav_offset =
607 read_memory_integer (((pc & 0xfffffffc) + 4) + offset,
608 4, byte_order);
609 }
610 }
611 }
612 else if (IS_MOVI20 (inst)
613 && (pc + 2 < limit_pc))
614 {
615 if (sav_reg < 0)
616 {
617 reg = GET_TARGET_REG (inst);
618 if (reg < 14)
619 {
620 sav_reg = reg;
621 sav_offset = GET_SOURCE_REG (inst) << 16;
622 /* MOVI20 is a 32 bit instruction! */
623 pc += 2;
624 sav_offset
625 |= read_memory_unsigned_integer (pc, 2, byte_order);
626 /* Now sav_offset contains an unsigned 20 bit value.
627 It must still get sign extended. */
628 if (sav_offset & 0x00080000)
629 sav_offset |= 0xfff00000;
630 }
631 }
632 }
633 else if (IS_SUB_REG_FROM_SP (inst))
634 {
635 reg = GET_SOURCE_REG (inst);
636 if (sav_reg > 0 && reg == sav_reg)
637 {
638 sav_reg = -1;
639 }
640 cache->sp_offset += sav_offset;
641 }
642 else if (IS_FPUSH (inst))
643 {
644 if (fpscr & FPSCR_SZ)
645 {
646 cache->sp_offset += 8;
647 }
648 else
649 {
650 cache->sp_offset += 4;
651 }
652 }
653 else if (IS_MOV_SP_FP (inst))
654 {
655 pc += 2;
656 /* Don't go any further than six more instructions. */
657 limit_pc = min (limit_pc, pc + (2 * 6));
658
659 cache->uses_fp = 1;
660 /* At this point, only allow argument register moves to other
661 registers or argument register moves to @(X,fp) which are
662 moving the register arguments onto the stack area allocated
663 by a former add somenumber to SP call. Don't allow moving
664 to an fp indirect address above fp + cache->sp_offset. */
665 for (; pc < limit_pc; pc += 2)
666 {
667 inst = read_memory_integer (pc, 2, byte_order);
668 if (IS_MOV_ARG_TO_IND_R14 (inst))
669 {
670 reg = GET_SOURCE_REG (inst);
671 if (cache->sp_offset > 0)
672 cache->saved_regs[reg] = cache->sp_offset;
673 }
674 else if (IS_MOV_ARG_TO_IND_R14_WITH_DISP (inst))
675 {
676 reg = GET_SOURCE_REG (inst);
677 offset = (inst & 0xf) * 4;
678 if (cache->sp_offset > offset)
679 cache->saved_regs[reg] = cache->sp_offset - offset;
680 }
681 else if (IS_MOV_ARG_TO_REG (inst))
682 continue;
683 else
684 break;
685 }
686 break;
687 }
688 else if (IS_JSR (inst))
689 {
690 /* We have found a jsr that has been scheduled into the prologue.
691 If we continue the scan and return a pc someplace after this,
692 then setting a breakpoint on this function will cause it to
693 appear to be called after the function it is calling via the
694 jsr, which will be very confusing. Most likely the next
695 instruction is going to be IS_MOV_SP_FP in the delay slot. If
696 so, note that before returning the current pc. */
697 if (pc + 2 < limit_pc)
698 {
699 inst = read_memory_integer (pc + 2, 2, byte_order);
700 if (IS_MOV_SP_FP (inst))
701 cache->uses_fp = 1;
702 }
703 break;
704 }
705 #if 0 /* This used to just stop when it found an instruction
706 that was not considered part of the prologue. Now,
707 we just keep going looking for likely
708 instructions. */
709 else
710 break;
711 #endif
712 }
713
714 return pc;
715 }
716
717 /* Skip any prologue before the guts of a function. */
718 static CORE_ADDR
719 sh_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
720 {
721 CORE_ADDR post_prologue_pc, func_addr, func_end_addr, limit_pc;
722 struct sh_frame_cache cache;
723
724 /* See if we can determine the end of the prologue via the symbol table.
725 If so, then return either PC, or the PC after the prologue, whichever
726 is greater. */
727 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
728 {
729 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
730 if (post_prologue_pc != 0)
731 return max (pc, post_prologue_pc);
732 }
733
734 /* Can't determine prologue from the symbol table, need to examine
735 instructions. */
736
737 /* Find an upper limit on the function prologue using the debug
738 information. If the debug information could not be used to provide
739 that bound, then use an arbitrary large number as the upper bound. */
740 limit_pc = skip_prologue_using_sal (gdbarch, pc);
741 if (limit_pc == 0)
742 /* Don't go any further than 28 instructions. */
743 limit_pc = pc + (2 * 28);
744
745 /* Do not allow limit_pc to be past the function end, if we know
746 where that end is... */
747 if (func_end_addr != 0)
748 limit_pc = min (limit_pc, func_end_addr);
749
750 cache.sp_offset = -4;
751 post_prologue_pc = sh_analyze_prologue (gdbarch, pc, limit_pc, &cache, 0);
752 if (cache.uses_fp)
753 pc = post_prologue_pc;
754
755 return pc;
756 }
757
758 /* The ABI says:
759
760 Aggregate types not bigger than 8 bytes that have the same size and
761 alignment as one of the integer scalar types are returned in the
762 same registers as the integer type they match.
763
764 For example, a 2-byte aligned structure with size 2 bytes has the
765 same size and alignment as a short int, and will be returned in R0.
766 A 4-byte aligned structure with size 8 bytes has the same size and
767 alignment as a long long int, and will be returned in R0 and R1.
768
769 When an aggregate type is returned in R0 and R1, R0 contains the
770 first four bytes of the aggregate, and R1 contains the
771 remainder. If the size of the aggregate type is not a multiple of 4
772 bytes, the aggregate is tail-padded up to a multiple of 4
773 bytes. The value of the padding is undefined. For little-endian
774 targets the padding will appear at the most significant end of the
775 last element, for big-endian targets the padding appears at the
776 least significant end of the last element.
777
778 All other aggregate types are returned by address. The caller
779 function passes the address of an area large enough to hold the
780 aggregate value in R2. The called function stores the result in
781 this location.
782
783 To reiterate, structs smaller than 8 bytes could also be returned
784 in memory, if they don't pass the "same size and alignment as an
785 integer type" rule.
786
787 For example, in
788
789 struct s { char c[3]; } wibble;
790 struct s foo(void) { return wibble; }
791
792 the return value from foo() will be in memory, not
793 in R0, because there is no 3-byte integer type.
794
795 Similarly, in
796
797 struct s { char c[2]; } wibble;
798 struct s foo(void) { return wibble; }
799
800 because a struct containing two chars has alignment 1, that matches
801 type char, but size 2, that matches type short. There's no integer
802 type that has alignment 1 and size 2, so the struct is returned in
803 memory. */
804
805 static int
806 sh_use_struct_convention (int renesas_abi, struct type *type)
807 {
808 int len = TYPE_LENGTH (type);
809 int nelem = TYPE_NFIELDS (type);
810
811 /* The Renesas ABI returns aggregate types always on stack. */
812 if (renesas_abi && (TYPE_CODE (type) == TYPE_CODE_STRUCT
813 || TYPE_CODE (type) == TYPE_CODE_UNION))
814 return 1;
815
816 /* Non-power of 2 length types and types bigger than 8 bytes (which don't
817 fit in two registers anyway) use struct convention. */
818 if (len != 1 && len != 2 && len != 4 && len != 8)
819 return 1;
820
821 /* Scalar types and aggregate types with exactly one field are aligned
822 by definition. They are returned in registers. */
823 if (nelem <= 1)
824 return 0;
825
826 /* If the first field in the aggregate has the same length as the entire
827 aggregate type, the type is returned in registers. */
828 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == len)
829 return 0;
830
831 /* If the size of the aggregate is 8 bytes and the first field is
832 of size 4 bytes its alignment is equal to long long's alignment,
833 so it's returned in registers. */
834 if (len == 8 && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
835 return 0;
836
837 /* Otherwise use struct convention. */
838 return 1;
839 }
840
841 static int
842 sh_use_struct_convention_nofpu (int renesas_abi, struct type *type)
843 {
844 /* The Renesas ABI returns long longs/doubles etc. always on stack. */
845 if (renesas_abi && TYPE_NFIELDS (type) == 0 && TYPE_LENGTH (type) >= 8)
846 return 1;
847 return sh_use_struct_convention (renesas_abi, type);
848 }
849
850 static CORE_ADDR
851 sh_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
852 {
853 return sp & ~3;
854 }
855
856 /* Function: push_dummy_call (formerly push_arguments)
857 Setup the function arguments for calling a function in the inferior.
858
859 On the Renesas SH architecture, there are four registers (R4 to R7)
860 which are dedicated for passing function arguments. Up to the first
861 four arguments (depending on size) may go into these registers.
862 The rest go on the stack.
863
864 MVS: Except on SH variants that have floating point registers.
865 In that case, float and double arguments are passed in the same
866 manner, but using FP registers instead of GP registers.
867
868 Arguments that are smaller than 4 bytes will still take up a whole
869 register or a whole 32-bit word on the stack, and will be
870 right-justified in the register or the stack word. This includes
871 chars, shorts, and small aggregate types.
872
873 Arguments that are larger than 4 bytes may be split between two or
874 more registers. If there are not enough registers free, an argument
875 may be passed partly in a register (or registers), and partly on the
876 stack. This includes doubles, long longs, and larger aggregates.
877 As far as I know, there is no upper limit to the size of aggregates
878 that will be passed in this way; in other words, the convention of
879 passing a pointer to a large aggregate instead of a copy is not used.
880
881 MVS: The above appears to be true for the SH variants that do not
882 have an FPU, however those that have an FPU appear to copy the
883 aggregate argument onto the stack (and not place it in registers)
884 if it is larger than 16 bytes (four GP registers).
885
886 An exceptional case exists for struct arguments (and possibly other
887 aggregates such as arrays) if the size is larger than 4 bytes but
888 not a multiple of 4 bytes. In this case the argument is never split
889 between the registers and the stack, but instead is copied in its
890 entirety onto the stack, AND also copied into as many registers as
891 there is room for. In other words, space in registers permitting,
892 two copies of the same argument are passed in. As far as I can tell,
893 only the one on the stack is used, although that may be a function
894 of the level of compiler optimization. I suspect this is a compiler
895 bug. Arguments of these odd sizes are left-justified within the
896 word (as opposed to arguments smaller than 4 bytes, which are
897 right-justified).
898
899 If the function is to return an aggregate type such as a struct, it
900 is either returned in the normal return value register R0 (if its
901 size is no greater than one byte), or else the caller must allocate
902 space into which the callee will copy the return value (if the size
903 is greater than one byte). In this case, a pointer to the return
904 value location is passed into the callee in register R2, which does
905 not displace any of the other arguments passed in via registers R4
906 to R7. */
907
908 /* Helper function to justify value in register according to endianess. */
909 static const gdb_byte *
910 sh_justify_value_in_reg (struct gdbarch *gdbarch, struct value *val, int len)
911 {
912 static gdb_byte valbuf[4];
913
914 memset (valbuf, 0, sizeof (valbuf));
915 if (len < 4)
916 {
917 /* value gets right-justified in the register or stack word. */
918 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
919 memcpy (valbuf + (4 - len), value_contents (val), len);
920 else
921 memcpy (valbuf, value_contents (val), len);
922 return valbuf;
923 }
924 return value_contents (val);
925 }
926
927 /* Helper function to eval number of bytes to allocate on stack. */
928 static CORE_ADDR
929 sh_stack_allocsize (int nargs, struct value **args)
930 {
931 int stack_alloc = 0;
932 while (nargs-- > 0)
933 stack_alloc += ((TYPE_LENGTH (value_type (args[nargs])) + 3) & ~3);
934 return stack_alloc;
935 }
936
937 /* Helper functions for getting the float arguments right. Registers usage
938 depends on the ABI and the endianess. The comments should enlighten how
939 it's intended to work. */
940
941 /* This array stores which of the float arg registers are already in use. */
942 static int flt_argreg_array[FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM + 1];
943
944 /* This function just resets the above array to "no reg used so far". */
945 static void
946 sh_init_flt_argreg (void)
947 {
948 memset (flt_argreg_array, 0, sizeof flt_argreg_array);
949 }
950
951 /* This function returns the next register to use for float arg passing.
952 It returns either a valid value between FLOAT_ARG0_REGNUM and
953 FLOAT_ARGLAST_REGNUM if a register is available, otherwise it returns
954 FLOAT_ARGLAST_REGNUM + 1 to indicate that no register is available.
955
956 Note that register number 0 in flt_argreg_array corresponds with the
957 real float register fr4. In contrast to FLOAT_ARG0_REGNUM (value is
958 29) the parity of the register number is preserved, which is important
959 for the double register passing test (see the "argreg & 1" test below). */
960 static int
961 sh_next_flt_argreg (struct gdbarch *gdbarch, int len, struct type *func_type)
962 {
963 int argreg;
964
965 /* First search for the next free register. */
966 for (argreg = 0; argreg <= FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM;
967 ++argreg)
968 if (!flt_argreg_array[argreg])
969 break;
970
971 /* No register left? */
972 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
973 return FLOAT_ARGLAST_REGNUM + 1;
974
975 if (len == 8)
976 {
977 /* Doubles are always starting in a even register number. */
978 if (argreg & 1)
979 {
980 /* In gcc ABI, the skipped register is lost for further argument
981 passing now. Not so in Renesas ABI. */
982 if (!sh_is_renesas_calling_convention (func_type))
983 flt_argreg_array[argreg] = 1;
984
985 ++argreg;
986
987 /* No register left? */
988 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
989 return FLOAT_ARGLAST_REGNUM + 1;
990 }
991 /* Also mark the next register as used. */
992 flt_argreg_array[argreg + 1] = 1;
993 }
994 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
995 && !sh_is_renesas_calling_convention (func_type))
996 {
997 /* In little endian, gcc passes floats like this: f5, f4, f7, f6, ... */
998 if (!flt_argreg_array[argreg + 1])
999 ++argreg;
1000 }
1001 flt_argreg_array[argreg] = 1;
1002 return FLOAT_ARG0_REGNUM + argreg;
1003 }
1004
1005 /* Helper function which figures out, if a type is treated like a float type.
1006
1007 The FPU ABIs have a special way how to treat types as float types.
1008 Structures with exactly one member, which is of type float or double, are
1009 treated exactly as the base types float or double:
1010
1011 struct sf {
1012 float f;
1013 };
1014
1015 struct sd {
1016 double d;
1017 };
1018
1019 are handled the same way as just
1020
1021 float f;
1022
1023 double d;
1024
1025 As a result, arguments of these struct types are pushed into floating point
1026 registers exactly as floats or doubles, using the same decision algorithm.
1027
1028 The same is valid if these types are used as function return types. The
1029 above structs are returned in fr0 resp. fr0,fr1 instead of in r0, r0,r1
1030 or even using struct convention as it is for other structs. */
1031
1032 static int
1033 sh_treat_as_flt_p (struct type *type)
1034 {
1035 /* Ordinary float types are obviously treated as float. */
1036 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1037 return 1;
1038 /* Otherwise non-struct types are not treated as float. */
1039 if (TYPE_CODE (type) != TYPE_CODE_STRUCT)
1040 return 0;
1041 /* Otherwise structs with more than one memeber are not treated as float. */
1042 if (TYPE_NFIELDS (type) != 1)
1043 return 0;
1044 /* Otherwise if the type of that member is float, the whole type is
1045 treated as float. */
1046 if (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_FLT)
1047 return 1;
1048 /* Otherwise it's not treated as float. */
1049 return 0;
1050 }
1051
1052 static CORE_ADDR
1053 sh_push_dummy_call_fpu (struct gdbarch *gdbarch,
1054 struct value *function,
1055 struct regcache *regcache,
1056 CORE_ADDR bp_addr, int nargs,
1057 struct value **args,
1058 CORE_ADDR sp, int struct_return,
1059 CORE_ADDR struct_addr)
1060 {
1061 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1062 int stack_offset = 0;
1063 int argreg = ARG0_REGNUM;
1064 int flt_argreg = 0;
1065 int argnum;
1066 struct type *func_type = value_type (function);
1067 struct type *type;
1068 CORE_ADDR regval;
1069 const gdb_byte *val;
1070 int len, reg_size = 0;
1071 int pass_on_stack = 0;
1072 int treat_as_flt;
1073 int last_reg_arg = INT_MAX;
1074
1075 /* The Renesas ABI expects all varargs arguments, plus the last
1076 non-vararg argument to be on the stack, no matter how many
1077 registers have been used so far. */
1078 if (sh_is_renesas_calling_convention (func_type)
1079 && TYPE_VARARGS (func_type))
1080 last_reg_arg = TYPE_NFIELDS (func_type) - 2;
1081
1082 /* First force sp to a 4-byte alignment. */
1083 sp = sh_frame_align (gdbarch, sp);
1084
1085 /* Make room on stack for args. */
1086 sp -= sh_stack_allocsize (nargs, args);
1087
1088 /* Initialize float argument mechanism. */
1089 sh_init_flt_argreg ();
1090
1091 /* Now load as many as possible of the first arguments into
1092 registers, and push the rest onto the stack. There are 16 bytes
1093 in four registers available. Loop thru args from first to last. */
1094 for (argnum = 0; argnum < nargs; argnum++)
1095 {
1096 type = value_type (args[argnum]);
1097 len = TYPE_LENGTH (type);
1098 val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
1099
1100 /* Some decisions have to be made how various types are handled.
1101 This also differs in different ABIs. */
1102 pass_on_stack = 0;
1103
1104 /* Find out the next register to use for a floating point value. */
1105 treat_as_flt = sh_treat_as_flt_p (type);
1106 if (treat_as_flt)
1107 flt_argreg = sh_next_flt_argreg (gdbarch, len, func_type);
1108 /* In Renesas ABI, long longs and aggregate types are always passed
1109 on stack. */
1110 else if (sh_is_renesas_calling_convention (func_type)
1111 && ((TYPE_CODE (type) == TYPE_CODE_INT && len == 8)
1112 || TYPE_CODE (type) == TYPE_CODE_STRUCT
1113 || TYPE_CODE (type) == TYPE_CODE_UNION))
1114 pass_on_stack = 1;
1115 /* In contrast to non-FPU CPUs, arguments are never split between
1116 registers and stack. If an argument doesn't fit in the remaining
1117 registers it's always pushed entirely on the stack. */
1118 else if (len > ((ARGLAST_REGNUM - argreg + 1) * 4))
1119 pass_on_stack = 1;
1120
1121 while (len > 0)
1122 {
1123 if ((treat_as_flt && flt_argreg > FLOAT_ARGLAST_REGNUM)
1124 || (!treat_as_flt && (argreg > ARGLAST_REGNUM
1125 || pass_on_stack))
1126 || argnum > last_reg_arg)
1127 {
1128 /* The data goes entirely on the stack, 4-byte aligned. */
1129 reg_size = (len + 3) & ~3;
1130 write_memory (sp + stack_offset, val, reg_size);
1131 stack_offset += reg_size;
1132 }
1133 else if (treat_as_flt && flt_argreg <= FLOAT_ARGLAST_REGNUM)
1134 {
1135 /* Argument goes in a float argument register. */
1136 reg_size = register_size (gdbarch, flt_argreg);
1137 regval = extract_unsigned_integer (val, reg_size, byte_order);
1138 /* In little endian mode, float types taking two registers
1139 (doubles on sh4, long doubles on sh2e, sh3e and sh4) must
1140 be stored swapped in the argument registers. The below
1141 code first writes the first 32 bits in the next but one
1142 register, increments the val and len values accordingly
1143 and then proceeds as normal by writing the second 32 bits
1144 into the next register. */
1145 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
1146 && TYPE_LENGTH (type) == 2 * reg_size)
1147 {
1148 regcache_cooked_write_unsigned (regcache, flt_argreg + 1,
1149 regval);
1150 val += reg_size;
1151 len -= reg_size;
1152 regval = extract_unsigned_integer (val, reg_size,
1153 byte_order);
1154 }
1155 regcache_cooked_write_unsigned (regcache, flt_argreg++, regval);
1156 }
1157 else if (!treat_as_flt && argreg <= ARGLAST_REGNUM)
1158 {
1159 /* there's room in a register */
1160 reg_size = register_size (gdbarch, argreg);
1161 regval = extract_unsigned_integer (val, reg_size, byte_order);
1162 regcache_cooked_write_unsigned (regcache, argreg++, regval);
1163 }
1164 /* Store the value one register at a time or in one step on
1165 stack. */
1166 len -= reg_size;
1167 val += reg_size;
1168 }
1169 }
1170
1171 if (struct_return)
1172 {
1173 if (sh_is_renesas_calling_convention (func_type))
1174 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1175 the stack and store the struct return address there. */
1176 write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
1177 else
1178 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1179 its own dedicated register. */
1180 regcache_cooked_write_unsigned (regcache,
1181 STRUCT_RETURN_REGNUM, struct_addr);
1182 }
1183
1184 /* Store return address. */
1185 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1186
1187 /* Update stack pointer. */
1188 regcache_cooked_write_unsigned (regcache,
1189 gdbarch_sp_regnum (gdbarch), sp);
1190
1191 return sp;
1192 }
1193
1194 static CORE_ADDR
1195 sh_push_dummy_call_nofpu (struct gdbarch *gdbarch,
1196 struct value *function,
1197 struct regcache *regcache,
1198 CORE_ADDR bp_addr,
1199 int nargs, struct value **args,
1200 CORE_ADDR sp, int struct_return,
1201 CORE_ADDR struct_addr)
1202 {
1203 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1204 int stack_offset = 0;
1205 int argreg = ARG0_REGNUM;
1206 int argnum;
1207 struct type *func_type = value_type (function);
1208 struct type *type;
1209 CORE_ADDR regval;
1210 const gdb_byte *val;
1211 int len, reg_size = 0;
1212 int pass_on_stack = 0;
1213 int last_reg_arg = INT_MAX;
1214
1215 /* The Renesas ABI expects all varargs arguments, plus the last
1216 non-vararg argument to be on the stack, no matter how many
1217 registers have been used so far. */
1218 if (sh_is_renesas_calling_convention (func_type)
1219 && TYPE_VARARGS (func_type))
1220 last_reg_arg = TYPE_NFIELDS (func_type) - 2;
1221
1222 /* First force sp to a 4-byte alignment. */
1223 sp = sh_frame_align (gdbarch, sp);
1224
1225 /* Make room on stack for args. */
1226 sp -= sh_stack_allocsize (nargs, args);
1227
1228 /* Now load as many as possible of the first arguments into
1229 registers, and push the rest onto the stack. There are 16 bytes
1230 in four registers available. Loop thru args from first to last. */
1231 for (argnum = 0; argnum < nargs; argnum++)
1232 {
1233 type = value_type (args[argnum]);
1234 len = TYPE_LENGTH (type);
1235 val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
1236
1237 /* Some decisions have to be made how various types are handled.
1238 This also differs in different ABIs. */
1239 pass_on_stack = 0;
1240 /* Renesas ABI pushes doubles and long longs entirely on stack.
1241 Same goes for aggregate types. */
1242 if (sh_is_renesas_calling_convention (func_type)
1243 && ((TYPE_CODE (type) == TYPE_CODE_INT && len >= 8)
1244 || (TYPE_CODE (type) == TYPE_CODE_FLT && len >= 8)
1245 || TYPE_CODE (type) == TYPE_CODE_STRUCT
1246 || TYPE_CODE (type) == TYPE_CODE_UNION))
1247 pass_on_stack = 1;
1248 while (len > 0)
1249 {
1250 if (argreg > ARGLAST_REGNUM || pass_on_stack
1251 || argnum > last_reg_arg)
1252 {
1253 /* The remainder of the data goes entirely on the stack,
1254 4-byte aligned. */
1255 reg_size = (len + 3) & ~3;
1256 write_memory (sp + stack_offset, val, reg_size);
1257 stack_offset += reg_size;
1258 }
1259 else if (argreg <= ARGLAST_REGNUM)
1260 {
1261 /* There's room in a register. */
1262 reg_size = register_size (gdbarch, argreg);
1263 regval = extract_unsigned_integer (val, reg_size, byte_order);
1264 regcache_cooked_write_unsigned (regcache, argreg++, regval);
1265 }
1266 /* Store the value reg_size bytes at a time. This means that things
1267 larger than reg_size bytes may go partly in registers and partly
1268 on the stack. */
1269 len -= reg_size;
1270 val += reg_size;
1271 }
1272 }
1273
1274 if (struct_return)
1275 {
1276 if (sh_is_renesas_calling_convention (func_type))
1277 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1278 the stack and store the struct return address there. */
1279 write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
1280 else
1281 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1282 its own dedicated register. */
1283 regcache_cooked_write_unsigned (regcache,
1284 STRUCT_RETURN_REGNUM, struct_addr);
1285 }
1286
1287 /* Store return address. */
1288 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1289
1290 /* Update stack pointer. */
1291 regcache_cooked_write_unsigned (regcache,
1292 gdbarch_sp_regnum (gdbarch), sp);
1293
1294 return sp;
1295 }
1296
1297 /* Find a function's return value in the appropriate registers (in
1298 regbuf), and copy it into valbuf. Extract from an array REGBUF
1299 containing the (raw) register state a function return value of type
1300 TYPE, and copy that, in virtual format, into VALBUF. */
1301 static void
1302 sh_extract_return_value_nofpu (struct type *type, struct regcache *regcache,
1303 gdb_byte *valbuf)
1304 {
1305 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1306 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1307 int len = TYPE_LENGTH (type);
1308 int return_register = R0_REGNUM;
1309 int offset;
1310
1311 if (len <= 4)
1312 {
1313 ULONGEST c;
1314
1315 regcache_cooked_read_unsigned (regcache, R0_REGNUM, &c);
1316 store_unsigned_integer (valbuf, len, byte_order, c);
1317 }
1318 else if (len == 8)
1319 {
1320 int i, regnum = R0_REGNUM;
1321 for (i = 0; i < len; i += 4)
1322 regcache_raw_read (regcache, regnum++, valbuf + i);
1323 }
1324 else
1325 error (_("bad size for return value"));
1326 }
1327
1328 static void
1329 sh_extract_return_value_fpu (struct type *type, struct regcache *regcache,
1330 gdb_byte *valbuf)
1331 {
1332 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1333 if (sh_treat_as_flt_p (type))
1334 {
1335 int len = TYPE_LENGTH (type);
1336 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1337 for (i = 0; i < len; i += 4)
1338 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1339 regcache_raw_read (regcache, regnum++,
1340 valbuf + len - 4 - i);
1341 else
1342 regcache_raw_read (regcache, regnum++, valbuf + i);
1343 }
1344 else
1345 sh_extract_return_value_nofpu (type, regcache, valbuf);
1346 }
1347
1348 /* Write into appropriate registers a function return value
1349 of type TYPE, given in virtual format.
1350 If the architecture is sh4 or sh3e, store a function's return value
1351 in the R0 general register or in the FP0 floating point register,
1352 depending on the type of the return value. In all the other cases
1353 the result is stored in r0, left-justified. */
1354 static void
1355 sh_store_return_value_nofpu (struct type *type, struct regcache *regcache,
1356 const gdb_byte *valbuf)
1357 {
1358 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1359 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1360 ULONGEST val;
1361 int len = TYPE_LENGTH (type);
1362
1363 if (len <= 4)
1364 {
1365 val = extract_unsigned_integer (valbuf, len, byte_order);
1366 regcache_cooked_write_unsigned (regcache, R0_REGNUM, val);
1367 }
1368 else
1369 {
1370 int i, regnum = R0_REGNUM;
1371 for (i = 0; i < len; i += 4)
1372 regcache_raw_write (regcache, regnum++, valbuf + i);
1373 }
1374 }
1375
1376 static void
1377 sh_store_return_value_fpu (struct type *type, struct regcache *regcache,
1378 const gdb_byte *valbuf)
1379 {
1380 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1381 if (sh_treat_as_flt_p (type))
1382 {
1383 int len = TYPE_LENGTH (type);
1384 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1385 for (i = 0; i < len; i += 4)
1386 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1387 regcache_raw_write (regcache, regnum++,
1388 valbuf + len - 4 - i);
1389 else
1390 regcache_raw_write (regcache, regnum++, valbuf + i);
1391 }
1392 else
1393 sh_store_return_value_nofpu (type, regcache, valbuf);
1394 }
1395
1396 static enum return_value_convention
1397 sh_return_value_nofpu (struct gdbarch *gdbarch, struct value *function,
1398 struct type *type, struct regcache *regcache,
1399 gdb_byte *readbuf, const gdb_byte *writebuf)
1400 {
1401 struct type *func_type = function ? value_type (function) : NULL;
1402
1403 if (sh_use_struct_convention_nofpu (
1404 sh_is_renesas_calling_convention (func_type), type))
1405 return RETURN_VALUE_STRUCT_CONVENTION;
1406 if (writebuf)
1407 sh_store_return_value_nofpu (type, regcache, writebuf);
1408 else if (readbuf)
1409 sh_extract_return_value_nofpu (type, regcache, readbuf);
1410 return RETURN_VALUE_REGISTER_CONVENTION;
1411 }
1412
1413 static enum return_value_convention
1414 sh_return_value_fpu (struct gdbarch *gdbarch, struct value *function,
1415 struct type *type, struct regcache *regcache,
1416 gdb_byte *readbuf, const gdb_byte *writebuf)
1417 {
1418 struct type *func_type = function ? value_type (function) : NULL;
1419
1420 if (sh_use_struct_convention (
1421 sh_is_renesas_calling_convention (func_type), type))
1422 return RETURN_VALUE_STRUCT_CONVENTION;
1423 if (writebuf)
1424 sh_store_return_value_fpu (type, regcache, writebuf);
1425 else if (readbuf)
1426 sh_extract_return_value_fpu (type, regcache, readbuf);
1427 return RETURN_VALUE_REGISTER_CONVENTION;
1428 }
1429
1430 static struct type *
1431 sh_sh2a_register_type (struct gdbarch *gdbarch, int reg_nr)
1432 {
1433 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1434 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1435 return builtin_type (gdbarch)->builtin_float;
1436 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1437 return builtin_type (gdbarch)->builtin_double;
1438 else
1439 return builtin_type (gdbarch)->builtin_int;
1440 }
1441
1442 /* Return the GDB type object for the "standard" data type
1443 of data in register N. */
1444 static struct type *
1445 sh_sh3e_register_type (struct gdbarch *gdbarch, int reg_nr)
1446 {
1447 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1448 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1449 return builtin_type (gdbarch)->builtin_float;
1450 else
1451 return builtin_type (gdbarch)->builtin_int;
1452 }
1453
1454 static struct type *
1455 sh_sh4_build_float_register_type (struct gdbarch *gdbarch, int high)
1456 {
1457 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1458 0, high);
1459 }
1460
1461 static struct type *
1462 sh_sh4_register_type (struct gdbarch *gdbarch, int reg_nr)
1463 {
1464 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1465 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1466 return builtin_type (gdbarch)->builtin_float;
1467 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1468 return builtin_type (gdbarch)->builtin_double;
1469 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
1470 return sh_sh4_build_float_register_type (gdbarch, 3);
1471 else
1472 return builtin_type (gdbarch)->builtin_int;
1473 }
1474
1475 static struct type *
1476 sh_default_register_type (struct gdbarch *gdbarch, int reg_nr)
1477 {
1478 return builtin_type (gdbarch)->builtin_int;
1479 }
1480
1481 /* Is a register in a reggroup?
1482 The default code in reggroup.c doesn't identify system registers, some
1483 float registers or any of the vector registers.
1484 TODO: sh2a and dsp registers. */
1485 static int
1486 sh_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1487 struct reggroup *reggroup)
1488 {
1489 if (gdbarch_register_name (gdbarch, regnum) == NULL
1490 || *gdbarch_register_name (gdbarch, regnum) == '\0')
1491 return 0;
1492
1493 if (reggroup == float_reggroup
1494 && (regnum == FPUL_REGNUM
1495 || regnum == FPSCR_REGNUM))
1496 return 1;
1497
1498 if (regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM)
1499 {
1500 if (reggroup == vector_reggroup || reggroup == float_reggroup)
1501 return 1;
1502 if (reggroup == general_reggroup)
1503 return 0;
1504 }
1505
1506 if (regnum == VBR_REGNUM
1507 || regnum == SR_REGNUM
1508 || regnum == FPSCR_REGNUM
1509 || regnum == SSR_REGNUM
1510 || regnum == SPC_REGNUM)
1511 {
1512 if (reggroup == system_reggroup)
1513 return 1;
1514 if (reggroup == general_reggroup)
1515 return 0;
1516 }
1517
1518 /* The default code can cope with any other registers. */
1519 return default_register_reggroup_p (gdbarch, regnum, reggroup);
1520 }
1521
1522 /* On the sh4, the DRi pseudo registers are problematic if the target
1523 is little endian. When the user writes one of those registers, for
1524 instance with 'set var $dr0=1', we want the double to be stored
1525 like this:
1526 fr0 = 0x00 0x00 0xf0 0x3f
1527 fr1 = 0x00 0x00 0x00 0x00
1528
1529 This corresponds to little endian byte order & big endian word
1530 order. However if we let gdb write the register w/o conversion, it
1531 will write fr0 and fr1 this way:
1532 fr0 = 0x00 0x00 0x00 0x00
1533 fr1 = 0x00 0x00 0xf0 0x3f
1534 because it will consider fr0 and fr1 as a single LE stretch of memory.
1535
1536 To achieve what we want we must force gdb to store things in
1537 floatformat_ieee_double_littlebyte_bigword (which is defined in
1538 include/floatformat.h and libiberty/floatformat.c.
1539
1540 In case the target is big endian, there is no problem, the
1541 raw bytes will look like:
1542 fr0 = 0x3f 0xf0 0x00 0x00
1543 fr1 = 0x00 0x00 0x00 0x00
1544
1545 The other pseudo registers (the FVs) also don't pose a problem
1546 because they are stored as 4 individual FP elements. */
1547
1548 static void
1549 sh_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
1550 struct type *type, gdb_byte *from, gdb_byte *to)
1551 {
1552 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1553 {
1554 /* It is a no-op. */
1555 memcpy (to, from, register_size (gdbarch, regnum));
1556 return;
1557 }
1558
1559 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
1560 {
1561 DOUBLEST val;
1562 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1563 from, &val);
1564 store_typed_floating (to, type, val);
1565 }
1566 else
1567 error
1568 ("sh_register_convert_to_virtual called with non DR register number");
1569 }
1570
1571 static void
1572 sh_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
1573 int regnum, const gdb_byte *from, gdb_byte *to)
1574 {
1575 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1576 {
1577 /* It is a no-op. */
1578 memcpy (to, from, register_size (gdbarch, regnum));
1579 return;
1580 }
1581
1582 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
1583 {
1584 DOUBLEST val = extract_typed_floating (from, type);
1585 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1586 &val, to);
1587 }
1588 else
1589 error (_("sh_register_convert_to_raw called with non DR register number"));
1590 }
1591
1592 /* For vectors of 4 floating point registers. */
1593 static int
1594 fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
1595 {
1596 int fp_regnum;
1597
1598 fp_regnum = gdbarch_fp0_regnum (gdbarch)
1599 + (fv_regnum - FV0_REGNUM) * 4;
1600 return fp_regnum;
1601 }
1602
1603 /* For double precision floating point registers, i.e 2 fp regs. */
1604 static int
1605 dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
1606 {
1607 int fp_regnum;
1608
1609 fp_regnum = gdbarch_fp0_regnum (gdbarch)
1610 + (dr_regnum - DR0_REGNUM) * 2;
1611 return fp_regnum;
1612 }
1613
1614 /* Concatenate PORTIONS contiguous raw registers starting at
1615 BASE_REGNUM into BUFFER. */
1616
1617 static enum register_status
1618 pseudo_register_read_portions (struct gdbarch *gdbarch,
1619 struct regcache *regcache,
1620 int portions,
1621 int base_regnum, gdb_byte *buffer)
1622 {
1623 int portion;
1624
1625 for (portion = 0; portion < portions; portion++)
1626 {
1627 enum register_status status;
1628 gdb_byte *b;
1629
1630 b = buffer + register_size (gdbarch, base_regnum) * portion;
1631 status = regcache_raw_read (regcache, base_regnum + portion, b);
1632 if (status != REG_VALID)
1633 return status;
1634 }
1635
1636 return REG_VALID;
1637 }
1638
1639 static enum register_status
1640 sh_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1641 int reg_nr, gdb_byte *buffer)
1642 {
1643 int base_regnum;
1644 gdb_byte temp_buffer[MAX_REGISTER_SIZE];
1645 enum register_status status;
1646
1647 if (reg_nr == PSEUDO_BANK_REGNUM)
1648 return regcache_raw_read (regcache, BANK_REGNUM, buffer);
1649 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1650 {
1651 base_regnum = dr_reg_base_num (gdbarch, reg_nr);
1652
1653 /* Build the value in the provided buffer. */
1654 /* Read the real regs for which this one is an alias. */
1655 status = pseudo_register_read_portions (gdbarch, regcache,
1656 2, base_regnum, temp_buffer);
1657 if (status == REG_VALID)
1658 {
1659 /* We must pay attention to the endiannes. */
1660 sh_register_convert_to_virtual (gdbarch, reg_nr,
1661 register_type (gdbarch, reg_nr),
1662 temp_buffer, buffer);
1663 }
1664 return status;
1665 }
1666 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
1667 {
1668 base_regnum = fv_reg_base_num (gdbarch, reg_nr);
1669
1670 /* Read the real regs for which this one is an alias. */
1671 return pseudo_register_read_portions (gdbarch, regcache,
1672 4, base_regnum, buffer);
1673 }
1674 else
1675 gdb_assert_not_reached ("invalid pseudo register number");
1676 }
1677
1678 static void
1679 sh_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1680 int reg_nr, const gdb_byte *buffer)
1681 {
1682 int base_regnum, portion;
1683 gdb_byte temp_buffer[MAX_REGISTER_SIZE];
1684
1685 if (reg_nr == PSEUDO_BANK_REGNUM)
1686 {
1687 /* When the bank register is written to, the whole register bank
1688 is switched and all values in the bank registers must be read
1689 from the target/sim again. We're just invalidating the regcache
1690 so that a re-read happens next time it's necessary. */
1691 int bregnum;
1692
1693 regcache_raw_write (regcache, BANK_REGNUM, buffer);
1694 for (bregnum = R0_BANK0_REGNUM; bregnum < MACLB_REGNUM; ++bregnum)
1695 regcache_invalidate (regcache, bregnum);
1696 }
1697 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1698 {
1699 base_regnum = dr_reg_base_num (gdbarch, reg_nr);
1700
1701 /* We must pay attention to the endiannes. */
1702 sh_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
1703 reg_nr, buffer, temp_buffer);
1704
1705 /* Write the real regs for which this one is an alias. */
1706 for (portion = 0; portion < 2; portion++)
1707 regcache_raw_write (regcache, base_regnum + portion,
1708 (temp_buffer
1709 + register_size (gdbarch,
1710 base_regnum) * portion));
1711 }
1712 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
1713 {
1714 base_regnum = fv_reg_base_num (gdbarch, reg_nr);
1715
1716 /* Write the real regs for which this one is an alias. */
1717 for (portion = 0; portion < 4; portion++)
1718 regcache_raw_write (regcache, base_regnum + portion,
1719 (buffer
1720 + register_size (gdbarch,
1721 base_regnum) * portion));
1722 }
1723 }
1724
1725 static int
1726 sh_dsp_register_sim_regno (struct gdbarch *gdbarch, int nr)
1727 {
1728 if (legacy_register_sim_regno (gdbarch, nr) < 0)
1729 return legacy_register_sim_regno (gdbarch, nr);
1730 if (nr >= DSR_REGNUM && nr <= Y1_REGNUM)
1731 return nr - DSR_REGNUM + SIM_SH_DSR_REGNUM;
1732 if (nr == MOD_REGNUM)
1733 return SIM_SH_MOD_REGNUM;
1734 if (nr == RS_REGNUM)
1735 return SIM_SH_RS_REGNUM;
1736 if (nr == RE_REGNUM)
1737 return SIM_SH_RE_REGNUM;
1738 if (nr >= DSP_R0_BANK_REGNUM && nr <= DSP_R7_BANK_REGNUM)
1739 return nr - DSP_R0_BANK_REGNUM + SIM_SH_R0_BANK_REGNUM;
1740 return nr;
1741 }
1742
1743 static int
1744 sh_sh2a_register_sim_regno (struct gdbarch *gdbarch, int nr)
1745 {
1746 switch (nr)
1747 {
1748 case TBR_REGNUM:
1749 return SIM_SH_TBR_REGNUM;
1750 case IBNR_REGNUM:
1751 return SIM_SH_IBNR_REGNUM;
1752 case IBCR_REGNUM:
1753 return SIM_SH_IBCR_REGNUM;
1754 case BANK_REGNUM:
1755 return SIM_SH_BANK_REGNUM;
1756 case MACLB_REGNUM:
1757 return SIM_SH_BANK_MACL_REGNUM;
1758 case GBRB_REGNUM:
1759 return SIM_SH_BANK_GBR_REGNUM;
1760 case PRB_REGNUM:
1761 return SIM_SH_BANK_PR_REGNUM;
1762 case IVNB_REGNUM:
1763 return SIM_SH_BANK_IVN_REGNUM;
1764 case MACHB_REGNUM:
1765 return SIM_SH_BANK_MACH_REGNUM;
1766 default:
1767 break;
1768 }
1769 return legacy_register_sim_regno (gdbarch, nr);
1770 }
1771
1772 /* Set up the register unwinding such that call-clobbered registers are
1773 not displayed in frames >0 because the true value is not certain.
1774 The 'undefined' registers will show up as 'not available' unless the
1775 CFI says otherwise.
1776
1777 This function is currently set up for SH4 and compatible only. */
1778
1779 static void
1780 sh_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1781 struct dwarf2_frame_state_reg *reg,
1782 struct frame_info *this_frame)
1783 {
1784 /* Mark the PC as the destination for the return address. */
1785 if (regnum == gdbarch_pc_regnum (gdbarch))
1786 reg->how = DWARF2_FRAME_REG_RA;
1787
1788 /* Mark the stack pointer as the call frame address. */
1789 else if (regnum == gdbarch_sp_regnum (gdbarch))
1790 reg->how = DWARF2_FRAME_REG_CFA;
1791
1792 /* The above was taken from the default init_reg in dwarf2-frame.c
1793 while the below is SH specific. */
1794
1795 /* Caller save registers. */
1796 else if ((regnum >= R0_REGNUM && regnum <= R0_REGNUM+7)
1797 || (regnum >= FR0_REGNUM && regnum <= FR0_REGNUM+11)
1798 || (regnum >= DR0_REGNUM && regnum <= DR0_REGNUM+5)
1799 || (regnum >= FV0_REGNUM && regnum <= FV0_REGNUM+2)
1800 || (regnum == MACH_REGNUM)
1801 || (regnum == MACL_REGNUM)
1802 || (regnum == FPUL_REGNUM)
1803 || (regnum == SR_REGNUM))
1804 reg->how = DWARF2_FRAME_REG_UNDEFINED;
1805
1806 /* Callee save registers. */
1807 else if ((regnum >= R0_REGNUM+8 && regnum <= R0_REGNUM+15)
1808 || (regnum >= FR0_REGNUM+12 && regnum <= FR0_REGNUM+15)
1809 || (regnum >= DR0_REGNUM+6 && regnum <= DR0_REGNUM+8)
1810 || (regnum == FV0_REGNUM+3))
1811 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1812
1813 /* Other registers. These are not in the ABI and may or may not
1814 mean anything in frames >0 so don't show them. */
1815 else if ((regnum >= R0_BANK0_REGNUM && regnum <= R0_BANK0_REGNUM+15)
1816 || (regnum == GBR_REGNUM)
1817 || (regnum == VBR_REGNUM)
1818 || (regnum == FPSCR_REGNUM)
1819 || (regnum == SSR_REGNUM)
1820 || (regnum == SPC_REGNUM))
1821 reg->how = DWARF2_FRAME_REG_UNDEFINED;
1822 }
1823
1824 static struct sh_frame_cache *
1825 sh_alloc_frame_cache (void)
1826 {
1827 struct sh_frame_cache *cache;
1828 int i;
1829
1830 cache = FRAME_OBSTACK_ZALLOC (struct sh_frame_cache);
1831
1832 /* Base address. */
1833 cache->base = 0;
1834 cache->saved_sp = 0;
1835 cache->sp_offset = 0;
1836 cache->pc = 0;
1837
1838 /* Frameless until proven otherwise. */
1839 cache->uses_fp = 0;
1840
1841 /* Saved registers. We initialize these to -1 since zero is a valid
1842 offset (that's where fp is supposed to be stored). */
1843 for (i = 0; i < SH_NUM_REGS; i++)
1844 {
1845 cache->saved_regs[i] = -1;
1846 }
1847
1848 return cache;
1849 }
1850
1851 static struct sh_frame_cache *
1852 sh_frame_cache (struct frame_info *this_frame, void **this_cache)
1853 {
1854 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1855 struct sh_frame_cache *cache;
1856 CORE_ADDR current_pc;
1857 int i;
1858
1859 if (*this_cache)
1860 return *this_cache;
1861
1862 cache = sh_alloc_frame_cache ();
1863 *this_cache = cache;
1864
1865 /* In principle, for normal frames, fp holds the frame pointer,
1866 which holds the base address for the current stack frame.
1867 However, for functions that don't need it, the frame pointer is
1868 optional. For these "frameless" functions the frame pointer is
1869 actually the frame pointer of the calling frame. */
1870 cache->base = get_frame_register_unsigned (this_frame, FP_REGNUM);
1871 if (cache->base == 0)
1872 return cache;
1873
1874 cache->pc = get_frame_func (this_frame);
1875 current_pc = get_frame_pc (this_frame);
1876 if (cache->pc != 0)
1877 {
1878 ULONGEST fpscr;
1879
1880 /* Check for the existence of the FPSCR register. If it exists,
1881 fetch its value for use in prologue analysis. Passing a zero
1882 value is the best choice for architecture variants upon which
1883 there's no FPSCR register. */
1884 if (gdbarch_register_reggroup_p (gdbarch, FPSCR_REGNUM, all_reggroup))
1885 fpscr = get_frame_register_unsigned (this_frame, FPSCR_REGNUM);
1886 else
1887 fpscr = 0;
1888
1889 sh_analyze_prologue (gdbarch, cache->pc, current_pc, cache, fpscr);
1890 }
1891
1892 if (!cache->uses_fp)
1893 {
1894 /* We didn't find a valid frame, which means that CACHE->base
1895 currently holds the frame pointer for our calling frame. If
1896 we're at the start of a function, or somewhere half-way its
1897 prologue, the function's frame probably hasn't been fully
1898 setup yet. Try to reconstruct the base address for the stack
1899 frame by looking at the stack pointer. For truly "frameless"
1900 functions this might work too. */
1901 cache->base = get_frame_register_unsigned
1902 (this_frame, gdbarch_sp_regnum (gdbarch));
1903 }
1904
1905 /* Now that we have the base address for the stack frame we can
1906 calculate the value of sp in the calling frame. */
1907 cache->saved_sp = cache->base + cache->sp_offset;
1908
1909 /* Adjust all the saved registers such that they contain addresses
1910 instead of offsets. */
1911 for (i = 0; i < SH_NUM_REGS; i++)
1912 if (cache->saved_regs[i] != -1)
1913 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i] - 4;
1914
1915 return cache;
1916 }
1917
1918 static struct value *
1919 sh_frame_prev_register (struct frame_info *this_frame,
1920 void **this_cache, int regnum)
1921 {
1922 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1923 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1924
1925 gdb_assert (regnum >= 0);
1926
1927 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
1928 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
1929
1930 /* The PC of the previous frame is stored in the PR register of
1931 the current frame. Frob regnum so that we pull the value from
1932 the correct place. */
1933 if (regnum == gdbarch_pc_regnum (gdbarch))
1934 regnum = PR_REGNUM;
1935
1936 if (regnum < SH_NUM_REGS && cache->saved_regs[regnum] != -1)
1937 return frame_unwind_got_memory (this_frame, regnum,
1938 cache->saved_regs[regnum]);
1939
1940 return frame_unwind_got_register (this_frame, regnum, regnum);
1941 }
1942
1943 static void
1944 sh_frame_this_id (struct frame_info *this_frame, void **this_cache,
1945 struct frame_id *this_id)
1946 {
1947 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1948
1949 /* This marks the outermost frame. */
1950 if (cache->base == 0)
1951 return;
1952
1953 *this_id = frame_id_build (cache->saved_sp, cache->pc);
1954 }
1955
1956 static const struct frame_unwind sh_frame_unwind = {
1957 NORMAL_FRAME,
1958 default_frame_unwind_stop_reason,
1959 sh_frame_this_id,
1960 sh_frame_prev_register,
1961 NULL,
1962 default_frame_sniffer
1963 };
1964
1965 static CORE_ADDR
1966 sh_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1967 {
1968 return frame_unwind_register_unsigned (next_frame,
1969 gdbarch_sp_regnum (gdbarch));
1970 }
1971
1972 static CORE_ADDR
1973 sh_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1974 {
1975 return frame_unwind_register_unsigned (next_frame,
1976 gdbarch_pc_regnum (gdbarch));
1977 }
1978
1979 static struct frame_id
1980 sh_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1981 {
1982 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
1983 gdbarch_sp_regnum (gdbarch));
1984 return frame_id_build (sp, get_frame_pc (this_frame));
1985 }
1986
1987 static CORE_ADDR
1988 sh_frame_base_address (struct frame_info *this_frame, void **this_cache)
1989 {
1990 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1991
1992 return cache->base;
1993 }
1994
1995 static const struct frame_base sh_frame_base = {
1996 &sh_frame_unwind,
1997 sh_frame_base_address,
1998 sh_frame_base_address,
1999 sh_frame_base_address
2000 };
2001
2002 static struct sh_frame_cache *
2003 sh_make_stub_cache (struct frame_info *this_frame)
2004 {
2005 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2006 struct sh_frame_cache *cache;
2007
2008 cache = sh_alloc_frame_cache ();
2009
2010 cache->saved_sp
2011 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
2012
2013 return cache;
2014 }
2015
2016 static void
2017 sh_stub_this_id (struct frame_info *this_frame, void **this_cache,
2018 struct frame_id *this_id)
2019 {
2020 struct sh_frame_cache *cache;
2021
2022 if (*this_cache == NULL)
2023 *this_cache = sh_make_stub_cache (this_frame);
2024 cache = *this_cache;
2025
2026 *this_id = frame_id_build (cache->saved_sp, get_frame_pc (this_frame));
2027 }
2028
2029 static int
2030 sh_stub_unwind_sniffer (const struct frame_unwind *self,
2031 struct frame_info *this_frame,
2032 void **this_prologue_cache)
2033 {
2034 CORE_ADDR addr_in_block;
2035
2036 addr_in_block = get_frame_address_in_block (this_frame);
2037 if (in_plt_section (addr_in_block))
2038 return 1;
2039
2040 return 0;
2041 }
2042
2043 static const struct frame_unwind sh_stub_unwind =
2044 {
2045 NORMAL_FRAME,
2046 default_frame_unwind_stop_reason,
2047 sh_stub_this_id,
2048 sh_frame_prev_register,
2049 NULL,
2050 sh_stub_unwind_sniffer
2051 };
2052
2053 /* The epilogue is defined here as the area at the end of a function,
2054 either on the `ret' instruction itself or after an instruction which
2055 destroys the function's stack frame. */
2056 static int
2057 sh_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2058 {
2059 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2060 CORE_ADDR func_addr = 0, func_end = 0;
2061
2062 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
2063 {
2064 ULONGEST inst;
2065 /* The sh epilogue is max. 14 bytes long. Give another 14 bytes
2066 for a nop and some fixed data (e.g. big offsets) which are
2067 unfortunately also treated as part of the function (which
2068 means, they are below func_end. */
2069 CORE_ADDR addr = func_end - 28;
2070 if (addr < func_addr + 4)
2071 addr = func_addr + 4;
2072 if (pc < addr)
2073 return 0;
2074
2075 /* First search forward until hitting an rts. */
2076 while (addr < func_end
2077 && !IS_RTS (read_memory_unsigned_integer (addr, 2, byte_order)))
2078 addr += 2;
2079 if (addr >= func_end)
2080 return 0;
2081
2082 /* At this point we should find a mov.l @r15+,r14 instruction,
2083 either before or after the rts. If not, then the function has
2084 probably no "normal" epilogue and we bail out here. */
2085 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2086 if (IS_RESTORE_FP (read_memory_unsigned_integer (addr - 2, 2,
2087 byte_order)))
2088 addr -= 2;
2089 else if (!IS_RESTORE_FP (read_memory_unsigned_integer (addr + 2, 2,
2090 byte_order)))
2091 return 0;
2092
2093 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2094
2095 /* Step over possible lds.l @r15+,macl. */
2096 if (IS_MACL_LDS (inst))
2097 {
2098 addr -= 2;
2099 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2100 }
2101
2102 /* Step over possible lds.l @r15+,pr. */
2103 if (IS_LDS (inst))
2104 {
2105 addr -= 2;
2106 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2107 }
2108
2109 /* Step over possible mov r14,r15. */
2110 if (IS_MOV_FP_SP (inst))
2111 {
2112 addr -= 2;
2113 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2114 }
2115
2116 /* Now check for FP adjustments, using add #imm,r14 or add rX, r14
2117 instructions. */
2118 while (addr > func_addr + 4
2119 && (IS_ADD_REG_TO_FP (inst) || IS_ADD_IMM_FP (inst)))
2120 {
2121 addr -= 2;
2122 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2123 }
2124
2125 /* On SH2a check if the previous instruction was perhaps a MOVI20.
2126 That's allowed for the epilogue. */
2127 if ((gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a
2128 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a_nofpu)
2129 && addr > func_addr + 6
2130 && IS_MOVI20 (read_memory_unsigned_integer (addr - 4, 2,
2131 byte_order)))
2132 addr -= 4;
2133
2134 if (pc >= addr)
2135 return 1;
2136 }
2137 return 0;
2138 }
2139
2140
2141 /* Supply register REGNUM from the buffer specified by REGS and LEN
2142 in the register set REGSET to register cache REGCACHE.
2143 REGTABLE specifies where each register can be found in REGS.
2144 If REGNUM is -1, do this for all registers in REGSET. */
2145
2146 void
2147 sh_corefile_supply_regset (const struct regset *regset,
2148 struct regcache *regcache,
2149 int regnum, const void *regs, size_t len)
2150 {
2151 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2152 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2153 const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
2154 ? tdep->core_gregmap
2155 : tdep->core_fpregmap);
2156 int i;
2157
2158 for (i = 0; regmap[i].regnum != -1; i++)
2159 {
2160 if ((regnum == -1 || regnum == regmap[i].regnum)
2161 && regmap[i].offset + 4 <= len)
2162 regcache_raw_supply (regcache, regmap[i].regnum,
2163 (char *)regs + regmap[i].offset);
2164 }
2165 }
2166
2167 /* Collect register REGNUM in the register set REGSET from register cache
2168 REGCACHE into the buffer specified by REGS and LEN.
2169 REGTABLE specifies where each register can be found in REGS.
2170 If REGNUM is -1, do this for all registers in REGSET. */
2171
2172 void
2173 sh_corefile_collect_regset (const struct regset *regset,
2174 const struct regcache *regcache,
2175 int regnum, void *regs, size_t len)
2176 {
2177 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2178 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2179 const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
2180 ? tdep->core_gregmap
2181 : tdep->core_fpregmap);
2182 int i;
2183
2184 for (i = 0; regmap[i].regnum != -1; i++)
2185 {
2186 if ((regnum == -1 || regnum == regmap[i].regnum)
2187 && regmap[i].offset + 4 <= len)
2188 regcache_raw_collect (regcache, regmap[i].regnum,
2189 (char *)regs + regmap[i].offset);
2190 }
2191 }
2192
2193 /* The following two regsets have the same contents, so it is tempting to
2194 unify them, but they are distiguished by their address, so don't. */
2195
2196 const struct regset sh_corefile_gregset =
2197 {
2198 NULL,
2199 sh_corefile_supply_regset,
2200 sh_corefile_collect_regset
2201 };
2202
2203 static const struct regset sh_corefile_fpregset =
2204 {
2205 NULL,
2206 sh_corefile_supply_regset,
2207 sh_corefile_collect_regset
2208 };
2209
2210 static void
2211 sh_iterate_over_regset_sections (struct gdbarch *gdbarch,
2212 iterate_over_regset_sections_cb *cb,
2213 void *cb_data,
2214 const struct regcache *regcache)
2215 {
2216 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2217
2218 if (tdep->core_gregmap != NULL)
2219 cb (".reg", tdep->sizeof_gregset, &sh_corefile_gregset, NULL, cb_data);
2220
2221 if (tdep->core_fpregmap != NULL)
2222 cb (".reg2", tdep->sizeof_fpregset, &sh_corefile_fpregset, NULL, cb_data);
2223 }
2224
2225 /* This is the implementation of gdbarch method
2226 return_in_first_hidden_param_p. */
2227
2228 static int
2229 sh_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
2230 struct type *type)
2231 {
2232 return 0;
2233 }
2234
2235 \f
2236
2237 static struct gdbarch *
2238 sh_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2239 {
2240 struct gdbarch *gdbarch;
2241 struct gdbarch_tdep *tdep;
2242
2243 /* SH5 is handled entirely in sh64-tdep.c. */
2244 if (info.bfd_arch_info->mach == bfd_mach_sh5)
2245 return sh64_gdbarch_init (info, arches);
2246
2247 /* If there is already a candidate, use it. */
2248 arches = gdbarch_list_lookup_by_info (arches, &info);
2249 if (arches != NULL)
2250 return arches->gdbarch;
2251
2252 /* None found, create a new architecture from the information
2253 provided. */
2254 tdep = XCNEW (struct gdbarch_tdep);
2255 gdbarch = gdbarch_alloc (&info, tdep);
2256
2257 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2258 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2259 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2260 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2261 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2262 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2263 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2264 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2265
2266 set_gdbarch_num_regs (gdbarch, SH_NUM_REGS);
2267 set_gdbarch_sp_regnum (gdbarch, 15);
2268 set_gdbarch_pc_regnum (gdbarch, 16);
2269 set_gdbarch_fp0_regnum (gdbarch, -1);
2270 set_gdbarch_num_pseudo_regs (gdbarch, 0);
2271
2272 set_gdbarch_register_type (gdbarch, sh_default_register_type);
2273 set_gdbarch_register_reggroup_p (gdbarch, sh_register_reggroup_p);
2274
2275 set_gdbarch_breakpoint_from_pc (gdbarch, sh_breakpoint_from_pc);
2276
2277 set_gdbarch_print_insn (gdbarch, print_insn_sh);
2278 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2279
2280 set_gdbarch_return_value (gdbarch, sh_return_value_nofpu);
2281
2282 set_gdbarch_skip_prologue (gdbarch, sh_skip_prologue);
2283 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2284
2285 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_nofpu);
2286 set_gdbarch_return_in_first_hidden_param_p (gdbarch,
2287 sh_return_in_first_hidden_param_p);
2288
2289 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2290
2291 set_gdbarch_frame_align (gdbarch, sh_frame_align);
2292 set_gdbarch_unwind_sp (gdbarch, sh_unwind_sp);
2293 set_gdbarch_unwind_pc (gdbarch, sh_unwind_pc);
2294 set_gdbarch_dummy_id (gdbarch, sh_dummy_id);
2295 frame_base_set_default (gdbarch, &sh_frame_base);
2296
2297 set_gdbarch_in_function_epilogue_p (gdbarch, sh_in_function_epilogue_p);
2298
2299 dwarf2_frame_set_init_reg (gdbarch, sh_dwarf2_frame_init_reg);
2300
2301 set_gdbarch_iterate_over_regset_sections
2302 (gdbarch, sh_iterate_over_regset_sections);
2303
2304 switch (info.bfd_arch_info->mach)
2305 {
2306 case bfd_mach_sh:
2307 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2308 break;
2309
2310 case bfd_mach_sh2:
2311 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2312 break;
2313
2314 case bfd_mach_sh2e:
2315 /* doubles on sh2e and sh3e are actually 4 byte. */
2316 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2317 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
2318
2319 set_gdbarch_register_name (gdbarch, sh_sh2e_register_name);
2320 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2321 set_gdbarch_fp0_regnum (gdbarch, 25);
2322 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2323 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2324 break;
2325
2326 case bfd_mach_sh2a:
2327 set_gdbarch_register_name (gdbarch, sh_sh2a_register_name);
2328 set_gdbarch_register_type (gdbarch, sh_sh2a_register_type);
2329 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2330
2331 set_gdbarch_fp0_regnum (gdbarch, 25);
2332 set_gdbarch_num_pseudo_regs (gdbarch, 9);
2333 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2334 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2335 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2336 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2337 break;
2338
2339 case bfd_mach_sh2a_nofpu:
2340 set_gdbarch_register_name (gdbarch, sh_sh2a_nofpu_register_name);
2341 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2342
2343 set_gdbarch_num_pseudo_regs (gdbarch, 1);
2344 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2345 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2346 break;
2347
2348 case bfd_mach_sh_dsp:
2349 set_gdbarch_register_name (gdbarch, sh_sh_dsp_register_name);
2350 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2351 break;
2352
2353 case bfd_mach_sh3:
2354 case bfd_mach_sh3_nommu:
2355 case bfd_mach_sh2a_nofpu_or_sh3_nommu:
2356 set_gdbarch_register_name (gdbarch, sh_sh3_register_name);
2357 break;
2358
2359 case bfd_mach_sh3e:
2360 case bfd_mach_sh2a_or_sh3e:
2361 /* doubles on sh2e and sh3e are actually 4 byte. */
2362 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2363 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
2364
2365 set_gdbarch_register_name (gdbarch, sh_sh3e_register_name);
2366 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2367 set_gdbarch_fp0_regnum (gdbarch, 25);
2368 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2369 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2370 break;
2371
2372 case bfd_mach_sh3_dsp:
2373 set_gdbarch_register_name (gdbarch, sh_sh3_dsp_register_name);
2374 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2375 break;
2376
2377 case bfd_mach_sh4:
2378 case bfd_mach_sh4a:
2379 case bfd_mach_sh2a_or_sh4:
2380 set_gdbarch_register_name (gdbarch, sh_sh4_register_name);
2381 set_gdbarch_register_type (gdbarch, sh_sh4_register_type);
2382 set_gdbarch_fp0_regnum (gdbarch, 25);
2383 set_gdbarch_num_pseudo_regs (gdbarch, 13);
2384 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2385 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2386 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2387 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2388 break;
2389
2390 case bfd_mach_sh4_nofpu:
2391 case bfd_mach_sh4a_nofpu:
2392 case bfd_mach_sh4_nommu_nofpu:
2393 case bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu:
2394 set_gdbarch_register_name (gdbarch, sh_sh4_nofpu_register_name);
2395 break;
2396
2397 case bfd_mach_sh4al_dsp:
2398 set_gdbarch_register_name (gdbarch, sh_sh4al_dsp_register_name);
2399 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2400 break;
2401
2402 default:
2403 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2404 break;
2405 }
2406
2407 /* Hook in ABI-specific overrides, if they have been registered. */
2408 gdbarch_init_osabi (info, gdbarch);
2409
2410 dwarf2_append_unwinders (gdbarch);
2411 frame_unwind_append_unwinder (gdbarch, &sh_stub_unwind);
2412 frame_unwind_append_unwinder (gdbarch, &sh_frame_unwind);
2413
2414 return gdbarch;
2415 }
2416
2417 static void
2418 show_sh_command (char *args, int from_tty)
2419 {
2420 help_list (showshcmdlist, "show sh ", all_commands, gdb_stdout);
2421 }
2422
2423 static void
2424 set_sh_command (char *args, int from_tty)
2425 {
2426 printf_unfiltered
2427 ("\"set sh\" must be followed by an appropriate subcommand.\n");
2428 help_list (setshcmdlist, "set sh ", all_commands, gdb_stdout);
2429 }
2430
2431 extern initialize_file_ftype _initialize_sh_tdep; /* -Wmissing-prototypes */
2432
2433 void
2434 _initialize_sh_tdep (void)
2435 {
2436 gdbarch_register (bfd_arch_sh, sh_gdbarch_init, NULL);
2437
2438 add_prefix_cmd ("sh", no_class, set_sh_command, "SH specific commands.",
2439 &setshcmdlist, "set sh ", 0, &setlist);
2440 add_prefix_cmd ("sh", no_class, show_sh_command, "SH specific commands.",
2441 &showshcmdlist, "show sh ", 0, &showlist);
2442
2443 add_setshow_enum_cmd ("calling-convention", class_vars, sh_cc_enum,
2444 &sh_active_calling_convention,
2445 _("Set calling convention used when calling target "
2446 "functions from GDB."),
2447 _("Show calling convention used when calling target "
2448 "functions from GDB."),
2449 _("gcc - Use GCC calling convention (default).\n"
2450 "renesas - Enforce Renesas calling convention."),
2451 NULL, NULL,
2452 &setshcmdlist, &showshcmdlist);
2453 }
This page took 0.082846 seconds and 5 git commands to generate.