2007-11-02 Markus Deuling <deuling@de.ibm.com>
[deliverable/binutils-gdb.git] / gdb / sh64-tdep.c
1 /* Target-dependent code for Renesas Super-H, for GDB.
2
3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 /*
22 Contributed by Steve Chamberlain
23 sac@cygnus.com
24 */
25
26 #include "defs.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "dwarf2-frame.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "value.h"
36 #include "dis-asm.h"
37 #include "inferior.h"
38 #include "gdb_string.h"
39 #include "gdb_assert.h"
40 #include "arch-utils.h"
41 #include "regcache.h"
42 #include "osabi.h"
43
44 #include "elf-bfd.h"
45
46 /* sh flags */
47 #include "elf/sh.h"
48 /* registers numbers shared with the simulator */
49 #include "gdb/sim-sh.h"
50
51 /* Information that is dependent on the processor variant. */
52 enum sh_abi
53 {
54 SH_ABI_UNKNOWN,
55 SH_ABI_32,
56 SH_ABI_64
57 };
58
59 struct gdbarch_tdep
60 {
61 enum sh_abi sh_abi;
62 };
63
64 struct sh64_frame_cache
65 {
66 /* Base address. */
67 CORE_ADDR base;
68 LONGEST sp_offset;
69 CORE_ADDR pc;
70
71 /* Flag showing that a frame has been created in the prologue code. */
72 int uses_fp;
73
74 int media_mode;
75
76 /* Saved registers. */
77 CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
78 CORE_ADDR saved_sp;
79 };
80
81 /* Registers of SH5 */
82 enum
83 {
84 R0_REGNUM = 0,
85 DEFAULT_RETURN_REGNUM = 2,
86 STRUCT_RETURN_REGNUM = 2,
87 ARG0_REGNUM = 2,
88 ARGLAST_REGNUM = 9,
89 FLOAT_ARGLAST_REGNUM = 11,
90 MEDIA_FP_REGNUM = 14,
91 PR_REGNUM = 18,
92 SR_REGNUM = 65,
93 DR0_REGNUM = 141,
94 DR_LAST_REGNUM = 172,
95 /* FPP stands for Floating Point Pair, to avoid confusion with
96 GDB's gdbarch_fp0_regnum, which is the number of the first Floating
97 point register. Unfortunately on the sh5, the floating point
98 registers are called FR, and the floating point pairs are called FP. */
99 FPP0_REGNUM = 173,
100 FPP_LAST_REGNUM = 204,
101 FV0_REGNUM = 205,
102 FV_LAST_REGNUM = 220,
103 R0_C_REGNUM = 221,
104 R_LAST_C_REGNUM = 236,
105 PC_C_REGNUM = 237,
106 GBR_C_REGNUM = 238,
107 MACH_C_REGNUM = 239,
108 MACL_C_REGNUM = 240,
109 PR_C_REGNUM = 241,
110 T_C_REGNUM = 242,
111 FPSCR_C_REGNUM = 243,
112 FPUL_C_REGNUM = 244,
113 FP0_C_REGNUM = 245,
114 FP_LAST_C_REGNUM = 260,
115 DR0_C_REGNUM = 261,
116 DR_LAST_C_REGNUM = 268,
117 FV0_C_REGNUM = 269,
118 FV_LAST_C_REGNUM = 272,
119 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
120 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
121 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
122 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
123 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
124 };
125
126 static const char *
127 sh64_register_name (struct gdbarch *gdbarch, int reg_nr)
128 {
129 static char *register_names[] =
130 {
131 /* SH MEDIA MODE (ISA 32) */
132 /* general registers (64-bit) 0-63 */
133 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
134 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
135 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
136 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
137 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
138 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
139 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
140 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
141
142 /* pc (64-bit) 64 */
143 "pc",
144
145 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
146 "sr", "ssr", "spc",
147
148 /* target registers (64-bit) 68-75*/
149 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
150
151 /* floating point state control register (32-bit) 76 */
152 "fpscr",
153
154 /* single precision floating point registers (32-bit) 77-140*/
155 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
156 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
157 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
158 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
159 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
160 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
161 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
162 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
163
164 /* double precision registers (pseudo) 141-172 */
165 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
166 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
167 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
168 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
169
170 /* floating point pairs (pseudo) 173-204*/
171 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
172 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
173 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
174 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
175
176 /* floating point vectors (4 floating point regs) (pseudo) 205-220*/
177 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
178 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
179
180 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272*/
181 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
182 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
183 "pc_c",
184 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
185 "fpscr_c", "fpul_c",
186 "fr0_c", "fr1_c", "fr2_c", "fr3_c", "fr4_c", "fr5_c", "fr6_c", "fr7_c",
187 "fr8_c", "fr9_c", "fr10_c", "fr11_c", "fr12_c", "fr13_c", "fr14_c", "fr15_c",
188 "dr0_c", "dr2_c", "dr4_c", "dr6_c", "dr8_c", "dr10_c", "dr12_c", "dr14_c",
189 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
190 /* FIXME!!!! XF0 XF15, XD0 XD14 ?????*/
191 };
192
193 if (reg_nr < 0)
194 return NULL;
195 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
196 return NULL;
197 return register_names[reg_nr];
198 }
199
200 #define NUM_PSEUDO_REGS_SH_MEDIA 80
201 #define NUM_PSEUDO_REGS_SH_COMPACT 51
202
203 /* Macros and functions for setting and testing a bit in a minimal
204 symbol that marks it as 32-bit function. The MSB of the minimal
205 symbol's "info" field is used for this purpose.
206
207 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
208 i.e. refers to a 32-bit function, and sets a "special" bit in a
209 minimal symbol to mark it as a 32-bit function
210 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
211
212 #define MSYMBOL_IS_SPECIAL(msym) \
213 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
214
215 static void
216 sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
217 {
218 if (msym == NULL)
219 return;
220
221 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
222 {
223 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) | 0x80000000);
224 SYMBOL_VALUE_ADDRESS (msym) |= 1;
225 }
226 }
227
228 /* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
229 are some macros to test, set, or clear bit 0 of addresses. */
230 #define IS_ISA32_ADDR(addr) ((addr) & 1)
231 #define MAKE_ISA32_ADDR(addr) ((addr) | 1)
232 #define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
233
234 static int
235 pc_is_isa32 (bfd_vma memaddr)
236 {
237 struct minimal_symbol *sym;
238
239 /* If bit 0 of the address is set, assume this is a
240 ISA32 (shmedia) address. */
241 if (IS_ISA32_ADDR (memaddr))
242 return 1;
243
244 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
245 the high bit of the info field. Use this to decide if the function is
246 ISA16 or ISA32. */
247 sym = lookup_minimal_symbol_by_pc (memaddr);
248 if (sym)
249 return MSYMBOL_IS_SPECIAL (sym);
250 else
251 return 0;
252 }
253
254 static const unsigned char *
255 sh64_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
256 {
257 /* The BRK instruction for shmedia is
258 01101111 11110101 11111111 11110000
259 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
260 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
261
262 /* The BRK instruction for shcompact is
263 00000000 00111011
264 which translates in big endian mode to 0x0, 0x3b
265 and in little endian mode to 0x3b, 0x0*/
266
267 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
268 {
269 if (pc_is_isa32 (*pcptr))
270 {
271 static unsigned char big_breakpoint_media[] = {0x6f, 0xf5, 0xff, 0xf0};
272 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
273 *lenptr = sizeof (big_breakpoint_media);
274 return big_breakpoint_media;
275 }
276 else
277 {
278 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
279 *lenptr = sizeof (big_breakpoint_compact);
280 return big_breakpoint_compact;
281 }
282 }
283 else
284 {
285 if (pc_is_isa32 (*pcptr))
286 {
287 static unsigned char little_breakpoint_media[] = {0xf0, 0xff, 0xf5, 0x6f};
288 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
289 *lenptr = sizeof (little_breakpoint_media);
290 return little_breakpoint_media;
291 }
292 else
293 {
294 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
295 *lenptr = sizeof (little_breakpoint_compact);
296 return little_breakpoint_compact;
297 }
298 }
299 }
300
301 /* Prologue looks like
302 [mov.l <regs>,@-r15]...
303 [sts.l pr,@-r15]
304 [mov.l r14,@-r15]
305 [mov r15,r14]
306
307 Actually it can be more complicated than this. For instance, with
308 newer gcc's:
309
310 mov.l r14,@-r15
311 add #-12,r15
312 mov r15,r14
313 mov r4,r1
314 mov r5,r2
315 mov.l r6,@(4,r14)
316 mov.l r7,@(8,r14)
317 mov.b r1,@r14
318 mov r14,r1
319 mov r14,r1
320 add #2,r1
321 mov.w r2,@r1
322
323 */
324
325 /* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
326 with l=1 and n = 18 0110101111110001010010100aaa0000 */
327 #define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
328
329 /* STS.L PR,@-r0 0100000000100010
330 r0-4-->r0, PR-->(r0) */
331 #define IS_STS_R0(x) ((x) == 0x4022)
332
333 /* STS PR, Rm 0000mmmm00101010
334 PR-->Rm */
335 #define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
336
337 /* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
338 Rm-->(dispx4+r15) */
339 #define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
340
341 /* MOV.L R14,@(disp,r15) 000111111110dddd
342 R14-->(dispx4+r15) */
343 #define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
344
345 /* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
346 R18-->(dispx8+R14) */
347 #define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
348
349 /* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
350 R18-->(dispx8+R15) */
351 #define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
352
353 /* ST.L R15, disp, R18 101010001111dddddddddd0100100000
354 R18-->(dispx4+R15) */
355 #define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
356
357 /* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
358 R14-->(dispx8+R15) */
359 #define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
360
361 /* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
362 R14-->(dispx4+R15) */
363 #define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
364
365 /* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
366 R15 + imm --> R15 */
367 #define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
368
369 /* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
370 R15 + imm --> R15 */
371 #define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
372
373 /* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
374 R15 + R63 --> R14 */
375 #define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
376
377 /* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
378 R15 + R63 --> R14 */
379 #define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
380
381 #define IS_MOV_SP_FP_MEDIA(x) (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
382
383 /* MOV #imm, R0 1110 0000 ssss ssss
384 #imm-->R0 */
385 #define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
386
387 /* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
388 #define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
389
390 /* ADD r15,r0 0011 0000 1111 1100
391 r15+r0-->r0 */
392 #define IS_ADD_SP_R0(x) ((x) == 0x30fc)
393
394 /* MOV.L R14 @-R0 0010 0000 1110 0110
395 R14-->(R0-4), R0-4-->R0 */
396 #define IS_MOV_R14_R0(x) ((x) == 0x20e6)
397
398 /* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
399 where Rm is one of r2-r9 which are the argument registers. */
400 /* FIXME: Recognize the float and double register moves too! */
401 #define IS_MEDIA_IND_ARG_MOV(x) \
402 ((((x) & 0xfc0ffc0f) == 0x0009fc00) && (((x) & 0x03f00000) >= 0x00200000 && ((x) & 0x03f00000) <= 0x00900000))
403
404 /* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
405 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
406 where Rm is one of r2-r9 which are the argument registers. */
407 #define IS_MEDIA_ARG_MOV(x) \
408 (((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
409 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
410
411 /* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000*/
412 /* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000*/
413 /* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000*/
414 /* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000*/
415 /* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000*/
416 #define IS_MEDIA_MOV_TO_R14(x) \
417 ((((x) & 0xfffffc0f) == 0xa0e00000) \
418 || (((x) & 0xfffffc0f) == 0xa4e00000) \
419 || (((x) & 0xfffffc0f) == 0xa8e00000) \
420 || (((x) & 0xfffffc0f) == 0xb4e00000) \
421 || (((x) & 0xfffffc0f) == 0xbce00000))
422
423 /* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
424 where Rm is r2-r9 */
425 #define IS_COMPACT_IND_ARG_MOV(x) \
426 ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) && (((x) & 0x00f0) <= 0x0090))
427
428 /* compact direct arg move!
429 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
430 #define IS_COMPACT_ARG_MOV(x) \
431 (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) && ((x) & 0x00f0) <= 0x0090))
432
433 /* MOV.B Rm, @R14 0010 1110 mmmm 0000
434 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
435 #define IS_COMPACT_MOV_TO_R14(x) \
436 ((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
437
438 #define IS_JSR_R0(x) ((x) == 0x400b)
439 #define IS_NOP(x) ((x) == 0x0009)
440
441
442 /* MOV r15,r14 0110111011110011
443 r15-->r14 */
444 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
445
446 /* ADD #imm,r15 01111111iiiiiiii
447 r15+imm-->r15 */
448 #define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
449
450 /* Skip any prologue before the guts of a function */
451
452 /* Skip the prologue using the debug information. If this fails we'll
453 fall back on the 'guess' method below. */
454 static CORE_ADDR
455 after_prologue (CORE_ADDR pc)
456 {
457 struct symtab_and_line sal;
458 CORE_ADDR func_addr, func_end;
459
460 /* If we can not find the symbol in the partial symbol table, then
461 there is no hope we can determine the function's start address
462 with this code. */
463 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
464 return 0;
465
466
467 /* Get the line associated with FUNC_ADDR. */
468 sal = find_pc_line (func_addr, 0);
469
470 /* There are only two cases to consider. First, the end of the source line
471 is within the function bounds. In that case we return the end of the
472 source line. Second is the end of the source line extends beyond the
473 bounds of the current function. We need to use the slow code to
474 examine instructions in that case. */
475 if (sal.end < func_end)
476 return sal.end;
477 else
478 return 0;
479 }
480
481 static CORE_ADDR
482 look_for_args_moves (CORE_ADDR start_pc, int media_mode)
483 {
484 CORE_ADDR here, end;
485 int w;
486 int insn_size = (media_mode ? 4 : 2);
487
488 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
489 {
490 if (media_mode)
491 {
492 w = read_memory_integer (UNMAKE_ISA32_ADDR (here), insn_size);
493 here += insn_size;
494 if (IS_MEDIA_IND_ARG_MOV (w))
495 {
496 /* This must be followed by a store to r14, so the argument
497 is where the debug info says it is. This can happen after
498 the SP has been saved, unfortunately. */
499
500 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
501 insn_size);
502 here += insn_size;
503 if (IS_MEDIA_MOV_TO_R14 (next_insn))
504 start_pc = here;
505 }
506 else if (IS_MEDIA_ARG_MOV (w))
507 {
508 /* These instructions store directly the argument in r14. */
509 start_pc = here;
510 }
511 else
512 break;
513 }
514 else
515 {
516 w = read_memory_integer (here, insn_size);
517 w = w & 0xffff;
518 here += insn_size;
519 if (IS_COMPACT_IND_ARG_MOV (w))
520 {
521 /* This must be followed by a store to r14, so the argument
522 is where the debug info says it is. This can happen after
523 the SP has been saved, unfortunately. */
524
525 int next_insn = 0xffff & read_memory_integer (here, insn_size);
526 here += insn_size;
527 if (IS_COMPACT_MOV_TO_R14 (next_insn))
528 start_pc = here;
529 }
530 else if (IS_COMPACT_ARG_MOV (w))
531 {
532 /* These instructions store directly the argument in r14. */
533 start_pc = here;
534 }
535 else if (IS_MOVL_R0 (w))
536 {
537 /* There is a function that gcc calls to get the arguments
538 passed correctly to the function. Only after this
539 function call the arguments will be found at the place
540 where they are supposed to be. This happens in case the
541 argument has to be stored into a 64-bit register (for
542 instance doubles, long longs). SHcompact doesn't have
543 access to the full 64-bits, so we store the register in
544 stack slot and store the address of the stack slot in
545 the register, then do a call through a wrapper that
546 loads the memory value into the register. A SHcompact
547 callee calls an argument decoder
548 (GCC_shcompact_incoming_args) that stores the 64-bit
549 value in a stack slot and stores the address of the
550 stack slot in the register. GCC thinks the argument is
551 just passed by transparent reference, but this is only
552 true after the argument decoder is called. Such a call
553 needs to be considered part of the prologue. */
554
555 /* This must be followed by a JSR @r0 instruction and by
556 a NOP instruction. After these, the prologue is over! */
557
558 int next_insn = 0xffff & read_memory_integer (here, insn_size);
559 here += insn_size;
560 if (IS_JSR_R0 (next_insn))
561 {
562 next_insn = 0xffff & read_memory_integer (here, insn_size);
563 here += insn_size;
564
565 if (IS_NOP (next_insn))
566 start_pc = here;
567 }
568 }
569 else
570 break;
571 }
572 }
573
574 return start_pc;
575 }
576
577 static CORE_ADDR
578 sh64_skip_prologue_hard_way (CORE_ADDR start_pc)
579 {
580 CORE_ADDR here, end;
581 int updated_fp = 0;
582 int insn_size = 4;
583 int media_mode = 1;
584
585 if (!start_pc)
586 return 0;
587
588 if (pc_is_isa32 (start_pc) == 0)
589 {
590 insn_size = 2;
591 media_mode = 0;
592 }
593
594 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
595 {
596
597 if (media_mode)
598 {
599 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here), insn_size);
600 here += insn_size;
601 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
602 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
603 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w) || IS_PTABSL_R18 (w))
604 {
605 start_pc = here;
606 }
607 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
608 {
609 start_pc = here;
610 updated_fp = 1;
611 }
612 else
613 if (updated_fp)
614 {
615 /* Don't bail out yet, we may have arguments stored in
616 registers here, according to the debug info, so that
617 gdb can print the frames correctly. */
618 start_pc = look_for_args_moves (here - insn_size, media_mode);
619 break;
620 }
621 }
622 else
623 {
624 int w = 0xffff & read_memory_integer (here, insn_size);
625 here += insn_size;
626
627 if (IS_STS_R0 (w) || IS_STS_PR (w)
628 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
629 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
630 {
631 start_pc = here;
632 }
633 else if (IS_MOV_SP_FP (w))
634 {
635 start_pc = here;
636 updated_fp = 1;
637 }
638 else
639 if (updated_fp)
640 {
641 /* Don't bail out yet, we may have arguments stored in
642 registers here, according to the debug info, so that
643 gdb can print the frames correctly. */
644 start_pc = look_for_args_moves (here - insn_size, media_mode);
645 break;
646 }
647 }
648 }
649
650 return start_pc;
651 }
652
653 static CORE_ADDR
654 sh64_skip_prologue (CORE_ADDR pc)
655 {
656 CORE_ADDR post_prologue_pc;
657
658 /* See if we can determine the end of the prologue via the symbol table.
659 If so, then return either PC, or the PC after the prologue, whichever
660 is greater. */
661 post_prologue_pc = after_prologue (pc);
662
663 /* If after_prologue returned a useful address, then use it. Else
664 fall back on the instruction skipping code. */
665 if (post_prologue_pc != 0)
666 return max (pc, post_prologue_pc);
667 else
668 return sh64_skip_prologue_hard_way (pc);
669 }
670
671 /* Should call_function allocate stack space for a struct return? */
672 static int
673 sh64_use_struct_convention (struct type *type)
674 {
675 return (TYPE_LENGTH (type) > 8);
676 }
677
678 /* Disassemble an instruction. */
679 static int
680 gdb_print_insn_sh64 (bfd_vma memaddr, disassemble_info *info)
681 {
682 info->endian = gdbarch_byte_order (current_gdbarch);
683 return print_insn_sh (memaddr, info);
684 }
685
686 /* For vectors of 4 floating point registers. */
687 static int
688 sh64_fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
689 {
690 int fp_regnum;
691
692 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fv_regnum - FV0_REGNUM) * 4;
693 return fp_regnum;
694 }
695
696 /* For double precision floating point registers, i.e 2 fp regs.*/
697 static int
698 sh64_dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
699 {
700 int fp_regnum;
701
702 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (dr_regnum - DR0_REGNUM) * 2;
703 return fp_regnum;
704 }
705
706 /* For pairs of floating point registers */
707 static int
708 sh64_fpp_reg_base_num (struct gdbarch *gdbarch, int fpp_regnum)
709 {
710 int fp_regnum;
711
712 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fpp_regnum - FPP0_REGNUM) * 2;
713 return fp_regnum;
714 }
715
716 /* *INDENT-OFF* */
717 /*
718 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
719 GDB_REGNUM BASE_REGNUM
720 r0_c 221 0
721 r1_c 222 1
722 r2_c 223 2
723 r3_c 224 3
724 r4_c 225 4
725 r5_c 226 5
726 r6_c 227 6
727 r7_c 228 7
728 r8_c 229 8
729 r9_c 230 9
730 r10_c 231 10
731 r11_c 232 11
732 r12_c 233 12
733 r13_c 234 13
734 r14_c 235 14
735 r15_c 236 15
736
737 pc_c 237 64
738 gbr_c 238 16
739 mach_c 239 17
740 macl_c 240 17
741 pr_c 241 18
742 t_c 242 19
743 fpscr_c 243 76
744 fpul_c 244 109
745
746 fr0_c 245 77
747 fr1_c 246 78
748 fr2_c 247 79
749 fr3_c 248 80
750 fr4_c 249 81
751 fr5_c 250 82
752 fr6_c 251 83
753 fr7_c 252 84
754 fr8_c 253 85
755 fr9_c 254 86
756 fr10_c 255 87
757 fr11_c 256 88
758 fr12_c 257 89
759 fr13_c 258 90
760 fr14_c 259 91
761 fr15_c 260 92
762
763 dr0_c 261 77
764 dr2_c 262 79
765 dr4_c 263 81
766 dr6_c 264 83
767 dr8_c 265 85
768 dr10_c 266 87
769 dr12_c 267 89
770 dr14_c 268 91
771
772 fv0_c 269 77
773 fv4_c 270 81
774 fv8_c 271 85
775 fv12_c 272 91
776 */
777 /* *INDENT-ON* */
778 static int
779 sh64_compact_reg_base_num (struct gdbarch *gdbarch, int reg_nr)
780 {
781 int base_regnum = reg_nr;
782
783 /* general register N maps to general register N */
784 if (reg_nr >= R0_C_REGNUM
785 && reg_nr <= R_LAST_C_REGNUM)
786 base_regnum = reg_nr - R0_C_REGNUM;
787
788 /* floating point register N maps to floating point register N */
789 else if (reg_nr >= FP0_C_REGNUM
790 && reg_nr <= FP_LAST_C_REGNUM)
791 base_regnum = reg_nr - FP0_C_REGNUM + gdbarch_fp0_regnum (gdbarch);
792
793 /* double prec register N maps to base regnum for double prec register N */
794 else if (reg_nr >= DR0_C_REGNUM
795 && reg_nr <= DR_LAST_C_REGNUM)
796 base_regnum = sh64_dr_reg_base_num (gdbarch,
797 DR0_REGNUM + reg_nr - DR0_C_REGNUM);
798
799 /* vector N maps to base regnum for vector register N */
800 else if (reg_nr >= FV0_C_REGNUM
801 && reg_nr <= FV_LAST_C_REGNUM)
802 base_regnum = sh64_fv_reg_base_num (gdbarch,
803 FV0_REGNUM + reg_nr - FV0_C_REGNUM);
804
805 else if (reg_nr == PC_C_REGNUM)
806 base_regnum = gdbarch_pc_regnum (gdbarch);
807
808 else if (reg_nr == GBR_C_REGNUM)
809 base_regnum = 16;
810
811 else if (reg_nr == MACH_C_REGNUM
812 || reg_nr == MACL_C_REGNUM)
813 base_regnum = 17;
814
815 else if (reg_nr == PR_C_REGNUM)
816 base_regnum = PR_REGNUM;
817
818 else if (reg_nr == T_C_REGNUM)
819 base_regnum = 19;
820
821 else if (reg_nr == FPSCR_C_REGNUM)
822 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
823
824 else if (reg_nr == FPUL_C_REGNUM)
825 base_regnum = gdbarch_fp0_regnum (gdbarch) + 32;
826
827 return base_regnum;
828 }
829
830 static int
831 sign_extend (int value, int bits)
832 {
833 value = value & ((1 << bits) - 1);
834 return (value & (1 << (bits - 1))
835 ? value | (~((1 << bits) - 1))
836 : value);
837 }
838
839 static void
840 sh64_analyze_prologue (struct gdbarch *gdbarch,
841 struct sh64_frame_cache *cache,
842 CORE_ADDR func_pc,
843 CORE_ADDR current_pc)
844 {
845 int reg_nr;
846 int pc;
847 int opc;
848 int insn;
849 int r0_val = 0;
850 int insn_size;
851 int gdb_register_number;
852 int register_number;
853 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
854
855 cache->sp_offset = 0;
856
857 /* Loop around examining the prologue insns until we find something
858 that does not appear to be part of the prologue. But give up
859 after 20 of them, since we're getting silly then. */
860
861 pc = func_pc;
862
863 if (cache->media_mode)
864 insn_size = 4;
865 else
866 insn_size = 2;
867
868 opc = pc + (insn_size * 28);
869 if (opc > current_pc)
870 opc = current_pc;
871 for ( ; pc <= opc; pc += insn_size)
872 {
873 insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
874 : pc,
875 insn_size);
876
877 if (!cache->media_mode)
878 {
879 if (IS_STS_PR (insn))
880 {
881 int next_insn = read_memory_integer (pc + insn_size, insn_size);
882 if (IS_MOV_TO_R15 (next_insn))
883 {
884 cache->saved_regs[PR_REGNUM] =
885 cache->sp_offset - ((((next_insn & 0xf) ^ 0x8) - 0x8) << 2);
886 pc += insn_size;
887 }
888 }
889
890 else if (IS_MOV_R14 (insn))
891 cache->saved_regs[MEDIA_FP_REGNUM] =
892 cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
893
894 else if (IS_MOV_R0 (insn))
895 {
896 /* Put in R0 the offset from SP at which to store some
897 registers. We are interested in this value, because it
898 will tell us where the given registers are stored within
899 the frame. */
900 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
901 }
902
903 else if (IS_ADD_SP_R0 (insn))
904 {
905 /* This instruction still prepares r0, but we don't care.
906 We already have the offset in r0_val. */
907 }
908
909 else if (IS_STS_R0 (insn))
910 {
911 /* Store PR at r0_val-4 from SP. Decrement r0 by 4*/
912 cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
913 r0_val -= 4;
914 }
915
916 else if (IS_MOV_R14_R0 (insn))
917 {
918 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4 */
919 cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
920 - (r0_val - 4);
921 r0_val -= 4;
922 }
923
924 else if (IS_ADD_SP (insn))
925 cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
926
927 else if (IS_MOV_SP_FP (insn))
928 break;
929 }
930 else
931 {
932 if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
933 cache->sp_offset -=
934 sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
935
936 else if (IS_STQ_R18_R15 (insn))
937 cache->saved_regs[PR_REGNUM] =
938 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
939
940 else if (IS_STL_R18_R15 (insn))
941 cache->saved_regs[PR_REGNUM] =
942 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
943
944 else if (IS_STQ_R14_R15 (insn))
945 cache->saved_regs[MEDIA_FP_REGNUM] =
946 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
947
948 else if (IS_STL_R14_R15 (insn))
949 cache->saved_regs[MEDIA_FP_REGNUM] =
950 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
951
952 else if (IS_MOV_SP_FP_MEDIA (insn))
953 break;
954 }
955 }
956
957 if (cache->saved_regs[MEDIA_FP_REGNUM] >= 0)
958 cache->uses_fp = 1;
959 }
960
961 static CORE_ADDR
962 sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
963 {
964 return sp & ~7;
965 }
966
967 /* Function: push_dummy_call
968 Setup the function arguments for calling a function in the inferior.
969
970 On the Renesas SH architecture, there are four registers (R4 to R7)
971 which are dedicated for passing function arguments. Up to the first
972 four arguments (depending on size) may go into these registers.
973 The rest go on the stack.
974
975 Arguments that are smaller than 4 bytes will still take up a whole
976 register or a whole 32-bit word on the stack, and will be
977 right-justified in the register or the stack word. This includes
978 chars, shorts, and small aggregate types.
979
980 Arguments that are larger than 4 bytes may be split between two or
981 more registers. If there are not enough registers free, an argument
982 may be passed partly in a register (or registers), and partly on the
983 stack. This includes doubles, long longs, and larger aggregates.
984 As far as I know, there is no upper limit to the size of aggregates
985 that will be passed in this way; in other words, the convention of
986 passing a pointer to a large aggregate instead of a copy is not used.
987
988 An exceptional case exists for struct arguments (and possibly other
989 aggregates such as arrays) if the size is larger than 4 bytes but
990 not a multiple of 4 bytes. In this case the argument is never split
991 between the registers and the stack, but instead is copied in its
992 entirety onto the stack, AND also copied into as many registers as
993 there is room for. In other words, space in registers permitting,
994 two copies of the same argument are passed in. As far as I can tell,
995 only the one on the stack is used, although that may be a function
996 of the level of compiler optimization. I suspect this is a compiler
997 bug. Arguments of these odd sizes are left-justified within the
998 word (as opposed to arguments smaller than 4 bytes, which are
999 right-justified).
1000
1001 If the function is to return an aggregate type such as a struct, it
1002 is either returned in the normal return value register R0 (if its
1003 size is no greater than one byte), or else the caller must allocate
1004 space into which the callee will copy the return value (if the size
1005 is greater than one byte). In this case, a pointer to the return
1006 value location is passed into the callee in register R2, which does
1007 not displace any of the other arguments passed in via registers R4
1008 to R7. */
1009
1010 /* R2-R9 for integer types and integer equivalent (char, pointers) and
1011 non-scalar (struct, union) elements (even if the elements are
1012 floats).
1013 FR0-FR11 for single precision floating point (float)
1014 DR0-DR10 for double precision floating point (double)
1015
1016 If a float is argument number 3 (for instance) and arguments number
1017 1,2, and 4 are integer, the mapping will be:
1018 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
1019
1020 If a float is argument number 10 (for instance) and arguments number
1021 1 through 10 are integer, the mapping will be:
1022 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
1023 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0, arg11->stack(16,SP).
1024 I.e. there is hole in the stack.
1025
1026 Different rules apply for variable arguments functions, and for functions
1027 for which the prototype is not known. */
1028
1029 static CORE_ADDR
1030 sh64_push_dummy_call (struct gdbarch *gdbarch,
1031 struct value *function,
1032 struct regcache *regcache,
1033 CORE_ADDR bp_addr,
1034 int nargs, struct value **args,
1035 CORE_ADDR sp, int struct_return,
1036 CORE_ADDR struct_addr)
1037 {
1038 int stack_offset, stack_alloc;
1039 int int_argreg;
1040 int float_argreg;
1041 int double_argreg;
1042 int float_arg_index = 0;
1043 int double_arg_index = 0;
1044 int argnum;
1045 struct type *type;
1046 CORE_ADDR regval;
1047 char *val;
1048 char valbuf[8];
1049 char valbuf_tmp[8];
1050 int len;
1051 int argreg_size;
1052 int fp_args[12];
1053
1054 memset (fp_args, 0, sizeof (fp_args));
1055
1056 /* first force sp to a 8-byte alignment */
1057 sp = sh64_frame_align (gdbarch, sp);
1058
1059 /* The "struct return pointer" pseudo-argument has its own dedicated
1060 register */
1061
1062 if (struct_return)
1063 regcache_cooked_write_unsigned (regcache,
1064 STRUCT_RETURN_REGNUM, struct_addr);
1065
1066 /* Now make sure there's space on the stack */
1067 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1068 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
1069 sp -= stack_alloc; /* make room on stack for args */
1070
1071 /* Now load as many as possible of the first arguments into
1072 registers, and push the rest onto the stack. There are 64 bytes
1073 in eight registers available. Loop thru args from first to last. */
1074
1075 int_argreg = ARG0_REGNUM;
1076 float_argreg = gdbarch_fp0_regnum (gdbarch);
1077 double_argreg = DR0_REGNUM;
1078
1079 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1080 {
1081 type = value_type (args[argnum]);
1082 len = TYPE_LENGTH (type);
1083 memset (valbuf, 0, sizeof (valbuf));
1084
1085 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1086 {
1087 argreg_size = register_size (gdbarch, int_argreg);
1088
1089 if (len < argreg_size)
1090 {
1091 /* value gets right-justified in the register or stack word */
1092 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1093 memcpy (valbuf + argreg_size - len,
1094 (char *) value_contents (args[argnum]), len);
1095 else
1096 memcpy (valbuf, (char *) value_contents (args[argnum]), len);
1097
1098 val = valbuf;
1099 }
1100 else
1101 val = (char *) value_contents (args[argnum]);
1102
1103 while (len > 0)
1104 {
1105 if (int_argreg > ARGLAST_REGNUM)
1106 {
1107 /* must go on the stack */
1108 write_memory (sp + stack_offset, (const bfd_byte *) val,
1109 argreg_size);
1110 stack_offset += 8;/*argreg_size;*/
1111 }
1112 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1113 That's because some *&^%$ things get passed on the stack
1114 AND in the registers! */
1115 if (int_argreg <= ARGLAST_REGNUM)
1116 {
1117 /* there's room in a register */
1118 regval = extract_unsigned_integer (val, argreg_size);
1119 regcache_cooked_write_unsigned (regcache, int_argreg, regval);
1120 }
1121 /* Store the value 8 bytes at a time. This means that
1122 things larger than 8 bytes may go partly in registers
1123 and partly on the stack. FIXME: argreg is incremented
1124 before we use its size. */
1125 len -= argreg_size;
1126 val += argreg_size;
1127 int_argreg++;
1128 }
1129 }
1130 else
1131 {
1132 val = (char *) value_contents (args[argnum]);
1133 if (len == 4)
1134 {
1135 /* Where is it going to be stored? */
1136 while (fp_args[float_arg_index])
1137 float_arg_index ++;
1138
1139 /* Now float_argreg points to the register where it
1140 should be stored. Are we still within the allowed
1141 register set? */
1142 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1143 {
1144 /* Goes in FR0...FR11 */
1145 regcache_cooked_write (regcache,
1146 gdbarch_fp0_regnum (gdbarch)
1147 + float_arg_index,
1148 val);
1149 fp_args[float_arg_index] = 1;
1150 /* Skip the corresponding general argument register. */
1151 int_argreg ++;
1152 }
1153 else
1154 ;
1155 /* Store it as the integers, 8 bytes at the time, if
1156 necessary spilling on the stack. */
1157
1158 }
1159 else if (len == 8)
1160 {
1161 /* Where is it going to be stored? */
1162 while (fp_args[double_arg_index])
1163 double_arg_index += 2;
1164 /* Now double_argreg points to the register
1165 where it should be stored.
1166 Are we still within the allowed register set? */
1167 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1168 {
1169 /* Goes in DR0...DR10 */
1170 /* The numbering of the DRi registers is consecutive,
1171 i.e. includes odd numbers. */
1172 int double_register_offset = double_arg_index / 2;
1173 int regnum = DR0_REGNUM + double_register_offset;
1174 regcache_cooked_write (regcache, regnum, val);
1175 fp_args[double_arg_index] = 1;
1176 fp_args[double_arg_index + 1] = 1;
1177 /* Skip the corresponding general argument register. */
1178 int_argreg ++;
1179 }
1180 else
1181 ;
1182 /* Store it as the integers, 8 bytes at the time, if
1183 necessary spilling on the stack. */
1184 }
1185 }
1186 }
1187 /* Store return address. */
1188 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1189
1190 /* Update stack pointer. */
1191 regcache_cooked_write_unsigned (regcache,
1192 gdbarch_sp_regnum (gdbarch), sp);
1193
1194 return sp;
1195 }
1196
1197 /* Find a function's return value in the appropriate registers (in
1198 regbuf), and copy it into valbuf. Extract from an array REGBUF
1199 containing the (raw) register state a function return value of type
1200 TYPE, and copy that, in virtual format, into VALBUF. */
1201 static void
1202 sh64_extract_return_value (struct type *type, struct regcache *regcache,
1203 void *valbuf)
1204 {
1205 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1206 int len = TYPE_LENGTH (type);
1207
1208 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1209 {
1210 if (len == 4)
1211 {
1212 /* Return value stored in gdbarch_fp0_regnum */
1213 regcache_raw_read (regcache,
1214 gdbarch_fp0_regnum (gdbarch), valbuf);
1215 }
1216 else if (len == 8)
1217 {
1218 /* return value stored in DR0_REGNUM */
1219 DOUBLEST val;
1220 gdb_byte buf[8];
1221
1222 regcache_cooked_read (regcache, DR0_REGNUM, buf);
1223
1224 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1225 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1226 buf, &val);
1227 else
1228 floatformat_to_doublest (&floatformat_ieee_double_big,
1229 buf, &val);
1230 store_typed_floating (valbuf, type, val);
1231 }
1232 }
1233 else
1234 {
1235 if (len <= 8)
1236 {
1237 int offset;
1238 char buf[8];
1239 /* Result is in register 2. If smaller than 8 bytes, it is padded
1240 at the most significant end. */
1241 regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
1242
1243 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1244 offset = register_size (gdbarch, DEFAULT_RETURN_REGNUM)
1245 - len;
1246 else
1247 offset = 0;
1248 memcpy (valbuf, buf + offset, len);
1249 }
1250 else
1251 error ("bad size for return value");
1252 }
1253 }
1254
1255 /* Write into appropriate registers a function return value
1256 of type TYPE, given in virtual format.
1257 If the architecture is sh4 or sh3e, store a function's return value
1258 in the R0 general register or in the FP0 floating point register,
1259 depending on the type of the return value. In all the other cases
1260 the result is stored in r0, left-justified. */
1261
1262 static void
1263 sh64_store_return_value (struct type *type, struct regcache *regcache,
1264 const void *valbuf)
1265 {
1266 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1267 char buf[64]; /* more than enough... */
1268 int len = TYPE_LENGTH (type);
1269
1270 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1271 {
1272 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1273 for (i = 0; i < len; i += 4)
1274 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1275 regcache_raw_write (regcache, regnum++,
1276 (char *) valbuf + len - 4 - i);
1277 else
1278 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
1279 }
1280 else
1281 {
1282 int return_register = DEFAULT_RETURN_REGNUM;
1283 int offset = 0;
1284
1285 if (len <= register_size (gdbarch, return_register))
1286 {
1287 /* Pad with zeros. */
1288 memset (buf, 0, register_size (gdbarch, return_register));
1289 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1290 offset = 0; /*register_size (gdbarch,
1291 return_register) - len;*/
1292 else
1293 offset = register_size (gdbarch, return_register) - len;
1294
1295 memcpy (buf + offset, valbuf, len);
1296 regcache_raw_write (regcache, return_register, buf);
1297 }
1298 else
1299 regcache_raw_write (regcache, return_register, valbuf);
1300 }
1301 }
1302
1303 static enum return_value_convention
1304 sh64_return_value (struct gdbarch *gdbarch, struct type *type,
1305 struct regcache *regcache,
1306 gdb_byte *readbuf, const gdb_byte *writebuf)
1307 {
1308 if (sh64_use_struct_convention (type))
1309 return RETURN_VALUE_STRUCT_CONVENTION;
1310 if (writebuf)
1311 sh64_store_return_value (type, regcache, writebuf);
1312 else if (readbuf)
1313 sh64_extract_return_value (type, regcache, readbuf);
1314 return RETURN_VALUE_REGISTER_CONVENTION;
1315 }
1316
1317 static void
1318 sh64_show_media_regs (struct frame_info *frame)
1319 {
1320 struct gdbarch *gdbarch = get_frame_arch (frame);
1321 int i;
1322
1323 printf_filtered
1324 ("PC=%s SR=%016llx \n",
1325 paddr (get_frame_register_unsigned (frame,
1326 gdbarch_pc_regnum (gdbarch))),
1327 (long long) get_frame_register_unsigned (frame, SR_REGNUM));
1328
1329 printf_filtered
1330 ("SSR=%016llx SPC=%016llx \n",
1331 (long long) get_frame_register_unsigned (frame, SSR_REGNUM),
1332 (long long) get_frame_register_unsigned (frame, SPC_REGNUM));
1333 printf_filtered
1334 ("FPSCR=%016lx\n ",
1335 (long) get_frame_register_unsigned (frame, FPSCR_REGNUM));
1336
1337 for (i = 0; i < 64; i = i + 4)
1338 printf_filtered
1339 ("\nR%d-R%d %016llx %016llx %016llx %016llx\n",
1340 i, i + 3,
1341 (long long) get_frame_register_unsigned (frame, i + 0),
1342 (long long) get_frame_register_unsigned (frame, i + 1),
1343 (long long) get_frame_register_unsigned (frame, i + 2),
1344 (long long) get_frame_register_unsigned (frame, i + 3));
1345
1346 printf_filtered ("\n");
1347
1348 for (i = 0; i < 64; i = i + 8)
1349 printf_filtered
1350 ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1351 i, i + 7,
1352 (long) get_frame_register_unsigned
1353 (frame, gdbarch_fp0_regnum (gdbarch) + i + 0),
1354 (long) get_frame_register_unsigned
1355 (frame, gdbarch_fp0_regnum (gdbarch) + i + 1),
1356 (long) get_frame_register_unsigned
1357 (frame, gdbarch_fp0_regnum (gdbarch) + i + 2),
1358 (long) get_frame_register_unsigned
1359 (frame, gdbarch_fp0_regnum (gdbarch) + i + 3),
1360 (long) get_frame_register_unsigned
1361 (frame, gdbarch_fp0_regnum (gdbarch) + i + 4),
1362 (long) get_frame_register_unsigned
1363 (frame, gdbarch_fp0_regnum (gdbarch) + i + 5),
1364 (long) get_frame_register_unsigned
1365 (frame, gdbarch_fp0_regnum (gdbarch) + i + 6),
1366 (long) get_frame_register_unsigned
1367 (frame, gdbarch_fp0_regnum (gdbarch) + i + 7));
1368 }
1369
1370 static void
1371 sh64_show_compact_regs (struct frame_info *frame)
1372 {
1373 struct gdbarch *gdbarch = get_frame_arch (frame);
1374 int i;
1375
1376 printf_filtered
1377 ("PC=%s \n",
1378 paddr (get_frame_register_unsigned (frame, PC_C_REGNUM)));
1379
1380 printf_filtered
1381 ("GBR=%08lx MACH=%08lx MACL=%08lx PR=%08lx T=%08lx\n",
1382 (long) get_frame_register_unsigned (frame, GBR_C_REGNUM),
1383 (long) get_frame_register_unsigned (frame, MACH_C_REGNUM),
1384 (long) get_frame_register_unsigned (frame, MACL_C_REGNUM),
1385 (long) get_frame_register_unsigned (frame, PR_C_REGNUM),
1386 (long) get_frame_register_unsigned (frame, T_C_REGNUM));
1387 printf_filtered
1388 ("FPSCR=%08lx FPUL=%08lx\n",
1389 (long) get_frame_register_unsigned (frame, FPSCR_C_REGNUM),
1390 (long) get_frame_register_unsigned (frame, FPUL_C_REGNUM));
1391
1392 for (i = 0; i < 16; i = i + 4)
1393 printf_filtered
1394 ("\nR%d-R%d %08lx %08lx %08lx %08lx\n",
1395 i, i + 3,
1396 (long) get_frame_register_unsigned (frame, i + 0),
1397 (long) get_frame_register_unsigned (frame, i + 1),
1398 (long) get_frame_register_unsigned (frame, i + 2),
1399 (long) get_frame_register_unsigned (frame, i + 3));
1400
1401 printf_filtered ("\n");
1402
1403 for (i = 0; i < 16; i = i + 8)
1404 printf_filtered
1405 ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1406 i, i + 7,
1407 (long) get_frame_register_unsigned
1408 (frame, gdbarch_fp0_regnum (gdbarch) + i + 0),
1409 (long) get_frame_register_unsigned
1410 (frame, gdbarch_fp0_regnum (gdbarch) + i + 1),
1411 (long) get_frame_register_unsigned
1412 (frame, gdbarch_fp0_regnum (gdbarch) + i + 2),
1413 (long) get_frame_register_unsigned
1414 (frame, gdbarch_fp0_regnum (gdbarch) + i + 3),
1415 (long) get_frame_register_unsigned
1416 (frame, gdbarch_fp0_regnum (gdbarch) + i + 4),
1417 (long) get_frame_register_unsigned
1418 (frame, gdbarch_fp0_regnum (gdbarch) + i + 5),
1419 (long) get_frame_register_unsigned
1420 (frame, gdbarch_fp0_regnum (gdbarch) + i + 6),
1421 (long) get_frame_register_unsigned
1422 (frame, gdbarch_fp0_regnum (gdbarch) + i + 7));
1423 }
1424
1425 /* FIXME!!! This only shows the registers for shmedia, excluding the
1426 pseudo registers. */
1427 void
1428 sh64_show_regs (struct frame_info *frame)
1429 {
1430 if (pc_is_isa32 (get_frame_pc (frame)))
1431 sh64_show_media_regs (frame);
1432 else
1433 sh64_show_compact_regs (frame);
1434 }
1435
1436 /* *INDENT-OFF* */
1437 /*
1438 SH MEDIA MODE (ISA 32)
1439 general registers (64-bit) 0-63
1440 0 r0, r1, r2, r3, r4, r5, r6, r7,
1441 64 r8, r9, r10, r11, r12, r13, r14, r15,
1442 128 r16, r17, r18, r19, r20, r21, r22, r23,
1443 192 r24, r25, r26, r27, r28, r29, r30, r31,
1444 256 r32, r33, r34, r35, r36, r37, r38, r39,
1445 320 r40, r41, r42, r43, r44, r45, r46, r47,
1446 384 r48, r49, r50, r51, r52, r53, r54, r55,
1447 448 r56, r57, r58, r59, r60, r61, r62, r63,
1448
1449 pc (64-bit) 64
1450 512 pc,
1451
1452 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1453 520 sr, ssr, spc,
1454
1455 target registers (64-bit) 68-75
1456 544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1457
1458 floating point state control register (32-bit) 76
1459 608 fpscr,
1460
1461 single precision floating point registers (32-bit) 77-140
1462 612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1463 644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1464 676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1465 708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1466 740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1467 772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1468 804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1469 836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1470
1471 TOTAL SPACE FOR REGISTERS: 868 bytes
1472
1473 From here on they are all pseudo registers: no memory allocated.
1474 REGISTER_BYTE returns the register byte for the base register.
1475
1476 double precision registers (pseudo) 141-172
1477 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1478 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1479 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1480 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1481
1482 floating point pairs (pseudo) 173-204
1483 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1484 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1485 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1486 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1487
1488 floating point vectors (4 floating point regs) (pseudo) 205-220
1489 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1490 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1491
1492 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1493 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1494 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1495 pc_c,
1496 gbr_c, mach_c, macl_c, pr_c, t_c,
1497 fpscr_c, fpul_c,
1498 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1499 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1500 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1501 fv0_c, fv4_c, fv8_c, fv12_c
1502 */
1503
1504 static struct type *
1505 sh64_build_float_register_type (int high)
1506 {
1507 struct type *temp;
1508
1509 temp = create_range_type (NULL, builtin_type_int, 0, high);
1510 return create_array_type (NULL, builtin_type_float, temp);
1511 }
1512
1513 /* Return the GDB type object for the "standard" data type
1514 of data in register REG_NR. */
1515 static struct type *
1516 sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
1517 {
1518 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1519 && reg_nr <= FP_LAST_REGNUM)
1520 || (reg_nr >= FP0_C_REGNUM
1521 && reg_nr <= FP_LAST_C_REGNUM))
1522 return builtin_type_float;
1523 else if ((reg_nr >= DR0_REGNUM
1524 && reg_nr <= DR_LAST_REGNUM)
1525 || (reg_nr >= DR0_C_REGNUM
1526 && reg_nr <= DR_LAST_C_REGNUM))
1527 return builtin_type_double;
1528 else if (reg_nr >= FPP0_REGNUM
1529 && reg_nr <= FPP_LAST_REGNUM)
1530 return sh64_build_float_register_type (1);
1531 else if ((reg_nr >= FV0_REGNUM
1532 && reg_nr <= FV_LAST_REGNUM)
1533 ||(reg_nr >= FV0_C_REGNUM
1534 && reg_nr <= FV_LAST_C_REGNUM))
1535 return sh64_build_float_register_type (3);
1536 else if (reg_nr == FPSCR_REGNUM)
1537 return builtin_type_int;
1538 else if (reg_nr >= R0_C_REGNUM
1539 && reg_nr < FP0_C_REGNUM)
1540 return builtin_type_int;
1541 else
1542 return builtin_type_long_long;
1543 }
1544
1545 static void
1546 sh64_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
1547 struct type *type, char *from, char *to)
1548 {
1549 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1550 {
1551 /* It is a no-op. */
1552 memcpy (to, from, register_size (gdbarch, regnum));
1553 return;
1554 }
1555
1556 if ((regnum >= DR0_REGNUM
1557 && regnum <= DR_LAST_REGNUM)
1558 || (regnum >= DR0_C_REGNUM
1559 && regnum <= DR_LAST_C_REGNUM))
1560 {
1561 DOUBLEST val;
1562 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1563 from, &val);
1564 store_typed_floating (to, type, val);
1565 }
1566 else
1567 error ("sh64_register_convert_to_virtual called with non DR register number");
1568 }
1569
1570 static void
1571 sh64_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
1572 int regnum, const void *from, void *to)
1573 {
1574 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1575 {
1576 /* It is a no-op. */
1577 memcpy (to, from, register_size (gdbarch, regnum));
1578 return;
1579 }
1580
1581 if ((regnum >= DR0_REGNUM
1582 && regnum <= DR_LAST_REGNUM)
1583 || (regnum >= DR0_C_REGNUM
1584 && regnum <= DR_LAST_C_REGNUM))
1585 {
1586 DOUBLEST val = deprecated_extract_floating (from, TYPE_LENGTH(type));
1587 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1588 &val, to);
1589 }
1590 else
1591 error ("sh64_register_convert_to_raw called with non DR register number");
1592 }
1593
1594 static void
1595 sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1596 int reg_nr, gdb_byte *buffer)
1597 {
1598 int base_regnum;
1599 int portion;
1600 int offset = 0;
1601 char temp_buffer[MAX_REGISTER_SIZE];
1602
1603 if (reg_nr >= DR0_REGNUM
1604 && reg_nr <= DR_LAST_REGNUM)
1605 {
1606 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
1607
1608 /* Build the value in the provided buffer. */
1609 /* DR regs are double precision registers obtained by
1610 concatenating 2 single precision floating point registers. */
1611 for (portion = 0; portion < 2; portion++)
1612 regcache_raw_read (regcache, base_regnum + portion,
1613 (temp_buffer
1614 + register_size (gdbarch, base_regnum) * portion));
1615
1616 /* We must pay attention to the endianness. */
1617 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1618 register_type (gdbarch, reg_nr),
1619 temp_buffer, buffer);
1620
1621 }
1622
1623 else if (reg_nr >= FPP0_REGNUM
1624 && reg_nr <= FPP_LAST_REGNUM)
1625 {
1626 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
1627
1628 /* Build the value in the provided buffer. */
1629 /* FPP regs are pairs of single precision registers obtained by
1630 concatenating 2 single precision floating point registers. */
1631 for (portion = 0; portion < 2; portion++)
1632 regcache_raw_read (regcache, base_regnum + portion,
1633 ((char *) buffer
1634 + register_size (gdbarch, base_regnum) * portion));
1635 }
1636
1637 else if (reg_nr >= FV0_REGNUM
1638 && reg_nr <= FV_LAST_REGNUM)
1639 {
1640 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
1641
1642 /* Build the value in the provided buffer. */
1643 /* FV regs are vectors of single precision registers obtained by
1644 concatenating 4 single precision floating point registers. */
1645 for (portion = 0; portion < 4; portion++)
1646 regcache_raw_read (regcache, base_regnum + portion,
1647 ((char *) buffer
1648 + register_size (gdbarch, base_regnum) * portion));
1649 }
1650
1651 /* sh compact pseudo registers. 1-to-1 with a shmedia register */
1652 else if (reg_nr >= R0_C_REGNUM
1653 && reg_nr <= T_C_REGNUM)
1654 {
1655 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1656
1657 /* Build the value in the provided buffer. */
1658 regcache_raw_read (regcache, base_regnum, temp_buffer);
1659 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1660 offset = 4;
1661 memcpy (buffer, temp_buffer + offset, 4); /* get LOWER 32 bits only????*/
1662 }
1663
1664 else if (reg_nr >= FP0_C_REGNUM
1665 && reg_nr <= FP_LAST_C_REGNUM)
1666 {
1667 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1668
1669 /* Build the value in the provided buffer. */
1670 /* Floating point registers map 1-1 to the media fp regs,
1671 they have the same size and endianness. */
1672 regcache_raw_read (regcache, base_regnum, buffer);
1673 }
1674
1675 else if (reg_nr >= DR0_C_REGNUM
1676 && reg_nr <= DR_LAST_C_REGNUM)
1677 {
1678 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1679
1680 /* DR_C regs are double precision registers obtained by
1681 concatenating 2 single precision floating point registers. */
1682 for (portion = 0; portion < 2; portion++)
1683 regcache_raw_read (regcache, base_regnum + portion,
1684 (temp_buffer
1685 + register_size (gdbarch, base_regnum) * portion));
1686
1687 /* We must pay attention to the endianness. */
1688 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1689 register_type (gdbarch, reg_nr),
1690 temp_buffer, buffer);
1691 }
1692
1693 else if (reg_nr >= FV0_C_REGNUM
1694 && reg_nr <= FV_LAST_C_REGNUM)
1695 {
1696 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1697
1698 /* Build the value in the provided buffer. */
1699 /* FV_C regs are vectors of single precision registers obtained by
1700 concatenating 4 single precision floating point registers. */
1701 for (portion = 0; portion < 4; portion++)
1702 regcache_raw_read (regcache, base_regnum + portion,
1703 ((char *) buffer
1704 + register_size (gdbarch, base_regnum) * portion));
1705 }
1706
1707 else if (reg_nr == FPSCR_C_REGNUM)
1708 {
1709 int fpscr_base_regnum;
1710 int sr_base_regnum;
1711 unsigned int fpscr_value;
1712 unsigned int sr_value;
1713 unsigned int fpscr_c_value;
1714 unsigned int fpscr_c_part1_value;
1715 unsigned int fpscr_c_part2_value;
1716
1717 fpscr_base_regnum = FPSCR_REGNUM;
1718 sr_base_regnum = SR_REGNUM;
1719
1720 /* Build the value in the provided buffer. */
1721 /* FPSCR_C is a very weird register that contains sparse bits
1722 from the FPSCR and the SR architectural registers.
1723 Specifically: */
1724 /* *INDENT-OFF* */
1725 /*
1726 FPSRC_C bit
1727 0 Bit 0 of FPSCR
1728 1 reserved
1729 2-17 Bit 2-18 of FPSCR
1730 18-20 Bits 12,13,14 of SR
1731 21-31 reserved
1732 */
1733 /* *INDENT-ON* */
1734 /* Get FPSCR into a local buffer */
1735 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1736 /* Get value as an int. */
1737 fpscr_value = extract_unsigned_integer (temp_buffer, 4);
1738 /* Get SR into a local buffer */
1739 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1740 /* Get value as an int. */
1741 sr_value = extract_unsigned_integer (temp_buffer, 4);
1742 /* Build the new value. */
1743 fpscr_c_part1_value = fpscr_value & 0x3fffd;
1744 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
1745 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
1746 /* Store that in out buffer!!! */
1747 store_unsigned_integer (buffer, 4, fpscr_c_value);
1748 /* FIXME There is surely an endianness gotcha here. */
1749 }
1750
1751 else if (reg_nr == FPUL_C_REGNUM)
1752 {
1753 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1754
1755 /* FPUL_C register is floating point register 32,
1756 same size, same endianness. */
1757 regcache_raw_read (regcache, base_regnum, buffer);
1758 }
1759 }
1760
1761 static void
1762 sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1763 int reg_nr, const gdb_byte *buffer)
1764 {
1765 int base_regnum, portion;
1766 int offset;
1767 char temp_buffer[MAX_REGISTER_SIZE];
1768
1769 if (reg_nr >= DR0_REGNUM
1770 && reg_nr <= DR_LAST_REGNUM)
1771 {
1772 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
1773 /* We must pay attention to the endianness. */
1774 sh64_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
1775 reg_nr,
1776 buffer, temp_buffer);
1777
1778 /* Write the real regs for which this one is an alias. */
1779 for (portion = 0; portion < 2; portion++)
1780 regcache_raw_write (regcache, base_regnum + portion,
1781 (temp_buffer
1782 + register_size (gdbarch,
1783 base_regnum) * portion));
1784 }
1785
1786 else if (reg_nr >= FPP0_REGNUM
1787 && reg_nr <= FPP_LAST_REGNUM)
1788 {
1789 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
1790
1791 /* Write the real regs for which this one is an alias. */
1792 for (portion = 0; portion < 2; portion++)
1793 regcache_raw_write (regcache, base_regnum + portion,
1794 ((char *) buffer
1795 + register_size (gdbarch,
1796 base_regnum) * portion));
1797 }
1798
1799 else if (reg_nr >= FV0_REGNUM
1800 && reg_nr <= FV_LAST_REGNUM)
1801 {
1802 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
1803
1804 /* Write the real regs for which this one is an alias. */
1805 for (portion = 0; portion < 4; portion++)
1806 regcache_raw_write (regcache, base_regnum + portion,
1807 ((char *) buffer
1808 + register_size (gdbarch,
1809 base_regnum) * portion));
1810 }
1811
1812 /* sh compact general pseudo registers. 1-to-1 with a shmedia
1813 register but only 4 bytes of it. */
1814 else if (reg_nr >= R0_C_REGNUM
1815 && reg_nr <= T_C_REGNUM)
1816 {
1817 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1818 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1819 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1820 offset = 4;
1821 else
1822 offset = 0;
1823 /* Let's read the value of the base register into a temporary
1824 buffer, so that overwriting the last four bytes with the new
1825 value of the pseudo will leave the upper 4 bytes unchanged. */
1826 regcache_raw_read (regcache, base_regnum, temp_buffer);
1827 /* Write as an 8 byte quantity */
1828 memcpy (temp_buffer + offset, buffer, 4);
1829 regcache_raw_write (regcache, base_regnum, temp_buffer);
1830 }
1831
1832 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
1833 registers. Both are 4 bytes. */
1834 else if (reg_nr >= FP0_C_REGNUM
1835 && reg_nr <= FP_LAST_C_REGNUM)
1836 {
1837 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1838 regcache_raw_write (regcache, base_regnum, buffer);
1839 }
1840
1841 else if (reg_nr >= DR0_C_REGNUM
1842 && reg_nr <= DR_LAST_C_REGNUM)
1843 {
1844 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1845 for (portion = 0; portion < 2; portion++)
1846 {
1847 /* We must pay attention to the endianness. */
1848 sh64_register_convert_to_raw (gdbarch,
1849 register_type (gdbarch, reg_nr),
1850 reg_nr,
1851 buffer, temp_buffer);
1852
1853 regcache_raw_write (regcache, base_regnum + portion,
1854 (temp_buffer
1855 + register_size (gdbarch,
1856 base_regnum) * portion));
1857 }
1858 }
1859
1860 else if (reg_nr >= FV0_C_REGNUM
1861 && reg_nr <= FV_LAST_C_REGNUM)
1862 {
1863 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1864
1865 for (portion = 0; portion < 4; portion++)
1866 {
1867 regcache_raw_write (regcache, base_regnum + portion,
1868 ((char *) buffer
1869 + register_size (gdbarch,
1870 base_regnum) * portion));
1871 }
1872 }
1873
1874 else if (reg_nr == FPSCR_C_REGNUM)
1875 {
1876 int fpscr_base_regnum;
1877 int sr_base_regnum;
1878 unsigned int fpscr_value;
1879 unsigned int sr_value;
1880 unsigned int old_fpscr_value;
1881 unsigned int old_sr_value;
1882 unsigned int fpscr_c_value;
1883 unsigned int fpscr_mask;
1884 unsigned int sr_mask;
1885
1886 fpscr_base_regnum = FPSCR_REGNUM;
1887 sr_base_regnum = SR_REGNUM;
1888
1889 /* FPSCR_C is a very weird register that contains sparse bits
1890 from the FPSCR and the SR architectural registers.
1891 Specifically: */
1892 /* *INDENT-OFF* */
1893 /*
1894 FPSRC_C bit
1895 0 Bit 0 of FPSCR
1896 1 reserved
1897 2-17 Bit 2-18 of FPSCR
1898 18-20 Bits 12,13,14 of SR
1899 21-31 reserved
1900 */
1901 /* *INDENT-ON* */
1902 /* Get value as an int. */
1903 fpscr_c_value = extract_unsigned_integer (buffer, 4);
1904
1905 /* Build the new values. */
1906 fpscr_mask = 0x0003fffd;
1907 sr_mask = 0x001c0000;
1908
1909 fpscr_value = fpscr_c_value & fpscr_mask;
1910 sr_value = (fpscr_value & sr_mask) >> 6;
1911
1912 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1913 old_fpscr_value = extract_unsigned_integer (temp_buffer, 4);
1914 old_fpscr_value &= 0xfffc0002;
1915 fpscr_value |= old_fpscr_value;
1916 store_unsigned_integer (temp_buffer, 4, fpscr_value);
1917 regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
1918
1919 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1920 old_sr_value = extract_unsigned_integer (temp_buffer, 4);
1921 old_sr_value &= 0xffff8fff;
1922 sr_value |= old_sr_value;
1923 store_unsigned_integer (temp_buffer, 4, sr_value);
1924 regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
1925 }
1926
1927 else if (reg_nr == FPUL_C_REGNUM)
1928 {
1929 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1930 regcache_raw_write (regcache, base_regnum, buffer);
1931 }
1932 }
1933
1934 /* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
1935 shmedia REGISTERS. */
1936 /* Control registers, compact mode. */
1937 static void
1938 sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
1939 int cr_c_regnum)
1940 {
1941 switch (cr_c_regnum)
1942 {
1943 case PC_C_REGNUM:
1944 fprintf_filtered (file, "pc_c\t0x%08x\n",
1945 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1946 break;
1947 case GBR_C_REGNUM:
1948 fprintf_filtered (file, "gbr_c\t0x%08x\n",
1949 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1950 break;
1951 case MACH_C_REGNUM:
1952 fprintf_filtered (file, "mach_c\t0x%08x\n",
1953 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1954 break;
1955 case MACL_C_REGNUM:
1956 fprintf_filtered (file, "macl_c\t0x%08x\n",
1957 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1958 break;
1959 case PR_C_REGNUM:
1960 fprintf_filtered (file, "pr_c\t0x%08x\n",
1961 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1962 break;
1963 case T_C_REGNUM:
1964 fprintf_filtered (file, "t_c\t0x%08x\n",
1965 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1966 break;
1967 case FPSCR_C_REGNUM:
1968 fprintf_filtered (file, "fpscr_c\t0x%08x\n",
1969 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1970 break;
1971 case FPUL_C_REGNUM:
1972 fprintf_filtered (file, "fpul_c\t0x%08x\n",
1973 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1974 break;
1975 }
1976 }
1977
1978 static void
1979 sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
1980 struct frame_info *frame, int regnum)
1981 { /* do values for FP (float) regs */
1982 unsigned char *raw_buffer;
1983 double flt; /* double extracted from raw hex data */
1984 int inv;
1985 int j;
1986
1987 /* Allocate space for the float. */
1988 raw_buffer = (unsigned char *) alloca
1989 (register_size (gdbarch,
1990 gdbarch_fp0_regnum
1991 (gdbarch)));
1992
1993 /* Get the data in raw format. */
1994 if (!frame_register_read (frame, regnum, raw_buffer))
1995 error ("can't read register %d (%s)",
1996 regnum, gdbarch_register_name (gdbarch, regnum));
1997
1998 /* Get the register as a number */
1999 flt = unpack_double (builtin_type_float, raw_buffer, &inv);
2000
2001 /* Print the name and some spaces. */
2002 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
2003 print_spaces_filtered (15 - strlen (gdbarch_register_name
2004 (gdbarch, regnum)), file);
2005
2006 /* Print the value. */
2007 if (inv)
2008 fprintf_filtered (file, "<invalid float>");
2009 else
2010 fprintf_filtered (file, "%-10.9g", flt);
2011
2012 /* Print the fp register as hex. */
2013 fprintf_filtered (file, "\t(raw 0x");
2014 for (j = 0; j < register_size (gdbarch, regnum); j++)
2015 {
2016 int idx = gdbarch_byte_order (gdbarch)
2017 == BFD_ENDIAN_BIG ? j : register_size
2018 (gdbarch, regnum) - 1 - j;
2019 fprintf_filtered (file, "%02x", raw_buffer[idx]);
2020 }
2021 fprintf_filtered (file, ")");
2022 fprintf_filtered (file, "\n");
2023 }
2024
2025 static void
2026 sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
2027 struct frame_info *frame, int regnum)
2028 {
2029 /* All the sh64-compact mode registers are pseudo registers. */
2030
2031 if (regnum < gdbarch_num_regs (gdbarch)
2032 || regnum >= gdbarch_num_regs (gdbarch)
2033 + NUM_PSEUDO_REGS_SH_MEDIA
2034 + NUM_PSEUDO_REGS_SH_COMPACT)
2035 internal_error (__FILE__, __LINE__,
2036 _("Invalid pseudo register number %d\n"), regnum);
2037
2038 else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
2039 {
2040 int fp_regnum = sh64_dr_reg_base_num (gdbarch, regnum);
2041 fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
2042 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2043 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2044 }
2045
2046 else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
2047 {
2048 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
2049 fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
2050 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2051 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2052 }
2053
2054 else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
2055 {
2056 int fp_regnum = sh64_fv_reg_base_num (gdbarch, regnum);
2057 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2058 regnum - FV0_REGNUM,
2059 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2060 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2061 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2062 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2063 }
2064
2065 else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
2066 {
2067 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
2068 fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2069 regnum - FV0_C_REGNUM,
2070 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2071 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2072 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2073 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2074 }
2075
2076 else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
2077 {
2078 int fp_regnum = sh64_fpp_reg_base_num (gdbarch, regnum);
2079 fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
2080 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2081 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2082 }
2083
2084 else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
2085 {
2086 int c_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
2087 fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
2088 (unsigned) get_frame_register_unsigned (frame, c_regnum));
2089 }
2090 else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
2091 /* This should work also for pseudoregs. */
2092 sh64_do_fp_register (gdbarch, file, frame, regnum);
2093 else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
2094 sh64_do_cr_c_register_info (file, frame, regnum);
2095 }
2096
2097 static void
2098 sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
2099 struct frame_info *frame, int regnum)
2100 {
2101 unsigned char raw_buffer[MAX_REGISTER_SIZE];
2102
2103 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
2104 print_spaces_filtered (15 - strlen (gdbarch_register_name
2105 (gdbarch, regnum)), file);
2106
2107 /* Get the data in raw format. */
2108 if (!frame_register_read (frame, regnum, raw_buffer))
2109 fprintf_filtered (file, "*value not available*\n");
2110
2111 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2112 file, 'x', 1, 0, Val_pretty_default);
2113 fprintf_filtered (file, "\t");
2114 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2115 file, 0, 1, 0, Val_pretty_default);
2116 fprintf_filtered (file, "\n");
2117 }
2118
2119 static void
2120 sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
2121 struct frame_info *frame, int regnum)
2122 {
2123 if (regnum < 0 || regnum >= gdbarch_num_regs (gdbarch)
2124 + gdbarch_num_pseudo_regs (gdbarch))
2125 internal_error (__FILE__, __LINE__,
2126 _("Invalid register number %d\n"), regnum);
2127
2128 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
2129 {
2130 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
2131 sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
2132 else
2133 sh64_do_register (gdbarch, file, frame, regnum);
2134 }
2135
2136 else if (regnum < gdbarch_num_regs (gdbarch)
2137 + gdbarch_num_pseudo_regs (gdbarch))
2138 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2139 }
2140
2141 static void
2142 sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2143 struct frame_info *frame, int regnum,
2144 int fpregs)
2145 {
2146 if (regnum != -1) /* do one specified register */
2147 {
2148 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
2149 error ("Not a valid register for the current processor type");
2150
2151 sh64_print_register (gdbarch, file, frame, regnum);
2152 }
2153 else
2154 /* do all (or most) registers */
2155 {
2156 regnum = 0;
2157 while (regnum < gdbarch_num_regs (gdbarch))
2158 {
2159 /* If the register name is empty, it is undefined for this
2160 processor, so don't display anything. */
2161 if (gdbarch_register_name (gdbarch, regnum) == NULL
2162 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
2163 {
2164 regnum++;
2165 continue;
2166 }
2167
2168 if (TYPE_CODE (register_type (gdbarch, regnum))
2169 == TYPE_CODE_FLT)
2170 {
2171 if (fpregs)
2172 {
2173 /* true for "INFO ALL-REGISTERS" command */
2174 sh64_do_fp_register (gdbarch, file, frame, regnum);
2175 regnum ++;
2176 }
2177 else
2178 regnum += FP_LAST_REGNUM - gdbarch_fp0_regnum (gdbarch);
2179 /* skip FP regs */
2180 }
2181 else
2182 {
2183 sh64_do_register (gdbarch, file, frame, regnum);
2184 regnum++;
2185 }
2186 }
2187
2188 if (fpregs)
2189 while (regnum < gdbarch_num_regs (gdbarch)
2190 + gdbarch_num_pseudo_regs (gdbarch))
2191 {
2192 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2193 regnum++;
2194 }
2195 }
2196 }
2197
2198 static void
2199 sh64_compact_print_registers_info (struct gdbarch *gdbarch,
2200 struct ui_file *file,
2201 struct frame_info *frame, int regnum,
2202 int fpregs)
2203 {
2204 if (regnum != -1) /* do one specified register */
2205 {
2206 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
2207 error ("Not a valid register for the current processor type");
2208
2209 if (regnum >= 0 && regnum < R0_C_REGNUM)
2210 error ("Not a valid register for the current processor mode.");
2211
2212 sh64_print_register (gdbarch, file, frame, regnum);
2213 }
2214 else
2215 /* do all compact registers */
2216 {
2217 regnum = R0_C_REGNUM;
2218 while (regnum < gdbarch_num_regs (gdbarch)
2219 + gdbarch_num_pseudo_regs (gdbarch))
2220 {
2221 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2222 regnum++;
2223 }
2224 }
2225 }
2226
2227 static void
2228 sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2229 struct frame_info *frame, int regnum, int fpregs)
2230 {
2231 if (pc_is_isa32 (get_frame_pc (frame)))
2232 sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2233 else
2234 sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2235 }
2236
2237 static struct sh64_frame_cache *
2238 sh64_alloc_frame_cache (void)
2239 {
2240 struct sh64_frame_cache *cache;
2241 int i;
2242
2243 cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
2244
2245 /* Base address. */
2246 cache->base = 0;
2247 cache->saved_sp = 0;
2248 cache->sp_offset = 0;
2249 cache->pc = 0;
2250
2251 /* Frameless until proven otherwise. */
2252 cache->uses_fp = 0;
2253
2254 /* Saved registers. We initialize these to -1 since zero is a valid
2255 offset (that's where fp is supposed to be stored). */
2256 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2257 {
2258 cache->saved_regs[i] = -1;
2259 }
2260
2261 return cache;
2262 }
2263
2264 static struct sh64_frame_cache *
2265 sh64_frame_cache (struct frame_info *next_frame, void **this_cache)
2266 {
2267 struct gdbarch *gdbarch;
2268 struct sh64_frame_cache *cache;
2269 CORE_ADDR current_pc;
2270 int i;
2271
2272 if (*this_cache)
2273 return *this_cache;
2274
2275 gdbarch = get_frame_arch (next_frame);
2276 cache = sh64_alloc_frame_cache ();
2277 *this_cache = cache;
2278
2279 current_pc = frame_pc_unwind (next_frame);
2280 cache->media_mode = pc_is_isa32 (current_pc);
2281
2282 /* In principle, for normal frames, fp holds the frame pointer,
2283 which holds the base address for the current stack frame.
2284 However, for functions that don't need it, the frame pointer is
2285 optional. For these "frameless" functions the frame pointer is
2286 actually the frame pointer of the calling frame. */
2287 cache->base = frame_unwind_register_unsigned (next_frame, MEDIA_FP_REGNUM);
2288 if (cache->base == 0)
2289 return cache;
2290
2291 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
2292 if (cache->pc != 0)
2293 sh64_analyze_prologue (gdbarch, cache, cache->pc, current_pc);
2294
2295 if (!cache->uses_fp)
2296 {
2297 /* We didn't find a valid frame, which means that CACHE->base
2298 currently holds the frame pointer for our calling frame. If
2299 we're at the start of a function, or somewhere half-way its
2300 prologue, the function's frame probably hasn't been fully
2301 setup yet. Try to reconstruct the base address for the stack
2302 frame by looking at the stack pointer. For truly "frameless"
2303 functions this might work too. */
2304 cache->base = frame_unwind_register_unsigned
2305 (next_frame, gdbarch_sp_regnum (gdbarch));
2306 }
2307
2308 /* Now that we have the base address for the stack frame we can
2309 calculate the value of sp in the calling frame. */
2310 cache->saved_sp = cache->base + cache->sp_offset;
2311
2312 /* Adjust all the saved registers such that they contain addresses
2313 instead of offsets. */
2314 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2315 if (cache->saved_regs[i] != -1)
2316 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
2317
2318 return cache;
2319 }
2320
2321 static void
2322 sh64_frame_prev_register (struct frame_info *next_frame, void **this_cache,
2323 int regnum, int *optimizedp,
2324 enum lval_type *lvalp, CORE_ADDR *addrp,
2325 int *realnump, gdb_byte *valuep)
2326 {
2327 struct sh64_frame_cache *cache = sh64_frame_cache (next_frame, this_cache);
2328 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2329
2330 gdb_assert (regnum >= 0);
2331
2332 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2333 {
2334 *optimizedp = 0;
2335 *lvalp = not_lval;
2336 *addrp = 0;
2337 *realnump = -1;
2338 if (valuep)
2339 {
2340 /* Store the value. */
2341 store_unsigned_integer (valuep,
2342 register_size (gdbarch,
2343 gdbarch_sp_regnum (gdbarch)),
2344 cache->saved_sp);
2345 }
2346 return;
2347 }
2348
2349 /* The PC of the previous frame is stored in the PR register of
2350 the current frame. Frob regnum so that we pull the value from
2351 the correct place. */
2352 if (regnum == gdbarch_pc_regnum (gdbarch))
2353 regnum = PR_REGNUM;
2354
2355 if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
2356 {
2357 int reg_size = register_size (gdbarch, regnum);
2358 int size;
2359
2360 *optimizedp = 0;
2361 *lvalp = lval_memory;
2362 *addrp = cache->saved_regs[regnum];
2363 *realnump = -1;
2364 if (gdbarch_tdep (gdbarch)->sh_abi == SH_ABI_32
2365 && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
2366 size = 4;
2367 else
2368 size = reg_size;
2369 if (valuep)
2370 {
2371 memset (valuep, 0, reg_size);
2372 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
2373 read_memory (*addrp, valuep, size);
2374 else
2375 read_memory (*addrp, (char *) valuep + reg_size - size, size);
2376 }
2377 return;
2378 }
2379
2380 *optimizedp = 0;
2381 *lvalp = lval_register;
2382 *addrp = 0;
2383 *realnump = regnum;
2384 if (valuep)
2385 frame_unwind_register (next_frame, (*realnump), valuep);
2386 }
2387
2388 static void
2389 sh64_frame_this_id (struct frame_info *next_frame, void **this_cache,
2390 struct frame_id *this_id)
2391 {
2392 struct sh64_frame_cache *cache = sh64_frame_cache (next_frame, this_cache);
2393
2394 /* This marks the outermost frame. */
2395 if (cache->base == 0)
2396 return;
2397
2398 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2399 }
2400
2401 static const struct frame_unwind sh64_frame_unwind = {
2402 NORMAL_FRAME,
2403 sh64_frame_this_id,
2404 sh64_frame_prev_register
2405 };
2406
2407 static const struct frame_unwind *
2408 sh64_frame_sniffer (struct frame_info *next_frame)
2409 {
2410 return &sh64_frame_unwind;
2411 }
2412
2413 static CORE_ADDR
2414 sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2415 {
2416 return frame_unwind_register_unsigned (next_frame,
2417 gdbarch_sp_regnum (gdbarch));
2418 }
2419
2420 static CORE_ADDR
2421 sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2422 {
2423 return frame_unwind_register_unsigned (next_frame,
2424 gdbarch_pc_regnum (gdbarch));
2425 }
2426
2427 static struct frame_id
2428 sh64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2429 {
2430 return frame_id_build (sh64_unwind_sp (gdbarch, next_frame),
2431 frame_pc_unwind (next_frame));
2432 }
2433
2434 static CORE_ADDR
2435 sh64_frame_base_address (struct frame_info *next_frame, void **this_cache)
2436 {
2437 struct sh64_frame_cache *cache = sh64_frame_cache (next_frame, this_cache);
2438
2439 return cache->base;
2440 }
2441
2442 static const struct frame_base sh64_frame_base = {
2443 &sh64_frame_unwind,
2444 sh64_frame_base_address,
2445 sh64_frame_base_address,
2446 sh64_frame_base_address
2447 };
2448
2449
2450 struct gdbarch *
2451 sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2452 {
2453 struct gdbarch *gdbarch;
2454 struct gdbarch_tdep *tdep;
2455
2456 /* If there is already a candidate, use it. */
2457 arches = gdbarch_list_lookup_by_info (arches, &info);
2458 if (arches != NULL)
2459 return arches->gdbarch;
2460
2461 /* None found, create a new architecture from the information
2462 provided. */
2463 tdep = XMALLOC (struct gdbarch_tdep);
2464 gdbarch = gdbarch_alloc (&info, tdep);
2465
2466 /* Determine the ABI */
2467 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2468 {
2469 /* If the ABI is the 64-bit one, it can only be sh-media. */
2470 tdep->sh_abi = SH_ABI_64;
2471 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2472 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2473 }
2474 else
2475 {
2476 /* If the ABI is the 32-bit one it could be either media or
2477 compact. */
2478 tdep->sh_abi = SH_ABI_32;
2479 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2480 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2481 }
2482
2483 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2484 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2485 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2486 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2487 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2488 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2489 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2490
2491 /* The number of real registers is the same whether we are in
2492 ISA16(compact) or ISA32(media). */
2493 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
2494 set_gdbarch_sp_regnum (gdbarch, 15);
2495 set_gdbarch_pc_regnum (gdbarch, 64);
2496 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2497 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
2498 + NUM_PSEUDO_REGS_SH_COMPACT);
2499
2500 set_gdbarch_register_name (gdbarch, sh64_register_name);
2501 set_gdbarch_register_type (gdbarch, sh64_register_type);
2502
2503 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2504 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2505
2506 set_gdbarch_breakpoint_from_pc (gdbarch, sh64_breakpoint_from_pc);
2507
2508 set_gdbarch_print_insn (gdbarch, gdb_print_insn_sh64);
2509 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2510
2511 set_gdbarch_return_value (gdbarch, sh64_return_value);
2512
2513 set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
2514 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2515
2516 set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
2517
2518 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2519
2520 set_gdbarch_frame_align (gdbarch, sh64_frame_align);
2521 set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
2522 set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
2523 set_gdbarch_unwind_dummy_id (gdbarch, sh64_unwind_dummy_id);
2524 frame_base_set_default (gdbarch, &sh64_frame_base);
2525
2526 set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
2527
2528 set_gdbarch_elf_make_msymbol_special (gdbarch,
2529 sh64_elf_make_msymbol_special);
2530
2531 /* Hook in ABI-specific overrides, if they have been registered. */
2532 gdbarch_init_osabi (info, gdbarch);
2533
2534 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2535 frame_unwind_append_sniffer (gdbarch, sh64_frame_sniffer);
2536
2537 return gdbarch;
2538 }
This page took 0.090532 seconds and 4 git commands to generate.