* target.h (struct section_table): Rename to ...
[deliverable/binutils-gdb.git] / gdb / solib-frv.c
1 /* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
2 Copyright (C) 2004, 2007, 2008, 2009 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19
20 #include "defs.h"
21 #include "gdb_string.h"
22 #include "inferior.h"
23 #include "gdbcore.h"
24 #include "solib.h"
25 #include "solist.h"
26 #include "frv-tdep.h"
27 #include "objfiles.h"
28 #include "symtab.h"
29 #include "language.h"
30 #include "command.h"
31 #include "gdbcmd.h"
32 #include "elf/frv.h"
33 #include "exceptions.h"
34
35 /* Flag which indicates whether internal debug messages should be printed. */
36 static int solib_frv_debug;
37
38 /* FR-V pointers are four bytes wide. */
39 enum { FRV_PTR_SIZE = 4 };
40
41 /* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
42
43 /* External versions; the size and alignment of the fields should be
44 the same as those on the target. When loaded, the placement of
45 the bits in each field will be the same as on the target. */
46 typedef gdb_byte ext_Elf32_Half[2];
47 typedef gdb_byte ext_Elf32_Addr[4];
48 typedef gdb_byte ext_Elf32_Word[4];
49
50 struct ext_elf32_fdpic_loadseg
51 {
52 /* Core address to which the segment is mapped. */
53 ext_Elf32_Addr addr;
54 /* VMA recorded in the program header. */
55 ext_Elf32_Addr p_vaddr;
56 /* Size of this segment in memory. */
57 ext_Elf32_Word p_memsz;
58 };
59
60 struct ext_elf32_fdpic_loadmap {
61 /* Protocol version number, must be zero. */
62 ext_Elf32_Half version;
63 /* Number of segments in this map. */
64 ext_Elf32_Half nsegs;
65 /* The actual memory map. */
66 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
67 };
68
69 /* Internal versions; the types are GDB types and the data in each
70 of the fields is (or will be) decoded from the external struct
71 for ease of consumption. */
72 struct int_elf32_fdpic_loadseg
73 {
74 /* Core address to which the segment is mapped. */
75 CORE_ADDR addr;
76 /* VMA recorded in the program header. */
77 CORE_ADDR p_vaddr;
78 /* Size of this segment in memory. */
79 long p_memsz;
80 };
81
82 struct int_elf32_fdpic_loadmap {
83 /* Protocol version number, must be zero. */
84 int version;
85 /* Number of segments in this map. */
86 int nsegs;
87 /* The actual memory map. */
88 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
89 };
90
91 /* Given address LDMADDR, fetch and decode the loadmap at that address.
92 Return NULL if there is a problem reading the target memory or if
93 there doesn't appear to be a loadmap at the given address. The
94 allocated space (representing the loadmap) returned by this
95 function may be freed via a single call to xfree(). */
96
97 static struct int_elf32_fdpic_loadmap *
98 fetch_loadmap (CORE_ADDR ldmaddr)
99 {
100 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
101 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
102 struct int_elf32_fdpic_loadmap *int_ldmbuf;
103 int ext_ldmbuf_size, int_ldmbuf_size;
104 int version, seg, nsegs;
105
106 /* Fetch initial portion of the loadmap. */
107 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
108 sizeof ext_ldmbuf_partial))
109 {
110 /* Problem reading the target's memory. */
111 return NULL;
112 }
113
114 /* Extract the version. */
115 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
116 sizeof ext_ldmbuf_partial.version);
117 if (version != 0)
118 {
119 /* We only handle version 0. */
120 return NULL;
121 }
122
123 /* Extract the number of segments. */
124 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
125 sizeof ext_ldmbuf_partial.nsegs);
126
127 if (nsegs <= 0)
128 return NULL;
129
130 /* Allocate space for the complete (external) loadmap. */
131 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
132 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
133 ext_ldmbuf = xmalloc (ext_ldmbuf_size);
134
135 /* Copy over the portion of the loadmap that's already been read. */
136 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
137
138 /* Read the rest of the loadmap from the target. */
139 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
140 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
141 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
142 {
143 /* Couldn't read rest of the loadmap. */
144 xfree (ext_ldmbuf);
145 return NULL;
146 }
147
148 /* Allocate space into which to put information extract from the
149 external loadsegs. I.e, allocate the internal loadsegs. */
150 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
151 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
152 int_ldmbuf = xmalloc (int_ldmbuf_size);
153
154 /* Place extracted information in internal structs. */
155 int_ldmbuf->version = version;
156 int_ldmbuf->nsegs = nsegs;
157 for (seg = 0; seg < nsegs; seg++)
158 {
159 int_ldmbuf->segs[seg].addr
160 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
161 sizeof (ext_ldmbuf->segs[seg].addr));
162 int_ldmbuf->segs[seg].p_vaddr
163 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
164 sizeof (ext_ldmbuf->segs[seg].p_vaddr));
165 int_ldmbuf->segs[seg].p_memsz
166 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
167 sizeof (ext_ldmbuf->segs[seg].p_memsz));
168 }
169
170 xfree (ext_ldmbuf);
171 return int_ldmbuf;
172 }
173
174 /* External link_map and elf32_fdpic_loadaddr struct definitions. */
175
176 typedef gdb_byte ext_ptr[4];
177
178 struct ext_elf32_fdpic_loadaddr
179 {
180 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
181 ext_ptr got_value; /* void *got_value; */
182 };
183
184 struct ext_link_map
185 {
186 struct ext_elf32_fdpic_loadaddr l_addr;
187
188 /* Absolute file name object was found in. */
189 ext_ptr l_name; /* char *l_name; */
190
191 /* Dynamic section of the shared object. */
192 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
193
194 /* Chain of loaded objects. */
195 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
196 };
197
198 /* Link map info to include in an allocated so_list entry */
199
200 struct lm_info
201 {
202 /* The loadmap, digested into an easier to use form. */
203 struct int_elf32_fdpic_loadmap *map;
204 /* The GOT address for this link map entry. */
205 CORE_ADDR got_value;
206 /* The link map address, needed for frv_fetch_objfile_link_map(). */
207 CORE_ADDR lm_addr;
208
209 /* Cached dynamic symbol table and dynamic relocs initialized and
210 used only by find_canonical_descriptor_in_load_object().
211
212 Note: kevinb/2004-02-26: It appears that calls to
213 bfd_canonicalize_dynamic_reloc() will use the same symbols as
214 those supplied to the first call to this function. Therefore,
215 it's important to NOT free the asymbol ** data structure
216 supplied to the first call. Thus the caching of the dynamic
217 symbols (dyn_syms) is critical for correct operation. The
218 caching of the dynamic relocations could be dispensed with. */
219 asymbol **dyn_syms;
220 arelent **dyn_relocs;
221 int dyn_reloc_count; /* number of dynamic relocs. */
222
223 };
224
225 /* The load map, got value, etc. are not available from the chain
226 of loaded shared objects. ``main_executable_lm_info'' provides
227 a way to get at this information so that it doesn't need to be
228 frequently recomputed. Initialized by frv_relocate_main_executable(). */
229 static struct lm_info *main_executable_lm_info;
230
231 static void frv_relocate_main_executable (void);
232 static CORE_ADDR main_got (void);
233 static int enable_break2 (void);
234
235 /*
236
237 LOCAL FUNCTION
238
239 bfd_lookup_symbol -- lookup the value for a specific symbol
240
241 SYNOPSIS
242
243 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
244
245 DESCRIPTION
246
247 An expensive way to lookup the value of a single symbol for
248 bfd's that are only temporary anyway. This is used by the
249 shared library support to find the address of the debugger
250 interface structures in the shared library.
251
252 Note that 0 is specifically allowed as an error return (no
253 such symbol).
254 */
255
256 static CORE_ADDR
257 bfd_lookup_symbol (bfd *abfd, char *symname)
258 {
259 long storage_needed;
260 asymbol *sym;
261 asymbol **symbol_table;
262 unsigned int number_of_symbols;
263 unsigned int i;
264 struct cleanup *back_to;
265 CORE_ADDR symaddr = 0;
266
267 storage_needed = bfd_get_symtab_upper_bound (abfd);
268
269 if (storage_needed > 0)
270 {
271 symbol_table = (asymbol **) xmalloc (storage_needed);
272 back_to = make_cleanup (xfree, symbol_table);
273 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
274
275 for (i = 0; i < number_of_symbols; i++)
276 {
277 sym = *symbol_table++;
278 if (strcmp (sym->name, symname) == 0)
279 {
280 /* Bfd symbols are section relative. */
281 symaddr = sym->value + sym->section->vma;
282 break;
283 }
284 }
285 do_cleanups (back_to);
286 }
287
288 if (symaddr)
289 return symaddr;
290
291 /* Look for the symbol in the dynamic string table too. */
292
293 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
294
295 if (storage_needed > 0)
296 {
297 symbol_table = (asymbol **) xmalloc (storage_needed);
298 back_to = make_cleanup (xfree, symbol_table);
299 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
300
301 for (i = 0; i < number_of_symbols; i++)
302 {
303 sym = *symbol_table++;
304 if (strcmp (sym->name, symname) == 0)
305 {
306 /* Bfd symbols are section relative. */
307 symaddr = sym->value + sym->section->vma;
308 break;
309 }
310 }
311 do_cleanups (back_to);
312 }
313
314 return symaddr;
315 }
316
317
318 /*
319
320 LOCAL FUNCTION
321
322 open_symbol_file_object
323
324 SYNOPSIS
325
326 void open_symbol_file_object (void *from_tty)
327
328 DESCRIPTION
329
330 If no open symbol file, attempt to locate and open the main symbol
331 file.
332
333 If FROM_TTYP dereferences to a non-zero integer, allow messages to
334 be printed. This parameter is a pointer rather than an int because
335 open_symbol_file_object() is called via catch_errors() and
336 catch_errors() requires a pointer argument. */
337
338 static int
339 open_symbol_file_object (void *from_ttyp)
340 {
341 /* Unimplemented. */
342 return 0;
343 }
344
345 /* Cached value for lm_base(), below. */
346 static CORE_ADDR lm_base_cache = 0;
347
348 /* Link map address for main module. */
349 static CORE_ADDR main_lm_addr = 0;
350
351 /* Return the address from which the link map chain may be found. On
352 the FR-V, this may be found in a number of ways. Assuming that the
353 main executable has already been relocated, the easiest way to find
354 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
355 pointer to the start of the link map will be located at the word found
356 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
357 reserve area mandated by the ABI.) */
358
359 static CORE_ADDR
360 lm_base (void)
361 {
362 struct minimal_symbol *got_sym;
363 CORE_ADDR addr;
364 gdb_byte buf[FRV_PTR_SIZE];
365
366 /* One of our assumptions is that the main executable has been relocated.
367 Bail out if this has not happened. (Note that post_create_inferior()
368 in infcmd.c will call solib_add prior to solib_create_inferior_hook().
369 If we allow this to happen, lm_base_cache will be initialized with
370 a bogus value. */
371 if (main_executable_lm_info == 0)
372 return 0;
373
374 /* If we already have a cached value, return it. */
375 if (lm_base_cache)
376 return lm_base_cache;
377
378 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
379 symfile_objfile);
380 if (got_sym == 0)
381 {
382 if (solib_frv_debug)
383 fprintf_unfiltered (gdb_stdlog,
384 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
385 return 0;
386 }
387
388 addr = SYMBOL_VALUE_ADDRESS (got_sym) + 8;
389
390 if (solib_frv_debug)
391 fprintf_unfiltered (gdb_stdlog,
392 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
393 hex_string_custom (addr, 8));
394
395 if (target_read_memory (addr, buf, sizeof buf) != 0)
396 return 0;
397 lm_base_cache = extract_unsigned_integer (buf, sizeof buf);
398
399 if (solib_frv_debug)
400 fprintf_unfiltered (gdb_stdlog,
401 "lm_base: lm_base_cache = %s\n",
402 hex_string_custom (lm_base_cache, 8));
403
404 return lm_base_cache;
405 }
406
407
408 /* LOCAL FUNCTION
409
410 frv_current_sos -- build a list of currently loaded shared objects
411
412 SYNOPSIS
413
414 struct so_list *frv_current_sos ()
415
416 DESCRIPTION
417
418 Build a list of `struct so_list' objects describing the shared
419 objects currently loaded in the inferior. This list does not
420 include an entry for the main executable file.
421
422 Note that we only gather information directly available from the
423 inferior --- we don't examine any of the shared library files
424 themselves. The declaration of `struct so_list' says which fields
425 we provide values for. */
426
427 static struct so_list *
428 frv_current_sos (void)
429 {
430 CORE_ADDR lm_addr, mgot;
431 struct so_list *sos_head = NULL;
432 struct so_list **sos_next_ptr = &sos_head;
433
434 /* Make sure that the main executable has been relocated. This is
435 required in order to find the address of the global offset table,
436 which in turn is used to find the link map info. (See lm_base()
437 for details.)
438
439 Note that the relocation of the main executable is also performed
440 by SOLIB_CREATE_INFERIOR_HOOK(), however, in the case of core
441 files, this hook is called too late in order to be of benefit to
442 SOLIB_ADD. SOLIB_ADD eventually calls this this function,
443 frv_current_sos, and also precedes the call to
444 SOLIB_CREATE_INFERIOR_HOOK(). (See post_create_inferior() in
445 infcmd.c.) */
446 if (main_executable_lm_info == 0 && core_bfd != NULL)
447 frv_relocate_main_executable ();
448
449 /* Fetch the GOT corresponding to the main executable. */
450 mgot = main_got ();
451
452 /* Locate the address of the first link map struct. */
453 lm_addr = lm_base ();
454
455 /* We have at least one link map entry. Fetch the the lot of them,
456 building the solist chain. */
457 while (lm_addr)
458 {
459 struct ext_link_map lm_buf;
460 CORE_ADDR got_addr;
461
462 if (solib_frv_debug)
463 fprintf_unfiltered (gdb_stdlog,
464 "current_sos: reading link_map entry at %s\n",
465 hex_string_custom (lm_addr, 8));
466
467 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf, sizeof (lm_buf)) != 0)
468 {
469 warning (_("frv_current_sos: Unable to read link map entry. Shared object chain may be incomplete."));
470 break;
471 }
472
473 got_addr
474 = extract_unsigned_integer (lm_buf.l_addr.got_value,
475 sizeof (lm_buf.l_addr.got_value));
476 /* If the got_addr is the same as mgotr, then we're looking at the
477 entry for the main executable. By convention, we don't include
478 this in the list of shared objects. */
479 if (got_addr != mgot)
480 {
481 int errcode;
482 char *name_buf;
483 struct int_elf32_fdpic_loadmap *loadmap;
484 struct so_list *sop;
485 CORE_ADDR addr;
486
487 /* Fetch the load map address. */
488 addr = extract_unsigned_integer (lm_buf.l_addr.map,
489 sizeof lm_buf.l_addr.map);
490 loadmap = fetch_loadmap (addr);
491 if (loadmap == NULL)
492 {
493 warning (_("frv_current_sos: Unable to fetch load map. Shared object chain may be incomplete."));
494 break;
495 }
496
497 sop = xcalloc (1, sizeof (struct so_list));
498 sop->lm_info = xcalloc (1, sizeof (struct lm_info));
499 sop->lm_info->map = loadmap;
500 sop->lm_info->got_value = got_addr;
501 sop->lm_info->lm_addr = lm_addr;
502 /* Fetch the name. */
503 addr = extract_unsigned_integer (lm_buf.l_name,
504 sizeof (lm_buf.l_name));
505 target_read_string (addr, &name_buf, SO_NAME_MAX_PATH_SIZE - 1,
506 &errcode);
507
508 if (solib_frv_debug)
509 fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n",
510 name_buf);
511
512 if (errcode != 0)
513 warning (_("Can't read pathname for link map entry: %s."),
514 safe_strerror (errcode));
515 else
516 {
517 strncpy (sop->so_name, name_buf, SO_NAME_MAX_PATH_SIZE - 1);
518 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
519 xfree (name_buf);
520 strcpy (sop->so_original_name, sop->so_name);
521 }
522
523 *sos_next_ptr = sop;
524 sos_next_ptr = &sop->next;
525 }
526 else
527 {
528 main_lm_addr = lm_addr;
529 }
530
531 lm_addr = extract_unsigned_integer (lm_buf.l_next, sizeof (lm_buf.l_next));
532 }
533
534 enable_break2 ();
535
536 return sos_head;
537 }
538
539
540 /* Return 1 if PC lies in the dynamic symbol resolution code of the
541 run time loader. */
542
543 static CORE_ADDR interp_text_sect_low;
544 static CORE_ADDR interp_text_sect_high;
545 static CORE_ADDR interp_plt_sect_low;
546 static CORE_ADDR interp_plt_sect_high;
547
548 static int
549 frv_in_dynsym_resolve_code (CORE_ADDR pc)
550 {
551 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
552 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
553 || in_plt_section (pc, NULL));
554 }
555
556 /* Given a loadmap and an address, return the displacement needed
557 to relocate the address. */
558
559 static CORE_ADDR
560 displacement_from_map (struct int_elf32_fdpic_loadmap *map,
561 CORE_ADDR addr)
562 {
563 int seg;
564
565 for (seg = 0; seg < map->nsegs; seg++)
566 {
567 if (map->segs[seg].p_vaddr <= addr
568 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
569 {
570 return map->segs[seg].addr - map->segs[seg].p_vaddr;
571 }
572 }
573
574 return 0;
575 }
576
577 /* Print a warning about being unable to set the dynamic linker
578 breakpoint. */
579
580 static void
581 enable_break_failure_warning (void)
582 {
583 warning (_("Unable to find dynamic linker breakpoint function.\n"
584 "GDB will be unable to debug shared library initializers\n"
585 "and track explicitly loaded dynamic code."));
586 }
587
588 /*
589
590 LOCAL FUNCTION
591
592 enable_break -- arrange for dynamic linker to hit breakpoint
593
594 SYNOPSIS
595
596 int enable_break (void)
597
598 DESCRIPTION
599
600 The dynamic linkers has, as part of its debugger interface, support
601 for arranging for the inferior to hit a breakpoint after mapping in
602 the shared libraries. This function enables that breakpoint.
603
604 On the FR-V, using the shared library (FDPIC) ABI, the symbol
605 _dl_debug_addr points to the r_debug struct which contains
606 a field called r_brk. r_brk is the address of the function
607 descriptor upon which a breakpoint must be placed. Being a
608 function descriptor, we must extract the entry point in order
609 to set the breakpoint.
610
611 Our strategy will be to get the .interp section from the
612 executable. This section will provide us with the name of the
613 interpreter. We'll open the interpreter and then look up
614 the address of _dl_debug_addr. We then relocate this address
615 using the interpreter's loadmap. Once the relocated address
616 is known, we fetch the value (address) corresponding to r_brk
617 and then use that value to fetch the entry point of the function
618 we're interested in.
619
620 */
621
622 static int enable_break1_done = 0;
623 static int enable_break2_done = 0;
624
625 static int
626 enable_break2 (void)
627 {
628 int success = 0;
629 char **bkpt_namep;
630 asection *interp_sect;
631
632 if (!enable_break1_done || enable_break2_done)
633 return 1;
634
635 enable_break2_done = 1;
636
637 /* First, remove all the solib event breakpoints. Their addresses
638 may have changed since the last time we ran the program. */
639 remove_solib_event_breakpoints ();
640
641 interp_text_sect_low = interp_text_sect_high = 0;
642 interp_plt_sect_low = interp_plt_sect_high = 0;
643
644 /* Find the .interp section; if not found, warn the user and drop
645 into the old breakpoint at symbol code. */
646 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
647 if (interp_sect)
648 {
649 unsigned int interp_sect_size;
650 gdb_byte *buf;
651 bfd *tmp_bfd = NULL;
652 int status;
653 CORE_ADDR addr, interp_loadmap_addr;
654 gdb_byte addr_buf[FRV_PTR_SIZE];
655 struct int_elf32_fdpic_loadmap *ldm;
656 volatile struct gdb_exception ex;
657
658 /* Read the contents of the .interp section into a local buffer;
659 the contents specify the dynamic linker this program uses. */
660 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
661 buf = alloca (interp_sect_size);
662 bfd_get_section_contents (exec_bfd, interp_sect,
663 buf, 0, interp_sect_size);
664
665 /* Now we need to figure out where the dynamic linker was
666 loaded so that we can load its symbols and place a breakpoint
667 in the dynamic linker itself.
668
669 This address is stored on the stack. However, I've been unable
670 to find any magic formula to find it for Solaris (appears to
671 be trivial on GNU/Linux). Therefore, we have to try an alternate
672 mechanism to find the dynamic linker's base address. */
673
674 TRY_CATCH (ex, RETURN_MASK_ALL)
675 {
676 tmp_bfd = solib_bfd_open (buf);
677 }
678 if (tmp_bfd == NULL)
679 {
680 enable_break_failure_warning ();
681 return 0;
682 }
683
684 status = frv_fdpic_loadmap_addresses (target_gdbarch,
685 &interp_loadmap_addr, 0);
686 if (status < 0)
687 {
688 warning (_("Unable to determine dynamic linker loadmap address."));
689 enable_break_failure_warning ();
690 bfd_close (tmp_bfd);
691 return 0;
692 }
693
694 if (solib_frv_debug)
695 fprintf_unfiltered (gdb_stdlog,
696 "enable_break: interp_loadmap_addr = %s\n",
697 hex_string_custom (interp_loadmap_addr, 8));
698
699 ldm = fetch_loadmap (interp_loadmap_addr);
700 if (ldm == NULL)
701 {
702 warning (_("Unable to load dynamic linker loadmap at address %s."),
703 hex_string_custom (interp_loadmap_addr, 8));
704 enable_break_failure_warning ();
705 bfd_close (tmp_bfd);
706 return 0;
707 }
708
709 /* Record the relocated start and end address of the dynamic linker
710 text and plt section for svr4_in_dynsym_resolve_code. */
711 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
712 if (interp_sect)
713 {
714 interp_text_sect_low
715 = bfd_section_vma (tmp_bfd, interp_sect);
716 interp_text_sect_low
717 += displacement_from_map (ldm, interp_text_sect_low);
718 interp_text_sect_high
719 = interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
720 }
721 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
722 if (interp_sect)
723 {
724 interp_plt_sect_low =
725 bfd_section_vma (tmp_bfd, interp_sect);
726 interp_plt_sect_low
727 += displacement_from_map (ldm, interp_plt_sect_low);
728 interp_plt_sect_high =
729 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
730 }
731
732 addr = bfd_lookup_symbol (tmp_bfd, "_dl_debug_addr");
733 if (addr == 0)
734 {
735 warning (_("Could not find symbol _dl_debug_addr in dynamic linker"));
736 enable_break_failure_warning ();
737 bfd_close (tmp_bfd);
738 return 0;
739 }
740
741 if (solib_frv_debug)
742 fprintf_unfiltered (gdb_stdlog,
743 "enable_break: _dl_debug_addr (prior to relocation) = %s\n",
744 hex_string_custom (addr, 8));
745
746 addr += displacement_from_map (ldm, addr);
747
748 if (solib_frv_debug)
749 fprintf_unfiltered (gdb_stdlog,
750 "enable_break: _dl_debug_addr (after relocation) = %s\n",
751 hex_string_custom (addr, 8));
752
753 /* Fetch the address of the r_debug struct. */
754 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
755 {
756 warning (_("Unable to fetch contents of _dl_debug_addr (at address %s) from dynamic linker"),
757 hex_string_custom (addr, 8));
758 }
759 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf);
760
761 /* Fetch the r_brk field. It's 8 bytes from the start of
762 _dl_debug_addr. */
763 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
764 {
765 warning (_("Unable to fetch _dl_debug_addr->r_brk (at address %s) from dynamic linker"),
766 hex_string_custom (addr + 8, 8));
767 enable_break_failure_warning ();
768 bfd_close (tmp_bfd);
769 return 0;
770 }
771 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf);
772
773 /* Now fetch the function entry point. */
774 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
775 {
776 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point (at address %s) from dynamic linker"),
777 hex_string_custom (addr, 8));
778 enable_break_failure_warning ();
779 bfd_close (tmp_bfd);
780 return 0;
781 }
782 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf);
783
784 /* We're done with the temporary bfd. */
785 bfd_close (tmp_bfd);
786
787 /* We're also done with the loadmap. */
788 xfree (ldm);
789
790 /* Now (finally!) create the solib breakpoint. */
791 create_solib_event_breakpoint (addr);
792
793 return 1;
794 }
795
796 /* Tell the user we couldn't set a dynamic linker breakpoint. */
797 enable_break_failure_warning ();
798
799 /* Failure return. */
800 return 0;
801 }
802
803 static int
804 enable_break (void)
805 {
806 asection *interp_sect;
807
808 /* Remove all the solib event breakpoints. Their addresses
809 may have changed since the last time we ran the program. */
810 remove_solib_event_breakpoints ();
811
812 /* Check for the presence of a .interp section. If there is no
813 such section, the executable is statically linked. */
814
815 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
816
817 if (interp_sect)
818 {
819 enable_break1_done = 1;
820 create_solib_event_breakpoint (symfile_objfile->ei.entry_point);
821
822 if (solib_frv_debug)
823 fprintf_unfiltered (gdb_stdlog,
824 "enable_break: solib event breakpoint placed at entry point: %s\n",
825 hex_string_custom
826 (symfile_objfile->ei.entry_point, 8));
827 }
828 else
829 {
830 if (solib_frv_debug)
831 fprintf_unfiltered (gdb_stdlog,
832 "enable_break: No .interp section found.\n");
833 }
834
835 return 1;
836 }
837
838 /*
839
840 LOCAL FUNCTION
841
842 special_symbol_handling -- additional shared library symbol handling
843
844 SYNOPSIS
845
846 void special_symbol_handling ()
847
848 DESCRIPTION
849
850 Once the symbols from a shared object have been loaded in the usual
851 way, we are called to do any system specific symbol handling that
852 is needed.
853
854 */
855
856 static void
857 frv_special_symbol_handling (void)
858 {
859 /* Nothing needed (yet) for FRV. */
860 }
861
862 static void
863 frv_relocate_main_executable (void)
864 {
865 int status;
866 CORE_ADDR exec_addr, interp_addr;
867 struct int_elf32_fdpic_loadmap *ldm;
868 struct cleanup *old_chain;
869 struct section_offsets *new_offsets;
870 int changed;
871 struct obj_section *osect;
872
873 status = frv_fdpic_loadmap_addresses (target_gdbarch,
874 &interp_addr, &exec_addr);
875
876 if (status < 0 || (exec_addr == 0 && interp_addr == 0))
877 {
878 /* Not using FDPIC ABI, so do nothing. */
879 return;
880 }
881
882 /* Fetch the loadmap located at ``exec_addr''. */
883 ldm = fetch_loadmap (exec_addr);
884 if (ldm == NULL)
885 error (_("Unable to load the executable's loadmap."));
886
887 if (main_executable_lm_info)
888 xfree (main_executable_lm_info);
889 main_executable_lm_info = xcalloc (1, sizeof (struct lm_info));
890 main_executable_lm_info->map = ldm;
891
892 new_offsets = xcalloc (symfile_objfile->num_sections,
893 sizeof (struct section_offsets));
894 old_chain = make_cleanup (xfree, new_offsets);
895 changed = 0;
896
897 ALL_OBJFILE_OSECTIONS (symfile_objfile, osect)
898 {
899 CORE_ADDR orig_addr, addr, offset;
900 int osect_idx;
901 int seg;
902
903 osect_idx = osect->the_bfd_section->index;
904
905 /* Current address of section. */
906 addr = obj_section_addr (osect);
907 /* Offset from where this section started. */
908 offset = ANOFFSET (symfile_objfile->section_offsets, osect_idx);
909 /* Original address prior to any past relocations. */
910 orig_addr = addr - offset;
911
912 for (seg = 0; seg < ldm->nsegs; seg++)
913 {
914 if (ldm->segs[seg].p_vaddr <= orig_addr
915 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
916 {
917 new_offsets->offsets[osect_idx]
918 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
919
920 if (new_offsets->offsets[osect_idx] != offset)
921 changed = 1;
922 break;
923 }
924 }
925 }
926
927 if (changed)
928 objfile_relocate (symfile_objfile, new_offsets);
929
930 do_cleanups (old_chain);
931
932 /* Now that symfile_objfile has been relocated, we can compute the
933 GOT value and stash it away. */
934 main_executable_lm_info->got_value = main_got ();
935 }
936
937 /*
938
939 GLOBAL FUNCTION
940
941 frv_solib_create_inferior_hook -- shared library startup support
942
943 SYNOPSIS
944
945 void frv_solib_create_inferior_hook ()
946
947 DESCRIPTION
948
949 When gdb starts up the inferior, it nurses it along (through the
950 shell) until it is ready to execute it's first instruction. At this
951 point, this function gets called via expansion of the macro
952 SOLIB_CREATE_INFERIOR_HOOK.
953
954 For the FR-V shared library ABI (FDPIC), the main executable
955 needs to be relocated. The shared library breakpoints also need
956 to be enabled.
957 */
958
959 static void
960 frv_solib_create_inferior_hook (void)
961 {
962 /* Relocate main executable. */
963 frv_relocate_main_executable ();
964
965 /* Enable shared library breakpoints. */
966 if (!enable_break ())
967 {
968 warning (_("shared library handler failed to enable breakpoint"));
969 return;
970 }
971 }
972
973 static void
974 frv_clear_solib (void)
975 {
976 lm_base_cache = 0;
977 enable_break1_done = 0;
978 enable_break2_done = 0;
979 main_lm_addr = 0;
980 if (main_executable_lm_info != 0)
981 {
982 xfree (main_executable_lm_info->map);
983 xfree (main_executable_lm_info->dyn_syms);
984 xfree (main_executable_lm_info->dyn_relocs);
985 xfree (main_executable_lm_info);
986 main_executable_lm_info = 0;
987 }
988 }
989
990 static void
991 frv_free_so (struct so_list *so)
992 {
993 xfree (so->lm_info->map);
994 xfree (so->lm_info->dyn_syms);
995 xfree (so->lm_info->dyn_relocs);
996 xfree (so->lm_info);
997 }
998
999 static void
1000 frv_relocate_section_addresses (struct so_list *so,
1001 struct target_section *sec)
1002 {
1003 int seg;
1004 struct int_elf32_fdpic_loadmap *map;
1005
1006 map = so->lm_info->map;
1007
1008 for (seg = 0; seg < map->nsegs; seg++)
1009 {
1010 if (map->segs[seg].p_vaddr <= sec->addr
1011 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
1012 {
1013 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
1014 sec->addr += displ;
1015 sec->endaddr += displ;
1016 break;
1017 }
1018 }
1019 }
1020
1021 /* Return the GOT address associated with the main executable. Return
1022 0 if it can't be found. */
1023
1024 static CORE_ADDR
1025 main_got (void)
1026 {
1027 struct minimal_symbol *got_sym;
1028
1029 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL, symfile_objfile);
1030 if (got_sym == 0)
1031 return 0;
1032
1033 return SYMBOL_VALUE_ADDRESS (got_sym);
1034 }
1035
1036 /* Find the global pointer for the given function address ADDR. */
1037
1038 CORE_ADDR
1039 frv_fdpic_find_global_pointer (CORE_ADDR addr)
1040 {
1041 struct so_list *so;
1042
1043 so = master_so_list ();
1044 while (so)
1045 {
1046 int seg;
1047 struct int_elf32_fdpic_loadmap *map;
1048
1049 map = so->lm_info->map;
1050
1051 for (seg = 0; seg < map->nsegs; seg++)
1052 {
1053 if (map->segs[seg].addr <= addr
1054 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
1055 return so->lm_info->got_value;
1056 }
1057
1058 so = so->next;
1059 }
1060
1061 /* Didn't find it it any of the shared objects. So assume it's in the
1062 main executable. */
1063 return main_got ();
1064 }
1065
1066 /* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
1067 static CORE_ADDR find_canonical_descriptor_in_load_object
1068 (CORE_ADDR, CORE_ADDR, char *, bfd *, struct lm_info *);
1069
1070 /* Given a function entry point, attempt to find the canonical descriptor
1071 associated with that entry point. Return 0 if no canonical descriptor
1072 could be found. */
1073
1074 CORE_ADDR
1075 frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
1076 {
1077 char *name;
1078 CORE_ADDR addr;
1079 CORE_ADDR got_value;
1080 struct int_elf32_fdpic_loadmap *ldm = 0;
1081 struct symbol *sym;
1082 int status;
1083 CORE_ADDR exec_loadmap_addr;
1084
1085 /* Fetch the corresponding global pointer for the entry point. */
1086 got_value = frv_fdpic_find_global_pointer (entry_point);
1087
1088 /* Attempt to find the name of the function. If the name is available,
1089 it'll be used as an aid in finding matching functions in the dynamic
1090 symbol table. */
1091 sym = find_pc_function (entry_point);
1092 if (sym == 0)
1093 name = 0;
1094 else
1095 name = SYMBOL_LINKAGE_NAME (sym);
1096
1097 /* Check the main executable. */
1098 addr = find_canonical_descriptor_in_load_object
1099 (entry_point, got_value, name, symfile_objfile->obfd,
1100 main_executable_lm_info);
1101
1102 /* If descriptor not found via main executable, check each load object
1103 in list of shared objects. */
1104 if (addr == 0)
1105 {
1106 struct so_list *so;
1107
1108 so = master_so_list ();
1109 while (so)
1110 {
1111 addr = find_canonical_descriptor_in_load_object
1112 (entry_point, got_value, name, so->abfd, so->lm_info);
1113
1114 if (addr != 0)
1115 break;
1116
1117 so = so->next;
1118 }
1119 }
1120
1121 return addr;
1122 }
1123
1124 static CORE_ADDR
1125 find_canonical_descriptor_in_load_object
1126 (CORE_ADDR entry_point, CORE_ADDR got_value, char *name, bfd *abfd,
1127 struct lm_info *lm)
1128 {
1129 arelent *rel;
1130 unsigned int i;
1131 CORE_ADDR addr = 0;
1132
1133 /* Nothing to do if no bfd. */
1134 if (abfd == 0)
1135 return 0;
1136
1137 /* Nothing to do if no link map. */
1138 if (lm == 0)
1139 return 0;
1140
1141 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
1142 (More about this later.) But in order to fetch the relocs, we
1143 need to first fetch the dynamic symbols. These symbols need to
1144 be cached due to the way that bfd_canonicalize_dynamic_reloc()
1145 works. (See the comments in the declaration of struct lm_info
1146 for more information.) */
1147 if (lm->dyn_syms == NULL)
1148 {
1149 long storage_needed;
1150 unsigned int number_of_symbols;
1151
1152 /* Determine amount of space needed to hold the dynamic symbol table. */
1153 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1154
1155 /* If there are no dynamic symbols, there's nothing to do. */
1156 if (storage_needed <= 0)
1157 return 0;
1158
1159 /* Allocate space for the dynamic symbol table. */
1160 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
1161
1162 /* Fetch the dynamic symbol table. */
1163 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
1164
1165 if (number_of_symbols == 0)
1166 return 0;
1167 }
1168
1169 /* Fetch the dynamic relocations if not already cached. */
1170 if (lm->dyn_relocs == NULL)
1171 {
1172 long storage_needed;
1173
1174 /* Determine amount of space needed to hold the dynamic relocs. */
1175 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
1176
1177 /* Bail out if there are no dynamic relocs. */
1178 if (storage_needed <= 0)
1179 return 0;
1180
1181 /* Allocate space for the relocs. */
1182 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
1183
1184 /* Fetch the dynamic relocs. */
1185 lm->dyn_reloc_count
1186 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
1187 }
1188
1189 /* Search the dynamic relocs. */
1190 for (i = 0; i < lm->dyn_reloc_count; i++)
1191 {
1192 rel = lm->dyn_relocs[i];
1193
1194 /* Relocs of interest are those which meet the following
1195 criteria:
1196
1197 - the names match (assuming the caller could provide
1198 a name which matches ``entry_point'').
1199 - the relocation type must be R_FRV_FUNCDESC. Relocs
1200 of this type are used (by the dynamic linker) to
1201 look up the address of a canonical descriptor (allocating
1202 it if need be) and initializing the GOT entry referred
1203 to by the offset to the address of the descriptor.
1204
1205 These relocs of interest may be used to obtain a
1206 candidate descriptor by first adjusting the reloc's
1207 address according to the link map and then dereferencing
1208 this address (which is a GOT entry) to obtain a descriptor
1209 address. */
1210 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
1211 && rel->howto->type == R_FRV_FUNCDESC)
1212 {
1213 gdb_byte buf [FRV_PTR_SIZE];
1214
1215 /* Compute address of address of candidate descriptor. */
1216 addr = rel->address + displacement_from_map (lm->map, rel->address);
1217
1218 /* Fetch address of candidate descriptor. */
1219 if (target_read_memory (addr, buf, sizeof buf) != 0)
1220 continue;
1221 addr = extract_unsigned_integer (buf, sizeof buf);
1222
1223 /* Check for matching entry point. */
1224 if (target_read_memory (addr, buf, sizeof buf) != 0)
1225 continue;
1226 if (extract_unsigned_integer (buf, sizeof buf) != entry_point)
1227 continue;
1228
1229 /* Check for matching got value. */
1230 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1231 continue;
1232 if (extract_unsigned_integer (buf, sizeof buf) != got_value)
1233 continue;
1234
1235 /* Match was successful! Exit loop. */
1236 break;
1237 }
1238 }
1239
1240 return addr;
1241 }
1242
1243 /* Given an objfile, return the address of its link map. This value is
1244 needed for TLS support. */
1245 CORE_ADDR
1246 frv_fetch_objfile_link_map (struct objfile *objfile)
1247 {
1248 struct so_list *so;
1249
1250 /* Cause frv_current_sos() to be run if it hasn't been already. */
1251 if (main_lm_addr == 0)
1252 solib_add (0, 0, 0, 1);
1253
1254 /* frv_current_sos() will set main_lm_addr for the main executable. */
1255 if (objfile == symfile_objfile)
1256 return main_lm_addr;
1257
1258 /* The other link map addresses may be found by examining the list
1259 of shared libraries. */
1260 for (so = master_so_list (); so; so = so->next)
1261 {
1262 if (so->objfile == objfile)
1263 return so->lm_info->lm_addr;
1264 }
1265
1266 /* Not found! */
1267 return 0;
1268 }
1269
1270 struct target_so_ops frv_so_ops;
1271
1272 /* Provide a prototype to silence -Wmissing-prototypes. */
1273 extern initialize_file_ftype _initialize_frv_solib;
1274
1275 void
1276 _initialize_frv_solib (void)
1277 {
1278 frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses;
1279 frv_so_ops.free_so = frv_free_so;
1280 frv_so_ops.clear_solib = frv_clear_solib;
1281 frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook;
1282 frv_so_ops.special_symbol_handling = frv_special_symbol_handling;
1283 frv_so_ops.current_sos = frv_current_sos;
1284 frv_so_ops.open_symbol_file_object = open_symbol_file_object;
1285 frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code;
1286
1287 /* Debug this file's internals. */
1288 add_setshow_zinteger_cmd ("solib-frv", class_maintenance,
1289 &solib_frv_debug, _("\
1290 Set internal debugging of shared library code for FR-V."), _("\
1291 Show internal debugging of shared library code for FR-V."), _("\
1292 When non-zero, FR-V solib specific internal debugging is enabled."),
1293 NULL,
1294 NULL, /* FIXME: i18n: */
1295 &setdebuglist, &showdebuglist);
1296 }
This page took 0.055494 seconds and 5 git commands to generate.