Copyright year update in most files of the GDB Project.
[deliverable/binutils-gdb.git] / gdb / solib-frv.c
1 /* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
2 Copyright (C) 2004, 2007-2012 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19
20 #include "defs.h"
21 #include "gdb_string.h"
22 #include "inferior.h"
23 #include "gdbcore.h"
24 #include "solib.h"
25 #include "solist.h"
26 #include "frv-tdep.h"
27 #include "objfiles.h"
28 #include "symtab.h"
29 #include "language.h"
30 #include "command.h"
31 #include "gdbcmd.h"
32 #include "elf/frv.h"
33 #include "exceptions.h"
34
35 /* Flag which indicates whether internal debug messages should be printed. */
36 static int solib_frv_debug;
37
38 /* FR-V pointers are four bytes wide. */
39 enum { FRV_PTR_SIZE = 4 };
40
41 /* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
42
43 /* External versions; the size and alignment of the fields should be
44 the same as those on the target. When loaded, the placement of
45 the bits in each field will be the same as on the target. */
46 typedef gdb_byte ext_Elf32_Half[2];
47 typedef gdb_byte ext_Elf32_Addr[4];
48 typedef gdb_byte ext_Elf32_Word[4];
49
50 struct ext_elf32_fdpic_loadseg
51 {
52 /* Core address to which the segment is mapped. */
53 ext_Elf32_Addr addr;
54 /* VMA recorded in the program header. */
55 ext_Elf32_Addr p_vaddr;
56 /* Size of this segment in memory. */
57 ext_Elf32_Word p_memsz;
58 };
59
60 struct ext_elf32_fdpic_loadmap {
61 /* Protocol version number, must be zero. */
62 ext_Elf32_Half version;
63 /* Number of segments in this map. */
64 ext_Elf32_Half nsegs;
65 /* The actual memory map. */
66 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
67 };
68
69 /* Internal versions; the types are GDB types and the data in each
70 of the fields is (or will be) decoded from the external struct
71 for ease of consumption. */
72 struct int_elf32_fdpic_loadseg
73 {
74 /* Core address to which the segment is mapped. */
75 CORE_ADDR addr;
76 /* VMA recorded in the program header. */
77 CORE_ADDR p_vaddr;
78 /* Size of this segment in memory. */
79 long p_memsz;
80 };
81
82 struct int_elf32_fdpic_loadmap {
83 /* Protocol version number, must be zero. */
84 int version;
85 /* Number of segments in this map. */
86 int nsegs;
87 /* The actual memory map. */
88 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
89 };
90
91 /* Given address LDMADDR, fetch and decode the loadmap at that address.
92 Return NULL if there is a problem reading the target memory or if
93 there doesn't appear to be a loadmap at the given address. The
94 allocated space (representing the loadmap) returned by this
95 function may be freed via a single call to xfree(). */
96
97 static struct int_elf32_fdpic_loadmap *
98 fetch_loadmap (CORE_ADDR ldmaddr)
99 {
100 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
101 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
102 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
103 struct int_elf32_fdpic_loadmap *int_ldmbuf;
104 int ext_ldmbuf_size, int_ldmbuf_size;
105 int version, seg, nsegs;
106
107 /* Fetch initial portion of the loadmap. */
108 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
109 sizeof ext_ldmbuf_partial))
110 {
111 /* Problem reading the target's memory. */
112 return NULL;
113 }
114
115 /* Extract the version. */
116 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
117 sizeof ext_ldmbuf_partial.version,
118 byte_order);
119 if (version != 0)
120 {
121 /* We only handle version 0. */
122 return NULL;
123 }
124
125 /* Extract the number of segments. */
126 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
127 sizeof ext_ldmbuf_partial.nsegs,
128 byte_order);
129
130 if (nsegs <= 0)
131 return NULL;
132
133 /* Allocate space for the complete (external) loadmap. */
134 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
135 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
136 ext_ldmbuf = xmalloc (ext_ldmbuf_size);
137
138 /* Copy over the portion of the loadmap that's already been read. */
139 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
140
141 /* Read the rest of the loadmap from the target. */
142 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
143 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
144 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
145 {
146 /* Couldn't read rest of the loadmap. */
147 xfree (ext_ldmbuf);
148 return NULL;
149 }
150
151 /* Allocate space into which to put information extract from the
152 external loadsegs. I.e, allocate the internal loadsegs. */
153 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
154 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
155 int_ldmbuf = xmalloc (int_ldmbuf_size);
156
157 /* Place extracted information in internal structs. */
158 int_ldmbuf->version = version;
159 int_ldmbuf->nsegs = nsegs;
160 for (seg = 0; seg < nsegs; seg++)
161 {
162 int_ldmbuf->segs[seg].addr
163 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
164 sizeof (ext_ldmbuf->segs[seg].addr),
165 byte_order);
166 int_ldmbuf->segs[seg].p_vaddr
167 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
168 sizeof (ext_ldmbuf->segs[seg].p_vaddr),
169 byte_order);
170 int_ldmbuf->segs[seg].p_memsz
171 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
172 sizeof (ext_ldmbuf->segs[seg].p_memsz),
173 byte_order);
174 }
175
176 xfree (ext_ldmbuf);
177 return int_ldmbuf;
178 }
179
180 /* External link_map and elf32_fdpic_loadaddr struct definitions. */
181
182 typedef gdb_byte ext_ptr[4];
183
184 struct ext_elf32_fdpic_loadaddr
185 {
186 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
187 ext_ptr got_value; /* void *got_value; */
188 };
189
190 struct ext_link_map
191 {
192 struct ext_elf32_fdpic_loadaddr l_addr;
193
194 /* Absolute file name object was found in. */
195 ext_ptr l_name; /* char *l_name; */
196
197 /* Dynamic section of the shared object. */
198 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
199
200 /* Chain of loaded objects. */
201 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
202 };
203
204 /* Link map info to include in an allocated so_list entry. */
205
206 struct lm_info
207 {
208 /* The loadmap, digested into an easier to use form. */
209 struct int_elf32_fdpic_loadmap *map;
210 /* The GOT address for this link map entry. */
211 CORE_ADDR got_value;
212 /* The link map address, needed for frv_fetch_objfile_link_map(). */
213 CORE_ADDR lm_addr;
214
215 /* Cached dynamic symbol table and dynamic relocs initialized and
216 used only by find_canonical_descriptor_in_load_object().
217
218 Note: kevinb/2004-02-26: It appears that calls to
219 bfd_canonicalize_dynamic_reloc() will use the same symbols as
220 those supplied to the first call to this function. Therefore,
221 it's important to NOT free the asymbol ** data structure
222 supplied to the first call. Thus the caching of the dynamic
223 symbols (dyn_syms) is critical for correct operation. The
224 caching of the dynamic relocations could be dispensed with. */
225 asymbol **dyn_syms;
226 arelent **dyn_relocs;
227 int dyn_reloc_count; /* Number of dynamic relocs. */
228
229 };
230
231 /* The load map, got value, etc. are not available from the chain
232 of loaded shared objects. ``main_executable_lm_info'' provides
233 a way to get at this information so that it doesn't need to be
234 frequently recomputed. Initialized by frv_relocate_main_executable(). */
235 static struct lm_info *main_executable_lm_info;
236
237 static void frv_relocate_main_executable (void);
238 static CORE_ADDR main_got (void);
239 static int enable_break2 (void);
240
241 /* Implement the "open_symbol_file_object" target_so_ops method. */
242
243 static int
244 open_symbol_file_object (void *from_ttyp)
245 {
246 /* Unimplemented. */
247 return 0;
248 }
249
250 /* Cached value for lm_base(), below. */
251 static CORE_ADDR lm_base_cache = 0;
252
253 /* Link map address for main module. */
254 static CORE_ADDR main_lm_addr = 0;
255
256 /* Return the address from which the link map chain may be found. On
257 the FR-V, this may be found in a number of ways. Assuming that the
258 main executable has already been relocated, the easiest way to find
259 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
260 pointer to the start of the link map will be located at the word found
261 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
262 reserve area mandated by the ABI.) */
263
264 static CORE_ADDR
265 lm_base (void)
266 {
267 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
268 struct minimal_symbol *got_sym;
269 CORE_ADDR addr;
270 gdb_byte buf[FRV_PTR_SIZE];
271
272 /* One of our assumptions is that the main executable has been relocated.
273 Bail out if this has not happened. (Note that post_create_inferior()
274 in infcmd.c will call solib_add prior to solib_create_inferior_hook().
275 If we allow this to happen, lm_base_cache will be initialized with
276 a bogus value. */
277 if (main_executable_lm_info == 0)
278 return 0;
279
280 /* If we already have a cached value, return it. */
281 if (lm_base_cache)
282 return lm_base_cache;
283
284 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
285 symfile_objfile);
286 if (got_sym == 0)
287 {
288 if (solib_frv_debug)
289 fprintf_unfiltered (gdb_stdlog,
290 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
291 return 0;
292 }
293
294 addr = SYMBOL_VALUE_ADDRESS (got_sym) + 8;
295
296 if (solib_frv_debug)
297 fprintf_unfiltered (gdb_stdlog,
298 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
299 hex_string_custom (addr, 8));
300
301 if (target_read_memory (addr, buf, sizeof buf) != 0)
302 return 0;
303 lm_base_cache = extract_unsigned_integer (buf, sizeof buf, byte_order);
304
305 if (solib_frv_debug)
306 fprintf_unfiltered (gdb_stdlog,
307 "lm_base: lm_base_cache = %s\n",
308 hex_string_custom (lm_base_cache, 8));
309
310 return lm_base_cache;
311 }
312
313
314 /* Implement the "current_sos" target_so_ops method. */
315
316 static struct so_list *
317 frv_current_sos (void)
318 {
319 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
320 CORE_ADDR lm_addr, mgot;
321 struct so_list *sos_head = NULL;
322 struct so_list **sos_next_ptr = &sos_head;
323
324 /* Make sure that the main executable has been relocated. This is
325 required in order to find the address of the global offset table,
326 which in turn is used to find the link map info. (See lm_base()
327 for details.)
328
329 Note that the relocation of the main executable is also performed
330 by SOLIB_CREATE_INFERIOR_HOOK(), however, in the case of core
331 files, this hook is called too late in order to be of benefit to
332 SOLIB_ADD. SOLIB_ADD eventually calls this this function,
333 frv_current_sos, and also precedes the call to
334 SOLIB_CREATE_INFERIOR_HOOK(). (See post_create_inferior() in
335 infcmd.c.) */
336 if (main_executable_lm_info == 0 && core_bfd != NULL)
337 frv_relocate_main_executable ();
338
339 /* Fetch the GOT corresponding to the main executable. */
340 mgot = main_got ();
341
342 /* Locate the address of the first link map struct. */
343 lm_addr = lm_base ();
344
345 /* We have at least one link map entry. Fetch the lot of them,
346 building the solist chain. */
347 while (lm_addr)
348 {
349 struct ext_link_map lm_buf;
350 CORE_ADDR got_addr;
351
352 if (solib_frv_debug)
353 fprintf_unfiltered (gdb_stdlog,
354 "current_sos: reading link_map entry at %s\n",
355 hex_string_custom (lm_addr, 8));
356
357 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf,
358 sizeof (lm_buf)) != 0)
359 {
360 warning (_("frv_current_sos: Unable to read link map entry. "
361 "Shared object chain may be incomplete."));
362 break;
363 }
364
365 got_addr
366 = extract_unsigned_integer (lm_buf.l_addr.got_value,
367 sizeof (lm_buf.l_addr.got_value),
368 byte_order);
369 /* If the got_addr is the same as mgotr, then we're looking at the
370 entry for the main executable. By convention, we don't include
371 this in the list of shared objects. */
372 if (got_addr != mgot)
373 {
374 int errcode;
375 char *name_buf;
376 struct int_elf32_fdpic_loadmap *loadmap;
377 struct so_list *sop;
378 CORE_ADDR addr;
379
380 /* Fetch the load map address. */
381 addr = extract_unsigned_integer (lm_buf.l_addr.map,
382 sizeof lm_buf.l_addr.map,
383 byte_order);
384 loadmap = fetch_loadmap (addr);
385 if (loadmap == NULL)
386 {
387 warning (_("frv_current_sos: Unable to fetch load map. "
388 "Shared object chain may be incomplete."));
389 break;
390 }
391
392 sop = xcalloc (1, sizeof (struct so_list));
393 sop->lm_info = xcalloc (1, sizeof (struct lm_info));
394 sop->lm_info->map = loadmap;
395 sop->lm_info->got_value = got_addr;
396 sop->lm_info->lm_addr = lm_addr;
397 /* Fetch the name. */
398 addr = extract_unsigned_integer (lm_buf.l_name,
399 sizeof (lm_buf.l_name),
400 byte_order);
401 target_read_string (addr, &name_buf, SO_NAME_MAX_PATH_SIZE - 1,
402 &errcode);
403
404 if (solib_frv_debug)
405 fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n",
406 name_buf);
407
408 if (errcode != 0)
409 warning (_("Can't read pathname for link map entry: %s."),
410 safe_strerror (errcode));
411 else
412 {
413 strncpy (sop->so_name, name_buf, SO_NAME_MAX_PATH_SIZE - 1);
414 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
415 xfree (name_buf);
416 strcpy (sop->so_original_name, sop->so_name);
417 }
418
419 *sos_next_ptr = sop;
420 sos_next_ptr = &sop->next;
421 }
422 else
423 {
424 main_lm_addr = lm_addr;
425 }
426
427 lm_addr = extract_unsigned_integer (lm_buf.l_next,
428 sizeof (lm_buf.l_next), byte_order);
429 }
430
431 enable_break2 ();
432
433 return sos_head;
434 }
435
436
437 /* Return 1 if PC lies in the dynamic symbol resolution code of the
438 run time loader. */
439
440 static CORE_ADDR interp_text_sect_low;
441 static CORE_ADDR interp_text_sect_high;
442 static CORE_ADDR interp_plt_sect_low;
443 static CORE_ADDR interp_plt_sect_high;
444
445 static int
446 frv_in_dynsym_resolve_code (CORE_ADDR pc)
447 {
448 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
449 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
450 || in_plt_section (pc, NULL));
451 }
452
453 /* Given a loadmap and an address, return the displacement needed
454 to relocate the address. */
455
456 static CORE_ADDR
457 displacement_from_map (struct int_elf32_fdpic_loadmap *map,
458 CORE_ADDR addr)
459 {
460 int seg;
461
462 for (seg = 0; seg < map->nsegs; seg++)
463 {
464 if (map->segs[seg].p_vaddr <= addr
465 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
466 {
467 return map->segs[seg].addr - map->segs[seg].p_vaddr;
468 }
469 }
470
471 return 0;
472 }
473
474 /* Print a warning about being unable to set the dynamic linker
475 breakpoint. */
476
477 static void
478 enable_break_failure_warning (void)
479 {
480 warning (_("Unable to find dynamic linker breakpoint function.\n"
481 "GDB will be unable to debug shared library initializers\n"
482 "and track explicitly loaded dynamic code."));
483 }
484
485 /* Helper function for gdb_bfd_lookup_symbol. */
486
487 static int
488 cmp_name (asymbol *sym, void *data)
489 {
490 return (strcmp (sym->name, (const char *) data) == 0);
491 }
492
493 /* Arrange for dynamic linker to hit breakpoint.
494
495 The dynamic linkers has, as part of its debugger interface, support
496 for arranging for the inferior to hit a breakpoint after mapping in
497 the shared libraries. This function enables that breakpoint.
498
499 On the FR-V, using the shared library (FDPIC) ABI, the symbol
500 _dl_debug_addr points to the r_debug struct which contains
501 a field called r_brk. r_brk is the address of the function
502 descriptor upon which a breakpoint must be placed. Being a
503 function descriptor, we must extract the entry point in order
504 to set the breakpoint.
505
506 Our strategy will be to get the .interp section from the
507 executable. This section will provide us with the name of the
508 interpreter. We'll open the interpreter and then look up
509 the address of _dl_debug_addr. We then relocate this address
510 using the interpreter's loadmap. Once the relocated address
511 is known, we fetch the value (address) corresponding to r_brk
512 and then use that value to fetch the entry point of the function
513 we're interested in. */
514
515 static int enable_break2_done = 0;
516
517 static int
518 enable_break2 (void)
519 {
520 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
521 int success = 0;
522 char **bkpt_namep;
523 asection *interp_sect;
524
525 if (enable_break2_done)
526 return 1;
527
528 interp_text_sect_low = interp_text_sect_high = 0;
529 interp_plt_sect_low = interp_plt_sect_high = 0;
530
531 /* Find the .interp section; if not found, warn the user and drop
532 into the old breakpoint at symbol code. */
533 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
534 if (interp_sect)
535 {
536 unsigned int interp_sect_size;
537 gdb_byte *buf;
538 bfd *tmp_bfd = NULL;
539 int status;
540 CORE_ADDR addr, interp_loadmap_addr;
541 gdb_byte addr_buf[FRV_PTR_SIZE];
542 struct int_elf32_fdpic_loadmap *ldm;
543 volatile struct gdb_exception ex;
544
545 /* Read the contents of the .interp section into a local buffer;
546 the contents specify the dynamic linker this program uses. */
547 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
548 buf = alloca (interp_sect_size);
549 bfd_get_section_contents (exec_bfd, interp_sect,
550 buf, 0, interp_sect_size);
551
552 /* Now we need to figure out where the dynamic linker was
553 loaded so that we can load its symbols and place a breakpoint
554 in the dynamic linker itself.
555
556 This address is stored on the stack. However, I've been unable
557 to find any magic formula to find it for Solaris (appears to
558 be trivial on GNU/Linux). Therefore, we have to try an alternate
559 mechanism to find the dynamic linker's base address. */
560
561 TRY_CATCH (ex, RETURN_MASK_ALL)
562 {
563 tmp_bfd = solib_bfd_open (buf);
564 }
565 if (tmp_bfd == NULL)
566 {
567 enable_break_failure_warning ();
568 return 0;
569 }
570
571 status = frv_fdpic_loadmap_addresses (target_gdbarch,
572 &interp_loadmap_addr, 0);
573 if (status < 0)
574 {
575 warning (_("Unable to determine dynamic linker loadmap address."));
576 enable_break_failure_warning ();
577 bfd_close (tmp_bfd);
578 return 0;
579 }
580
581 if (solib_frv_debug)
582 fprintf_unfiltered (gdb_stdlog,
583 "enable_break: interp_loadmap_addr = %s\n",
584 hex_string_custom (interp_loadmap_addr, 8));
585
586 ldm = fetch_loadmap (interp_loadmap_addr);
587 if (ldm == NULL)
588 {
589 warning (_("Unable to load dynamic linker loadmap at address %s."),
590 hex_string_custom (interp_loadmap_addr, 8));
591 enable_break_failure_warning ();
592 bfd_close (tmp_bfd);
593 return 0;
594 }
595
596 /* Record the relocated start and end address of the dynamic linker
597 text and plt section for svr4_in_dynsym_resolve_code. */
598 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
599 if (interp_sect)
600 {
601 interp_text_sect_low
602 = bfd_section_vma (tmp_bfd, interp_sect);
603 interp_text_sect_low
604 += displacement_from_map (ldm, interp_text_sect_low);
605 interp_text_sect_high
606 = interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
607 }
608 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
609 if (interp_sect)
610 {
611 interp_plt_sect_low =
612 bfd_section_vma (tmp_bfd, interp_sect);
613 interp_plt_sect_low
614 += displacement_from_map (ldm, interp_plt_sect_low);
615 interp_plt_sect_high =
616 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
617 }
618
619 addr = gdb_bfd_lookup_symbol (tmp_bfd, cmp_name, "_dl_debug_addr");
620
621 if (addr == 0)
622 {
623 warning (_("Could not find symbol _dl_debug_addr "
624 "in dynamic linker"));
625 enable_break_failure_warning ();
626 bfd_close (tmp_bfd);
627 return 0;
628 }
629
630 if (solib_frv_debug)
631 fprintf_unfiltered (gdb_stdlog,
632 "enable_break: _dl_debug_addr "
633 "(prior to relocation) = %s\n",
634 hex_string_custom (addr, 8));
635
636 addr += displacement_from_map (ldm, addr);
637
638 if (solib_frv_debug)
639 fprintf_unfiltered (gdb_stdlog,
640 "enable_break: _dl_debug_addr "
641 "(after relocation) = %s\n",
642 hex_string_custom (addr, 8));
643
644 /* Fetch the address of the r_debug struct. */
645 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
646 {
647 warning (_("Unable to fetch contents of _dl_debug_addr "
648 "(at address %s) from dynamic linker"),
649 hex_string_custom (addr, 8));
650 }
651 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
652
653 if (solib_frv_debug)
654 fprintf_unfiltered (gdb_stdlog,
655 "enable_break: _dl_debug_addr[0..3] = %s\n",
656 hex_string_custom (addr, 8));
657
658 /* If it's zero, then the ldso hasn't initialized yet, and so
659 there are no shared libs yet loaded. */
660 if (addr == 0)
661 {
662 if (solib_frv_debug)
663 fprintf_unfiltered (gdb_stdlog,
664 "enable_break: ldso not yet initialized\n");
665 /* Do not warn, but mark to run again. */
666 return 0;
667 }
668
669 /* Fetch the r_brk field. It's 8 bytes from the start of
670 _dl_debug_addr. */
671 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
672 {
673 warning (_("Unable to fetch _dl_debug_addr->r_brk "
674 "(at address %s) from dynamic linker"),
675 hex_string_custom (addr + 8, 8));
676 enable_break_failure_warning ();
677 bfd_close (tmp_bfd);
678 return 0;
679 }
680 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
681
682 /* Now fetch the function entry point. */
683 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
684 {
685 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point "
686 "(at address %s) from dynamic linker"),
687 hex_string_custom (addr, 8));
688 enable_break_failure_warning ();
689 bfd_close (tmp_bfd);
690 return 0;
691 }
692 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
693
694 /* We're done with the temporary bfd. */
695 bfd_close (tmp_bfd);
696
697 /* We're also done with the loadmap. */
698 xfree (ldm);
699
700 /* Remove all the solib event breakpoints. Their addresses
701 may have changed since the last time we ran the program. */
702 remove_solib_event_breakpoints ();
703
704 /* Now (finally!) create the solib breakpoint. */
705 create_solib_event_breakpoint (target_gdbarch, addr);
706
707 enable_break2_done = 1;
708
709 return 1;
710 }
711
712 /* Tell the user we couldn't set a dynamic linker breakpoint. */
713 enable_break_failure_warning ();
714
715 /* Failure return. */
716 return 0;
717 }
718
719 static int
720 enable_break (void)
721 {
722 asection *interp_sect;
723
724 if (symfile_objfile == NULL)
725 {
726 if (solib_frv_debug)
727 fprintf_unfiltered (gdb_stdlog,
728 "enable_break: No symbol file found.\n");
729 return 0;
730 }
731
732 if (!symfile_objfile->ei.entry_point_p)
733 {
734 if (solib_frv_debug)
735 fprintf_unfiltered (gdb_stdlog,
736 "enable_break: Symbol file has no entry point.\n");
737 return 0;
738 }
739
740 /* Check for the presence of a .interp section. If there is no
741 such section, the executable is statically linked. */
742
743 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
744
745 if (interp_sect == NULL)
746 {
747 if (solib_frv_debug)
748 fprintf_unfiltered (gdb_stdlog,
749 "enable_break: No .interp section found.\n");
750 return 0;
751 }
752
753 create_solib_event_breakpoint (target_gdbarch,
754 symfile_objfile->ei.entry_point);
755
756 if (solib_frv_debug)
757 fprintf_unfiltered (gdb_stdlog,
758 "enable_break: solib event breakpoint "
759 "placed at entry point: %s\n",
760 hex_string_custom (symfile_objfile->ei.entry_point,
761 8));
762 return 1;
763 }
764
765 /* Implement the "special_symbol_handling" target_so_ops method. */
766
767 static void
768 frv_special_symbol_handling (void)
769 {
770 /* Nothing needed for FRV. */
771 }
772
773 static void
774 frv_relocate_main_executable (void)
775 {
776 int status;
777 CORE_ADDR exec_addr, interp_addr;
778 struct int_elf32_fdpic_loadmap *ldm;
779 struct cleanup *old_chain;
780 struct section_offsets *new_offsets;
781 int changed;
782 struct obj_section *osect;
783
784 status = frv_fdpic_loadmap_addresses (target_gdbarch,
785 &interp_addr, &exec_addr);
786
787 if (status < 0 || (exec_addr == 0 && interp_addr == 0))
788 {
789 /* Not using FDPIC ABI, so do nothing. */
790 return;
791 }
792
793 /* Fetch the loadmap located at ``exec_addr''. */
794 ldm = fetch_loadmap (exec_addr);
795 if (ldm == NULL)
796 error (_("Unable to load the executable's loadmap."));
797
798 if (main_executable_lm_info)
799 xfree (main_executable_lm_info);
800 main_executable_lm_info = xcalloc (1, sizeof (struct lm_info));
801 main_executable_lm_info->map = ldm;
802
803 new_offsets = xcalloc (symfile_objfile->num_sections,
804 sizeof (struct section_offsets));
805 old_chain = make_cleanup (xfree, new_offsets);
806 changed = 0;
807
808 ALL_OBJFILE_OSECTIONS (symfile_objfile, osect)
809 {
810 CORE_ADDR orig_addr, addr, offset;
811 int osect_idx;
812 int seg;
813
814 osect_idx = osect->the_bfd_section->index;
815
816 /* Current address of section. */
817 addr = obj_section_addr (osect);
818 /* Offset from where this section started. */
819 offset = ANOFFSET (symfile_objfile->section_offsets, osect_idx);
820 /* Original address prior to any past relocations. */
821 orig_addr = addr - offset;
822
823 for (seg = 0; seg < ldm->nsegs; seg++)
824 {
825 if (ldm->segs[seg].p_vaddr <= orig_addr
826 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
827 {
828 new_offsets->offsets[osect_idx]
829 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
830
831 if (new_offsets->offsets[osect_idx] != offset)
832 changed = 1;
833 break;
834 }
835 }
836 }
837
838 if (changed)
839 objfile_relocate (symfile_objfile, new_offsets);
840
841 do_cleanups (old_chain);
842
843 /* Now that symfile_objfile has been relocated, we can compute the
844 GOT value and stash it away. */
845 main_executable_lm_info->got_value = main_got ();
846 }
847
848 /* Implement the "create_inferior_hook" target_solib_ops method.
849
850 For the FR-V shared library ABI (FDPIC), the main executable needs
851 to be relocated. The shared library breakpoints also need to be
852 enabled. */
853
854 static void
855 frv_solib_create_inferior_hook (int from_tty)
856 {
857 /* Relocate main executable. */
858 frv_relocate_main_executable ();
859
860 /* Enable shared library breakpoints. */
861 if (!enable_break ())
862 {
863 warning (_("shared library handler failed to enable breakpoint"));
864 return;
865 }
866 }
867
868 static void
869 frv_clear_solib (void)
870 {
871 lm_base_cache = 0;
872 enable_break2_done = 0;
873 main_lm_addr = 0;
874 if (main_executable_lm_info != 0)
875 {
876 xfree (main_executable_lm_info->map);
877 xfree (main_executable_lm_info->dyn_syms);
878 xfree (main_executable_lm_info->dyn_relocs);
879 xfree (main_executable_lm_info);
880 main_executable_lm_info = 0;
881 }
882 }
883
884 static void
885 frv_free_so (struct so_list *so)
886 {
887 xfree (so->lm_info->map);
888 xfree (so->lm_info->dyn_syms);
889 xfree (so->lm_info->dyn_relocs);
890 xfree (so->lm_info);
891 }
892
893 static void
894 frv_relocate_section_addresses (struct so_list *so,
895 struct target_section *sec)
896 {
897 int seg;
898 struct int_elf32_fdpic_loadmap *map;
899
900 map = so->lm_info->map;
901
902 for (seg = 0; seg < map->nsegs; seg++)
903 {
904 if (map->segs[seg].p_vaddr <= sec->addr
905 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
906 {
907 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
908
909 sec->addr += displ;
910 sec->endaddr += displ;
911 break;
912 }
913 }
914 }
915
916 /* Return the GOT address associated with the main executable. Return
917 0 if it can't be found. */
918
919 static CORE_ADDR
920 main_got (void)
921 {
922 struct minimal_symbol *got_sym;
923
924 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_",
925 NULL, symfile_objfile);
926 if (got_sym == 0)
927 return 0;
928
929 return SYMBOL_VALUE_ADDRESS (got_sym);
930 }
931
932 /* Find the global pointer for the given function address ADDR. */
933
934 CORE_ADDR
935 frv_fdpic_find_global_pointer (CORE_ADDR addr)
936 {
937 struct so_list *so;
938
939 so = master_so_list ();
940 while (so)
941 {
942 int seg;
943 struct int_elf32_fdpic_loadmap *map;
944
945 map = so->lm_info->map;
946
947 for (seg = 0; seg < map->nsegs; seg++)
948 {
949 if (map->segs[seg].addr <= addr
950 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
951 return so->lm_info->got_value;
952 }
953
954 so = so->next;
955 }
956
957 /* Didn't find it in any of the shared objects. So assume it's in the
958 main executable. */
959 return main_got ();
960 }
961
962 /* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
963 static CORE_ADDR find_canonical_descriptor_in_load_object
964 (CORE_ADDR, CORE_ADDR, char *, bfd *, struct lm_info *);
965
966 /* Given a function entry point, attempt to find the canonical descriptor
967 associated with that entry point. Return 0 if no canonical descriptor
968 could be found. */
969
970 CORE_ADDR
971 frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
972 {
973 char *name;
974 CORE_ADDR addr;
975 CORE_ADDR got_value;
976 struct int_elf32_fdpic_loadmap *ldm = 0;
977 struct symbol *sym;
978 int status;
979 CORE_ADDR exec_loadmap_addr;
980
981 /* Fetch the corresponding global pointer for the entry point. */
982 got_value = frv_fdpic_find_global_pointer (entry_point);
983
984 /* Attempt to find the name of the function. If the name is available,
985 it'll be used as an aid in finding matching functions in the dynamic
986 symbol table. */
987 sym = find_pc_function (entry_point);
988 if (sym == 0)
989 name = 0;
990 else
991 name = SYMBOL_LINKAGE_NAME (sym);
992
993 /* Check the main executable. */
994 addr = find_canonical_descriptor_in_load_object
995 (entry_point, got_value, name, symfile_objfile->obfd,
996 main_executable_lm_info);
997
998 /* If descriptor not found via main executable, check each load object
999 in list of shared objects. */
1000 if (addr == 0)
1001 {
1002 struct so_list *so;
1003
1004 so = master_so_list ();
1005 while (so)
1006 {
1007 addr = find_canonical_descriptor_in_load_object
1008 (entry_point, got_value, name, so->abfd, so->lm_info);
1009
1010 if (addr != 0)
1011 break;
1012
1013 so = so->next;
1014 }
1015 }
1016
1017 return addr;
1018 }
1019
1020 static CORE_ADDR
1021 find_canonical_descriptor_in_load_object
1022 (CORE_ADDR entry_point, CORE_ADDR got_value, char *name, bfd *abfd,
1023 struct lm_info *lm)
1024 {
1025 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
1026 arelent *rel;
1027 unsigned int i;
1028 CORE_ADDR addr = 0;
1029
1030 /* Nothing to do if no bfd. */
1031 if (abfd == 0)
1032 return 0;
1033
1034 /* Nothing to do if no link map. */
1035 if (lm == 0)
1036 return 0;
1037
1038 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
1039 (More about this later.) But in order to fetch the relocs, we
1040 need to first fetch the dynamic symbols. These symbols need to
1041 be cached due to the way that bfd_canonicalize_dynamic_reloc()
1042 works. (See the comments in the declaration of struct lm_info
1043 for more information.) */
1044 if (lm->dyn_syms == NULL)
1045 {
1046 long storage_needed;
1047 unsigned int number_of_symbols;
1048
1049 /* Determine amount of space needed to hold the dynamic symbol table. */
1050 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1051
1052 /* If there are no dynamic symbols, there's nothing to do. */
1053 if (storage_needed <= 0)
1054 return 0;
1055
1056 /* Allocate space for the dynamic symbol table. */
1057 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
1058
1059 /* Fetch the dynamic symbol table. */
1060 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
1061
1062 if (number_of_symbols == 0)
1063 return 0;
1064 }
1065
1066 /* Fetch the dynamic relocations if not already cached. */
1067 if (lm->dyn_relocs == NULL)
1068 {
1069 long storage_needed;
1070
1071 /* Determine amount of space needed to hold the dynamic relocs. */
1072 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
1073
1074 /* Bail out if there are no dynamic relocs. */
1075 if (storage_needed <= 0)
1076 return 0;
1077
1078 /* Allocate space for the relocs. */
1079 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
1080
1081 /* Fetch the dynamic relocs. */
1082 lm->dyn_reloc_count
1083 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
1084 }
1085
1086 /* Search the dynamic relocs. */
1087 for (i = 0; i < lm->dyn_reloc_count; i++)
1088 {
1089 rel = lm->dyn_relocs[i];
1090
1091 /* Relocs of interest are those which meet the following
1092 criteria:
1093
1094 - the names match (assuming the caller could provide
1095 a name which matches ``entry_point'').
1096 - the relocation type must be R_FRV_FUNCDESC. Relocs
1097 of this type are used (by the dynamic linker) to
1098 look up the address of a canonical descriptor (allocating
1099 it if need be) and initializing the GOT entry referred
1100 to by the offset to the address of the descriptor.
1101
1102 These relocs of interest may be used to obtain a
1103 candidate descriptor by first adjusting the reloc's
1104 address according to the link map and then dereferencing
1105 this address (which is a GOT entry) to obtain a descriptor
1106 address. */
1107 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
1108 && rel->howto->type == R_FRV_FUNCDESC)
1109 {
1110 gdb_byte buf [FRV_PTR_SIZE];
1111
1112 /* Compute address of address of candidate descriptor. */
1113 addr = rel->address + displacement_from_map (lm->map, rel->address);
1114
1115 /* Fetch address of candidate descriptor. */
1116 if (target_read_memory (addr, buf, sizeof buf) != 0)
1117 continue;
1118 addr = extract_unsigned_integer (buf, sizeof buf, byte_order);
1119
1120 /* Check for matching entry point. */
1121 if (target_read_memory (addr, buf, sizeof buf) != 0)
1122 continue;
1123 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1124 != entry_point)
1125 continue;
1126
1127 /* Check for matching got value. */
1128 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1129 continue;
1130 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1131 != got_value)
1132 continue;
1133
1134 /* Match was successful! Exit loop. */
1135 break;
1136 }
1137 }
1138
1139 return addr;
1140 }
1141
1142 /* Given an objfile, return the address of its link map. This value is
1143 needed for TLS support. */
1144 CORE_ADDR
1145 frv_fetch_objfile_link_map (struct objfile *objfile)
1146 {
1147 struct so_list *so;
1148
1149 /* Cause frv_current_sos() to be run if it hasn't been already. */
1150 if (main_lm_addr == 0)
1151 solib_add (0, 0, 0, 1);
1152
1153 /* frv_current_sos() will set main_lm_addr for the main executable. */
1154 if (objfile == symfile_objfile)
1155 return main_lm_addr;
1156
1157 /* The other link map addresses may be found by examining the list
1158 of shared libraries. */
1159 for (so = master_so_list (); so; so = so->next)
1160 {
1161 if (so->objfile == objfile)
1162 return so->lm_info->lm_addr;
1163 }
1164
1165 /* Not found! */
1166 return 0;
1167 }
1168
1169 struct target_so_ops frv_so_ops;
1170
1171 /* Provide a prototype to silence -Wmissing-prototypes. */
1172 extern initialize_file_ftype _initialize_frv_solib;
1173
1174 void
1175 _initialize_frv_solib (void)
1176 {
1177 frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses;
1178 frv_so_ops.free_so = frv_free_so;
1179 frv_so_ops.clear_solib = frv_clear_solib;
1180 frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook;
1181 frv_so_ops.special_symbol_handling = frv_special_symbol_handling;
1182 frv_so_ops.current_sos = frv_current_sos;
1183 frv_so_ops.open_symbol_file_object = open_symbol_file_object;
1184 frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code;
1185 frv_so_ops.bfd_open = solib_bfd_open;
1186
1187 /* Debug this file's internals. */
1188 add_setshow_zinteger_cmd ("solib-frv", class_maintenance,
1189 &solib_frv_debug, _("\
1190 Set internal debugging of shared library code for FR-V."), _("\
1191 Show internal debugging of shared library code for FR-V."), _("\
1192 When non-zero, FR-V solib specific internal debugging is enabled."),
1193 NULL,
1194 NULL, /* FIXME: i18n: */
1195 &setdebuglist, &showdebuglist);
1196 }
This page took 0.054738 seconds and 5 git commands to generate.