Use class to manage BFD reference counts
[deliverable/binutils-gdb.git] / gdb / solib-frv.c
1 /* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
2 Copyright (C) 2004-2017 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "gdbcore.h"
23 #include "solib.h"
24 #include "solist.h"
25 #include "frv-tdep.h"
26 #include "objfiles.h"
27 #include "symtab.h"
28 #include "language.h"
29 #include "command.h"
30 #include "gdbcmd.h"
31 #include "elf/frv.h"
32 #include "gdb_bfd.h"
33
34 /* Flag which indicates whether internal debug messages should be printed. */
35 static unsigned int solib_frv_debug;
36
37 /* FR-V pointers are four bytes wide. */
38 enum { FRV_PTR_SIZE = 4 };
39
40 /* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
41
42 /* External versions; the size and alignment of the fields should be
43 the same as those on the target. When loaded, the placement of
44 the bits in each field will be the same as on the target. */
45 typedef gdb_byte ext_Elf32_Half[2];
46 typedef gdb_byte ext_Elf32_Addr[4];
47 typedef gdb_byte ext_Elf32_Word[4];
48
49 struct ext_elf32_fdpic_loadseg
50 {
51 /* Core address to which the segment is mapped. */
52 ext_Elf32_Addr addr;
53 /* VMA recorded in the program header. */
54 ext_Elf32_Addr p_vaddr;
55 /* Size of this segment in memory. */
56 ext_Elf32_Word p_memsz;
57 };
58
59 struct ext_elf32_fdpic_loadmap {
60 /* Protocol version number, must be zero. */
61 ext_Elf32_Half version;
62 /* Number of segments in this map. */
63 ext_Elf32_Half nsegs;
64 /* The actual memory map. */
65 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
66 };
67
68 /* Internal versions; the types are GDB types and the data in each
69 of the fields is (or will be) decoded from the external struct
70 for ease of consumption. */
71 struct int_elf32_fdpic_loadseg
72 {
73 /* Core address to which the segment is mapped. */
74 CORE_ADDR addr;
75 /* VMA recorded in the program header. */
76 CORE_ADDR p_vaddr;
77 /* Size of this segment in memory. */
78 long p_memsz;
79 };
80
81 struct int_elf32_fdpic_loadmap {
82 /* Protocol version number, must be zero. */
83 int version;
84 /* Number of segments in this map. */
85 int nsegs;
86 /* The actual memory map. */
87 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
88 };
89
90 /* Given address LDMADDR, fetch and decode the loadmap at that address.
91 Return NULL if there is a problem reading the target memory or if
92 there doesn't appear to be a loadmap at the given address. The
93 allocated space (representing the loadmap) returned by this
94 function may be freed via a single call to xfree(). */
95
96 static struct int_elf32_fdpic_loadmap *
97 fetch_loadmap (CORE_ADDR ldmaddr)
98 {
99 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
100 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
101 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
102 struct int_elf32_fdpic_loadmap *int_ldmbuf;
103 int ext_ldmbuf_size, int_ldmbuf_size;
104 int version, seg, nsegs;
105
106 /* Fetch initial portion of the loadmap. */
107 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
108 sizeof ext_ldmbuf_partial))
109 {
110 /* Problem reading the target's memory. */
111 return NULL;
112 }
113
114 /* Extract the version. */
115 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
116 sizeof ext_ldmbuf_partial.version,
117 byte_order);
118 if (version != 0)
119 {
120 /* We only handle version 0. */
121 return NULL;
122 }
123
124 /* Extract the number of segments. */
125 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
126 sizeof ext_ldmbuf_partial.nsegs,
127 byte_order);
128
129 if (nsegs <= 0)
130 return NULL;
131
132 /* Allocate space for the complete (external) loadmap. */
133 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
134 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
135 ext_ldmbuf = (struct ext_elf32_fdpic_loadmap *) xmalloc (ext_ldmbuf_size);
136
137 /* Copy over the portion of the loadmap that's already been read. */
138 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
139
140 /* Read the rest of the loadmap from the target. */
141 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
142 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
143 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
144 {
145 /* Couldn't read rest of the loadmap. */
146 xfree (ext_ldmbuf);
147 return NULL;
148 }
149
150 /* Allocate space into which to put information extract from the
151 external loadsegs. I.e, allocate the internal loadsegs. */
152 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
153 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
154 int_ldmbuf = (struct int_elf32_fdpic_loadmap *) xmalloc (int_ldmbuf_size);
155
156 /* Place extracted information in internal structs. */
157 int_ldmbuf->version = version;
158 int_ldmbuf->nsegs = nsegs;
159 for (seg = 0; seg < nsegs; seg++)
160 {
161 int_ldmbuf->segs[seg].addr
162 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
163 sizeof (ext_ldmbuf->segs[seg].addr),
164 byte_order);
165 int_ldmbuf->segs[seg].p_vaddr
166 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
167 sizeof (ext_ldmbuf->segs[seg].p_vaddr),
168 byte_order);
169 int_ldmbuf->segs[seg].p_memsz
170 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
171 sizeof (ext_ldmbuf->segs[seg].p_memsz),
172 byte_order);
173 }
174
175 xfree (ext_ldmbuf);
176 return int_ldmbuf;
177 }
178
179 /* External link_map and elf32_fdpic_loadaddr struct definitions. */
180
181 typedef gdb_byte ext_ptr[4];
182
183 struct ext_elf32_fdpic_loadaddr
184 {
185 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
186 ext_ptr got_value; /* void *got_value; */
187 };
188
189 struct ext_link_map
190 {
191 struct ext_elf32_fdpic_loadaddr l_addr;
192
193 /* Absolute file name object was found in. */
194 ext_ptr l_name; /* char *l_name; */
195
196 /* Dynamic section of the shared object. */
197 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
198
199 /* Chain of loaded objects. */
200 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
201 };
202
203 /* Link map info to include in an allocated so_list entry. */
204
205 struct lm_info
206 {
207 /* The loadmap, digested into an easier to use form. */
208 struct int_elf32_fdpic_loadmap *map;
209 /* The GOT address for this link map entry. */
210 CORE_ADDR got_value;
211 /* The link map address, needed for frv_fetch_objfile_link_map(). */
212 CORE_ADDR lm_addr;
213
214 /* Cached dynamic symbol table and dynamic relocs initialized and
215 used only by find_canonical_descriptor_in_load_object().
216
217 Note: kevinb/2004-02-26: It appears that calls to
218 bfd_canonicalize_dynamic_reloc() will use the same symbols as
219 those supplied to the first call to this function. Therefore,
220 it's important to NOT free the asymbol ** data structure
221 supplied to the first call. Thus the caching of the dynamic
222 symbols (dyn_syms) is critical for correct operation. The
223 caching of the dynamic relocations could be dispensed with. */
224 asymbol **dyn_syms;
225 arelent **dyn_relocs;
226 int dyn_reloc_count; /* Number of dynamic relocs. */
227
228 };
229
230 /* The load map, got value, etc. are not available from the chain
231 of loaded shared objects. ``main_executable_lm_info'' provides
232 a way to get at this information so that it doesn't need to be
233 frequently recomputed. Initialized by frv_relocate_main_executable(). */
234 static struct lm_info *main_executable_lm_info;
235
236 static void frv_relocate_main_executable (void);
237 static CORE_ADDR main_got (void);
238 static int enable_break2 (void);
239
240 /* Implement the "open_symbol_file_object" target_so_ops method. */
241
242 static int
243 open_symbol_file_object (void *from_ttyp)
244 {
245 /* Unimplemented. */
246 return 0;
247 }
248
249 /* Cached value for lm_base(), below. */
250 static CORE_ADDR lm_base_cache = 0;
251
252 /* Link map address for main module. */
253 static CORE_ADDR main_lm_addr = 0;
254
255 /* Return the address from which the link map chain may be found. On
256 the FR-V, this may be found in a number of ways. Assuming that the
257 main executable has already been relocated, the easiest way to find
258 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
259 pointer to the start of the link map will be located at the word found
260 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
261 reserve area mandated by the ABI.) */
262
263 static CORE_ADDR
264 lm_base (void)
265 {
266 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
267 struct bound_minimal_symbol got_sym;
268 CORE_ADDR addr;
269 gdb_byte buf[FRV_PTR_SIZE];
270
271 /* One of our assumptions is that the main executable has been relocated.
272 Bail out if this has not happened. (Note that post_create_inferior()
273 in infcmd.c will call solib_add prior to solib_create_inferior_hook().
274 If we allow this to happen, lm_base_cache will be initialized with
275 a bogus value. */
276 if (main_executable_lm_info == 0)
277 return 0;
278
279 /* If we already have a cached value, return it. */
280 if (lm_base_cache)
281 return lm_base_cache;
282
283 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
284 symfile_objfile);
285 if (got_sym.minsym == 0)
286 {
287 if (solib_frv_debug)
288 fprintf_unfiltered (gdb_stdlog,
289 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
290 return 0;
291 }
292
293 addr = BMSYMBOL_VALUE_ADDRESS (got_sym) + 8;
294
295 if (solib_frv_debug)
296 fprintf_unfiltered (gdb_stdlog,
297 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
298 hex_string_custom (addr, 8));
299
300 if (target_read_memory (addr, buf, sizeof buf) != 0)
301 return 0;
302 lm_base_cache = extract_unsigned_integer (buf, sizeof buf, byte_order);
303
304 if (solib_frv_debug)
305 fprintf_unfiltered (gdb_stdlog,
306 "lm_base: lm_base_cache = %s\n",
307 hex_string_custom (lm_base_cache, 8));
308
309 return lm_base_cache;
310 }
311
312
313 /* Implement the "current_sos" target_so_ops method. */
314
315 static struct so_list *
316 frv_current_sos (void)
317 {
318 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
319 CORE_ADDR lm_addr, mgot;
320 struct so_list *sos_head = NULL;
321 struct so_list **sos_next_ptr = &sos_head;
322
323 /* Make sure that the main executable has been relocated. This is
324 required in order to find the address of the global offset table,
325 which in turn is used to find the link map info. (See lm_base()
326 for details.)
327
328 Note that the relocation of the main executable is also performed
329 by solib_create_inferior_hook(), however, in the case of core
330 files, this hook is called too late in order to be of benefit to
331 solib_add. solib_add eventually calls this this function,
332 frv_current_sos, and also precedes the call to
333 solib_create_inferior_hook(). (See post_create_inferior() in
334 infcmd.c.) */
335 if (main_executable_lm_info == 0 && core_bfd != NULL)
336 frv_relocate_main_executable ();
337
338 /* Fetch the GOT corresponding to the main executable. */
339 mgot = main_got ();
340
341 /* Locate the address of the first link map struct. */
342 lm_addr = lm_base ();
343
344 /* We have at least one link map entry. Fetch the lot of them,
345 building the solist chain. */
346 while (lm_addr)
347 {
348 struct ext_link_map lm_buf;
349 CORE_ADDR got_addr;
350
351 if (solib_frv_debug)
352 fprintf_unfiltered (gdb_stdlog,
353 "current_sos: reading link_map entry at %s\n",
354 hex_string_custom (lm_addr, 8));
355
356 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf,
357 sizeof (lm_buf)) != 0)
358 {
359 warning (_("frv_current_sos: Unable to read link map entry. "
360 "Shared object chain may be incomplete."));
361 break;
362 }
363
364 got_addr
365 = extract_unsigned_integer (lm_buf.l_addr.got_value,
366 sizeof (lm_buf.l_addr.got_value),
367 byte_order);
368 /* If the got_addr is the same as mgotr, then we're looking at the
369 entry for the main executable. By convention, we don't include
370 this in the list of shared objects. */
371 if (got_addr != mgot)
372 {
373 int errcode;
374 char *name_buf;
375 struct int_elf32_fdpic_loadmap *loadmap;
376 struct so_list *sop;
377 CORE_ADDR addr;
378
379 /* Fetch the load map address. */
380 addr = extract_unsigned_integer (lm_buf.l_addr.map,
381 sizeof lm_buf.l_addr.map,
382 byte_order);
383 loadmap = fetch_loadmap (addr);
384 if (loadmap == NULL)
385 {
386 warning (_("frv_current_sos: Unable to fetch load map. "
387 "Shared object chain may be incomplete."));
388 break;
389 }
390
391 sop = XCNEW (struct so_list);
392 sop->lm_info = XCNEW (struct lm_info);
393 sop->lm_info->map = loadmap;
394 sop->lm_info->got_value = got_addr;
395 sop->lm_info->lm_addr = lm_addr;
396 /* Fetch the name. */
397 addr = extract_unsigned_integer (lm_buf.l_name,
398 sizeof (lm_buf.l_name),
399 byte_order);
400 target_read_string (addr, &name_buf, SO_NAME_MAX_PATH_SIZE - 1,
401 &errcode);
402
403 if (solib_frv_debug)
404 fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n",
405 name_buf);
406
407 if (errcode != 0)
408 warning (_("Can't read pathname for link map entry: %s."),
409 safe_strerror (errcode));
410 else
411 {
412 strncpy (sop->so_name, name_buf, SO_NAME_MAX_PATH_SIZE - 1);
413 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
414 xfree (name_buf);
415 strcpy (sop->so_original_name, sop->so_name);
416 }
417
418 *sos_next_ptr = sop;
419 sos_next_ptr = &sop->next;
420 }
421 else
422 {
423 main_lm_addr = lm_addr;
424 }
425
426 lm_addr = extract_unsigned_integer (lm_buf.l_next,
427 sizeof (lm_buf.l_next), byte_order);
428 }
429
430 enable_break2 ();
431
432 return sos_head;
433 }
434
435
436 /* Return 1 if PC lies in the dynamic symbol resolution code of the
437 run time loader. */
438
439 static CORE_ADDR interp_text_sect_low;
440 static CORE_ADDR interp_text_sect_high;
441 static CORE_ADDR interp_plt_sect_low;
442 static CORE_ADDR interp_plt_sect_high;
443
444 static int
445 frv_in_dynsym_resolve_code (CORE_ADDR pc)
446 {
447 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
448 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
449 || in_plt_section (pc));
450 }
451
452 /* Given a loadmap and an address, return the displacement needed
453 to relocate the address. */
454
455 static CORE_ADDR
456 displacement_from_map (struct int_elf32_fdpic_loadmap *map,
457 CORE_ADDR addr)
458 {
459 int seg;
460
461 for (seg = 0; seg < map->nsegs; seg++)
462 {
463 if (map->segs[seg].p_vaddr <= addr
464 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
465 {
466 return map->segs[seg].addr - map->segs[seg].p_vaddr;
467 }
468 }
469
470 return 0;
471 }
472
473 /* Print a warning about being unable to set the dynamic linker
474 breakpoint. */
475
476 static void
477 enable_break_failure_warning (void)
478 {
479 warning (_("Unable to find dynamic linker breakpoint function.\n"
480 "GDB will be unable to debug shared library initializers\n"
481 "and track explicitly loaded dynamic code."));
482 }
483
484 /* Helper function for gdb_bfd_lookup_symbol. */
485
486 static int
487 cmp_name (const asymbol *sym, const void *data)
488 {
489 return (strcmp (sym->name, (const char *) data) == 0);
490 }
491
492 /* Arrange for dynamic linker to hit breakpoint.
493
494 The dynamic linkers has, as part of its debugger interface, support
495 for arranging for the inferior to hit a breakpoint after mapping in
496 the shared libraries. This function enables that breakpoint.
497
498 On the FR-V, using the shared library (FDPIC) ABI, the symbol
499 _dl_debug_addr points to the r_debug struct which contains
500 a field called r_brk. r_brk is the address of the function
501 descriptor upon which a breakpoint must be placed. Being a
502 function descriptor, we must extract the entry point in order
503 to set the breakpoint.
504
505 Our strategy will be to get the .interp section from the
506 executable. This section will provide us with the name of the
507 interpreter. We'll open the interpreter and then look up
508 the address of _dl_debug_addr. We then relocate this address
509 using the interpreter's loadmap. Once the relocated address
510 is known, we fetch the value (address) corresponding to r_brk
511 and then use that value to fetch the entry point of the function
512 we're interested in. */
513
514 static int enable_break2_done = 0;
515
516 static int
517 enable_break2 (void)
518 {
519 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
520 asection *interp_sect;
521
522 if (enable_break2_done)
523 return 1;
524
525 interp_text_sect_low = interp_text_sect_high = 0;
526 interp_plt_sect_low = interp_plt_sect_high = 0;
527
528 /* Find the .interp section; if not found, warn the user and drop
529 into the old breakpoint at symbol code. */
530 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
531 if (interp_sect)
532 {
533 unsigned int interp_sect_size;
534 char *buf;
535 int status;
536 CORE_ADDR addr, interp_loadmap_addr;
537 gdb_byte addr_buf[FRV_PTR_SIZE];
538 struct int_elf32_fdpic_loadmap *ldm;
539
540 /* Read the contents of the .interp section into a local buffer;
541 the contents specify the dynamic linker this program uses. */
542 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
543 buf = (char *) alloca (interp_sect_size);
544 bfd_get_section_contents (exec_bfd, interp_sect,
545 buf, 0, interp_sect_size);
546
547 /* Now we need to figure out where the dynamic linker was
548 loaded so that we can load its symbols and place a breakpoint
549 in the dynamic linker itself.
550
551 This address is stored on the stack. However, I've been unable
552 to find any magic formula to find it for Solaris (appears to
553 be trivial on GNU/Linux). Therefore, we have to try an alternate
554 mechanism to find the dynamic linker's base address. */
555
556 gdb_bfd_ref_ptr tmp_bfd;
557 TRY
558 {
559 tmp_bfd = solib_bfd_open (buf);
560 }
561 CATCH (ex, RETURN_MASK_ALL)
562 {
563 }
564 END_CATCH
565
566 if (tmp_bfd == NULL)
567 {
568 enable_break_failure_warning ();
569 return 0;
570 }
571
572 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
573 &interp_loadmap_addr, 0);
574 if (status < 0)
575 {
576 warning (_("Unable to determine dynamic linker loadmap address."));
577 enable_break_failure_warning ();
578 return 0;
579 }
580
581 if (solib_frv_debug)
582 fprintf_unfiltered (gdb_stdlog,
583 "enable_break: interp_loadmap_addr = %s\n",
584 hex_string_custom (interp_loadmap_addr, 8));
585
586 ldm = fetch_loadmap (interp_loadmap_addr);
587 if (ldm == NULL)
588 {
589 warning (_("Unable to load dynamic linker loadmap at address %s."),
590 hex_string_custom (interp_loadmap_addr, 8));
591 enable_break_failure_warning ();
592 return 0;
593 }
594
595 /* Record the relocated start and end address of the dynamic linker
596 text and plt section for svr4_in_dynsym_resolve_code. */
597 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
598 if (interp_sect)
599 {
600 interp_text_sect_low
601 = bfd_section_vma (tmp_bfd.get (), interp_sect);
602 interp_text_sect_low
603 += displacement_from_map (ldm, interp_text_sect_low);
604 interp_text_sect_high
605 = interp_text_sect_low + bfd_section_size (tmp_bfd.get (),
606 interp_sect);
607 }
608 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
609 if (interp_sect)
610 {
611 interp_plt_sect_low =
612 bfd_section_vma (tmp_bfd.get (), interp_sect);
613 interp_plt_sect_low
614 += displacement_from_map (ldm, interp_plt_sect_low);
615 interp_plt_sect_high =
616 interp_plt_sect_low + bfd_section_size (tmp_bfd.get (),
617 interp_sect);
618 }
619
620 addr = gdb_bfd_lookup_symbol (tmp_bfd.get (), cmp_name, "_dl_debug_addr");
621
622 if (addr == 0)
623 {
624 warning (_("Could not find symbol _dl_debug_addr "
625 "in dynamic linker"));
626 enable_break_failure_warning ();
627 return 0;
628 }
629
630 if (solib_frv_debug)
631 fprintf_unfiltered (gdb_stdlog,
632 "enable_break: _dl_debug_addr "
633 "(prior to relocation) = %s\n",
634 hex_string_custom (addr, 8));
635
636 addr += displacement_from_map (ldm, addr);
637
638 if (solib_frv_debug)
639 fprintf_unfiltered (gdb_stdlog,
640 "enable_break: _dl_debug_addr "
641 "(after relocation) = %s\n",
642 hex_string_custom (addr, 8));
643
644 /* Fetch the address of the r_debug struct. */
645 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
646 {
647 warning (_("Unable to fetch contents of _dl_debug_addr "
648 "(at address %s) from dynamic linker"),
649 hex_string_custom (addr, 8));
650 }
651 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
652
653 if (solib_frv_debug)
654 fprintf_unfiltered (gdb_stdlog,
655 "enable_break: _dl_debug_addr[0..3] = %s\n",
656 hex_string_custom (addr, 8));
657
658 /* If it's zero, then the ldso hasn't initialized yet, and so
659 there are no shared libs yet loaded. */
660 if (addr == 0)
661 {
662 if (solib_frv_debug)
663 fprintf_unfiltered (gdb_stdlog,
664 "enable_break: ldso not yet initialized\n");
665 /* Do not warn, but mark to run again. */
666 return 0;
667 }
668
669 /* Fetch the r_brk field. It's 8 bytes from the start of
670 _dl_debug_addr. */
671 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
672 {
673 warning (_("Unable to fetch _dl_debug_addr->r_brk "
674 "(at address %s) from dynamic linker"),
675 hex_string_custom (addr + 8, 8));
676 enable_break_failure_warning ();
677 return 0;
678 }
679 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
680
681 /* Now fetch the function entry point. */
682 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
683 {
684 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point "
685 "(at address %s) from dynamic linker"),
686 hex_string_custom (addr, 8));
687 enable_break_failure_warning ();
688 return 0;
689 }
690 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
691
692 /* We're done with the loadmap. */
693 xfree (ldm);
694
695 /* Remove all the solib event breakpoints. Their addresses
696 may have changed since the last time we ran the program. */
697 remove_solib_event_breakpoints ();
698
699 /* Now (finally!) create the solib breakpoint. */
700 create_solib_event_breakpoint (target_gdbarch (), addr);
701
702 enable_break2_done = 1;
703
704 return 1;
705 }
706
707 /* Tell the user we couldn't set a dynamic linker breakpoint. */
708 enable_break_failure_warning ();
709
710 /* Failure return. */
711 return 0;
712 }
713
714 static int
715 enable_break (void)
716 {
717 asection *interp_sect;
718 CORE_ADDR entry_point;
719
720 if (symfile_objfile == NULL)
721 {
722 if (solib_frv_debug)
723 fprintf_unfiltered (gdb_stdlog,
724 "enable_break: No symbol file found.\n");
725 return 0;
726 }
727
728 if (!entry_point_address_query (&entry_point))
729 {
730 if (solib_frv_debug)
731 fprintf_unfiltered (gdb_stdlog,
732 "enable_break: Symbol file has no entry point.\n");
733 return 0;
734 }
735
736 /* Check for the presence of a .interp section. If there is no
737 such section, the executable is statically linked. */
738
739 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
740
741 if (interp_sect == NULL)
742 {
743 if (solib_frv_debug)
744 fprintf_unfiltered (gdb_stdlog,
745 "enable_break: No .interp section found.\n");
746 return 0;
747 }
748
749 create_solib_event_breakpoint (target_gdbarch (), entry_point);
750
751 if (solib_frv_debug)
752 fprintf_unfiltered (gdb_stdlog,
753 "enable_break: solib event breakpoint "
754 "placed at entry point: %s\n",
755 hex_string_custom (entry_point, 8));
756 return 1;
757 }
758
759 static void
760 frv_relocate_main_executable (void)
761 {
762 int status;
763 CORE_ADDR exec_addr, interp_addr;
764 struct int_elf32_fdpic_loadmap *ldm;
765 struct cleanup *old_chain;
766 struct section_offsets *new_offsets;
767 int changed;
768 struct obj_section *osect;
769
770 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
771 &interp_addr, &exec_addr);
772
773 if (status < 0 || (exec_addr == 0 && interp_addr == 0))
774 {
775 /* Not using FDPIC ABI, so do nothing. */
776 return;
777 }
778
779 /* Fetch the loadmap located at ``exec_addr''. */
780 ldm = fetch_loadmap (exec_addr);
781 if (ldm == NULL)
782 error (_("Unable to load the executable's loadmap."));
783
784 if (main_executable_lm_info)
785 xfree (main_executable_lm_info);
786 main_executable_lm_info = XCNEW (struct lm_info);
787 main_executable_lm_info->map = ldm;
788
789 new_offsets = XCNEWVEC (struct section_offsets,
790 symfile_objfile->num_sections);
791 old_chain = make_cleanup (xfree, new_offsets);
792 changed = 0;
793
794 ALL_OBJFILE_OSECTIONS (symfile_objfile, osect)
795 {
796 CORE_ADDR orig_addr, addr, offset;
797 int osect_idx;
798 int seg;
799
800 osect_idx = osect - symfile_objfile->sections;
801
802 /* Current address of section. */
803 addr = obj_section_addr (osect);
804 /* Offset from where this section started. */
805 offset = ANOFFSET (symfile_objfile->section_offsets, osect_idx);
806 /* Original address prior to any past relocations. */
807 orig_addr = addr - offset;
808
809 for (seg = 0; seg < ldm->nsegs; seg++)
810 {
811 if (ldm->segs[seg].p_vaddr <= orig_addr
812 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
813 {
814 new_offsets->offsets[osect_idx]
815 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
816
817 if (new_offsets->offsets[osect_idx] != offset)
818 changed = 1;
819 break;
820 }
821 }
822 }
823
824 if (changed)
825 objfile_relocate (symfile_objfile, new_offsets);
826
827 do_cleanups (old_chain);
828
829 /* Now that symfile_objfile has been relocated, we can compute the
830 GOT value and stash it away. */
831 main_executable_lm_info->got_value = main_got ();
832 }
833
834 /* Implement the "create_inferior_hook" target_solib_ops method.
835
836 For the FR-V shared library ABI (FDPIC), the main executable needs
837 to be relocated. The shared library breakpoints also need to be
838 enabled. */
839
840 static void
841 frv_solib_create_inferior_hook (int from_tty)
842 {
843 /* Relocate main executable. */
844 frv_relocate_main_executable ();
845
846 /* Enable shared library breakpoints. */
847 if (!enable_break ())
848 {
849 warning (_("shared library handler failed to enable breakpoint"));
850 return;
851 }
852 }
853
854 static void
855 frv_clear_solib (void)
856 {
857 lm_base_cache = 0;
858 enable_break2_done = 0;
859 main_lm_addr = 0;
860 if (main_executable_lm_info != 0)
861 {
862 xfree (main_executable_lm_info->map);
863 xfree (main_executable_lm_info->dyn_syms);
864 xfree (main_executable_lm_info->dyn_relocs);
865 xfree (main_executable_lm_info);
866 main_executable_lm_info = 0;
867 }
868 }
869
870 static void
871 frv_free_so (struct so_list *so)
872 {
873 xfree (so->lm_info->map);
874 xfree (so->lm_info->dyn_syms);
875 xfree (so->lm_info->dyn_relocs);
876 xfree (so->lm_info);
877 }
878
879 static void
880 frv_relocate_section_addresses (struct so_list *so,
881 struct target_section *sec)
882 {
883 int seg;
884 struct int_elf32_fdpic_loadmap *map;
885
886 map = so->lm_info->map;
887
888 for (seg = 0; seg < map->nsegs; seg++)
889 {
890 if (map->segs[seg].p_vaddr <= sec->addr
891 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
892 {
893 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
894
895 sec->addr += displ;
896 sec->endaddr += displ;
897 break;
898 }
899 }
900 }
901
902 /* Return the GOT address associated with the main executable. Return
903 0 if it can't be found. */
904
905 static CORE_ADDR
906 main_got (void)
907 {
908 struct bound_minimal_symbol got_sym;
909
910 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_",
911 NULL, symfile_objfile);
912 if (got_sym.minsym == 0)
913 return 0;
914
915 return BMSYMBOL_VALUE_ADDRESS (got_sym);
916 }
917
918 /* Find the global pointer for the given function address ADDR. */
919
920 CORE_ADDR
921 frv_fdpic_find_global_pointer (CORE_ADDR addr)
922 {
923 struct so_list *so;
924
925 so = master_so_list ();
926 while (so)
927 {
928 int seg;
929 struct int_elf32_fdpic_loadmap *map;
930
931 map = so->lm_info->map;
932
933 for (seg = 0; seg < map->nsegs; seg++)
934 {
935 if (map->segs[seg].addr <= addr
936 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
937 return so->lm_info->got_value;
938 }
939
940 so = so->next;
941 }
942
943 /* Didn't find it in any of the shared objects. So assume it's in the
944 main executable. */
945 return main_got ();
946 }
947
948 /* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
949 static CORE_ADDR find_canonical_descriptor_in_load_object
950 (CORE_ADDR, CORE_ADDR, const char *, bfd *, struct lm_info *);
951
952 /* Given a function entry point, attempt to find the canonical descriptor
953 associated with that entry point. Return 0 if no canonical descriptor
954 could be found. */
955
956 CORE_ADDR
957 frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
958 {
959 const char *name;
960 CORE_ADDR addr;
961 CORE_ADDR got_value;
962 struct symbol *sym;
963
964 /* Fetch the corresponding global pointer for the entry point. */
965 got_value = frv_fdpic_find_global_pointer (entry_point);
966
967 /* Attempt to find the name of the function. If the name is available,
968 it'll be used as an aid in finding matching functions in the dynamic
969 symbol table. */
970 sym = find_pc_function (entry_point);
971 if (sym == 0)
972 name = 0;
973 else
974 name = SYMBOL_LINKAGE_NAME (sym);
975
976 /* Check the main executable. */
977 addr = find_canonical_descriptor_in_load_object
978 (entry_point, got_value, name, symfile_objfile->obfd,
979 main_executable_lm_info);
980
981 /* If descriptor not found via main executable, check each load object
982 in list of shared objects. */
983 if (addr == 0)
984 {
985 struct so_list *so;
986
987 so = master_so_list ();
988 while (so)
989 {
990 addr = find_canonical_descriptor_in_load_object
991 (entry_point, got_value, name, so->abfd, so->lm_info);
992
993 if (addr != 0)
994 break;
995
996 so = so->next;
997 }
998 }
999
1000 return addr;
1001 }
1002
1003 static CORE_ADDR
1004 find_canonical_descriptor_in_load_object
1005 (CORE_ADDR entry_point, CORE_ADDR got_value, const char *name, bfd *abfd,
1006 struct lm_info *lm)
1007 {
1008 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
1009 arelent *rel;
1010 unsigned int i;
1011 CORE_ADDR addr = 0;
1012
1013 /* Nothing to do if no bfd. */
1014 if (abfd == 0)
1015 return 0;
1016
1017 /* Nothing to do if no link map. */
1018 if (lm == 0)
1019 return 0;
1020
1021 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
1022 (More about this later.) But in order to fetch the relocs, we
1023 need to first fetch the dynamic symbols. These symbols need to
1024 be cached due to the way that bfd_canonicalize_dynamic_reloc()
1025 works. (See the comments in the declaration of struct lm_info
1026 for more information.) */
1027 if (lm->dyn_syms == NULL)
1028 {
1029 long storage_needed;
1030 unsigned int number_of_symbols;
1031
1032 /* Determine amount of space needed to hold the dynamic symbol table. */
1033 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1034
1035 /* If there are no dynamic symbols, there's nothing to do. */
1036 if (storage_needed <= 0)
1037 return 0;
1038
1039 /* Allocate space for the dynamic symbol table. */
1040 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
1041
1042 /* Fetch the dynamic symbol table. */
1043 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
1044
1045 if (number_of_symbols == 0)
1046 return 0;
1047 }
1048
1049 /* Fetch the dynamic relocations if not already cached. */
1050 if (lm->dyn_relocs == NULL)
1051 {
1052 long storage_needed;
1053
1054 /* Determine amount of space needed to hold the dynamic relocs. */
1055 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
1056
1057 /* Bail out if there are no dynamic relocs. */
1058 if (storage_needed <= 0)
1059 return 0;
1060
1061 /* Allocate space for the relocs. */
1062 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
1063
1064 /* Fetch the dynamic relocs. */
1065 lm->dyn_reloc_count
1066 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
1067 }
1068
1069 /* Search the dynamic relocs. */
1070 for (i = 0; i < lm->dyn_reloc_count; i++)
1071 {
1072 rel = lm->dyn_relocs[i];
1073
1074 /* Relocs of interest are those which meet the following
1075 criteria:
1076
1077 - the names match (assuming the caller could provide
1078 a name which matches ``entry_point'').
1079 - the relocation type must be R_FRV_FUNCDESC. Relocs
1080 of this type are used (by the dynamic linker) to
1081 look up the address of a canonical descriptor (allocating
1082 it if need be) and initializing the GOT entry referred
1083 to by the offset to the address of the descriptor.
1084
1085 These relocs of interest may be used to obtain a
1086 candidate descriptor by first adjusting the reloc's
1087 address according to the link map and then dereferencing
1088 this address (which is a GOT entry) to obtain a descriptor
1089 address. */
1090 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
1091 && rel->howto->type == R_FRV_FUNCDESC)
1092 {
1093 gdb_byte buf [FRV_PTR_SIZE];
1094
1095 /* Compute address of address of candidate descriptor. */
1096 addr = rel->address + displacement_from_map (lm->map, rel->address);
1097
1098 /* Fetch address of candidate descriptor. */
1099 if (target_read_memory (addr, buf, sizeof buf) != 0)
1100 continue;
1101 addr = extract_unsigned_integer (buf, sizeof buf, byte_order);
1102
1103 /* Check for matching entry point. */
1104 if (target_read_memory (addr, buf, sizeof buf) != 0)
1105 continue;
1106 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1107 != entry_point)
1108 continue;
1109
1110 /* Check for matching got value. */
1111 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1112 continue;
1113 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1114 != got_value)
1115 continue;
1116
1117 /* Match was successful! Exit loop. */
1118 break;
1119 }
1120 }
1121
1122 return addr;
1123 }
1124
1125 /* Given an objfile, return the address of its link map. This value is
1126 needed for TLS support. */
1127 CORE_ADDR
1128 frv_fetch_objfile_link_map (struct objfile *objfile)
1129 {
1130 struct so_list *so;
1131
1132 /* Cause frv_current_sos() to be run if it hasn't been already. */
1133 if (main_lm_addr == 0)
1134 solib_add (0, 0, 0, 1);
1135
1136 /* frv_current_sos() will set main_lm_addr for the main executable. */
1137 if (objfile == symfile_objfile)
1138 return main_lm_addr;
1139
1140 /* The other link map addresses may be found by examining the list
1141 of shared libraries. */
1142 for (so = master_so_list (); so; so = so->next)
1143 {
1144 if (so->objfile == objfile)
1145 return so->lm_info->lm_addr;
1146 }
1147
1148 /* Not found! */
1149 return 0;
1150 }
1151
1152 struct target_so_ops frv_so_ops;
1153
1154 /* Provide a prototype to silence -Wmissing-prototypes. */
1155 extern initialize_file_ftype _initialize_frv_solib;
1156
1157 void
1158 _initialize_frv_solib (void)
1159 {
1160 frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses;
1161 frv_so_ops.free_so = frv_free_so;
1162 frv_so_ops.clear_solib = frv_clear_solib;
1163 frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook;
1164 frv_so_ops.current_sos = frv_current_sos;
1165 frv_so_ops.open_symbol_file_object = open_symbol_file_object;
1166 frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code;
1167 frv_so_ops.bfd_open = solib_bfd_open;
1168
1169 /* Debug this file's internals. */
1170 add_setshow_zuinteger_cmd ("solib-frv", class_maintenance,
1171 &solib_frv_debug, _("\
1172 Set internal debugging of shared library code for FR-V."), _("\
1173 Show internal debugging of shared library code for FR-V."), _("\
1174 When non-zero, FR-V solib specific internal debugging is enabled."),
1175 NULL,
1176 NULL, /* FIXME: i18n: */
1177 &setdebuglist, &showdebuglist);
1178 }
This page took 0.10409 seconds and 5 git commands to generate.