2004-07-26 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / solib-frv.c
1 /* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
2 Copyright 2004
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "solist.h"
28 #include "frv-tdep.h"
29 #include "objfiles.h"
30 #include "symtab.h"
31 #include "language.h"
32 #include "command.h"
33 #include "gdbcmd.h"
34 #include "elf/frv.h"
35
36 /* Flag which indicates whether internal debug messages should be printed. */
37 static int solib_frv_debug;
38
39 /* FR-V pointers are four bytes wide. */
40 enum { FRV_PTR_SIZE = 4 };
41
42 /* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
43
44 /* External versions; the size and alignment of the fields should be
45 the same as those on the target. When loaded, the placement of
46 the bits in each field will be the same as on the target. */
47 typedef unsigned char ext_Elf32_Half[2];
48 typedef unsigned char ext_Elf32_Addr[4];
49 typedef unsigned char ext_Elf32_Word[4];
50
51 struct ext_elf32_fdpic_loadseg
52 {
53 /* Core address to which the segment is mapped. */
54 ext_Elf32_Addr addr;
55 /* VMA recorded in the program header. */
56 ext_Elf32_Addr p_vaddr;
57 /* Size of this segment in memory. */
58 ext_Elf32_Word p_memsz;
59 };
60
61 struct ext_elf32_fdpic_loadmap {
62 /* Protocol version number, must be zero. */
63 ext_Elf32_Half version;
64 /* Number of segments in this map. */
65 ext_Elf32_Half nsegs;
66 /* The actual memory map. */
67 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
68 };
69
70 /* Internal versions; the types are GDB types and the data in each
71 of the fields is (or will be) decoded from the external struct
72 for ease of consumption. */
73 struct int_elf32_fdpic_loadseg
74 {
75 /* Core address to which the segment is mapped. */
76 CORE_ADDR addr;
77 /* VMA recorded in the program header. */
78 CORE_ADDR p_vaddr;
79 /* Size of this segment in memory. */
80 long p_memsz;
81 };
82
83 struct int_elf32_fdpic_loadmap {
84 /* Protocol version number, must be zero. */
85 int version;
86 /* Number of segments in this map. */
87 int nsegs;
88 /* The actual memory map. */
89 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
90 };
91
92 /* Given address LDMADDR, fetch and decode the loadmap at that address.
93 Return NULL if there is a problem reading the target memory or if
94 there doesn't appear to be a loadmap at the given address. The
95 allocated space (representing the loadmap) returned by this
96 function may be freed via a single call to xfree(). */
97
98 static struct int_elf32_fdpic_loadmap *
99 fetch_loadmap (CORE_ADDR ldmaddr)
100 {
101 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
102 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
103 struct int_elf32_fdpic_loadmap *int_ldmbuf;
104 int ext_ldmbuf_size, int_ldmbuf_size;
105 int version, seg, nsegs;
106
107 /* Fetch initial portion of the loadmap. */
108 if (target_read_memory (ldmaddr, (char *) &ext_ldmbuf_partial,
109 sizeof ext_ldmbuf_partial))
110 {
111 /* Problem reading the target's memory. */
112 return NULL;
113 }
114
115 /* Extract the version. */
116 version = extract_unsigned_integer (&ext_ldmbuf_partial.version,
117 sizeof ext_ldmbuf_partial.version);
118 if (version != 0)
119 {
120 /* We only handle version 0. */
121 return NULL;
122 }
123
124 /* Extract the number of segments. */
125 nsegs = extract_unsigned_integer (&ext_ldmbuf_partial.nsegs,
126 sizeof ext_ldmbuf_partial.nsegs);
127
128 /* Allocate space for the complete (external) loadmap. */
129 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
130 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
131 ext_ldmbuf = xmalloc (ext_ldmbuf_size);
132
133 /* Copy over the portion of the loadmap that's already been read. */
134 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
135
136 /* Read the rest of the loadmap from the target. */
137 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
138 (char *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
139 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
140 {
141 /* Couldn't read rest of the loadmap. */
142 xfree (ext_ldmbuf);
143 return NULL;
144 }
145
146 /* Allocate space into which to put information extract from the
147 external loadsegs. I.e, allocate the internal loadsegs. */
148 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
149 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
150 int_ldmbuf = xmalloc (int_ldmbuf_size);
151
152 /* Place extracted information in internal structs. */
153 int_ldmbuf->version = version;
154 int_ldmbuf->nsegs = nsegs;
155 for (seg = 0; seg < nsegs; seg++)
156 {
157 int_ldmbuf->segs[seg].addr
158 = extract_unsigned_integer (&ext_ldmbuf->segs[seg].addr,
159 sizeof (ext_ldmbuf->segs[seg].addr));
160 int_ldmbuf->segs[seg].p_vaddr
161 = extract_unsigned_integer (&ext_ldmbuf->segs[seg].p_vaddr,
162 sizeof (ext_ldmbuf->segs[seg].p_vaddr));
163 int_ldmbuf->segs[seg].p_memsz
164 = extract_unsigned_integer (&ext_ldmbuf->segs[seg].p_memsz,
165 sizeof (ext_ldmbuf->segs[seg].p_memsz));
166 }
167
168 xfree (ext_ldmbuf);
169 return int_ldmbuf;
170 }
171
172 /* External link_map and elf32_fdpic_loadaddr struct definitions. */
173
174 typedef unsigned char ext_ptr[4];
175
176 struct ext_elf32_fdpic_loadaddr
177 {
178 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
179 ext_ptr got_value; /* void *got_value; */
180 };
181
182 struct ext_link_map
183 {
184 struct ext_elf32_fdpic_loadaddr l_addr;
185
186 /* Absolute file name object was found in. */
187 ext_ptr l_name; /* char *l_name; */
188
189 /* Dynamic section of the shared object. */
190 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
191
192 /* Chain of loaded objects. */
193 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
194 };
195
196 /* Link map info to include in an allocated so_list entry */
197
198 struct lm_info
199 {
200 /* The loadmap, digested into an easier to use form. */
201 struct int_elf32_fdpic_loadmap *map;
202 /* The GOT address for this link map entry. */
203 CORE_ADDR got_value;
204
205 /* Cached dynamic symbol table and dynamic relocs initialized and
206 used only by find_canonical_descriptor_in_load_object().
207
208 Note: kevinb/2004-02-26: It appears that calls to
209 bfd_canonicalize_dynamic_reloc() will use the same symbols as
210 those supplied to the first call to this function. Therefore,
211 it's important to NOT free the asymbol ** data structure
212 supplied to the first call. Thus the caching of the dynamic
213 symbols (dyn_syms) is critical for correct operation. The
214 caching of the dynamic relocations could be dispensed with. */
215 asymbol **dyn_syms;
216 arelent **dyn_relocs;
217 int dyn_reloc_count; /* number of dynamic relocs. */
218
219 };
220
221 /* The load map, got value, etc. are not available from the chain
222 of loaded shared objects. ``main_executable_lm_info'' provides
223 a way to get at this information so that it doesn't need to be
224 frequently recomputed. Initialized by frv_relocate_main_executable(). */
225 static struct lm_info *main_executable_lm_info;
226
227 static void frv_relocate_main_executable (void);
228 static CORE_ADDR main_got (void);
229 static int enable_break2 (void);
230
231 /*
232
233 LOCAL FUNCTION
234
235 bfd_lookup_symbol -- lookup the value for a specific symbol
236
237 SYNOPSIS
238
239 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
240
241 DESCRIPTION
242
243 An expensive way to lookup the value of a single symbol for
244 bfd's that are only temporary anyway. This is used by the
245 shared library support to find the address of the debugger
246 interface structures in the shared library.
247
248 Note that 0 is specifically allowed as an error return (no
249 such symbol).
250 */
251
252 static CORE_ADDR
253 bfd_lookup_symbol (bfd *abfd, char *symname)
254 {
255 long storage_needed;
256 asymbol *sym;
257 asymbol **symbol_table;
258 unsigned int number_of_symbols;
259 unsigned int i;
260 struct cleanup *back_to;
261 CORE_ADDR symaddr = 0;
262
263 storage_needed = bfd_get_symtab_upper_bound (abfd);
264
265 if (storage_needed > 0)
266 {
267 symbol_table = (asymbol **) xmalloc (storage_needed);
268 back_to = make_cleanup (xfree, symbol_table);
269 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
270
271 for (i = 0; i < number_of_symbols; i++)
272 {
273 sym = *symbol_table++;
274 if (strcmp (sym->name, symname) == 0)
275 {
276 /* Bfd symbols are section relative. */
277 symaddr = sym->value + sym->section->vma;
278 break;
279 }
280 }
281 do_cleanups (back_to);
282 }
283
284 if (symaddr)
285 return symaddr;
286
287 /* Look for the symbol in the dynamic string table too. */
288
289 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
290
291 if (storage_needed > 0)
292 {
293 symbol_table = (asymbol **) xmalloc (storage_needed);
294 back_to = make_cleanup (xfree, symbol_table);
295 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
296
297 for (i = 0; i < number_of_symbols; i++)
298 {
299 sym = *symbol_table++;
300 if (strcmp (sym->name, symname) == 0)
301 {
302 /* Bfd symbols are section relative. */
303 symaddr = sym->value + sym->section->vma;
304 break;
305 }
306 }
307 do_cleanups (back_to);
308 }
309
310 return symaddr;
311 }
312
313
314 /*
315
316 LOCAL FUNCTION
317
318 open_symbol_file_object
319
320 SYNOPSIS
321
322 void open_symbol_file_object (void *from_tty)
323
324 DESCRIPTION
325
326 If no open symbol file, attempt to locate and open the main symbol
327 file.
328
329 If FROM_TTYP dereferences to a non-zero integer, allow messages to
330 be printed. This parameter is a pointer rather than an int because
331 open_symbol_file_object() is called via catch_errors() and
332 catch_errors() requires a pointer argument. */
333
334 static int
335 open_symbol_file_object (void *from_ttyp)
336 {
337 /* Unimplemented. */
338 return 0;
339 }
340
341 /* Cached value for lm_base(), below. */
342 static CORE_ADDR lm_base_cache = 0;
343
344 /* Return the address from which the link map chain may be found. On
345 the FR-V, this may be found in a number of ways. Assuming that the
346 main executable has already been relocated, the easiest way to find
347 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
348 pointer to the start of the link map will be located at the word found
349 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
350 reserve area mandated by the ABI.) */
351
352 static CORE_ADDR
353 lm_base (void)
354 {
355 struct minimal_symbol *got_sym;
356 CORE_ADDR addr;
357 char buf[FRV_PTR_SIZE];
358
359 /* If we already have a cached value, return it. */
360 if (lm_base_cache)
361 return lm_base_cache;
362
363 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
364 symfile_objfile);
365 if (got_sym == 0)
366 {
367 if (solib_frv_debug)
368 fprintf_unfiltered (gdb_stdlog,
369 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
370 return 0;
371 }
372
373 addr = SYMBOL_VALUE_ADDRESS (got_sym) + 8;
374
375 if (solib_frv_debug)
376 fprintf_unfiltered (gdb_stdlog,
377 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
378 local_hex_string_custom (addr, "08l"));
379
380 if (target_read_memory (addr, buf, sizeof buf) != 0)
381 return 0;
382 lm_base_cache = extract_unsigned_integer (buf, sizeof buf);
383
384 if (solib_frv_debug)
385 fprintf_unfiltered (gdb_stdlog,
386 "lm_base: lm_base_cache = %s\n",
387 local_hex_string_custom (lm_base_cache, "08l"));
388
389 return lm_base_cache;
390 }
391
392
393 /* LOCAL FUNCTION
394
395 frv_current_sos -- build a list of currently loaded shared objects
396
397 SYNOPSIS
398
399 struct so_list *frv_current_sos ()
400
401 DESCRIPTION
402
403 Build a list of `struct so_list' objects describing the shared
404 objects currently loaded in the inferior. This list does not
405 include an entry for the main executable file.
406
407 Note that we only gather information directly available from the
408 inferior --- we don't examine any of the shared library files
409 themselves. The declaration of `struct so_list' says which fields
410 we provide values for. */
411
412 static struct so_list *
413 frv_current_sos (void)
414 {
415 CORE_ADDR lm_addr, mgot;
416 struct so_list *sos_head = NULL;
417 struct so_list **sos_next_ptr = &sos_head;
418
419 mgot = main_got ();
420
421 /* Locate the address of the first link map struct. */
422 lm_addr = lm_base ();
423
424 /* We have at least one link map entry. Fetch the the lot of them,
425 building the solist chain. */
426 while (lm_addr)
427 {
428 struct ext_link_map lm_buf;
429 CORE_ADDR got_addr;
430
431 if (solib_frv_debug)
432 fprintf_unfiltered (gdb_stdlog,
433 "current_sos: reading link_map entry at %s\n",
434 local_hex_string_custom (lm_addr, "08l"));
435
436 if (target_read_memory (lm_addr, (char *) &lm_buf, sizeof (lm_buf)) != 0)
437 {
438 warning ("frv_current_sos: Unable to read link map entry. Shared object chain may be incomplete.");
439 break;
440 }
441
442 got_addr
443 = extract_unsigned_integer (&lm_buf.l_addr.got_value,
444 sizeof (lm_buf.l_addr.got_value));
445 /* If the got_addr is the same as mgotr, then we're looking at the
446 entry for the main executable. By convention, we don't include
447 this in the list of shared objects. */
448 if (got_addr != mgot)
449 {
450 int errcode;
451 char *name_buf;
452 struct int_elf32_fdpic_loadmap *loadmap;
453 struct so_list *sop;
454 CORE_ADDR addr;
455
456 /* Fetch the load map address. */
457 addr = extract_unsigned_integer (&lm_buf.l_addr.map,
458 sizeof lm_buf.l_addr.map);
459 loadmap = fetch_loadmap (addr);
460 if (loadmap == NULL)
461 {
462 warning ("frv_current_sos: Unable to fetch load map. Shared object chain may be incomplete.");
463 break;
464 }
465
466 sop = xcalloc (1, sizeof (struct so_list));
467 sop->lm_info = xcalloc (1, sizeof (struct lm_info));
468 sop->lm_info->map = loadmap;
469 sop->lm_info->got_value = got_addr;
470 /* Fetch the name. */
471 addr = extract_unsigned_integer (&lm_buf.l_name,
472 sizeof (lm_buf.l_name));
473 target_read_string (addr, &name_buf, SO_NAME_MAX_PATH_SIZE - 1,
474 &errcode);
475
476 if (solib_frv_debug)
477 fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n",
478 name_buf);
479
480 if (errcode != 0)
481 {
482 warning ("frv_current_sos: Can't read pathname for link map entry: %s\n",
483 safe_strerror (errcode));
484 }
485 else
486 {
487 strncpy (sop->so_name, name_buf, SO_NAME_MAX_PATH_SIZE - 1);
488 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
489 xfree (name_buf);
490 strcpy (sop->so_original_name, sop->so_name);
491 }
492
493 *sos_next_ptr = sop;
494 sos_next_ptr = &sop->next;
495 }
496
497 lm_addr = extract_unsigned_integer (&lm_buf.l_next, sizeof (lm_buf.l_next));
498 }
499
500 enable_break2 ();
501
502 return sos_head;
503 }
504
505
506 /* Return 1 if PC lies in the dynamic symbol resolution code of the
507 run time loader. */
508
509 static CORE_ADDR interp_text_sect_low;
510 static CORE_ADDR interp_text_sect_high;
511 static CORE_ADDR interp_plt_sect_low;
512 static CORE_ADDR interp_plt_sect_high;
513
514 static int
515 frv_in_dynsym_resolve_code (CORE_ADDR pc)
516 {
517 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
518 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
519 || in_plt_section (pc, NULL));
520 }
521
522 /* Given a loadmap and an address, return the displacement needed
523 to relocate the address. */
524
525 CORE_ADDR
526 displacement_from_map (struct int_elf32_fdpic_loadmap *map,
527 CORE_ADDR addr)
528 {
529 int seg;
530
531 for (seg = 0; seg < map->nsegs; seg++)
532 {
533 if (map->segs[seg].p_vaddr <= addr
534 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
535 {
536 return map->segs[seg].addr - map->segs[seg].p_vaddr;
537 }
538 }
539
540 return 0;
541 }
542
543 /* Print a warning about being unable to set the dynamic linker
544 breakpoint. */
545
546 static void
547 enable_break_failure_warning (void)
548 {
549 warning ("Unable to find dynamic linker breakpoint function.\n"
550 "GDB will be unable to debug shared library initializers\n"
551 "and track explicitly loaded dynamic code.");
552 }
553
554 /*
555
556 LOCAL FUNCTION
557
558 enable_break -- arrange for dynamic linker to hit breakpoint
559
560 SYNOPSIS
561
562 int enable_break (void)
563
564 DESCRIPTION
565
566 The dynamic linkers has, as part of its debugger interface, support
567 for arranging for the inferior to hit a breakpoint after mapping in
568 the shared libraries. This function enables that breakpoint.
569
570 On the FR-V, using the shared library (FDPIC) ABI, the symbol
571 _dl_debug_addr points to the r_debug struct which contains
572 a field called r_brk. r_brk is the address of the function
573 descriptor upon which a breakpoint must be placed. Being a
574 function descriptor, we must extract the entry point in order
575 to set the breakpoint.
576
577 Our strategy will be to get the .interp section from the
578 executable. This section will provide us with the name of the
579 interpreter. We'll open the interpreter and then look up
580 the address of _dl_debug_addr. We then relocate this address
581 using the interpreter's loadmap. Once the relocated address
582 is known, we fetch the value (address) corresponding to r_brk
583 and then use that value to fetch the entry point of the function
584 we're interested in.
585
586 */
587
588 static int enable_break1_done = 0;
589 static int enable_break2_done = 0;
590
591 static int
592 enable_break2 (void)
593 {
594 int success = 0;
595 char **bkpt_namep;
596 asection *interp_sect;
597
598 if (!enable_break1_done || enable_break2_done)
599 return 1;
600
601 enable_break2_done = 1;
602
603 /* First, remove all the solib event breakpoints. Their addresses
604 may have changed since the last time we ran the program. */
605 remove_solib_event_breakpoints ();
606
607 interp_text_sect_low = interp_text_sect_high = 0;
608 interp_plt_sect_low = interp_plt_sect_high = 0;
609
610 /* Find the .interp section; if not found, warn the user and drop
611 into the old breakpoint at symbol code. */
612 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
613 if (interp_sect)
614 {
615 unsigned int interp_sect_size;
616 char *buf;
617 bfd *tmp_bfd = NULL;
618 int tmp_fd = -1;
619 char *tmp_pathname = NULL;
620 int status;
621 CORE_ADDR addr, interp_loadmap_addr;
622 char addr_buf[FRV_PTR_SIZE];
623 struct int_elf32_fdpic_loadmap *ldm;
624
625 /* Read the contents of the .interp section into a local buffer;
626 the contents specify the dynamic linker this program uses. */
627 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
628 buf = alloca (interp_sect_size);
629 bfd_get_section_contents (exec_bfd, interp_sect,
630 buf, 0, interp_sect_size);
631
632 /* Now we need to figure out where the dynamic linker was
633 loaded so that we can load its symbols and place a breakpoint
634 in the dynamic linker itself.
635
636 This address is stored on the stack. However, I've been unable
637 to find any magic formula to find it for Solaris (appears to
638 be trivial on GNU/Linux). Therefore, we have to try an alternate
639 mechanism to find the dynamic linker's base address. */
640
641 tmp_fd = solib_open (buf, &tmp_pathname);
642 if (tmp_fd >= 0)
643 tmp_bfd = bfd_fdopenr (tmp_pathname, gnutarget, tmp_fd);
644
645 if (tmp_bfd == NULL)
646 {
647 enable_break_failure_warning ();
648 return 0;
649 }
650
651 /* Make sure the dynamic linker is really a useful object. */
652 if (!bfd_check_format (tmp_bfd, bfd_object))
653 {
654 warning ("Unable to grok dynamic linker %s as an object file", buf);
655 enable_break_failure_warning ();
656 bfd_close (tmp_bfd);
657 return 0;
658 }
659
660 status = frv_fdpic_loadmap_addresses (current_gdbarch,
661 &interp_loadmap_addr, 0);
662 if (status < 0)
663 {
664 warning ("Unable to determine dynamic linker loadmap address\n");
665 enable_break_failure_warning ();
666 bfd_close (tmp_bfd);
667 return 0;
668 }
669
670 if (solib_frv_debug)
671 fprintf_unfiltered (gdb_stdlog,
672 "enable_break: interp_loadmap_addr = %s\n",
673 local_hex_string_custom (interp_loadmap_addr,
674 "08l"));
675
676 ldm = fetch_loadmap (interp_loadmap_addr);
677 if (ldm == NULL)
678 {
679 warning ("Unable to load dynamic linker loadmap at address %s\n",
680 local_hex_string_custom (interp_loadmap_addr, "08l"));
681 enable_break_failure_warning ();
682 bfd_close (tmp_bfd);
683 return 0;
684 }
685
686 /* Record the relocated start and end address of the dynamic linker
687 text and plt section for svr4_in_dynsym_resolve_code. */
688 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
689 if (interp_sect)
690 {
691 interp_text_sect_low
692 = bfd_section_vma (tmp_bfd, interp_sect);
693 interp_text_sect_low
694 += displacement_from_map (ldm, interp_text_sect_low);
695 interp_text_sect_high
696 = interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
697 }
698 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
699 if (interp_sect)
700 {
701 interp_plt_sect_low =
702 bfd_section_vma (tmp_bfd, interp_sect);
703 interp_plt_sect_low
704 += displacement_from_map (ldm, interp_plt_sect_low);
705 interp_plt_sect_high =
706 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
707 }
708
709 addr = bfd_lookup_symbol (tmp_bfd, "_dl_debug_addr");
710 if (addr == 0)
711 {
712 warning ("Could not find symbol _dl_debug_addr in dynamic linker");
713 enable_break_failure_warning ();
714 bfd_close (tmp_bfd);
715 return 0;
716 }
717
718 if (solib_frv_debug)
719 fprintf_unfiltered (gdb_stdlog,
720 "enable_break: _dl_debug_addr (prior to relocation) = %s\n",
721 local_hex_string_custom (addr, "08l"));
722
723 addr += displacement_from_map (ldm, addr);
724
725 if (solib_frv_debug)
726 fprintf_unfiltered (gdb_stdlog,
727 "enable_break: _dl_debug_addr (after relocation) = %s\n",
728 local_hex_string_custom (addr, "08l"));
729
730 /* Fetch the address of the r_debug struct. */
731 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
732 {
733 warning ("Unable to fetch contents of _dl_debug_addr (at address %s) from dynamic linker",
734 local_hex_string_custom (addr, "08l"));
735 }
736 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf);
737
738 /* Fetch the r_brk field. It's 8 bytes from the start of
739 _dl_debug_addr. */
740 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
741 {
742 warning ("Unable to fetch _dl_debug_addr->r_brk (at address %s) from dynamic linker",
743 local_hex_string_custom (addr + 8, "08l"));
744 enable_break_failure_warning ();
745 bfd_close (tmp_bfd);
746 return 0;
747 }
748 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf);
749
750 /* Now fetch the function entry point. */
751 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
752 {
753 warning ("Unable to fetch _dl_debug_addr->.r_brk entry point (at address %s) from dynamic linker",
754 local_hex_string_custom (addr, "08l"));
755 enable_break_failure_warning ();
756 bfd_close (tmp_bfd);
757 return 0;
758 }
759 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf);
760
761 /* We're done with the temporary bfd. */
762 bfd_close (tmp_bfd);
763
764 /* We're also done with the loadmap. */
765 xfree (ldm);
766
767 /* Now (finally!) create the solib breakpoint. */
768 create_solib_event_breakpoint (addr);
769
770 return 1;
771 }
772
773 /* Tell the user we couldn't set a dynamic linker breakpoint. */
774 enable_break_failure_warning ();
775
776 /* Failure return. */
777 return 0;
778 }
779
780 static int
781 enable_break (void)
782 {
783 asection *interp_sect;
784
785 /* Remove all the solib event breakpoints. Their addresses
786 may have changed since the last time we ran the program. */
787 remove_solib_event_breakpoints ();
788
789 /* Check for the presence of a .interp section. If there is no
790 such section, the executable is statically linked. */
791
792 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
793
794 if (interp_sect)
795 {
796 enable_break1_done = 1;
797 create_solib_event_breakpoint (symfile_objfile->ei.entry_point);
798
799 if (solib_frv_debug)
800 fprintf_unfiltered (gdb_stdlog,
801 "enable_break: solib event breakpoint placed at entry point: %s\n",
802 local_hex_string_custom
803 (symfile_objfile->ei.entry_point, "08l"));
804 }
805 else
806 {
807 if (solib_frv_debug)
808 fprintf_unfiltered (gdb_stdlog,
809 "enable_break: No .interp section found.\n");
810 }
811
812 return 1;
813 }
814
815 /*
816
817 LOCAL FUNCTION
818
819 special_symbol_handling -- additional shared library symbol handling
820
821 SYNOPSIS
822
823 void special_symbol_handling ()
824
825 DESCRIPTION
826
827 Once the symbols from a shared object have been loaded in the usual
828 way, we are called to do any system specific symbol handling that
829 is needed.
830
831 */
832
833 static void
834 frv_special_symbol_handling (void)
835 {
836 /* Nothing needed (yet) for FRV. */
837 }
838
839 static void
840 frv_relocate_main_executable (void)
841 {
842 int status;
843 CORE_ADDR exec_addr;
844 struct int_elf32_fdpic_loadmap *ldm;
845 struct cleanup *old_chain;
846 struct section_offsets *new_offsets;
847 int changed;
848 struct obj_section *osect;
849
850 status = frv_fdpic_loadmap_addresses (current_gdbarch, 0, &exec_addr);
851
852 if (status < 0)
853 {
854 /* Not using FDPIC ABI, so do nothing. */
855 return;
856 }
857
858 /* Fetch the loadmap located at ``exec_addr''. */
859 ldm = fetch_loadmap (exec_addr);
860 if (ldm == NULL)
861 error ("Unable to load the executable's loadmap.");
862
863 if (main_executable_lm_info)
864 xfree (main_executable_lm_info);
865 main_executable_lm_info = xcalloc (1, sizeof (struct lm_info));
866 main_executable_lm_info->map = ldm;
867
868 new_offsets = xcalloc (symfile_objfile->num_sections,
869 sizeof (struct section_offsets));
870 old_chain = make_cleanup (xfree, new_offsets);
871 changed = 0;
872
873 ALL_OBJFILE_OSECTIONS (symfile_objfile, osect)
874 {
875 CORE_ADDR orig_addr, addr, offset;
876 int osect_idx;
877 int seg;
878
879 osect_idx = osect->the_bfd_section->index;
880
881 /* Current address of section. */
882 addr = osect->addr;
883 /* Offset from where this section started. */
884 offset = ANOFFSET (symfile_objfile->section_offsets, osect_idx);
885 /* Original address prior to any past relocations. */
886 orig_addr = addr - offset;
887
888 for (seg = 0; seg < ldm->nsegs; seg++)
889 {
890 if (ldm->segs[seg].p_vaddr <= orig_addr
891 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
892 {
893 new_offsets->offsets[osect_idx]
894 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
895
896 if (new_offsets->offsets[osect_idx] != offset)
897 changed = 1;
898 break;
899 }
900 }
901 }
902
903 if (changed)
904 objfile_relocate (symfile_objfile, new_offsets);
905
906 do_cleanups (old_chain);
907
908 /* Now that symfile_objfile has been relocated, we can compute the
909 GOT value and stash it away. */
910 main_executable_lm_info->got_value = main_got ();
911 }
912
913 /*
914
915 GLOBAL FUNCTION
916
917 frv_solib_create_inferior_hook -- shared library startup support
918
919 SYNOPSIS
920
921 void frv_solib_create_inferior_hook()
922
923 DESCRIPTION
924
925 When gdb starts up the inferior, it nurses it along (through the
926 shell) until it is ready to execute it's first instruction. At this
927 point, this function gets called via expansion of the macro
928 SOLIB_CREATE_INFERIOR_HOOK.
929
930 For the FR-V shared library ABI (FDPIC), the main executable
931 needs to be relocated. The shared library breakpoints also need
932 to be enabled.
933 */
934
935 static void
936 frv_solib_create_inferior_hook (void)
937 {
938 /* Relocate main executable. */
939 frv_relocate_main_executable ();
940
941 /* Enable shared library breakpoints. */
942 if (!enable_break ())
943 {
944 warning ("shared library handler failed to enable breakpoint");
945 return;
946 }
947 }
948
949 static void
950 frv_clear_solib (void)
951 {
952 lm_base_cache = 0;
953 enable_break1_done = 0;
954 enable_break2_done = 0;
955 }
956
957 static void
958 frv_free_so (struct so_list *so)
959 {
960 xfree (so->lm_info->map);
961 xfree (so->lm_info->dyn_syms);
962 xfree (so->lm_info->dyn_relocs);
963 xfree (so->lm_info);
964 }
965
966 static void
967 frv_relocate_section_addresses (struct so_list *so,
968 struct section_table *sec)
969 {
970 int seg;
971 struct int_elf32_fdpic_loadmap *map;
972
973 map = so->lm_info->map;
974
975 for (seg = 0; seg < map->nsegs; seg++)
976 {
977 if (map->segs[seg].p_vaddr <= sec->addr
978 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
979 {
980 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
981 sec->addr += displ;
982 sec->endaddr += displ;
983 break;
984 }
985 }
986 }
987
988 /* Return the GOT address associated with the main executable. Return
989 0 if it can't be found. */
990
991 static CORE_ADDR
992 main_got (void)
993 {
994 struct minimal_symbol *got_sym;
995
996 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL, symfile_objfile);
997 if (got_sym == 0)
998 return 0;
999
1000 return SYMBOL_VALUE_ADDRESS (got_sym);
1001 }
1002
1003 /* Find the global pointer for the given function address ADDR. */
1004
1005 CORE_ADDR
1006 frv_fdpic_find_global_pointer (CORE_ADDR addr)
1007 {
1008 struct so_list *so;
1009
1010 so = master_so_list ();
1011 while (so)
1012 {
1013 int seg;
1014 struct int_elf32_fdpic_loadmap *map;
1015
1016 map = so->lm_info->map;
1017
1018 for (seg = 0; seg < map->nsegs; seg++)
1019 {
1020 if (map->segs[seg].addr <= addr
1021 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
1022 return so->lm_info->got_value;
1023 }
1024
1025 so = so->next;
1026 }
1027
1028 /* Didn't find it it any of the shared objects. So assume it's in the
1029 main executable. */
1030 return main_got ();
1031 }
1032
1033 /* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
1034 static CORE_ADDR find_canonical_descriptor_in_load_object
1035 (CORE_ADDR, CORE_ADDR, char *, bfd *, struct lm_info *);
1036
1037 /* Given a function entry point, attempt to find the canonical descriptor
1038 associated with that entry point. Return 0 if no canonical descriptor
1039 could be found. */
1040
1041 CORE_ADDR
1042 frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
1043 {
1044 char *name;
1045 CORE_ADDR addr;
1046 CORE_ADDR got_value;
1047 struct int_elf32_fdpic_loadmap *ldm = 0;
1048 struct symbol *sym;
1049 int status;
1050 CORE_ADDR exec_loadmap_addr;
1051
1052 /* Fetch the corresponding global pointer for the entry point. */
1053 got_value = frv_fdpic_find_global_pointer (entry_point);
1054
1055 /* Attempt to find the name of the function. If the name is available,
1056 it'll be used as an aid in finding matching functions in the dynamic
1057 symbol table. */
1058 sym = find_pc_function (entry_point);
1059 if (sym == 0)
1060 name = 0;
1061 else
1062 name = SYMBOL_LINKAGE_NAME (sym);
1063
1064 /* Check the main executable. */
1065 addr = find_canonical_descriptor_in_load_object
1066 (entry_point, got_value, name, symfile_objfile->obfd,
1067 main_executable_lm_info);
1068
1069 /* If descriptor not found via main executable, check each load object
1070 in list of shared objects. */
1071 if (addr == 0)
1072 {
1073 struct so_list *so;
1074
1075 so = master_so_list ();
1076 while (so)
1077 {
1078 addr = find_canonical_descriptor_in_load_object
1079 (entry_point, got_value, name, so->abfd, so->lm_info);
1080
1081 if (addr != 0)
1082 break;
1083
1084 so = so->next;
1085 }
1086 }
1087
1088 return addr;
1089 }
1090
1091 static CORE_ADDR
1092 find_canonical_descriptor_in_load_object
1093 (CORE_ADDR entry_point, CORE_ADDR got_value, char *name, bfd *abfd,
1094 struct lm_info *lm)
1095 {
1096 arelent *rel;
1097 unsigned int i;
1098 CORE_ADDR addr = 0;
1099
1100 /* Nothing to do if no bfd. */
1101 if (abfd == 0)
1102 return 0;
1103
1104 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
1105 (More about this later.) But in order to fetch the relocs, we
1106 need to first fetch the dynamic symbols. These symbols need to
1107 be cached due to the way that bfd_canonicalize_dynamic_reloc()
1108 works. (See the comments in the declaration of struct lm_info
1109 for more information.) */
1110 if (lm->dyn_syms == NULL)
1111 {
1112 long storage_needed;
1113 unsigned int number_of_symbols;
1114
1115 /* Determine amount of space needed to hold the dynamic symbol table. */
1116 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1117
1118 /* If there are no dynamic symbols, there's nothing to do. */
1119 if (storage_needed <= 0)
1120 return 0;
1121
1122 /* Allocate space for the dynamic symbol table. */
1123 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
1124
1125 /* Fetch the dynamic symbol table. */
1126 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
1127
1128 if (number_of_symbols == 0)
1129 return 0;
1130 }
1131
1132 /* Fetch the dynamic relocations if not already cached. */
1133 if (lm->dyn_relocs == NULL)
1134 {
1135 long storage_needed;
1136
1137 /* Determine amount of space needed to hold the dynamic relocs. */
1138 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
1139
1140 /* Bail out if there are no dynamic relocs. */
1141 if (storage_needed <= 0)
1142 return 0;
1143
1144 /* Allocate space for the relocs. */
1145 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
1146
1147 /* Fetch the dynamic relocs. */
1148 lm->dyn_reloc_count
1149 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
1150 }
1151
1152 /* Search the dynamic relocs. */
1153 for (i = 0; i < lm->dyn_reloc_count; i++)
1154 {
1155 rel = lm->dyn_relocs[i];
1156
1157 /* Relocs of interest are those which meet the following
1158 criteria:
1159
1160 - the names match (assuming the caller could provide
1161 a name which matches ``entry_point'').
1162 - the relocation type must be R_FRV_FUNCDESC. Relocs
1163 of this type are used (by the dynamic linker) to
1164 look up the address of a canonical descriptor (allocating
1165 it if need be) and initializing the GOT entry referred
1166 to by the offset to the address of the descriptor.
1167
1168 These relocs of interest may be used to obtain a
1169 candidate descriptor by first adjusting the reloc's
1170 address according to the link map and then dereferencing
1171 this address (which is a GOT entry) to obtain a descriptor
1172 address. */
1173 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
1174 && rel->howto->type == R_FRV_FUNCDESC)
1175 {
1176 char buf[FRV_PTR_SIZE];
1177
1178 /* Compute address of address of candidate descriptor. */
1179 addr = rel->address + displacement_from_map (lm->map, rel->address);
1180
1181 /* Fetch address of candidate descriptor. */
1182 if (target_read_memory (addr, buf, sizeof buf) != 0)
1183 continue;
1184 addr = extract_unsigned_integer (buf, sizeof buf);
1185
1186 /* Check for matching entry point. */
1187 if (target_read_memory (addr, buf, sizeof buf) != 0)
1188 continue;
1189 if (extract_unsigned_integer (buf, sizeof buf) != entry_point)
1190 continue;
1191
1192 /* Check for matching got value. */
1193 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1194 continue;
1195 if (extract_unsigned_integer (buf, sizeof buf) != got_value)
1196 continue;
1197
1198 /* Match was successful! Exit loop. */
1199 break;
1200 }
1201 }
1202
1203 return addr;
1204 }
1205
1206 static struct target_so_ops frv_so_ops;
1207
1208 void
1209 _initialize_frv_solib (void)
1210 {
1211 frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses;
1212 frv_so_ops.free_so = frv_free_so;
1213 frv_so_ops.clear_solib = frv_clear_solib;
1214 frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook;
1215 frv_so_ops.special_symbol_handling = frv_special_symbol_handling;
1216 frv_so_ops.current_sos = frv_current_sos;
1217 frv_so_ops.open_symbol_file_object = open_symbol_file_object;
1218 frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code;
1219
1220 /* FIXME: Don't do this here. *_gdbarch_init() should set so_ops. */
1221 current_target_so_ops = &frv_so_ops;
1222
1223 /* Debug this file's internals. */
1224 deprecated_add_show_from_set
1225 (add_set_cmd ("solib-frv", class_maintenance, var_zinteger,
1226 &solib_frv_debug,
1227 "Set internal debugging of shared library code for FR-V.\n"
1228 "When non-zero, FR-V solib specific internal debugging is enabled.",
1229 &setdebuglist),
1230 &showdebuglist);
1231 }
This page took 0.0528 seconds and 5 git commands to generate.