2004-02-14 Elena Zannoni <ezannoni@redhat.com>
[deliverable/binutils-gdb.git] / gdb / solib-irix.c
1 /* Shared library support for IRIX.
2 Copyright 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2004
3 Free Software Foundation, Inc.
4
5 This file was created using portions of irix5-nat.c originally
6 contributed to GDB by Ian Lance Taylor.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26
27 #include "symtab.h"
28 #include "bfd.h"
29 /* FIXME: ezannoni/2004-02-13 Verify that the include below is
30 really needed. */
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "gdbcore.h"
34 #include "target.h"
35 #include "inferior.h"
36
37 #include "solist.h"
38
39 /* Link map info to include in an allocate so_list entry. Unlike some
40 of the other solib backends, this (Irix) backend chooses to decode
41 the link map info obtained from the target and store it as (mostly)
42 CORE_ADDRs which need no further decoding. This is more convenient
43 because there are three different link map formats to worry about.
44 We use a single routine (fetch_lm_info) to read (and decode) the target
45 specific link map data. */
46
47 struct lm_info
48 {
49 CORE_ADDR addr; /* address of obj_info or obj_list
50 struct on target (from which the
51 following information is obtained). */
52 CORE_ADDR next; /* address of next item in list. */
53 CORE_ADDR reloc_offset; /* amount to relocate by */
54 CORE_ADDR pathname_addr; /* address of pathname */
55 int pathname_len; /* length of pathname */
56 };
57
58 /* It's not desirable to use the system header files to obtain the
59 structure of the obj_list or obj_info structs. Therefore, we use a
60 platform neutral representation which has been derived from the IRIX
61 header files. */
62
63 typedef struct
64 {
65 char b[4];
66 }
67 gdb_int32_bytes;
68 typedef struct
69 {
70 char b[8];
71 }
72 gdb_int64_bytes;
73
74 /* The "old" obj_list struct. This is used with old (o32) binaries.
75 The ``data'' member points at a much larger and more complicated
76 struct which we will only refer to by offsets. See
77 fetch_lm_info(). */
78
79 struct irix_obj_list
80 {
81 gdb_int32_bytes data;
82 gdb_int32_bytes next;
83 gdb_int32_bytes prev;
84 };
85
86 /* The ELF32 and ELF64 versions of the above struct. The oi_magic value
87 corresponds to the ``data'' value in the "old" struct. When this value
88 is 0xffffffff, the data will be in one of the following formats. The
89 ``oi_size'' field is used to decide which one we actually have. */
90
91 struct irix_elf32_obj_info
92 {
93 gdb_int32_bytes oi_magic;
94 gdb_int32_bytes oi_size;
95 gdb_int32_bytes oi_next;
96 gdb_int32_bytes oi_prev;
97 gdb_int32_bytes oi_ehdr;
98 gdb_int32_bytes oi_orig_ehdr;
99 gdb_int32_bytes oi_pathname;
100 gdb_int32_bytes oi_pathname_len;
101 };
102
103 struct irix_elf64_obj_info
104 {
105 gdb_int32_bytes oi_magic;
106 gdb_int32_bytes oi_size;
107 gdb_int64_bytes oi_next;
108 gdb_int64_bytes oi_prev;
109 gdb_int64_bytes oi_ehdr;
110 gdb_int64_bytes oi_orig_ehdr;
111 gdb_int64_bytes oi_pathname;
112 gdb_int32_bytes oi_pathname_len;
113 gdb_int32_bytes padding;
114 };
115
116 /* Union of all of the above (plus a split out magic field). */
117
118 union irix_obj_info
119 {
120 gdb_int32_bytes magic;
121 struct irix_obj_list ol32;
122 struct irix_elf32_obj_info oi32;
123 struct irix_elf64_obj_info oi64;
124 };
125
126 /* MIPS sign extends its 32 bit addresses. We could conceivably use
127 extract_typed_address here, but to do so, we'd have to construct an
128 appropriate type. Calling extract_signed_integer seems simpler. */
129
130 static CORE_ADDR
131 extract_mips_address (void *addr, int len)
132 {
133 return extract_signed_integer (addr, len);
134 }
135
136 /* Fetch and return the link map data associated with ADDR. Note that
137 this routine automatically determines which (of three) link map
138 formats is in use by the target. */
139
140 struct lm_info
141 fetch_lm_info (CORE_ADDR addr)
142 {
143 struct lm_info li;
144 union irix_obj_info buf;
145
146 li.addr = addr;
147
148 /* The smallest region that we'll need is for buf.ol32. We'll read
149 that first. We'll read more of the buffer later if we have to deal
150 with one of the other cases. (We don't want to incur a memory error
151 if we were to read a larger region that generates an error due to
152 being at the end of a page or the like.) */
153 read_memory (addr, (char *) &buf, sizeof (buf.ol32));
154
155 if (extract_unsigned_integer (&buf.magic, sizeof (buf.magic)) != 0xffffffff)
156 {
157 /* Use buf.ol32... */
158 char obj_buf[432];
159 CORE_ADDR obj_addr = extract_mips_address (&buf.ol32.data,
160 sizeof (buf.ol32.data));
161 li.next = extract_mips_address (&buf.ol32.next, sizeof (buf.ol32.next));
162
163 read_memory (obj_addr, obj_buf, sizeof (obj_buf));
164
165 li.pathname_addr = extract_mips_address (&obj_buf[236], 4);
166 li.pathname_len = 0; /* unknown */
167 li.reloc_offset = extract_mips_address (&obj_buf[196], 4)
168 - extract_mips_address (&obj_buf[248], 4);
169
170 }
171 else if (extract_unsigned_integer (&buf.oi32.oi_size,
172 sizeof (buf.oi32.oi_size))
173 == sizeof (buf.oi32))
174 {
175 /* Use buf.oi32... */
176
177 /* Read rest of buffer. */
178 read_memory (addr + sizeof (buf.ol32),
179 ((char *) &buf) + sizeof (buf.ol32),
180 sizeof (buf.oi32) - sizeof (buf.ol32));
181
182 /* Fill in fields using buffer contents. */
183 li.next = extract_mips_address (&buf.oi32.oi_next,
184 sizeof (buf.oi32.oi_next));
185 li.reloc_offset = extract_mips_address (&buf.oi32.oi_ehdr,
186 sizeof (buf.oi32.oi_ehdr))
187 - extract_mips_address (&buf.oi32.oi_orig_ehdr,
188 sizeof (buf.oi32.oi_orig_ehdr));
189 li.pathname_addr = extract_mips_address (&buf.oi32.oi_pathname,
190 sizeof (buf.oi32.oi_pathname));
191 li.pathname_len = extract_unsigned_integer (&buf.oi32.oi_pathname_len,
192 sizeof (buf.oi32.
193 oi_pathname_len));
194 }
195 else if (extract_unsigned_integer (&buf.oi64.oi_size,
196 sizeof (buf.oi64.oi_size))
197 == sizeof (buf.oi64))
198 {
199 /* Use buf.oi64... */
200
201 /* Read rest of buffer. */
202 read_memory (addr + sizeof (buf.ol32),
203 ((char *) &buf) + sizeof (buf.ol32),
204 sizeof (buf.oi64) - sizeof (buf.ol32));
205
206 /* Fill in fields using buffer contents. */
207 li.next = extract_mips_address (&buf.oi64.oi_next,
208 sizeof (buf.oi64.oi_next));
209 li.reloc_offset = extract_mips_address (&buf.oi64.oi_ehdr,
210 sizeof (buf.oi64.oi_ehdr))
211 - extract_mips_address (&buf.oi64.oi_orig_ehdr,
212 sizeof (buf.oi64.oi_orig_ehdr));
213 li.pathname_addr = extract_mips_address (&buf.oi64.oi_pathname,
214 sizeof (buf.oi64.oi_pathname));
215 li.pathname_len = extract_unsigned_integer (&buf.oi64.oi_pathname_len,
216 sizeof (buf.oi64.
217 oi_pathname_len));
218 }
219 else
220 {
221 error ("Unable to fetch shared library obj_info or obj_list info.");
222 }
223
224 return li;
225 }
226
227 /* The symbol which starts off the list of shared libraries. */
228 #define DEBUG_BASE "__rld_obj_head"
229
230 char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
231
232 static CORE_ADDR debug_base; /* Base of dynamic linker structures */
233 static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
234
235 /*
236
237 LOCAL FUNCTION
238
239 locate_base -- locate the base address of dynamic linker structs
240
241 SYNOPSIS
242
243 CORE_ADDR locate_base (void)
244
245 DESCRIPTION
246
247 For both the SunOS and SVR4 shared library implementations, if the
248 inferior executable has been linked dynamically, there is a single
249 address somewhere in the inferior's data space which is the key to
250 locating all of the dynamic linker's runtime structures. This
251 address is the value of the symbol defined by the macro DEBUG_BASE.
252 The job of this function is to find and return that address, or to
253 return 0 if there is no such address (the executable is statically
254 linked for example).
255
256 For SunOS, the job is almost trivial, since the dynamic linker and
257 all of it's structures are statically linked to the executable at
258 link time. Thus the symbol for the address we are looking for has
259 already been added to the minimal symbol table for the executable's
260 objfile at the time the symbol file's symbols were read, and all we
261 have to do is look it up there. Note that we explicitly do NOT want
262 to find the copies in the shared library.
263
264 The SVR4 version is much more complicated because the dynamic linker
265 and it's structures are located in the shared C library, which gets
266 run as the executable's "interpreter" by the kernel. We have to go
267 to a lot more work to discover the address of DEBUG_BASE. Because
268 of this complexity, we cache the value we find and return that value
269 on subsequent invocations. Note there is no copy in the executable
270 symbol tables.
271
272 Irix 5 is basically like SunOS.
273
274 Note that we can assume nothing about the process state at the time
275 we need to find this address. We may be stopped on the first instruc-
276 tion of the interpreter (C shared library), the first instruction of
277 the executable itself, or somewhere else entirely (if we attached
278 to the process for example).
279
280 */
281
282 static CORE_ADDR
283 locate_base (void)
284 {
285 struct minimal_symbol *msymbol;
286 CORE_ADDR address = 0;
287
288 msymbol = lookup_minimal_symbol (DEBUG_BASE, NULL, symfile_objfile);
289 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
290 {
291 address = SYMBOL_VALUE_ADDRESS (msymbol);
292 }
293 return (address);
294 }
295
296 /*
297
298 LOCAL FUNCTION
299
300 disable_break -- remove the "mapping changed" breakpoint
301
302 SYNOPSIS
303
304 static int disable_break ()
305
306 DESCRIPTION
307
308 Removes the breakpoint that gets hit when the dynamic linker
309 completes a mapping change.
310
311 */
312
313 static int
314 disable_break (void)
315 {
316 int status = 1;
317
318
319 /* Note that breakpoint address and original contents are in our address
320 space, so we just need to write the original contents back. */
321
322 if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
323 {
324 status = 0;
325 }
326
327 /* For the SVR4 version, we always know the breakpoint address. For the
328 SunOS version we don't know it until the above code is executed.
329 Grumble if we are stopped anywhere besides the breakpoint address. */
330
331 if (stop_pc != breakpoint_addr)
332 {
333 warning
334 ("stopped at unknown breakpoint while handling shared libraries");
335 }
336
337 return (status);
338 }
339
340 /*
341
342 LOCAL FUNCTION
343
344 enable_break -- arrange for dynamic linker to hit breakpoint
345
346 SYNOPSIS
347
348 int enable_break (void)
349
350 DESCRIPTION
351
352 This functions inserts a breakpoint at the entry point of the
353 main executable, where all shared libraries are mapped in.
354 */
355
356 static int
357 enable_break (void)
358 {
359 if (symfile_objfile != NULL
360 && target_insert_breakpoint (entry_point_address (),
361 shadow_contents) == 0)
362 {
363 breakpoint_addr = entry_point_address ();
364 return 1;
365 }
366
367 return 0;
368 }
369
370 /*
371
372 LOCAL FUNCTION
373
374 irix_solib_create_inferior_hook -- shared library startup support
375
376 SYNOPSIS
377
378 void solib_create_inferior_hook()
379
380 DESCRIPTION
381
382 When gdb starts up the inferior, it nurses it along (through the
383 shell) until it is ready to execute it's first instruction. At this
384 point, this function gets called via expansion of the macro
385 SOLIB_CREATE_INFERIOR_HOOK.
386
387 For SunOS executables, this first instruction is typically the
388 one at "_start", or a similar text label, regardless of whether
389 the executable is statically or dynamically linked. The runtime
390 startup code takes care of dynamically linking in any shared
391 libraries, once gdb allows the inferior to continue.
392
393 For SVR4 executables, this first instruction is either the first
394 instruction in the dynamic linker (for dynamically linked
395 executables) or the instruction at "start" for statically linked
396 executables. For dynamically linked executables, the system
397 first exec's /lib/libc.so.N, which contains the dynamic linker,
398 and starts it running. The dynamic linker maps in any needed
399 shared libraries, maps in the actual user executable, and then
400 jumps to "start" in the user executable.
401
402 For both SunOS shared libraries, and SVR4 shared libraries, we
403 can arrange to cooperate with the dynamic linker to discover the
404 names of shared libraries that are dynamically linked, and the
405 base addresses to which they are linked.
406
407 This function is responsible for discovering those names and
408 addresses, and saving sufficient information about them to allow
409 their symbols to be read at a later time.
410
411 FIXME
412
413 Between enable_break() and disable_break(), this code does not
414 properly handle hitting breakpoints which the user might have
415 set in the startup code or in the dynamic linker itself. Proper
416 handling will probably have to wait until the implementation is
417 changed to use the "breakpoint handler function" method.
418
419 Also, what if child has exit()ed? Must exit loop somehow.
420 */
421
422 static void
423 irix_solib_create_inferior_hook (void)
424 {
425 if (!enable_break ())
426 {
427 warning ("shared library handler failed to enable breakpoint");
428 return;
429 }
430
431 /* Now run the target. It will eventually hit the breakpoint, at
432 which point all of the libraries will have been mapped in and we
433 can go groveling around in the dynamic linker structures to find
434 out what we need to know about them. */
435
436 clear_proceed_status ();
437 stop_soon = STOP_QUIETLY;
438 stop_signal = TARGET_SIGNAL_0;
439 do
440 {
441 target_resume (pid_to_ptid (-1), 0, stop_signal);
442 wait_for_inferior ();
443 }
444 while (stop_signal != TARGET_SIGNAL_TRAP);
445
446 /* We are now either at the "mapping complete" breakpoint (or somewhere
447 else, a condition we aren't prepared to deal with anyway), so adjust
448 the PC as necessary after a breakpoint, disable the breakpoint, and
449 add any shared libraries that were mapped in. */
450
451 if (!disable_break ())
452 {
453 warning ("shared library handler failed to disable breakpoint");
454 }
455
456 /* solib_add will call reinit_frame_cache.
457 But we are stopped in the startup code and we might not have symbols
458 for the startup code, so heuristic_proc_start could be called
459 and will put out an annoying warning.
460 Delaying the resetting of stop_soon until after symbol loading
461 suppresses the warning. */
462 solib_add ((char *) 0, 0, (struct target_ops *) 0, auto_solib_add);
463 stop_soon = NO_STOP_QUIETLY;
464 re_enable_breakpoints_in_shlibs ();
465 }
466
467 /* LOCAL FUNCTION
468
469 current_sos -- build a list of currently loaded shared objects
470
471 SYNOPSIS
472
473 struct so_list *current_sos ()
474
475 DESCRIPTION
476
477 Build a list of `struct so_list' objects describing the shared
478 objects currently loaded in the inferior. This list does not
479 include an entry for the main executable file.
480
481 Note that we only gather information directly available from the
482 inferior --- we don't examine any of the shared library files
483 themselves. The declaration of `struct so_list' says which fields
484 we provide values for. */
485
486 static struct so_list *
487 irix_current_sos (void)
488 {
489 CORE_ADDR lma;
490 char addr_buf[8];
491 struct so_list *head = 0;
492 struct so_list **link_ptr = &head;
493 int is_first = 1;
494 struct lm_info lm;
495
496 /* Make sure we've looked up the inferior's dynamic linker's base
497 structure. */
498 if (!debug_base)
499 {
500 debug_base = locate_base ();
501
502 /* If we can't find the dynamic linker's base structure, this
503 must not be a dynamically linked executable. Hmm. */
504 if (!debug_base)
505 return 0;
506 }
507
508 read_memory (debug_base, addr_buf, TARGET_ADDR_BIT / TARGET_CHAR_BIT);
509 lma = extract_mips_address (addr_buf, TARGET_ADDR_BIT / TARGET_CHAR_BIT);
510
511 while (lma)
512 {
513 lm = fetch_lm_info (lma);
514 if (!is_first)
515 {
516 int errcode;
517 char *name_buf;
518 int name_size;
519 struct so_list *new
520 = (struct so_list *) xmalloc (sizeof (struct so_list));
521 struct cleanup *old_chain = make_cleanup (xfree, new);
522
523 memset (new, 0, sizeof (*new));
524
525 new->lm_info = xmalloc (sizeof (struct lm_info));
526 make_cleanup (xfree, new->lm_info);
527
528 *new->lm_info = lm;
529
530 /* Extract this shared object's name. */
531 name_size = lm.pathname_len;
532 if (name_size == 0)
533 name_size = SO_NAME_MAX_PATH_SIZE - 1;
534
535 if (name_size >= SO_NAME_MAX_PATH_SIZE)
536 {
537 name_size = SO_NAME_MAX_PATH_SIZE - 1;
538 warning
539 ("current_sos: truncating name of %d characters to only %d characters",
540 lm.pathname_len, name_size);
541 }
542
543 target_read_string (lm.pathname_addr, &name_buf,
544 name_size, &errcode);
545 if (errcode != 0)
546 {
547 warning ("current_sos: Can't read pathname for load map: %s\n",
548 safe_strerror (errcode));
549 }
550 else
551 {
552 strncpy (new->so_name, name_buf, name_size);
553 new->so_name[name_size] = '\0';
554 xfree (name_buf);
555 strcpy (new->so_original_name, new->so_name);
556 }
557
558 new->next = 0;
559 *link_ptr = new;
560 link_ptr = &new->next;
561
562 discard_cleanups (old_chain);
563 }
564 is_first = 0;
565 lma = lm.next;
566 }
567
568 return head;
569 }
570
571 /*
572
573 LOCAL FUNCTION
574
575 irix_open_symbol_file_object
576
577 SYNOPSIS
578
579 void irix_open_symbol_file_object (void *from_tty)
580
581 DESCRIPTION
582
583 If no open symbol file, attempt to locate and open the main symbol
584 file. On IRIX, this is the first link map entry. If its name is
585 here, we can open it. Useful when attaching to a process without
586 first loading its symbol file.
587
588 If FROM_TTYP dereferences to a non-zero integer, allow messages to
589 be printed. This parameter is a pointer rather than an int because
590 open_symbol_file_object() is called via catch_errors() and
591 catch_errors() requires a pointer argument. */
592
593 static int
594 irix_open_symbol_file_object (void *from_ttyp)
595 {
596 CORE_ADDR lma;
597 char addr_buf[8];
598 struct lm_info lm;
599 struct cleanup *cleanups;
600 int errcode;
601 int from_tty = *(int *) from_ttyp;
602 char *filename;
603
604 if (symfile_objfile)
605 if (!query ("Attempt to reload symbols from process? "))
606 return 0;
607
608 if ((debug_base = locate_base ()) == 0)
609 return 0; /* failed somehow... */
610
611 /* First link map member should be the executable. */
612 read_memory (debug_base, addr_buf, TARGET_ADDR_BIT / TARGET_CHAR_BIT);
613 lma = extract_mips_address (addr_buf, TARGET_ADDR_BIT / TARGET_CHAR_BIT);
614 if (lma == 0)
615 return 0; /* failed somehow... */
616
617 lm = fetch_lm_info (lma);
618
619 if (lm.pathname_addr == 0)
620 return 0; /* No filename. */
621
622 /* Now fetch the filename from target memory. */
623 target_read_string (lm.pathname_addr, &filename, SO_NAME_MAX_PATH_SIZE - 1,
624 &errcode);
625
626 if (errcode)
627 {
628 warning ("failed to read exec filename from attached file: %s",
629 safe_strerror (errcode));
630 return 0;
631 }
632
633 cleanups = make_cleanup (xfree, filename);
634 /* Have a pathname: read the symbol file. */
635 symbol_file_add_main (filename, from_tty);
636
637 do_cleanups (cleanups);
638
639 return 1;
640 }
641
642
643 /*
644
645 LOCAL FUNCTION
646
647 irix_special_symbol_handling -- additional shared library symbol handling
648
649 SYNOPSIS
650
651 void irix_special_symbol_handling ()
652
653 DESCRIPTION
654
655 Once the symbols from a shared object have been loaded in the usual
656 way, we are called to do any system specific symbol handling that
657 is needed.
658
659 For SunOS4, this consisted of grunging around in the dynamic
660 linkers structures to find symbol definitions for "common" symbols
661 and adding them to the minimal symbol table for the runtime common
662 objfile.
663
664 However, for IRIX, there's nothing to do.
665
666 */
667
668 static void
669 irix_special_symbol_handling (void)
670 {
671 }
672
673 /* Using the solist entry SO, relocate the addresses in SEC. */
674
675 static void
676 irix_relocate_section_addresses (struct so_list *so,
677 struct section_table *sec)
678 {
679 sec->addr += so->lm_info->reloc_offset;
680 sec->endaddr += so->lm_info->reloc_offset;
681 }
682
683 /* Free the lm_info struct. */
684
685 static void
686 irix_free_so (struct so_list *so)
687 {
688 xfree (so->lm_info);
689 }
690
691 /* Clear backend specific state. */
692
693 static void
694 irix_clear_solib (void)
695 {
696 debug_base = 0;
697 }
698
699 /* Return 1 if PC lies in the dynamic symbol resolution code of the
700 run time loader. */
701 static int
702 irix_in_dynsym_resolve_code (CORE_ADDR pc)
703 {
704 return 0;
705 }
706
707 static struct target_so_ops irix_so_ops;
708
709 void
710 _initialize_irix_solib (void)
711 {
712 irix_so_ops.relocate_section_addresses = irix_relocate_section_addresses;
713 irix_so_ops.free_so = irix_free_so;
714 irix_so_ops.clear_solib = irix_clear_solib;
715 irix_so_ops.solib_create_inferior_hook = irix_solib_create_inferior_hook;
716 irix_so_ops.special_symbol_handling = irix_special_symbol_handling;
717 irix_so_ops.current_sos = irix_current_sos;
718 irix_so_ops.open_symbol_file_object = irix_open_symbol_file_object;
719 irix_so_ops.in_dynsym_resolve_code = irix_in_dynsym_resolve_code;
720
721 /* FIXME: Don't do this here. *_gdbarch_init() should set so_ops. */
722 current_target_so_ops = &irix_so_ops;
723 }
This page took 0.048166 seconds and 4 git commands to generate.