gdb: make macro_expand_next return a gdb::unique_xmalloc_ptr<char>
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "elf/external.h"
23 #include "elf/common.h"
24 #include "elf/mips.h"
25
26 #include "symtab.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbcore.h"
31 #include "target.h"
32 #include "inferior.h"
33 #include "infrun.h"
34 #include "regcache.h"
35 #include "gdbthread.h"
36 #include "observable.h"
37
38 #include "solist.h"
39 #include "solib.h"
40 #include "solib-svr4.h"
41
42 #include "bfd-target.h"
43 #include "elf-bfd.h"
44 #include "exec.h"
45 #include "auxv.h"
46 #include "gdb_bfd.h"
47 #include "probe.h"
48
49 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
50 static int svr4_have_link_map_offsets (void);
51 static void svr4_relocate_main_executable (void);
52 static void svr4_free_library_list (void *p_list);
53 static void probes_table_remove_objfile_probes (struct objfile *objfile);
54 static void svr4_iterate_over_objfiles_in_search_order (
55 struct gdbarch *gdbarch, iterate_over_objfiles_in_search_order_cb_ftype *cb,
56 void *cb_data, struct objfile *objfile);
57
58
59 /* On SVR4 systems, a list of symbols in the dynamic linker where
60 GDB can try to place a breakpoint to monitor shared library
61 events.
62
63 If none of these symbols are found, or other errors occur, then
64 SVR4 systems will fall back to using a symbol as the "startup
65 mapping complete" breakpoint address. */
66
67 static const char * const solib_break_names[] =
68 {
69 "r_debug_state",
70 "_r_debug_state",
71 "_dl_debug_state",
72 "rtld_db_dlactivity",
73 "__dl_rtld_db_dlactivity",
74 "_rtld_debug_state",
75
76 NULL
77 };
78
79 static const char * const bkpt_names[] =
80 {
81 "_start",
82 "__start",
83 "main",
84 NULL
85 };
86
87 static const char * const main_name_list[] =
88 {
89 "main_$main",
90 NULL
91 };
92
93 /* What to do when a probe stop occurs. */
94
95 enum probe_action
96 {
97 /* Something went seriously wrong. Stop using probes and
98 revert to using the older interface. */
99 PROBES_INTERFACE_FAILED,
100
101 /* No action is required. The shared object list is still
102 valid. */
103 DO_NOTHING,
104
105 /* The shared object list should be reloaded entirely. */
106 FULL_RELOAD,
107
108 /* Attempt to incrementally update the shared object list. If
109 the update fails or is not possible, fall back to reloading
110 the list in full. */
111 UPDATE_OR_RELOAD,
112 };
113
114 /* A probe's name and its associated action. */
115
116 struct probe_info
117 {
118 /* The name of the probe. */
119 const char *name;
120
121 /* What to do when a probe stop occurs. */
122 enum probe_action action;
123 };
124
125 /* A list of named probes and their associated actions. If all
126 probes are present in the dynamic linker then the probes-based
127 interface will be used. */
128
129 static const struct probe_info probe_info[] =
130 {
131 { "init_start", DO_NOTHING },
132 { "init_complete", FULL_RELOAD },
133 { "map_start", DO_NOTHING },
134 { "map_failed", DO_NOTHING },
135 { "reloc_complete", UPDATE_OR_RELOAD },
136 { "unmap_start", DO_NOTHING },
137 { "unmap_complete", FULL_RELOAD },
138 };
139
140 #define NUM_PROBES ARRAY_SIZE (probe_info)
141
142 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
143 the same shared library. */
144
145 static int
146 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
147 {
148 if (strcmp (gdb_so_name, inferior_so_name) == 0)
149 return 1;
150
151 /* On Solaris, when starting inferior we think that dynamic linker is
152 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
153 contains /lib/ld.so.1. Sometimes one file is a link to another, but
154 sometimes they have identical content, but are not linked to each
155 other. We don't restrict this check for Solaris, but the chances
156 of running into this situation elsewhere are very low. */
157 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
158 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
159 return 1;
160
161 /* Similarly, we observed the same issue with amd64 and sparcv9, but with
162 different locations. */
163 if (strcmp (gdb_so_name, "/usr/lib/amd64/ld.so.1") == 0
164 && strcmp (inferior_so_name, "/lib/amd64/ld.so.1") == 0)
165 return 1;
166
167 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
168 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
169 return 1;
170
171 return 0;
172 }
173
174 static int
175 svr4_same (struct so_list *gdb, struct so_list *inferior)
176 {
177 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
178 }
179
180 static std::unique_ptr<lm_info_svr4>
181 lm_info_read (CORE_ADDR lm_addr)
182 {
183 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
184 std::unique_ptr<lm_info_svr4> lm_info;
185
186 gdb::byte_vector lm (lmo->link_map_size);
187
188 if (target_read_memory (lm_addr, lm.data (), lmo->link_map_size) != 0)
189 warning (_("Error reading shared library list entry at %s"),
190 paddress (target_gdbarch (), lm_addr));
191 else
192 {
193 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
194
195 lm_info.reset (new lm_info_svr4);
196 lm_info->lm_addr = lm_addr;
197
198 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
199 ptr_type);
200 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
201 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
202 ptr_type);
203 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
204 ptr_type);
205 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
206 ptr_type);
207 }
208
209 return lm_info;
210 }
211
212 static int
213 has_lm_dynamic_from_link_map (void)
214 {
215 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
216
217 return lmo->l_ld_offset >= 0;
218 }
219
220 static CORE_ADDR
221 lm_addr_check (const struct so_list *so, bfd *abfd)
222 {
223 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
224
225 if (!li->l_addr_p)
226 {
227 struct bfd_section *dyninfo_sect;
228 CORE_ADDR l_addr, l_dynaddr, dynaddr;
229
230 l_addr = li->l_addr_inferior;
231
232 if (! abfd || ! has_lm_dynamic_from_link_map ())
233 goto set_addr;
234
235 l_dynaddr = li->l_ld;
236
237 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
238 if (dyninfo_sect == NULL)
239 goto set_addr;
240
241 dynaddr = bfd_section_vma (dyninfo_sect);
242
243 if (dynaddr + l_addr != l_dynaddr)
244 {
245 CORE_ADDR align = 0x1000;
246 CORE_ADDR minpagesize = align;
247
248 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
249 {
250 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
251 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
252 int i;
253
254 align = 1;
255
256 for (i = 0; i < ehdr->e_phnum; i++)
257 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
258 align = phdr[i].p_align;
259
260 minpagesize = get_elf_backend_data (abfd)->minpagesize;
261 }
262
263 /* Turn it into a mask. */
264 align--;
265
266 /* If the changes match the alignment requirements, we
267 assume we're using a core file that was generated by the
268 same binary, just prelinked with a different base offset.
269 If it doesn't match, we may have a different binary, the
270 same binary with the dynamic table loaded at an unrelated
271 location, or anything, really. To avoid regressions,
272 don't adjust the base offset in the latter case, although
273 odds are that, if things really changed, debugging won't
274 quite work.
275
276 One could expect more the condition
277 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
278 but the one below is relaxed for PPC. The PPC kernel supports
279 either 4k or 64k page sizes. To be prepared for 64k pages,
280 PPC ELF files are built using an alignment requirement of 64k.
281 However, when running on a kernel supporting 4k pages, the memory
282 mapping of the library may not actually happen on a 64k boundary!
283
284 (In the usual case where (l_addr & align) == 0, this check is
285 equivalent to the possibly expected check above.)
286
287 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
288
289 l_addr = l_dynaddr - dynaddr;
290
291 if ((l_addr & (minpagesize - 1)) == 0
292 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
293 {
294 if (info_verbose)
295 printf_unfiltered (_("Using PIC (Position Independent Code) "
296 "prelink displacement %s for \"%s\".\n"),
297 paddress (target_gdbarch (), l_addr),
298 so->so_name);
299 }
300 else
301 {
302 /* There is no way to verify the library file matches. prelink
303 can during prelinking of an unprelinked file (or unprelinking
304 of a prelinked file) shift the DYNAMIC segment by arbitrary
305 offset without any page size alignment. There is no way to
306 find out the ELF header and/or Program Headers for a limited
307 verification if it they match. One could do a verification
308 of the DYNAMIC segment. Still the found address is the best
309 one GDB could find. */
310
311 warning (_(".dynamic section for \"%s\" "
312 "is not at the expected address "
313 "(wrong library or version mismatch?)"), so->so_name);
314 }
315 }
316
317 set_addr:
318 li->l_addr = l_addr;
319 li->l_addr_p = 1;
320 }
321
322 return li->l_addr;
323 }
324
325 /* Per pspace SVR4 specific data. */
326
327 struct svr4_info
328 {
329 svr4_info () = default;
330 ~svr4_info ();
331
332 /* Base of dynamic linker structures. */
333 CORE_ADDR debug_base = 0;
334
335 /* Validity flag for debug_loader_offset. */
336 int debug_loader_offset_p = 0;
337
338 /* Load address for the dynamic linker, inferred. */
339 CORE_ADDR debug_loader_offset = 0;
340
341 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
342 char *debug_loader_name = nullptr;
343
344 /* Load map address for the main executable. */
345 CORE_ADDR main_lm_addr = 0;
346
347 CORE_ADDR interp_text_sect_low = 0;
348 CORE_ADDR interp_text_sect_high = 0;
349 CORE_ADDR interp_plt_sect_low = 0;
350 CORE_ADDR interp_plt_sect_high = 0;
351
352 /* Nonzero if the list of objects was last obtained from the target
353 via qXfer:libraries-svr4:read. */
354 int using_xfer = 0;
355
356 /* Table of struct probe_and_action instances, used by the
357 probes-based interface to map breakpoint addresses to probes
358 and their associated actions. Lookup is performed using
359 probe_and_action->prob->address. */
360 htab_up probes_table;
361
362 /* List of objects loaded into the inferior, used by the probes-
363 based interface. */
364 struct so_list *solib_list = nullptr;
365 };
366
367 /* Per-program-space data key. */
368 static const struct program_space_key<svr4_info> solib_svr4_pspace_data;
369
370 /* Free the probes table. */
371
372 static void
373 free_probes_table (struct svr4_info *info)
374 {
375 info->probes_table.reset (nullptr);
376 }
377
378 /* Free the solib list. */
379
380 static void
381 free_solib_list (struct svr4_info *info)
382 {
383 svr4_free_library_list (&info->solib_list);
384 info->solib_list = NULL;
385 }
386
387 svr4_info::~svr4_info ()
388 {
389 free_solib_list (this);
390 }
391
392 /* Get the svr4 data for program space PSPACE. If none is found yet, add it now.
393 This function always returns a valid object. */
394
395 static struct svr4_info *
396 get_svr4_info (program_space *pspace)
397 {
398 struct svr4_info *info = solib_svr4_pspace_data.get (pspace);
399
400 if (info == NULL)
401 info = solib_svr4_pspace_data.emplace (pspace);
402
403 return info;
404 }
405
406 /* Local function prototypes */
407
408 static int match_main (const char *);
409
410 /* Read program header TYPE from inferior memory. The header is found
411 by scanning the OS auxiliary vector.
412
413 If TYPE == -1, return the program headers instead of the contents of
414 one program header.
415
416 Return vector of bytes holding the program header contents, or an empty
417 optional on failure. If successful and P_ARCH_SIZE is non-NULL, the target
418 architecture size (32-bit or 64-bit) is returned to *P_ARCH_SIZE. Likewise,
419 the base address of the section is returned in *BASE_ADDR. */
420
421 static gdb::optional<gdb::byte_vector>
422 read_program_header (int type, int *p_arch_size, CORE_ADDR *base_addr)
423 {
424 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
425 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
426 int arch_size, sect_size;
427 CORE_ADDR sect_addr;
428 int pt_phdr_p = 0;
429
430 /* Get required auxv elements from target. */
431 if (target_auxv_search (current_top_target (), AT_PHDR, &at_phdr) <= 0)
432 return {};
433 if (target_auxv_search (current_top_target (), AT_PHENT, &at_phent) <= 0)
434 return {};
435 if (target_auxv_search (current_top_target (), AT_PHNUM, &at_phnum) <= 0)
436 return {};
437 if (!at_phdr || !at_phnum)
438 return {};
439
440 /* Determine ELF architecture type. */
441 if (at_phent == sizeof (Elf32_External_Phdr))
442 arch_size = 32;
443 else if (at_phent == sizeof (Elf64_External_Phdr))
444 arch_size = 64;
445 else
446 return {};
447
448 /* Find the requested segment. */
449 if (type == -1)
450 {
451 sect_addr = at_phdr;
452 sect_size = at_phent * at_phnum;
453 }
454 else if (arch_size == 32)
455 {
456 Elf32_External_Phdr phdr;
457 int i;
458
459 /* Search for requested PHDR. */
460 for (i = 0; i < at_phnum; i++)
461 {
462 int p_type;
463
464 if (target_read_memory (at_phdr + i * sizeof (phdr),
465 (gdb_byte *)&phdr, sizeof (phdr)))
466 return {};
467
468 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
469 4, byte_order);
470
471 if (p_type == PT_PHDR)
472 {
473 pt_phdr_p = 1;
474 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
475 4, byte_order);
476 }
477
478 if (p_type == type)
479 break;
480 }
481
482 if (i == at_phnum)
483 return {};
484
485 /* Retrieve address and size. */
486 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
487 4, byte_order);
488 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
489 4, byte_order);
490 }
491 else
492 {
493 Elf64_External_Phdr phdr;
494 int i;
495
496 /* Search for requested PHDR. */
497 for (i = 0; i < at_phnum; i++)
498 {
499 int p_type;
500
501 if (target_read_memory (at_phdr + i * sizeof (phdr),
502 (gdb_byte *)&phdr, sizeof (phdr)))
503 return {};
504
505 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
506 4, byte_order);
507
508 if (p_type == PT_PHDR)
509 {
510 pt_phdr_p = 1;
511 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
512 8, byte_order);
513 }
514
515 if (p_type == type)
516 break;
517 }
518
519 if (i == at_phnum)
520 return {};
521
522 /* Retrieve address and size. */
523 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
524 8, byte_order);
525 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
526 8, byte_order);
527 }
528
529 /* PT_PHDR is optional, but we really need it
530 for PIE to make this work in general. */
531
532 if (pt_phdr_p)
533 {
534 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
535 Relocation offset is the difference between the two. */
536 sect_addr = sect_addr + (at_phdr - pt_phdr);
537 }
538
539 /* Read in requested program header. */
540 gdb::byte_vector buf (sect_size);
541 if (target_read_memory (sect_addr, buf.data (), sect_size))
542 return {};
543
544 if (p_arch_size)
545 *p_arch_size = arch_size;
546 if (base_addr)
547 *base_addr = sect_addr;
548
549 return buf;
550 }
551
552
553 /* Return program interpreter string. */
554 static gdb::optional<gdb::byte_vector>
555 find_program_interpreter (void)
556 {
557 /* If we have an exec_bfd, use its section table. */
558 if (exec_bfd
559 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
560 {
561 struct bfd_section *interp_sect;
562
563 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
564 if (interp_sect != NULL)
565 {
566 int sect_size = bfd_section_size (interp_sect);
567
568 gdb::byte_vector buf (sect_size);
569 bfd_get_section_contents (exec_bfd, interp_sect, buf.data (), 0,
570 sect_size);
571 return buf;
572 }
573 }
574
575 /* If we didn't find it, use the target auxiliary vector. */
576 return read_program_header (PT_INTERP, NULL, NULL);
577 }
578
579
580 /* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is
581 found, 1 is returned and the corresponding PTR is set. */
582
583 static int
584 scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr,
585 CORE_ADDR *ptr_addr)
586 {
587 int arch_size, step, sect_size;
588 long current_dyntag;
589 CORE_ADDR dyn_ptr, dyn_addr;
590 gdb_byte *bufend, *bufstart, *buf;
591 Elf32_External_Dyn *x_dynp_32;
592 Elf64_External_Dyn *x_dynp_64;
593 struct bfd_section *sect;
594 struct target_section *target_section;
595
596 if (abfd == NULL)
597 return 0;
598
599 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
600 return 0;
601
602 arch_size = bfd_get_arch_size (abfd);
603 if (arch_size == -1)
604 return 0;
605
606 /* Find the start address of the .dynamic section. */
607 sect = bfd_get_section_by_name (abfd, ".dynamic");
608 if (sect == NULL)
609 return 0;
610
611 for (target_section = current_target_sections->sections;
612 target_section < current_target_sections->sections_end;
613 target_section++)
614 if (sect == target_section->the_bfd_section)
615 break;
616 if (target_section < current_target_sections->sections_end)
617 dyn_addr = target_section->addr;
618 else
619 {
620 /* ABFD may come from OBJFILE acting only as a symbol file without being
621 loaded into the target (see add_symbol_file_command). This case is
622 such fallback to the file VMA address without the possibility of
623 having the section relocated to its actual in-memory address. */
624
625 dyn_addr = bfd_section_vma (sect);
626 }
627
628 /* Read in .dynamic from the BFD. We will get the actual value
629 from memory later. */
630 sect_size = bfd_section_size (sect);
631 buf = bufstart = (gdb_byte *) alloca (sect_size);
632 if (!bfd_get_section_contents (abfd, sect,
633 buf, 0, sect_size))
634 return 0;
635
636 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
637 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
638 : sizeof (Elf64_External_Dyn);
639 for (bufend = buf + sect_size;
640 buf < bufend;
641 buf += step)
642 {
643 if (arch_size == 32)
644 {
645 x_dynp_32 = (Elf32_External_Dyn *) buf;
646 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
647 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
648 }
649 else
650 {
651 x_dynp_64 = (Elf64_External_Dyn *) buf;
652 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
653 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
654 }
655 if (current_dyntag == DT_NULL)
656 return 0;
657 if (current_dyntag == desired_dyntag)
658 {
659 /* If requested, try to read the runtime value of this .dynamic
660 entry. */
661 if (ptr)
662 {
663 struct type *ptr_type;
664 gdb_byte ptr_buf[8];
665 CORE_ADDR ptr_addr_1;
666
667 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
668 ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8;
669 if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0)
670 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
671 *ptr = dyn_ptr;
672 if (ptr_addr)
673 *ptr_addr = dyn_addr + (buf - bufstart);
674 }
675 return 1;
676 }
677 }
678
679 return 0;
680 }
681
682 /* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
683 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
684 is returned and the corresponding PTR is set. */
685
686 static int
687 scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
688 CORE_ADDR *ptr_addr)
689 {
690 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
691 int arch_size, step;
692 long current_dyntag;
693 CORE_ADDR dyn_ptr;
694 CORE_ADDR base_addr;
695
696 /* Read in .dynamic section. */
697 gdb::optional<gdb::byte_vector> ph_data
698 = read_program_header (PT_DYNAMIC, &arch_size, &base_addr);
699 if (!ph_data)
700 return 0;
701
702 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
703 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
704 : sizeof (Elf64_External_Dyn);
705 for (gdb_byte *buf = ph_data->data (), *bufend = buf + ph_data->size ();
706 buf < bufend; buf += step)
707 {
708 if (arch_size == 32)
709 {
710 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
711
712 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
713 4, byte_order);
714 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
715 4, byte_order);
716 }
717 else
718 {
719 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
720
721 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
722 8, byte_order);
723 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
724 8, byte_order);
725 }
726 if (current_dyntag == DT_NULL)
727 break;
728
729 if (current_dyntag == desired_dyntag)
730 {
731 if (ptr)
732 *ptr = dyn_ptr;
733
734 if (ptr_addr)
735 *ptr_addr = base_addr + buf - ph_data->data ();
736
737 return 1;
738 }
739 }
740
741 return 0;
742 }
743
744 /* Locate the base address of dynamic linker structs for SVR4 elf
745 targets.
746
747 For SVR4 elf targets the address of the dynamic linker's runtime
748 structure is contained within the dynamic info section in the
749 executable file. The dynamic section is also mapped into the
750 inferior address space. Because the runtime loader fills in the
751 real address before starting the inferior, we have to read in the
752 dynamic info section from the inferior address space.
753 If there are any errors while trying to find the address, we
754 silently return 0, otherwise the found address is returned. */
755
756 static CORE_ADDR
757 elf_locate_base (void)
758 {
759 struct bound_minimal_symbol msymbol;
760 CORE_ADDR dyn_ptr, dyn_ptr_addr;
761
762 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
763 instead of DT_DEBUG, although they sometimes contain an unused
764 DT_DEBUG. */
765 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr, NULL)
766 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
767 {
768 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
769 gdb_byte *pbuf;
770 int pbuf_size = TYPE_LENGTH (ptr_type);
771
772 pbuf = (gdb_byte *) alloca (pbuf_size);
773 /* DT_MIPS_RLD_MAP contains a pointer to the address
774 of the dynamic link structure. */
775 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
776 return 0;
777 return extract_typed_address (pbuf, ptr_type);
778 }
779
780 /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
781 because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
782 in non-PIE. */
783 if (scan_dyntag (DT_MIPS_RLD_MAP_REL, exec_bfd, &dyn_ptr, &dyn_ptr_addr)
784 || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
785 {
786 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
787 gdb_byte *pbuf;
788 int pbuf_size = TYPE_LENGTH (ptr_type);
789
790 pbuf = (gdb_byte *) alloca (pbuf_size);
791 /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
792 DT slot to the address of the dynamic link structure. */
793 if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
794 return 0;
795 return extract_typed_address (pbuf, ptr_type);
796 }
797
798 /* Find DT_DEBUG. */
799 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr, NULL)
800 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
801 return dyn_ptr;
802
803 /* This may be a static executable. Look for the symbol
804 conventionally named _r_debug, as a last resort. */
805 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
806 if (msymbol.minsym != NULL)
807 return BMSYMBOL_VALUE_ADDRESS (msymbol);
808
809 /* DT_DEBUG entry not found. */
810 return 0;
811 }
812
813 /* Locate the base address of dynamic linker structs.
814
815 For both the SunOS and SVR4 shared library implementations, if the
816 inferior executable has been linked dynamically, there is a single
817 address somewhere in the inferior's data space which is the key to
818 locating all of the dynamic linker's runtime structures. This
819 address is the value of the debug base symbol. The job of this
820 function is to find and return that address, or to return 0 if there
821 is no such address (the executable is statically linked for example).
822
823 For SunOS, the job is almost trivial, since the dynamic linker and
824 all of it's structures are statically linked to the executable at
825 link time. Thus the symbol for the address we are looking for has
826 already been added to the minimal symbol table for the executable's
827 objfile at the time the symbol file's symbols were read, and all we
828 have to do is look it up there. Note that we explicitly do NOT want
829 to find the copies in the shared library.
830
831 The SVR4 version is a bit more complicated because the address
832 is contained somewhere in the dynamic info section. We have to go
833 to a lot more work to discover the address of the debug base symbol.
834 Because of this complexity, we cache the value we find and return that
835 value on subsequent invocations. Note there is no copy in the
836 executable symbol tables. */
837
838 static CORE_ADDR
839 locate_base (struct svr4_info *info)
840 {
841 /* Check to see if we have a currently valid address, and if so, avoid
842 doing all this work again and just return the cached address. If
843 we have no cached address, try to locate it in the dynamic info
844 section for ELF executables. There's no point in doing any of this
845 though if we don't have some link map offsets to work with. */
846
847 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
848 info->debug_base = elf_locate_base ();
849 return info->debug_base;
850 }
851
852 /* Find the first element in the inferior's dynamic link map, and
853 return its address in the inferior. Return zero if the address
854 could not be determined.
855
856 FIXME: Perhaps we should validate the info somehow, perhaps by
857 checking r_version for a known version number, or r_state for
858 RT_CONSISTENT. */
859
860 static CORE_ADDR
861 solib_svr4_r_map (struct svr4_info *info)
862 {
863 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
864 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
865 CORE_ADDR addr = 0;
866
867 try
868 {
869 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
870 ptr_type);
871 }
872 catch (const gdb_exception_error &ex)
873 {
874 exception_print (gdb_stderr, ex);
875 }
876
877 return addr;
878 }
879
880 /* Find r_brk from the inferior's debug base. */
881
882 static CORE_ADDR
883 solib_svr4_r_brk (struct svr4_info *info)
884 {
885 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
886 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
887
888 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
889 ptr_type);
890 }
891
892 /* Find the link map for the dynamic linker (if it is not in the
893 normal list of loaded shared objects). */
894
895 static CORE_ADDR
896 solib_svr4_r_ldsomap (struct svr4_info *info)
897 {
898 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
899 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
900 enum bfd_endian byte_order = type_byte_order (ptr_type);
901 ULONGEST version = 0;
902
903 try
904 {
905 /* Check version, and return zero if `struct r_debug' doesn't have
906 the r_ldsomap member. */
907 version
908 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
909 lmo->r_version_size, byte_order);
910 }
911 catch (const gdb_exception_error &ex)
912 {
913 exception_print (gdb_stderr, ex);
914 }
915
916 if (version < 2 || lmo->r_ldsomap_offset == -1)
917 return 0;
918
919 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
920 ptr_type);
921 }
922
923 /* On Solaris systems with some versions of the dynamic linker,
924 ld.so's l_name pointer points to the SONAME in the string table
925 rather than into writable memory. So that GDB can find shared
926 libraries when loading a core file generated by gcore, ensure that
927 memory areas containing the l_name string are saved in the core
928 file. */
929
930 static int
931 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
932 {
933 struct svr4_info *info;
934 CORE_ADDR ldsomap;
935 CORE_ADDR name_lm;
936
937 info = get_svr4_info (current_program_space);
938
939 info->debug_base = 0;
940 locate_base (info);
941 if (!info->debug_base)
942 return 0;
943
944 ldsomap = solib_svr4_r_ldsomap (info);
945 if (!ldsomap)
946 return 0;
947
948 std::unique_ptr<lm_info_svr4> li = lm_info_read (ldsomap);
949 name_lm = li != NULL ? li->l_name : 0;
950
951 return (name_lm >= vaddr && name_lm < vaddr + size);
952 }
953
954 /* See solist.h. */
955
956 static int
957 open_symbol_file_object (int from_tty)
958 {
959 CORE_ADDR lm, l_name;
960 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
961 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
962 int l_name_size = TYPE_LENGTH (ptr_type);
963 gdb::byte_vector l_name_buf (l_name_size);
964 struct svr4_info *info = get_svr4_info (current_program_space);
965 symfile_add_flags add_flags = 0;
966
967 if (from_tty)
968 add_flags |= SYMFILE_VERBOSE;
969
970 if (symfile_objfile)
971 if (!query (_("Attempt to reload symbols from process? ")))
972 return 0;
973
974 /* Always locate the debug struct, in case it has moved. */
975 info->debug_base = 0;
976 if (locate_base (info) == 0)
977 return 0; /* failed somehow... */
978
979 /* First link map member should be the executable. */
980 lm = solib_svr4_r_map (info);
981 if (lm == 0)
982 return 0; /* failed somehow... */
983
984 /* Read address of name from target memory to GDB. */
985 read_memory (lm + lmo->l_name_offset, l_name_buf.data (), l_name_size);
986
987 /* Convert the address to host format. */
988 l_name = extract_typed_address (l_name_buf.data (), ptr_type);
989
990 if (l_name == 0)
991 return 0; /* No filename. */
992
993 /* Now fetch the filename from target memory. */
994 gdb::unique_xmalloc_ptr<char> filename
995 = target_read_string (l_name, SO_NAME_MAX_PATH_SIZE - 1);
996
997 if (filename == nullptr)
998 {
999 warning (_("failed to read exec filename from attached file"));
1000 return 0;
1001 }
1002
1003 /* Have a pathname: read the symbol file. */
1004 symbol_file_add_main (filename.get (), add_flags);
1005
1006 return 1;
1007 }
1008
1009 /* Data exchange structure for the XML parser as returned by
1010 svr4_current_sos_via_xfer_libraries. */
1011
1012 struct svr4_library_list
1013 {
1014 struct so_list *head, **tailp;
1015
1016 /* Inferior address of struct link_map used for the main executable. It is
1017 NULL if not known. */
1018 CORE_ADDR main_lm;
1019 };
1020
1021 /* This module's 'free_objfile' observer. */
1022
1023 static void
1024 svr4_free_objfile_observer (struct objfile *objfile)
1025 {
1026 probes_table_remove_objfile_probes (objfile);
1027 }
1028
1029 /* Implementation for target_so_ops.free_so. */
1030
1031 static void
1032 svr4_free_so (struct so_list *so)
1033 {
1034 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1035
1036 delete li;
1037 }
1038
1039 /* Implement target_so_ops.clear_so. */
1040
1041 static void
1042 svr4_clear_so (struct so_list *so)
1043 {
1044 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1045
1046 if (li != NULL)
1047 li->l_addr_p = 0;
1048 }
1049
1050 /* Free so_list built so far (called via cleanup). */
1051
1052 static void
1053 svr4_free_library_list (void *p_list)
1054 {
1055 struct so_list *list = *(struct so_list **) p_list;
1056
1057 while (list != NULL)
1058 {
1059 struct so_list *next = list->next;
1060
1061 free_so (list);
1062 list = next;
1063 }
1064 }
1065
1066 /* Copy library list. */
1067
1068 static struct so_list *
1069 svr4_copy_library_list (struct so_list *src)
1070 {
1071 struct so_list *dst = NULL;
1072 struct so_list **link = &dst;
1073
1074 while (src != NULL)
1075 {
1076 struct so_list *newobj;
1077
1078 newobj = XNEW (struct so_list);
1079 memcpy (newobj, src, sizeof (struct so_list));
1080
1081 lm_info_svr4 *src_li = (lm_info_svr4 *) src->lm_info;
1082 newobj->lm_info = new lm_info_svr4 (*src_li);
1083
1084 newobj->next = NULL;
1085 *link = newobj;
1086 link = &newobj->next;
1087
1088 src = src->next;
1089 }
1090
1091 return dst;
1092 }
1093
1094 #ifdef HAVE_LIBEXPAT
1095
1096 #include "xml-support.h"
1097
1098 /* Handle the start of a <library> element. Note: new elements are added
1099 at the tail of the list, keeping the list in order. */
1100
1101 static void
1102 library_list_start_library (struct gdb_xml_parser *parser,
1103 const struct gdb_xml_element *element,
1104 void *user_data,
1105 std::vector<gdb_xml_value> &attributes)
1106 {
1107 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1108 const char *name
1109 = (const char *) xml_find_attribute (attributes, "name")->value.get ();
1110 ULONGEST *lmp
1111 = (ULONGEST *) xml_find_attribute (attributes, "lm")->value.get ();
1112 ULONGEST *l_addrp
1113 = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value.get ();
1114 ULONGEST *l_ldp
1115 = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value.get ();
1116 struct so_list *new_elem;
1117
1118 new_elem = XCNEW (struct so_list);
1119 lm_info_svr4 *li = new lm_info_svr4;
1120 new_elem->lm_info = li;
1121 li->lm_addr = *lmp;
1122 li->l_addr_inferior = *l_addrp;
1123 li->l_ld = *l_ldp;
1124
1125 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1126 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1127 strcpy (new_elem->so_original_name, new_elem->so_name);
1128
1129 *list->tailp = new_elem;
1130 list->tailp = &new_elem->next;
1131 }
1132
1133 /* Handle the start of a <library-list-svr4> element. */
1134
1135 static void
1136 svr4_library_list_start_list (struct gdb_xml_parser *parser,
1137 const struct gdb_xml_element *element,
1138 void *user_data,
1139 std::vector<gdb_xml_value> &attributes)
1140 {
1141 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1142 const char *version
1143 = (const char *) xml_find_attribute (attributes, "version")->value.get ();
1144 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1145
1146 if (strcmp (version, "1.0") != 0)
1147 gdb_xml_error (parser,
1148 _("SVR4 Library list has unsupported version \"%s\""),
1149 version);
1150
1151 if (main_lm)
1152 list->main_lm = *(ULONGEST *) main_lm->value.get ();
1153 }
1154
1155 /* The allowed elements and attributes for an XML library list.
1156 The root element is a <library-list>. */
1157
1158 static const struct gdb_xml_attribute svr4_library_attributes[] =
1159 {
1160 { "name", GDB_XML_AF_NONE, NULL, NULL },
1161 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1162 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1163 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1164 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1165 };
1166
1167 static const struct gdb_xml_element svr4_library_list_children[] =
1168 {
1169 {
1170 "library", svr4_library_attributes, NULL,
1171 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1172 library_list_start_library, NULL
1173 },
1174 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1175 };
1176
1177 static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1178 {
1179 { "version", GDB_XML_AF_NONE, NULL, NULL },
1180 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1181 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1182 };
1183
1184 static const struct gdb_xml_element svr4_library_list_elements[] =
1185 {
1186 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1187 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1188 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1189 };
1190
1191 /* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1192
1193 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1194 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1195 empty, caller is responsible for freeing all its entries. */
1196
1197 static int
1198 svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1199 {
1200 auto cleanup = make_scope_exit ([&] ()
1201 {
1202 svr4_free_library_list (&list->head);
1203 });
1204
1205 memset (list, 0, sizeof (*list));
1206 list->tailp = &list->head;
1207 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
1208 svr4_library_list_elements, document, list) == 0)
1209 {
1210 /* Parsed successfully, keep the result. */
1211 cleanup.release ();
1212 return 1;
1213 }
1214
1215 return 0;
1216 }
1217
1218 /* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
1219
1220 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1221 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1222 empty, caller is responsible for freeing all its entries.
1223
1224 Note that ANNEX must be NULL if the remote does not explicitly allow
1225 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1226 this can be checked using target_augmented_libraries_svr4_read (). */
1227
1228 static int
1229 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1230 const char *annex)
1231 {
1232 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1233
1234 /* Fetch the list of shared libraries. */
1235 gdb::optional<gdb::char_vector> svr4_library_document
1236 = target_read_stralloc (current_top_target (), TARGET_OBJECT_LIBRARIES_SVR4,
1237 annex);
1238 if (!svr4_library_document)
1239 return 0;
1240
1241 return svr4_parse_libraries (svr4_library_document->data (), list);
1242 }
1243
1244 #else
1245
1246 static int
1247 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1248 const char *annex)
1249 {
1250 return 0;
1251 }
1252
1253 #endif
1254
1255 /* If no shared library information is available from the dynamic
1256 linker, build a fallback list from other sources. */
1257
1258 static struct so_list *
1259 svr4_default_sos (svr4_info *info)
1260 {
1261 struct so_list *newobj;
1262
1263 if (!info->debug_loader_offset_p)
1264 return NULL;
1265
1266 newobj = XCNEW (struct so_list);
1267 lm_info_svr4 *li = new lm_info_svr4;
1268 newobj->lm_info = li;
1269
1270 /* Nothing will ever check the other fields if we set l_addr_p. */
1271 li->l_addr = info->debug_loader_offset;
1272 li->l_addr_p = 1;
1273
1274 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1275 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1276 strcpy (newobj->so_original_name, newobj->so_name);
1277
1278 return newobj;
1279 }
1280
1281 /* Read the whole inferior libraries chain starting at address LM.
1282 Expect the first entry in the chain's previous entry to be PREV_LM.
1283 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1284 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1285 to it. Returns nonzero upon success. If zero is returned the
1286 entries stored to LINK_PTR_PTR are still valid although they may
1287 represent only part of the inferior library list. */
1288
1289 static int
1290 svr4_read_so_list (svr4_info *info, CORE_ADDR lm, CORE_ADDR prev_lm,
1291 struct so_list ***link_ptr_ptr, int ignore_first)
1292 {
1293 CORE_ADDR first_l_name = 0;
1294 CORE_ADDR next_lm;
1295
1296 for (; lm != 0; prev_lm = lm, lm = next_lm)
1297 {
1298 so_list_up newobj (XCNEW (struct so_list));
1299
1300 lm_info_svr4 *li = lm_info_read (lm).release ();
1301 newobj->lm_info = li;
1302 if (li == NULL)
1303 return 0;
1304
1305 next_lm = li->l_next;
1306
1307 if (li->l_prev != prev_lm)
1308 {
1309 warning (_("Corrupted shared library list: %s != %s"),
1310 paddress (target_gdbarch (), prev_lm),
1311 paddress (target_gdbarch (), li->l_prev));
1312 return 0;
1313 }
1314
1315 /* For SVR4 versions, the first entry in the link map is for the
1316 inferior executable, so we must ignore it. For some versions of
1317 SVR4, it has no name. For others (Solaris 2.3 for example), it
1318 does have a name, so we can no longer use a missing name to
1319 decide when to ignore it. */
1320 if (ignore_first && li->l_prev == 0)
1321 {
1322 first_l_name = li->l_name;
1323 info->main_lm_addr = li->lm_addr;
1324 continue;
1325 }
1326
1327 /* Extract this shared object's name. */
1328 gdb::unique_xmalloc_ptr<char> buffer
1329 = target_read_string (li->l_name, SO_NAME_MAX_PATH_SIZE - 1);
1330 if (buffer == nullptr)
1331 {
1332 /* If this entry's l_name address matches that of the
1333 inferior executable, then this is not a normal shared
1334 object, but (most likely) a vDSO. In this case, silently
1335 skip it; otherwise emit a warning. */
1336 if (first_l_name == 0 || li->l_name != first_l_name)
1337 warning (_("Can't read pathname for load map."));
1338 continue;
1339 }
1340
1341 strncpy (newobj->so_name, buffer.get (), SO_NAME_MAX_PATH_SIZE - 1);
1342 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1343 strcpy (newobj->so_original_name, newobj->so_name);
1344
1345 /* If this entry has no name, or its name matches the name
1346 for the main executable, don't include it in the list. */
1347 if (! newobj->so_name[0] || match_main (newobj->so_name))
1348 continue;
1349
1350 newobj->next = 0;
1351 /* Don't free it now. */
1352 **link_ptr_ptr = newobj.release ();
1353 *link_ptr_ptr = &(**link_ptr_ptr)->next;
1354 }
1355
1356 return 1;
1357 }
1358
1359 /* Read the full list of currently loaded shared objects directly
1360 from the inferior, without referring to any libraries read and
1361 stored by the probes interface. Handle special cases relating
1362 to the first elements of the list. */
1363
1364 static struct so_list *
1365 svr4_current_sos_direct (struct svr4_info *info)
1366 {
1367 CORE_ADDR lm;
1368 struct so_list *head = NULL;
1369 struct so_list **link_ptr = &head;
1370 int ignore_first;
1371 struct svr4_library_list library_list;
1372
1373 /* Fall back to manual examination of the target if the packet is not
1374 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1375 tests a case where gdbserver cannot find the shared libraries list while
1376 GDB itself is able to find it via SYMFILE_OBJFILE.
1377
1378 Unfortunately statically linked inferiors will also fall back through this
1379 suboptimal code path. */
1380
1381 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1382 NULL);
1383 if (info->using_xfer)
1384 {
1385 if (library_list.main_lm)
1386 info->main_lm_addr = library_list.main_lm;
1387
1388 return library_list.head ? library_list.head : svr4_default_sos (info);
1389 }
1390
1391 /* Always locate the debug struct, in case it has moved. */
1392 info->debug_base = 0;
1393 locate_base (info);
1394
1395 /* If we can't find the dynamic linker's base structure, this
1396 must not be a dynamically linked executable. Hmm. */
1397 if (! info->debug_base)
1398 return svr4_default_sos (info);
1399
1400 /* Assume that everything is a library if the dynamic loader was loaded
1401 late by a static executable. */
1402 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1403 ignore_first = 0;
1404 else
1405 ignore_first = 1;
1406
1407 auto cleanup = make_scope_exit ([&] ()
1408 {
1409 svr4_free_library_list (&head);
1410 });
1411
1412 /* Walk the inferior's link map list, and build our list of
1413 `struct so_list' nodes. */
1414 lm = solib_svr4_r_map (info);
1415 if (lm)
1416 svr4_read_so_list (info, lm, 0, &link_ptr, ignore_first);
1417
1418 /* On Solaris, the dynamic linker is not in the normal list of
1419 shared objects, so make sure we pick it up too. Having
1420 symbol information for the dynamic linker is quite crucial
1421 for skipping dynamic linker resolver code. */
1422 lm = solib_svr4_r_ldsomap (info);
1423 if (lm)
1424 svr4_read_so_list (info, lm, 0, &link_ptr, 0);
1425
1426 cleanup.release ();
1427
1428 if (head == NULL)
1429 return svr4_default_sos (info);
1430
1431 return head;
1432 }
1433
1434 /* Implement the main part of the "current_sos" target_so_ops
1435 method. */
1436
1437 static struct so_list *
1438 svr4_current_sos_1 (svr4_info *info)
1439 {
1440 /* If the solib list has been read and stored by the probes
1441 interface then we return a copy of the stored list. */
1442 if (info->solib_list != NULL)
1443 return svr4_copy_library_list (info->solib_list);
1444
1445 /* Otherwise obtain the solib list directly from the inferior. */
1446 return svr4_current_sos_direct (info);
1447 }
1448
1449 /* Implement the "current_sos" target_so_ops method. */
1450
1451 static struct so_list *
1452 svr4_current_sos (void)
1453 {
1454 svr4_info *info = get_svr4_info (current_program_space);
1455 struct so_list *so_head = svr4_current_sos_1 (info);
1456 struct mem_range vsyscall_range;
1457
1458 /* Filter out the vDSO module, if present. Its symbol file would
1459 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1460 managed by symfile-mem.c:add_vsyscall_page. */
1461 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1462 && vsyscall_range.length != 0)
1463 {
1464 struct so_list **sop;
1465
1466 sop = &so_head;
1467 while (*sop != NULL)
1468 {
1469 struct so_list *so = *sop;
1470
1471 /* We can't simply match the vDSO by starting address alone,
1472 because lm_info->l_addr_inferior (and also l_addr) do not
1473 necessarily represent the real starting address of the
1474 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1475 field (the ".dynamic" section of the shared object)
1476 always points at the absolute/resolved address though.
1477 So check whether that address is inside the vDSO's
1478 mapping instead.
1479
1480 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1481 0-based ELF, and we see:
1482
1483 (gdb) info auxv
1484 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1485 (gdb) p/x *_r_debug.r_map.l_next
1486 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1487
1488 And on Linux 2.6.32 (x86_64) we see:
1489
1490 (gdb) info auxv
1491 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1492 (gdb) p/x *_r_debug.r_map.l_next
1493 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1494
1495 Dumping that vDSO shows:
1496
1497 (gdb) info proc mappings
1498 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1499 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1500 # readelf -Wa vdso.bin
1501 [...]
1502 Entry point address: 0xffffffffff700700
1503 [...]
1504 Section Headers:
1505 [Nr] Name Type Address Off Size
1506 [ 0] NULL 0000000000000000 000000 000000
1507 [ 1] .hash HASH ffffffffff700120 000120 000038
1508 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1509 [...]
1510 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1511 */
1512
1513 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1514
1515 if (address_in_mem_range (li->l_ld, &vsyscall_range))
1516 {
1517 *sop = so->next;
1518 free_so (so);
1519 break;
1520 }
1521
1522 sop = &so->next;
1523 }
1524 }
1525
1526 return so_head;
1527 }
1528
1529 /* Get the address of the link_map for a given OBJFILE. */
1530
1531 CORE_ADDR
1532 svr4_fetch_objfile_link_map (struct objfile *objfile)
1533 {
1534 struct svr4_info *info = get_svr4_info (objfile->pspace);
1535
1536 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1537 if (info->main_lm_addr == 0)
1538 solib_add (NULL, 0, auto_solib_add);
1539
1540 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1541 if (objfile == symfile_objfile)
1542 return info->main_lm_addr;
1543
1544 /* If OBJFILE is a separate debug object file, look for the
1545 original object file. */
1546 if (objfile->separate_debug_objfile_backlink != NULL)
1547 objfile = objfile->separate_debug_objfile_backlink;
1548
1549 /* The other link map addresses may be found by examining the list
1550 of shared libraries. */
1551 for (struct so_list *so : current_program_space->solibs ())
1552 if (so->objfile == objfile)
1553 {
1554 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1555
1556 return li->lm_addr;
1557 }
1558
1559 /* Not found! */
1560 return 0;
1561 }
1562
1563 /* On some systems, the only way to recognize the link map entry for
1564 the main executable file is by looking at its name. Return
1565 non-zero iff SONAME matches one of the known main executable names. */
1566
1567 static int
1568 match_main (const char *soname)
1569 {
1570 const char * const *mainp;
1571
1572 for (mainp = main_name_list; *mainp != NULL; mainp++)
1573 {
1574 if (strcmp (soname, *mainp) == 0)
1575 return (1);
1576 }
1577
1578 return (0);
1579 }
1580
1581 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1582 SVR4 run time loader. */
1583
1584 int
1585 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1586 {
1587 struct svr4_info *info = get_svr4_info (current_program_space);
1588
1589 return ((pc >= info->interp_text_sect_low
1590 && pc < info->interp_text_sect_high)
1591 || (pc >= info->interp_plt_sect_low
1592 && pc < info->interp_plt_sect_high)
1593 || in_plt_section (pc)
1594 || in_gnu_ifunc_stub (pc));
1595 }
1596
1597 /* Given an executable's ABFD and target, compute the entry-point
1598 address. */
1599
1600 static CORE_ADDR
1601 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1602 {
1603 CORE_ADDR addr;
1604
1605 /* KevinB wrote ... for most targets, the address returned by
1606 bfd_get_start_address() is the entry point for the start
1607 function. But, for some targets, bfd_get_start_address() returns
1608 the address of a function descriptor from which the entry point
1609 address may be extracted. This address is extracted by
1610 gdbarch_convert_from_func_ptr_addr(). The method
1611 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1612 function for targets which don't use function descriptors. */
1613 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
1614 bfd_get_start_address (abfd),
1615 targ);
1616 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
1617 }
1618
1619 /* A probe and its associated action. */
1620
1621 struct probe_and_action
1622 {
1623 /* The probe. */
1624 probe *prob;
1625
1626 /* The relocated address of the probe. */
1627 CORE_ADDR address;
1628
1629 /* The action. */
1630 enum probe_action action;
1631
1632 /* The objfile where this probe was found. */
1633 struct objfile *objfile;
1634 };
1635
1636 /* Returns a hash code for the probe_and_action referenced by p. */
1637
1638 static hashval_t
1639 hash_probe_and_action (const void *p)
1640 {
1641 const struct probe_and_action *pa = (const struct probe_and_action *) p;
1642
1643 return (hashval_t) pa->address;
1644 }
1645
1646 /* Returns non-zero if the probe_and_actions referenced by p1 and p2
1647 are equal. */
1648
1649 static int
1650 equal_probe_and_action (const void *p1, const void *p2)
1651 {
1652 const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
1653 const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;
1654
1655 return pa1->address == pa2->address;
1656 }
1657
1658 /* Traversal function for probes_table_remove_objfile_probes. */
1659
1660 static int
1661 probes_table_htab_remove_objfile_probes (void **slot, void *info)
1662 {
1663 probe_and_action *pa = (probe_and_action *) *slot;
1664 struct objfile *objfile = (struct objfile *) info;
1665
1666 if (pa->objfile == objfile)
1667 htab_clear_slot (get_svr4_info (objfile->pspace)->probes_table.get (),
1668 slot);
1669
1670 return 1;
1671 }
1672
1673 /* Remove all probes that belong to OBJFILE from the probes table. */
1674
1675 static void
1676 probes_table_remove_objfile_probes (struct objfile *objfile)
1677 {
1678 svr4_info *info = get_svr4_info (objfile->pspace);
1679 if (info->probes_table != nullptr)
1680 htab_traverse_noresize (info->probes_table.get (),
1681 probes_table_htab_remove_objfile_probes, objfile);
1682 }
1683
1684 /* Register a solib event probe and its associated action in the
1685 probes table. */
1686
1687 static void
1688 register_solib_event_probe (svr4_info *info, struct objfile *objfile,
1689 probe *prob, CORE_ADDR address,
1690 enum probe_action action)
1691 {
1692 struct probe_and_action lookup, *pa;
1693 void **slot;
1694
1695 /* Create the probes table, if necessary. */
1696 if (info->probes_table == NULL)
1697 info->probes_table.reset (htab_create_alloc (1, hash_probe_and_action,
1698 equal_probe_and_action,
1699 xfree, xcalloc, xfree));
1700
1701 lookup.address = address;
1702 slot = htab_find_slot (info->probes_table.get (), &lookup, INSERT);
1703 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1704
1705 pa = XCNEW (struct probe_and_action);
1706 pa->prob = prob;
1707 pa->address = address;
1708 pa->action = action;
1709 pa->objfile = objfile;
1710
1711 *slot = pa;
1712 }
1713
1714 /* Get the solib event probe at the specified location, and the
1715 action associated with it. Returns NULL if no solib event probe
1716 was found. */
1717
1718 static struct probe_and_action *
1719 solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1720 {
1721 struct probe_and_action lookup;
1722 void **slot;
1723
1724 lookup.address = address;
1725 slot = htab_find_slot (info->probes_table.get (), &lookup, NO_INSERT);
1726
1727 if (slot == NULL)
1728 return NULL;
1729
1730 return (struct probe_and_action *) *slot;
1731 }
1732
1733 /* Decide what action to take when the specified solib event probe is
1734 hit. */
1735
1736 static enum probe_action
1737 solib_event_probe_action (struct probe_and_action *pa)
1738 {
1739 enum probe_action action;
1740 unsigned probe_argc = 0;
1741 struct frame_info *frame = get_current_frame ();
1742
1743 action = pa->action;
1744 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1745 return action;
1746
1747 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1748
1749 /* Check that an appropriate number of arguments has been supplied.
1750 We expect:
1751 arg0: Lmid_t lmid (mandatory)
1752 arg1: struct r_debug *debug_base (mandatory)
1753 arg2: struct link_map *new (optional, for incremental updates) */
1754 try
1755 {
1756 probe_argc = pa->prob->get_argument_count (get_frame_arch (frame));
1757 }
1758 catch (const gdb_exception_error &ex)
1759 {
1760 exception_print (gdb_stderr, ex);
1761 probe_argc = 0;
1762 }
1763
1764 /* If get_argument_count throws an exception, probe_argc will be set
1765 to zero. However, if pa->prob does not have arguments, then
1766 get_argument_count will succeed but probe_argc will also be zero.
1767 Both cases happen because of different things, but they are
1768 treated equally here: action will be set to
1769 PROBES_INTERFACE_FAILED. */
1770 if (probe_argc == 2)
1771 action = FULL_RELOAD;
1772 else if (probe_argc < 2)
1773 action = PROBES_INTERFACE_FAILED;
1774
1775 return action;
1776 }
1777
1778 /* Populate the shared object list by reading the entire list of
1779 shared objects from the inferior. Handle special cases relating
1780 to the first elements of the list. Returns nonzero on success. */
1781
1782 static int
1783 solist_update_full (struct svr4_info *info)
1784 {
1785 free_solib_list (info);
1786 info->solib_list = svr4_current_sos_direct (info);
1787
1788 return 1;
1789 }
1790
1791 /* Update the shared object list starting from the link-map entry
1792 passed by the linker in the probe's third argument. Returns
1793 nonzero if the list was successfully updated, or zero to indicate
1794 failure. */
1795
1796 static int
1797 solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1798 {
1799 struct so_list *tail;
1800 CORE_ADDR prev_lm;
1801
1802 /* svr4_current_sos_direct contains logic to handle a number of
1803 special cases relating to the first elements of the list. To
1804 avoid duplicating this logic we defer to solist_update_full
1805 if the list is empty. */
1806 if (info->solib_list == NULL)
1807 return 0;
1808
1809 /* Fall back to a full update if we are using a remote target
1810 that does not support incremental transfers. */
1811 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1812 return 0;
1813
1814 /* Walk to the end of the list. */
1815 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1816 /* Nothing. */;
1817
1818 lm_info_svr4 *li = (lm_info_svr4 *) tail->lm_info;
1819 prev_lm = li->lm_addr;
1820
1821 /* Read the new objects. */
1822 if (info->using_xfer)
1823 {
1824 struct svr4_library_list library_list;
1825 char annex[64];
1826
1827 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1828 phex_nz (lm, sizeof (lm)),
1829 phex_nz (prev_lm, sizeof (prev_lm)));
1830 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1831 return 0;
1832
1833 tail->next = library_list.head;
1834 }
1835 else
1836 {
1837 struct so_list **link = &tail->next;
1838
1839 /* IGNORE_FIRST may safely be set to zero here because the
1840 above check and deferral to solist_update_full ensures
1841 that this call to svr4_read_so_list will never see the
1842 first element. */
1843 if (!svr4_read_so_list (info, lm, prev_lm, &link, 0))
1844 return 0;
1845 }
1846
1847 return 1;
1848 }
1849
1850 /* Disable the probes-based linker interface and revert to the
1851 original interface. We don't reset the breakpoints as the
1852 ones set up for the probes-based interface are adequate. */
1853
1854 static void
1855 disable_probes_interface (svr4_info *info)
1856 {
1857 warning (_("Probes-based dynamic linker interface failed.\n"
1858 "Reverting to original interface."));
1859
1860 free_probes_table (info);
1861 free_solib_list (info);
1862 }
1863
1864 /* Update the solib list as appropriate when using the
1865 probes-based linker interface. Do nothing if using the
1866 standard interface. */
1867
1868 static void
1869 svr4_handle_solib_event (void)
1870 {
1871 struct svr4_info *info = get_svr4_info (current_program_space);
1872 struct probe_and_action *pa;
1873 enum probe_action action;
1874 struct value *val = NULL;
1875 CORE_ADDR pc, debug_base, lm = 0;
1876 struct frame_info *frame = get_current_frame ();
1877
1878 /* Do nothing if not using the probes interface. */
1879 if (info->probes_table == NULL)
1880 return;
1881
1882 /* If anything goes wrong we revert to the original linker
1883 interface. */
1884 auto cleanup = make_scope_exit ([info] ()
1885 {
1886 disable_probes_interface (info);
1887 });
1888
1889 pc = regcache_read_pc (get_current_regcache ());
1890 pa = solib_event_probe_at (info, pc);
1891 if (pa == NULL)
1892 return;
1893
1894 action = solib_event_probe_action (pa);
1895 if (action == PROBES_INTERFACE_FAILED)
1896 return;
1897
1898 if (action == DO_NOTHING)
1899 {
1900 cleanup.release ();
1901 return;
1902 }
1903
1904 /* evaluate_argument looks up symbols in the dynamic linker
1905 using find_pc_section. find_pc_section is accelerated by a cache
1906 called the section map. The section map is invalidated every
1907 time a shared library is loaded or unloaded, and if the inferior
1908 is generating a lot of shared library events then the section map
1909 will be updated every time svr4_handle_solib_event is called.
1910 We called find_pc_section in svr4_create_solib_event_breakpoints,
1911 so we can guarantee that the dynamic linker's sections are in the
1912 section map. We can therefore inhibit section map updates across
1913 these calls to evaluate_argument and save a lot of time. */
1914 {
1915 scoped_restore inhibit_updates
1916 = inhibit_section_map_updates (current_program_space);
1917
1918 try
1919 {
1920 val = pa->prob->evaluate_argument (1, frame);
1921 }
1922 catch (const gdb_exception_error &ex)
1923 {
1924 exception_print (gdb_stderr, ex);
1925 val = NULL;
1926 }
1927
1928 if (val == NULL)
1929 return;
1930
1931 debug_base = value_as_address (val);
1932 if (debug_base == 0)
1933 return;
1934
1935 /* Always locate the debug struct, in case it moved. */
1936 info->debug_base = 0;
1937 if (locate_base (info) == 0)
1938 {
1939 /* It's possible for the reloc_complete probe to be triggered before
1940 the linker has set the DT_DEBUG pointer (for example, when the
1941 linker has finished relocating an LD_AUDIT library or its
1942 dependencies). Since we can't yet handle libraries from other link
1943 namespaces, we don't lose anything by ignoring them here. */
1944 struct value *link_map_id_val;
1945 try
1946 {
1947 link_map_id_val = pa->prob->evaluate_argument (0, frame);
1948 }
1949 catch (const gdb_exception_error)
1950 {
1951 link_map_id_val = NULL;
1952 }
1953 /* glibc and illumos' libc both define LM_ID_BASE as zero. */
1954 if (link_map_id_val != NULL && value_as_long (link_map_id_val) != 0)
1955 action = DO_NOTHING;
1956 else
1957 return;
1958 }
1959
1960 /* GDB does not currently support libraries loaded via dlmopen
1961 into namespaces other than the initial one. We must ignore
1962 any namespace other than the initial namespace here until
1963 support for this is added to GDB. */
1964 if (debug_base != info->debug_base)
1965 action = DO_NOTHING;
1966
1967 if (action == UPDATE_OR_RELOAD)
1968 {
1969 try
1970 {
1971 val = pa->prob->evaluate_argument (2, frame);
1972 }
1973 catch (const gdb_exception_error &ex)
1974 {
1975 exception_print (gdb_stderr, ex);
1976 return;
1977 }
1978
1979 if (val != NULL)
1980 lm = value_as_address (val);
1981
1982 if (lm == 0)
1983 action = FULL_RELOAD;
1984 }
1985
1986 /* Resume section map updates. Closing the scope is
1987 sufficient. */
1988 }
1989
1990 if (action == UPDATE_OR_RELOAD)
1991 {
1992 if (!solist_update_incremental (info, lm))
1993 action = FULL_RELOAD;
1994 }
1995
1996 if (action == FULL_RELOAD)
1997 {
1998 if (!solist_update_full (info))
1999 return;
2000 }
2001
2002 cleanup.release ();
2003 }
2004
2005 /* Helper function for svr4_update_solib_event_breakpoints. */
2006
2007 static bool
2008 svr4_update_solib_event_breakpoint (struct breakpoint *b)
2009 {
2010 struct bp_location *loc;
2011
2012 if (b->type != bp_shlib_event)
2013 {
2014 /* Continue iterating. */
2015 return false;
2016 }
2017
2018 for (loc = b->loc; loc != NULL; loc = loc->next)
2019 {
2020 struct svr4_info *info;
2021 struct probe_and_action *pa;
2022
2023 info = solib_svr4_pspace_data.get (loc->pspace);
2024 if (info == NULL || info->probes_table == NULL)
2025 continue;
2026
2027 pa = solib_event_probe_at (info, loc->address);
2028 if (pa == NULL)
2029 continue;
2030
2031 if (pa->action == DO_NOTHING)
2032 {
2033 if (b->enable_state == bp_disabled && stop_on_solib_events)
2034 enable_breakpoint (b);
2035 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
2036 disable_breakpoint (b);
2037 }
2038
2039 break;
2040 }
2041
2042 /* Continue iterating. */
2043 return false;
2044 }
2045
2046 /* Enable or disable optional solib event breakpoints as appropriate.
2047 Called whenever stop_on_solib_events is changed. */
2048
2049 static void
2050 svr4_update_solib_event_breakpoints (void)
2051 {
2052 iterate_over_breakpoints (svr4_update_solib_event_breakpoint);
2053 }
2054
2055 /* Create and register solib event breakpoints. PROBES is an array
2056 of NUM_PROBES elements, each of which is vector of probes. A
2057 solib event breakpoint will be created and registered for each
2058 probe. */
2059
2060 static void
2061 svr4_create_probe_breakpoints (svr4_info *info, struct gdbarch *gdbarch,
2062 const std::vector<probe *> *probes,
2063 struct objfile *objfile)
2064 {
2065 for (int i = 0; i < NUM_PROBES; i++)
2066 {
2067 enum probe_action action = probe_info[i].action;
2068
2069 for (probe *p : probes[i])
2070 {
2071 CORE_ADDR address = p->get_relocated_address (objfile);
2072
2073 create_solib_event_breakpoint (gdbarch, address);
2074 register_solib_event_probe (info, objfile, p, address, action);
2075 }
2076 }
2077
2078 svr4_update_solib_event_breakpoints ();
2079 }
2080
2081 /* Find all the glibc named probes. Only if all of the probes are found, then
2082 create them and return true. Otherwise return false. If WITH_PREFIX is set
2083 then add "rtld" to the front of the probe names. */
2084 static bool
2085 svr4_find_and_create_probe_breakpoints (svr4_info *info,
2086 struct gdbarch *gdbarch,
2087 struct obj_section *os,
2088 bool with_prefix)
2089 {
2090 std::vector<probe *> probes[NUM_PROBES];
2091
2092 for (int i = 0; i < NUM_PROBES; i++)
2093 {
2094 const char *name = probe_info[i].name;
2095 char buf[32];
2096
2097 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4 shipped with an early
2098 version of the probes code in which the probes' names were prefixed
2099 with "rtld_" and the "map_failed" probe did not exist. The locations
2100 of the probes are otherwise the same, so we check for probes with
2101 prefixed names if probes with unprefixed names are not present. */
2102 if (with_prefix)
2103 {
2104 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2105 name = buf;
2106 }
2107
2108 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2109
2110 /* The "map_failed" probe did not exist in early
2111 versions of the probes code in which the probes'
2112 names were prefixed with "rtld_". */
2113 if (with_prefix && streq (name, "rtld_map_failed"))
2114 continue;
2115
2116 /* Ensure at least one probe for the current name was found. */
2117 if (probes[i].empty ())
2118 return false;
2119
2120 /* Ensure probe arguments can be evaluated. */
2121 for (probe *p : probes[i])
2122 {
2123 if (!p->can_evaluate_arguments ())
2124 return false;
2125 /* This will fail if the probe is invalid. This has been seen on Arm
2126 due to references to symbols that have been resolved away. */
2127 try
2128 {
2129 p->get_argument_count (gdbarch);
2130 }
2131 catch (const gdb_exception_error &ex)
2132 {
2133 exception_print (gdb_stderr, ex);
2134 warning (_("Initializing probes-based dynamic linker interface "
2135 "failed.\nReverting to original interface."));
2136 return false;
2137 }
2138 }
2139 }
2140
2141 /* All probes found. Now create them. */
2142 svr4_create_probe_breakpoints (info, gdbarch, probes, os->objfile);
2143 return true;
2144 }
2145
2146 /* Both the SunOS and the SVR4 dynamic linkers call a marker function
2147 before and after mapping and unmapping shared libraries. The sole
2148 purpose of this method is to allow debuggers to set a breakpoint so
2149 they can track these changes.
2150
2151 Some versions of the glibc dynamic linker contain named probes
2152 to allow more fine grained stopping. Given the address of the
2153 original marker function, this function attempts to find these
2154 probes, and if found, sets breakpoints on those instead. If the
2155 probes aren't found, a single breakpoint is set on the original
2156 marker function. */
2157
2158 static void
2159 svr4_create_solib_event_breakpoints (svr4_info *info, struct gdbarch *gdbarch,
2160 CORE_ADDR address)
2161 {
2162 struct obj_section *os = find_pc_section (address);
2163
2164 if (os == nullptr
2165 || (!svr4_find_and_create_probe_breakpoints (info, gdbarch, os, false)
2166 && !svr4_find_and_create_probe_breakpoints (info, gdbarch, os, true)))
2167 create_solib_event_breakpoint (gdbarch, address);
2168 }
2169
2170 /* Helper function for gdb_bfd_lookup_symbol. */
2171
2172 static int
2173 cmp_name_and_sec_flags (const asymbol *sym, const void *data)
2174 {
2175 return (strcmp (sym->name, (const char *) data) == 0
2176 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2177 }
2178 /* Arrange for dynamic linker to hit breakpoint.
2179
2180 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2181 debugger interface, support for arranging for the inferior to hit
2182 a breakpoint after mapping in the shared libraries. This function
2183 enables that breakpoint.
2184
2185 For SunOS, there is a special flag location (in_debugger) which we
2186 set to 1. When the dynamic linker sees this flag set, it will set
2187 a breakpoint at a location known only to itself, after saving the
2188 original contents of that place and the breakpoint address itself,
2189 in it's own internal structures. When we resume the inferior, it
2190 will eventually take a SIGTRAP when it runs into the breakpoint.
2191 We handle this (in a different place) by restoring the contents of
2192 the breakpointed location (which is only known after it stops),
2193 chasing around to locate the shared libraries that have been
2194 loaded, then resuming.
2195
2196 For SVR4, the debugger interface structure contains a member (r_brk)
2197 which is statically initialized at the time the shared library is
2198 built, to the offset of a function (_r_debug_state) which is guaran-
2199 teed to be called once before mapping in a library, and again when
2200 the mapping is complete. At the time we are examining this member,
2201 it contains only the unrelocated offset of the function, so we have
2202 to do our own relocation. Later, when the dynamic linker actually
2203 runs, it relocates r_brk to be the actual address of _r_debug_state().
2204
2205 The debugger interface structure also contains an enumeration which
2206 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2207 depending upon whether or not the library is being mapped or unmapped,
2208 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
2209
2210 static int
2211 enable_break (struct svr4_info *info, int from_tty)
2212 {
2213 struct bound_minimal_symbol msymbol;
2214 const char * const *bkpt_namep;
2215 asection *interp_sect;
2216 CORE_ADDR sym_addr;
2217
2218 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2219 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
2220
2221 /* If we already have a shared library list in the target, and
2222 r_debug contains r_brk, set the breakpoint there - this should
2223 mean r_brk has already been relocated. Assume the dynamic linker
2224 is the object containing r_brk. */
2225
2226 solib_add (NULL, from_tty, auto_solib_add);
2227 sym_addr = 0;
2228 if (info->debug_base && solib_svr4_r_map (info) != 0)
2229 sym_addr = solib_svr4_r_brk (info);
2230
2231 if (sym_addr != 0)
2232 {
2233 struct obj_section *os;
2234
2235 sym_addr = gdbarch_addr_bits_remove
2236 (target_gdbarch (),
2237 gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2238 sym_addr,
2239 current_top_target ()));
2240
2241 /* On at least some versions of Solaris there's a dynamic relocation
2242 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2243 we get control before the dynamic linker has self-relocated.
2244 Check if SYM_ADDR is in a known section, if it is assume we can
2245 trust its value. This is just a heuristic though, it could go away
2246 or be replaced if it's getting in the way.
2247
2248 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2249 however it's spelled in your particular system) is ARM or Thumb.
2250 That knowledge is encoded in the address, if it's Thumb the low bit
2251 is 1. However, we've stripped that info above and it's not clear
2252 what all the consequences are of passing a non-addr_bits_remove'd
2253 address to svr4_create_solib_event_breakpoints. The call to
2254 find_pc_section verifies we know about the address and have some
2255 hope of computing the right kind of breakpoint to use (via
2256 symbol info). It does mean that GDB needs to be pointed at a
2257 non-stripped version of the dynamic linker in order to obtain
2258 information it already knows about. Sigh. */
2259
2260 os = find_pc_section (sym_addr);
2261 if (os != NULL)
2262 {
2263 /* Record the relocated start and end address of the dynamic linker
2264 text and plt section for svr4_in_dynsym_resolve_code. */
2265 bfd *tmp_bfd;
2266 CORE_ADDR load_addr;
2267
2268 tmp_bfd = os->objfile->obfd;
2269 load_addr = os->objfile->text_section_offset ();
2270
2271 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2272 if (interp_sect)
2273 {
2274 info->interp_text_sect_low
2275 = bfd_section_vma (interp_sect) + load_addr;
2276 info->interp_text_sect_high
2277 = info->interp_text_sect_low + bfd_section_size (interp_sect);
2278 }
2279 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2280 if (interp_sect)
2281 {
2282 info->interp_plt_sect_low
2283 = bfd_section_vma (interp_sect) + load_addr;
2284 info->interp_plt_sect_high
2285 = info->interp_plt_sect_low + bfd_section_size (interp_sect);
2286 }
2287
2288 svr4_create_solib_event_breakpoints (info, target_gdbarch (), sym_addr);
2289 return 1;
2290 }
2291 }
2292
2293 /* Find the program interpreter; if not found, warn the user and drop
2294 into the old breakpoint at symbol code. */
2295 gdb::optional<gdb::byte_vector> interp_name_holder
2296 = find_program_interpreter ();
2297 if (interp_name_holder)
2298 {
2299 const char *interp_name = (const char *) interp_name_holder->data ();
2300 CORE_ADDR load_addr = 0;
2301 int load_addr_found = 0;
2302 int loader_found_in_list = 0;
2303 struct target_ops *tmp_bfd_target;
2304
2305 sym_addr = 0;
2306
2307 /* Now we need to figure out where the dynamic linker was
2308 loaded so that we can load its symbols and place a breakpoint
2309 in the dynamic linker itself.
2310
2311 This address is stored on the stack. However, I've been unable
2312 to find any magic formula to find it for Solaris (appears to
2313 be trivial on GNU/Linux). Therefore, we have to try an alternate
2314 mechanism to find the dynamic linker's base address. */
2315
2316 gdb_bfd_ref_ptr tmp_bfd;
2317 try
2318 {
2319 tmp_bfd = solib_bfd_open (interp_name);
2320 }
2321 catch (const gdb_exception &ex)
2322 {
2323 }
2324
2325 if (tmp_bfd == NULL)
2326 goto bkpt_at_symbol;
2327
2328 /* Now convert the TMP_BFD into a target. That way target, as
2329 well as BFD operations can be used. target_bfd_reopen
2330 acquires its own reference. */
2331 tmp_bfd_target = target_bfd_reopen (tmp_bfd.get ());
2332
2333 /* On a running target, we can get the dynamic linker's base
2334 address from the shared library table. */
2335 for (struct so_list *so : current_program_space->solibs ())
2336 {
2337 if (svr4_same_1 (interp_name, so->so_original_name))
2338 {
2339 load_addr_found = 1;
2340 loader_found_in_list = 1;
2341 load_addr = lm_addr_check (so, tmp_bfd.get ());
2342 break;
2343 }
2344 }
2345
2346 /* If we were not able to find the base address of the loader
2347 from our so_list, then try using the AT_BASE auxilliary entry. */
2348 if (!load_addr_found)
2349 if (target_auxv_search (current_top_target (), AT_BASE, &load_addr) > 0)
2350 {
2351 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
2352
2353 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2354 that `+ load_addr' will overflow CORE_ADDR width not creating
2355 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2356 GDB. */
2357
2358 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
2359 {
2360 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
2361 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd.get (),
2362 tmp_bfd_target);
2363
2364 gdb_assert (load_addr < space_size);
2365
2366 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2367 64bit ld.so with 32bit executable, it should not happen. */
2368
2369 if (tmp_entry_point < space_size
2370 && tmp_entry_point + load_addr >= space_size)
2371 load_addr -= space_size;
2372 }
2373
2374 load_addr_found = 1;
2375 }
2376
2377 /* Otherwise we find the dynamic linker's base address by examining
2378 the current pc (which should point at the entry point for the
2379 dynamic linker) and subtracting the offset of the entry point.
2380
2381 This is more fragile than the previous approaches, but is a good
2382 fallback method because it has actually been working well in
2383 most cases. */
2384 if (!load_addr_found)
2385 {
2386 struct regcache *regcache
2387 = get_thread_arch_regcache (current_inferior ()->process_target (),
2388 inferior_ptid, target_gdbarch ());
2389
2390 load_addr = (regcache_read_pc (regcache)
2391 - exec_entry_point (tmp_bfd.get (), tmp_bfd_target));
2392 }
2393
2394 if (!loader_found_in_list)
2395 {
2396 info->debug_loader_name = xstrdup (interp_name);
2397 info->debug_loader_offset_p = 1;
2398 info->debug_loader_offset = load_addr;
2399 solib_add (NULL, from_tty, auto_solib_add);
2400 }
2401
2402 /* Record the relocated start and end address of the dynamic linker
2403 text and plt section for svr4_in_dynsym_resolve_code. */
2404 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
2405 if (interp_sect)
2406 {
2407 info->interp_text_sect_low
2408 = bfd_section_vma (interp_sect) + load_addr;
2409 info->interp_text_sect_high
2410 = info->interp_text_sect_low + bfd_section_size (interp_sect);
2411 }
2412 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
2413 if (interp_sect)
2414 {
2415 info->interp_plt_sect_low
2416 = bfd_section_vma (interp_sect) + load_addr;
2417 info->interp_plt_sect_high
2418 = info->interp_plt_sect_low + bfd_section_size (interp_sect);
2419 }
2420
2421 /* Now try to set a breakpoint in the dynamic linker. */
2422 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2423 {
2424 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd.get (),
2425 cmp_name_and_sec_flags,
2426 *bkpt_namep);
2427 if (sym_addr != 0)
2428 break;
2429 }
2430
2431 if (sym_addr != 0)
2432 /* Convert 'sym_addr' from a function pointer to an address.
2433 Because we pass tmp_bfd_target instead of the current
2434 target, this will always produce an unrelocated value. */
2435 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2436 sym_addr,
2437 tmp_bfd_target);
2438
2439 /* We're done with both the temporary bfd and target. Closing
2440 the target closes the underlying bfd, because it holds the
2441 only remaining reference. */
2442 target_close (tmp_bfd_target);
2443
2444 if (sym_addr != 0)
2445 {
2446 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2447 load_addr + sym_addr);
2448 return 1;
2449 }
2450
2451 /* For whatever reason we couldn't set a breakpoint in the dynamic
2452 linker. Warn and drop into the old code. */
2453 bkpt_at_symbol:
2454 warning (_("Unable to find dynamic linker breakpoint function.\n"
2455 "GDB will be unable to debug shared library initializers\n"
2456 "and track explicitly loaded dynamic code."));
2457 }
2458
2459 /* Scan through the lists of symbols, trying to look up the symbol and
2460 set a breakpoint there. Terminate loop when we/if we succeed. */
2461
2462 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2463 {
2464 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
2465 if ((msymbol.minsym != NULL)
2466 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2467 {
2468 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2469 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2470 sym_addr,
2471 current_top_target ());
2472 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2473 sym_addr);
2474 return 1;
2475 }
2476 }
2477
2478 if (interp_name_holder && !current_inferior ()->attach_flag)
2479 {
2480 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
2481 {
2482 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
2483 if ((msymbol.minsym != NULL)
2484 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2485 {
2486 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2487 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2488 sym_addr,
2489 current_top_target ());
2490 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2491 sym_addr);
2492 return 1;
2493 }
2494 }
2495 }
2496 return 0;
2497 }
2498
2499 /* Read the ELF program headers from ABFD. */
2500
2501 static gdb::optional<gdb::byte_vector>
2502 read_program_headers_from_bfd (bfd *abfd)
2503 {
2504 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
2505 int phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2506 if (phdrs_size == 0)
2507 return {};
2508
2509 gdb::byte_vector buf (phdrs_size);
2510 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
2511 || bfd_bread (buf.data (), phdrs_size, abfd) != phdrs_size)
2512 return {};
2513
2514 return buf;
2515 }
2516
2517 /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2518 exec_bfd. Otherwise return 0.
2519
2520 We relocate all of the sections by the same amount. This
2521 behavior is mandated by recent editions of the System V ABI.
2522 According to the System V Application Binary Interface,
2523 Edition 4.1, page 5-5:
2524
2525 ... Though the system chooses virtual addresses for
2526 individual processes, it maintains the segments' relative
2527 positions. Because position-independent code uses relative
2528 addressing between segments, the difference between
2529 virtual addresses in memory must match the difference
2530 between virtual addresses in the file. The difference
2531 between the virtual address of any segment in memory and
2532 the corresponding virtual address in the file is thus a
2533 single constant value for any one executable or shared
2534 object in a given process. This difference is the base
2535 address. One use of the base address is to relocate the
2536 memory image of the program during dynamic linking.
2537
2538 The same language also appears in Edition 4.0 of the System V
2539 ABI and is left unspecified in some of the earlier editions.
2540
2541 Decide if the objfile needs to be relocated. As indicated above, we will
2542 only be here when execution is stopped. But during attachment PC can be at
2543 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2544 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2545 regcache_read_pc would point to the interpreter and not the main executable.
2546
2547 So, to summarize, relocations are necessary when the start address obtained
2548 from the executable is different from the address in auxv AT_ENTRY entry.
2549
2550 [ The astute reader will note that we also test to make sure that
2551 the executable in question has the DYNAMIC flag set. It is my
2552 opinion that this test is unnecessary (undesirable even). It
2553 was added to avoid inadvertent relocation of an executable
2554 whose e_type member in the ELF header is not ET_DYN. There may
2555 be a time in the future when it is desirable to do relocations
2556 on other types of files as well in which case this condition
2557 should either be removed or modified to accomodate the new file
2558 type. - Kevin, Nov 2000. ] */
2559
2560 static int
2561 svr4_exec_displacement (CORE_ADDR *displacementp)
2562 {
2563 /* ENTRY_POINT is a possible function descriptor - before
2564 a call to gdbarch_convert_from_func_ptr_addr. */
2565 CORE_ADDR entry_point, exec_displacement;
2566
2567 if (exec_bfd == NULL)
2568 return 0;
2569
2570 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2571 being executed themselves and PIE (Position Independent Executable)
2572 executables are ET_DYN. */
2573
2574 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
2575 return 0;
2576
2577 if (target_auxv_search (current_top_target (), AT_ENTRY, &entry_point) <= 0)
2578 return 0;
2579
2580 exec_displacement = entry_point - bfd_get_start_address (exec_bfd);
2581
2582 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
2583 alignment. It is cheaper than the program headers comparison below. */
2584
2585 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2586 {
2587 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
2588
2589 /* p_align of PT_LOAD segments does not specify any alignment but
2590 only congruency of addresses:
2591 p_offset % p_align == p_vaddr % p_align
2592 Kernel is free to load the executable with lower alignment. */
2593
2594 if ((exec_displacement & (elf->minpagesize - 1)) != 0)
2595 return 0;
2596 }
2597
2598 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2599 comparing their program headers. If the program headers in the auxilliary
2600 vector do not match the program headers in the executable, then we are
2601 looking at a different file than the one used by the kernel - for
2602 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2603
2604 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2605 {
2606 /* Be optimistic and return 0 only if GDB was able to verify the headers
2607 really do not match. */
2608 int arch_size;
2609
2610 gdb::optional<gdb::byte_vector> phdrs_target
2611 = read_program_header (-1, &arch_size, NULL);
2612 gdb::optional<gdb::byte_vector> phdrs_binary
2613 = read_program_headers_from_bfd (exec_bfd);
2614 if (phdrs_target && phdrs_binary)
2615 {
2616 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
2617
2618 /* We are dealing with three different addresses. EXEC_BFD
2619 represents current address in on-disk file. target memory content
2620 may be different from EXEC_BFD as the file may have been prelinked
2621 to a different address after the executable has been loaded.
2622 Moreover the address of placement in target memory can be
2623 different from what the program headers in target memory say -
2624 this is the goal of PIE.
2625
2626 Detected DISPLACEMENT covers both the offsets of PIE placement and
2627 possible new prelink performed after start of the program. Here
2628 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2629 content offset for the verification purpose. */
2630
2631 if (phdrs_target->size () != phdrs_binary->size ()
2632 || bfd_get_arch_size (exec_bfd) != arch_size)
2633 return 0;
2634 else if (arch_size == 32
2635 && phdrs_target->size () >= sizeof (Elf32_External_Phdr)
2636 && phdrs_target->size () % sizeof (Elf32_External_Phdr) == 0)
2637 {
2638 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2639 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2640 CORE_ADDR displacement = 0;
2641 int i;
2642
2643 /* DISPLACEMENT could be found more easily by the difference of
2644 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2645 already have enough information to compute that displacement
2646 with what we've read. */
2647
2648 for (i = 0; i < ehdr2->e_phnum; i++)
2649 if (phdr2[i].p_type == PT_LOAD)
2650 {
2651 Elf32_External_Phdr *phdrp;
2652 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2653 CORE_ADDR vaddr, paddr;
2654 CORE_ADDR displacement_vaddr = 0;
2655 CORE_ADDR displacement_paddr = 0;
2656
2657 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
2658 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2659 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2660
2661 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2662 byte_order);
2663 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2664
2665 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2666 byte_order);
2667 displacement_paddr = paddr - phdr2[i].p_paddr;
2668
2669 if (displacement_vaddr == displacement_paddr)
2670 displacement = displacement_vaddr;
2671
2672 break;
2673 }
2674
2675 /* Now compare program headers from the target and the binary
2676 with optional DISPLACEMENT. */
2677
2678 for (i = 0;
2679 i < phdrs_target->size () / sizeof (Elf32_External_Phdr);
2680 i++)
2681 {
2682 Elf32_External_Phdr *phdrp;
2683 Elf32_External_Phdr *phdr2p;
2684 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2685 CORE_ADDR vaddr, paddr;
2686 asection *plt2_asect;
2687
2688 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
2689 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2690 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2691 phdr2p = &((Elf32_External_Phdr *) phdrs_binary->data ())[i];
2692
2693 /* PT_GNU_STACK is an exception by being never relocated by
2694 prelink as its addresses are always zero. */
2695
2696 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2697 continue;
2698
2699 /* Check also other adjustment combinations - PR 11786. */
2700
2701 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2702 byte_order);
2703 vaddr -= displacement;
2704 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2705
2706 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2707 byte_order);
2708 paddr -= displacement;
2709 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2710
2711 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2712 continue;
2713
2714 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2715 CentOS-5 has problems with filesz, memsz as well.
2716 Strip also modifies memsz of PT_TLS.
2717 See PR 11786. */
2718 if (phdr2[i].p_type == PT_GNU_RELRO
2719 || phdr2[i].p_type == PT_TLS)
2720 {
2721 Elf32_External_Phdr tmp_phdr = *phdrp;
2722 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2723
2724 memset (tmp_phdr.p_filesz, 0, 4);
2725 memset (tmp_phdr.p_memsz, 0, 4);
2726 memset (tmp_phdr.p_flags, 0, 4);
2727 memset (tmp_phdr.p_align, 0, 4);
2728 memset (tmp_phdr2.p_filesz, 0, 4);
2729 memset (tmp_phdr2.p_memsz, 0, 4);
2730 memset (tmp_phdr2.p_flags, 0, 4);
2731 memset (tmp_phdr2.p_align, 0, 4);
2732
2733 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2734 == 0)
2735 continue;
2736 }
2737
2738 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2739 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2740 if (plt2_asect)
2741 {
2742 int content2;
2743 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2744 CORE_ADDR filesz;
2745
2746 content2 = (bfd_section_flags (plt2_asect)
2747 & SEC_HAS_CONTENTS) != 0;
2748
2749 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2750 byte_order);
2751
2752 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2753 FILESZ is from the in-memory image. */
2754 if (content2)
2755 filesz += bfd_section_size (plt2_asect);
2756 else
2757 filesz -= bfd_section_size (plt2_asect);
2758
2759 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2760 filesz);
2761
2762 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2763 continue;
2764 }
2765
2766 return 0;
2767 }
2768 }
2769 else if (arch_size == 64
2770 && phdrs_target->size () >= sizeof (Elf64_External_Phdr)
2771 && phdrs_target->size () % sizeof (Elf64_External_Phdr) == 0)
2772 {
2773 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2774 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2775 CORE_ADDR displacement = 0;
2776 int i;
2777
2778 /* DISPLACEMENT could be found more easily by the difference of
2779 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2780 already have enough information to compute that displacement
2781 with what we've read. */
2782
2783 for (i = 0; i < ehdr2->e_phnum; i++)
2784 if (phdr2[i].p_type == PT_LOAD)
2785 {
2786 Elf64_External_Phdr *phdrp;
2787 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2788 CORE_ADDR vaddr, paddr;
2789 CORE_ADDR displacement_vaddr = 0;
2790 CORE_ADDR displacement_paddr = 0;
2791
2792 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
2793 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2794 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2795
2796 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2797 byte_order);
2798 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2799
2800 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2801 byte_order);
2802 displacement_paddr = paddr - phdr2[i].p_paddr;
2803
2804 if (displacement_vaddr == displacement_paddr)
2805 displacement = displacement_vaddr;
2806
2807 break;
2808 }
2809
2810 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2811
2812 for (i = 0;
2813 i < phdrs_target->size () / sizeof (Elf64_External_Phdr);
2814 i++)
2815 {
2816 Elf64_External_Phdr *phdrp;
2817 Elf64_External_Phdr *phdr2p;
2818 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2819 CORE_ADDR vaddr, paddr;
2820 asection *plt2_asect;
2821
2822 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
2823 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2824 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2825 phdr2p = &((Elf64_External_Phdr *) phdrs_binary->data ())[i];
2826
2827 /* PT_GNU_STACK is an exception by being never relocated by
2828 prelink as its addresses are always zero. */
2829
2830 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2831 continue;
2832
2833 /* Check also other adjustment combinations - PR 11786. */
2834
2835 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2836 byte_order);
2837 vaddr -= displacement;
2838 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2839
2840 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2841 byte_order);
2842 paddr -= displacement;
2843 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2844
2845 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2846 continue;
2847
2848 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2849 CentOS-5 has problems with filesz, memsz as well.
2850 Strip also modifies memsz of PT_TLS.
2851 See PR 11786. */
2852 if (phdr2[i].p_type == PT_GNU_RELRO
2853 || phdr2[i].p_type == PT_TLS)
2854 {
2855 Elf64_External_Phdr tmp_phdr = *phdrp;
2856 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2857
2858 memset (tmp_phdr.p_filesz, 0, 8);
2859 memset (tmp_phdr.p_memsz, 0, 8);
2860 memset (tmp_phdr.p_flags, 0, 4);
2861 memset (tmp_phdr.p_align, 0, 8);
2862 memset (tmp_phdr2.p_filesz, 0, 8);
2863 memset (tmp_phdr2.p_memsz, 0, 8);
2864 memset (tmp_phdr2.p_flags, 0, 4);
2865 memset (tmp_phdr2.p_align, 0, 8);
2866
2867 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2868 == 0)
2869 continue;
2870 }
2871
2872 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2873 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2874 if (plt2_asect)
2875 {
2876 int content2;
2877 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2878 CORE_ADDR filesz;
2879
2880 content2 = (bfd_section_flags (plt2_asect)
2881 & SEC_HAS_CONTENTS) != 0;
2882
2883 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2884 byte_order);
2885
2886 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2887 FILESZ is from the in-memory image. */
2888 if (content2)
2889 filesz += bfd_section_size (plt2_asect);
2890 else
2891 filesz -= bfd_section_size (plt2_asect);
2892
2893 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2894 filesz);
2895
2896 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2897 continue;
2898 }
2899
2900 return 0;
2901 }
2902 }
2903 else
2904 return 0;
2905 }
2906 }
2907
2908 if (info_verbose)
2909 {
2910 /* It can be printed repeatedly as there is no easy way to check
2911 the executable symbols/file has been already relocated to
2912 displacement. */
2913
2914 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2915 "displacement %s for \"%s\".\n"),
2916 paddress (target_gdbarch (), exec_displacement),
2917 bfd_get_filename (exec_bfd));
2918 }
2919
2920 *displacementp = exec_displacement;
2921 return 1;
2922 }
2923
2924 /* Relocate the main executable. This function should be called upon
2925 stopping the inferior process at the entry point to the program.
2926 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2927 different, the main executable is relocated by the proper amount. */
2928
2929 static void
2930 svr4_relocate_main_executable (void)
2931 {
2932 CORE_ADDR displacement;
2933
2934 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2935 probably contains the offsets computed using the PIE displacement
2936 from the previous run, which of course are irrelevant for this run.
2937 So we need to determine the new PIE displacement and recompute the
2938 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2939 already contains pre-computed offsets.
2940
2941 If we cannot compute the PIE displacement, either:
2942
2943 - The executable is not PIE.
2944
2945 - SYMFILE_OBJFILE does not match the executable started in the target.
2946 This can happen for main executable symbols loaded at the host while
2947 `ld.so --ld-args main-executable' is loaded in the target.
2948
2949 Then we leave the section offsets untouched and use them as is for
2950 this run. Either:
2951
2952 - These section offsets were properly reset earlier, and thus
2953 already contain the correct values. This can happen for instance
2954 when reconnecting via the remote protocol to a target that supports
2955 the `qOffsets' packet.
2956
2957 - The section offsets were not reset earlier, and the best we can
2958 hope is that the old offsets are still applicable to the new run. */
2959
2960 if (! svr4_exec_displacement (&displacement))
2961 return;
2962
2963 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2964 addresses. */
2965
2966 if (symfile_objfile)
2967 {
2968 section_offsets new_offsets (symfile_objfile->section_offsets.size (),
2969 displacement);
2970 objfile_relocate (symfile_objfile, new_offsets);
2971 }
2972 else if (exec_bfd)
2973 {
2974 asection *asect;
2975
2976 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2977 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2978 bfd_section_vma (asect) + displacement);
2979 }
2980 }
2981
2982 /* Implement the "create_inferior_hook" target_solib_ops method.
2983
2984 For SVR4 executables, this first instruction is either the first
2985 instruction in the dynamic linker (for dynamically linked
2986 executables) or the instruction at "start" for statically linked
2987 executables. For dynamically linked executables, the system
2988 first exec's /lib/libc.so.N, which contains the dynamic linker,
2989 and starts it running. The dynamic linker maps in any needed
2990 shared libraries, maps in the actual user executable, and then
2991 jumps to "start" in the user executable.
2992
2993 We can arrange to cooperate with the dynamic linker to discover the
2994 names of shared libraries that are dynamically linked, and the base
2995 addresses to which they are linked.
2996
2997 This function is responsible for discovering those names and
2998 addresses, and saving sufficient information about them to allow
2999 their symbols to be read at a later time. */
3000
3001 static void
3002 svr4_solib_create_inferior_hook (int from_tty)
3003 {
3004 struct svr4_info *info;
3005
3006 info = get_svr4_info (current_program_space);
3007
3008 /* Clear the probes-based interface's state. */
3009 free_probes_table (info);
3010 free_solib_list (info);
3011
3012 /* Relocate the main executable if necessary. */
3013 svr4_relocate_main_executable ();
3014
3015 /* No point setting a breakpoint in the dynamic linker if we can't
3016 hit it (e.g., a core file, or a trace file). */
3017 if (!target_has_execution)
3018 return;
3019
3020 if (!svr4_have_link_map_offsets ())
3021 return;
3022
3023 if (!enable_break (info, from_tty))
3024 return;
3025 }
3026
3027 static void
3028 svr4_clear_solib (void)
3029 {
3030 struct svr4_info *info;
3031
3032 info = get_svr4_info (current_program_space);
3033 info->debug_base = 0;
3034 info->debug_loader_offset_p = 0;
3035 info->debug_loader_offset = 0;
3036 xfree (info->debug_loader_name);
3037 info->debug_loader_name = NULL;
3038 }
3039
3040 /* Clear any bits of ADDR that wouldn't fit in a target-format
3041 data pointer. "Data pointer" here refers to whatever sort of
3042 address the dynamic linker uses to manage its sections. At the
3043 moment, we don't support shared libraries on any processors where
3044 code and data pointers are different sizes.
3045
3046 This isn't really the right solution. What we really need here is
3047 a way to do arithmetic on CORE_ADDR values that respects the
3048 natural pointer/address correspondence. (For example, on the MIPS,
3049 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
3050 sign-extend the value. There, simply truncating the bits above
3051 gdbarch_ptr_bit, as we do below, is no good.) This should probably
3052 be a new gdbarch method or something. */
3053 static CORE_ADDR
3054 svr4_truncate_ptr (CORE_ADDR addr)
3055 {
3056 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
3057 /* We don't need to truncate anything, and the bit twiddling below
3058 will fail due to overflow problems. */
3059 return addr;
3060 else
3061 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
3062 }
3063
3064
3065 static void
3066 svr4_relocate_section_addresses (struct so_list *so,
3067 struct target_section *sec)
3068 {
3069 bfd *abfd = sec->the_bfd_section->owner;
3070
3071 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
3072 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
3073 }
3074 \f
3075
3076 /* Architecture-specific operations. */
3077
3078 /* Per-architecture data key. */
3079 static struct gdbarch_data *solib_svr4_data;
3080
3081 struct solib_svr4_ops
3082 {
3083 /* Return a description of the layout of `struct link_map'. */
3084 struct link_map_offsets *(*fetch_link_map_offsets)(void);
3085 };
3086
3087 /* Return a default for the architecture-specific operations. */
3088
3089 static void *
3090 solib_svr4_init (struct obstack *obstack)
3091 {
3092 struct solib_svr4_ops *ops;
3093
3094 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
3095 ops->fetch_link_map_offsets = NULL;
3096 return ops;
3097 }
3098
3099 /* Set the architecture-specific `struct link_map_offsets' fetcher for
3100 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
3101
3102 void
3103 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3104 struct link_map_offsets *(*flmo) (void))
3105 {
3106 struct solib_svr4_ops *ops
3107 = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data);
3108
3109 ops->fetch_link_map_offsets = flmo;
3110
3111 set_solib_ops (gdbarch, &svr4_so_ops);
3112 set_gdbarch_iterate_over_objfiles_in_search_order
3113 (gdbarch, svr4_iterate_over_objfiles_in_search_order);
3114 }
3115
3116 /* Fetch a link_map_offsets structure using the architecture-specific
3117 `struct link_map_offsets' fetcher. */
3118
3119 static struct link_map_offsets *
3120 svr4_fetch_link_map_offsets (void)
3121 {
3122 struct solib_svr4_ops *ops
3123 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3124 solib_svr4_data);
3125
3126 gdb_assert (ops->fetch_link_map_offsets);
3127 return ops->fetch_link_map_offsets ();
3128 }
3129
3130 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3131
3132 static int
3133 svr4_have_link_map_offsets (void)
3134 {
3135 struct solib_svr4_ops *ops
3136 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3137 solib_svr4_data);
3138
3139 return (ops->fetch_link_map_offsets != NULL);
3140 }
3141 \f
3142
3143 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
3144 `struct r_debug' and a `struct link_map' that are binary compatible
3145 with the original SVR4 implementation. */
3146
3147 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3148 for an ILP32 SVR4 system. */
3149
3150 struct link_map_offsets *
3151 svr4_ilp32_fetch_link_map_offsets (void)
3152 {
3153 static struct link_map_offsets lmo;
3154 static struct link_map_offsets *lmp = NULL;
3155
3156 if (lmp == NULL)
3157 {
3158 lmp = &lmo;
3159
3160 lmo.r_version_offset = 0;
3161 lmo.r_version_size = 4;
3162 lmo.r_map_offset = 4;
3163 lmo.r_brk_offset = 8;
3164 lmo.r_ldsomap_offset = 20;
3165
3166 /* Everything we need is in the first 20 bytes. */
3167 lmo.link_map_size = 20;
3168 lmo.l_addr_offset = 0;
3169 lmo.l_name_offset = 4;
3170 lmo.l_ld_offset = 8;
3171 lmo.l_next_offset = 12;
3172 lmo.l_prev_offset = 16;
3173 }
3174
3175 return lmp;
3176 }
3177
3178 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3179 for an LP64 SVR4 system. */
3180
3181 struct link_map_offsets *
3182 svr4_lp64_fetch_link_map_offsets (void)
3183 {
3184 static struct link_map_offsets lmo;
3185 static struct link_map_offsets *lmp = NULL;
3186
3187 if (lmp == NULL)
3188 {
3189 lmp = &lmo;
3190
3191 lmo.r_version_offset = 0;
3192 lmo.r_version_size = 4;
3193 lmo.r_map_offset = 8;
3194 lmo.r_brk_offset = 16;
3195 lmo.r_ldsomap_offset = 40;
3196
3197 /* Everything we need is in the first 40 bytes. */
3198 lmo.link_map_size = 40;
3199 lmo.l_addr_offset = 0;
3200 lmo.l_name_offset = 8;
3201 lmo.l_ld_offset = 16;
3202 lmo.l_next_offset = 24;
3203 lmo.l_prev_offset = 32;
3204 }
3205
3206 return lmp;
3207 }
3208 \f
3209
3210 struct target_so_ops svr4_so_ops;
3211
3212 /* Search order for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3213 different rule for symbol lookup. The lookup begins here in the DSO, not in
3214 the main executable. */
3215
3216 static void
3217 svr4_iterate_over_objfiles_in_search_order
3218 (struct gdbarch *gdbarch,
3219 iterate_over_objfiles_in_search_order_cb_ftype *cb,
3220 void *cb_data, struct objfile *current_objfile)
3221 {
3222 bool checked_current_objfile = false;
3223 if (current_objfile != nullptr)
3224 {
3225 bfd *abfd;
3226
3227 if (current_objfile->separate_debug_objfile_backlink != nullptr)
3228 current_objfile = current_objfile->separate_debug_objfile_backlink;
3229
3230 if (current_objfile == symfile_objfile)
3231 abfd = exec_bfd;
3232 else
3233 abfd = current_objfile->obfd;
3234
3235 if (abfd != nullptr
3236 && scan_dyntag (DT_SYMBOLIC, abfd, nullptr, nullptr) == 1)
3237 {
3238 checked_current_objfile = true;
3239 if (cb (current_objfile, cb_data) != 0)
3240 return;
3241 }
3242 }
3243
3244 for (objfile *objfile : current_program_space->objfiles ())
3245 {
3246 if (checked_current_objfile && objfile == current_objfile)
3247 continue;
3248 if (cb (objfile, cb_data) != 0)
3249 return;
3250 }
3251 }
3252
3253 void _initialize_svr4_solib ();
3254 void
3255 _initialize_svr4_solib ()
3256 {
3257 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
3258
3259 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
3260 svr4_so_ops.free_so = svr4_free_so;
3261 svr4_so_ops.clear_so = svr4_clear_so;
3262 svr4_so_ops.clear_solib = svr4_clear_solib;
3263 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
3264 svr4_so_ops.current_sos = svr4_current_sos;
3265 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
3266 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
3267 svr4_so_ops.bfd_open = solib_bfd_open;
3268 svr4_so_ops.same = svr4_same;
3269 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
3270 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3271 svr4_so_ops.handle_event = svr4_handle_solib_event;
3272
3273 gdb::observers::free_objfile.attach (svr4_free_objfile_observer);
3274 }
This page took 0.102231 seconds and 4 git commands to generate.