2011-01-05 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
4 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23
24 #include "elf/external.h"
25 #include "elf/common.h"
26 #include "elf/mips.h"
27
28 #include "symtab.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdbcore.h"
33 #include "target.h"
34 #include "inferior.h"
35 #include "regcache.h"
36 #include "gdbthread.h"
37 #include "observer.h"
38
39 #include "gdb_assert.h"
40
41 #include "solist.h"
42 #include "solib.h"
43 #include "solib-svr4.h"
44
45 #include "bfd-target.h"
46 #include "elf-bfd.h"
47 #include "exec.h"
48 #include "auxv.h"
49 #include "exceptions.h"
50
51 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
52 static int svr4_have_link_map_offsets (void);
53 static void svr4_relocate_main_executable (void);
54
55 /* Link map info to include in an allocated so_list entry */
56
57 struct lm_info
58 {
59 /* Pointer to copy of link map from inferior. The type is char *
60 rather than void *, so that we may use byte offsets to find the
61 various fields without the need for a cast. */
62 gdb_byte *lm;
63
64 /* Amount by which addresses in the binary should be relocated to
65 match the inferior. This could most often be taken directly
66 from lm, but when prelinking is involved and the prelink base
67 address changes, we may need a different offset, we want to
68 warn about the difference and compute it only once. */
69 CORE_ADDR l_addr;
70
71 /* The target location of lm. */
72 CORE_ADDR lm_addr;
73 };
74
75 /* On SVR4 systems, a list of symbols in the dynamic linker where
76 GDB can try to place a breakpoint to monitor shared library
77 events.
78
79 If none of these symbols are found, or other errors occur, then
80 SVR4 systems will fall back to using a symbol as the "startup
81 mapping complete" breakpoint address. */
82
83 static const char * const solib_break_names[] =
84 {
85 "r_debug_state",
86 "_r_debug_state",
87 "_dl_debug_state",
88 "rtld_db_dlactivity",
89 "__dl_rtld_db_dlactivity",
90 "_rtld_debug_state",
91
92 NULL
93 };
94
95 static const char * const bkpt_names[] =
96 {
97 "_start",
98 "__start",
99 "main",
100 NULL
101 };
102
103 static const char * const main_name_list[] =
104 {
105 "main_$main",
106 NULL
107 };
108
109 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
110 the same shared library. */
111
112 static int
113 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
114 {
115 if (strcmp (gdb_so_name, inferior_so_name) == 0)
116 return 1;
117
118 /* On Solaris, when starting inferior we think that dynamic linker is
119 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
120 contains /lib/ld.so.1. Sometimes one file is a link to another, but
121 sometimes they have identical content, but are not linked to each
122 other. We don't restrict this check for Solaris, but the chances
123 of running into this situation elsewhere are very low. */
124 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
125 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
126 return 1;
127
128 /* Similarly, we observed the same issue with sparc64, but with
129 different locations. */
130 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
131 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
132 return 1;
133
134 return 0;
135 }
136
137 static int
138 svr4_same (struct so_list *gdb, struct so_list *inferior)
139 {
140 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
141 }
142
143 /* link map access functions */
144
145 static CORE_ADDR
146 LM_ADDR_FROM_LINK_MAP (struct so_list *so)
147 {
148 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
149 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
150
151 return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
152 ptr_type);
153 }
154
155 static int
156 HAS_LM_DYNAMIC_FROM_LINK_MAP (void)
157 {
158 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
159
160 return lmo->l_ld_offset >= 0;
161 }
162
163 static CORE_ADDR
164 LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so)
165 {
166 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
167 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
168
169 return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
170 ptr_type);
171 }
172
173 static CORE_ADDR
174 LM_ADDR_CHECK (struct so_list *so, bfd *abfd)
175 {
176 if (so->lm_info->l_addr == (CORE_ADDR)-1)
177 {
178 struct bfd_section *dyninfo_sect;
179 CORE_ADDR l_addr, l_dynaddr, dynaddr;
180
181 l_addr = LM_ADDR_FROM_LINK_MAP (so);
182
183 if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ())
184 goto set_addr;
185
186 l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so);
187
188 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
189 if (dyninfo_sect == NULL)
190 goto set_addr;
191
192 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
193
194 if (dynaddr + l_addr != l_dynaddr)
195 {
196 CORE_ADDR align = 0x1000;
197 CORE_ADDR minpagesize = align;
198
199 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
200 {
201 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
202 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
203 int i;
204
205 align = 1;
206
207 for (i = 0; i < ehdr->e_phnum; i++)
208 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
209 align = phdr[i].p_align;
210
211 minpagesize = get_elf_backend_data (abfd)->minpagesize;
212 }
213
214 /* Turn it into a mask. */
215 align--;
216
217 /* If the changes match the alignment requirements, we
218 assume we're using a core file that was generated by the
219 same binary, just prelinked with a different base offset.
220 If it doesn't match, we may have a different binary, the
221 same binary with the dynamic table loaded at an unrelated
222 location, or anything, really. To avoid regressions,
223 don't adjust the base offset in the latter case, although
224 odds are that, if things really changed, debugging won't
225 quite work.
226
227 One could expect more the condition
228 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
229 but the one below is relaxed for PPC. The PPC kernel supports
230 either 4k or 64k page sizes. To be prepared for 64k pages,
231 PPC ELF files are built using an alignment requirement of 64k.
232 However, when running on a kernel supporting 4k pages, the memory
233 mapping of the library may not actually happen on a 64k boundary!
234
235 (In the usual case where (l_addr & align) == 0, this check is
236 equivalent to the possibly expected check above.)
237
238 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
239
240 if ((l_addr & (minpagesize - 1)) == 0
241 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
242 {
243 l_addr = l_dynaddr - dynaddr;
244
245 if (info_verbose)
246 printf_unfiltered (_("Using PIC (Position Independent Code) "
247 "prelink displacement %s for \"%s\".\n"),
248 paddress (target_gdbarch, l_addr),
249 so->so_name);
250 }
251 else
252 warning (_(".dynamic section for \"%s\" "
253 "is not at the expected address "
254 "(wrong library or version mismatch?)"), so->so_name);
255 }
256
257 set_addr:
258 so->lm_info->l_addr = l_addr;
259 }
260
261 return so->lm_info->l_addr;
262 }
263
264 static CORE_ADDR
265 LM_NEXT (struct so_list *so)
266 {
267 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
268 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
269
270 return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
271 ptr_type);
272 }
273
274 static CORE_ADDR
275 LM_PREV (struct so_list *so)
276 {
277 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
278 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
279
280 return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
281 ptr_type);
282 }
283
284 static CORE_ADDR
285 LM_NAME (struct so_list *so)
286 {
287 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
288 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
289
290 return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
291 ptr_type);
292 }
293
294 static int
295 IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
296 {
297 /* Assume that everything is a library if the dynamic loader was loaded
298 late by a static executable. */
299 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
300 return 0;
301
302 return LM_PREV (so) == 0;
303 }
304
305 /* Per pspace SVR4 specific data. */
306
307 struct svr4_info
308 {
309 CORE_ADDR debug_base; /* Base of dynamic linker structures */
310
311 /* Validity flag for debug_loader_offset. */
312 int debug_loader_offset_p;
313
314 /* Load address for the dynamic linker, inferred. */
315 CORE_ADDR debug_loader_offset;
316
317 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
318 char *debug_loader_name;
319
320 /* Load map address for the main executable. */
321 CORE_ADDR main_lm_addr;
322
323 CORE_ADDR interp_text_sect_low;
324 CORE_ADDR interp_text_sect_high;
325 CORE_ADDR interp_plt_sect_low;
326 CORE_ADDR interp_plt_sect_high;
327 };
328
329 /* Per-program-space data key. */
330 static const struct program_space_data *solib_svr4_pspace_data;
331
332 static void
333 svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
334 {
335 struct svr4_info *info;
336
337 info = program_space_data (pspace, solib_svr4_pspace_data);
338 xfree (info);
339 }
340
341 /* Get the current svr4 data. If none is found yet, add it now. This
342 function always returns a valid object. */
343
344 static struct svr4_info *
345 get_svr4_info (void)
346 {
347 struct svr4_info *info;
348
349 info = program_space_data (current_program_space, solib_svr4_pspace_data);
350 if (info != NULL)
351 return info;
352
353 info = XZALLOC (struct svr4_info);
354 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
355 return info;
356 }
357
358 /* Local function prototypes */
359
360 static int match_main (const char *);
361
362 /*
363
364 LOCAL FUNCTION
365
366 bfd_lookup_symbol -- lookup the value for a specific symbol
367
368 SYNOPSIS
369
370 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
371
372 DESCRIPTION
373
374 An expensive way to lookup the value of a single symbol for
375 bfd's that are only temporary anyway. This is used by the
376 shared library support to find the address of the debugger
377 notification routine in the shared library.
378
379 The returned symbol may be in a code or data section; functions
380 will normally be in a code section, but may be in a data section
381 if this architecture uses function descriptors.
382
383 Note that 0 is specifically allowed as an error return (no
384 such symbol).
385 */
386
387 static CORE_ADDR
388 bfd_lookup_symbol (bfd *abfd, const char *symname)
389 {
390 long storage_needed;
391 asymbol *sym;
392 asymbol **symbol_table;
393 unsigned int number_of_symbols;
394 unsigned int i;
395 struct cleanup *back_to;
396 CORE_ADDR symaddr = 0;
397
398 storage_needed = bfd_get_symtab_upper_bound (abfd);
399
400 if (storage_needed > 0)
401 {
402 symbol_table = (asymbol **) xmalloc (storage_needed);
403 back_to = make_cleanup (xfree, symbol_table);
404 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
405
406 for (i = 0; i < number_of_symbols; i++)
407 {
408 sym = *symbol_table++;
409 if (strcmp (sym->name, symname) == 0
410 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
411 {
412 /* BFD symbols are section relative. */
413 symaddr = sym->value + sym->section->vma;
414 break;
415 }
416 }
417 do_cleanups (back_to);
418 }
419
420 if (symaddr)
421 return symaddr;
422
423 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
424 have to check the dynamic string table too. */
425
426 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
427
428 if (storage_needed > 0)
429 {
430 symbol_table = (asymbol **) xmalloc (storage_needed);
431 back_to = make_cleanup (xfree, symbol_table);
432 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
433
434 for (i = 0; i < number_of_symbols; i++)
435 {
436 sym = *symbol_table++;
437
438 if (strcmp (sym->name, symname) == 0
439 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
440 {
441 /* BFD symbols are section relative. */
442 symaddr = sym->value + sym->section->vma;
443 break;
444 }
445 }
446 do_cleanups (back_to);
447 }
448
449 return symaddr;
450 }
451
452
453 /* Read program header TYPE from inferior memory. The header is found
454 by scanning the OS auxillary vector.
455
456 If TYPE == -1, return the program headers instead of the contents of
457 one program header.
458
459 Return a pointer to allocated memory holding the program header contents,
460 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
461 size of those contents is returned to P_SECT_SIZE. Likewise, the target
462 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
463
464 static gdb_byte *
465 read_program_header (int type, int *p_sect_size, int *p_arch_size)
466 {
467 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
468 CORE_ADDR at_phdr, at_phent, at_phnum;
469 int arch_size, sect_size;
470 CORE_ADDR sect_addr;
471 gdb_byte *buf;
472
473 /* Get required auxv elements from target. */
474 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
475 return 0;
476 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
477 return 0;
478 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
479 return 0;
480 if (!at_phdr || !at_phnum)
481 return 0;
482
483 /* Determine ELF architecture type. */
484 if (at_phent == sizeof (Elf32_External_Phdr))
485 arch_size = 32;
486 else if (at_phent == sizeof (Elf64_External_Phdr))
487 arch_size = 64;
488 else
489 return 0;
490
491 /* Find the requested segment. */
492 if (type == -1)
493 {
494 sect_addr = at_phdr;
495 sect_size = at_phent * at_phnum;
496 }
497 else if (arch_size == 32)
498 {
499 Elf32_External_Phdr phdr;
500 int i;
501
502 /* Search for requested PHDR. */
503 for (i = 0; i < at_phnum; i++)
504 {
505 if (target_read_memory (at_phdr + i * sizeof (phdr),
506 (gdb_byte *)&phdr, sizeof (phdr)))
507 return 0;
508
509 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
510 4, byte_order) == type)
511 break;
512 }
513
514 if (i == at_phnum)
515 return 0;
516
517 /* Retrieve address and size. */
518 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
519 4, byte_order);
520 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
521 4, byte_order);
522 }
523 else
524 {
525 Elf64_External_Phdr phdr;
526 int i;
527
528 /* Search for requested PHDR. */
529 for (i = 0; i < at_phnum; i++)
530 {
531 if (target_read_memory (at_phdr + i * sizeof (phdr),
532 (gdb_byte *)&phdr, sizeof (phdr)))
533 return 0;
534
535 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
536 4, byte_order) == type)
537 break;
538 }
539
540 if (i == at_phnum)
541 return 0;
542
543 /* Retrieve address and size. */
544 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
545 8, byte_order);
546 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
547 8, byte_order);
548 }
549
550 /* Read in requested program header. */
551 buf = xmalloc (sect_size);
552 if (target_read_memory (sect_addr, buf, sect_size))
553 {
554 xfree (buf);
555 return NULL;
556 }
557
558 if (p_arch_size)
559 *p_arch_size = arch_size;
560 if (p_sect_size)
561 *p_sect_size = sect_size;
562
563 return buf;
564 }
565
566
567 /* Return program interpreter string. */
568 static gdb_byte *
569 find_program_interpreter (void)
570 {
571 gdb_byte *buf = NULL;
572
573 /* If we have an exec_bfd, use its section table. */
574 if (exec_bfd
575 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
576 {
577 struct bfd_section *interp_sect;
578
579 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
580 if (interp_sect != NULL)
581 {
582 int sect_size = bfd_section_size (exec_bfd, interp_sect);
583
584 buf = xmalloc (sect_size);
585 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
586 }
587 }
588
589 /* If we didn't find it, use the target auxillary vector. */
590 if (!buf)
591 buf = read_program_header (PT_INTERP, NULL, NULL);
592
593 return buf;
594 }
595
596
597 /* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
598 returned and the corresponding PTR is set. */
599
600 static int
601 scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
602 {
603 int arch_size, step, sect_size;
604 long dyn_tag;
605 CORE_ADDR dyn_ptr, dyn_addr;
606 gdb_byte *bufend, *bufstart, *buf;
607 Elf32_External_Dyn *x_dynp_32;
608 Elf64_External_Dyn *x_dynp_64;
609 struct bfd_section *sect;
610 struct target_section *target_section;
611
612 if (abfd == NULL)
613 return 0;
614
615 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
616 return 0;
617
618 arch_size = bfd_get_arch_size (abfd);
619 if (arch_size == -1)
620 return 0;
621
622 /* Find the start address of the .dynamic section. */
623 sect = bfd_get_section_by_name (abfd, ".dynamic");
624 if (sect == NULL)
625 return 0;
626
627 for (target_section = current_target_sections->sections;
628 target_section < current_target_sections->sections_end;
629 target_section++)
630 if (sect == target_section->the_bfd_section)
631 break;
632 if (target_section < current_target_sections->sections_end)
633 dyn_addr = target_section->addr;
634 else
635 {
636 /* ABFD may come from OBJFILE acting only as a symbol file without being
637 loaded into the target (see add_symbol_file_command). This case is
638 such fallback to the file VMA address without the possibility of
639 having the section relocated to its actual in-memory address. */
640
641 dyn_addr = bfd_section_vma (abfd, sect);
642 }
643
644 /* Read in .dynamic from the BFD. We will get the actual value
645 from memory later. */
646 sect_size = bfd_section_size (abfd, sect);
647 buf = bufstart = alloca (sect_size);
648 if (!bfd_get_section_contents (abfd, sect,
649 buf, 0, sect_size))
650 return 0;
651
652 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
653 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
654 : sizeof (Elf64_External_Dyn);
655 for (bufend = buf + sect_size;
656 buf < bufend;
657 buf += step)
658 {
659 if (arch_size == 32)
660 {
661 x_dynp_32 = (Elf32_External_Dyn *) buf;
662 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
663 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
664 }
665 else
666 {
667 x_dynp_64 = (Elf64_External_Dyn *) buf;
668 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
669 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
670 }
671 if (dyn_tag == DT_NULL)
672 return 0;
673 if (dyn_tag == dyntag)
674 {
675 /* If requested, try to read the runtime value of this .dynamic
676 entry. */
677 if (ptr)
678 {
679 struct type *ptr_type;
680 gdb_byte ptr_buf[8];
681 CORE_ADDR ptr_addr;
682
683 ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
684 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
685 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
686 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
687 *ptr = dyn_ptr;
688 }
689 return 1;
690 }
691 }
692
693 return 0;
694 }
695
696 /* Scan for DYNTAG in .dynamic section of the target's main executable,
697 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
698 returned and the corresponding PTR is set. */
699
700 static int
701 scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
702 {
703 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
704 int sect_size, arch_size, step;
705 long dyn_tag;
706 CORE_ADDR dyn_ptr;
707 gdb_byte *bufend, *bufstart, *buf;
708
709 /* Read in .dynamic section. */
710 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
711 if (!buf)
712 return 0;
713
714 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
715 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
716 : sizeof (Elf64_External_Dyn);
717 for (bufend = buf + sect_size;
718 buf < bufend;
719 buf += step)
720 {
721 if (arch_size == 32)
722 {
723 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
724
725 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
726 4, byte_order);
727 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
728 4, byte_order);
729 }
730 else
731 {
732 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
733
734 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
735 8, byte_order);
736 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
737 8, byte_order);
738 }
739 if (dyn_tag == DT_NULL)
740 break;
741
742 if (dyn_tag == dyntag)
743 {
744 if (ptr)
745 *ptr = dyn_ptr;
746
747 xfree (bufstart);
748 return 1;
749 }
750 }
751
752 xfree (bufstart);
753 return 0;
754 }
755
756
757 /*
758
759 LOCAL FUNCTION
760
761 elf_locate_base -- locate the base address of dynamic linker structs
762 for SVR4 elf targets.
763
764 SYNOPSIS
765
766 CORE_ADDR elf_locate_base (void)
767
768 DESCRIPTION
769
770 For SVR4 elf targets the address of the dynamic linker's runtime
771 structure is contained within the dynamic info section in the
772 executable file. The dynamic section is also mapped into the
773 inferior address space. Because the runtime loader fills in the
774 real address before starting the inferior, we have to read in the
775 dynamic info section from the inferior address space.
776 If there are any errors while trying to find the address, we
777 silently return 0, otherwise the found address is returned.
778
779 */
780
781 static CORE_ADDR
782 elf_locate_base (void)
783 {
784 struct minimal_symbol *msymbol;
785 CORE_ADDR dyn_ptr;
786
787 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
788 instead of DT_DEBUG, although they sometimes contain an unused
789 DT_DEBUG. */
790 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
791 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
792 {
793 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
794 gdb_byte *pbuf;
795 int pbuf_size = TYPE_LENGTH (ptr_type);
796
797 pbuf = alloca (pbuf_size);
798 /* DT_MIPS_RLD_MAP contains a pointer to the address
799 of the dynamic link structure. */
800 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
801 return 0;
802 return extract_typed_address (pbuf, ptr_type);
803 }
804
805 /* Find DT_DEBUG. */
806 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
807 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
808 return dyn_ptr;
809
810 /* This may be a static executable. Look for the symbol
811 conventionally named _r_debug, as a last resort. */
812 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
813 if (msymbol != NULL)
814 return SYMBOL_VALUE_ADDRESS (msymbol);
815
816 /* DT_DEBUG entry not found. */
817 return 0;
818 }
819
820 /*
821
822 LOCAL FUNCTION
823
824 locate_base -- locate the base address of dynamic linker structs
825
826 SYNOPSIS
827
828 CORE_ADDR locate_base (struct svr4_info *)
829
830 DESCRIPTION
831
832 For both the SunOS and SVR4 shared library implementations, if the
833 inferior executable has been linked dynamically, there is a single
834 address somewhere in the inferior's data space which is the key to
835 locating all of the dynamic linker's runtime structures. This
836 address is the value of the debug base symbol. The job of this
837 function is to find and return that address, or to return 0 if there
838 is no such address (the executable is statically linked for example).
839
840 For SunOS, the job is almost trivial, since the dynamic linker and
841 all of it's structures are statically linked to the executable at
842 link time. Thus the symbol for the address we are looking for has
843 already been added to the minimal symbol table for the executable's
844 objfile at the time the symbol file's symbols were read, and all we
845 have to do is look it up there. Note that we explicitly do NOT want
846 to find the copies in the shared library.
847
848 The SVR4 version is a bit more complicated because the address
849 is contained somewhere in the dynamic info section. We have to go
850 to a lot more work to discover the address of the debug base symbol.
851 Because of this complexity, we cache the value we find and return that
852 value on subsequent invocations. Note there is no copy in the
853 executable symbol tables.
854
855 */
856
857 static CORE_ADDR
858 locate_base (struct svr4_info *info)
859 {
860 /* Check to see if we have a currently valid address, and if so, avoid
861 doing all this work again and just return the cached address. If
862 we have no cached address, try to locate it in the dynamic info
863 section for ELF executables. There's no point in doing any of this
864 though if we don't have some link map offsets to work with. */
865
866 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
867 info->debug_base = elf_locate_base ();
868 return info->debug_base;
869 }
870
871 /* Find the first element in the inferior's dynamic link map, and
872 return its address in the inferior. Return zero if the address
873 could not be determined.
874
875 FIXME: Perhaps we should validate the info somehow, perhaps by
876 checking r_version for a known version number, or r_state for
877 RT_CONSISTENT. */
878
879 static CORE_ADDR
880 solib_svr4_r_map (struct svr4_info *info)
881 {
882 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
883 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
884 CORE_ADDR addr = 0;
885 volatile struct gdb_exception ex;
886
887 TRY_CATCH (ex, RETURN_MASK_ERROR)
888 {
889 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
890 ptr_type);
891 }
892 exception_print (gdb_stderr, ex);
893 return addr;
894 }
895
896 /* Find r_brk from the inferior's debug base. */
897
898 static CORE_ADDR
899 solib_svr4_r_brk (struct svr4_info *info)
900 {
901 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
902 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
903
904 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
905 ptr_type);
906 }
907
908 /* Find the link map for the dynamic linker (if it is not in the
909 normal list of loaded shared objects). */
910
911 static CORE_ADDR
912 solib_svr4_r_ldsomap (struct svr4_info *info)
913 {
914 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
915 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
916 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
917 ULONGEST version;
918
919 /* Check version, and return zero if `struct r_debug' doesn't have
920 the r_ldsomap member. */
921 version
922 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
923 lmo->r_version_size, byte_order);
924 if (version < 2 || lmo->r_ldsomap_offset == -1)
925 return 0;
926
927 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
928 ptr_type);
929 }
930
931 /* On Solaris systems with some versions of the dynamic linker,
932 ld.so's l_name pointer points to the SONAME in the string table
933 rather than into writable memory. So that GDB can find shared
934 libraries when loading a core file generated by gcore, ensure that
935 memory areas containing the l_name string are saved in the core
936 file. */
937
938 static int
939 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
940 {
941 struct svr4_info *info;
942 CORE_ADDR ldsomap;
943 struct so_list *new;
944 struct cleanup *old_chain;
945 struct link_map_offsets *lmo;
946 CORE_ADDR lm_name;
947
948 info = get_svr4_info ();
949
950 info->debug_base = 0;
951 locate_base (info);
952 if (!info->debug_base)
953 return 0;
954
955 ldsomap = solib_svr4_r_ldsomap (info);
956 if (!ldsomap)
957 return 0;
958
959 lmo = svr4_fetch_link_map_offsets ();
960 new = XZALLOC (struct so_list);
961 old_chain = make_cleanup (xfree, new);
962 new->lm_info = xmalloc (sizeof (struct lm_info));
963 make_cleanup (xfree, new->lm_info);
964 new->lm_info->l_addr = (CORE_ADDR)-1;
965 new->lm_info->lm_addr = ldsomap;
966 new->lm_info->lm = xzalloc (lmo->link_map_size);
967 make_cleanup (xfree, new->lm_info->lm);
968 read_memory (ldsomap, new->lm_info->lm, lmo->link_map_size);
969 lm_name = LM_NAME (new);
970 do_cleanups (old_chain);
971
972 return (lm_name >= vaddr && lm_name < vaddr + size);
973 }
974
975 /*
976
977 LOCAL FUNCTION
978
979 open_symbol_file_object
980
981 SYNOPSIS
982
983 void open_symbol_file_object (void *from_tty)
984
985 DESCRIPTION
986
987 If no open symbol file, attempt to locate and open the main symbol
988 file. On SVR4 systems, this is the first link map entry. If its
989 name is here, we can open it. Useful when attaching to a process
990 without first loading its symbol file.
991
992 If FROM_TTYP dereferences to a non-zero integer, allow messages to
993 be printed. This parameter is a pointer rather than an int because
994 open_symbol_file_object() is called via catch_errors() and
995 catch_errors() requires a pointer argument. */
996
997 static int
998 open_symbol_file_object (void *from_ttyp)
999 {
1000 CORE_ADDR lm, l_name;
1001 char *filename;
1002 int errcode;
1003 int from_tty = *(int *)from_ttyp;
1004 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
1005 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
1006 int l_name_size = TYPE_LENGTH (ptr_type);
1007 gdb_byte *l_name_buf = xmalloc (l_name_size);
1008 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
1009 struct svr4_info *info = get_svr4_info ();
1010
1011 if (symfile_objfile)
1012 if (!query (_("Attempt to reload symbols from process? ")))
1013 return 0;
1014
1015 /* Always locate the debug struct, in case it has moved. */
1016 info->debug_base = 0;
1017 if (locate_base (info) == 0)
1018 return 0; /* failed somehow... */
1019
1020 /* First link map member should be the executable. */
1021 lm = solib_svr4_r_map (info);
1022 if (lm == 0)
1023 return 0; /* failed somehow... */
1024
1025 /* Read address of name from target memory to GDB. */
1026 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
1027
1028 /* Convert the address to host format. */
1029 l_name = extract_typed_address (l_name_buf, ptr_type);
1030
1031 /* Free l_name_buf. */
1032 do_cleanups (cleanups);
1033
1034 if (l_name == 0)
1035 return 0; /* No filename. */
1036
1037 /* Now fetch the filename from target memory. */
1038 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1039 make_cleanup (xfree, filename);
1040
1041 if (errcode)
1042 {
1043 warning (_("failed to read exec filename from attached file: %s"),
1044 safe_strerror (errcode));
1045 return 0;
1046 }
1047
1048 /* Have a pathname: read the symbol file. */
1049 symbol_file_add_main (filename, from_tty);
1050
1051 return 1;
1052 }
1053
1054 /* If no shared library information is available from the dynamic
1055 linker, build a fallback list from other sources. */
1056
1057 static struct so_list *
1058 svr4_default_sos (void)
1059 {
1060 struct svr4_info *info = get_svr4_info ();
1061
1062 struct so_list *head = NULL;
1063 struct so_list **link_ptr = &head;
1064
1065 if (info->debug_loader_offset_p)
1066 {
1067 struct so_list *new = XZALLOC (struct so_list);
1068
1069 new->lm_info = xmalloc (sizeof (struct lm_info));
1070
1071 /* Nothing will ever check the cached copy of the link
1072 map if we set l_addr. */
1073 new->lm_info->l_addr = info->debug_loader_offset;
1074 new->lm_info->lm_addr = 0;
1075 new->lm_info->lm = NULL;
1076
1077 strncpy (new->so_name, info->debug_loader_name,
1078 SO_NAME_MAX_PATH_SIZE - 1);
1079 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1080 strcpy (new->so_original_name, new->so_name);
1081
1082 *link_ptr = new;
1083 link_ptr = &new->next;
1084 }
1085
1086 return head;
1087 }
1088
1089 /* LOCAL FUNCTION
1090
1091 current_sos -- build a list of currently loaded shared objects
1092
1093 SYNOPSIS
1094
1095 struct so_list *current_sos ()
1096
1097 DESCRIPTION
1098
1099 Build a list of `struct so_list' objects describing the shared
1100 objects currently loaded in the inferior. This list does not
1101 include an entry for the main executable file.
1102
1103 Note that we only gather information directly available from the
1104 inferior --- we don't examine any of the shared library files
1105 themselves. The declaration of `struct so_list' says which fields
1106 we provide values for. */
1107
1108 static struct so_list *
1109 svr4_current_sos (void)
1110 {
1111 CORE_ADDR lm, prev_lm;
1112 struct so_list *head = 0;
1113 struct so_list **link_ptr = &head;
1114 CORE_ADDR ldsomap = 0;
1115 struct svr4_info *info;
1116
1117 info = get_svr4_info ();
1118
1119 /* Always locate the debug struct, in case it has moved. */
1120 info->debug_base = 0;
1121 locate_base (info);
1122
1123 /* If we can't find the dynamic linker's base structure, this
1124 must not be a dynamically linked executable. Hmm. */
1125 if (! info->debug_base)
1126 return svr4_default_sos ();
1127
1128 /* Walk the inferior's link map list, and build our list of
1129 `struct so_list' nodes. */
1130 prev_lm = 0;
1131 lm = solib_svr4_r_map (info);
1132
1133 while (lm)
1134 {
1135 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
1136 struct so_list *new = XZALLOC (struct so_list);
1137 struct cleanup *old_chain = make_cleanup (xfree, new);
1138 CORE_ADDR next_lm;
1139
1140 new->lm_info = xmalloc (sizeof (struct lm_info));
1141 make_cleanup (xfree, new->lm_info);
1142
1143 new->lm_info->l_addr = (CORE_ADDR)-1;
1144 new->lm_info->lm_addr = lm;
1145 new->lm_info->lm = xzalloc (lmo->link_map_size);
1146 make_cleanup (xfree, new->lm_info->lm);
1147
1148 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
1149
1150 next_lm = LM_NEXT (new);
1151
1152 if (LM_PREV (new) != prev_lm)
1153 {
1154 warning (_("Corrupted shared library list"));
1155 free_so (new);
1156 next_lm = 0;
1157 }
1158
1159 /* For SVR4 versions, the first entry in the link map is for the
1160 inferior executable, so we must ignore it. For some versions of
1161 SVR4, it has no name. For others (Solaris 2.3 for example), it
1162 does have a name, so we can no longer use a missing name to
1163 decide when to ignore it. */
1164 else if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0)
1165 {
1166 info->main_lm_addr = new->lm_info->lm_addr;
1167 free_so (new);
1168 }
1169 else
1170 {
1171 int errcode;
1172 char *buffer;
1173
1174 /* Extract this shared object's name. */
1175 target_read_string (LM_NAME (new), &buffer,
1176 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1177 if (errcode != 0)
1178 warning (_("Can't read pathname for load map: %s."),
1179 safe_strerror (errcode));
1180 else
1181 {
1182 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1183 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1184 strcpy (new->so_original_name, new->so_name);
1185 }
1186 xfree (buffer);
1187
1188 /* If this entry has no name, or its name matches the name
1189 for the main executable, don't include it in the list. */
1190 if (! new->so_name[0]
1191 || match_main (new->so_name))
1192 free_so (new);
1193 else
1194 {
1195 new->next = 0;
1196 *link_ptr = new;
1197 link_ptr = &new->next;
1198 }
1199 }
1200
1201 prev_lm = lm;
1202 lm = next_lm;
1203
1204 /* On Solaris, the dynamic linker is not in the normal list of
1205 shared objects, so make sure we pick it up too. Having
1206 symbol information for the dynamic linker is quite crucial
1207 for skipping dynamic linker resolver code. */
1208 if (lm == 0 && ldsomap == 0)
1209 {
1210 lm = ldsomap = solib_svr4_r_ldsomap (info);
1211 prev_lm = 0;
1212 }
1213
1214 discard_cleanups (old_chain);
1215 }
1216
1217 if (head == NULL)
1218 return svr4_default_sos ();
1219
1220 return head;
1221 }
1222
1223 /* Get the address of the link_map for a given OBJFILE. */
1224
1225 CORE_ADDR
1226 svr4_fetch_objfile_link_map (struct objfile *objfile)
1227 {
1228 struct so_list *so;
1229 struct svr4_info *info = get_svr4_info ();
1230
1231 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1232 if (info->main_lm_addr == 0)
1233 solib_add (NULL, 0, &current_target, auto_solib_add);
1234
1235 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1236 if (objfile == symfile_objfile)
1237 return info->main_lm_addr;
1238
1239 /* The other link map addresses may be found by examining the list
1240 of shared libraries. */
1241 for (so = master_so_list (); so; so = so->next)
1242 if (so->objfile == objfile)
1243 return so->lm_info->lm_addr;
1244
1245 /* Not found! */
1246 return 0;
1247 }
1248
1249 /* On some systems, the only way to recognize the link map entry for
1250 the main executable file is by looking at its name. Return
1251 non-zero iff SONAME matches one of the known main executable names. */
1252
1253 static int
1254 match_main (const char *soname)
1255 {
1256 const char * const *mainp;
1257
1258 for (mainp = main_name_list; *mainp != NULL; mainp++)
1259 {
1260 if (strcmp (soname, *mainp) == 0)
1261 return (1);
1262 }
1263
1264 return (0);
1265 }
1266
1267 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1268 SVR4 run time loader. */
1269
1270 int
1271 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1272 {
1273 struct svr4_info *info = get_svr4_info ();
1274
1275 return ((pc >= info->interp_text_sect_low
1276 && pc < info->interp_text_sect_high)
1277 || (pc >= info->interp_plt_sect_low
1278 && pc < info->interp_plt_sect_high)
1279 || in_plt_section (pc, NULL));
1280 }
1281
1282 /* Given an executable's ABFD and target, compute the entry-point
1283 address. */
1284
1285 static CORE_ADDR
1286 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1287 {
1288 /* KevinB wrote ... for most targets, the address returned by
1289 bfd_get_start_address() is the entry point for the start
1290 function. But, for some targets, bfd_get_start_address() returns
1291 the address of a function descriptor from which the entry point
1292 address may be extracted. This address is extracted by
1293 gdbarch_convert_from_func_ptr_addr(). The method
1294 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1295 function for targets which don't use function descriptors. */
1296 return gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1297 bfd_get_start_address (abfd),
1298 targ);
1299 }
1300
1301 /*
1302
1303 LOCAL FUNCTION
1304
1305 enable_break -- arrange for dynamic linker to hit breakpoint
1306
1307 SYNOPSIS
1308
1309 int enable_break (void)
1310
1311 DESCRIPTION
1312
1313 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1314 debugger interface, support for arranging for the inferior to hit
1315 a breakpoint after mapping in the shared libraries. This function
1316 enables that breakpoint.
1317
1318 For SunOS, there is a special flag location (in_debugger) which we
1319 set to 1. When the dynamic linker sees this flag set, it will set
1320 a breakpoint at a location known only to itself, after saving the
1321 original contents of that place and the breakpoint address itself,
1322 in it's own internal structures. When we resume the inferior, it
1323 will eventually take a SIGTRAP when it runs into the breakpoint.
1324 We handle this (in a different place) by restoring the contents of
1325 the breakpointed location (which is only known after it stops),
1326 chasing around to locate the shared libraries that have been
1327 loaded, then resuming.
1328
1329 For SVR4, the debugger interface structure contains a member (r_brk)
1330 which is statically initialized at the time the shared library is
1331 built, to the offset of a function (_r_debug_state) which is guaran-
1332 teed to be called once before mapping in a library, and again when
1333 the mapping is complete. At the time we are examining this member,
1334 it contains only the unrelocated offset of the function, so we have
1335 to do our own relocation. Later, when the dynamic linker actually
1336 runs, it relocates r_brk to be the actual address of _r_debug_state().
1337
1338 The debugger interface structure also contains an enumeration which
1339 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1340 depending upon whether or not the library is being mapped or unmapped,
1341 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1342 */
1343
1344 static int
1345 enable_break (struct svr4_info *info, int from_tty)
1346 {
1347 struct minimal_symbol *msymbol;
1348 const char * const *bkpt_namep;
1349 asection *interp_sect;
1350 gdb_byte *interp_name;
1351 CORE_ADDR sym_addr;
1352
1353 info->interp_text_sect_low = info->interp_text_sect_high = 0;
1354 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
1355
1356 /* If we already have a shared library list in the target, and
1357 r_debug contains r_brk, set the breakpoint there - this should
1358 mean r_brk has already been relocated. Assume the dynamic linker
1359 is the object containing r_brk. */
1360
1361 solib_add (NULL, from_tty, &current_target, auto_solib_add);
1362 sym_addr = 0;
1363 if (info->debug_base && solib_svr4_r_map (info) != 0)
1364 sym_addr = solib_svr4_r_brk (info);
1365
1366 if (sym_addr != 0)
1367 {
1368 struct obj_section *os;
1369
1370 sym_addr = gdbarch_addr_bits_remove
1371 (target_gdbarch, gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1372 sym_addr,
1373 &current_target));
1374
1375 /* On at least some versions of Solaris there's a dynamic relocation
1376 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
1377 we get control before the dynamic linker has self-relocated.
1378 Check if SYM_ADDR is in a known section, if it is assume we can
1379 trust its value. This is just a heuristic though, it could go away
1380 or be replaced if it's getting in the way.
1381
1382 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
1383 however it's spelled in your particular system) is ARM or Thumb.
1384 That knowledge is encoded in the address, if it's Thumb the low bit
1385 is 1. However, we've stripped that info above and it's not clear
1386 what all the consequences are of passing a non-addr_bits_remove'd
1387 address to create_solib_event_breakpoint. The call to
1388 find_pc_section verifies we know about the address and have some
1389 hope of computing the right kind of breakpoint to use (via
1390 symbol info). It does mean that GDB needs to be pointed at a
1391 non-stripped version of the dynamic linker in order to obtain
1392 information it already knows about. Sigh. */
1393
1394 os = find_pc_section (sym_addr);
1395 if (os != NULL)
1396 {
1397 /* Record the relocated start and end address of the dynamic linker
1398 text and plt section for svr4_in_dynsym_resolve_code. */
1399 bfd *tmp_bfd;
1400 CORE_ADDR load_addr;
1401
1402 tmp_bfd = os->objfile->obfd;
1403 load_addr = ANOFFSET (os->objfile->section_offsets,
1404 os->objfile->sect_index_text);
1405
1406 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1407 if (interp_sect)
1408 {
1409 info->interp_text_sect_low =
1410 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1411 info->interp_text_sect_high =
1412 info->interp_text_sect_low
1413 + bfd_section_size (tmp_bfd, interp_sect);
1414 }
1415 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1416 if (interp_sect)
1417 {
1418 info->interp_plt_sect_low =
1419 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1420 info->interp_plt_sect_high =
1421 info->interp_plt_sect_low
1422 + bfd_section_size (tmp_bfd, interp_sect);
1423 }
1424
1425 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1426 return 1;
1427 }
1428 }
1429
1430 /* Find the program interpreter; if not found, warn the user and drop
1431 into the old breakpoint at symbol code. */
1432 interp_name = find_program_interpreter ();
1433 if (interp_name)
1434 {
1435 CORE_ADDR load_addr = 0;
1436 int load_addr_found = 0;
1437 int loader_found_in_list = 0;
1438 struct so_list *so;
1439 bfd *tmp_bfd = NULL;
1440 struct target_ops *tmp_bfd_target;
1441 volatile struct gdb_exception ex;
1442
1443 sym_addr = 0;
1444
1445 /* Now we need to figure out where the dynamic linker was
1446 loaded so that we can load its symbols and place a breakpoint
1447 in the dynamic linker itself.
1448
1449 This address is stored on the stack. However, I've been unable
1450 to find any magic formula to find it for Solaris (appears to
1451 be trivial on GNU/Linux). Therefore, we have to try an alternate
1452 mechanism to find the dynamic linker's base address. */
1453
1454 TRY_CATCH (ex, RETURN_MASK_ALL)
1455 {
1456 tmp_bfd = solib_bfd_open (interp_name);
1457 }
1458 if (tmp_bfd == NULL)
1459 goto bkpt_at_symbol;
1460
1461 /* Now convert the TMP_BFD into a target. That way target, as
1462 well as BFD operations can be used. Note that closing the
1463 target will also close the underlying bfd. */
1464 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1465
1466 /* On a running target, we can get the dynamic linker's base
1467 address from the shared library table. */
1468 so = master_so_list ();
1469 while (so)
1470 {
1471 if (svr4_same_1 (interp_name, so->so_original_name))
1472 {
1473 load_addr_found = 1;
1474 loader_found_in_list = 1;
1475 load_addr = LM_ADDR_CHECK (so, tmp_bfd);
1476 break;
1477 }
1478 so = so->next;
1479 }
1480
1481 /* If we were not able to find the base address of the loader
1482 from our so_list, then try using the AT_BASE auxilliary entry. */
1483 if (!load_addr_found)
1484 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
1485 {
1486 int addr_bit = gdbarch_addr_bit (target_gdbarch);
1487
1488 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
1489 that `+ load_addr' will overflow CORE_ADDR width not creating
1490 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
1491 GDB. */
1492
1493 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
1494 {
1495 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
1496 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
1497 tmp_bfd_target);
1498
1499 gdb_assert (load_addr < space_size);
1500
1501 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
1502 64bit ld.so with 32bit executable, it should not happen. */
1503
1504 if (tmp_entry_point < space_size
1505 && tmp_entry_point + load_addr >= space_size)
1506 load_addr -= space_size;
1507 }
1508
1509 load_addr_found = 1;
1510 }
1511
1512 /* Otherwise we find the dynamic linker's base address by examining
1513 the current pc (which should point at the entry point for the
1514 dynamic linker) and subtracting the offset of the entry point.
1515
1516 This is more fragile than the previous approaches, but is a good
1517 fallback method because it has actually been working well in
1518 most cases. */
1519 if (!load_addr_found)
1520 {
1521 struct regcache *regcache
1522 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
1523
1524 load_addr = (regcache_read_pc (regcache)
1525 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1526 }
1527
1528 if (!loader_found_in_list)
1529 {
1530 info->debug_loader_name = xstrdup (interp_name);
1531 info->debug_loader_offset_p = 1;
1532 info->debug_loader_offset = load_addr;
1533 solib_add (NULL, from_tty, &current_target, auto_solib_add);
1534 }
1535
1536 /* Record the relocated start and end address of the dynamic linker
1537 text and plt section for svr4_in_dynsym_resolve_code. */
1538 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1539 if (interp_sect)
1540 {
1541 info->interp_text_sect_low =
1542 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1543 info->interp_text_sect_high =
1544 info->interp_text_sect_low
1545 + bfd_section_size (tmp_bfd, interp_sect);
1546 }
1547 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1548 if (interp_sect)
1549 {
1550 info->interp_plt_sect_low =
1551 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1552 info->interp_plt_sect_high =
1553 info->interp_plt_sect_low
1554 + bfd_section_size (tmp_bfd, interp_sect);
1555 }
1556
1557 /* Now try to set a breakpoint in the dynamic linker. */
1558 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1559 {
1560 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
1561 if (sym_addr != 0)
1562 break;
1563 }
1564
1565 if (sym_addr != 0)
1566 /* Convert 'sym_addr' from a function pointer to an address.
1567 Because we pass tmp_bfd_target instead of the current
1568 target, this will always produce an unrelocated value. */
1569 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1570 sym_addr,
1571 tmp_bfd_target);
1572
1573 /* We're done with both the temporary bfd and target. Remember,
1574 closing the target closes the underlying bfd. */
1575 target_close (tmp_bfd_target, 0);
1576
1577 if (sym_addr != 0)
1578 {
1579 create_solib_event_breakpoint (target_gdbarch, load_addr + sym_addr);
1580 xfree (interp_name);
1581 return 1;
1582 }
1583
1584 /* For whatever reason we couldn't set a breakpoint in the dynamic
1585 linker. Warn and drop into the old code. */
1586 bkpt_at_symbol:
1587 xfree (interp_name);
1588 warning (_("Unable to find dynamic linker breakpoint function.\n"
1589 "GDB will be unable to debug shared library initializers\n"
1590 "and track explicitly loaded dynamic code."));
1591 }
1592
1593 /* Scan through the lists of symbols, trying to look up the symbol and
1594 set a breakpoint there. Terminate loop when we/if we succeed. */
1595
1596 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1597 {
1598 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1599 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1600 {
1601 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1602 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1603 sym_addr,
1604 &current_target);
1605 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1606 return 1;
1607 }
1608 }
1609
1610 if (!current_inferior ()->attach_flag)
1611 {
1612 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1613 {
1614 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1615 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1616 {
1617 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1618 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1619 sym_addr,
1620 &current_target);
1621 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1622 return 1;
1623 }
1624 }
1625 }
1626 return 0;
1627 }
1628
1629 /*
1630
1631 LOCAL FUNCTION
1632
1633 special_symbol_handling -- additional shared library symbol handling
1634
1635 SYNOPSIS
1636
1637 void special_symbol_handling ()
1638
1639 DESCRIPTION
1640
1641 Once the symbols from a shared object have been loaded in the usual
1642 way, we are called to do any system specific symbol handling that
1643 is needed.
1644
1645 For SunOS4, this consisted of grunging around in the dynamic
1646 linkers structures to find symbol definitions for "common" symbols
1647 and adding them to the minimal symbol table for the runtime common
1648 objfile.
1649
1650 However, for SVR4, there's nothing to do.
1651
1652 */
1653
1654 static void
1655 svr4_special_symbol_handling (void)
1656 {
1657 }
1658
1659 /* Read the ELF program headers from ABFD. Return the contents and
1660 set *PHDRS_SIZE to the size of the program headers. */
1661
1662 static gdb_byte *
1663 read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
1664 {
1665 Elf_Internal_Ehdr *ehdr;
1666 gdb_byte *buf;
1667
1668 ehdr = elf_elfheader (abfd);
1669
1670 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
1671 if (*phdrs_size == 0)
1672 return NULL;
1673
1674 buf = xmalloc (*phdrs_size);
1675 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
1676 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
1677 {
1678 xfree (buf);
1679 return NULL;
1680 }
1681
1682 return buf;
1683 }
1684
1685 /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
1686 exec_bfd. Otherwise return 0.
1687
1688 We relocate all of the sections by the same amount. This
1689 behavior is mandated by recent editions of the System V ABI.
1690 According to the System V Application Binary Interface,
1691 Edition 4.1, page 5-5:
1692
1693 ... Though the system chooses virtual addresses for
1694 individual processes, it maintains the segments' relative
1695 positions. Because position-independent code uses relative
1696 addressesing between segments, the difference between
1697 virtual addresses in memory must match the difference
1698 between virtual addresses in the file. The difference
1699 between the virtual address of any segment in memory and
1700 the corresponding virtual address in the file is thus a
1701 single constant value for any one executable or shared
1702 object in a given process. This difference is the base
1703 address. One use of the base address is to relocate the
1704 memory image of the program during dynamic linking.
1705
1706 The same language also appears in Edition 4.0 of the System V
1707 ABI and is left unspecified in some of the earlier editions.
1708
1709 Decide if the objfile needs to be relocated. As indicated above, we will
1710 only be here when execution is stopped. But during attachment PC can be at
1711 arbitrary address therefore regcache_read_pc can be misleading (contrary to
1712 the auxv AT_ENTRY value). Moreover for executable with interpreter section
1713 regcache_read_pc would point to the interpreter and not the main executable.
1714
1715 So, to summarize, relocations are necessary when the start address obtained
1716 from the executable is different from the address in auxv AT_ENTRY entry.
1717
1718 [ The astute reader will note that we also test to make sure that
1719 the executable in question has the DYNAMIC flag set. It is my
1720 opinion that this test is unnecessary (undesirable even). It
1721 was added to avoid inadvertent relocation of an executable
1722 whose e_type member in the ELF header is not ET_DYN. There may
1723 be a time in the future when it is desirable to do relocations
1724 on other types of files as well in which case this condition
1725 should either be removed or modified to accomodate the new file
1726 type. - Kevin, Nov 2000. ] */
1727
1728 static int
1729 svr4_exec_displacement (CORE_ADDR *displacementp)
1730 {
1731 /* ENTRY_POINT is a possible function descriptor - before
1732 a call to gdbarch_convert_from_func_ptr_addr. */
1733 CORE_ADDR entry_point, displacement;
1734
1735 if (exec_bfd == NULL)
1736 return 0;
1737
1738 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
1739 being executed themselves and PIE (Position Independent Executable)
1740 executables are ET_DYN. */
1741
1742 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
1743 return 0;
1744
1745 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
1746 return 0;
1747
1748 displacement = entry_point - bfd_get_start_address (exec_bfd);
1749
1750 /* Verify the DISPLACEMENT candidate complies with the required page
1751 alignment. It is cheaper than the program headers comparison below. */
1752
1753 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1754 {
1755 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
1756
1757 /* p_align of PT_LOAD segments does not specify any alignment but
1758 only congruency of addresses:
1759 p_offset % p_align == p_vaddr % p_align
1760 Kernel is free to load the executable with lower alignment. */
1761
1762 if ((displacement & (elf->minpagesize - 1)) != 0)
1763 return 0;
1764 }
1765
1766 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
1767 comparing their program headers. If the program headers in the auxilliary
1768 vector do not match the program headers in the executable, then we are
1769 looking at a different file than the one used by the kernel - for
1770 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
1771
1772 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1773 {
1774 /* Be optimistic and clear OK only if GDB was able to verify the headers
1775 really do not match. */
1776 int phdrs_size, phdrs2_size, ok = 1;
1777 gdb_byte *buf, *buf2;
1778 int arch_size;
1779
1780 buf = read_program_header (-1, &phdrs_size, &arch_size);
1781 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
1782 if (buf != NULL && buf2 != NULL)
1783 {
1784 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
1785
1786 /* We are dealing with three different addresses. EXEC_BFD
1787 represents current address in on-disk file. target memory content
1788 may be different from EXEC_BFD as the file may have been prelinked
1789 to a different address after the executable has been loaded.
1790 Moreover the address of placement in target memory can be
1791 different from what the program headers in target memory say -
1792 this is the goal of PIE.
1793
1794 Detected DISPLACEMENT covers both the offsets of PIE placement and
1795 possible new prelink performed after start of the program. Here
1796 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
1797 content offset for the verification purpose. */
1798
1799 if (phdrs_size != phdrs2_size
1800 || bfd_get_arch_size (exec_bfd) != arch_size)
1801 ok = 0;
1802 else if (arch_size == 32
1803 && phdrs_size >= sizeof (Elf32_External_Phdr)
1804 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
1805 {
1806 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
1807 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
1808 CORE_ADDR displacement = 0;
1809 int i;
1810
1811 /* DISPLACEMENT could be found more easily by the difference of
1812 ehdr2->e_entry. But we haven't read the ehdr yet, and we
1813 already have enough information to compute that displacement
1814 with what we've read. */
1815
1816 for (i = 0; i < ehdr2->e_phnum; i++)
1817 if (phdr2[i].p_type == PT_LOAD)
1818 {
1819 Elf32_External_Phdr *phdrp;
1820 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1821 CORE_ADDR vaddr, paddr;
1822 CORE_ADDR displacement_vaddr = 0;
1823 CORE_ADDR displacement_paddr = 0;
1824
1825 phdrp = &((Elf32_External_Phdr *) buf)[i];
1826 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1827 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1828
1829 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
1830 byte_order);
1831 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
1832
1833 paddr = extract_unsigned_integer (buf_paddr_p, 4,
1834 byte_order);
1835 displacement_paddr = paddr - phdr2[i].p_paddr;
1836
1837 if (displacement_vaddr == displacement_paddr)
1838 displacement = displacement_vaddr;
1839
1840 break;
1841 }
1842
1843 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
1844
1845 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
1846 {
1847 Elf32_External_Phdr *phdrp;
1848 Elf32_External_Phdr *phdr2p;
1849 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1850 CORE_ADDR vaddr, paddr;
1851 asection *plt2_asect;
1852
1853 phdrp = &((Elf32_External_Phdr *) buf)[i];
1854 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1855 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1856 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
1857
1858 /* PT_GNU_STACK is an exception by being never relocated by
1859 prelink as its addresses are always zero. */
1860
1861 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1862 continue;
1863
1864 /* Check also other adjustment combinations - PR 11786. */
1865
1866 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
1867 byte_order);
1868 vaddr -= displacement;
1869 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
1870
1871 paddr = extract_unsigned_integer (buf_paddr_p, 4,
1872 byte_order);
1873 paddr -= displacement;
1874 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
1875
1876 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1877 continue;
1878
1879 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
1880 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
1881 if (plt2_asect)
1882 {
1883 int content2;
1884 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
1885 CORE_ADDR filesz;
1886
1887 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
1888 & SEC_HAS_CONTENTS) != 0;
1889
1890 filesz = extract_unsigned_integer (buf_filesz_p, 4,
1891 byte_order);
1892
1893 /* PLT2_ASECT is from on-disk file (exec_bfd) while
1894 FILESZ is from the in-memory image. */
1895 if (content2)
1896 filesz += bfd_get_section_size (plt2_asect);
1897 else
1898 filesz -= bfd_get_section_size (plt2_asect);
1899
1900 store_unsigned_integer (buf_filesz_p, 4, byte_order,
1901 filesz);
1902
1903 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1904 continue;
1905 }
1906
1907 ok = 0;
1908 break;
1909 }
1910 }
1911 else if (arch_size == 64
1912 && phdrs_size >= sizeof (Elf64_External_Phdr)
1913 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
1914 {
1915 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
1916 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
1917 CORE_ADDR displacement = 0;
1918 int i;
1919
1920 /* DISPLACEMENT could be found more easily by the difference of
1921 ehdr2->e_entry. But we haven't read the ehdr yet, and we
1922 already have enough information to compute that displacement
1923 with what we've read. */
1924
1925 for (i = 0; i < ehdr2->e_phnum; i++)
1926 if (phdr2[i].p_type == PT_LOAD)
1927 {
1928 Elf64_External_Phdr *phdrp;
1929 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1930 CORE_ADDR vaddr, paddr;
1931 CORE_ADDR displacement_vaddr = 0;
1932 CORE_ADDR displacement_paddr = 0;
1933
1934 phdrp = &((Elf64_External_Phdr *) buf)[i];
1935 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1936 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1937
1938 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
1939 byte_order);
1940 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
1941
1942 paddr = extract_unsigned_integer (buf_paddr_p, 8,
1943 byte_order);
1944 displacement_paddr = paddr - phdr2[i].p_paddr;
1945
1946 if (displacement_vaddr == displacement_paddr)
1947 displacement = displacement_vaddr;
1948
1949 break;
1950 }
1951
1952 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
1953
1954 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
1955 {
1956 Elf64_External_Phdr *phdrp;
1957 Elf64_External_Phdr *phdr2p;
1958 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1959 CORE_ADDR vaddr, paddr;
1960 asection *plt2_asect;
1961
1962 phdrp = &((Elf64_External_Phdr *) buf)[i];
1963 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1964 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1965 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
1966
1967 /* PT_GNU_STACK is an exception by being never relocated by
1968 prelink as its addresses are always zero. */
1969
1970 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1971 continue;
1972
1973 /* Check also other adjustment combinations - PR 11786. */
1974
1975 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
1976 byte_order);
1977 vaddr -= displacement;
1978 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
1979
1980 paddr = extract_unsigned_integer (buf_paddr_p, 8,
1981 byte_order);
1982 paddr -= displacement;
1983 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
1984
1985 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1986 continue;
1987
1988 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
1989 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
1990 if (plt2_asect)
1991 {
1992 int content2;
1993 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
1994 CORE_ADDR filesz;
1995
1996 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
1997 & SEC_HAS_CONTENTS) != 0;
1998
1999 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2000 byte_order);
2001
2002 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2003 FILESZ is from the in-memory image. */
2004 if (content2)
2005 filesz += bfd_get_section_size (plt2_asect);
2006 else
2007 filesz -= bfd_get_section_size (plt2_asect);
2008
2009 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2010 filesz);
2011
2012 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2013 continue;
2014 }
2015
2016 ok = 0;
2017 break;
2018 }
2019 }
2020 else
2021 ok = 0;
2022 }
2023
2024 xfree (buf);
2025 xfree (buf2);
2026
2027 if (!ok)
2028 return 0;
2029 }
2030
2031 if (info_verbose)
2032 {
2033 /* It can be printed repeatedly as there is no easy way to check
2034 the executable symbols/file has been already relocated to
2035 displacement. */
2036
2037 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2038 "displacement %s for \"%s\".\n"),
2039 paddress (target_gdbarch, displacement),
2040 bfd_get_filename (exec_bfd));
2041 }
2042
2043 *displacementp = displacement;
2044 return 1;
2045 }
2046
2047 /* Relocate the main executable. This function should be called upon
2048 stopping the inferior process at the entry point to the program.
2049 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2050 different, the main executable is relocated by the proper amount. */
2051
2052 static void
2053 svr4_relocate_main_executable (void)
2054 {
2055 CORE_ADDR displacement;
2056
2057 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2058 probably contains the offsets computed using the PIE displacement
2059 from the previous run, which of course are irrelevant for this run.
2060 So we need to determine the new PIE displacement and recompute the
2061 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2062 already contains pre-computed offsets.
2063
2064 If we cannot compute the PIE displacement, either:
2065
2066 - The executable is not PIE.
2067
2068 - SYMFILE_OBJFILE does not match the executable started in the target.
2069 This can happen for main executable symbols loaded at the host while
2070 `ld.so --ld-args main-executable' is loaded in the target.
2071
2072 Then we leave the section offsets untouched and use them as is for
2073 this run. Either:
2074
2075 - These section offsets were properly reset earlier, and thus
2076 already contain the correct values. This can happen for instance
2077 when reconnecting via the remote protocol to a target that supports
2078 the `qOffsets' packet.
2079
2080 - The section offsets were not reset earlier, and the best we can
2081 hope is that the old offsets are still applicable to the new run.
2082 */
2083
2084 if (! svr4_exec_displacement (&displacement))
2085 return;
2086
2087 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2088 addresses. */
2089
2090 if (symfile_objfile)
2091 {
2092 struct section_offsets *new_offsets;
2093 int i;
2094
2095 new_offsets = alloca (symfile_objfile->num_sections
2096 * sizeof (*new_offsets));
2097
2098 for (i = 0; i < symfile_objfile->num_sections; i++)
2099 new_offsets->offsets[i] = displacement;
2100
2101 objfile_relocate (symfile_objfile, new_offsets);
2102 }
2103 else if (exec_bfd)
2104 {
2105 asection *asect;
2106
2107 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2108 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2109 (bfd_section_vma (exec_bfd, asect)
2110 + displacement));
2111 }
2112 }
2113
2114 /*
2115
2116 GLOBAL FUNCTION
2117
2118 svr4_solib_create_inferior_hook -- shared library startup support
2119
2120 SYNOPSIS
2121
2122 void svr4_solib_create_inferior_hook (int from_tty)
2123
2124 DESCRIPTION
2125
2126 When gdb starts up the inferior, it nurses it along (through the
2127 shell) until it is ready to execute it's first instruction. At this
2128 point, this function gets called via expansion of the macro
2129 SOLIB_CREATE_INFERIOR_HOOK.
2130
2131 For SunOS executables, this first instruction is typically the
2132 one at "_start", or a similar text label, regardless of whether
2133 the executable is statically or dynamically linked. The runtime
2134 startup code takes care of dynamically linking in any shared
2135 libraries, once gdb allows the inferior to continue.
2136
2137 For SVR4 executables, this first instruction is either the first
2138 instruction in the dynamic linker (for dynamically linked
2139 executables) or the instruction at "start" for statically linked
2140 executables. For dynamically linked executables, the system
2141 first exec's /lib/libc.so.N, which contains the dynamic linker,
2142 and starts it running. The dynamic linker maps in any needed
2143 shared libraries, maps in the actual user executable, and then
2144 jumps to "start" in the user executable.
2145
2146 For both SunOS shared libraries, and SVR4 shared libraries, we
2147 can arrange to cooperate with the dynamic linker to discover the
2148 names of shared libraries that are dynamically linked, and the
2149 base addresses to which they are linked.
2150
2151 This function is responsible for discovering those names and
2152 addresses, and saving sufficient information about them to allow
2153 their symbols to be read at a later time.
2154
2155 FIXME
2156
2157 Between enable_break() and disable_break(), this code does not
2158 properly handle hitting breakpoints which the user might have
2159 set in the startup code or in the dynamic linker itself. Proper
2160 handling will probably have to wait until the implementation is
2161 changed to use the "breakpoint handler function" method.
2162
2163 Also, what if child has exit()ed? Must exit loop somehow.
2164 */
2165
2166 static void
2167 svr4_solib_create_inferior_hook (int from_tty)
2168 {
2169 #if defined(_SCO_DS)
2170 struct inferior *inf;
2171 struct thread_info *tp;
2172 #endif /* defined(_SCO_DS) */
2173 struct svr4_info *info;
2174
2175 info = get_svr4_info ();
2176
2177 /* Relocate the main executable if necessary. */
2178 svr4_relocate_main_executable ();
2179
2180 if (!svr4_have_link_map_offsets ())
2181 return;
2182
2183 if (!enable_break (info, from_tty))
2184 return;
2185
2186 #if defined(_SCO_DS)
2187 /* SCO needs the loop below, other systems should be using the
2188 special shared library breakpoints and the shared library breakpoint
2189 service routine.
2190
2191 Now run the target. It will eventually hit the breakpoint, at
2192 which point all of the libraries will have been mapped in and we
2193 can go groveling around in the dynamic linker structures to find
2194 out what we need to know about them. */
2195
2196 inf = current_inferior ();
2197 tp = inferior_thread ();
2198
2199 clear_proceed_status ();
2200 inf->control.stop_soon = STOP_QUIETLY;
2201 tp->suspend.stop_signal = TARGET_SIGNAL_0;
2202 do
2203 {
2204 target_resume (pid_to_ptid (-1), 0, tp->suspend.stop_signal);
2205 wait_for_inferior (0);
2206 }
2207 while (tp->suspend.stop_signal != TARGET_SIGNAL_TRAP);
2208 inf->control.stop_soon = NO_STOP_QUIETLY;
2209 #endif /* defined(_SCO_DS) */
2210 }
2211
2212 static void
2213 svr4_clear_solib (void)
2214 {
2215 struct svr4_info *info;
2216
2217 info = get_svr4_info ();
2218 info->debug_base = 0;
2219 info->debug_loader_offset_p = 0;
2220 info->debug_loader_offset = 0;
2221 xfree (info->debug_loader_name);
2222 info->debug_loader_name = NULL;
2223 }
2224
2225 static void
2226 svr4_free_so (struct so_list *so)
2227 {
2228 xfree (so->lm_info->lm);
2229 xfree (so->lm_info);
2230 }
2231
2232
2233 /* Clear any bits of ADDR that wouldn't fit in a target-format
2234 data pointer. "Data pointer" here refers to whatever sort of
2235 address the dynamic linker uses to manage its sections. At the
2236 moment, we don't support shared libraries on any processors where
2237 code and data pointers are different sizes.
2238
2239 This isn't really the right solution. What we really need here is
2240 a way to do arithmetic on CORE_ADDR values that respects the
2241 natural pointer/address correspondence. (For example, on the MIPS,
2242 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
2243 sign-extend the value. There, simply truncating the bits above
2244 gdbarch_ptr_bit, as we do below, is no good.) This should probably
2245 be a new gdbarch method or something. */
2246 static CORE_ADDR
2247 svr4_truncate_ptr (CORE_ADDR addr)
2248 {
2249 if (gdbarch_ptr_bit (target_gdbarch) == sizeof (CORE_ADDR) * 8)
2250 /* We don't need to truncate anything, and the bit twiddling below
2251 will fail due to overflow problems. */
2252 return addr;
2253 else
2254 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch)) - 1);
2255 }
2256
2257
2258 static void
2259 svr4_relocate_section_addresses (struct so_list *so,
2260 struct target_section *sec)
2261 {
2262 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR_CHECK (so,
2263 sec->bfd));
2264 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so,
2265 sec->bfd));
2266 }
2267 \f
2268
2269 /* Architecture-specific operations. */
2270
2271 /* Per-architecture data key. */
2272 static struct gdbarch_data *solib_svr4_data;
2273
2274 struct solib_svr4_ops
2275 {
2276 /* Return a description of the layout of `struct link_map'. */
2277 struct link_map_offsets *(*fetch_link_map_offsets)(void);
2278 };
2279
2280 /* Return a default for the architecture-specific operations. */
2281
2282 static void *
2283 solib_svr4_init (struct obstack *obstack)
2284 {
2285 struct solib_svr4_ops *ops;
2286
2287 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
2288 ops->fetch_link_map_offsets = NULL;
2289 return ops;
2290 }
2291
2292 /* Set the architecture-specific `struct link_map_offsets' fetcher for
2293 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
2294
2295 void
2296 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
2297 struct link_map_offsets *(*flmo) (void))
2298 {
2299 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
2300
2301 ops->fetch_link_map_offsets = flmo;
2302
2303 set_solib_ops (gdbarch, &svr4_so_ops);
2304 }
2305
2306 /* Fetch a link_map_offsets structure using the architecture-specific
2307 `struct link_map_offsets' fetcher. */
2308
2309 static struct link_map_offsets *
2310 svr4_fetch_link_map_offsets (void)
2311 {
2312 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
2313
2314 gdb_assert (ops->fetch_link_map_offsets);
2315 return ops->fetch_link_map_offsets ();
2316 }
2317
2318 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
2319
2320 static int
2321 svr4_have_link_map_offsets (void)
2322 {
2323 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
2324
2325 return (ops->fetch_link_map_offsets != NULL);
2326 }
2327 \f
2328
2329 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
2330 `struct r_debug' and a `struct link_map' that are binary compatible
2331 with the origional SVR4 implementation. */
2332
2333 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2334 for an ILP32 SVR4 system. */
2335
2336 struct link_map_offsets *
2337 svr4_ilp32_fetch_link_map_offsets (void)
2338 {
2339 static struct link_map_offsets lmo;
2340 static struct link_map_offsets *lmp = NULL;
2341
2342 if (lmp == NULL)
2343 {
2344 lmp = &lmo;
2345
2346 lmo.r_version_offset = 0;
2347 lmo.r_version_size = 4;
2348 lmo.r_map_offset = 4;
2349 lmo.r_brk_offset = 8;
2350 lmo.r_ldsomap_offset = 20;
2351
2352 /* Everything we need is in the first 20 bytes. */
2353 lmo.link_map_size = 20;
2354 lmo.l_addr_offset = 0;
2355 lmo.l_name_offset = 4;
2356 lmo.l_ld_offset = 8;
2357 lmo.l_next_offset = 12;
2358 lmo.l_prev_offset = 16;
2359 }
2360
2361 return lmp;
2362 }
2363
2364 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2365 for an LP64 SVR4 system. */
2366
2367 struct link_map_offsets *
2368 svr4_lp64_fetch_link_map_offsets (void)
2369 {
2370 static struct link_map_offsets lmo;
2371 static struct link_map_offsets *lmp = NULL;
2372
2373 if (lmp == NULL)
2374 {
2375 lmp = &lmo;
2376
2377 lmo.r_version_offset = 0;
2378 lmo.r_version_size = 4;
2379 lmo.r_map_offset = 8;
2380 lmo.r_brk_offset = 16;
2381 lmo.r_ldsomap_offset = 40;
2382
2383 /* Everything we need is in the first 40 bytes. */
2384 lmo.link_map_size = 40;
2385 lmo.l_addr_offset = 0;
2386 lmo.l_name_offset = 8;
2387 lmo.l_ld_offset = 16;
2388 lmo.l_next_offset = 24;
2389 lmo.l_prev_offset = 32;
2390 }
2391
2392 return lmp;
2393 }
2394 \f
2395
2396 struct target_so_ops svr4_so_ops;
2397
2398 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
2399 different rule for symbol lookup. The lookup begins here in the DSO, not in
2400 the main executable. */
2401
2402 static struct symbol *
2403 elf_lookup_lib_symbol (const struct objfile *objfile,
2404 const char *name,
2405 const domain_enum domain)
2406 {
2407 bfd *abfd;
2408
2409 if (objfile == symfile_objfile)
2410 abfd = exec_bfd;
2411 else
2412 {
2413 /* OBJFILE should have been passed as the non-debug one. */
2414 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
2415
2416 abfd = objfile->obfd;
2417 }
2418
2419 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
2420 return NULL;
2421
2422 return lookup_global_symbol_from_objfile (objfile, name, domain);
2423 }
2424
2425 extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
2426
2427 void
2428 _initialize_svr4_solib (void)
2429 {
2430 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
2431 solib_svr4_pspace_data
2432 = register_program_space_data_with_cleanup (svr4_pspace_data_cleanup);
2433
2434 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
2435 svr4_so_ops.free_so = svr4_free_so;
2436 svr4_so_ops.clear_solib = svr4_clear_solib;
2437 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
2438 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
2439 svr4_so_ops.current_sos = svr4_current_sos;
2440 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
2441 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
2442 svr4_so_ops.bfd_open = solib_bfd_open;
2443 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
2444 svr4_so_ops.same = svr4_same;
2445 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
2446 }
This page took 0.0812 seconds and 4 git commands to generate.