Check all inline frames if they are marked for skip
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "elf/external.h"
23 #include "elf/common.h"
24 #include "elf/mips.h"
25
26 #include "symtab.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbcore.h"
31 #include "target.h"
32 #include "inferior.h"
33 #include "infrun.h"
34 #include "regcache.h"
35 #include "gdbthread.h"
36 #include "observable.h"
37
38 #include "solist.h"
39 #include "solib.h"
40 #include "solib-svr4.h"
41
42 #include "bfd-target.h"
43 #include "elf-bfd.h"
44 #include "exec.h"
45 #include "auxv.h"
46 #include "gdb_bfd.h"
47 #include "probe.h"
48
49 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
50 static int svr4_have_link_map_offsets (void);
51 static void svr4_relocate_main_executable (void);
52 static void svr4_free_library_list (void *p_list);
53 static void probes_table_remove_objfile_probes (struct objfile *objfile);
54 static void svr4_iterate_over_objfiles_in_search_order (
55 struct gdbarch *gdbarch, iterate_over_objfiles_in_search_order_cb_ftype *cb,
56 void *cb_data, struct objfile *objfile);
57
58
59 /* On SVR4 systems, a list of symbols in the dynamic linker where
60 GDB can try to place a breakpoint to monitor shared library
61 events.
62
63 If none of these symbols are found, or other errors occur, then
64 SVR4 systems will fall back to using a symbol as the "startup
65 mapping complete" breakpoint address. */
66
67 static const char * const solib_break_names[] =
68 {
69 "r_debug_state",
70 "_r_debug_state",
71 "_dl_debug_state",
72 "rtld_db_dlactivity",
73 "__dl_rtld_db_dlactivity",
74 "_rtld_debug_state",
75
76 NULL
77 };
78
79 static const char * const bkpt_names[] =
80 {
81 "_start",
82 "__start",
83 "main",
84 NULL
85 };
86
87 static const char * const main_name_list[] =
88 {
89 "main_$main",
90 NULL
91 };
92
93 /* What to do when a probe stop occurs. */
94
95 enum probe_action
96 {
97 /* Something went seriously wrong. Stop using probes and
98 revert to using the older interface. */
99 PROBES_INTERFACE_FAILED,
100
101 /* No action is required. The shared object list is still
102 valid. */
103 DO_NOTHING,
104
105 /* The shared object list should be reloaded entirely. */
106 FULL_RELOAD,
107
108 /* Attempt to incrementally update the shared object list. If
109 the update fails or is not possible, fall back to reloading
110 the list in full. */
111 UPDATE_OR_RELOAD,
112 };
113
114 /* A probe's name and its associated action. */
115
116 struct probe_info
117 {
118 /* The name of the probe. */
119 const char *name;
120
121 /* What to do when a probe stop occurs. */
122 enum probe_action action;
123 };
124
125 /* A list of named probes and their associated actions. If all
126 probes are present in the dynamic linker then the probes-based
127 interface will be used. */
128
129 static const struct probe_info probe_info[] =
130 {
131 { "init_start", DO_NOTHING },
132 { "init_complete", FULL_RELOAD },
133 { "map_start", DO_NOTHING },
134 { "map_failed", DO_NOTHING },
135 { "reloc_complete", UPDATE_OR_RELOAD },
136 { "unmap_start", DO_NOTHING },
137 { "unmap_complete", FULL_RELOAD },
138 };
139
140 #define NUM_PROBES ARRAY_SIZE (probe_info)
141
142 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
143 the same shared library. */
144
145 static int
146 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
147 {
148 if (strcmp (gdb_so_name, inferior_so_name) == 0)
149 return 1;
150
151 /* On Solaris, when starting inferior we think that dynamic linker is
152 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
153 contains /lib/ld.so.1. Sometimes one file is a link to another, but
154 sometimes they have identical content, but are not linked to each
155 other. We don't restrict this check for Solaris, but the chances
156 of running into this situation elsewhere are very low. */
157 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
158 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
159 return 1;
160
161 /* Similarly, we observed the same issue with amd64 and sparcv9, but with
162 different locations. */
163 if (strcmp (gdb_so_name, "/usr/lib/amd64/ld.so.1") == 0
164 && strcmp (inferior_so_name, "/lib/amd64/ld.so.1") == 0)
165 return 1;
166
167 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
168 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
169 return 1;
170
171 return 0;
172 }
173
174 static int
175 svr4_same (struct so_list *gdb, struct so_list *inferior)
176 {
177 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
178 }
179
180 static std::unique_ptr<lm_info_svr4>
181 lm_info_read (CORE_ADDR lm_addr)
182 {
183 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
184 std::unique_ptr<lm_info_svr4> lm_info;
185
186 gdb::byte_vector lm (lmo->link_map_size);
187
188 if (target_read_memory (lm_addr, lm.data (), lmo->link_map_size) != 0)
189 warning (_("Error reading shared library list entry at %s"),
190 paddress (target_gdbarch (), lm_addr));
191 else
192 {
193 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
194
195 lm_info.reset (new lm_info_svr4);
196 lm_info->lm_addr = lm_addr;
197
198 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
199 ptr_type);
200 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
201 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
202 ptr_type);
203 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
204 ptr_type);
205 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
206 ptr_type);
207 }
208
209 return lm_info;
210 }
211
212 static int
213 has_lm_dynamic_from_link_map (void)
214 {
215 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
216
217 return lmo->l_ld_offset >= 0;
218 }
219
220 static CORE_ADDR
221 lm_addr_check (const struct so_list *so, bfd *abfd)
222 {
223 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
224
225 if (!li->l_addr_p)
226 {
227 struct bfd_section *dyninfo_sect;
228 CORE_ADDR l_addr, l_dynaddr, dynaddr;
229
230 l_addr = li->l_addr_inferior;
231
232 if (! abfd || ! has_lm_dynamic_from_link_map ())
233 goto set_addr;
234
235 l_dynaddr = li->l_ld;
236
237 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
238 if (dyninfo_sect == NULL)
239 goto set_addr;
240
241 dynaddr = bfd_section_vma (dyninfo_sect);
242
243 if (dynaddr + l_addr != l_dynaddr)
244 {
245 CORE_ADDR align = 0x1000;
246 CORE_ADDR minpagesize = align;
247
248 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
249 {
250 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
251 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
252 int i;
253
254 align = 1;
255
256 for (i = 0; i < ehdr->e_phnum; i++)
257 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
258 align = phdr[i].p_align;
259
260 minpagesize = get_elf_backend_data (abfd)->minpagesize;
261 }
262
263 /* Turn it into a mask. */
264 align--;
265
266 /* If the changes match the alignment requirements, we
267 assume we're using a core file that was generated by the
268 same binary, just prelinked with a different base offset.
269 If it doesn't match, we may have a different binary, the
270 same binary with the dynamic table loaded at an unrelated
271 location, or anything, really. To avoid regressions,
272 don't adjust the base offset in the latter case, although
273 odds are that, if things really changed, debugging won't
274 quite work.
275
276 One could expect more the condition
277 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
278 but the one below is relaxed for PPC. The PPC kernel supports
279 either 4k or 64k page sizes. To be prepared for 64k pages,
280 PPC ELF files are built using an alignment requirement of 64k.
281 However, when running on a kernel supporting 4k pages, the memory
282 mapping of the library may not actually happen on a 64k boundary!
283
284 (In the usual case where (l_addr & align) == 0, this check is
285 equivalent to the possibly expected check above.)
286
287 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
288
289 l_addr = l_dynaddr - dynaddr;
290
291 if ((l_addr & (minpagesize - 1)) == 0
292 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
293 {
294 if (info_verbose)
295 printf_unfiltered (_("Using PIC (Position Independent Code) "
296 "prelink displacement %s for \"%s\".\n"),
297 paddress (target_gdbarch (), l_addr),
298 so->so_name);
299 }
300 else
301 {
302 /* There is no way to verify the library file matches. prelink
303 can during prelinking of an unprelinked file (or unprelinking
304 of a prelinked file) shift the DYNAMIC segment by arbitrary
305 offset without any page size alignment. There is no way to
306 find out the ELF header and/or Program Headers for a limited
307 verification if it they match. One could do a verification
308 of the DYNAMIC segment. Still the found address is the best
309 one GDB could find. */
310
311 warning (_(".dynamic section for \"%s\" "
312 "is not at the expected address "
313 "(wrong library or version mismatch?)"), so->so_name);
314 }
315 }
316
317 set_addr:
318 li->l_addr = l_addr;
319 li->l_addr_p = 1;
320 }
321
322 return li->l_addr;
323 }
324
325 /* Per pspace SVR4 specific data. */
326
327 struct svr4_info
328 {
329 svr4_info () = default;
330 ~svr4_info ();
331
332 /* Base of dynamic linker structures. */
333 CORE_ADDR debug_base = 0;
334
335 /* Validity flag for debug_loader_offset. */
336 int debug_loader_offset_p = 0;
337
338 /* Load address for the dynamic linker, inferred. */
339 CORE_ADDR debug_loader_offset = 0;
340
341 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
342 char *debug_loader_name = nullptr;
343
344 /* Load map address for the main executable. */
345 CORE_ADDR main_lm_addr = 0;
346
347 CORE_ADDR interp_text_sect_low = 0;
348 CORE_ADDR interp_text_sect_high = 0;
349 CORE_ADDR interp_plt_sect_low = 0;
350 CORE_ADDR interp_plt_sect_high = 0;
351
352 /* Nonzero if the list of objects was last obtained from the target
353 via qXfer:libraries-svr4:read. */
354 int using_xfer = 0;
355
356 /* Table of struct probe_and_action instances, used by the
357 probes-based interface to map breakpoint addresses to probes
358 and their associated actions. Lookup is performed using
359 probe_and_action->prob->address. */
360 htab_up probes_table;
361
362 /* List of objects loaded into the inferior, used by the probes-
363 based interface. */
364 struct so_list *solib_list = nullptr;
365 };
366
367 /* Per-program-space data key. */
368 static const struct program_space_key<svr4_info> solib_svr4_pspace_data;
369
370 /* Free the probes table. */
371
372 static void
373 free_probes_table (struct svr4_info *info)
374 {
375 info->probes_table.reset (nullptr);
376 }
377
378 /* Free the solib list. */
379
380 static void
381 free_solib_list (struct svr4_info *info)
382 {
383 svr4_free_library_list (&info->solib_list);
384 info->solib_list = NULL;
385 }
386
387 svr4_info::~svr4_info ()
388 {
389 free_solib_list (this);
390 }
391
392 /* Get the svr4 data for program space PSPACE. If none is found yet, add it now.
393 This function always returns a valid object. */
394
395 static struct svr4_info *
396 get_svr4_info (program_space *pspace)
397 {
398 struct svr4_info *info = solib_svr4_pspace_data.get (pspace);
399
400 if (info == NULL)
401 info = solib_svr4_pspace_data.emplace (pspace);
402
403 return info;
404 }
405
406 /* Local function prototypes */
407
408 static int match_main (const char *);
409
410 /* Read program header TYPE from inferior memory. The header is found
411 by scanning the OS auxiliary vector.
412
413 If TYPE == -1, return the program headers instead of the contents of
414 one program header.
415
416 Return vector of bytes holding the program header contents, or an empty
417 optional on failure. If successful and P_ARCH_SIZE is non-NULL, the target
418 architecture size (32-bit or 64-bit) is returned to *P_ARCH_SIZE. Likewise,
419 the base address of the section is returned in *BASE_ADDR. */
420
421 static gdb::optional<gdb::byte_vector>
422 read_program_header (int type, int *p_arch_size, CORE_ADDR *base_addr)
423 {
424 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
425 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
426 int arch_size, sect_size;
427 CORE_ADDR sect_addr;
428 int pt_phdr_p = 0;
429
430 /* Get required auxv elements from target. */
431 if (target_auxv_search (current_top_target (), AT_PHDR, &at_phdr) <= 0)
432 return {};
433 if (target_auxv_search (current_top_target (), AT_PHENT, &at_phent) <= 0)
434 return {};
435 if (target_auxv_search (current_top_target (), AT_PHNUM, &at_phnum) <= 0)
436 return {};
437 if (!at_phdr || !at_phnum)
438 return {};
439
440 /* Determine ELF architecture type. */
441 if (at_phent == sizeof (Elf32_External_Phdr))
442 arch_size = 32;
443 else if (at_phent == sizeof (Elf64_External_Phdr))
444 arch_size = 64;
445 else
446 return {};
447
448 /* Find the requested segment. */
449 if (type == -1)
450 {
451 sect_addr = at_phdr;
452 sect_size = at_phent * at_phnum;
453 }
454 else if (arch_size == 32)
455 {
456 Elf32_External_Phdr phdr;
457 int i;
458
459 /* Search for requested PHDR. */
460 for (i = 0; i < at_phnum; i++)
461 {
462 int p_type;
463
464 if (target_read_memory (at_phdr + i * sizeof (phdr),
465 (gdb_byte *)&phdr, sizeof (phdr)))
466 return {};
467
468 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
469 4, byte_order);
470
471 if (p_type == PT_PHDR)
472 {
473 pt_phdr_p = 1;
474 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
475 4, byte_order);
476 }
477
478 if (p_type == type)
479 break;
480 }
481
482 if (i == at_phnum)
483 return {};
484
485 /* Retrieve address and size. */
486 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
487 4, byte_order);
488 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
489 4, byte_order);
490 }
491 else
492 {
493 Elf64_External_Phdr phdr;
494 int i;
495
496 /* Search for requested PHDR. */
497 for (i = 0; i < at_phnum; i++)
498 {
499 int p_type;
500
501 if (target_read_memory (at_phdr + i * sizeof (phdr),
502 (gdb_byte *)&phdr, sizeof (phdr)))
503 return {};
504
505 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
506 4, byte_order);
507
508 if (p_type == PT_PHDR)
509 {
510 pt_phdr_p = 1;
511 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
512 8, byte_order);
513 }
514
515 if (p_type == type)
516 break;
517 }
518
519 if (i == at_phnum)
520 return {};
521
522 /* Retrieve address and size. */
523 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
524 8, byte_order);
525 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
526 8, byte_order);
527 }
528
529 /* PT_PHDR is optional, but we really need it
530 for PIE to make this work in general. */
531
532 if (pt_phdr_p)
533 {
534 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
535 Relocation offset is the difference between the two. */
536 sect_addr = sect_addr + (at_phdr - pt_phdr);
537 }
538
539 /* Read in requested program header. */
540 gdb::byte_vector buf (sect_size);
541 if (target_read_memory (sect_addr, buf.data (), sect_size))
542 return {};
543
544 if (p_arch_size)
545 *p_arch_size = arch_size;
546 if (base_addr)
547 *base_addr = sect_addr;
548
549 return buf;
550 }
551
552
553 /* Return program interpreter string. */
554 static gdb::optional<gdb::byte_vector>
555 find_program_interpreter (void)
556 {
557 /* If we have an exec_bfd, use its section table. */
558 if (exec_bfd
559 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
560 {
561 struct bfd_section *interp_sect;
562
563 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
564 if (interp_sect != NULL)
565 {
566 int sect_size = bfd_section_size (interp_sect);
567
568 gdb::byte_vector buf (sect_size);
569 bfd_get_section_contents (exec_bfd, interp_sect, buf.data (), 0,
570 sect_size);
571 return buf;
572 }
573 }
574
575 /* If we didn't find it, use the target auxiliary vector. */
576 return read_program_header (PT_INTERP, NULL, NULL);
577 }
578
579
580 /* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is
581 found, 1 is returned and the corresponding PTR is set. */
582
583 static int
584 scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr,
585 CORE_ADDR *ptr_addr)
586 {
587 int arch_size, step, sect_size;
588 long current_dyntag;
589 CORE_ADDR dyn_ptr, dyn_addr;
590 gdb_byte *bufend, *bufstart, *buf;
591 Elf32_External_Dyn *x_dynp_32;
592 Elf64_External_Dyn *x_dynp_64;
593 struct bfd_section *sect;
594 struct target_section *target_section;
595
596 if (abfd == NULL)
597 return 0;
598
599 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
600 return 0;
601
602 arch_size = bfd_get_arch_size (abfd);
603 if (arch_size == -1)
604 return 0;
605
606 /* Find the start address of the .dynamic section. */
607 sect = bfd_get_section_by_name (abfd, ".dynamic");
608 if (sect == NULL)
609 return 0;
610
611 for (target_section = current_target_sections->sections;
612 target_section < current_target_sections->sections_end;
613 target_section++)
614 if (sect == target_section->the_bfd_section)
615 break;
616 if (target_section < current_target_sections->sections_end)
617 dyn_addr = target_section->addr;
618 else
619 {
620 /* ABFD may come from OBJFILE acting only as a symbol file without being
621 loaded into the target (see add_symbol_file_command). This case is
622 such fallback to the file VMA address without the possibility of
623 having the section relocated to its actual in-memory address. */
624
625 dyn_addr = bfd_section_vma (sect);
626 }
627
628 /* Read in .dynamic from the BFD. We will get the actual value
629 from memory later. */
630 sect_size = bfd_section_size (sect);
631 buf = bufstart = (gdb_byte *) alloca (sect_size);
632 if (!bfd_get_section_contents (abfd, sect,
633 buf, 0, sect_size))
634 return 0;
635
636 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
637 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
638 : sizeof (Elf64_External_Dyn);
639 for (bufend = buf + sect_size;
640 buf < bufend;
641 buf += step)
642 {
643 if (arch_size == 32)
644 {
645 x_dynp_32 = (Elf32_External_Dyn *) buf;
646 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
647 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
648 }
649 else
650 {
651 x_dynp_64 = (Elf64_External_Dyn *) buf;
652 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
653 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
654 }
655 if (current_dyntag == DT_NULL)
656 return 0;
657 if (current_dyntag == desired_dyntag)
658 {
659 /* If requested, try to read the runtime value of this .dynamic
660 entry. */
661 if (ptr)
662 {
663 struct type *ptr_type;
664 gdb_byte ptr_buf[8];
665 CORE_ADDR ptr_addr_1;
666
667 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
668 ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8;
669 if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0)
670 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
671 *ptr = dyn_ptr;
672 if (ptr_addr)
673 *ptr_addr = dyn_addr + (buf - bufstart);
674 }
675 return 1;
676 }
677 }
678
679 return 0;
680 }
681
682 /* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
683 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
684 is returned and the corresponding PTR is set. */
685
686 static int
687 scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
688 CORE_ADDR *ptr_addr)
689 {
690 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
691 int arch_size, step;
692 long current_dyntag;
693 CORE_ADDR dyn_ptr;
694 CORE_ADDR base_addr;
695
696 /* Read in .dynamic section. */
697 gdb::optional<gdb::byte_vector> ph_data
698 = read_program_header (PT_DYNAMIC, &arch_size, &base_addr);
699 if (!ph_data)
700 return 0;
701
702 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
703 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
704 : sizeof (Elf64_External_Dyn);
705 for (gdb_byte *buf = ph_data->data (), *bufend = buf + ph_data->size ();
706 buf < bufend; buf += step)
707 {
708 if (arch_size == 32)
709 {
710 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
711
712 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
713 4, byte_order);
714 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
715 4, byte_order);
716 }
717 else
718 {
719 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
720
721 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
722 8, byte_order);
723 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
724 8, byte_order);
725 }
726 if (current_dyntag == DT_NULL)
727 break;
728
729 if (current_dyntag == desired_dyntag)
730 {
731 if (ptr)
732 *ptr = dyn_ptr;
733
734 if (ptr_addr)
735 *ptr_addr = base_addr + buf - ph_data->data ();
736
737 return 1;
738 }
739 }
740
741 return 0;
742 }
743
744 /* Locate the base address of dynamic linker structs for SVR4 elf
745 targets.
746
747 For SVR4 elf targets the address of the dynamic linker's runtime
748 structure is contained within the dynamic info section in the
749 executable file. The dynamic section is also mapped into the
750 inferior address space. Because the runtime loader fills in the
751 real address before starting the inferior, we have to read in the
752 dynamic info section from the inferior address space.
753 If there are any errors while trying to find the address, we
754 silently return 0, otherwise the found address is returned. */
755
756 static CORE_ADDR
757 elf_locate_base (void)
758 {
759 struct bound_minimal_symbol msymbol;
760 CORE_ADDR dyn_ptr, dyn_ptr_addr;
761
762 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
763 instead of DT_DEBUG, although they sometimes contain an unused
764 DT_DEBUG. */
765 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr, NULL)
766 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
767 {
768 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
769 gdb_byte *pbuf;
770 int pbuf_size = TYPE_LENGTH (ptr_type);
771
772 pbuf = (gdb_byte *) alloca (pbuf_size);
773 /* DT_MIPS_RLD_MAP contains a pointer to the address
774 of the dynamic link structure. */
775 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
776 return 0;
777 return extract_typed_address (pbuf, ptr_type);
778 }
779
780 /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
781 because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
782 in non-PIE. */
783 if (scan_dyntag (DT_MIPS_RLD_MAP_REL, exec_bfd, &dyn_ptr, &dyn_ptr_addr)
784 || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
785 {
786 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
787 gdb_byte *pbuf;
788 int pbuf_size = TYPE_LENGTH (ptr_type);
789
790 pbuf = (gdb_byte *) alloca (pbuf_size);
791 /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
792 DT slot to the address of the dynamic link structure. */
793 if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
794 return 0;
795 return extract_typed_address (pbuf, ptr_type);
796 }
797
798 /* Find DT_DEBUG. */
799 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr, NULL)
800 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
801 return dyn_ptr;
802
803 /* This may be a static executable. Look for the symbol
804 conventionally named _r_debug, as a last resort. */
805 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
806 if (msymbol.minsym != NULL)
807 return BMSYMBOL_VALUE_ADDRESS (msymbol);
808
809 /* DT_DEBUG entry not found. */
810 return 0;
811 }
812
813 /* Locate the base address of dynamic linker structs.
814
815 For both the SunOS and SVR4 shared library implementations, if the
816 inferior executable has been linked dynamically, there is a single
817 address somewhere in the inferior's data space which is the key to
818 locating all of the dynamic linker's runtime structures. This
819 address is the value of the debug base symbol. The job of this
820 function is to find and return that address, or to return 0 if there
821 is no such address (the executable is statically linked for example).
822
823 For SunOS, the job is almost trivial, since the dynamic linker and
824 all of it's structures are statically linked to the executable at
825 link time. Thus the symbol for the address we are looking for has
826 already been added to the minimal symbol table for the executable's
827 objfile at the time the symbol file's symbols were read, and all we
828 have to do is look it up there. Note that we explicitly do NOT want
829 to find the copies in the shared library.
830
831 The SVR4 version is a bit more complicated because the address
832 is contained somewhere in the dynamic info section. We have to go
833 to a lot more work to discover the address of the debug base symbol.
834 Because of this complexity, we cache the value we find and return that
835 value on subsequent invocations. Note there is no copy in the
836 executable symbol tables. */
837
838 static CORE_ADDR
839 locate_base (struct svr4_info *info)
840 {
841 /* Check to see if we have a currently valid address, and if so, avoid
842 doing all this work again and just return the cached address. If
843 we have no cached address, try to locate it in the dynamic info
844 section for ELF executables. There's no point in doing any of this
845 though if we don't have some link map offsets to work with. */
846
847 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
848 info->debug_base = elf_locate_base ();
849 return info->debug_base;
850 }
851
852 /* Find the first element in the inferior's dynamic link map, and
853 return its address in the inferior. Return zero if the address
854 could not be determined.
855
856 FIXME: Perhaps we should validate the info somehow, perhaps by
857 checking r_version for a known version number, or r_state for
858 RT_CONSISTENT. */
859
860 static CORE_ADDR
861 solib_svr4_r_map (struct svr4_info *info)
862 {
863 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
864 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
865 CORE_ADDR addr = 0;
866
867 try
868 {
869 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
870 ptr_type);
871 }
872 catch (const gdb_exception_error &ex)
873 {
874 exception_print (gdb_stderr, ex);
875 }
876
877 return addr;
878 }
879
880 /* Find r_brk from the inferior's debug base. */
881
882 static CORE_ADDR
883 solib_svr4_r_brk (struct svr4_info *info)
884 {
885 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
886 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
887
888 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
889 ptr_type);
890 }
891
892 /* Find the link map for the dynamic linker (if it is not in the
893 normal list of loaded shared objects). */
894
895 static CORE_ADDR
896 solib_svr4_r_ldsomap (struct svr4_info *info)
897 {
898 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
899 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
900 enum bfd_endian byte_order = type_byte_order (ptr_type);
901 ULONGEST version = 0;
902
903 try
904 {
905 /* Check version, and return zero if `struct r_debug' doesn't have
906 the r_ldsomap member. */
907 version
908 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
909 lmo->r_version_size, byte_order);
910 }
911 catch (const gdb_exception_error &ex)
912 {
913 exception_print (gdb_stderr, ex);
914 }
915
916 if (version < 2 || lmo->r_ldsomap_offset == -1)
917 return 0;
918
919 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
920 ptr_type);
921 }
922
923 /* On Solaris systems with some versions of the dynamic linker,
924 ld.so's l_name pointer points to the SONAME in the string table
925 rather than into writable memory. So that GDB can find shared
926 libraries when loading a core file generated by gcore, ensure that
927 memory areas containing the l_name string are saved in the core
928 file. */
929
930 static int
931 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
932 {
933 struct svr4_info *info;
934 CORE_ADDR ldsomap;
935 CORE_ADDR name_lm;
936
937 info = get_svr4_info (current_program_space);
938
939 info->debug_base = 0;
940 locate_base (info);
941 if (!info->debug_base)
942 return 0;
943
944 ldsomap = solib_svr4_r_ldsomap (info);
945 if (!ldsomap)
946 return 0;
947
948 std::unique_ptr<lm_info_svr4> li = lm_info_read (ldsomap);
949 name_lm = li != NULL ? li->l_name : 0;
950
951 return (name_lm >= vaddr && name_lm < vaddr + size);
952 }
953
954 /* See solist.h. */
955
956 static int
957 open_symbol_file_object (int from_tty)
958 {
959 CORE_ADDR lm, l_name;
960 gdb::unique_xmalloc_ptr<char> filename;
961 int errcode;
962 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
963 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
964 int l_name_size = TYPE_LENGTH (ptr_type);
965 gdb::byte_vector l_name_buf (l_name_size);
966 struct svr4_info *info = get_svr4_info (current_program_space);
967 symfile_add_flags add_flags = 0;
968
969 if (from_tty)
970 add_flags |= SYMFILE_VERBOSE;
971
972 if (symfile_objfile)
973 if (!query (_("Attempt to reload symbols from process? ")))
974 return 0;
975
976 /* Always locate the debug struct, in case it has moved. */
977 info->debug_base = 0;
978 if (locate_base (info) == 0)
979 return 0; /* failed somehow... */
980
981 /* First link map member should be the executable. */
982 lm = solib_svr4_r_map (info);
983 if (lm == 0)
984 return 0; /* failed somehow... */
985
986 /* Read address of name from target memory to GDB. */
987 read_memory (lm + lmo->l_name_offset, l_name_buf.data (), l_name_size);
988
989 /* Convert the address to host format. */
990 l_name = extract_typed_address (l_name_buf.data (), ptr_type);
991
992 if (l_name == 0)
993 return 0; /* No filename. */
994
995 /* Now fetch the filename from target memory. */
996 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
997
998 if (errcode)
999 {
1000 warning (_("failed to read exec filename from attached file: %s"),
1001 safe_strerror (errcode));
1002 return 0;
1003 }
1004
1005 /* Have a pathname: read the symbol file. */
1006 symbol_file_add_main (filename.get (), add_flags);
1007
1008 return 1;
1009 }
1010
1011 /* Data exchange structure for the XML parser as returned by
1012 svr4_current_sos_via_xfer_libraries. */
1013
1014 struct svr4_library_list
1015 {
1016 struct so_list *head, **tailp;
1017
1018 /* Inferior address of struct link_map used for the main executable. It is
1019 NULL if not known. */
1020 CORE_ADDR main_lm;
1021 };
1022
1023 /* This module's 'free_objfile' observer. */
1024
1025 static void
1026 svr4_free_objfile_observer (struct objfile *objfile)
1027 {
1028 probes_table_remove_objfile_probes (objfile);
1029 }
1030
1031 /* Implementation for target_so_ops.free_so. */
1032
1033 static void
1034 svr4_free_so (struct so_list *so)
1035 {
1036 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1037
1038 delete li;
1039 }
1040
1041 /* Implement target_so_ops.clear_so. */
1042
1043 static void
1044 svr4_clear_so (struct so_list *so)
1045 {
1046 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1047
1048 if (li != NULL)
1049 li->l_addr_p = 0;
1050 }
1051
1052 /* Free so_list built so far (called via cleanup). */
1053
1054 static void
1055 svr4_free_library_list (void *p_list)
1056 {
1057 struct so_list *list = *(struct so_list **) p_list;
1058
1059 while (list != NULL)
1060 {
1061 struct so_list *next = list->next;
1062
1063 free_so (list);
1064 list = next;
1065 }
1066 }
1067
1068 /* Copy library list. */
1069
1070 static struct so_list *
1071 svr4_copy_library_list (struct so_list *src)
1072 {
1073 struct so_list *dst = NULL;
1074 struct so_list **link = &dst;
1075
1076 while (src != NULL)
1077 {
1078 struct so_list *newobj;
1079
1080 newobj = XNEW (struct so_list);
1081 memcpy (newobj, src, sizeof (struct so_list));
1082
1083 lm_info_svr4 *src_li = (lm_info_svr4 *) src->lm_info;
1084 newobj->lm_info = new lm_info_svr4 (*src_li);
1085
1086 newobj->next = NULL;
1087 *link = newobj;
1088 link = &newobj->next;
1089
1090 src = src->next;
1091 }
1092
1093 return dst;
1094 }
1095
1096 #ifdef HAVE_LIBEXPAT
1097
1098 #include "xml-support.h"
1099
1100 /* Handle the start of a <library> element. Note: new elements are added
1101 at the tail of the list, keeping the list in order. */
1102
1103 static void
1104 library_list_start_library (struct gdb_xml_parser *parser,
1105 const struct gdb_xml_element *element,
1106 void *user_data,
1107 std::vector<gdb_xml_value> &attributes)
1108 {
1109 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1110 const char *name
1111 = (const char *) xml_find_attribute (attributes, "name")->value.get ();
1112 ULONGEST *lmp
1113 = (ULONGEST *) xml_find_attribute (attributes, "lm")->value.get ();
1114 ULONGEST *l_addrp
1115 = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value.get ();
1116 ULONGEST *l_ldp
1117 = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value.get ();
1118 struct so_list *new_elem;
1119
1120 new_elem = XCNEW (struct so_list);
1121 lm_info_svr4 *li = new lm_info_svr4;
1122 new_elem->lm_info = li;
1123 li->lm_addr = *lmp;
1124 li->l_addr_inferior = *l_addrp;
1125 li->l_ld = *l_ldp;
1126
1127 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1128 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1129 strcpy (new_elem->so_original_name, new_elem->so_name);
1130
1131 *list->tailp = new_elem;
1132 list->tailp = &new_elem->next;
1133 }
1134
1135 /* Handle the start of a <library-list-svr4> element. */
1136
1137 static void
1138 svr4_library_list_start_list (struct gdb_xml_parser *parser,
1139 const struct gdb_xml_element *element,
1140 void *user_data,
1141 std::vector<gdb_xml_value> &attributes)
1142 {
1143 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1144 const char *version
1145 = (const char *) xml_find_attribute (attributes, "version")->value.get ();
1146 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1147
1148 if (strcmp (version, "1.0") != 0)
1149 gdb_xml_error (parser,
1150 _("SVR4 Library list has unsupported version \"%s\""),
1151 version);
1152
1153 if (main_lm)
1154 list->main_lm = *(ULONGEST *) main_lm->value.get ();
1155 }
1156
1157 /* The allowed elements and attributes for an XML library list.
1158 The root element is a <library-list>. */
1159
1160 static const struct gdb_xml_attribute svr4_library_attributes[] =
1161 {
1162 { "name", GDB_XML_AF_NONE, NULL, NULL },
1163 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1164 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1165 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1166 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1167 };
1168
1169 static const struct gdb_xml_element svr4_library_list_children[] =
1170 {
1171 {
1172 "library", svr4_library_attributes, NULL,
1173 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1174 library_list_start_library, NULL
1175 },
1176 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1177 };
1178
1179 static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1180 {
1181 { "version", GDB_XML_AF_NONE, NULL, NULL },
1182 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1183 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1184 };
1185
1186 static const struct gdb_xml_element svr4_library_list_elements[] =
1187 {
1188 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1189 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1190 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1191 };
1192
1193 /* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1194
1195 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1196 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1197 empty, caller is responsible for freeing all its entries. */
1198
1199 static int
1200 svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1201 {
1202 auto cleanup = make_scope_exit ([&] ()
1203 {
1204 svr4_free_library_list (&list->head);
1205 });
1206
1207 memset (list, 0, sizeof (*list));
1208 list->tailp = &list->head;
1209 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
1210 svr4_library_list_elements, document, list) == 0)
1211 {
1212 /* Parsed successfully, keep the result. */
1213 cleanup.release ();
1214 return 1;
1215 }
1216
1217 return 0;
1218 }
1219
1220 /* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
1221
1222 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1223 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1224 empty, caller is responsible for freeing all its entries.
1225
1226 Note that ANNEX must be NULL if the remote does not explicitly allow
1227 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1228 this can be checked using target_augmented_libraries_svr4_read (). */
1229
1230 static int
1231 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1232 const char *annex)
1233 {
1234 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1235
1236 /* Fetch the list of shared libraries. */
1237 gdb::optional<gdb::char_vector> svr4_library_document
1238 = target_read_stralloc (current_top_target (), TARGET_OBJECT_LIBRARIES_SVR4,
1239 annex);
1240 if (!svr4_library_document)
1241 return 0;
1242
1243 return svr4_parse_libraries (svr4_library_document->data (), list);
1244 }
1245
1246 #else
1247
1248 static int
1249 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1250 const char *annex)
1251 {
1252 return 0;
1253 }
1254
1255 #endif
1256
1257 /* If no shared library information is available from the dynamic
1258 linker, build a fallback list from other sources. */
1259
1260 static struct so_list *
1261 svr4_default_sos (svr4_info *info)
1262 {
1263 struct so_list *newobj;
1264
1265 if (!info->debug_loader_offset_p)
1266 return NULL;
1267
1268 newobj = XCNEW (struct so_list);
1269 lm_info_svr4 *li = new lm_info_svr4;
1270 newobj->lm_info = li;
1271
1272 /* Nothing will ever check the other fields if we set l_addr_p. */
1273 li->l_addr = info->debug_loader_offset;
1274 li->l_addr_p = 1;
1275
1276 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1277 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1278 strcpy (newobj->so_original_name, newobj->so_name);
1279
1280 return newobj;
1281 }
1282
1283 /* Read the whole inferior libraries chain starting at address LM.
1284 Expect the first entry in the chain's previous entry to be PREV_LM.
1285 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1286 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1287 to it. Returns nonzero upon success. If zero is returned the
1288 entries stored to LINK_PTR_PTR are still valid although they may
1289 represent only part of the inferior library list. */
1290
1291 static int
1292 svr4_read_so_list (svr4_info *info, CORE_ADDR lm, CORE_ADDR prev_lm,
1293 struct so_list ***link_ptr_ptr, int ignore_first)
1294 {
1295 CORE_ADDR first_l_name = 0;
1296 CORE_ADDR next_lm;
1297
1298 for (; lm != 0; prev_lm = lm, lm = next_lm)
1299 {
1300 int errcode;
1301 gdb::unique_xmalloc_ptr<char> buffer;
1302
1303 so_list_up newobj (XCNEW (struct so_list));
1304
1305 lm_info_svr4 *li = lm_info_read (lm).release ();
1306 newobj->lm_info = li;
1307 if (li == NULL)
1308 return 0;
1309
1310 next_lm = li->l_next;
1311
1312 if (li->l_prev != prev_lm)
1313 {
1314 warning (_("Corrupted shared library list: %s != %s"),
1315 paddress (target_gdbarch (), prev_lm),
1316 paddress (target_gdbarch (), li->l_prev));
1317 return 0;
1318 }
1319
1320 /* For SVR4 versions, the first entry in the link map is for the
1321 inferior executable, so we must ignore it. For some versions of
1322 SVR4, it has no name. For others (Solaris 2.3 for example), it
1323 does have a name, so we can no longer use a missing name to
1324 decide when to ignore it. */
1325 if (ignore_first && li->l_prev == 0)
1326 {
1327 first_l_name = li->l_name;
1328 info->main_lm_addr = li->lm_addr;
1329 continue;
1330 }
1331
1332 /* Extract this shared object's name. */
1333 target_read_string (li->l_name, &buffer, SO_NAME_MAX_PATH_SIZE - 1,
1334 &errcode);
1335 if (errcode != 0)
1336 {
1337 /* If this entry's l_name address matches that of the
1338 inferior executable, then this is not a normal shared
1339 object, but (most likely) a vDSO. In this case, silently
1340 skip it; otherwise emit a warning. */
1341 if (first_l_name == 0 || li->l_name != first_l_name)
1342 warning (_("Can't read pathname for load map: %s."),
1343 safe_strerror (errcode));
1344 continue;
1345 }
1346
1347 strncpy (newobj->so_name, buffer.get (), SO_NAME_MAX_PATH_SIZE - 1);
1348 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1349 strcpy (newobj->so_original_name, newobj->so_name);
1350
1351 /* If this entry has no name, or its name matches the name
1352 for the main executable, don't include it in the list. */
1353 if (! newobj->so_name[0] || match_main (newobj->so_name))
1354 continue;
1355
1356 newobj->next = 0;
1357 /* Don't free it now. */
1358 **link_ptr_ptr = newobj.release ();
1359 *link_ptr_ptr = &(**link_ptr_ptr)->next;
1360 }
1361
1362 return 1;
1363 }
1364
1365 /* Read the full list of currently loaded shared objects directly
1366 from the inferior, without referring to any libraries read and
1367 stored by the probes interface. Handle special cases relating
1368 to the first elements of the list. */
1369
1370 static struct so_list *
1371 svr4_current_sos_direct (struct svr4_info *info)
1372 {
1373 CORE_ADDR lm;
1374 struct so_list *head = NULL;
1375 struct so_list **link_ptr = &head;
1376 int ignore_first;
1377 struct svr4_library_list library_list;
1378
1379 /* Fall back to manual examination of the target if the packet is not
1380 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1381 tests a case where gdbserver cannot find the shared libraries list while
1382 GDB itself is able to find it via SYMFILE_OBJFILE.
1383
1384 Unfortunately statically linked inferiors will also fall back through this
1385 suboptimal code path. */
1386
1387 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1388 NULL);
1389 if (info->using_xfer)
1390 {
1391 if (library_list.main_lm)
1392 info->main_lm_addr = library_list.main_lm;
1393
1394 return library_list.head ? library_list.head : svr4_default_sos (info);
1395 }
1396
1397 /* Always locate the debug struct, in case it has moved. */
1398 info->debug_base = 0;
1399 locate_base (info);
1400
1401 /* If we can't find the dynamic linker's base structure, this
1402 must not be a dynamically linked executable. Hmm. */
1403 if (! info->debug_base)
1404 return svr4_default_sos (info);
1405
1406 /* Assume that everything is a library if the dynamic loader was loaded
1407 late by a static executable. */
1408 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1409 ignore_first = 0;
1410 else
1411 ignore_first = 1;
1412
1413 auto cleanup = make_scope_exit ([&] ()
1414 {
1415 svr4_free_library_list (&head);
1416 });
1417
1418 /* Walk the inferior's link map list, and build our list of
1419 `struct so_list' nodes. */
1420 lm = solib_svr4_r_map (info);
1421 if (lm)
1422 svr4_read_so_list (info, lm, 0, &link_ptr, ignore_first);
1423
1424 /* On Solaris, the dynamic linker is not in the normal list of
1425 shared objects, so make sure we pick it up too. Having
1426 symbol information for the dynamic linker is quite crucial
1427 for skipping dynamic linker resolver code. */
1428 lm = solib_svr4_r_ldsomap (info);
1429 if (lm)
1430 svr4_read_so_list (info, lm, 0, &link_ptr, 0);
1431
1432 cleanup.release ();
1433
1434 if (head == NULL)
1435 return svr4_default_sos (info);
1436
1437 return head;
1438 }
1439
1440 /* Implement the main part of the "current_sos" target_so_ops
1441 method. */
1442
1443 static struct so_list *
1444 svr4_current_sos_1 (svr4_info *info)
1445 {
1446 /* If the solib list has been read and stored by the probes
1447 interface then we return a copy of the stored list. */
1448 if (info->solib_list != NULL)
1449 return svr4_copy_library_list (info->solib_list);
1450
1451 /* Otherwise obtain the solib list directly from the inferior. */
1452 return svr4_current_sos_direct (info);
1453 }
1454
1455 /* Implement the "current_sos" target_so_ops method. */
1456
1457 static struct so_list *
1458 svr4_current_sos (void)
1459 {
1460 svr4_info *info = get_svr4_info (current_program_space);
1461 struct so_list *so_head = svr4_current_sos_1 (info);
1462 struct mem_range vsyscall_range;
1463
1464 /* Filter out the vDSO module, if present. Its symbol file would
1465 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1466 managed by symfile-mem.c:add_vsyscall_page. */
1467 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1468 && vsyscall_range.length != 0)
1469 {
1470 struct so_list **sop;
1471
1472 sop = &so_head;
1473 while (*sop != NULL)
1474 {
1475 struct so_list *so = *sop;
1476
1477 /* We can't simply match the vDSO by starting address alone,
1478 because lm_info->l_addr_inferior (and also l_addr) do not
1479 necessarily represent the real starting address of the
1480 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1481 field (the ".dynamic" section of the shared object)
1482 always points at the absolute/resolved address though.
1483 So check whether that address is inside the vDSO's
1484 mapping instead.
1485
1486 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1487 0-based ELF, and we see:
1488
1489 (gdb) info auxv
1490 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1491 (gdb) p/x *_r_debug.r_map.l_next
1492 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1493
1494 And on Linux 2.6.32 (x86_64) we see:
1495
1496 (gdb) info auxv
1497 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1498 (gdb) p/x *_r_debug.r_map.l_next
1499 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1500
1501 Dumping that vDSO shows:
1502
1503 (gdb) info proc mappings
1504 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1505 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1506 # readelf -Wa vdso.bin
1507 [...]
1508 Entry point address: 0xffffffffff700700
1509 [...]
1510 Section Headers:
1511 [Nr] Name Type Address Off Size
1512 [ 0] NULL 0000000000000000 000000 000000
1513 [ 1] .hash HASH ffffffffff700120 000120 000038
1514 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1515 [...]
1516 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1517 */
1518
1519 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1520
1521 if (address_in_mem_range (li->l_ld, &vsyscall_range))
1522 {
1523 *sop = so->next;
1524 free_so (so);
1525 break;
1526 }
1527
1528 sop = &so->next;
1529 }
1530 }
1531
1532 return so_head;
1533 }
1534
1535 /* Get the address of the link_map for a given OBJFILE. */
1536
1537 CORE_ADDR
1538 svr4_fetch_objfile_link_map (struct objfile *objfile)
1539 {
1540 struct so_list *so;
1541 struct svr4_info *info = get_svr4_info (objfile->pspace);
1542
1543 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1544 if (info->main_lm_addr == 0)
1545 solib_add (NULL, 0, auto_solib_add);
1546
1547 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1548 if (objfile == symfile_objfile)
1549 return info->main_lm_addr;
1550
1551 /* If OBJFILE is a separate debug object file, look for the
1552 original object file. */
1553 if (objfile->separate_debug_objfile_backlink != NULL)
1554 objfile = objfile->separate_debug_objfile_backlink;
1555
1556 /* The other link map addresses may be found by examining the list
1557 of shared libraries. */
1558 for (so = master_so_list (); so; so = so->next)
1559 if (so->objfile == objfile)
1560 {
1561 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1562
1563 return li->lm_addr;
1564 }
1565
1566 /* Not found! */
1567 return 0;
1568 }
1569
1570 /* On some systems, the only way to recognize the link map entry for
1571 the main executable file is by looking at its name. Return
1572 non-zero iff SONAME matches one of the known main executable names. */
1573
1574 static int
1575 match_main (const char *soname)
1576 {
1577 const char * const *mainp;
1578
1579 for (mainp = main_name_list; *mainp != NULL; mainp++)
1580 {
1581 if (strcmp (soname, *mainp) == 0)
1582 return (1);
1583 }
1584
1585 return (0);
1586 }
1587
1588 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1589 SVR4 run time loader. */
1590
1591 int
1592 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1593 {
1594 struct svr4_info *info = get_svr4_info (current_program_space);
1595
1596 return ((pc >= info->interp_text_sect_low
1597 && pc < info->interp_text_sect_high)
1598 || (pc >= info->interp_plt_sect_low
1599 && pc < info->interp_plt_sect_high)
1600 || in_plt_section (pc)
1601 || in_gnu_ifunc_stub (pc));
1602 }
1603
1604 /* Given an executable's ABFD and target, compute the entry-point
1605 address. */
1606
1607 static CORE_ADDR
1608 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1609 {
1610 CORE_ADDR addr;
1611
1612 /* KevinB wrote ... for most targets, the address returned by
1613 bfd_get_start_address() is the entry point for the start
1614 function. But, for some targets, bfd_get_start_address() returns
1615 the address of a function descriptor from which the entry point
1616 address may be extracted. This address is extracted by
1617 gdbarch_convert_from_func_ptr_addr(). The method
1618 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1619 function for targets which don't use function descriptors. */
1620 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
1621 bfd_get_start_address (abfd),
1622 targ);
1623 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
1624 }
1625
1626 /* A probe and its associated action. */
1627
1628 struct probe_and_action
1629 {
1630 /* The probe. */
1631 probe *prob;
1632
1633 /* The relocated address of the probe. */
1634 CORE_ADDR address;
1635
1636 /* The action. */
1637 enum probe_action action;
1638
1639 /* The objfile where this probe was found. */
1640 struct objfile *objfile;
1641 };
1642
1643 /* Returns a hash code for the probe_and_action referenced by p. */
1644
1645 static hashval_t
1646 hash_probe_and_action (const void *p)
1647 {
1648 const struct probe_and_action *pa = (const struct probe_and_action *) p;
1649
1650 return (hashval_t) pa->address;
1651 }
1652
1653 /* Returns non-zero if the probe_and_actions referenced by p1 and p2
1654 are equal. */
1655
1656 static int
1657 equal_probe_and_action (const void *p1, const void *p2)
1658 {
1659 const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
1660 const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;
1661
1662 return pa1->address == pa2->address;
1663 }
1664
1665 /* Traversal function for probes_table_remove_objfile_probes. */
1666
1667 static int
1668 probes_table_htab_remove_objfile_probes (void **slot, void *info)
1669 {
1670 probe_and_action *pa = (probe_and_action *) *slot;
1671 struct objfile *objfile = (struct objfile *) info;
1672
1673 if (pa->objfile == objfile)
1674 htab_clear_slot (get_svr4_info (objfile->pspace)->probes_table.get (),
1675 slot);
1676
1677 return 1;
1678 }
1679
1680 /* Remove all probes that belong to OBJFILE from the probes table. */
1681
1682 static void
1683 probes_table_remove_objfile_probes (struct objfile *objfile)
1684 {
1685 svr4_info *info = get_svr4_info (objfile->pspace);
1686 if (info->probes_table != nullptr)
1687 htab_traverse_noresize (info->probes_table.get (),
1688 probes_table_htab_remove_objfile_probes, objfile);
1689 }
1690
1691 /* Register a solib event probe and its associated action in the
1692 probes table. */
1693
1694 static void
1695 register_solib_event_probe (svr4_info *info, struct objfile *objfile,
1696 probe *prob, CORE_ADDR address,
1697 enum probe_action action)
1698 {
1699 struct probe_and_action lookup, *pa;
1700 void **slot;
1701
1702 /* Create the probes table, if necessary. */
1703 if (info->probes_table == NULL)
1704 info->probes_table.reset (htab_create_alloc (1, hash_probe_and_action,
1705 equal_probe_and_action,
1706 xfree, xcalloc, xfree));
1707
1708 lookup.address = address;
1709 slot = htab_find_slot (info->probes_table.get (), &lookup, INSERT);
1710 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1711
1712 pa = XCNEW (struct probe_and_action);
1713 pa->prob = prob;
1714 pa->address = address;
1715 pa->action = action;
1716 pa->objfile = objfile;
1717
1718 *slot = pa;
1719 }
1720
1721 /* Get the solib event probe at the specified location, and the
1722 action associated with it. Returns NULL if no solib event probe
1723 was found. */
1724
1725 static struct probe_and_action *
1726 solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1727 {
1728 struct probe_and_action lookup;
1729 void **slot;
1730
1731 lookup.address = address;
1732 slot = htab_find_slot (info->probes_table.get (), &lookup, NO_INSERT);
1733
1734 if (slot == NULL)
1735 return NULL;
1736
1737 return (struct probe_and_action *) *slot;
1738 }
1739
1740 /* Decide what action to take when the specified solib event probe is
1741 hit. */
1742
1743 static enum probe_action
1744 solib_event_probe_action (struct probe_and_action *pa)
1745 {
1746 enum probe_action action;
1747 unsigned probe_argc = 0;
1748 struct frame_info *frame = get_current_frame ();
1749
1750 action = pa->action;
1751 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1752 return action;
1753
1754 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1755
1756 /* Check that an appropriate number of arguments has been supplied.
1757 We expect:
1758 arg0: Lmid_t lmid (mandatory)
1759 arg1: struct r_debug *debug_base (mandatory)
1760 arg2: struct link_map *new (optional, for incremental updates) */
1761 try
1762 {
1763 probe_argc = pa->prob->get_argument_count (get_frame_arch (frame));
1764 }
1765 catch (const gdb_exception_error &ex)
1766 {
1767 exception_print (gdb_stderr, ex);
1768 probe_argc = 0;
1769 }
1770
1771 /* If get_argument_count throws an exception, probe_argc will be set
1772 to zero. However, if pa->prob does not have arguments, then
1773 get_argument_count will succeed but probe_argc will also be zero.
1774 Both cases happen because of different things, but they are
1775 treated equally here: action will be set to
1776 PROBES_INTERFACE_FAILED. */
1777 if (probe_argc == 2)
1778 action = FULL_RELOAD;
1779 else if (probe_argc < 2)
1780 action = PROBES_INTERFACE_FAILED;
1781
1782 return action;
1783 }
1784
1785 /* Populate the shared object list by reading the entire list of
1786 shared objects from the inferior. Handle special cases relating
1787 to the first elements of the list. Returns nonzero on success. */
1788
1789 static int
1790 solist_update_full (struct svr4_info *info)
1791 {
1792 free_solib_list (info);
1793 info->solib_list = svr4_current_sos_direct (info);
1794
1795 return 1;
1796 }
1797
1798 /* Update the shared object list starting from the link-map entry
1799 passed by the linker in the probe's third argument. Returns
1800 nonzero if the list was successfully updated, or zero to indicate
1801 failure. */
1802
1803 static int
1804 solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1805 {
1806 struct so_list *tail;
1807 CORE_ADDR prev_lm;
1808
1809 /* svr4_current_sos_direct contains logic to handle a number of
1810 special cases relating to the first elements of the list. To
1811 avoid duplicating this logic we defer to solist_update_full
1812 if the list is empty. */
1813 if (info->solib_list == NULL)
1814 return 0;
1815
1816 /* Fall back to a full update if we are using a remote target
1817 that does not support incremental transfers. */
1818 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1819 return 0;
1820
1821 /* Walk to the end of the list. */
1822 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1823 /* Nothing. */;
1824
1825 lm_info_svr4 *li = (lm_info_svr4 *) tail->lm_info;
1826 prev_lm = li->lm_addr;
1827
1828 /* Read the new objects. */
1829 if (info->using_xfer)
1830 {
1831 struct svr4_library_list library_list;
1832 char annex[64];
1833
1834 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1835 phex_nz (lm, sizeof (lm)),
1836 phex_nz (prev_lm, sizeof (prev_lm)));
1837 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1838 return 0;
1839
1840 tail->next = library_list.head;
1841 }
1842 else
1843 {
1844 struct so_list **link = &tail->next;
1845
1846 /* IGNORE_FIRST may safely be set to zero here because the
1847 above check and deferral to solist_update_full ensures
1848 that this call to svr4_read_so_list will never see the
1849 first element. */
1850 if (!svr4_read_so_list (info, lm, prev_lm, &link, 0))
1851 return 0;
1852 }
1853
1854 return 1;
1855 }
1856
1857 /* Disable the probes-based linker interface and revert to the
1858 original interface. We don't reset the breakpoints as the
1859 ones set up for the probes-based interface are adequate. */
1860
1861 static void
1862 disable_probes_interface (svr4_info *info)
1863 {
1864 warning (_("Probes-based dynamic linker interface failed.\n"
1865 "Reverting to original interface."));
1866
1867 free_probes_table (info);
1868 free_solib_list (info);
1869 }
1870
1871 /* Update the solib list as appropriate when using the
1872 probes-based linker interface. Do nothing if using the
1873 standard interface. */
1874
1875 static void
1876 svr4_handle_solib_event (void)
1877 {
1878 struct svr4_info *info = get_svr4_info (current_program_space);
1879 struct probe_and_action *pa;
1880 enum probe_action action;
1881 struct value *val = NULL;
1882 CORE_ADDR pc, debug_base, lm = 0;
1883 struct frame_info *frame = get_current_frame ();
1884
1885 /* Do nothing if not using the probes interface. */
1886 if (info->probes_table == NULL)
1887 return;
1888
1889 /* If anything goes wrong we revert to the original linker
1890 interface. */
1891 auto cleanup = make_scope_exit ([info] ()
1892 {
1893 disable_probes_interface (info);
1894 });
1895
1896 pc = regcache_read_pc (get_current_regcache ());
1897 pa = solib_event_probe_at (info, pc);
1898 if (pa == NULL)
1899 return;
1900
1901 action = solib_event_probe_action (pa);
1902 if (action == PROBES_INTERFACE_FAILED)
1903 return;
1904
1905 if (action == DO_NOTHING)
1906 {
1907 cleanup.release ();
1908 return;
1909 }
1910
1911 /* evaluate_argument looks up symbols in the dynamic linker
1912 using find_pc_section. find_pc_section is accelerated by a cache
1913 called the section map. The section map is invalidated every
1914 time a shared library is loaded or unloaded, and if the inferior
1915 is generating a lot of shared library events then the section map
1916 will be updated every time svr4_handle_solib_event is called.
1917 We called find_pc_section in svr4_create_solib_event_breakpoints,
1918 so we can guarantee that the dynamic linker's sections are in the
1919 section map. We can therefore inhibit section map updates across
1920 these calls to evaluate_argument and save a lot of time. */
1921 {
1922 scoped_restore inhibit_updates
1923 = inhibit_section_map_updates (current_program_space);
1924
1925 try
1926 {
1927 val = pa->prob->evaluate_argument (1, frame);
1928 }
1929 catch (const gdb_exception_error &ex)
1930 {
1931 exception_print (gdb_stderr, ex);
1932 val = NULL;
1933 }
1934
1935 if (val == NULL)
1936 return;
1937
1938 debug_base = value_as_address (val);
1939 if (debug_base == 0)
1940 return;
1941
1942 /* Always locate the debug struct, in case it moved. */
1943 info->debug_base = 0;
1944 if (locate_base (info) == 0)
1945 return;
1946
1947 /* GDB does not currently support libraries loaded via dlmopen
1948 into namespaces other than the initial one. We must ignore
1949 any namespace other than the initial namespace here until
1950 support for this is added to GDB. */
1951 if (debug_base != info->debug_base)
1952 action = DO_NOTHING;
1953
1954 if (action == UPDATE_OR_RELOAD)
1955 {
1956 try
1957 {
1958 val = pa->prob->evaluate_argument (2, frame);
1959 }
1960 catch (const gdb_exception_error &ex)
1961 {
1962 exception_print (gdb_stderr, ex);
1963 return;
1964 }
1965
1966 if (val != NULL)
1967 lm = value_as_address (val);
1968
1969 if (lm == 0)
1970 action = FULL_RELOAD;
1971 }
1972
1973 /* Resume section map updates. Closing the scope is
1974 sufficient. */
1975 }
1976
1977 if (action == UPDATE_OR_RELOAD)
1978 {
1979 if (!solist_update_incremental (info, lm))
1980 action = FULL_RELOAD;
1981 }
1982
1983 if (action == FULL_RELOAD)
1984 {
1985 if (!solist_update_full (info))
1986 return;
1987 }
1988
1989 cleanup.release ();
1990 }
1991
1992 /* Helper function for svr4_update_solib_event_breakpoints. */
1993
1994 static bool
1995 svr4_update_solib_event_breakpoint (struct breakpoint *b)
1996 {
1997 struct bp_location *loc;
1998
1999 if (b->type != bp_shlib_event)
2000 {
2001 /* Continue iterating. */
2002 return false;
2003 }
2004
2005 for (loc = b->loc; loc != NULL; loc = loc->next)
2006 {
2007 struct svr4_info *info;
2008 struct probe_and_action *pa;
2009
2010 info = solib_svr4_pspace_data.get (loc->pspace);
2011 if (info == NULL || info->probes_table == NULL)
2012 continue;
2013
2014 pa = solib_event_probe_at (info, loc->address);
2015 if (pa == NULL)
2016 continue;
2017
2018 if (pa->action == DO_NOTHING)
2019 {
2020 if (b->enable_state == bp_disabled && stop_on_solib_events)
2021 enable_breakpoint (b);
2022 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
2023 disable_breakpoint (b);
2024 }
2025
2026 break;
2027 }
2028
2029 /* Continue iterating. */
2030 return false;
2031 }
2032
2033 /* Enable or disable optional solib event breakpoints as appropriate.
2034 Called whenever stop_on_solib_events is changed. */
2035
2036 static void
2037 svr4_update_solib_event_breakpoints (void)
2038 {
2039 iterate_over_breakpoints (svr4_update_solib_event_breakpoint);
2040 }
2041
2042 /* Create and register solib event breakpoints. PROBES is an array
2043 of NUM_PROBES elements, each of which is vector of probes. A
2044 solib event breakpoint will be created and registered for each
2045 probe. */
2046
2047 static void
2048 svr4_create_probe_breakpoints (svr4_info *info, struct gdbarch *gdbarch,
2049 const std::vector<probe *> *probes,
2050 struct objfile *objfile)
2051 {
2052 for (int i = 0; i < NUM_PROBES; i++)
2053 {
2054 enum probe_action action = probe_info[i].action;
2055
2056 for (probe *p : probes[i])
2057 {
2058 CORE_ADDR address = p->get_relocated_address (objfile);
2059
2060 create_solib_event_breakpoint (gdbarch, address);
2061 register_solib_event_probe (info, objfile, p, address, action);
2062 }
2063 }
2064
2065 svr4_update_solib_event_breakpoints ();
2066 }
2067
2068 /* Find all the glibc named probes. Only if all of the probes are found, then
2069 create them and return true. Otherwise return false. If WITH_PREFIX is set
2070 then add "rtld" to the front of the probe names. */
2071 static bool
2072 svr4_find_and_create_probe_breakpoints (svr4_info *info,
2073 struct gdbarch *gdbarch,
2074 struct obj_section *os,
2075 bool with_prefix)
2076 {
2077 std::vector<probe *> probes[NUM_PROBES];
2078
2079 for (int i = 0; i < NUM_PROBES; i++)
2080 {
2081 const char *name = probe_info[i].name;
2082 char buf[32];
2083
2084 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4 shipped with an early
2085 version of the probes code in which the probes' names were prefixed
2086 with "rtld_" and the "map_failed" probe did not exist. The locations
2087 of the probes are otherwise the same, so we check for probes with
2088 prefixed names if probes with unprefixed names are not present. */
2089 if (with_prefix)
2090 {
2091 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2092 name = buf;
2093 }
2094
2095 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2096
2097 /* The "map_failed" probe did not exist in early
2098 versions of the probes code in which the probes'
2099 names were prefixed with "rtld_". */
2100 if (with_prefix && streq (name, "rtld_map_failed"))
2101 continue;
2102
2103 /* Ensure at least one probe for the current name was found. */
2104 if (probes[i].empty ())
2105 return false;
2106
2107 /* Ensure probe arguments can be evaluated. */
2108 for (probe *p : probes[i])
2109 {
2110 if (!p->can_evaluate_arguments ())
2111 return false;
2112 /* This will fail if the probe is invalid. This has been seen on Arm
2113 due to references to symbols that have been resolved away. */
2114 try
2115 {
2116 p->get_argument_count (gdbarch);
2117 }
2118 catch (const gdb_exception_error &ex)
2119 {
2120 exception_print (gdb_stderr, ex);
2121 warning (_("Initializing probes-based dynamic linker interface "
2122 "failed.\nReverting to original interface."));
2123 return false;
2124 }
2125 }
2126 }
2127
2128 /* All probes found. Now create them. */
2129 svr4_create_probe_breakpoints (info, gdbarch, probes, os->objfile);
2130 return true;
2131 }
2132
2133 /* Both the SunOS and the SVR4 dynamic linkers call a marker function
2134 before and after mapping and unmapping shared libraries. The sole
2135 purpose of this method is to allow debuggers to set a breakpoint so
2136 they can track these changes.
2137
2138 Some versions of the glibc dynamic linker contain named probes
2139 to allow more fine grained stopping. Given the address of the
2140 original marker function, this function attempts to find these
2141 probes, and if found, sets breakpoints on those instead. If the
2142 probes aren't found, a single breakpoint is set on the original
2143 marker function. */
2144
2145 static void
2146 svr4_create_solib_event_breakpoints (svr4_info *info, struct gdbarch *gdbarch,
2147 CORE_ADDR address)
2148 {
2149 struct obj_section *os = find_pc_section (address);
2150
2151 if (os == nullptr
2152 || (!svr4_find_and_create_probe_breakpoints (info, gdbarch, os, false)
2153 && !svr4_find_and_create_probe_breakpoints (info, gdbarch, os, true)))
2154 create_solib_event_breakpoint (gdbarch, address);
2155 }
2156
2157 /* Helper function for gdb_bfd_lookup_symbol. */
2158
2159 static int
2160 cmp_name_and_sec_flags (const asymbol *sym, const void *data)
2161 {
2162 return (strcmp (sym->name, (const char *) data) == 0
2163 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2164 }
2165 /* Arrange for dynamic linker to hit breakpoint.
2166
2167 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2168 debugger interface, support for arranging for the inferior to hit
2169 a breakpoint after mapping in the shared libraries. This function
2170 enables that breakpoint.
2171
2172 For SunOS, there is a special flag location (in_debugger) which we
2173 set to 1. When the dynamic linker sees this flag set, it will set
2174 a breakpoint at a location known only to itself, after saving the
2175 original contents of that place and the breakpoint address itself,
2176 in it's own internal structures. When we resume the inferior, it
2177 will eventually take a SIGTRAP when it runs into the breakpoint.
2178 We handle this (in a different place) by restoring the contents of
2179 the breakpointed location (which is only known after it stops),
2180 chasing around to locate the shared libraries that have been
2181 loaded, then resuming.
2182
2183 For SVR4, the debugger interface structure contains a member (r_brk)
2184 which is statically initialized at the time the shared library is
2185 built, to the offset of a function (_r_debug_state) which is guaran-
2186 teed to be called once before mapping in a library, and again when
2187 the mapping is complete. At the time we are examining this member,
2188 it contains only the unrelocated offset of the function, so we have
2189 to do our own relocation. Later, when the dynamic linker actually
2190 runs, it relocates r_brk to be the actual address of _r_debug_state().
2191
2192 The debugger interface structure also contains an enumeration which
2193 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2194 depending upon whether or not the library is being mapped or unmapped,
2195 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
2196
2197 static int
2198 enable_break (struct svr4_info *info, int from_tty)
2199 {
2200 struct bound_minimal_symbol msymbol;
2201 const char * const *bkpt_namep;
2202 asection *interp_sect;
2203 CORE_ADDR sym_addr;
2204
2205 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2206 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
2207
2208 /* If we already have a shared library list in the target, and
2209 r_debug contains r_brk, set the breakpoint there - this should
2210 mean r_brk has already been relocated. Assume the dynamic linker
2211 is the object containing r_brk. */
2212
2213 solib_add (NULL, from_tty, auto_solib_add);
2214 sym_addr = 0;
2215 if (info->debug_base && solib_svr4_r_map (info) != 0)
2216 sym_addr = solib_svr4_r_brk (info);
2217
2218 if (sym_addr != 0)
2219 {
2220 struct obj_section *os;
2221
2222 sym_addr = gdbarch_addr_bits_remove
2223 (target_gdbarch (),
2224 gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2225 sym_addr,
2226 current_top_target ()));
2227
2228 /* On at least some versions of Solaris there's a dynamic relocation
2229 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2230 we get control before the dynamic linker has self-relocated.
2231 Check if SYM_ADDR is in a known section, if it is assume we can
2232 trust its value. This is just a heuristic though, it could go away
2233 or be replaced if it's getting in the way.
2234
2235 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2236 however it's spelled in your particular system) is ARM or Thumb.
2237 That knowledge is encoded in the address, if it's Thumb the low bit
2238 is 1. However, we've stripped that info above and it's not clear
2239 what all the consequences are of passing a non-addr_bits_remove'd
2240 address to svr4_create_solib_event_breakpoints. The call to
2241 find_pc_section verifies we know about the address and have some
2242 hope of computing the right kind of breakpoint to use (via
2243 symbol info). It does mean that GDB needs to be pointed at a
2244 non-stripped version of the dynamic linker in order to obtain
2245 information it already knows about. Sigh. */
2246
2247 os = find_pc_section (sym_addr);
2248 if (os != NULL)
2249 {
2250 /* Record the relocated start and end address of the dynamic linker
2251 text and plt section for svr4_in_dynsym_resolve_code. */
2252 bfd *tmp_bfd;
2253 CORE_ADDR load_addr;
2254
2255 tmp_bfd = os->objfile->obfd;
2256 load_addr = ANOFFSET (os->objfile->section_offsets,
2257 SECT_OFF_TEXT (os->objfile));
2258
2259 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2260 if (interp_sect)
2261 {
2262 info->interp_text_sect_low
2263 = bfd_section_vma (interp_sect) + load_addr;
2264 info->interp_text_sect_high
2265 = info->interp_text_sect_low + bfd_section_size (interp_sect);
2266 }
2267 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2268 if (interp_sect)
2269 {
2270 info->interp_plt_sect_low
2271 = bfd_section_vma (interp_sect) + load_addr;
2272 info->interp_plt_sect_high
2273 = info->interp_plt_sect_low + bfd_section_size (interp_sect);
2274 }
2275
2276 svr4_create_solib_event_breakpoints (info, target_gdbarch (), sym_addr);
2277 return 1;
2278 }
2279 }
2280
2281 /* Find the program interpreter; if not found, warn the user and drop
2282 into the old breakpoint at symbol code. */
2283 gdb::optional<gdb::byte_vector> interp_name_holder
2284 = find_program_interpreter ();
2285 if (interp_name_holder)
2286 {
2287 const char *interp_name = (const char *) interp_name_holder->data ();
2288 CORE_ADDR load_addr = 0;
2289 int load_addr_found = 0;
2290 int loader_found_in_list = 0;
2291 struct so_list *so;
2292 struct target_ops *tmp_bfd_target;
2293
2294 sym_addr = 0;
2295
2296 /* Now we need to figure out where the dynamic linker was
2297 loaded so that we can load its symbols and place a breakpoint
2298 in the dynamic linker itself.
2299
2300 This address is stored on the stack. However, I've been unable
2301 to find any magic formula to find it for Solaris (appears to
2302 be trivial on GNU/Linux). Therefore, we have to try an alternate
2303 mechanism to find the dynamic linker's base address. */
2304
2305 gdb_bfd_ref_ptr tmp_bfd;
2306 try
2307 {
2308 tmp_bfd = solib_bfd_open (interp_name);
2309 }
2310 catch (const gdb_exception &ex)
2311 {
2312 }
2313
2314 if (tmp_bfd == NULL)
2315 goto bkpt_at_symbol;
2316
2317 /* Now convert the TMP_BFD into a target. That way target, as
2318 well as BFD operations can be used. target_bfd_reopen
2319 acquires its own reference. */
2320 tmp_bfd_target = target_bfd_reopen (tmp_bfd.get ());
2321
2322 /* On a running target, we can get the dynamic linker's base
2323 address from the shared library table. */
2324 so = master_so_list ();
2325 while (so)
2326 {
2327 if (svr4_same_1 (interp_name, so->so_original_name))
2328 {
2329 load_addr_found = 1;
2330 loader_found_in_list = 1;
2331 load_addr = lm_addr_check (so, tmp_bfd.get ());
2332 break;
2333 }
2334 so = so->next;
2335 }
2336
2337 /* If we were not able to find the base address of the loader
2338 from our so_list, then try using the AT_BASE auxilliary entry. */
2339 if (!load_addr_found)
2340 if (target_auxv_search (current_top_target (), AT_BASE, &load_addr) > 0)
2341 {
2342 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
2343
2344 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2345 that `+ load_addr' will overflow CORE_ADDR width not creating
2346 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2347 GDB. */
2348
2349 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
2350 {
2351 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
2352 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd.get (),
2353 tmp_bfd_target);
2354
2355 gdb_assert (load_addr < space_size);
2356
2357 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2358 64bit ld.so with 32bit executable, it should not happen. */
2359
2360 if (tmp_entry_point < space_size
2361 && tmp_entry_point + load_addr >= space_size)
2362 load_addr -= space_size;
2363 }
2364
2365 load_addr_found = 1;
2366 }
2367
2368 /* Otherwise we find the dynamic linker's base address by examining
2369 the current pc (which should point at the entry point for the
2370 dynamic linker) and subtracting the offset of the entry point.
2371
2372 This is more fragile than the previous approaches, but is a good
2373 fallback method because it has actually been working well in
2374 most cases. */
2375 if (!load_addr_found)
2376 {
2377 struct regcache *regcache
2378 = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
2379
2380 load_addr = (regcache_read_pc (regcache)
2381 - exec_entry_point (tmp_bfd.get (), tmp_bfd_target));
2382 }
2383
2384 if (!loader_found_in_list)
2385 {
2386 info->debug_loader_name = xstrdup (interp_name);
2387 info->debug_loader_offset_p = 1;
2388 info->debug_loader_offset = load_addr;
2389 solib_add (NULL, from_tty, auto_solib_add);
2390 }
2391
2392 /* Record the relocated start and end address of the dynamic linker
2393 text and plt section for svr4_in_dynsym_resolve_code. */
2394 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
2395 if (interp_sect)
2396 {
2397 info->interp_text_sect_low
2398 = bfd_section_vma (interp_sect) + load_addr;
2399 info->interp_text_sect_high
2400 = info->interp_text_sect_low + bfd_section_size (interp_sect);
2401 }
2402 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
2403 if (interp_sect)
2404 {
2405 info->interp_plt_sect_low
2406 = bfd_section_vma (interp_sect) + load_addr;
2407 info->interp_plt_sect_high
2408 = info->interp_plt_sect_low + bfd_section_size (interp_sect);
2409 }
2410
2411 /* Now try to set a breakpoint in the dynamic linker. */
2412 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2413 {
2414 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd.get (),
2415 cmp_name_and_sec_flags,
2416 *bkpt_namep);
2417 if (sym_addr != 0)
2418 break;
2419 }
2420
2421 if (sym_addr != 0)
2422 /* Convert 'sym_addr' from a function pointer to an address.
2423 Because we pass tmp_bfd_target instead of the current
2424 target, this will always produce an unrelocated value. */
2425 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2426 sym_addr,
2427 tmp_bfd_target);
2428
2429 /* We're done with both the temporary bfd and target. Closing
2430 the target closes the underlying bfd, because it holds the
2431 only remaining reference. */
2432 target_close (tmp_bfd_target);
2433
2434 if (sym_addr != 0)
2435 {
2436 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2437 load_addr + sym_addr);
2438 return 1;
2439 }
2440
2441 /* For whatever reason we couldn't set a breakpoint in the dynamic
2442 linker. Warn and drop into the old code. */
2443 bkpt_at_symbol:
2444 warning (_("Unable to find dynamic linker breakpoint function.\n"
2445 "GDB will be unable to debug shared library initializers\n"
2446 "and track explicitly loaded dynamic code."));
2447 }
2448
2449 /* Scan through the lists of symbols, trying to look up the symbol and
2450 set a breakpoint there. Terminate loop when we/if we succeed. */
2451
2452 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2453 {
2454 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
2455 if ((msymbol.minsym != NULL)
2456 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2457 {
2458 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2459 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2460 sym_addr,
2461 current_top_target ());
2462 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2463 sym_addr);
2464 return 1;
2465 }
2466 }
2467
2468 if (interp_name_holder && !current_inferior ()->attach_flag)
2469 {
2470 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
2471 {
2472 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
2473 if ((msymbol.minsym != NULL)
2474 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2475 {
2476 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2477 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2478 sym_addr,
2479 current_top_target ());
2480 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2481 sym_addr);
2482 return 1;
2483 }
2484 }
2485 }
2486 return 0;
2487 }
2488
2489 /* Read the ELF program headers from ABFD. */
2490
2491 static gdb::optional<gdb::byte_vector>
2492 read_program_headers_from_bfd (bfd *abfd)
2493 {
2494 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
2495 int phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2496 if (phdrs_size == 0)
2497 return {};
2498
2499 gdb::byte_vector buf (phdrs_size);
2500 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
2501 || bfd_bread (buf.data (), phdrs_size, abfd) != phdrs_size)
2502 return {};
2503
2504 return buf;
2505 }
2506
2507 /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2508 exec_bfd. Otherwise return 0.
2509
2510 We relocate all of the sections by the same amount. This
2511 behavior is mandated by recent editions of the System V ABI.
2512 According to the System V Application Binary Interface,
2513 Edition 4.1, page 5-5:
2514
2515 ... Though the system chooses virtual addresses for
2516 individual processes, it maintains the segments' relative
2517 positions. Because position-independent code uses relative
2518 addressing between segments, the difference between
2519 virtual addresses in memory must match the difference
2520 between virtual addresses in the file. The difference
2521 between the virtual address of any segment in memory and
2522 the corresponding virtual address in the file is thus a
2523 single constant value for any one executable or shared
2524 object in a given process. This difference is the base
2525 address. One use of the base address is to relocate the
2526 memory image of the program during dynamic linking.
2527
2528 The same language also appears in Edition 4.0 of the System V
2529 ABI and is left unspecified in some of the earlier editions.
2530
2531 Decide if the objfile needs to be relocated. As indicated above, we will
2532 only be here when execution is stopped. But during attachment PC can be at
2533 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2534 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2535 regcache_read_pc would point to the interpreter and not the main executable.
2536
2537 So, to summarize, relocations are necessary when the start address obtained
2538 from the executable is different from the address in auxv AT_ENTRY entry.
2539
2540 [ The astute reader will note that we also test to make sure that
2541 the executable in question has the DYNAMIC flag set. It is my
2542 opinion that this test is unnecessary (undesirable even). It
2543 was added to avoid inadvertent relocation of an executable
2544 whose e_type member in the ELF header is not ET_DYN. There may
2545 be a time in the future when it is desirable to do relocations
2546 on other types of files as well in which case this condition
2547 should either be removed or modified to accomodate the new file
2548 type. - Kevin, Nov 2000. ] */
2549
2550 static int
2551 svr4_exec_displacement (CORE_ADDR *displacementp)
2552 {
2553 /* ENTRY_POINT is a possible function descriptor - before
2554 a call to gdbarch_convert_from_func_ptr_addr. */
2555 CORE_ADDR entry_point, exec_displacement;
2556
2557 if (exec_bfd == NULL)
2558 return 0;
2559
2560 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2561 being executed themselves and PIE (Position Independent Executable)
2562 executables are ET_DYN. */
2563
2564 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
2565 return 0;
2566
2567 if (target_auxv_search (current_top_target (), AT_ENTRY, &entry_point) <= 0)
2568 return 0;
2569
2570 exec_displacement = entry_point - bfd_get_start_address (exec_bfd);
2571
2572 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
2573 alignment. It is cheaper than the program headers comparison below. */
2574
2575 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2576 {
2577 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
2578
2579 /* p_align of PT_LOAD segments does not specify any alignment but
2580 only congruency of addresses:
2581 p_offset % p_align == p_vaddr % p_align
2582 Kernel is free to load the executable with lower alignment. */
2583
2584 if ((exec_displacement & (elf->minpagesize - 1)) != 0)
2585 return 0;
2586 }
2587
2588 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2589 comparing their program headers. If the program headers in the auxilliary
2590 vector do not match the program headers in the executable, then we are
2591 looking at a different file than the one used by the kernel - for
2592 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2593
2594 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2595 {
2596 /* Be optimistic and return 0 only if GDB was able to verify the headers
2597 really do not match. */
2598 int arch_size;
2599
2600 gdb::optional<gdb::byte_vector> phdrs_target
2601 = read_program_header (-1, &arch_size, NULL);
2602 gdb::optional<gdb::byte_vector> phdrs_binary
2603 = read_program_headers_from_bfd (exec_bfd);
2604 if (phdrs_target && phdrs_binary)
2605 {
2606 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
2607
2608 /* We are dealing with three different addresses. EXEC_BFD
2609 represents current address in on-disk file. target memory content
2610 may be different from EXEC_BFD as the file may have been prelinked
2611 to a different address after the executable has been loaded.
2612 Moreover the address of placement in target memory can be
2613 different from what the program headers in target memory say -
2614 this is the goal of PIE.
2615
2616 Detected DISPLACEMENT covers both the offsets of PIE placement and
2617 possible new prelink performed after start of the program. Here
2618 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2619 content offset for the verification purpose. */
2620
2621 if (phdrs_target->size () != phdrs_binary->size ()
2622 || bfd_get_arch_size (exec_bfd) != arch_size)
2623 return 0;
2624 else if (arch_size == 32
2625 && phdrs_target->size () >= sizeof (Elf32_External_Phdr)
2626 && phdrs_target->size () % sizeof (Elf32_External_Phdr) == 0)
2627 {
2628 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2629 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2630 CORE_ADDR displacement = 0;
2631 int i;
2632
2633 /* DISPLACEMENT could be found more easily by the difference of
2634 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2635 already have enough information to compute that displacement
2636 with what we've read. */
2637
2638 for (i = 0; i < ehdr2->e_phnum; i++)
2639 if (phdr2[i].p_type == PT_LOAD)
2640 {
2641 Elf32_External_Phdr *phdrp;
2642 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2643 CORE_ADDR vaddr, paddr;
2644 CORE_ADDR displacement_vaddr = 0;
2645 CORE_ADDR displacement_paddr = 0;
2646
2647 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
2648 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2649 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2650
2651 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2652 byte_order);
2653 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2654
2655 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2656 byte_order);
2657 displacement_paddr = paddr - phdr2[i].p_paddr;
2658
2659 if (displacement_vaddr == displacement_paddr)
2660 displacement = displacement_vaddr;
2661
2662 break;
2663 }
2664
2665 /* Now compare program headers from the target and the binary
2666 with optional DISPLACEMENT. */
2667
2668 for (i = 0;
2669 i < phdrs_target->size () / sizeof (Elf32_External_Phdr);
2670 i++)
2671 {
2672 Elf32_External_Phdr *phdrp;
2673 Elf32_External_Phdr *phdr2p;
2674 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2675 CORE_ADDR vaddr, paddr;
2676 asection *plt2_asect;
2677
2678 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
2679 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2680 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2681 phdr2p = &((Elf32_External_Phdr *) phdrs_binary->data ())[i];
2682
2683 /* PT_GNU_STACK is an exception by being never relocated by
2684 prelink as its addresses are always zero. */
2685
2686 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2687 continue;
2688
2689 /* Check also other adjustment combinations - PR 11786. */
2690
2691 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2692 byte_order);
2693 vaddr -= displacement;
2694 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2695
2696 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2697 byte_order);
2698 paddr -= displacement;
2699 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2700
2701 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2702 continue;
2703
2704 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2705 CentOS-5 has problems with filesz, memsz as well.
2706 Strip also modifies memsz of PT_TLS.
2707 See PR 11786. */
2708 if (phdr2[i].p_type == PT_GNU_RELRO
2709 || phdr2[i].p_type == PT_TLS)
2710 {
2711 Elf32_External_Phdr tmp_phdr = *phdrp;
2712 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2713
2714 memset (tmp_phdr.p_filesz, 0, 4);
2715 memset (tmp_phdr.p_memsz, 0, 4);
2716 memset (tmp_phdr.p_flags, 0, 4);
2717 memset (tmp_phdr.p_align, 0, 4);
2718 memset (tmp_phdr2.p_filesz, 0, 4);
2719 memset (tmp_phdr2.p_memsz, 0, 4);
2720 memset (tmp_phdr2.p_flags, 0, 4);
2721 memset (tmp_phdr2.p_align, 0, 4);
2722
2723 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2724 == 0)
2725 continue;
2726 }
2727
2728 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2729 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2730 if (plt2_asect)
2731 {
2732 int content2;
2733 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2734 CORE_ADDR filesz;
2735
2736 content2 = (bfd_section_flags (plt2_asect)
2737 & SEC_HAS_CONTENTS) != 0;
2738
2739 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2740 byte_order);
2741
2742 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2743 FILESZ is from the in-memory image. */
2744 if (content2)
2745 filesz += bfd_section_size (plt2_asect);
2746 else
2747 filesz -= bfd_section_size (plt2_asect);
2748
2749 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2750 filesz);
2751
2752 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2753 continue;
2754 }
2755
2756 return 0;
2757 }
2758 }
2759 else if (arch_size == 64
2760 && phdrs_target->size () >= sizeof (Elf64_External_Phdr)
2761 && phdrs_target->size () % sizeof (Elf64_External_Phdr) == 0)
2762 {
2763 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2764 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2765 CORE_ADDR displacement = 0;
2766 int i;
2767
2768 /* DISPLACEMENT could be found more easily by the difference of
2769 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2770 already have enough information to compute that displacement
2771 with what we've read. */
2772
2773 for (i = 0; i < ehdr2->e_phnum; i++)
2774 if (phdr2[i].p_type == PT_LOAD)
2775 {
2776 Elf64_External_Phdr *phdrp;
2777 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2778 CORE_ADDR vaddr, paddr;
2779 CORE_ADDR displacement_vaddr = 0;
2780 CORE_ADDR displacement_paddr = 0;
2781
2782 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
2783 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2784 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2785
2786 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2787 byte_order);
2788 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2789
2790 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2791 byte_order);
2792 displacement_paddr = paddr - phdr2[i].p_paddr;
2793
2794 if (displacement_vaddr == displacement_paddr)
2795 displacement = displacement_vaddr;
2796
2797 break;
2798 }
2799
2800 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2801
2802 for (i = 0;
2803 i < phdrs_target->size () / sizeof (Elf64_External_Phdr);
2804 i++)
2805 {
2806 Elf64_External_Phdr *phdrp;
2807 Elf64_External_Phdr *phdr2p;
2808 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2809 CORE_ADDR vaddr, paddr;
2810 asection *plt2_asect;
2811
2812 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
2813 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2814 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2815 phdr2p = &((Elf64_External_Phdr *) phdrs_binary->data ())[i];
2816
2817 /* PT_GNU_STACK is an exception by being never relocated by
2818 prelink as its addresses are always zero. */
2819
2820 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2821 continue;
2822
2823 /* Check also other adjustment combinations - PR 11786. */
2824
2825 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2826 byte_order);
2827 vaddr -= displacement;
2828 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2829
2830 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2831 byte_order);
2832 paddr -= displacement;
2833 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2834
2835 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2836 continue;
2837
2838 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2839 CentOS-5 has problems with filesz, memsz as well.
2840 Strip also modifies memsz of PT_TLS.
2841 See PR 11786. */
2842 if (phdr2[i].p_type == PT_GNU_RELRO
2843 || phdr2[i].p_type == PT_TLS)
2844 {
2845 Elf64_External_Phdr tmp_phdr = *phdrp;
2846 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2847
2848 memset (tmp_phdr.p_filesz, 0, 8);
2849 memset (tmp_phdr.p_memsz, 0, 8);
2850 memset (tmp_phdr.p_flags, 0, 4);
2851 memset (tmp_phdr.p_align, 0, 8);
2852 memset (tmp_phdr2.p_filesz, 0, 8);
2853 memset (tmp_phdr2.p_memsz, 0, 8);
2854 memset (tmp_phdr2.p_flags, 0, 4);
2855 memset (tmp_phdr2.p_align, 0, 8);
2856
2857 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2858 == 0)
2859 continue;
2860 }
2861
2862 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2863 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2864 if (plt2_asect)
2865 {
2866 int content2;
2867 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2868 CORE_ADDR filesz;
2869
2870 content2 = (bfd_section_flags (plt2_asect)
2871 & SEC_HAS_CONTENTS) != 0;
2872
2873 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2874 byte_order);
2875
2876 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2877 FILESZ is from the in-memory image. */
2878 if (content2)
2879 filesz += bfd_section_size (plt2_asect);
2880 else
2881 filesz -= bfd_section_size (plt2_asect);
2882
2883 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2884 filesz);
2885
2886 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2887 continue;
2888 }
2889
2890 return 0;
2891 }
2892 }
2893 else
2894 return 0;
2895 }
2896 }
2897
2898 if (info_verbose)
2899 {
2900 /* It can be printed repeatedly as there is no easy way to check
2901 the executable symbols/file has been already relocated to
2902 displacement. */
2903
2904 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2905 "displacement %s for \"%s\".\n"),
2906 paddress (target_gdbarch (), exec_displacement),
2907 bfd_get_filename (exec_bfd));
2908 }
2909
2910 *displacementp = exec_displacement;
2911 return 1;
2912 }
2913
2914 /* Relocate the main executable. This function should be called upon
2915 stopping the inferior process at the entry point to the program.
2916 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2917 different, the main executable is relocated by the proper amount. */
2918
2919 static void
2920 svr4_relocate_main_executable (void)
2921 {
2922 CORE_ADDR displacement;
2923
2924 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2925 probably contains the offsets computed using the PIE displacement
2926 from the previous run, which of course are irrelevant for this run.
2927 So we need to determine the new PIE displacement and recompute the
2928 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2929 already contains pre-computed offsets.
2930
2931 If we cannot compute the PIE displacement, either:
2932
2933 - The executable is not PIE.
2934
2935 - SYMFILE_OBJFILE does not match the executable started in the target.
2936 This can happen for main executable symbols loaded at the host while
2937 `ld.so --ld-args main-executable' is loaded in the target.
2938
2939 Then we leave the section offsets untouched and use them as is for
2940 this run. Either:
2941
2942 - These section offsets were properly reset earlier, and thus
2943 already contain the correct values. This can happen for instance
2944 when reconnecting via the remote protocol to a target that supports
2945 the `qOffsets' packet.
2946
2947 - The section offsets were not reset earlier, and the best we can
2948 hope is that the old offsets are still applicable to the new run. */
2949
2950 if (! svr4_exec_displacement (&displacement))
2951 return;
2952
2953 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2954 addresses. */
2955
2956 if (symfile_objfile)
2957 {
2958 struct section_offsets *new_offsets;
2959 int i;
2960
2961 new_offsets = XALLOCAVEC (struct section_offsets,
2962 symfile_objfile->num_sections);
2963
2964 for (i = 0; i < symfile_objfile->num_sections; i++)
2965 new_offsets->offsets[i] = displacement;
2966
2967 objfile_relocate (symfile_objfile, new_offsets);
2968 }
2969 else if (exec_bfd)
2970 {
2971 asection *asect;
2972
2973 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2974 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2975 bfd_section_vma (asect) + displacement);
2976 }
2977 }
2978
2979 /* Implement the "create_inferior_hook" target_solib_ops method.
2980
2981 For SVR4 executables, this first instruction is either the first
2982 instruction in the dynamic linker (for dynamically linked
2983 executables) or the instruction at "start" for statically linked
2984 executables. For dynamically linked executables, the system
2985 first exec's /lib/libc.so.N, which contains the dynamic linker,
2986 and starts it running. The dynamic linker maps in any needed
2987 shared libraries, maps in the actual user executable, and then
2988 jumps to "start" in the user executable.
2989
2990 We can arrange to cooperate with the dynamic linker to discover the
2991 names of shared libraries that are dynamically linked, and the base
2992 addresses to which they are linked.
2993
2994 This function is responsible for discovering those names and
2995 addresses, and saving sufficient information about them to allow
2996 their symbols to be read at a later time. */
2997
2998 static void
2999 svr4_solib_create_inferior_hook (int from_tty)
3000 {
3001 struct svr4_info *info;
3002
3003 info = get_svr4_info (current_program_space);
3004
3005 /* Clear the probes-based interface's state. */
3006 free_probes_table (info);
3007 free_solib_list (info);
3008
3009 /* Relocate the main executable if necessary. */
3010 svr4_relocate_main_executable ();
3011
3012 /* No point setting a breakpoint in the dynamic linker if we can't
3013 hit it (e.g., a core file, or a trace file). */
3014 if (!target_has_execution)
3015 return;
3016
3017 if (!svr4_have_link_map_offsets ())
3018 return;
3019
3020 if (!enable_break (info, from_tty))
3021 return;
3022 }
3023
3024 static void
3025 svr4_clear_solib (void)
3026 {
3027 struct svr4_info *info;
3028
3029 info = get_svr4_info (current_program_space);
3030 info->debug_base = 0;
3031 info->debug_loader_offset_p = 0;
3032 info->debug_loader_offset = 0;
3033 xfree (info->debug_loader_name);
3034 info->debug_loader_name = NULL;
3035 }
3036
3037 /* Clear any bits of ADDR that wouldn't fit in a target-format
3038 data pointer. "Data pointer" here refers to whatever sort of
3039 address the dynamic linker uses to manage its sections. At the
3040 moment, we don't support shared libraries on any processors where
3041 code and data pointers are different sizes.
3042
3043 This isn't really the right solution. What we really need here is
3044 a way to do arithmetic on CORE_ADDR values that respects the
3045 natural pointer/address correspondence. (For example, on the MIPS,
3046 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
3047 sign-extend the value. There, simply truncating the bits above
3048 gdbarch_ptr_bit, as we do below, is no good.) This should probably
3049 be a new gdbarch method or something. */
3050 static CORE_ADDR
3051 svr4_truncate_ptr (CORE_ADDR addr)
3052 {
3053 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
3054 /* We don't need to truncate anything, and the bit twiddling below
3055 will fail due to overflow problems. */
3056 return addr;
3057 else
3058 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
3059 }
3060
3061
3062 static void
3063 svr4_relocate_section_addresses (struct so_list *so,
3064 struct target_section *sec)
3065 {
3066 bfd *abfd = sec->the_bfd_section->owner;
3067
3068 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
3069 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
3070 }
3071 \f
3072
3073 /* Architecture-specific operations. */
3074
3075 /* Per-architecture data key. */
3076 static struct gdbarch_data *solib_svr4_data;
3077
3078 struct solib_svr4_ops
3079 {
3080 /* Return a description of the layout of `struct link_map'. */
3081 struct link_map_offsets *(*fetch_link_map_offsets)(void);
3082 };
3083
3084 /* Return a default for the architecture-specific operations. */
3085
3086 static void *
3087 solib_svr4_init (struct obstack *obstack)
3088 {
3089 struct solib_svr4_ops *ops;
3090
3091 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
3092 ops->fetch_link_map_offsets = NULL;
3093 return ops;
3094 }
3095
3096 /* Set the architecture-specific `struct link_map_offsets' fetcher for
3097 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
3098
3099 void
3100 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3101 struct link_map_offsets *(*flmo) (void))
3102 {
3103 struct solib_svr4_ops *ops
3104 = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data);
3105
3106 ops->fetch_link_map_offsets = flmo;
3107
3108 set_solib_ops (gdbarch, &svr4_so_ops);
3109 set_gdbarch_iterate_over_objfiles_in_search_order
3110 (gdbarch, svr4_iterate_over_objfiles_in_search_order);
3111 }
3112
3113 /* Fetch a link_map_offsets structure using the architecture-specific
3114 `struct link_map_offsets' fetcher. */
3115
3116 static struct link_map_offsets *
3117 svr4_fetch_link_map_offsets (void)
3118 {
3119 struct solib_svr4_ops *ops
3120 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3121 solib_svr4_data);
3122
3123 gdb_assert (ops->fetch_link_map_offsets);
3124 return ops->fetch_link_map_offsets ();
3125 }
3126
3127 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3128
3129 static int
3130 svr4_have_link_map_offsets (void)
3131 {
3132 struct solib_svr4_ops *ops
3133 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3134 solib_svr4_data);
3135
3136 return (ops->fetch_link_map_offsets != NULL);
3137 }
3138 \f
3139
3140 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
3141 `struct r_debug' and a `struct link_map' that are binary compatible
3142 with the original SVR4 implementation. */
3143
3144 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3145 for an ILP32 SVR4 system. */
3146
3147 struct link_map_offsets *
3148 svr4_ilp32_fetch_link_map_offsets (void)
3149 {
3150 static struct link_map_offsets lmo;
3151 static struct link_map_offsets *lmp = NULL;
3152
3153 if (lmp == NULL)
3154 {
3155 lmp = &lmo;
3156
3157 lmo.r_version_offset = 0;
3158 lmo.r_version_size = 4;
3159 lmo.r_map_offset = 4;
3160 lmo.r_brk_offset = 8;
3161 lmo.r_ldsomap_offset = 20;
3162
3163 /* Everything we need is in the first 20 bytes. */
3164 lmo.link_map_size = 20;
3165 lmo.l_addr_offset = 0;
3166 lmo.l_name_offset = 4;
3167 lmo.l_ld_offset = 8;
3168 lmo.l_next_offset = 12;
3169 lmo.l_prev_offset = 16;
3170 }
3171
3172 return lmp;
3173 }
3174
3175 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3176 for an LP64 SVR4 system. */
3177
3178 struct link_map_offsets *
3179 svr4_lp64_fetch_link_map_offsets (void)
3180 {
3181 static struct link_map_offsets lmo;
3182 static struct link_map_offsets *lmp = NULL;
3183
3184 if (lmp == NULL)
3185 {
3186 lmp = &lmo;
3187
3188 lmo.r_version_offset = 0;
3189 lmo.r_version_size = 4;
3190 lmo.r_map_offset = 8;
3191 lmo.r_brk_offset = 16;
3192 lmo.r_ldsomap_offset = 40;
3193
3194 /* Everything we need is in the first 40 bytes. */
3195 lmo.link_map_size = 40;
3196 lmo.l_addr_offset = 0;
3197 lmo.l_name_offset = 8;
3198 lmo.l_ld_offset = 16;
3199 lmo.l_next_offset = 24;
3200 lmo.l_prev_offset = 32;
3201 }
3202
3203 return lmp;
3204 }
3205 \f
3206
3207 struct target_so_ops svr4_so_ops;
3208
3209 /* Search order for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3210 different rule for symbol lookup. The lookup begins here in the DSO, not in
3211 the main executable. */
3212
3213 static void
3214 svr4_iterate_over_objfiles_in_search_order
3215 (struct gdbarch *gdbarch,
3216 iterate_over_objfiles_in_search_order_cb_ftype *cb,
3217 void *cb_data, struct objfile *current_objfile)
3218 {
3219 bool checked_current_objfile = false;
3220 if (current_objfile != nullptr)
3221 {
3222 bfd *abfd;
3223
3224 if (current_objfile->separate_debug_objfile_backlink != nullptr)
3225 current_objfile = current_objfile->separate_debug_objfile_backlink;
3226
3227 if (current_objfile == symfile_objfile)
3228 abfd = exec_bfd;
3229 else
3230 abfd = current_objfile->obfd;
3231
3232 if (abfd != nullptr
3233 && scan_dyntag (DT_SYMBOLIC, abfd, nullptr, nullptr) == 1)
3234 {
3235 checked_current_objfile = true;
3236 if (cb (current_objfile, cb_data) != 0)
3237 return;
3238 }
3239 }
3240
3241 for (objfile *objfile : current_program_space->objfiles ())
3242 {
3243 if (checked_current_objfile && objfile == current_objfile)
3244 continue;
3245 if (cb (objfile, cb_data) != 0)
3246 return;
3247 }
3248 }
3249
3250 void
3251 _initialize_svr4_solib (void)
3252 {
3253 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
3254
3255 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
3256 svr4_so_ops.free_so = svr4_free_so;
3257 svr4_so_ops.clear_so = svr4_clear_so;
3258 svr4_so_ops.clear_solib = svr4_clear_solib;
3259 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
3260 svr4_so_ops.current_sos = svr4_current_sos;
3261 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
3262 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
3263 svr4_so_ops.bfd_open = solib_bfd_open;
3264 svr4_so_ops.same = svr4_same;
3265 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
3266 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3267 svr4_so_ops.handle_event = svr4_handle_solib_event;
3268
3269 gdb::observers::free_objfile.attach (svr4_free_objfile_observer);
3270 }
This page took 0.096897 seconds and 4 git commands to generate.