Remove resume_section_map_updates_cleanup
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "elf/external.h"
23 #include "elf/common.h"
24 #include "elf/mips.h"
25
26 #include "symtab.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbcore.h"
31 #include "target.h"
32 #include "inferior.h"
33 #include "infrun.h"
34 #include "regcache.h"
35 #include "gdbthread.h"
36 #include "observable.h"
37
38 #include "solist.h"
39 #include "solib.h"
40 #include "solib-svr4.h"
41
42 #include "bfd-target.h"
43 #include "elf-bfd.h"
44 #include "exec.h"
45 #include "auxv.h"
46 #include "gdb_bfd.h"
47 #include "probe.h"
48
49 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
50 static int svr4_have_link_map_offsets (void);
51 static void svr4_relocate_main_executable (void);
52 static void svr4_free_library_list (void *p_list);
53
54 /* On SVR4 systems, a list of symbols in the dynamic linker where
55 GDB can try to place a breakpoint to monitor shared library
56 events.
57
58 If none of these symbols are found, or other errors occur, then
59 SVR4 systems will fall back to using a symbol as the "startup
60 mapping complete" breakpoint address. */
61
62 static const char * const solib_break_names[] =
63 {
64 "r_debug_state",
65 "_r_debug_state",
66 "_dl_debug_state",
67 "rtld_db_dlactivity",
68 "__dl_rtld_db_dlactivity",
69 "_rtld_debug_state",
70
71 NULL
72 };
73
74 static const char * const bkpt_names[] =
75 {
76 "_start",
77 "__start",
78 "main",
79 NULL
80 };
81
82 static const char * const main_name_list[] =
83 {
84 "main_$main",
85 NULL
86 };
87
88 /* What to do when a probe stop occurs. */
89
90 enum probe_action
91 {
92 /* Something went seriously wrong. Stop using probes and
93 revert to using the older interface. */
94 PROBES_INTERFACE_FAILED,
95
96 /* No action is required. The shared object list is still
97 valid. */
98 DO_NOTHING,
99
100 /* The shared object list should be reloaded entirely. */
101 FULL_RELOAD,
102
103 /* Attempt to incrementally update the shared object list. If
104 the update fails or is not possible, fall back to reloading
105 the list in full. */
106 UPDATE_OR_RELOAD,
107 };
108
109 /* A probe's name and its associated action. */
110
111 struct probe_info
112 {
113 /* The name of the probe. */
114 const char *name;
115
116 /* What to do when a probe stop occurs. */
117 enum probe_action action;
118 };
119
120 /* A list of named probes and their associated actions. If all
121 probes are present in the dynamic linker then the probes-based
122 interface will be used. */
123
124 static const struct probe_info probe_info[] =
125 {
126 { "init_start", DO_NOTHING },
127 { "init_complete", FULL_RELOAD },
128 { "map_start", DO_NOTHING },
129 { "map_failed", DO_NOTHING },
130 { "reloc_complete", UPDATE_OR_RELOAD },
131 { "unmap_start", DO_NOTHING },
132 { "unmap_complete", FULL_RELOAD },
133 };
134
135 #define NUM_PROBES ARRAY_SIZE (probe_info)
136
137 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
138 the same shared library. */
139
140 static int
141 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
142 {
143 if (strcmp (gdb_so_name, inferior_so_name) == 0)
144 return 1;
145
146 /* On Solaris, when starting inferior we think that dynamic linker is
147 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
148 contains /lib/ld.so.1. Sometimes one file is a link to another, but
149 sometimes they have identical content, but are not linked to each
150 other. We don't restrict this check for Solaris, but the chances
151 of running into this situation elsewhere are very low. */
152 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
153 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
154 return 1;
155
156 /* Similarly, we observed the same issue with sparc64, but with
157 different locations. */
158 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
159 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
160 return 1;
161
162 return 0;
163 }
164
165 static int
166 svr4_same (struct so_list *gdb, struct so_list *inferior)
167 {
168 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
169 }
170
171 static std::unique_ptr<lm_info_svr4>
172 lm_info_read (CORE_ADDR lm_addr)
173 {
174 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
175 std::unique_ptr<lm_info_svr4> lm_info;
176
177 gdb::byte_vector lm (lmo->link_map_size);
178
179 if (target_read_memory (lm_addr, lm.data (), lmo->link_map_size) != 0)
180 warning (_("Error reading shared library list entry at %s"),
181 paddress (target_gdbarch (), lm_addr));
182 else
183 {
184 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
185
186 lm_info.reset (new lm_info_svr4);
187 lm_info->lm_addr = lm_addr;
188
189 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
190 ptr_type);
191 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
192 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
193 ptr_type);
194 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
195 ptr_type);
196 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
197 ptr_type);
198 }
199
200 return lm_info;
201 }
202
203 static int
204 has_lm_dynamic_from_link_map (void)
205 {
206 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
207
208 return lmo->l_ld_offset >= 0;
209 }
210
211 static CORE_ADDR
212 lm_addr_check (const struct so_list *so, bfd *abfd)
213 {
214 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
215
216 if (!li->l_addr_p)
217 {
218 struct bfd_section *dyninfo_sect;
219 CORE_ADDR l_addr, l_dynaddr, dynaddr;
220
221 l_addr = li->l_addr_inferior;
222
223 if (! abfd || ! has_lm_dynamic_from_link_map ())
224 goto set_addr;
225
226 l_dynaddr = li->l_ld;
227
228 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
229 if (dyninfo_sect == NULL)
230 goto set_addr;
231
232 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
233
234 if (dynaddr + l_addr != l_dynaddr)
235 {
236 CORE_ADDR align = 0x1000;
237 CORE_ADDR minpagesize = align;
238
239 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
240 {
241 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
242 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
243 int i;
244
245 align = 1;
246
247 for (i = 0; i < ehdr->e_phnum; i++)
248 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
249 align = phdr[i].p_align;
250
251 minpagesize = get_elf_backend_data (abfd)->minpagesize;
252 }
253
254 /* Turn it into a mask. */
255 align--;
256
257 /* If the changes match the alignment requirements, we
258 assume we're using a core file that was generated by the
259 same binary, just prelinked with a different base offset.
260 If it doesn't match, we may have a different binary, the
261 same binary with the dynamic table loaded at an unrelated
262 location, or anything, really. To avoid regressions,
263 don't adjust the base offset in the latter case, although
264 odds are that, if things really changed, debugging won't
265 quite work.
266
267 One could expect more the condition
268 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
269 but the one below is relaxed for PPC. The PPC kernel supports
270 either 4k or 64k page sizes. To be prepared for 64k pages,
271 PPC ELF files are built using an alignment requirement of 64k.
272 However, when running on a kernel supporting 4k pages, the memory
273 mapping of the library may not actually happen on a 64k boundary!
274
275 (In the usual case where (l_addr & align) == 0, this check is
276 equivalent to the possibly expected check above.)
277
278 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
279
280 l_addr = l_dynaddr - dynaddr;
281
282 if ((l_addr & (minpagesize - 1)) == 0
283 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
284 {
285 if (info_verbose)
286 printf_unfiltered (_("Using PIC (Position Independent Code) "
287 "prelink displacement %s for \"%s\".\n"),
288 paddress (target_gdbarch (), l_addr),
289 so->so_name);
290 }
291 else
292 {
293 /* There is no way to verify the library file matches. prelink
294 can during prelinking of an unprelinked file (or unprelinking
295 of a prelinked file) shift the DYNAMIC segment by arbitrary
296 offset without any page size alignment. There is no way to
297 find out the ELF header and/or Program Headers for a limited
298 verification if it they match. One could do a verification
299 of the DYNAMIC segment. Still the found address is the best
300 one GDB could find. */
301
302 warning (_(".dynamic section for \"%s\" "
303 "is not at the expected address "
304 "(wrong library or version mismatch?)"), so->so_name);
305 }
306 }
307
308 set_addr:
309 li->l_addr = l_addr;
310 li->l_addr_p = 1;
311 }
312
313 return li->l_addr;
314 }
315
316 /* Per pspace SVR4 specific data. */
317
318 struct svr4_info
319 {
320 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
321
322 /* Validity flag for debug_loader_offset. */
323 int debug_loader_offset_p;
324
325 /* Load address for the dynamic linker, inferred. */
326 CORE_ADDR debug_loader_offset;
327
328 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
329 char *debug_loader_name;
330
331 /* Load map address for the main executable. */
332 CORE_ADDR main_lm_addr;
333
334 CORE_ADDR interp_text_sect_low;
335 CORE_ADDR interp_text_sect_high;
336 CORE_ADDR interp_plt_sect_low;
337 CORE_ADDR interp_plt_sect_high;
338
339 /* Nonzero if the list of objects was last obtained from the target
340 via qXfer:libraries-svr4:read. */
341 int using_xfer;
342
343 /* Table of struct probe_and_action instances, used by the
344 probes-based interface to map breakpoint addresses to probes
345 and their associated actions. Lookup is performed using
346 probe_and_action->prob->address. */
347 htab_t probes_table;
348
349 /* List of objects loaded into the inferior, used by the probes-
350 based interface. */
351 struct so_list *solib_list;
352 };
353
354 /* Per-program-space data key. */
355 static const struct program_space_data *solib_svr4_pspace_data;
356
357 /* Free the probes table. */
358
359 static void
360 free_probes_table (struct svr4_info *info)
361 {
362 if (info->probes_table == NULL)
363 return;
364
365 htab_delete (info->probes_table);
366 info->probes_table = NULL;
367 }
368
369 /* Free the solib list. */
370
371 static void
372 free_solib_list (struct svr4_info *info)
373 {
374 svr4_free_library_list (&info->solib_list);
375 info->solib_list = NULL;
376 }
377
378 static void
379 svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
380 {
381 struct svr4_info *info = (struct svr4_info *) arg;
382
383 free_probes_table (info);
384 free_solib_list (info);
385
386 xfree (info);
387 }
388
389 /* Get the current svr4 data. If none is found yet, add it now. This
390 function always returns a valid object. */
391
392 static struct svr4_info *
393 get_svr4_info (void)
394 {
395 struct svr4_info *info;
396
397 info = (struct svr4_info *) program_space_data (current_program_space,
398 solib_svr4_pspace_data);
399 if (info != NULL)
400 return info;
401
402 info = XCNEW (struct svr4_info);
403 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
404 return info;
405 }
406
407 /* Local function prototypes */
408
409 static int match_main (const char *);
410
411 /* Read program header TYPE from inferior memory. The header is found
412 by scanning the OS auxillary vector.
413
414 If TYPE == -1, return the program headers instead of the contents of
415 one program header.
416
417 Return a pointer to allocated memory holding the program header contents,
418 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
419 size of those contents is returned to P_SECT_SIZE. Likewise, the target
420 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE and
421 the base address of the section is returned in BASE_ADDR. */
422
423 static gdb_byte *
424 read_program_header (int type, int *p_sect_size, int *p_arch_size,
425 CORE_ADDR *base_addr)
426 {
427 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
428 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
429 int arch_size, sect_size;
430 CORE_ADDR sect_addr;
431 gdb_byte *buf;
432 int pt_phdr_p = 0;
433
434 /* Get required auxv elements from target. */
435 if (target_auxv_search (current_top_target (), AT_PHDR, &at_phdr) <= 0)
436 return 0;
437 if (target_auxv_search (current_top_target (), AT_PHENT, &at_phent) <= 0)
438 return 0;
439 if (target_auxv_search (current_top_target (), AT_PHNUM, &at_phnum) <= 0)
440 return 0;
441 if (!at_phdr || !at_phnum)
442 return 0;
443
444 /* Determine ELF architecture type. */
445 if (at_phent == sizeof (Elf32_External_Phdr))
446 arch_size = 32;
447 else if (at_phent == sizeof (Elf64_External_Phdr))
448 arch_size = 64;
449 else
450 return 0;
451
452 /* Find the requested segment. */
453 if (type == -1)
454 {
455 sect_addr = at_phdr;
456 sect_size = at_phent * at_phnum;
457 }
458 else if (arch_size == 32)
459 {
460 Elf32_External_Phdr phdr;
461 int i;
462
463 /* Search for requested PHDR. */
464 for (i = 0; i < at_phnum; i++)
465 {
466 int p_type;
467
468 if (target_read_memory (at_phdr + i * sizeof (phdr),
469 (gdb_byte *)&phdr, sizeof (phdr)))
470 return 0;
471
472 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
473 4, byte_order);
474
475 if (p_type == PT_PHDR)
476 {
477 pt_phdr_p = 1;
478 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
479 4, byte_order);
480 }
481
482 if (p_type == type)
483 break;
484 }
485
486 if (i == at_phnum)
487 return 0;
488
489 /* Retrieve address and size. */
490 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
491 4, byte_order);
492 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
493 4, byte_order);
494 }
495 else
496 {
497 Elf64_External_Phdr phdr;
498 int i;
499
500 /* Search for requested PHDR. */
501 for (i = 0; i < at_phnum; i++)
502 {
503 int p_type;
504
505 if (target_read_memory (at_phdr + i * sizeof (phdr),
506 (gdb_byte *)&phdr, sizeof (phdr)))
507 return 0;
508
509 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
510 4, byte_order);
511
512 if (p_type == PT_PHDR)
513 {
514 pt_phdr_p = 1;
515 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
516 8, byte_order);
517 }
518
519 if (p_type == type)
520 break;
521 }
522
523 if (i == at_phnum)
524 return 0;
525
526 /* Retrieve address and size. */
527 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
528 8, byte_order);
529 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
530 8, byte_order);
531 }
532
533 /* PT_PHDR is optional, but we really need it
534 for PIE to make this work in general. */
535
536 if (pt_phdr_p)
537 {
538 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
539 Relocation offset is the difference between the two. */
540 sect_addr = sect_addr + (at_phdr - pt_phdr);
541 }
542
543 /* Read in requested program header. */
544 buf = (gdb_byte *) xmalloc (sect_size);
545 if (target_read_memory (sect_addr, buf, sect_size))
546 {
547 xfree (buf);
548 return NULL;
549 }
550
551 if (p_arch_size)
552 *p_arch_size = arch_size;
553 if (p_sect_size)
554 *p_sect_size = sect_size;
555 if (base_addr)
556 *base_addr = sect_addr;
557
558 return buf;
559 }
560
561
562 /* Return program interpreter string. */
563 static char *
564 find_program_interpreter (void)
565 {
566 gdb_byte *buf = NULL;
567
568 /* If we have an exec_bfd, use its section table. */
569 if (exec_bfd
570 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
571 {
572 struct bfd_section *interp_sect;
573
574 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
575 if (interp_sect != NULL)
576 {
577 int sect_size = bfd_section_size (exec_bfd, interp_sect);
578
579 buf = (gdb_byte *) xmalloc (sect_size);
580 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
581 }
582 }
583
584 /* If we didn't find it, use the target auxillary vector. */
585 if (!buf)
586 buf = read_program_header (PT_INTERP, NULL, NULL, NULL);
587
588 return (char *) buf;
589 }
590
591
592 /* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is
593 found, 1 is returned and the corresponding PTR is set. */
594
595 static int
596 scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr,
597 CORE_ADDR *ptr_addr)
598 {
599 int arch_size, step, sect_size;
600 long current_dyntag;
601 CORE_ADDR dyn_ptr, dyn_addr;
602 gdb_byte *bufend, *bufstart, *buf;
603 Elf32_External_Dyn *x_dynp_32;
604 Elf64_External_Dyn *x_dynp_64;
605 struct bfd_section *sect;
606 struct target_section *target_section;
607
608 if (abfd == NULL)
609 return 0;
610
611 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
612 return 0;
613
614 arch_size = bfd_get_arch_size (abfd);
615 if (arch_size == -1)
616 return 0;
617
618 /* Find the start address of the .dynamic section. */
619 sect = bfd_get_section_by_name (abfd, ".dynamic");
620 if (sect == NULL)
621 return 0;
622
623 for (target_section = current_target_sections->sections;
624 target_section < current_target_sections->sections_end;
625 target_section++)
626 if (sect == target_section->the_bfd_section)
627 break;
628 if (target_section < current_target_sections->sections_end)
629 dyn_addr = target_section->addr;
630 else
631 {
632 /* ABFD may come from OBJFILE acting only as a symbol file without being
633 loaded into the target (see add_symbol_file_command). This case is
634 such fallback to the file VMA address without the possibility of
635 having the section relocated to its actual in-memory address. */
636
637 dyn_addr = bfd_section_vma (abfd, sect);
638 }
639
640 /* Read in .dynamic from the BFD. We will get the actual value
641 from memory later. */
642 sect_size = bfd_section_size (abfd, sect);
643 buf = bufstart = (gdb_byte *) alloca (sect_size);
644 if (!bfd_get_section_contents (abfd, sect,
645 buf, 0, sect_size))
646 return 0;
647
648 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
649 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
650 : sizeof (Elf64_External_Dyn);
651 for (bufend = buf + sect_size;
652 buf < bufend;
653 buf += step)
654 {
655 if (arch_size == 32)
656 {
657 x_dynp_32 = (Elf32_External_Dyn *) buf;
658 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
659 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
660 }
661 else
662 {
663 x_dynp_64 = (Elf64_External_Dyn *) buf;
664 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
665 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
666 }
667 if (current_dyntag == DT_NULL)
668 return 0;
669 if (current_dyntag == desired_dyntag)
670 {
671 /* If requested, try to read the runtime value of this .dynamic
672 entry. */
673 if (ptr)
674 {
675 struct type *ptr_type;
676 gdb_byte ptr_buf[8];
677 CORE_ADDR ptr_addr_1;
678
679 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
680 ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8;
681 if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0)
682 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
683 *ptr = dyn_ptr;
684 if (ptr_addr)
685 *ptr_addr = dyn_addr + (buf - bufstart);
686 }
687 return 1;
688 }
689 }
690
691 return 0;
692 }
693
694 /* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
695 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
696 is returned and the corresponding PTR is set. */
697
698 static int
699 scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
700 CORE_ADDR *ptr_addr)
701 {
702 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
703 int sect_size, arch_size, step;
704 long current_dyntag;
705 CORE_ADDR dyn_ptr;
706 CORE_ADDR base_addr;
707 gdb_byte *bufend, *bufstart, *buf;
708
709 /* Read in .dynamic section. */
710 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size,
711 &base_addr);
712 if (!buf)
713 return 0;
714
715 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
716 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
717 : sizeof (Elf64_External_Dyn);
718 for (bufend = buf + sect_size;
719 buf < bufend;
720 buf += step)
721 {
722 if (arch_size == 32)
723 {
724 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
725
726 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
727 4, byte_order);
728 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
729 4, byte_order);
730 }
731 else
732 {
733 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
734
735 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
736 8, byte_order);
737 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
738 8, byte_order);
739 }
740 if (current_dyntag == DT_NULL)
741 break;
742
743 if (current_dyntag == desired_dyntag)
744 {
745 if (ptr)
746 *ptr = dyn_ptr;
747
748 if (ptr_addr)
749 *ptr_addr = base_addr + buf - bufstart;
750
751 xfree (bufstart);
752 return 1;
753 }
754 }
755
756 xfree (bufstart);
757 return 0;
758 }
759
760 /* Locate the base address of dynamic linker structs for SVR4 elf
761 targets.
762
763 For SVR4 elf targets the address of the dynamic linker's runtime
764 structure is contained within the dynamic info section in the
765 executable file. The dynamic section is also mapped into the
766 inferior address space. Because the runtime loader fills in the
767 real address before starting the inferior, we have to read in the
768 dynamic info section from the inferior address space.
769 If there are any errors while trying to find the address, we
770 silently return 0, otherwise the found address is returned. */
771
772 static CORE_ADDR
773 elf_locate_base (void)
774 {
775 struct bound_minimal_symbol msymbol;
776 CORE_ADDR dyn_ptr, dyn_ptr_addr;
777
778 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
779 instead of DT_DEBUG, although they sometimes contain an unused
780 DT_DEBUG. */
781 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr, NULL)
782 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
783 {
784 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
785 gdb_byte *pbuf;
786 int pbuf_size = TYPE_LENGTH (ptr_type);
787
788 pbuf = (gdb_byte *) alloca (pbuf_size);
789 /* DT_MIPS_RLD_MAP contains a pointer to the address
790 of the dynamic link structure. */
791 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
792 return 0;
793 return extract_typed_address (pbuf, ptr_type);
794 }
795
796 /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
797 because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
798 in non-PIE. */
799 if (scan_dyntag (DT_MIPS_RLD_MAP_REL, exec_bfd, &dyn_ptr, &dyn_ptr_addr)
800 || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
801 {
802 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
803 gdb_byte *pbuf;
804 int pbuf_size = TYPE_LENGTH (ptr_type);
805
806 pbuf = (gdb_byte *) alloca (pbuf_size);
807 /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
808 DT slot to the address of the dynamic link structure. */
809 if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
810 return 0;
811 return extract_typed_address (pbuf, ptr_type);
812 }
813
814 /* Find DT_DEBUG. */
815 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr, NULL)
816 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
817 return dyn_ptr;
818
819 /* This may be a static executable. Look for the symbol
820 conventionally named _r_debug, as a last resort. */
821 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
822 if (msymbol.minsym != NULL)
823 return BMSYMBOL_VALUE_ADDRESS (msymbol);
824
825 /* DT_DEBUG entry not found. */
826 return 0;
827 }
828
829 /* Locate the base address of dynamic linker structs.
830
831 For both the SunOS and SVR4 shared library implementations, if the
832 inferior executable has been linked dynamically, there is a single
833 address somewhere in the inferior's data space which is the key to
834 locating all of the dynamic linker's runtime structures. This
835 address is the value of the debug base symbol. The job of this
836 function is to find and return that address, or to return 0 if there
837 is no such address (the executable is statically linked for example).
838
839 For SunOS, the job is almost trivial, since the dynamic linker and
840 all of it's structures are statically linked to the executable at
841 link time. Thus the symbol for the address we are looking for has
842 already been added to the minimal symbol table for the executable's
843 objfile at the time the symbol file's symbols were read, and all we
844 have to do is look it up there. Note that we explicitly do NOT want
845 to find the copies in the shared library.
846
847 The SVR4 version is a bit more complicated because the address
848 is contained somewhere in the dynamic info section. We have to go
849 to a lot more work to discover the address of the debug base symbol.
850 Because of this complexity, we cache the value we find and return that
851 value on subsequent invocations. Note there is no copy in the
852 executable symbol tables. */
853
854 static CORE_ADDR
855 locate_base (struct svr4_info *info)
856 {
857 /* Check to see if we have a currently valid address, and if so, avoid
858 doing all this work again and just return the cached address. If
859 we have no cached address, try to locate it in the dynamic info
860 section for ELF executables. There's no point in doing any of this
861 though if we don't have some link map offsets to work with. */
862
863 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
864 info->debug_base = elf_locate_base ();
865 return info->debug_base;
866 }
867
868 /* Find the first element in the inferior's dynamic link map, and
869 return its address in the inferior. Return zero if the address
870 could not be determined.
871
872 FIXME: Perhaps we should validate the info somehow, perhaps by
873 checking r_version for a known version number, or r_state for
874 RT_CONSISTENT. */
875
876 static CORE_ADDR
877 solib_svr4_r_map (struct svr4_info *info)
878 {
879 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
880 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
881 CORE_ADDR addr = 0;
882
883 TRY
884 {
885 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
886 ptr_type);
887 }
888 CATCH (ex, RETURN_MASK_ERROR)
889 {
890 exception_print (gdb_stderr, ex);
891 }
892 END_CATCH
893
894 return addr;
895 }
896
897 /* Find r_brk from the inferior's debug base. */
898
899 static CORE_ADDR
900 solib_svr4_r_brk (struct svr4_info *info)
901 {
902 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
903 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
904
905 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
906 ptr_type);
907 }
908
909 /* Find the link map for the dynamic linker (if it is not in the
910 normal list of loaded shared objects). */
911
912 static CORE_ADDR
913 solib_svr4_r_ldsomap (struct svr4_info *info)
914 {
915 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
916 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
917 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
918 ULONGEST version = 0;
919
920 TRY
921 {
922 /* Check version, and return zero if `struct r_debug' doesn't have
923 the r_ldsomap member. */
924 version
925 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
926 lmo->r_version_size, byte_order);
927 }
928 CATCH (ex, RETURN_MASK_ERROR)
929 {
930 exception_print (gdb_stderr, ex);
931 }
932 END_CATCH
933
934 if (version < 2 || lmo->r_ldsomap_offset == -1)
935 return 0;
936
937 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
938 ptr_type);
939 }
940
941 /* On Solaris systems with some versions of the dynamic linker,
942 ld.so's l_name pointer points to the SONAME in the string table
943 rather than into writable memory. So that GDB can find shared
944 libraries when loading a core file generated by gcore, ensure that
945 memory areas containing the l_name string are saved in the core
946 file. */
947
948 static int
949 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
950 {
951 struct svr4_info *info;
952 CORE_ADDR ldsomap;
953 CORE_ADDR name_lm;
954
955 info = get_svr4_info ();
956
957 info->debug_base = 0;
958 locate_base (info);
959 if (!info->debug_base)
960 return 0;
961
962 ldsomap = solib_svr4_r_ldsomap (info);
963 if (!ldsomap)
964 return 0;
965
966 std::unique_ptr<lm_info_svr4> li = lm_info_read (ldsomap);
967 name_lm = li != NULL ? li->l_name : 0;
968
969 return (name_lm >= vaddr && name_lm < vaddr + size);
970 }
971
972 /* See solist.h. */
973
974 static int
975 open_symbol_file_object (int from_tty)
976 {
977 CORE_ADDR lm, l_name;
978 gdb::unique_xmalloc_ptr<char> filename;
979 int errcode;
980 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
981 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
982 int l_name_size = TYPE_LENGTH (ptr_type);
983 gdb::byte_vector l_name_buf (l_name_size);
984 struct svr4_info *info = get_svr4_info ();
985 symfile_add_flags add_flags = 0;
986
987 if (from_tty)
988 add_flags |= SYMFILE_VERBOSE;
989
990 if (symfile_objfile)
991 if (!query (_("Attempt to reload symbols from process? ")))
992 return 0;
993
994 /* Always locate the debug struct, in case it has moved. */
995 info->debug_base = 0;
996 if (locate_base (info) == 0)
997 return 0; /* failed somehow... */
998
999 /* First link map member should be the executable. */
1000 lm = solib_svr4_r_map (info);
1001 if (lm == 0)
1002 return 0; /* failed somehow... */
1003
1004 /* Read address of name from target memory to GDB. */
1005 read_memory (lm + lmo->l_name_offset, l_name_buf.data (), l_name_size);
1006
1007 /* Convert the address to host format. */
1008 l_name = extract_typed_address (l_name_buf.data (), ptr_type);
1009
1010 if (l_name == 0)
1011 return 0; /* No filename. */
1012
1013 /* Now fetch the filename from target memory. */
1014 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1015
1016 if (errcode)
1017 {
1018 warning (_("failed to read exec filename from attached file: %s"),
1019 safe_strerror (errcode));
1020 return 0;
1021 }
1022
1023 /* Have a pathname: read the symbol file. */
1024 symbol_file_add_main (filename.get (), add_flags);
1025
1026 return 1;
1027 }
1028
1029 /* Data exchange structure for the XML parser as returned by
1030 svr4_current_sos_via_xfer_libraries. */
1031
1032 struct svr4_library_list
1033 {
1034 struct so_list *head, **tailp;
1035
1036 /* Inferior address of struct link_map used for the main executable. It is
1037 NULL if not known. */
1038 CORE_ADDR main_lm;
1039 };
1040
1041 /* Implementation for target_so_ops.free_so. */
1042
1043 static void
1044 svr4_free_so (struct so_list *so)
1045 {
1046 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1047
1048 delete li;
1049 }
1050
1051 /* Implement target_so_ops.clear_so. */
1052
1053 static void
1054 svr4_clear_so (struct so_list *so)
1055 {
1056 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1057
1058 if (li != NULL)
1059 li->l_addr_p = 0;
1060 }
1061
1062 /* Free so_list built so far (called via cleanup). */
1063
1064 static void
1065 svr4_free_library_list (void *p_list)
1066 {
1067 struct so_list *list = *(struct so_list **) p_list;
1068
1069 while (list != NULL)
1070 {
1071 struct so_list *next = list->next;
1072
1073 free_so (list);
1074 list = next;
1075 }
1076 }
1077
1078 /* Copy library list. */
1079
1080 static struct so_list *
1081 svr4_copy_library_list (struct so_list *src)
1082 {
1083 struct so_list *dst = NULL;
1084 struct so_list **link = &dst;
1085
1086 while (src != NULL)
1087 {
1088 struct so_list *newobj;
1089
1090 newobj = XNEW (struct so_list);
1091 memcpy (newobj, src, sizeof (struct so_list));
1092
1093 lm_info_svr4 *src_li = (lm_info_svr4 *) src->lm_info;
1094 newobj->lm_info = new lm_info_svr4 (*src_li);
1095
1096 newobj->next = NULL;
1097 *link = newobj;
1098 link = &newobj->next;
1099
1100 src = src->next;
1101 }
1102
1103 return dst;
1104 }
1105
1106 #ifdef HAVE_LIBEXPAT
1107
1108 #include "xml-support.h"
1109
1110 /* Handle the start of a <library> element. Note: new elements are added
1111 at the tail of the list, keeping the list in order. */
1112
1113 static void
1114 library_list_start_library (struct gdb_xml_parser *parser,
1115 const struct gdb_xml_element *element,
1116 void *user_data,
1117 std::vector<gdb_xml_value> &attributes)
1118 {
1119 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1120 const char *name
1121 = (const char *) xml_find_attribute (attributes, "name")->value.get ();
1122 ULONGEST *lmp
1123 = (ULONGEST *) xml_find_attribute (attributes, "lm")->value.get ();
1124 ULONGEST *l_addrp
1125 = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value.get ();
1126 ULONGEST *l_ldp
1127 = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value.get ();
1128 struct so_list *new_elem;
1129
1130 new_elem = XCNEW (struct so_list);
1131 lm_info_svr4 *li = new lm_info_svr4;
1132 new_elem->lm_info = li;
1133 li->lm_addr = *lmp;
1134 li->l_addr_inferior = *l_addrp;
1135 li->l_ld = *l_ldp;
1136
1137 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1138 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1139 strcpy (new_elem->so_original_name, new_elem->so_name);
1140
1141 *list->tailp = new_elem;
1142 list->tailp = &new_elem->next;
1143 }
1144
1145 /* Handle the start of a <library-list-svr4> element. */
1146
1147 static void
1148 svr4_library_list_start_list (struct gdb_xml_parser *parser,
1149 const struct gdb_xml_element *element,
1150 void *user_data,
1151 std::vector<gdb_xml_value> &attributes)
1152 {
1153 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1154 const char *version
1155 = (const char *) xml_find_attribute (attributes, "version")->value.get ();
1156 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1157
1158 if (strcmp (version, "1.0") != 0)
1159 gdb_xml_error (parser,
1160 _("SVR4 Library list has unsupported version \"%s\""),
1161 version);
1162
1163 if (main_lm)
1164 list->main_lm = *(ULONGEST *) main_lm->value.get ();
1165 }
1166
1167 /* The allowed elements and attributes for an XML library list.
1168 The root element is a <library-list>. */
1169
1170 static const struct gdb_xml_attribute svr4_library_attributes[] =
1171 {
1172 { "name", GDB_XML_AF_NONE, NULL, NULL },
1173 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1174 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1175 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1176 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1177 };
1178
1179 static const struct gdb_xml_element svr4_library_list_children[] =
1180 {
1181 {
1182 "library", svr4_library_attributes, NULL,
1183 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1184 library_list_start_library, NULL
1185 },
1186 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1187 };
1188
1189 static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1190 {
1191 { "version", GDB_XML_AF_NONE, NULL, NULL },
1192 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1193 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1194 };
1195
1196 static const struct gdb_xml_element svr4_library_list_elements[] =
1197 {
1198 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1199 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1200 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1201 };
1202
1203 /* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1204
1205 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1206 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1207 empty, caller is responsible for freeing all its entries. */
1208
1209 static int
1210 svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1211 {
1212 struct cleanup *back_to = make_cleanup (svr4_free_library_list,
1213 &list->head);
1214
1215 memset (list, 0, sizeof (*list));
1216 list->tailp = &list->head;
1217 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
1218 svr4_library_list_elements, document, list) == 0)
1219 {
1220 /* Parsed successfully, keep the result. */
1221 discard_cleanups (back_to);
1222 return 1;
1223 }
1224
1225 do_cleanups (back_to);
1226 return 0;
1227 }
1228
1229 /* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
1230
1231 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1232 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1233 empty, caller is responsible for freeing all its entries.
1234
1235 Note that ANNEX must be NULL if the remote does not explicitly allow
1236 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1237 this can be checked using target_augmented_libraries_svr4_read (). */
1238
1239 static int
1240 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1241 const char *annex)
1242 {
1243 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1244
1245 /* Fetch the list of shared libraries. */
1246 gdb::optional<gdb::char_vector> svr4_library_document
1247 = target_read_stralloc (current_top_target (), TARGET_OBJECT_LIBRARIES_SVR4,
1248 annex);
1249 if (!svr4_library_document)
1250 return 0;
1251
1252 return svr4_parse_libraries (svr4_library_document->data (), list);
1253 }
1254
1255 #else
1256
1257 static int
1258 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1259 const char *annex)
1260 {
1261 return 0;
1262 }
1263
1264 #endif
1265
1266 /* If no shared library information is available from the dynamic
1267 linker, build a fallback list from other sources. */
1268
1269 static struct so_list *
1270 svr4_default_sos (void)
1271 {
1272 struct svr4_info *info = get_svr4_info ();
1273 struct so_list *newobj;
1274
1275 if (!info->debug_loader_offset_p)
1276 return NULL;
1277
1278 newobj = XCNEW (struct so_list);
1279 lm_info_svr4 *li = new lm_info_svr4;
1280 newobj->lm_info = li;
1281
1282 /* Nothing will ever check the other fields if we set l_addr_p. */
1283 li->l_addr = info->debug_loader_offset;
1284 li->l_addr_p = 1;
1285
1286 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1287 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1288 strcpy (newobj->so_original_name, newobj->so_name);
1289
1290 return newobj;
1291 }
1292
1293 /* Read the whole inferior libraries chain starting at address LM.
1294 Expect the first entry in the chain's previous entry to be PREV_LM.
1295 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1296 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1297 to it. Returns nonzero upon success. If zero is returned the
1298 entries stored to LINK_PTR_PTR are still valid although they may
1299 represent only part of the inferior library list. */
1300
1301 static int
1302 svr4_read_so_list (CORE_ADDR lm, CORE_ADDR prev_lm,
1303 struct so_list ***link_ptr_ptr, int ignore_first)
1304 {
1305 CORE_ADDR first_l_name = 0;
1306 CORE_ADDR next_lm;
1307
1308 for (; lm != 0; prev_lm = lm, lm = next_lm)
1309 {
1310 int errcode;
1311 gdb::unique_xmalloc_ptr<char> buffer;
1312
1313 so_list_up newobj (XCNEW (struct so_list));
1314
1315 lm_info_svr4 *li = lm_info_read (lm).release ();
1316 newobj->lm_info = li;
1317 if (li == NULL)
1318 return 0;
1319
1320 next_lm = li->l_next;
1321
1322 if (li->l_prev != prev_lm)
1323 {
1324 warning (_("Corrupted shared library list: %s != %s"),
1325 paddress (target_gdbarch (), prev_lm),
1326 paddress (target_gdbarch (), li->l_prev));
1327 return 0;
1328 }
1329
1330 /* For SVR4 versions, the first entry in the link map is for the
1331 inferior executable, so we must ignore it. For some versions of
1332 SVR4, it has no name. For others (Solaris 2.3 for example), it
1333 does have a name, so we can no longer use a missing name to
1334 decide when to ignore it. */
1335 if (ignore_first && li->l_prev == 0)
1336 {
1337 struct svr4_info *info = get_svr4_info ();
1338
1339 first_l_name = li->l_name;
1340 info->main_lm_addr = li->lm_addr;
1341 continue;
1342 }
1343
1344 /* Extract this shared object's name. */
1345 target_read_string (li->l_name, &buffer, SO_NAME_MAX_PATH_SIZE - 1,
1346 &errcode);
1347 if (errcode != 0)
1348 {
1349 /* If this entry's l_name address matches that of the
1350 inferior executable, then this is not a normal shared
1351 object, but (most likely) a vDSO. In this case, silently
1352 skip it; otherwise emit a warning. */
1353 if (first_l_name == 0 || li->l_name != first_l_name)
1354 warning (_("Can't read pathname for load map: %s."),
1355 safe_strerror (errcode));
1356 continue;
1357 }
1358
1359 strncpy (newobj->so_name, buffer.get (), SO_NAME_MAX_PATH_SIZE - 1);
1360 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1361 strcpy (newobj->so_original_name, newobj->so_name);
1362
1363 /* If this entry has no name, or its name matches the name
1364 for the main executable, don't include it in the list. */
1365 if (! newobj->so_name[0] || match_main (newobj->so_name))
1366 continue;
1367
1368 newobj->next = 0;
1369 /* Don't free it now. */
1370 **link_ptr_ptr = newobj.release ();
1371 *link_ptr_ptr = &(**link_ptr_ptr)->next;
1372 }
1373
1374 return 1;
1375 }
1376
1377 /* Read the full list of currently loaded shared objects directly
1378 from the inferior, without referring to any libraries read and
1379 stored by the probes interface. Handle special cases relating
1380 to the first elements of the list. */
1381
1382 static struct so_list *
1383 svr4_current_sos_direct (struct svr4_info *info)
1384 {
1385 CORE_ADDR lm;
1386 struct so_list *head = NULL;
1387 struct so_list **link_ptr = &head;
1388 struct cleanup *back_to;
1389 int ignore_first;
1390 struct svr4_library_list library_list;
1391
1392 /* Fall back to manual examination of the target if the packet is not
1393 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1394 tests a case where gdbserver cannot find the shared libraries list while
1395 GDB itself is able to find it via SYMFILE_OBJFILE.
1396
1397 Unfortunately statically linked inferiors will also fall back through this
1398 suboptimal code path. */
1399
1400 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1401 NULL);
1402 if (info->using_xfer)
1403 {
1404 if (library_list.main_lm)
1405 info->main_lm_addr = library_list.main_lm;
1406
1407 return library_list.head ? library_list.head : svr4_default_sos ();
1408 }
1409
1410 /* Always locate the debug struct, in case it has moved. */
1411 info->debug_base = 0;
1412 locate_base (info);
1413
1414 /* If we can't find the dynamic linker's base structure, this
1415 must not be a dynamically linked executable. Hmm. */
1416 if (! info->debug_base)
1417 return svr4_default_sos ();
1418
1419 /* Assume that everything is a library if the dynamic loader was loaded
1420 late by a static executable. */
1421 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1422 ignore_first = 0;
1423 else
1424 ignore_first = 1;
1425
1426 back_to = make_cleanup (svr4_free_library_list, &head);
1427
1428 /* Walk the inferior's link map list, and build our list of
1429 `struct so_list' nodes. */
1430 lm = solib_svr4_r_map (info);
1431 if (lm)
1432 svr4_read_so_list (lm, 0, &link_ptr, ignore_first);
1433
1434 /* On Solaris, the dynamic linker is not in the normal list of
1435 shared objects, so make sure we pick it up too. Having
1436 symbol information for the dynamic linker is quite crucial
1437 for skipping dynamic linker resolver code. */
1438 lm = solib_svr4_r_ldsomap (info);
1439 if (lm)
1440 svr4_read_so_list (lm, 0, &link_ptr, 0);
1441
1442 discard_cleanups (back_to);
1443
1444 if (head == NULL)
1445 return svr4_default_sos ();
1446
1447 return head;
1448 }
1449
1450 /* Implement the main part of the "current_sos" target_so_ops
1451 method. */
1452
1453 static struct so_list *
1454 svr4_current_sos_1 (void)
1455 {
1456 struct svr4_info *info = get_svr4_info ();
1457
1458 /* If the solib list has been read and stored by the probes
1459 interface then we return a copy of the stored list. */
1460 if (info->solib_list != NULL)
1461 return svr4_copy_library_list (info->solib_list);
1462
1463 /* Otherwise obtain the solib list directly from the inferior. */
1464 return svr4_current_sos_direct (info);
1465 }
1466
1467 /* Implement the "current_sos" target_so_ops method. */
1468
1469 static struct so_list *
1470 svr4_current_sos (void)
1471 {
1472 struct so_list *so_head = svr4_current_sos_1 ();
1473 struct mem_range vsyscall_range;
1474
1475 /* Filter out the vDSO module, if present. Its symbol file would
1476 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1477 managed by symfile-mem.c:add_vsyscall_page. */
1478 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1479 && vsyscall_range.length != 0)
1480 {
1481 struct so_list **sop;
1482
1483 sop = &so_head;
1484 while (*sop != NULL)
1485 {
1486 struct so_list *so = *sop;
1487
1488 /* We can't simply match the vDSO by starting address alone,
1489 because lm_info->l_addr_inferior (and also l_addr) do not
1490 necessarily represent the real starting address of the
1491 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1492 field (the ".dynamic" section of the shared object)
1493 always points at the absolute/resolved address though.
1494 So check whether that address is inside the vDSO's
1495 mapping instead.
1496
1497 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1498 0-based ELF, and we see:
1499
1500 (gdb) info auxv
1501 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1502 (gdb) p/x *_r_debug.r_map.l_next
1503 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1504
1505 And on Linux 2.6.32 (x86_64) we see:
1506
1507 (gdb) info auxv
1508 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1509 (gdb) p/x *_r_debug.r_map.l_next
1510 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1511
1512 Dumping that vDSO shows:
1513
1514 (gdb) info proc mappings
1515 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1516 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1517 # readelf -Wa vdso.bin
1518 [...]
1519 Entry point address: 0xffffffffff700700
1520 [...]
1521 Section Headers:
1522 [Nr] Name Type Address Off Size
1523 [ 0] NULL 0000000000000000 000000 000000
1524 [ 1] .hash HASH ffffffffff700120 000120 000038
1525 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1526 [...]
1527 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1528 */
1529
1530 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1531
1532 if (address_in_mem_range (li->l_ld, &vsyscall_range))
1533 {
1534 *sop = so->next;
1535 free_so (so);
1536 break;
1537 }
1538
1539 sop = &so->next;
1540 }
1541 }
1542
1543 return so_head;
1544 }
1545
1546 /* Get the address of the link_map for a given OBJFILE. */
1547
1548 CORE_ADDR
1549 svr4_fetch_objfile_link_map (struct objfile *objfile)
1550 {
1551 struct so_list *so;
1552 struct svr4_info *info = get_svr4_info ();
1553
1554 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1555 if (info->main_lm_addr == 0)
1556 solib_add (NULL, 0, auto_solib_add);
1557
1558 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1559 if (objfile == symfile_objfile)
1560 return info->main_lm_addr;
1561
1562 /* The other link map addresses may be found by examining the list
1563 of shared libraries. */
1564 for (so = master_so_list (); so; so = so->next)
1565 if (so->objfile == objfile)
1566 {
1567 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1568
1569 return li->lm_addr;
1570 }
1571
1572 /* Not found! */
1573 return 0;
1574 }
1575
1576 /* On some systems, the only way to recognize the link map entry for
1577 the main executable file is by looking at its name. Return
1578 non-zero iff SONAME matches one of the known main executable names. */
1579
1580 static int
1581 match_main (const char *soname)
1582 {
1583 const char * const *mainp;
1584
1585 for (mainp = main_name_list; *mainp != NULL; mainp++)
1586 {
1587 if (strcmp (soname, *mainp) == 0)
1588 return (1);
1589 }
1590
1591 return (0);
1592 }
1593
1594 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1595 SVR4 run time loader. */
1596
1597 int
1598 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1599 {
1600 struct svr4_info *info = get_svr4_info ();
1601
1602 return ((pc >= info->interp_text_sect_low
1603 && pc < info->interp_text_sect_high)
1604 || (pc >= info->interp_plt_sect_low
1605 && pc < info->interp_plt_sect_high)
1606 || in_plt_section (pc)
1607 || in_gnu_ifunc_stub (pc));
1608 }
1609
1610 /* Given an executable's ABFD and target, compute the entry-point
1611 address. */
1612
1613 static CORE_ADDR
1614 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1615 {
1616 CORE_ADDR addr;
1617
1618 /* KevinB wrote ... for most targets, the address returned by
1619 bfd_get_start_address() is the entry point for the start
1620 function. But, for some targets, bfd_get_start_address() returns
1621 the address of a function descriptor from which the entry point
1622 address may be extracted. This address is extracted by
1623 gdbarch_convert_from_func_ptr_addr(). The method
1624 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1625 function for targets which don't use function descriptors. */
1626 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
1627 bfd_get_start_address (abfd),
1628 targ);
1629 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
1630 }
1631
1632 /* A probe and its associated action. */
1633
1634 struct probe_and_action
1635 {
1636 /* The probe. */
1637 probe *prob;
1638
1639 /* The relocated address of the probe. */
1640 CORE_ADDR address;
1641
1642 /* The action. */
1643 enum probe_action action;
1644 };
1645
1646 /* Returns a hash code for the probe_and_action referenced by p. */
1647
1648 static hashval_t
1649 hash_probe_and_action (const void *p)
1650 {
1651 const struct probe_and_action *pa = (const struct probe_and_action *) p;
1652
1653 return (hashval_t) pa->address;
1654 }
1655
1656 /* Returns non-zero if the probe_and_actions referenced by p1 and p2
1657 are equal. */
1658
1659 static int
1660 equal_probe_and_action (const void *p1, const void *p2)
1661 {
1662 const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
1663 const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;
1664
1665 return pa1->address == pa2->address;
1666 }
1667
1668 /* Register a solib event probe and its associated action in the
1669 probes table. */
1670
1671 static void
1672 register_solib_event_probe (probe *prob, CORE_ADDR address,
1673 enum probe_action action)
1674 {
1675 struct svr4_info *info = get_svr4_info ();
1676 struct probe_and_action lookup, *pa;
1677 void **slot;
1678
1679 /* Create the probes table, if necessary. */
1680 if (info->probes_table == NULL)
1681 info->probes_table = htab_create_alloc (1, hash_probe_and_action,
1682 equal_probe_and_action,
1683 xfree, xcalloc, xfree);
1684
1685 lookup.prob = prob;
1686 lookup.address = address;
1687 slot = htab_find_slot (info->probes_table, &lookup, INSERT);
1688 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1689
1690 pa = XCNEW (struct probe_and_action);
1691 pa->prob = prob;
1692 pa->address = address;
1693 pa->action = action;
1694
1695 *slot = pa;
1696 }
1697
1698 /* Get the solib event probe at the specified location, and the
1699 action associated with it. Returns NULL if no solib event probe
1700 was found. */
1701
1702 static struct probe_and_action *
1703 solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1704 {
1705 struct probe_and_action lookup;
1706 void **slot;
1707
1708 lookup.address = address;
1709 slot = htab_find_slot (info->probes_table, &lookup, NO_INSERT);
1710
1711 if (slot == NULL)
1712 return NULL;
1713
1714 return (struct probe_and_action *) *slot;
1715 }
1716
1717 /* Decide what action to take when the specified solib event probe is
1718 hit. */
1719
1720 static enum probe_action
1721 solib_event_probe_action (struct probe_and_action *pa)
1722 {
1723 enum probe_action action;
1724 unsigned probe_argc = 0;
1725 struct frame_info *frame = get_current_frame ();
1726
1727 action = pa->action;
1728 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1729 return action;
1730
1731 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1732
1733 /* Check that an appropriate number of arguments has been supplied.
1734 We expect:
1735 arg0: Lmid_t lmid (mandatory)
1736 arg1: struct r_debug *debug_base (mandatory)
1737 arg2: struct link_map *new (optional, for incremental updates) */
1738 TRY
1739 {
1740 probe_argc = pa->prob->get_argument_count (frame);
1741 }
1742 CATCH (ex, RETURN_MASK_ERROR)
1743 {
1744 exception_print (gdb_stderr, ex);
1745 probe_argc = 0;
1746 }
1747 END_CATCH
1748
1749 /* If get_argument_count throws an exception, probe_argc will be set
1750 to zero. However, if pa->prob does not have arguments, then
1751 get_argument_count will succeed but probe_argc will also be zero.
1752 Both cases happen because of different things, but they are
1753 treated equally here: action will be set to
1754 PROBES_INTERFACE_FAILED. */
1755 if (probe_argc == 2)
1756 action = FULL_RELOAD;
1757 else if (probe_argc < 2)
1758 action = PROBES_INTERFACE_FAILED;
1759
1760 return action;
1761 }
1762
1763 /* Populate the shared object list by reading the entire list of
1764 shared objects from the inferior. Handle special cases relating
1765 to the first elements of the list. Returns nonzero on success. */
1766
1767 static int
1768 solist_update_full (struct svr4_info *info)
1769 {
1770 free_solib_list (info);
1771 info->solib_list = svr4_current_sos_direct (info);
1772
1773 return 1;
1774 }
1775
1776 /* Update the shared object list starting from the link-map entry
1777 passed by the linker in the probe's third argument. Returns
1778 nonzero if the list was successfully updated, or zero to indicate
1779 failure. */
1780
1781 static int
1782 solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1783 {
1784 struct so_list *tail;
1785 CORE_ADDR prev_lm;
1786
1787 /* svr4_current_sos_direct contains logic to handle a number of
1788 special cases relating to the first elements of the list. To
1789 avoid duplicating this logic we defer to solist_update_full
1790 if the list is empty. */
1791 if (info->solib_list == NULL)
1792 return 0;
1793
1794 /* Fall back to a full update if we are using a remote target
1795 that does not support incremental transfers. */
1796 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1797 return 0;
1798
1799 /* Walk to the end of the list. */
1800 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1801 /* Nothing. */;
1802
1803 lm_info_svr4 *li = (lm_info_svr4 *) tail->lm_info;
1804 prev_lm = li->lm_addr;
1805
1806 /* Read the new objects. */
1807 if (info->using_xfer)
1808 {
1809 struct svr4_library_list library_list;
1810 char annex[64];
1811
1812 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1813 phex_nz (lm, sizeof (lm)),
1814 phex_nz (prev_lm, sizeof (prev_lm)));
1815 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1816 return 0;
1817
1818 tail->next = library_list.head;
1819 }
1820 else
1821 {
1822 struct so_list **link = &tail->next;
1823
1824 /* IGNORE_FIRST may safely be set to zero here because the
1825 above check and deferral to solist_update_full ensures
1826 that this call to svr4_read_so_list will never see the
1827 first element. */
1828 if (!svr4_read_so_list (lm, prev_lm, &link, 0))
1829 return 0;
1830 }
1831
1832 return 1;
1833 }
1834
1835 /* Disable the probes-based linker interface and revert to the
1836 original interface. We don't reset the breakpoints as the
1837 ones set up for the probes-based interface are adequate. */
1838
1839 static void
1840 disable_probes_interface_cleanup (void *arg)
1841 {
1842 struct svr4_info *info = get_svr4_info ();
1843
1844 warning (_("Probes-based dynamic linker interface failed.\n"
1845 "Reverting to original interface.\n"));
1846
1847 free_probes_table (info);
1848 free_solib_list (info);
1849 }
1850
1851 /* Update the solib list as appropriate when using the
1852 probes-based linker interface. Do nothing if using the
1853 standard interface. */
1854
1855 static void
1856 svr4_handle_solib_event (void)
1857 {
1858 struct svr4_info *info = get_svr4_info ();
1859 struct probe_and_action *pa;
1860 enum probe_action action;
1861 struct cleanup *old_chain;
1862 struct value *val = NULL;
1863 CORE_ADDR pc, debug_base, lm = 0;
1864 struct frame_info *frame = get_current_frame ();
1865
1866 /* Do nothing if not using the probes interface. */
1867 if (info->probes_table == NULL)
1868 return;
1869
1870 /* If anything goes wrong we revert to the original linker
1871 interface. */
1872 old_chain = make_cleanup (disable_probes_interface_cleanup, NULL);
1873
1874 pc = regcache_read_pc (get_current_regcache ());
1875 pa = solib_event_probe_at (info, pc);
1876 if (pa == NULL)
1877 {
1878 do_cleanups (old_chain);
1879 return;
1880 }
1881
1882 action = solib_event_probe_action (pa);
1883 if (action == PROBES_INTERFACE_FAILED)
1884 {
1885 do_cleanups (old_chain);
1886 return;
1887 }
1888
1889 if (action == DO_NOTHING)
1890 {
1891 discard_cleanups (old_chain);
1892 return;
1893 }
1894
1895 /* evaluate_argument looks up symbols in the dynamic linker
1896 using find_pc_section. find_pc_section is accelerated by a cache
1897 called the section map. The section map is invalidated every
1898 time a shared library is loaded or unloaded, and if the inferior
1899 is generating a lot of shared library events then the section map
1900 will be updated every time svr4_handle_solib_event is called.
1901 We called find_pc_section in svr4_create_solib_event_breakpoints,
1902 so we can guarantee that the dynamic linker's sections are in the
1903 section map. We can therefore inhibit section map updates across
1904 these calls to evaluate_argument and save a lot of time. */
1905 {
1906 scoped_restore inhibit_updates
1907 = inhibit_section_map_updates (current_program_space);
1908
1909 TRY
1910 {
1911 val = pa->prob->evaluate_argument (1, frame);
1912 }
1913 CATCH (ex, RETURN_MASK_ERROR)
1914 {
1915 exception_print (gdb_stderr, ex);
1916 val = NULL;
1917 }
1918 END_CATCH
1919
1920 if (val == NULL)
1921 {
1922 do_cleanups (old_chain);
1923 return;
1924 }
1925
1926 debug_base = value_as_address (val);
1927 if (debug_base == 0)
1928 {
1929 do_cleanups (old_chain);
1930 return;
1931 }
1932
1933 /* Always locate the debug struct, in case it moved. */
1934 info->debug_base = 0;
1935 if (locate_base (info) == 0)
1936 {
1937 do_cleanups (old_chain);
1938 return;
1939 }
1940
1941 /* GDB does not currently support libraries loaded via dlmopen
1942 into namespaces other than the initial one. We must ignore
1943 any namespace other than the initial namespace here until
1944 support for this is added to GDB. */
1945 if (debug_base != info->debug_base)
1946 action = DO_NOTHING;
1947
1948 if (action == UPDATE_OR_RELOAD)
1949 {
1950 TRY
1951 {
1952 val = pa->prob->evaluate_argument (2, frame);
1953 }
1954 CATCH (ex, RETURN_MASK_ERROR)
1955 {
1956 exception_print (gdb_stderr, ex);
1957 do_cleanups (old_chain);
1958 return;
1959 }
1960 END_CATCH
1961
1962 if (val != NULL)
1963 lm = value_as_address (val);
1964
1965 if (lm == 0)
1966 action = FULL_RELOAD;
1967 }
1968
1969 /* Resume section map updates. Closing the scope is
1970 sufficient. */
1971 }
1972
1973 if (action == UPDATE_OR_RELOAD)
1974 {
1975 if (!solist_update_incremental (info, lm))
1976 action = FULL_RELOAD;
1977 }
1978
1979 if (action == FULL_RELOAD)
1980 {
1981 if (!solist_update_full (info))
1982 {
1983 do_cleanups (old_chain);
1984 return;
1985 }
1986 }
1987
1988 discard_cleanups (old_chain);
1989 }
1990
1991 /* Helper function for svr4_update_solib_event_breakpoints. */
1992
1993 static int
1994 svr4_update_solib_event_breakpoint (struct breakpoint *b, void *arg)
1995 {
1996 struct bp_location *loc;
1997
1998 if (b->type != bp_shlib_event)
1999 {
2000 /* Continue iterating. */
2001 return 0;
2002 }
2003
2004 for (loc = b->loc; loc != NULL; loc = loc->next)
2005 {
2006 struct svr4_info *info;
2007 struct probe_and_action *pa;
2008
2009 info = ((struct svr4_info *)
2010 program_space_data (loc->pspace, solib_svr4_pspace_data));
2011 if (info == NULL || info->probes_table == NULL)
2012 continue;
2013
2014 pa = solib_event_probe_at (info, loc->address);
2015 if (pa == NULL)
2016 continue;
2017
2018 if (pa->action == DO_NOTHING)
2019 {
2020 if (b->enable_state == bp_disabled && stop_on_solib_events)
2021 enable_breakpoint (b);
2022 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
2023 disable_breakpoint (b);
2024 }
2025
2026 break;
2027 }
2028
2029 /* Continue iterating. */
2030 return 0;
2031 }
2032
2033 /* Enable or disable optional solib event breakpoints as appropriate.
2034 Called whenever stop_on_solib_events is changed. */
2035
2036 static void
2037 svr4_update_solib_event_breakpoints (void)
2038 {
2039 iterate_over_breakpoints (svr4_update_solib_event_breakpoint, NULL);
2040 }
2041
2042 /* Create and register solib event breakpoints. PROBES is an array
2043 of NUM_PROBES elements, each of which is vector of probes. A
2044 solib event breakpoint will be created and registered for each
2045 probe. */
2046
2047 static void
2048 svr4_create_probe_breakpoints (struct gdbarch *gdbarch,
2049 const std::vector<probe *> *probes,
2050 struct objfile *objfile)
2051 {
2052 for (int i = 0; i < NUM_PROBES; i++)
2053 {
2054 enum probe_action action = probe_info[i].action;
2055
2056 for (probe *p : probes[i])
2057 {
2058 CORE_ADDR address = p->get_relocated_address (objfile);
2059
2060 create_solib_event_breakpoint (gdbarch, address);
2061 register_solib_event_probe (p, address, action);
2062 }
2063 }
2064
2065 svr4_update_solib_event_breakpoints ();
2066 }
2067
2068 /* Both the SunOS and the SVR4 dynamic linkers call a marker function
2069 before and after mapping and unmapping shared libraries. The sole
2070 purpose of this method is to allow debuggers to set a breakpoint so
2071 they can track these changes.
2072
2073 Some versions of the glibc dynamic linker contain named probes
2074 to allow more fine grained stopping. Given the address of the
2075 original marker function, this function attempts to find these
2076 probes, and if found, sets breakpoints on those instead. If the
2077 probes aren't found, a single breakpoint is set on the original
2078 marker function. */
2079
2080 static void
2081 svr4_create_solib_event_breakpoints (struct gdbarch *gdbarch,
2082 CORE_ADDR address)
2083 {
2084 struct obj_section *os;
2085
2086 os = find_pc_section (address);
2087 if (os != NULL)
2088 {
2089 int with_prefix;
2090
2091 for (with_prefix = 0; with_prefix <= 1; with_prefix++)
2092 {
2093 std::vector<probe *> probes[NUM_PROBES];
2094 int all_probes_found = 1;
2095 int checked_can_use_probe_arguments = 0;
2096
2097 for (int i = 0; i < NUM_PROBES; i++)
2098 {
2099 const char *name = probe_info[i].name;
2100 probe *p;
2101 char buf[32];
2102
2103 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4
2104 shipped with an early version of the probes code in
2105 which the probes' names were prefixed with "rtld_"
2106 and the "map_failed" probe did not exist. The
2107 locations of the probes are otherwise the same, so
2108 we check for probes with prefixed names if probes
2109 with unprefixed names are not present. */
2110 if (with_prefix)
2111 {
2112 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2113 name = buf;
2114 }
2115
2116 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2117
2118 /* The "map_failed" probe did not exist in early
2119 versions of the probes code in which the probes'
2120 names were prefixed with "rtld_". */
2121 if (strcmp (name, "rtld_map_failed") == 0)
2122 continue;
2123
2124 if (probes[i].empty ())
2125 {
2126 all_probes_found = 0;
2127 break;
2128 }
2129
2130 /* Ensure probe arguments can be evaluated. */
2131 if (!checked_can_use_probe_arguments)
2132 {
2133 p = probes[i][0];
2134 if (!p->can_evaluate_arguments ())
2135 {
2136 all_probes_found = 0;
2137 break;
2138 }
2139 checked_can_use_probe_arguments = 1;
2140 }
2141 }
2142
2143 if (all_probes_found)
2144 svr4_create_probe_breakpoints (gdbarch, probes, os->objfile);
2145
2146 if (all_probes_found)
2147 return;
2148 }
2149 }
2150
2151 create_solib_event_breakpoint (gdbarch, address);
2152 }
2153
2154 /* Helper function for gdb_bfd_lookup_symbol. */
2155
2156 static int
2157 cmp_name_and_sec_flags (const asymbol *sym, const void *data)
2158 {
2159 return (strcmp (sym->name, (const char *) data) == 0
2160 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2161 }
2162 /* Arrange for dynamic linker to hit breakpoint.
2163
2164 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2165 debugger interface, support for arranging for the inferior to hit
2166 a breakpoint after mapping in the shared libraries. This function
2167 enables that breakpoint.
2168
2169 For SunOS, there is a special flag location (in_debugger) which we
2170 set to 1. When the dynamic linker sees this flag set, it will set
2171 a breakpoint at a location known only to itself, after saving the
2172 original contents of that place and the breakpoint address itself,
2173 in it's own internal structures. When we resume the inferior, it
2174 will eventually take a SIGTRAP when it runs into the breakpoint.
2175 We handle this (in a different place) by restoring the contents of
2176 the breakpointed location (which is only known after it stops),
2177 chasing around to locate the shared libraries that have been
2178 loaded, then resuming.
2179
2180 For SVR4, the debugger interface structure contains a member (r_brk)
2181 which is statically initialized at the time the shared library is
2182 built, to the offset of a function (_r_debug_state) which is guaran-
2183 teed to be called once before mapping in a library, and again when
2184 the mapping is complete. At the time we are examining this member,
2185 it contains only the unrelocated offset of the function, so we have
2186 to do our own relocation. Later, when the dynamic linker actually
2187 runs, it relocates r_brk to be the actual address of _r_debug_state().
2188
2189 The debugger interface structure also contains an enumeration which
2190 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2191 depending upon whether or not the library is being mapped or unmapped,
2192 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
2193
2194 static int
2195 enable_break (struct svr4_info *info, int from_tty)
2196 {
2197 struct bound_minimal_symbol msymbol;
2198 const char * const *bkpt_namep;
2199 asection *interp_sect;
2200 char *interp_name;
2201 CORE_ADDR sym_addr;
2202
2203 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2204 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
2205
2206 /* If we already have a shared library list in the target, and
2207 r_debug contains r_brk, set the breakpoint there - this should
2208 mean r_brk has already been relocated. Assume the dynamic linker
2209 is the object containing r_brk. */
2210
2211 solib_add (NULL, from_tty, auto_solib_add);
2212 sym_addr = 0;
2213 if (info->debug_base && solib_svr4_r_map (info) != 0)
2214 sym_addr = solib_svr4_r_brk (info);
2215
2216 if (sym_addr != 0)
2217 {
2218 struct obj_section *os;
2219
2220 sym_addr = gdbarch_addr_bits_remove
2221 (target_gdbarch (),
2222 gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2223 sym_addr,
2224 current_top_target ()));
2225
2226 /* On at least some versions of Solaris there's a dynamic relocation
2227 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2228 we get control before the dynamic linker has self-relocated.
2229 Check if SYM_ADDR is in a known section, if it is assume we can
2230 trust its value. This is just a heuristic though, it could go away
2231 or be replaced if it's getting in the way.
2232
2233 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2234 however it's spelled in your particular system) is ARM or Thumb.
2235 That knowledge is encoded in the address, if it's Thumb the low bit
2236 is 1. However, we've stripped that info above and it's not clear
2237 what all the consequences are of passing a non-addr_bits_remove'd
2238 address to svr4_create_solib_event_breakpoints. The call to
2239 find_pc_section verifies we know about the address and have some
2240 hope of computing the right kind of breakpoint to use (via
2241 symbol info). It does mean that GDB needs to be pointed at a
2242 non-stripped version of the dynamic linker in order to obtain
2243 information it already knows about. Sigh. */
2244
2245 os = find_pc_section (sym_addr);
2246 if (os != NULL)
2247 {
2248 /* Record the relocated start and end address of the dynamic linker
2249 text and plt section for svr4_in_dynsym_resolve_code. */
2250 bfd *tmp_bfd;
2251 CORE_ADDR load_addr;
2252
2253 tmp_bfd = os->objfile->obfd;
2254 load_addr = ANOFFSET (os->objfile->section_offsets,
2255 SECT_OFF_TEXT (os->objfile));
2256
2257 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2258 if (interp_sect)
2259 {
2260 info->interp_text_sect_low =
2261 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2262 info->interp_text_sect_high =
2263 info->interp_text_sect_low
2264 + bfd_section_size (tmp_bfd, interp_sect);
2265 }
2266 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2267 if (interp_sect)
2268 {
2269 info->interp_plt_sect_low =
2270 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2271 info->interp_plt_sect_high =
2272 info->interp_plt_sect_low
2273 + bfd_section_size (tmp_bfd, interp_sect);
2274 }
2275
2276 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2277 return 1;
2278 }
2279 }
2280
2281 /* Find the program interpreter; if not found, warn the user and drop
2282 into the old breakpoint at symbol code. */
2283 interp_name = find_program_interpreter ();
2284 if (interp_name)
2285 {
2286 CORE_ADDR load_addr = 0;
2287 int load_addr_found = 0;
2288 int loader_found_in_list = 0;
2289 struct so_list *so;
2290 struct target_ops *tmp_bfd_target;
2291
2292 sym_addr = 0;
2293
2294 /* Now we need to figure out where the dynamic linker was
2295 loaded so that we can load its symbols and place a breakpoint
2296 in the dynamic linker itself.
2297
2298 This address is stored on the stack. However, I've been unable
2299 to find any magic formula to find it for Solaris (appears to
2300 be trivial on GNU/Linux). Therefore, we have to try an alternate
2301 mechanism to find the dynamic linker's base address. */
2302
2303 gdb_bfd_ref_ptr tmp_bfd;
2304 TRY
2305 {
2306 tmp_bfd = solib_bfd_open (interp_name);
2307 }
2308 CATCH (ex, RETURN_MASK_ALL)
2309 {
2310 }
2311 END_CATCH
2312
2313 if (tmp_bfd == NULL)
2314 goto bkpt_at_symbol;
2315
2316 /* Now convert the TMP_BFD into a target. That way target, as
2317 well as BFD operations can be used. target_bfd_reopen
2318 acquires its own reference. */
2319 tmp_bfd_target = target_bfd_reopen (tmp_bfd.get ());
2320
2321 /* On a running target, we can get the dynamic linker's base
2322 address from the shared library table. */
2323 so = master_so_list ();
2324 while (so)
2325 {
2326 if (svr4_same_1 (interp_name, so->so_original_name))
2327 {
2328 load_addr_found = 1;
2329 loader_found_in_list = 1;
2330 load_addr = lm_addr_check (so, tmp_bfd.get ());
2331 break;
2332 }
2333 so = so->next;
2334 }
2335
2336 /* If we were not able to find the base address of the loader
2337 from our so_list, then try using the AT_BASE auxilliary entry. */
2338 if (!load_addr_found)
2339 if (target_auxv_search (current_top_target (), AT_BASE, &load_addr) > 0)
2340 {
2341 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
2342
2343 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2344 that `+ load_addr' will overflow CORE_ADDR width not creating
2345 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2346 GDB. */
2347
2348 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
2349 {
2350 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
2351 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd.get (),
2352 tmp_bfd_target);
2353
2354 gdb_assert (load_addr < space_size);
2355
2356 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2357 64bit ld.so with 32bit executable, it should not happen. */
2358
2359 if (tmp_entry_point < space_size
2360 && tmp_entry_point + load_addr >= space_size)
2361 load_addr -= space_size;
2362 }
2363
2364 load_addr_found = 1;
2365 }
2366
2367 /* Otherwise we find the dynamic linker's base address by examining
2368 the current pc (which should point at the entry point for the
2369 dynamic linker) and subtracting the offset of the entry point.
2370
2371 This is more fragile than the previous approaches, but is a good
2372 fallback method because it has actually been working well in
2373 most cases. */
2374 if (!load_addr_found)
2375 {
2376 struct regcache *regcache
2377 = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
2378
2379 load_addr = (regcache_read_pc (regcache)
2380 - exec_entry_point (tmp_bfd.get (), tmp_bfd_target));
2381 }
2382
2383 if (!loader_found_in_list)
2384 {
2385 info->debug_loader_name = xstrdup (interp_name);
2386 info->debug_loader_offset_p = 1;
2387 info->debug_loader_offset = load_addr;
2388 solib_add (NULL, from_tty, auto_solib_add);
2389 }
2390
2391 /* Record the relocated start and end address of the dynamic linker
2392 text and plt section for svr4_in_dynsym_resolve_code. */
2393 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
2394 if (interp_sect)
2395 {
2396 info->interp_text_sect_low =
2397 bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr;
2398 info->interp_text_sect_high =
2399 info->interp_text_sect_low
2400 + bfd_section_size (tmp_bfd.get (), interp_sect);
2401 }
2402 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
2403 if (interp_sect)
2404 {
2405 info->interp_plt_sect_low =
2406 bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr;
2407 info->interp_plt_sect_high =
2408 info->interp_plt_sect_low
2409 + bfd_section_size (tmp_bfd.get (), interp_sect);
2410 }
2411
2412 /* Now try to set a breakpoint in the dynamic linker. */
2413 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2414 {
2415 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd.get (),
2416 cmp_name_and_sec_flags,
2417 *bkpt_namep);
2418 if (sym_addr != 0)
2419 break;
2420 }
2421
2422 if (sym_addr != 0)
2423 /* Convert 'sym_addr' from a function pointer to an address.
2424 Because we pass tmp_bfd_target instead of the current
2425 target, this will always produce an unrelocated value. */
2426 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2427 sym_addr,
2428 tmp_bfd_target);
2429
2430 /* We're done with both the temporary bfd and target. Closing
2431 the target closes the underlying bfd, because it holds the
2432 only remaining reference. */
2433 target_close (tmp_bfd_target);
2434
2435 if (sym_addr != 0)
2436 {
2437 svr4_create_solib_event_breakpoints (target_gdbarch (),
2438 load_addr + sym_addr);
2439 xfree (interp_name);
2440 return 1;
2441 }
2442
2443 /* For whatever reason we couldn't set a breakpoint in the dynamic
2444 linker. Warn and drop into the old code. */
2445 bkpt_at_symbol:
2446 xfree (interp_name);
2447 warning (_("Unable to find dynamic linker breakpoint function.\n"
2448 "GDB will be unable to debug shared library initializers\n"
2449 "and track explicitly loaded dynamic code."));
2450 }
2451
2452 /* Scan through the lists of symbols, trying to look up the symbol and
2453 set a breakpoint there. Terminate loop when we/if we succeed. */
2454
2455 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2456 {
2457 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
2458 if ((msymbol.minsym != NULL)
2459 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2460 {
2461 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2462 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2463 sym_addr,
2464 current_top_target ());
2465 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2466 return 1;
2467 }
2468 }
2469
2470 if (interp_name != NULL && !current_inferior ()->attach_flag)
2471 {
2472 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
2473 {
2474 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
2475 if ((msymbol.minsym != NULL)
2476 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2477 {
2478 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2479 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2480 sym_addr,
2481 current_top_target ());
2482 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2483 return 1;
2484 }
2485 }
2486 }
2487 return 0;
2488 }
2489
2490 /* Read the ELF program headers from ABFD. Return the contents and
2491 set *PHDRS_SIZE to the size of the program headers. */
2492
2493 static gdb_byte *
2494 read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
2495 {
2496 Elf_Internal_Ehdr *ehdr;
2497 gdb_byte *buf;
2498
2499 ehdr = elf_elfheader (abfd);
2500
2501 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2502 if (*phdrs_size == 0)
2503 return NULL;
2504
2505 buf = (gdb_byte *) xmalloc (*phdrs_size);
2506 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
2507 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
2508 {
2509 xfree (buf);
2510 return NULL;
2511 }
2512
2513 return buf;
2514 }
2515
2516 /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2517 exec_bfd. Otherwise return 0.
2518
2519 We relocate all of the sections by the same amount. This
2520 behavior is mandated by recent editions of the System V ABI.
2521 According to the System V Application Binary Interface,
2522 Edition 4.1, page 5-5:
2523
2524 ... Though the system chooses virtual addresses for
2525 individual processes, it maintains the segments' relative
2526 positions. Because position-independent code uses relative
2527 addressesing between segments, the difference between
2528 virtual addresses in memory must match the difference
2529 between virtual addresses in the file. The difference
2530 between the virtual address of any segment in memory and
2531 the corresponding virtual address in the file is thus a
2532 single constant value for any one executable or shared
2533 object in a given process. This difference is the base
2534 address. One use of the base address is to relocate the
2535 memory image of the program during dynamic linking.
2536
2537 The same language also appears in Edition 4.0 of the System V
2538 ABI and is left unspecified in some of the earlier editions.
2539
2540 Decide if the objfile needs to be relocated. As indicated above, we will
2541 only be here when execution is stopped. But during attachment PC can be at
2542 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2543 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2544 regcache_read_pc would point to the interpreter and not the main executable.
2545
2546 So, to summarize, relocations are necessary when the start address obtained
2547 from the executable is different from the address in auxv AT_ENTRY entry.
2548
2549 [ The astute reader will note that we also test to make sure that
2550 the executable in question has the DYNAMIC flag set. It is my
2551 opinion that this test is unnecessary (undesirable even). It
2552 was added to avoid inadvertent relocation of an executable
2553 whose e_type member in the ELF header is not ET_DYN. There may
2554 be a time in the future when it is desirable to do relocations
2555 on other types of files as well in which case this condition
2556 should either be removed or modified to accomodate the new file
2557 type. - Kevin, Nov 2000. ] */
2558
2559 static int
2560 svr4_exec_displacement (CORE_ADDR *displacementp)
2561 {
2562 /* ENTRY_POINT is a possible function descriptor - before
2563 a call to gdbarch_convert_from_func_ptr_addr. */
2564 CORE_ADDR entry_point, exec_displacement;
2565
2566 if (exec_bfd == NULL)
2567 return 0;
2568
2569 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2570 being executed themselves and PIE (Position Independent Executable)
2571 executables are ET_DYN. */
2572
2573 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
2574 return 0;
2575
2576 if (target_auxv_search (current_top_target (), AT_ENTRY, &entry_point) <= 0)
2577 return 0;
2578
2579 exec_displacement = entry_point - bfd_get_start_address (exec_bfd);
2580
2581 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
2582 alignment. It is cheaper than the program headers comparison below. */
2583
2584 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2585 {
2586 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
2587
2588 /* p_align of PT_LOAD segments does not specify any alignment but
2589 only congruency of addresses:
2590 p_offset % p_align == p_vaddr % p_align
2591 Kernel is free to load the executable with lower alignment. */
2592
2593 if ((exec_displacement & (elf->minpagesize - 1)) != 0)
2594 return 0;
2595 }
2596
2597 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2598 comparing their program headers. If the program headers in the auxilliary
2599 vector do not match the program headers in the executable, then we are
2600 looking at a different file than the one used by the kernel - for
2601 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2602
2603 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2604 {
2605 /* Be optimistic and clear OK only if GDB was able to verify the headers
2606 really do not match. */
2607 int phdrs_size, phdrs2_size, ok = 1;
2608 gdb_byte *buf, *buf2;
2609 int arch_size;
2610
2611 buf = read_program_header (-1, &phdrs_size, &arch_size, NULL);
2612 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
2613 if (buf != NULL && buf2 != NULL)
2614 {
2615 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
2616
2617 /* We are dealing with three different addresses. EXEC_BFD
2618 represents current address in on-disk file. target memory content
2619 may be different from EXEC_BFD as the file may have been prelinked
2620 to a different address after the executable has been loaded.
2621 Moreover the address of placement in target memory can be
2622 different from what the program headers in target memory say -
2623 this is the goal of PIE.
2624
2625 Detected DISPLACEMENT covers both the offsets of PIE placement and
2626 possible new prelink performed after start of the program. Here
2627 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2628 content offset for the verification purpose. */
2629
2630 if (phdrs_size != phdrs2_size
2631 || bfd_get_arch_size (exec_bfd) != arch_size)
2632 ok = 0;
2633 else if (arch_size == 32
2634 && phdrs_size >= sizeof (Elf32_External_Phdr)
2635 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
2636 {
2637 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2638 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2639 CORE_ADDR displacement = 0;
2640 int i;
2641
2642 /* DISPLACEMENT could be found more easily by the difference of
2643 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2644 already have enough information to compute that displacement
2645 with what we've read. */
2646
2647 for (i = 0; i < ehdr2->e_phnum; i++)
2648 if (phdr2[i].p_type == PT_LOAD)
2649 {
2650 Elf32_External_Phdr *phdrp;
2651 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2652 CORE_ADDR vaddr, paddr;
2653 CORE_ADDR displacement_vaddr = 0;
2654 CORE_ADDR displacement_paddr = 0;
2655
2656 phdrp = &((Elf32_External_Phdr *) buf)[i];
2657 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2658 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2659
2660 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2661 byte_order);
2662 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2663
2664 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2665 byte_order);
2666 displacement_paddr = paddr - phdr2[i].p_paddr;
2667
2668 if (displacement_vaddr == displacement_paddr)
2669 displacement = displacement_vaddr;
2670
2671 break;
2672 }
2673
2674 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2675
2676 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
2677 {
2678 Elf32_External_Phdr *phdrp;
2679 Elf32_External_Phdr *phdr2p;
2680 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2681 CORE_ADDR vaddr, paddr;
2682 asection *plt2_asect;
2683
2684 phdrp = &((Elf32_External_Phdr *) buf)[i];
2685 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2686 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2687 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
2688
2689 /* PT_GNU_STACK is an exception by being never relocated by
2690 prelink as its addresses are always zero. */
2691
2692 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2693 continue;
2694
2695 /* Check also other adjustment combinations - PR 11786. */
2696
2697 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2698 byte_order);
2699 vaddr -= displacement;
2700 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2701
2702 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2703 byte_order);
2704 paddr -= displacement;
2705 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2706
2707 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2708 continue;
2709
2710 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2711 CentOS-5 has problems with filesz, memsz as well.
2712 See PR 11786. */
2713 if (phdr2[i].p_type == PT_GNU_RELRO)
2714 {
2715 Elf32_External_Phdr tmp_phdr = *phdrp;
2716 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2717
2718 memset (tmp_phdr.p_filesz, 0, 4);
2719 memset (tmp_phdr.p_memsz, 0, 4);
2720 memset (tmp_phdr.p_flags, 0, 4);
2721 memset (tmp_phdr.p_align, 0, 4);
2722 memset (tmp_phdr2.p_filesz, 0, 4);
2723 memset (tmp_phdr2.p_memsz, 0, 4);
2724 memset (tmp_phdr2.p_flags, 0, 4);
2725 memset (tmp_phdr2.p_align, 0, 4);
2726
2727 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2728 == 0)
2729 continue;
2730 }
2731
2732 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2733 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2734 if (plt2_asect)
2735 {
2736 int content2;
2737 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2738 CORE_ADDR filesz;
2739
2740 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2741 & SEC_HAS_CONTENTS) != 0;
2742
2743 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2744 byte_order);
2745
2746 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2747 FILESZ is from the in-memory image. */
2748 if (content2)
2749 filesz += bfd_get_section_size (plt2_asect);
2750 else
2751 filesz -= bfd_get_section_size (plt2_asect);
2752
2753 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2754 filesz);
2755
2756 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2757 continue;
2758 }
2759
2760 ok = 0;
2761 break;
2762 }
2763 }
2764 else if (arch_size == 64
2765 && phdrs_size >= sizeof (Elf64_External_Phdr)
2766 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
2767 {
2768 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2769 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2770 CORE_ADDR displacement = 0;
2771 int i;
2772
2773 /* DISPLACEMENT could be found more easily by the difference of
2774 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2775 already have enough information to compute that displacement
2776 with what we've read. */
2777
2778 for (i = 0; i < ehdr2->e_phnum; i++)
2779 if (phdr2[i].p_type == PT_LOAD)
2780 {
2781 Elf64_External_Phdr *phdrp;
2782 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2783 CORE_ADDR vaddr, paddr;
2784 CORE_ADDR displacement_vaddr = 0;
2785 CORE_ADDR displacement_paddr = 0;
2786
2787 phdrp = &((Elf64_External_Phdr *) buf)[i];
2788 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2789 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2790
2791 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2792 byte_order);
2793 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2794
2795 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2796 byte_order);
2797 displacement_paddr = paddr - phdr2[i].p_paddr;
2798
2799 if (displacement_vaddr == displacement_paddr)
2800 displacement = displacement_vaddr;
2801
2802 break;
2803 }
2804
2805 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2806
2807 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
2808 {
2809 Elf64_External_Phdr *phdrp;
2810 Elf64_External_Phdr *phdr2p;
2811 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2812 CORE_ADDR vaddr, paddr;
2813 asection *plt2_asect;
2814
2815 phdrp = &((Elf64_External_Phdr *) buf)[i];
2816 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2817 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2818 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
2819
2820 /* PT_GNU_STACK is an exception by being never relocated by
2821 prelink as its addresses are always zero. */
2822
2823 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2824 continue;
2825
2826 /* Check also other adjustment combinations - PR 11786. */
2827
2828 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2829 byte_order);
2830 vaddr -= displacement;
2831 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2832
2833 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2834 byte_order);
2835 paddr -= displacement;
2836 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2837
2838 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2839 continue;
2840
2841 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2842 CentOS-5 has problems with filesz, memsz as well.
2843 See PR 11786. */
2844 if (phdr2[i].p_type == PT_GNU_RELRO)
2845 {
2846 Elf64_External_Phdr tmp_phdr = *phdrp;
2847 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2848
2849 memset (tmp_phdr.p_filesz, 0, 8);
2850 memset (tmp_phdr.p_memsz, 0, 8);
2851 memset (tmp_phdr.p_flags, 0, 4);
2852 memset (tmp_phdr.p_align, 0, 8);
2853 memset (tmp_phdr2.p_filesz, 0, 8);
2854 memset (tmp_phdr2.p_memsz, 0, 8);
2855 memset (tmp_phdr2.p_flags, 0, 4);
2856 memset (tmp_phdr2.p_align, 0, 8);
2857
2858 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2859 == 0)
2860 continue;
2861 }
2862
2863 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2864 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2865 if (plt2_asect)
2866 {
2867 int content2;
2868 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2869 CORE_ADDR filesz;
2870
2871 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2872 & SEC_HAS_CONTENTS) != 0;
2873
2874 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2875 byte_order);
2876
2877 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2878 FILESZ is from the in-memory image. */
2879 if (content2)
2880 filesz += bfd_get_section_size (plt2_asect);
2881 else
2882 filesz -= bfd_get_section_size (plt2_asect);
2883
2884 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2885 filesz);
2886
2887 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2888 continue;
2889 }
2890
2891 ok = 0;
2892 break;
2893 }
2894 }
2895 else
2896 ok = 0;
2897 }
2898
2899 xfree (buf);
2900 xfree (buf2);
2901
2902 if (!ok)
2903 return 0;
2904 }
2905
2906 if (info_verbose)
2907 {
2908 /* It can be printed repeatedly as there is no easy way to check
2909 the executable symbols/file has been already relocated to
2910 displacement. */
2911
2912 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2913 "displacement %s for \"%s\".\n"),
2914 paddress (target_gdbarch (), exec_displacement),
2915 bfd_get_filename (exec_bfd));
2916 }
2917
2918 *displacementp = exec_displacement;
2919 return 1;
2920 }
2921
2922 /* Relocate the main executable. This function should be called upon
2923 stopping the inferior process at the entry point to the program.
2924 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2925 different, the main executable is relocated by the proper amount. */
2926
2927 static void
2928 svr4_relocate_main_executable (void)
2929 {
2930 CORE_ADDR displacement;
2931
2932 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2933 probably contains the offsets computed using the PIE displacement
2934 from the previous run, which of course are irrelevant for this run.
2935 So we need to determine the new PIE displacement and recompute the
2936 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2937 already contains pre-computed offsets.
2938
2939 If we cannot compute the PIE displacement, either:
2940
2941 - The executable is not PIE.
2942
2943 - SYMFILE_OBJFILE does not match the executable started in the target.
2944 This can happen for main executable symbols loaded at the host while
2945 `ld.so --ld-args main-executable' is loaded in the target.
2946
2947 Then we leave the section offsets untouched and use them as is for
2948 this run. Either:
2949
2950 - These section offsets were properly reset earlier, and thus
2951 already contain the correct values. This can happen for instance
2952 when reconnecting via the remote protocol to a target that supports
2953 the `qOffsets' packet.
2954
2955 - The section offsets were not reset earlier, and the best we can
2956 hope is that the old offsets are still applicable to the new run. */
2957
2958 if (! svr4_exec_displacement (&displacement))
2959 return;
2960
2961 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2962 addresses. */
2963
2964 if (symfile_objfile)
2965 {
2966 struct section_offsets *new_offsets;
2967 int i;
2968
2969 new_offsets = XALLOCAVEC (struct section_offsets,
2970 symfile_objfile->num_sections);
2971
2972 for (i = 0; i < symfile_objfile->num_sections; i++)
2973 new_offsets->offsets[i] = displacement;
2974
2975 objfile_relocate (symfile_objfile, new_offsets);
2976 }
2977 else if (exec_bfd)
2978 {
2979 asection *asect;
2980
2981 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2982 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2983 (bfd_section_vma (exec_bfd, asect)
2984 + displacement));
2985 }
2986 }
2987
2988 /* Implement the "create_inferior_hook" target_solib_ops method.
2989
2990 For SVR4 executables, this first instruction is either the first
2991 instruction in the dynamic linker (for dynamically linked
2992 executables) or the instruction at "start" for statically linked
2993 executables. For dynamically linked executables, the system
2994 first exec's /lib/libc.so.N, which contains the dynamic linker,
2995 and starts it running. The dynamic linker maps in any needed
2996 shared libraries, maps in the actual user executable, and then
2997 jumps to "start" in the user executable.
2998
2999 We can arrange to cooperate with the dynamic linker to discover the
3000 names of shared libraries that are dynamically linked, and the base
3001 addresses to which they are linked.
3002
3003 This function is responsible for discovering those names and
3004 addresses, and saving sufficient information about them to allow
3005 their symbols to be read at a later time. */
3006
3007 static void
3008 svr4_solib_create_inferior_hook (int from_tty)
3009 {
3010 struct svr4_info *info;
3011
3012 info = get_svr4_info ();
3013
3014 /* Clear the probes-based interface's state. */
3015 free_probes_table (info);
3016 free_solib_list (info);
3017
3018 /* Relocate the main executable if necessary. */
3019 svr4_relocate_main_executable ();
3020
3021 /* No point setting a breakpoint in the dynamic linker if we can't
3022 hit it (e.g., a core file, or a trace file). */
3023 if (!target_has_execution)
3024 return;
3025
3026 if (!svr4_have_link_map_offsets ())
3027 return;
3028
3029 if (!enable_break (info, from_tty))
3030 return;
3031 }
3032
3033 static void
3034 svr4_clear_solib (void)
3035 {
3036 struct svr4_info *info;
3037
3038 info = get_svr4_info ();
3039 info->debug_base = 0;
3040 info->debug_loader_offset_p = 0;
3041 info->debug_loader_offset = 0;
3042 xfree (info->debug_loader_name);
3043 info->debug_loader_name = NULL;
3044 }
3045
3046 /* Clear any bits of ADDR that wouldn't fit in a target-format
3047 data pointer. "Data pointer" here refers to whatever sort of
3048 address the dynamic linker uses to manage its sections. At the
3049 moment, we don't support shared libraries on any processors where
3050 code and data pointers are different sizes.
3051
3052 This isn't really the right solution. What we really need here is
3053 a way to do arithmetic on CORE_ADDR values that respects the
3054 natural pointer/address correspondence. (For example, on the MIPS,
3055 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
3056 sign-extend the value. There, simply truncating the bits above
3057 gdbarch_ptr_bit, as we do below, is no good.) This should probably
3058 be a new gdbarch method or something. */
3059 static CORE_ADDR
3060 svr4_truncate_ptr (CORE_ADDR addr)
3061 {
3062 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
3063 /* We don't need to truncate anything, and the bit twiddling below
3064 will fail due to overflow problems. */
3065 return addr;
3066 else
3067 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
3068 }
3069
3070
3071 static void
3072 svr4_relocate_section_addresses (struct so_list *so,
3073 struct target_section *sec)
3074 {
3075 bfd *abfd = sec->the_bfd_section->owner;
3076
3077 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
3078 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
3079 }
3080 \f
3081
3082 /* Architecture-specific operations. */
3083
3084 /* Per-architecture data key. */
3085 static struct gdbarch_data *solib_svr4_data;
3086
3087 struct solib_svr4_ops
3088 {
3089 /* Return a description of the layout of `struct link_map'. */
3090 struct link_map_offsets *(*fetch_link_map_offsets)(void);
3091 };
3092
3093 /* Return a default for the architecture-specific operations. */
3094
3095 static void *
3096 solib_svr4_init (struct obstack *obstack)
3097 {
3098 struct solib_svr4_ops *ops;
3099
3100 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
3101 ops->fetch_link_map_offsets = NULL;
3102 return ops;
3103 }
3104
3105 /* Set the architecture-specific `struct link_map_offsets' fetcher for
3106 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
3107
3108 void
3109 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3110 struct link_map_offsets *(*flmo) (void))
3111 {
3112 struct solib_svr4_ops *ops
3113 = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data);
3114
3115 ops->fetch_link_map_offsets = flmo;
3116
3117 set_solib_ops (gdbarch, &svr4_so_ops);
3118 }
3119
3120 /* Fetch a link_map_offsets structure using the architecture-specific
3121 `struct link_map_offsets' fetcher. */
3122
3123 static struct link_map_offsets *
3124 svr4_fetch_link_map_offsets (void)
3125 {
3126 struct solib_svr4_ops *ops
3127 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3128 solib_svr4_data);
3129
3130 gdb_assert (ops->fetch_link_map_offsets);
3131 return ops->fetch_link_map_offsets ();
3132 }
3133
3134 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3135
3136 static int
3137 svr4_have_link_map_offsets (void)
3138 {
3139 struct solib_svr4_ops *ops
3140 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3141 solib_svr4_data);
3142
3143 return (ops->fetch_link_map_offsets != NULL);
3144 }
3145 \f
3146
3147 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
3148 `struct r_debug' and a `struct link_map' that are binary compatible
3149 with the origional SVR4 implementation. */
3150
3151 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3152 for an ILP32 SVR4 system. */
3153
3154 struct link_map_offsets *
3155 svr4_ilp32_fetch_link_map_offsets (void)
3156 {
3157 static struct link_map_offsets lmo;
3158 static struct link_map_offsets *lmp = NULL;
3159
3160 if (lmp == NULL)
3161 {
3162 lmp = &lmo;
3163
3164 lmo.r_version_offset = 0;
3165 lmo.r_version_size = 4;
3166 lmo.r_map_offset = 4;
3167 lmo.r_brk_offset = 8;
3168 lmo.r_ldsomap_offset = 20;
3169
3170 /* Everything we need is in the first 20 bytes. */
3171 lmo.link_map_size = 20;
3172 lmo.l_addr_offset = 0;
3173 lmo.l_name_offset = 4;
3174 lmo.l_ld_offset = 8;
3175 lmo.l_next_offset = 12;
3176 lmo.l_prev_offset = 16;
3177 }
3178
3179 return lmp;
3180 }
3181
3182 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3183 for an LP64 SVR4 system. */
3184
3185 struct link_map_offsets *
3186 svr4_lp64_fetch_link_map_offsets (void)
3187 {
3188 static struct link_map_offsets lmo;
3189 static struct link_map_offsets *lmp = NULL;
3190
3191 if (lmp == NULL)
3192 {
3193 lmp = &lmo;
3194
3195 lmo.r_version_offset = 0;
3196 lmo.r_version_size = 4;
3197 lmo.r_map_offset = 8;
3198 lmo.r_brk_offset = 16;
3199 lmo.r_ldsomap_offset = 40;
3200
3201 /* Everything we need is in the first 40 bytes. */
3202 lmo.link_map_size = 40;
3203 lmo.l_addr_offset = 0;
3204 lmo.l_name_offset = 8;
3205 lmo.l_ld_offset = 16;
3206 lmo.l_next_offset = 24;
3207 lmo.l_prev_offset = 32;
3208 }
3209
3210 return lmp;
3211 }
3212 \f
3213
3214 struct target_so_ops svr4_so_ops;
3215
3216 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3217 different rule for symbol lookup. The lookup begins here in the DSO, not in
3218 the main executable. */
3219
3220 static struct block_symbol
3221 elf_lookup_lib_symbol (struct objfile *objfile,
3222 const char *name,
3223 const domain_enum domain)
3224 {
3225 bfd *abfd;
3226
3227 if (objfile == symfile_objfile)
3228 abfd = exec_bfd;
3229 else
3230 {
3231 /* OBJFILE should have been passed as the non-debug one. */
3232 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
3233
3234 abfd = objfile->obfd;
3235 }
3236
3237 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL, NULL) != 1)
3238 return (struct block_symbol) {NULL, NULL};
3239
3240 return lookup_global_symbol_from_objfile (objfile, name, domain);
3241 }
3242
3243 void
3244 _initialize_svr4_solib (void)
3245 {
3246 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
3247 solib_svr4_pspace_data
3248 = register_program_space_data_with_cleanup (NULL, svr4_pspace_data_cleanup);
3249
3250 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
3251 svr4_so_ops.free_so = svr4_free_so;
3252 svr4_so_ops.clear_so = svr4_clear_so;
3253 svr4_so_ops.clear_solib = svr4_clear_solib;
3254 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
3255 svr4_so_ops.current_sos = svr4_current_sos;
3256 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
3257 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
3258 svr4_so_ops.bfd_open = solib_bfd_open;
3259 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
3260 svr4_so_ops.same = svr4_same;
3261 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
3262 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3263 svr4_so_ops.handle_event = svr4_handle_solib_event;
3264 }
This page took 0.189958 seconds and 5 git commands to generate.