Remove null_block_symbol
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "elf/external.h"
23 #include "elf/common.h"
24 #include "elf/mips.h"
25
26 #include "symtab.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbcore.h"
31 #include "target.h"
32 #include "inferior.h"
33 #include "infrun.h"
34 #include "regcache.h"
35 #include "gdbthread.h"
36 #include "observable.h"
37
38 #include "solist.h"
39 #include "solib.h"
40 #include "solib-svr4.h"
41
42 #include "bfd-target.h"
43 #include "elf-bfd.h"
44 #include "exec.h"
45 #include "auxv.h"
46 #include "gdb_bfd.h"
47 #include "probe.h"
48
49 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
50 static int svr4_have_link_map_offsets (void);
51 static void svr4_relocate_main_executable (void);
52 static void svr4_free_library_list (void *p_list);
53
54 /* On SVR4 systems, a list of symbols in the dynamic linker where
55 GDB can try to place a breakpoint to monitor shared library
56 events.
57
58 If none of these symbols are found, or other errors occur, then
59 SVR4 systems will fall back to using a symbol as the "startup
60 mapping complete" breakpoint address. */
61
62 static const char * const solib_break_names[] =
63 {
64 "r_debug_state",
65 "_r_debug_state",
66 "_dl_debug_state",
67 "rtld_db_dlactivity",
68 "__dl_rtld_db_dlactivity",
69 "_rtld_debug_state",
70
71 NULL
72 };
73
74 static const char * const bkpt_names[] =
75 {
76 "_start",
77 "__start",
78 "main",
79 NULL
80 };
81
82 static const char * const main_name_list[] =
83 {
84 "main_$main",
85 NULL
86 };
87
88 /* What to do when a probe stop occurs. */
89
90 enum probe_action
91 {
92 /* Something went seriously wrong. Stop using probes and
93 revert to using the older interface. */
94 PROBES_INTERFACE_FAILED,
95
96 /* No action is required. The shared object list is still
97 valid. */
98 DO_NOTHING,
99
100 /* The shared object list should be reloaded entirely. */
101 FULL_RELOAD,
102
103 /* Attempt to incrementally update the shared object list. If
104 the update fails or is not possible, fall back to reloading
105 the list in full. */
106 UPDATE_OR_RELOAD,
107 };
108
109 /* A probe's name and its associated action. */
110
111 struct probe_info
112 {
113 /* The name of the probe. */
114 const char *name;
115
116 /* What to do when a probe stop occurs. */
117 enum probe_action action;
118 };
119
120 /* A list of named probes and their associated actions. If all
121 probes are present in the dynamic linker then the probes-based
122 interface will be used. */
123
124 static const struct probe_info probe_info[] =
125 {
126 { "init_start", DO_NOTHING },
127 { "init_complete", FULL_RELOAD },
128 { "map_start", DO_NOTHING },
129 { "map_failed", DO_NOTHING },
130 { "reloc_complete", UPDATE_OR_RELOAD },
131 { "unmap_start", DO_NOTHING },
132 { "unmap_complete", FULL_RELOAD },
133 };
134
135 #define NUM_PROBES ARRAY_SIZE (probe_info)
136
137 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
138 the same shared library. */
139
140 static int
141 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
142 {
143 if (strcmp (gdb_so_name, inferior_so_name) == 0)
144 return 1;
145
146 /* On Solaris, when starting inferior we think that dynamic linker is
147 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
148 contains /lib/ld.so.1. Sometimes one file is a link to another, but
149 sometimes they have identical content, but are not linked to each
150 other. We don't restrict this check for Solaris, but the chances
151 of running into this situation elsewhere are very low. */
152 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
153 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
154 return 1;
155
156 /* Similarly, we observed the same issue with amd64 and sparcv9, but with
157 different locations. */
158 if (strcmp (gdb_so_name, "/usr/lib/amd64/ld.so.1") == 0
159 && strcmp (inferior_so_name, "/lib/amd64/ld.so.1") == 0)
160 return 1;
161
162 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
163 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
164 return 1;
165
166 return 0;
167 }
168
169 static int
170 svr4_same (struct so_list *gdb, struct so_list *inferior)
171 {
172 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
173 }
174
175 static std::unique_ptr<lm_info_svr4>
176 lm_info_read (CORE_ADDR lm_addr)
177 {
178 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
179 std::unique_ptr<lm_info_svr4> lm_info;
180
181 gdb::byte_vector lm (lmo->link_map_size);
182
183 if (target_read_memory (lm_addr, lm.data (), lmo->link_map_size) != 0)
184 warning (_("Error reading shared library list entry at %s"),
185 paddress (target_gdbarch (), lm_addr));
186 else
187 {
188 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
189
190 lm_info.reset (new lm_info_svr4);
191 lm_info->lm_addr = lm_addr;
192
193 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
194 ptr_type);
195 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
196 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
197 ptr_type);
198 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
199 ptr_type);
200 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
201 ptr_type);
202 }
203
204 return lm_info;
205 }
206
207 static int
208 has_lm_dynamic_from_link_map (void)
209 {
210 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
211
212 return lmo->l_ld_offset >= 0;
213 }
214
215 static CORE_ADDR
216 lm_addr_check (const struct so_list *so, bfd *abfd)
217 {
218 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
219
220 if (!li->l_addr_p)
221 {
222 struct bfd_section *dyninfo_sect;
223 CORE_ADDR l_addr, l_dynaddr, dynaddr;
224
225 l_addr = li->l_addr_inferior;
226
227 if (! abfd || ! has_lm_dynamic_from_link_map ())
228 goto set_addr;
229
230 l_dynaddr = li->l_ld;
231
232 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
233 if (dyninfo_sect == NULL)
234 goto set_addr;
235
236 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
237
238 if (dynaddr + l_addr != l_dynaddr)
239 {
240 CORE_ADDR align = 0x1000;
241 CORE_ADDR minpagesize = align;
242
243 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
244 {
245 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
246 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
247 int i;
248
249 align = 1;
250
251 for (i = 0; i < ehdr->e_phnum; i++)
252 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
253 align = phdr[i].p_align;
254
255 minpagesize = get_elf_backend_data (abfd)->minpagesize;
256 }
257
258 /* Turn it into a mask. */
259 align--;
260
261 /* If the changes match the alignment requirements, we
262 assume we're using a core file that was generated by the
263 same binary, just prelinked with a different base offset.
264 If it doesn't match, we may have a different binary, the
265 same binary with the dynamic table loaded at an unrelated
266 location, or anything, really. To avoid regressions,
267 don't adjust the base offset in the latter case, although
268 odds are that, if things really changed, debugging won't
269 quite work.
270
271 One could expect more the condition
272 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
273 but the one below is relaxed for PPC. The PPC kernel supports
274 either 4k or 64k page sizes. To be prepared for 64k pages,
275 PPC ELF files are built using an alignment requirement of 64k.
276 However, when running on a kernel supporting 4k pages, the memory
277 mapping of the library may not actually happen on a 64k boundary!
278
279 (In the usual case where (l_addr & align) == 0, this check is
280 equivalent to the possibly expected check above.)
281
282 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
283
284 l_addr = l_dynaddr - dynaddr;
285
286 if ((l_addr & (minpagesize - 1)) == 0
287 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
288 {
289 if (info_verbose)
290 printf_unfiltered (_("Using PIC (Position Independent Code) "
291 "prelink displacement %s for \"%s\".\n"),
292 paddress (target_gdbarch (), l_addr),
293 so->so_name);
294 }
295 else
296 {
297 /* There is no way to verify the library file matches. prelink
298 can during prelinking of an unprelinked file (or unprelinking
299 of a prelinked file) shift the DYNAMIC segment by arbitrary
300 offset without any page size alignment. There is no way to
301 find out the ELF header and/or Program Headers for a limited
302 verification if it they match. One could do a verification
303 of the DYNAMIC segment. Still the found address is the best
304 one GDB could find. */
305
306 warning (_(".dynamic section for \"%s\" "
307 "is not at the expected address "
308 "(wrong library or version mismatch?)"), so->so_name);
309 }
310 }
311
312 set_addr:
313 li->l_addr = l_addr;
314 li->l_addr_p = 1;
315 }
316
317 return li->l_addr;
318 }
319
320 /* Per pspace SVR4 specific data. */
321
322 struct svr4_info
323 {
324 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
325
326 /* Validity flag for debug_loader_offset. */
327 int debug_loader_offset_p;
328
329 /* Load address for the dynamic linker, inferred. */
330 CORE_ADDR debug_loader_offset;
331
332 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
333 char *debug_loader_name;
334
335 /* Load map address for the main executable. */
336 CORE_ADDR main_lm_addr;
337
338 CORE_ADDR interp_text_sect_low;
339 CORE_ADDR interp_text_sect_high;
340 CORE_ADDR interp_plt_sect_low;
341 CORE_ADDR interp_plt_sect_high;
342
343 /* Nonzero if the list of objects was last obtained from the target
344 via qXfer:libraries-svr4:read. */
345 int using_xfer;
346
347 /* Table of struct probe_and_action instances, used by the
348 probes-based interface to map breakpoint addresses to probes
349 and their associated actions. Lookup is performed using
350 probe_and_action->prob->address. */
351 htab_t probes_table;
352
353 /* List of objects loaded into the inferior, used by the probes-
354 based interface. */
355 struct so_list *solib_list;
356 };
357
358 /* Per-program-space data key. */
359 static const struct program_space_data *solib_svr4_pspace_data;
360
361 /* Free the probes table. */
362
363 static void
364 free_probes_table (struct svr4_info *info)
365 {
366 if (info->probes_table == NULL)
367 return;
368
369 htab_delete (info->probes_table);
370 info->probes_table = NULL;
371 }
372
373 /* Free the solib list. */
374
375 static void
376 free_solib_list (struct svr4_info *info)
377 {
378 svr4_free_library_list (&info->solib_list);
379 info->solib_list = NULL;
380 }
381
382 static void
383 svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
384 {
385 struct svr4_info *info = (struct svr4_info *) arg;
386
387 free_probes_table (info);
388 free_solib_list (info);
389
390 xfree (info);
391 }
392
393 /* Get the current svr4 data. If none is found yet, add it now. This
394 function always returns a valid object. */
395
396 static struct svr4_info *
397 get_svr4_info (void)
398 {
399 struct svr4_info *info;
400
401 info = (struct svr4_info *) program_space_data (current_program_space,
402 solib_svr4_pspace_data);
403 if (info != NULL)
404 return info;
405
406 info = XCNEW (struct svr4_info);
407 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
408 return info;
409 }
410
411 /* Local function prototypes */
412
413 static int match_main (const char *);
414
415 /* Read program header TYPE from inferior memory. The header is found
416 by scanning the OS auxiliary vector.
417
418 If TYPE == -1, return the program headers instead of the contents of
419 one program header.
420
421 Return vector of bytes holding the program header contents, or an empty
422 optional on failure. If successful and P_ARCH_SIZE is non-NULL, the target
423 architecture size (32-bit or 64-bit) is returned to *P_ARCH_SIZE. Likewise,
424 the base address of the section is returned in *BASE_ADDR. */
425
426 static gdb::optional<gdb::byte_vector>
427 read_program_header (int type, int *p_arch_size, CORE_ADDR *base_addr)
428 {
429 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
430 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
431 int arch_size, sect_size;
432 CORE_ADDR sect_addr;
433 int pt_phdr_p = 0;
434
435 /* Get required auxv elements from target. */
436 if (target_auxv_search (current_top_target (), AT_PHDR, &at_phdr) <= 0)
437 return {};
438 if (target_auxv_search (current_top_target (), AT_PHENT, &at_phent) <= 0)
439 return {};
440 if (target_auxv_search (current_top_target (), AT_PHNUM, &at_phnum) <= 0)
441 return {};
442 if (!at_phdr || !at_phnum)
443 return {};
444
445 /* Determine ELF architecture type. */
446 if (at_phent == sizeof (Elf32_External_Phdr))
447 arch_size = 32;
448 else if (at_phent == sizeof (Elf64_External_Phdr))
449 arch_size = 64;
450 else
451 return {};
452
453 /* Find the requested segment. */
454 if (type == -1)
455 {
456 sect_addr = at_phdr;
457 sect_size = at_phent * at_phnum;
458 }
459 else if (arch_size == 32)
460 {
461 Elf32_External_Phdr phdr;
462 int i;
463
464 /* Search for requested PHDR. */
465 for (i = 0; i < at_phnum; i++)
466 {
467 int p_type;
468
469 if (target_read_memory (at_phdr + i * sizeof (phdr),
470 (gdb_byte *)&phdr, sizeof (phdr)))
471 return {};
472
473 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
474 4, byte_order);
475
476 if (p_type == PT_PHDR)
477 {
478 pt_phdr_p = 1;
479 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
480 4, byte_order);
481 }
482
483 if (p_type == type)
484 break;
485 }
486
487 if (i == at_phnum)
488 return {};
489
490 /* Retrieve address and size. */
491 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
492 4, byte_order);
493 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
494 4, byte_order);
495 }
496 else
497 {
498 Elf64_External_Phdr phdr;
499 int i;
500
501 /* Search for requested PHDR. */
502 for (i = 0; i < at_phnum; i++)
503 {
504 int p_type;
505
506 if (target_read_memory (at_phdr + i * sizeof (phdr),
507 (gdb_byte *)&phdr, sizeof (phdr)))
508 return {};
509
510 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
511 4, byte_order);
512
513 if (p_type == PT_PHDR)
514 {
515 pt_phdr_p = 1;
516 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
517 8, byte_order);
518 }
519
520 if (p_type == type)
521 break;
522 }
523
524 if (i == at_phnum)
525 return {};
526
527 /* Retrieve address and size. */
528 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
529 8, byte_order);
530 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
531 8, byte_order);
532 }
533
534 /* PT_PHDR is optional, but we really need it
535 for PIE to make this work in general. */
536
537 if (pt_phdr_p)
538 {
539 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
540 Relocation offset is the difference between the two. */
541 sect_addr = sect_addr + (at_phdr - pt_phdr);
542 }
543
544 /* Read in requested program header. */
545 gdb::byte_vector buf (sect_size);
546 if (target_read_memory (sect_addr, buf.data (), sect_size))
547 return {};
548
549 if (p_arch_size)
550 *p_arch_size = arch_size;
551 if (base_addr)
552 *base_addr = sect_addr;
553
554 return buf;
555 }
556
557
558 /* Return program interpreter string. */
559 static gdb::optional<gdb::byte_vector>
560 find_program_interpreter (void)
561 {
562 /* If we have an exec_bfd, use its section table. */
563 if (exec_bfd
564 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
565 {
566 struct bfd_section *interp_sect;
567
568 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
569 if (interp_sect != NULL)
570 {
571 int sect_size = bfd_section_size (exec_bfd, interp_sect);
572
573 gdb::byte_vector buf (sect_size);
574 bfd_get_section_contents (exec_bfd, interp_sect, buf.data (), 0,
575 sect_size);
576 return buf;
577 }
578 }
579
580 /* If we didn't find it, use the target auxiliary vector. */
581 return read_program_header (PT_INTERP, NULL, NULL);
582 }
583
584
585 /* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is
586 found, 1 is returned and the corresponding PTR is set. */
587
588 static int
589 scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr,
590 CORE_ADDR *ptr_addr)
591 {
592 int arch_size, step, sect_size;
593 long current_dyntag;
594 CORE_ADDR dyn_ptr, dyn_addr;
595 gdb_byte *bufend, *bufstart, *buf;
596 Elf32_External_Dyn *x_dynp_32;
597 Elf64_External_Dyn *x_dynp_64;
598 struct bfd_section *sect;
599 struct target_section *target_section;
600
601 if (abfd == NULL)
602 return 0;
603
604 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
605 return 0;
606
607 arch_size = bfd_get_arch_size (abfd);
608 if (arch_size == -1)
609 return 0;
610
611 /* Find the start address of the .dynamic section. */
612 sect = bfd_get_section_by_name (abfd, ".dynamic");
613 if (sect == NULL)
614 return 0;
615
616 for (target_section = current_target_sections->sections;
617 target_section < current_target_sections->sections_end;
618 target_section++)
619 if (sect == target_section->the_bfd_section)
620 break;
621 if (target_section < current_target_sections->sections_end)
622 dyn_addr = target_section->addr;
623 else
624 {
625 /* ABFD may come from OBJFILE acting only as a symbol file without being
626 loaded into the target (see add_symbol_file_command). This case is
627 such fallback to the file VMA address without the possibility of
628 having the section relocated to its actual in-memory address. */
629
630 dyn_addr = bfd_section_vma (abfd, sect);
631 }
632
633 /* Read in .dynamic from the BFD. We will get the actual value
634 from memory later. */
635 sect_size = bfd_section_size (abfd, sect);
636 buf = bufstart = (gdb_byte *) alloca (sect_size);
637 if (!bfd_get_section_contents (abfd, sect,
638 buf, 0, sect_size))
639 return 0;
640
641 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
642 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
643 : sizeof (Elf64_External_Dyn);
644 for (bufend = buf + sect_size;
645 buf < bufend;
646 buf += step)
647 {
648 if (arch_size == 32)
649 {
650 x_dynp_32 = (Elf32_External_Dyn *) buf;
651 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
652 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
653 }
654 else
655 {
656 x_dynp_64 = (Elf64_External_Dyn *) buf;
657 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
658 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
659 }
660 if (current_dyntag == DT_NULL)
661 return 0;
662 if (current_dyntag == desired_dyntag)
663 {
664 /* If requested, try to read the runtime value of this .dynamic
665 entry. */
666 if (ptr)
667 {
668 struct type *ptr_type;
669 gdb_byte ptr_buf[8];
670 CORE_ADDR ptr_addr_1;
671
672 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
673 ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8;
674 if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0)
675 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
676 *ptr = dyn_ptr;
677 if (ptr_addr)
678 *ptr_addr = dyn_addr + (buf - bufstart);
679 }
680 return 1;
681 }
682 }
683
684 return 0;
685 }
686
687 /* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
688 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
689 is returned and the corresponding PTR is set. */
690
691 static int
692 scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
693 CORE_ADDR *ptr_addr)
694 {
695 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
696 int arch_size, step;
697 long current_dyntag;
698 CORE_ADDR dyn_ptr;
699 CORE_ADDR base_addr;
700
701 /* Read in .dynamic section. */
702 gdb::optional<gdb::byte_vector> ph_data
703 = read_program_header (PT_DYNAMIC, &arch_size, &base_addr);
704 if (!ph_data)
705 return 0;
706
707 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
708 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
709 : sizeof (Elf64_External_Dyn);
710 for (gdb_byte *buf = ph_data->data (), *bufend = buf + ph_data->size ();
711 buf < bufend; buf += step)
712 {
713 if (arch_size == 32)
714 {
715 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
716
717 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
718 4, byte_order);
719 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
720 4, byte_order);
721 }
722 else
723 {
724 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
725
726 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
727 8, byte_order);
728 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
729 8, byte_order);
730 }
731 if (current_dyntag == DT_NULL)
732 break;
733
734 if (current_dyntag == desired_dyntag)
735 {
736 if (ptr)
737 *ptr = dyn_ptr;
738
739 if (ptr_addr)
740 *ptr_addr = base_addr + buf - ph_data->data ();
741
742 return 1;
743 }
744 }
745
746 return 0;
747 }
748
749 /* Locate the base address of dynamic linker structs for SVR4 elf
750 targets.
751
752 For SVR4 elf targets the address of the dynamic linker's runtime
753 structure is contained within the dynamic info section in the
754 executable file. The dynamic section is also mapped into the
755 inferior address space. Because the runtime loader fills in the
756 real address before starting the inferior, we have to read in the
757 dynamic info section from the inferior address space.
758 If there are any errors while trying to find the address, we
759 silently return 0, otherwise the found address is returned. */
760
761 static CORE_ADDR
762 elf_locate_base (void)
763 {
764 struct bound_minimal_symbol msymbol;
765 CORE_ADDR dyn_ptr, dyn_ptr_addr;
766
767 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
768 instead of DT_DEBUG, although they sometimes contain an unused
769 DT_DEBUG. */
770 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr, NULL)
771 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
772 {
773 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
774 gdb_byte *pbuf;
775 int pbuf_size = TYPE_LENGTH (ptr_type);
776
777 pbuf = (gdb_byte *) alloca (pbuf_size);
778 /* DT_MIPS_RLD_MAP contains a pointer to the address
779 of the dynamic link structure. */
780 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
781 return 0;
782 return extract_typed_address (pbuf, ptr_type);
783 }
784
785 /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
786 because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
787 in non-PIE. */
788 if (scan_dyntag (DT_MIPS_RLD_MAP_REL, exec_bfd, &dyn_ptr, &dyn_ptr_addr)
789 || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
790 {
791 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
792 gdb_byte *pbuf;
793 int pbuf_size = TYPE_LENGTH (ptr_type);
794
795 pbuf = (gdb_byte *) alloca (pbuf_size);
796 /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
797 DT slot to the address of the dynamic link structure. */
798 if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
799 return 0;
800 return extract_typed_address (pbuf, ptr_type);
801 }
802
803 /* Find DT_DEBUG. */
804 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr, NULL)
805 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
806 return dyn_ptr;
807
808 /* This may be a static executable. Look for the symbol
809 conventionally named _r_debug, as a last resort. */
810 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
811 if (msymbol.minsym != NULL)
812 return BMSYMBOL_VALUE_ADDRESS (msymbol);
813
814 /* DT_DEBUG entry not found. */
815 return 0;
816 }
817
818 /* Locate the base address of dynamic linker structs.
819
820 For both the SunOS and SVR4 shared library implementations, if the
821 inferior executable has been linked dynamically, there is a single
822 address somewhere in the inferior's data space which is the key to
823 locating all of the dynamic linker's runtime structures. This
824 address is the value of the debug base symbol. The job of this
825 function is to find and return that address, or to return 0 if there
826 is no such address (the executable is statically linked for example).
827
828 For SunOS, the job is almost trivial, since the dynamic linker and
829 all of it's structures are statically linked to the executable at
830 link time. Thus the symbol for the address we are looking for has
831 already been added to the minimal symbol table for the executable's
832 objfile at the time the symbol file's symbols were read, and all we
833 have to do is look it up there. Note that we explicitly do NOT want
834 to find the copies in the shared library.
835
836 The SVR4 version is a bit more complicated because the address
837 is contained somewhere in the dynamic info section. We have to go
838 to a lot more work to discover the address of the debug base symbol.
839 Because of this complexity, we cache the value we find and return that
840 value on subsequent invocations. Note there is no copy in the
841 executable symbol tables. */
842
843 static CORE_ADDR
844 locate_base (struct svr4_info *info)
845 {
846 /* Check to see if we have a currently valid address, and if so, avoid
847 doing all this work again and just return the cached address. If
848 we have no cached address, try to locate it in the dynamic info
849 section for ELF executables. There's no point in doing any of this
850 though if we don't have some link map offsets to work with. */
851
852 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
853 info->debug_base = elf_locate_base ();
854 return info->debug_base;
855 }
856
857 /* Find the first element in the inferior's dynamic link map, and
858 return its address in the inferior. Return zero if the address
859 could not be determined.
860
861 FIXME: Perhaps we should validate the info somehow, perhaps by
862 checking r_version for a known version number, or r_state for
863 RT_CONSISTENT. */
864
865 static CORE_ADDR
866 solib_svr4_r_map (struct svr4_info *info)
867 {
868 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
869 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
870 CORE_ADDR addr = 0;
871
872 TRY
873 {
874 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
875 ptr_type);
876 }
877 CATCH (ex, RETURN_MASK_ERROR)
878 {
879 exception_print (gdb_stderr, ex);
880 }
881 END_CATCH
882
883 return addr;
884 }
885
886 /* Find r_brk from the inferior's debug base. */
887
888 static CORE_ADDR
889 solib_svr4_r_brk (struct svr4_info *info)
890 {
891 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
892 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
893
894 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
895 ptr_type);
896 }
897
898 /* Find the link map for the dynamic linker (if it is not in the
899 normal list of loaded shared objects). */
900
901 static CORE_ADDR
902 solib_svr4_r_ldsomap (struct svr4_info *info)
903 {
904 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
905 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
906 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
907 ULONGEST version = 0;
908
909 TRY
910 {
911 /* Check version, and return zero if `struct r_debug' doesn't have
912 the r_ldsomap member. */
913 version
914 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
915 lmo->r_version_size, byte_order);
916 }
917 CATCH (ex, RETURN_MASK_ERROR)
918 {
919 exception_print (gdb_stderr, ex);
920 }
921 END_CATCH
922
923 if (version < 2 || lmo->r_ldsomap_offset == -1)
924 return 0;
925
926 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
927 ptr_type);
928 }
929
930 /* On Solaris systems with some versions of the dynamic linker,
931 ld.so's l_name pointer points to the SONAME in the string table
932 rather than into writable memory. So that GDB can find shared
933 libraries when loading a core file generated by gcore, ensure that
934 memory areas containing the l_name string are saved in the core
935 file. */
936
937 static int
938 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
939 {
940 struct svr4_info *info;
941 CORE_ADDR ldsomap;
942 CORE_ADDR name_lm;
943
944 info = get_svr4_info ();
945
946 info->debug_base = 0;
947 locate_base (info);
948 if (!info->debug_base)
949 return 0;
950
951 ldsomap = solib_svr4_r_ldsomap (info);
952 if (!ldsomap)
953 return 0;
954
955 std::unique_ptr<lm_info_svr4> li = lm_info_read (ldsomap);
956 name_lm = li != NULL ? li->l_name : 0;
957
958 return (name_lm >= vaddr && name_lm < vaddr + size);
959 }
960
961 /* See solist.h. */
962
963 static int
964 open_symbol_file_object (int from_tty)
965 {
966 CORE_ADDR lm, l_name;
967 gdb::unique_xmalloc_ptr<char> filename;
968 int errcode;
969 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
970 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
971 int l_name_size = TYPE_LENGTH (ptr_type);
972 gdb::byte_vector l_name_buf (l_name_size);
973 struct svr4_info *info = get_svr4_info ();
974 symfile_add_flags add_flags = 0;
975
976 if (from_tty)
977 add_flags |= SYMFILE_VERBOSE;
978
979 if (symfile_objfile)
980 if (!query (_("Attempt to reload symbols from process? ")))
981 return 0;
982
983 /* Always locate the debug struct, in case it has moved. */
984 info->debug_base = 0;
985 if (locate_base (info) == 0)
986 return 0; /* failed somehow... */
987
988 /* First link map member should be the executable. */
989 lm = solib_svr4_r_map (info);
990 if (lm == 0)
991 return 0; /* failed somehow... */
992
993 /* Read address of name from target memory to GDB. */
994 read_memory (lm + lmo->l_name_offset, l_name_buf.data (), l_name_size);
995
996 /* Convert the address to host format. */
997 l_name = extract_typed_address (l_name_buf.data (), ptr_type);
998
999 if (l_name == 0)
1000 return 0; /* No filename. */
1001
1002 /* Now fetch the filename from target memory. */
1003 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1004
1005 if (errcode)
1006 {
1007 warning (_("failed to read exec filename from attached file: %s"),
1008 safe_strerror (errcode));
1009 return 0;
1010 }
1011
1012 /* Have a pathname: read the symbol file. */
1013 symbol_file_add_main (filename.get (), add_flags);
1014
1015 return 1;
1016 }
1017
1018 /* Data exchange structure for the XML parser as returned by
1019 svr4_current_sos_via_xfer_libraries. */
1020
1021 struct svr4_library_list
1022 {
1023 struct so_list *head, **tailp;
1024
1025 /* Inferior address of struct link_map used for the main executable. It is
1026 NULL if not known. */
1027 CORE_ADDR main_lm;
1028 };
1029
1030 /* Implementation for target_so_ops.free_so. */
1031
1032 static void
1033 svr4_free_so (struct so_list *so)
1034 {
1035 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1036
1037 delete li;
1038 }
1039
1040 /* Implement target_so_ops.clear_so. */
1041
1042 static void
1043 svr4_clear_so (struct so_list *so)
1044 {
1045 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1046
1047 if (li != NULL)
1048 li->l_addr_p = 0;
1049 }
1050
1051 /* Free so_list built so far (called via cleanup). */
1052
1053 static void
1054 svr4_free_library_list (void *p_list)
1055 {
1056 struct so_list *list = *(struct so_list **) p_list;
1057
1058 while (list != NULL)
1059 {
1060 struct so_list *next = list->next;
1061
1062 free_so (list);
1063 list = next;
1064 }
1065 }
1066
1067 /* Copy library list. */
1068
1069 static struct so_list *
1070 svr4_copy_library_list (struct so_list *src)
1071 {
1072 struct so_list *dst = NULL;
1073 struct so_list **link = &dst;
1074
1075 while (src != NULL)
1076 {
1077 struct so_list *newobj;
1078
1079 newobj = XNEW (struct so_list);
1080 memcpy (newobj, src, sizeof (struct so_list));
1081
1082 lm_info_svr4 *src_li = (lm_info_svr4 *) src->lm_info;
1083 newobj->lm_info = new lm_info_svr4 (*src_li);
1084
1085 newobj->next = NULL;
1086 *link = newobj;
1087 link = &newobj->next;
1088
1089 src = src->next;
1090 }
1091
1092 return dst;
1093 }
1094
1095 #ifdef HAVE_LIBEXPAT
1096
1097 #include "xml-support.h"
1098
1099 /* Handle the start of a <library> element. Note: new elements are added
1100 at the tail of the list, keeping the list in order. */
1101
1102 static void
1103 library_list_start_library (struct gdb_xml_parser *parser,
1104 const struct gdb_xml_element *element,
1105 void *user_data,
1106 std::vector<gdb_xml_value> &attributes)
1107 {
1108 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1109 const char *name
1110 = (const char *) xml_find_attribute (attributes, "name")->value.get ();
1111 ULONGEST *lmp
1112 = (ULONGEST *) xml_find_attribute (attributes, "lm")->value.get ();
1113 ULONGEST *l_addrp
1114 = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value.get ();
1115 ULONGEST *l_ldp
1116 = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value.get ();
1117 struct so_list *new_elem;
1118
1119 new_elem = XCNEW (struct so_list);
1120 lm_info_svr4 *li = new lm_info_svr4;
1121 new_elem->lm_info = li;
1122 li->lm_addr = *lmp;
1123 li->l_addr_inferior = *l_addrp;
1124 li->l_ld = *l_ldp;
1125
1126 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1127 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1128 strcpy (new_elem->so_original_name, new_elem->so_name);
1129
1130 *list->tailp = new_elem;
1131 list->tailp = &new_elem->next;
1132 }
1133
1134 /* Handle the start of a <library-list-svr4> element. */
1135
1136 static void
1137 svr4_library_list_start_list (struct gdb_xml_parser *parser,
1138 const struct gdb_xml_element *element,
1139 void *user_data,
1140 std::vector<gdb_xml_value> &attributes)
1141 {
1142 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1143 const char *version
1144 = (const char *) xml_find_attribute (attributes, "version")->value.get ();
1145 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1146
1147 if (strcmp (version, "1.0") != 0)
1148 gdb_xml_error (parser,
1149 _("SVR4 Library list has unsupported version \"%s\""),
1150 version);
1151
1152 if (main_lm)
1153 list->main_lm = *(ULONGEST *) main_lm->value.get ();
1154 }
1155
1156 /* The allowed elements and attributes for an XML library list.
1157 The root element is a <library-list>. */
1158
1159 static const struct gdb_xml_attribute svr4_library_attributes[] =
1160 {
1161 { "name", GDB_XML_AF_NONE, NULL, NULL },
1162 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1163 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1164 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1165 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1166 };
1167
1168 static const struct gdb_xml_element svr4_library_list_children[] =
1169 {
1170 {
1171 "library", svr4_library_attributes, NULL,
1172 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1173 library_list_start_library, NULL
1174 },
1175 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1176 };
1177
1178 static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1179 {
1180 { "version", GDB_XML_AF_NONE, NULL, NULL },
1181 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1182 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1183 };
1184
1185 static const struct gdb_xml_element svr4_library_list_elements[] =
1186 {
1187 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1188 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1189 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1190 };
1191
1192 /* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1193
1194 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1195 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1196 empty, caller is responsible for freeing all its entries. */
1197
1198 static int
1199 svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1200 {
1201 auto cleanup = make_scope_exit ([&] ()
1202 {
1203 svr4_free_library_list (&list->head);
1204 });
1205
1206 memset (list, 0, sizeof (*list));
1207 list->tailp = &list->head;
1208 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
1209 svr4_library_list_elements, document, list) == 0)
1210 {
1211 /* Parsed successfully, keep the result. */
1212 cleanup.release ();
1213 return 1;
1214 }
1215
1216 return 0;
1217 }
1218
1219 /* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
1220
1221 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1222 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1223 empty, caller is responsible for freeing all its entries.
1224
1225 Note that ANNEX must be NULL if the remote does not explicitly allow
1226 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1227 this can be checked using target_augmented_libraries_svr4_read (). */
1228
1229 static int
1230 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1231 const char *annex)
1232 {
1233 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1234
1235 /* Fetch the list of shared libraries. */
1236 gdb::optional<gdb::char_vector> svr4_library_document
1237 = target_read_stralloc (current_top_target (), TARGET_OBJECT_LIBRARIES_SVR4,
1238 annex);
1239 if (!svr4_library_document)
1240 return 0;
1241
1242 return svr4_parse_libraries (svr4_library_document->data (), list);
1243 }
1244
1245 #else
1246
1247 static int
1248 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1249 const char *annex)
1250 {
1251 return 0;
1252 }
1253
1254 #endif
1255
1256 /* If no shared library information is available from the dynamic
1257 linker, build a fallback list from other sources. */
1258
1259 static struct so_list *
1260 svr4_default_sos (void)
1261 {
1262 struct svr4_info *info = get_svr4_info ();
1263 struct so_list *newobj;
1264
1265 if (!info->debug_loader_offset_p)
1266 return NULL;
1267
1268 newobj = XCNEW (struct so_list);
1269 lm_info_svr4 *li = new lm_info_svr4;
1270 newobj->lm_info = li;
1271
1272 /* Nothing will ever check the other fields if we set l_addr_p. */
1273 li->l_addr = info->debug_loader_offset;
1274 li->l_addr_p = 1;
1275
1276 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1277 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1278 strcpy (newobj->so_original_name, newobj->so_name);
1279
1280 return newobj;
1281 }
1282
1283 /* Read the whole inferior libraries chain starting at address LM.
1284 Expect the first entry in the chain's previous entry to be PREV_LM.
1285 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1286 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1287 to it. Returns nonzero upon success. If zero is returned the
1288 entries stored to LINK_PTR_PTR are still valid although they may
1289 represent only part of the inferior library list. */
1290
1291 static int
1292 svr4_read_so_list (CORE_ADDR lm, CORE_ADDR prev_lm,
1293 struct so_list ***link_ptr_ptr, int ignore_first)
1294 {
1295 CORE_ADDR first_l_name = 0;
1296 CORE_ADDR next_lm;
1297
1298 for (; lm != 0; prev_lm = lm, lm = next_lm)
1299 {
1300 int errcode;
1301 gdb::unique_xmalloc_ptr<char> buffer;
1302
1303 so_list_up newobj (XCNEW (struct so_list));
1304
1305 lm_info_svr4 *li = lm_info_read (lm).release ();
1306 newobj->lm_info = li;
1307 if (li == NULL)
1308 return 0;
1309
1310 next_lm = li->l_next;
1311
1312 if (li->l_prev != prev_lm)
1313 {
1314 warning (_("Corrupted shared library list: %s != %s"),
1315 paddress (target_gdbarch (), prev_lm),
1316 paddress (target_gdbarch (), li->l_prev));
1317 return 0;
1318 }
1319
1320 /* For SVR4 versions, the first entry in the link map is for the
1321 inferior executable, so we must ignore it. For some versions of
1322 SVR4, it has no name. For others (Solaris 2.3 for example), it
1323 does have a name, so we can no longer use a missing name to
1324 decide when to ignore it. */
1325 if (ignore_first && li->l_prev == 0)
1326 {
1327 struct svr4_info *info = get_svr4_info ();
1328
1329 first_l_name = li->l_name;
1330 info->main_lm_addr = li->lm_addr;
1331 continue;
1332 }
1333
1334 /* Extract this shared object's name. */
1335 target_read_string (li->l_name, &buffer, SO_NAME_MAX_PATH_SIZE - 1,
1336 &errcode);
1337 if (errcode != 0)
1338 {
1339 /* If this entry's l_name address matches that of the
1340 inferior executable, then this is not a normal shared
1341 object, but (most likely) a vDSO. In this case, silently
1342 skip it; otherwise emit a warning. */
1343 if (first_l_name == 0 || li->l_name != first_l_name)
1344 warning (_("Can't read pathname for load map: %s."),
1345 safe_strerror (errcode));
1346 continue;
1347 }
1348
1349 strncpy (newobj->so_name, buffer.get (), SO_NAME_MAX_PATH_SIZE - 1);
1350 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1351 strcpy (newobj->so_original_name, newobj->so_name);
1352
1353 /* If this entry has no name, or its name matches the name
1354 for the main executable, don't include it in the list. */
1355 if (! newobj->so_name[0] || match_main (newobj->so_name))
1356 continue;
1357
1358 newobj->next = 0;
1359 /* Don't free it now. */
1360 **link_ptr_ptr = newobj.release ();
1361 *link_ptr_ptr = &(**link_ptr_ptr)->next;
1362 }
1363
1364 return 1;
1365 }
1366
1367 /* Read the full list of currently loaded shared objects directly
1368 from the inferior, without referring to any libraries read and
1369 stored by the probes interface. Handle special cases relating
1370 to the first elements of the list. */
1371
1372 static struct so_list *
1373 svr4_current_sos_direct (struct svr4_info *info)
1374 {
1375 CORE_ADDR lm;
1376 struct so_list *head = NULL;
1377 struct so_list **link_ptr = &head;
1378 int ignore_first;
1379 struct svr4_library_list library_list;
1380
1381 /* Fall back to manual examination of the target if the packet is not
1382 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1383 tests a case where gdbserver cannot find the shared libraries list while
1384 GDB itself is able to find it via SYMFILE_OBJFILE.
1385
1386 Unfortunately statically linked inferiors will also fall back through this
1387 suboptimal code path. */
1388
1389 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1390 NULL);
1391 if (info->using_xfer)
1392 {
1393 if (library_list.main_lm)
1394 info->main_lm_addr = library_list.main_lm;
1395
1396 return library_list.head ? library_list.head : svr4_default_sos ();
1397 }
1398
1399 /* Always locate the debug struct, in case it has moved. */
1400 info->debug_base = 0;
1401 locate_base (info);
1402
1403 /* If we can't find the dynamic linker's base structure, this
1404 must not be a dynamically linked executable. Hmm. */
1405 if (! info->debug_base)
1406 return svr4_default_sos ();
1407
1408 /* Assume that everything is a library if the dynamic loader was loaded
1409 late by a static executable. */
1410 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1411 ignore_first = 0;
1412 else
1413 ignore_first = 1;
1414
1415 auto cleanup = make_scope_exit ([&] ()
1416 {
1417 svr4_free_library_list (&head);
1418 });
1419
1420 /* Walk the inferior's link map list, and build our list of
1421 `struct so_list' nodes. */
1422 lm = solib_svr4_r_map (info);
1423 if (lm)
1424 svr4_read_so_list (lm, 0, &link_ptr, ignore_first);
1425
1426 /* On Solaris, the dynamic linker is not in the normal list of
1427 shared objects, so make sure we pick it up too. Having
1428 symbol information for the dynamic linker is quite crucial
1429 for skipping dynamic linker resolver code. */
1430 lm = solib_svr4_r_ldsomap (info);
1431 if (lm)
1432 svr4_read_so_list (lm, 0, &link_ptr, 0);
1433
1434 cleanup.release ();
1435
1436 if (head == NULL)
1437 return svr4_default_sos ();
1438
1439 return head;
1440 }
1441
1442 /* Implement the main part of the "current_sos" target_so_ops
1443 method. */
1444
1445 static struct so_list *
1446 svr4_current_sos_1 (void)
1447 {
1448 struct svr4_info *info = get_svr4_info ();
1449
1450 /* If the solib list has been read and stored by the probes
1451 interface then we return a copy of the stored list. */
1452 if (info->solib_list != NULL)
1453 return svr4_copy_library_list (info->solib_list);
1454
1455 /* Otherwise obtain the solib list directly from the inferior. */
1456 return svr4_current_sos_direct (info);
1457 }
1458
1459 /* Implement the "current_sos" target_so_ops method. */
1460
1461 static struct so_list *
1462 svr4_current_sos (void)
1463 {
1464 struct so_list *so_head = svr4_current_sos_1 ();
1465 struct mem_range vsyscall_range;
1466
1467 /* Filter out the vDSO module, if present. Its symbol file would
1468 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1469 managed by symfile-mem.c:add_vsyscall_page. */
1470 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1471 && vsyscall_range.length != 0)
1472 {
1473 struct so_list **sop;
1474
1475 sop = &so_head;
1476 while (*sop != NULL)
1477 {
1478 struct so_list *so = *sop;
1479
1480 /* We can't simply match the vDSO by starting address alone,
1481 because lm_info->l_addr_inferior (and also l_addr) do not
1482 necessarily represent the real starting address of the
1483 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1484 field (the ".dynamic" section of the shared object)
1485 always points at the absolute/resolved address though.
1486 So check whether that address is inside the vDSO's
1487 mapping instead.
1488
1489 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1490 0-based ELF, and we see:
1491
1492 (gdb) info auxv
1493 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1494 (gdb) p/x *_r_debug.r_map.l_next
1495 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1496
1497 And on Linux 2.6.32 (x86_64) we see:
1498
1499 (gdb) info auxv
1500 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1501 (gdb) p/x *_r_debug.r_map.l_next
1502 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1503
1504 Dumping that vDSO shows:
1505
1506 (gdb) info proc mappings
1507 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1508 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1509 # readelf -Wa vdso.bin
1510 [...]
1511 Entry point address: 0xffffffffff700700
1512 [...]
1513 Section Headers:
1514 [Nr] Name Type Address Off Size
1515 [ 0] NULL 0000000000000000 000000 000000
1516 [ 1] .hash HASH ffffffffff700120 000120 000038
1517 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1518 [...]
1519 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1520 */
1521
1522 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1523
1524 if (address_in_mem_range (li->l_ld, &vsyscall_range))
1525 {
1526 *sop = so->next;
1527 free_so (so);
1528 break;
1529 }
1530
1531 sop = &so->next;
1532 }
1533 }
1534
1535 return so_head;
1536 }
1537
1538 /* Get the address of the link_map for a given OBJFILE. */
1539
1540 CORE_ADDR
1541 svr4_fetch_objfile_link_map (struct objfile *objfile)
1542 {
1543 struct so_list *so;
1544 struct svr4_info *info = get_svr4_info ();
1545
1546 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1547 if (info->main_lm_addr == 0)
1548 solib_add (NULL, 0, auto_solib_add);
1549
1550 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1551 if (objfile == symfile_objfile)
1552 return info->main_lm_addr;
1553
1554 /* If OBJFILE is a separate debug object file, look for the
1555 original object file. */
1556 if (objfile->separate_debug_objfile_backlink != NULL)
1557 objfile = objfile->separate_debug_objfile_backlink;
1558
1559 /* The other link map addresses may be found by examining the list
1560 of shared libraries. */
1561 for (so = master_so_list (); so; so = so->next)
1562 if (so->objfile == objfile)
1563 {
1564 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1565
1566 return li->lm_addr;
1567 }
1568
1569 /* Not found! */
1570 return 0;
1571 }
1572
1573 /* On some systems, the only way to recognize the link map entry for
1574 the main executable file is by looking at its name. Return
1575 non-zero iff SONAME matches one of the known main executable names. */
1576
1577 static int
1578 match_main (const char *soname)
1579 {
1580 const char * const *mainp;
1581
1582 for (mainp = main_name_list; *mainp != NULL; mainp++)
1583 {
1584 if (strcmp (soname, *mainp) == 0)
1585 return (1);
1586 }
1587
1588 return (0);
1589 }
1590
1591 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1592 SVR4 run time loader. */
1593
1594 int
1595 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1596 {
1597 struct svr4_info *info = get_svr4_info ();
1598
1599 return ((pc >= info->interp_text_sect_low
1600 && pc < info->interp_text_sect_high)
1601 || (pc >= info->interp_plt_sect_low
1602 && pc < info->interp_plt_sect_high)
1603 || in_plt_section (pc)
1604 || in_gnu_ifunc_stub (pc));
1605 }
1606
1607 /* Given an executable's ABFD and target, compute the entry-point
1608 address. */
1609
1610 static CORE_ADDR
1611 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1612 {
1613 CORE_ADDR addr;
1614
1615 /* KevinB wrote ... for most targets, the address returned by
1616 bfd_get_start_address() is the entry point for the start
1617 function. But, for some targets, bfd_get_start_address() returns
1618 the address of a function descriptor from which the entry point
1619 address may be extracted. This address is extracted by
1620 gdbarch_convert_from_func_ptr_addr(). The method
1621 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1622 function for targets which don't use function descriptors. */
1623 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
1624 bfd_get_start_address (abfd),
1625 targ);
1626 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
1627 }
1628
1629 /* A probe and its associated action. */
1630
1631 struct probe_and_action
1632 {
1633 /* The probe. */
1634 probe *prob;
1635
1636 /* The relocated address of the probe. */
1637 CORE_ADDR address;
1638
1639 /* The action. */
1640 enum probe_action action;
1641 };
1642
1643 /* Returns a hash code for the probe_and_action referenced by p. */
1644
1645 static hashval_t
1646 hash_probe_and_action (const void *p)
1647 {
1648 const struct probe_and_action *pa = (const struct probe_and_action *) p;
1649
1650 return (hashval_t) pa->address;
1651 }
1652
1653 /* Returns non-zero if the probe_and_actions referenced by p1 and p2
1654 are equal. */
1655
1656 static int
1657 equal_probe_and_action (const void *p1, const void *p2)
1658 {
1659 const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
1660 const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;
1661
1662 return pa1->address == pa2->address;
1663 }
1664
1665 /* Register a solib event probe and its associated action in the
1666 probes table. */
1667
1668 static void
1669 register_solib_event_probe (probe *prob, CORE_ADDR address,
1670 enum probe_action action)
1671 {
1672 struct svr4_info *info = get_svr4_info ();
1673 struct probe_and_action lookup, *pa;
1674 void **slot;
1675
1676 /* Create the probes table, if necessary. */
1677 if (info->probes_table == NULL)
1678 info->probes_table = htab_create_alloc (1, hash_probe_and_action,
1679 equal_probe_and_action,
1680 xfree, xcalloc, xfree);
1681
1682 lookup.prob = prob;
1683 lookup.address = address;
1684 slot = htab_find_slot (info->probes_table, &lookup, INSERT);
1685 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1686
1687 pa = XCNEW (struct probe_and_action);
1688 pa->prob = prob;
1689 pa->address = address;
1690 pa->action = action;
1691
1692 *slot = pa;
1693 }
1694
1695 /* Get the solib event probe at the specified location, and the
1696 action associated with it. Returns NULL if no solib event probe
1697 was found. */
1698
1699 static struct probe_and_action *
1700 solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1701 {
1702 struct probe_and_action lookup;
1703 void **slot;
1704
1705 lookup.address = address;
1706 slot = htab_find_slot (info->probes_table, &lookup, NO_INSERT);
1707
1708 if (slot == NULL)
1709 return NULL;
1710
1711 return (struct probe_and_action *) *slot;
1712 }
1713
1714 /* Decide what action to take when the specified solib event probe is
1715 hit. */
1716
1717 static enum probe_action
1718 solib_event_probe_action (struct probe_and_action *pa)
1719 {
1720 enum probe_action action;
1721 unsigned probe_argc = 0;
1722 struct frame_info *frame = get_current_frame ();
1723
1724 action = pa->action;
1725 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1726 return action;
1727
1728 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1729
1730 /* Check that an appropriate number of arguments has been supplied.
1731 We expect:
1732 arg0: Lmid_t lmid (mandatory)
1733 arg1: struct r_debug *debug_base (mandatory)
1734 arg2: struct link_map *new (optional, for incremental updates) */
1735 TRY
1736 {
1737 probe_argc = pa->prob->get_argument_count (frame);
1738 }
1739 CATCH (ex, RETURN_MASK_ERROR)
1740 {
1741 exception_print (gdb_stderr, ex);
1742 probe_argc = 0;
1743 }
1744 END_CATCH
1745
1746 /* If get_argument_count throws an exception, probe_argc will be set
1747 to zero. However, if pa->prob does not have arguments, then
1748 get_argument_count will succeed but probe_argc will also be zero.
1749 Both cases happen because of different things, but they are
1750 treated equally here: action will be set to
1751 PROBES_INTERFACE_FAILED. */
1752 if (probe_argc == 2)
1753 action = FULL_RELOAD;
1754 else if (probe_argc < 2)
1755 action = PROBES_INTERFACE_FAILED;
1756
1757 return action;
1758 }
1759
1760 /* Populate the shared object list by reading the entire list of
1761 shared objects from the inferior. Handle special cases relating
1762 to the first elements of the list. Returns nonzero on success. */
1763
1764 static int
1765 solist_update_full (struct svr4_info *info)
1766 {
1767 free_solib_list (info);
1768 info->solib_list = svr4_current_sos_direct (info);
1769
1770 return 1;
1771 }
1772
1773 /* Update the shared object list starting from the link-map entry
1774 passed by the linker in the probe's third argument. Returns
1775 nonzero if the list was successfully updated, or zero to indicate
1776 failure. */
1777
1778 static int
1779 solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1780 {
1781 struct so_list *tail;
1782 CORE_ADDR prev_lm;
1783
1784 /* svr4_current_sos_direct contains logic to handle a number of
1785 special cases relating to the first elements of the list. To
1786 avoid duplicating this logic we defer to solist_update_full
1787 if the list is empty. */
1788 if (info->solib_list == NULL)
1789 return 0;
1790
1791 /* Fall back to a full update if we are using a remote target
1792 that does not support incremental transfers. */
1793 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1794 return 0;
1795
1796 /* Walk to the end of the list. */
1797 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1798 /* Nothing. */;
1799
1800 lm_info_svr4 *li = (lm_info_svr4 *) tail->lm_info;
1801 prev_lm = li->lm_addr;
1802
1803 /* Read the new objects. */
1804 if (info->using_xfer)
1805 {
1806 struct svr4_library_list library_list;
1807 char annex[64];
1808
1809 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1810 phex_nz (lm, sizeof (lm)),
1811 phex_nz (prev_lm, sizeof (prev_lm)));
1812 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1813 return 0;
1814
1815 tail->next = library_list.head;
1816 }
1817 else
1818 {
1819 struct so_list **link = &tail->next;
1820
1821 /* IGNORE_FIRST may safely be set to zero here because the
1822 above check and deferral to solist_update_full ensures
1823 that this call to svr4_read_so_list will never see the
1824 first element. */
1825 if (!svr4_read_so_list (lm, prev_lm, &link, 0))
1826 return 0;
1827 }
1828
1829 return 1;
1830 }
1831
1832 /* Disable the probes-based linker interface and revert to the
1833 original interface. We don't reset the breakpoints as the
1834 ones set up for the probes-based interface are adequate. */
1835
1836 static void
1837 disable_probes_interface ()
1838 {
1839 struct svr4_info *info = get_svr4_info ();
1840
1841 warning (_("Probes-based dynamic linker interface failed.\n"
1842 "Reverting to original interface.\n"));
1843
1844 free_probes_table (info);
1845 free_solib_list (info);
1846 }
1847
1848 /* Update the solib list as appropriate when using the
1849 probes-based linker interface. Do nothing if using the
1850 standard interface. */
1851
1852 static void
1853 svr4_handle_solib_event (void)
1854 {
1855 struct svr4_info *info = get_svr4_info ();
1856 struct probe_and_action *pa;
1857 enum probe_action action;
1858 struct value *val = NULL;
1859 CORE_ADDR pc, debug_base, lm = 0;
1860 struct frame_info *frame = get_current_frame ();
1861
1862 /* Do nothing if not using the probes interface. */
1863 if (info->probes_table == NULL)
1864 return;
1865
1866 /* If anything goes wrong we revert to the original linker
1867 interface. */
1868 auto cleanup = make_scope_exit (disable_probes_interface);
1869
1870 pc = regcache_read_pc (get_current_regcache ());
1871 pa = solib_event_probe_at (info, pc);
1872 if (pa == NULL)
1873 return;
1874
1875 action = solib_event_probe_action (pa);
1876 if (action == PROBES_INTERFACE_FAILED)
1877 return;
1878
1879 if (action == DO_NOTHING)
1880 {
1881 cleanup.release ();
1882 return;
1883 }
1884
1885 /* evaluate_argument looks up symbols in the dynamic linker
1886 using find_pc_section. find_pc_section is accelerated by a cache
1887 called the section map. The section map is invalidated every
1888 time a shared library is loaded or unloaded, and if the inferior
1889 is generating a lot of shared library events then the section map
1890 will be updated every time svr4_handle_solib_event is called.
1891 We called find_pc_section in svr4_create_solib_event_breakpoints,
1892 so we can guarantee that the dynamic linker's sections are in the
1893 section map. We can therefore inhibit section map updates across
1894 these calls to evaluate_argument and save a lot of time. */
1895 {
1896 scoped_restore inhibit_updates
1897 = inhibit_section_map_updates (current_program_space);
1898
1899 TRY
1900 {
1901 val = pa->prob->evaluate_argument (1, frame);
1902 }
1903 CATCH (ex, RETURN_MASK_ERROR)
1904 {
1905 exception_print (gdb_stderr, ex);
1906 val = NULL;
1907 }
1908 END_CATCH
1909
1910 if (val == NULL)
1911 return;
1912
1913 debug_base = value_as_address (val);
1914 if (debug_base == 0)
1915 return;
1916
1917 /* Always locate the debug struct, in case it moved. */
1918 info->debug_base = 0;
1919 if (locate_base (info) == 0)
1920 return;
1921
1922 /* GDB does not currently support libraries loaded via dlmopen
1923 into namespaces other than the initial one. We must ignore
1924 any namespace other than the initial namespace here until
1925 support for this is added to GDB. */
1926 if (debug_base != info->debug_base)
1927 action = DO_NOTHING;
1928
1929 if (action == UPDATE_OR_RELOAD)
1930 {
1931 TRY
1932 {
1933 val = pa->prob->evaluate_argument (2, frame);
1934 }
1935 CATCH (ex, RETURN_MASK_ERROR)
1936 {
1937 exception_print (gdb_stderr, ex);
1938 return;
1939 }
1940 END_CATCH
1941
1942 if (val != NULL)
1943 lm = value_as_address (val);
1944
1945 if (lm == 0)
1946 action = FULL_RELOAD;
1947 }
1948
1949 /* Resume section map updates. Closing the scope is
1950 sufficient. */
1951 }
1952
1953 if (action == UPDATE_OR_RELOAD)
1954 {
1955 if (!solist_update_incremental (info, lm))
1956 action = FULL_RELOAD;
1957 }
1958
1959 if (action == FULL_RELOAD)
1960 {
1961 if (!solist_update_full (info))
1962 return;
1963 }
1964
1965 cleanup.release ();
1966 }
1967
1968 /* Helper function for svr4_update_solib_event_breakpoints. */
1969
1970 static int
1971 svr4_update_solib_event_breakpoint (struct breakpoint *b, void *arg)
1972 {
1973 struct bp_location *loc;
1974
1975 if (b->type != bp_shlib_event)
1976 {
1977 /* Continue iterating. */
1978 return 0;
1979 }
1980
1981 for (loc = b->loc; loc != NULL; loc = loc->next)
1982 {
1983 struct svr4_info *info;
1984 struct probe_and_action *pa;
1985
1986 info = ((struct svr4_info *)
1987 program_space_data (loc->pspace, solib_svr4_pspace_data));
1988 if (info == NULL || info->probes_table == NULL)
1989 continue;
1990
1991 pa = solib_event_probe_at (info, loc->address);
1992 if (pa == NULL)
1993 continue;
1994
1995 if (pa->action == DO_NOTHING)
1996 {
1997 if (b->enable_state == bp_disabled && stop_on_solib_events)
1998 enable_breakpoint (b);
1999 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
2000 disable_breakpoint (b);
2001 }
2002
2003 break;
2004 }
2005
2006 /* Continue iterating. */
2007 return 0;
2008 }
2009
2010 /* Enable or disable optional solib event breakpoints as appropriate.
2011 Called whenever stop_on_solib_events is changed. */
2012
2013 static void
2014 svr4_update_solib_event_breakpoints (void)
2015 {
2016 iterate_over_breakpoints (svr4_update_solib_event_breakpoint, NULL);
2017 }
2018
2019 /* Create and register solib event breakpoints. PROBES is an array
2020 of NUM_PROBES elements, each of which is vector of probes. A
2021 solib event breakpoint will be created and registered for each
2022 probe. */
2023
2024 static void
2025 svr4_create_probe_breakpoints (struct gdbarch *gdbarch,
2026 const std::vector<probe *> *probes,
2027 struct objfile *objfile)
2028 {
2029 for (int i = 0; i < NUM_PROBES; i++)
2030 {
2031 enum probe_action action = probe_info[i].action;
2032
2033 for (probe *p : probes[i])
2034 {
2035 CORE_ADDR address = p->get_relocated_address (objfile);
2036
2037 create_solib_event_breakpoint (gdbarch, address);
2038 register_solib_event_probe (p, address, action);
2039 }
2040 }
2041
2042 svr4_update_solib_event_breakpoints ();
2043 }
2044
2045 /* Both the SunOS and the SVR4 dynamic linkers call a marker function
2046 before and after mapping and unmapping shared libraries. The sole
2047 purpose of this method is to allow debuggers to set a breakpoint so
2048 they can track these changes.
2049
2050 Some versions of the glibc dynamic linker contain named probes
2051 to allow more fine grained stopping. Given the address of the
2052 original marker function, this function attempts to find these
2053 probes, and if found, sets breakpoints on those instead. If the
2054 probes aren't found, a single breakpoint is set on the original
2055 marker function. */
2056
2057 static void
2058 svr4_create_solib_event_breakpoints (struct gdbarch *gdbarch,
2059 CORE_ADDR address)
2060 {
2061 struct obj_section *os;
2062
2063 os = find_pc_section (address);
2064 if (os != NULL)
2065 {
2066 int with_prefix;
2067
2068 for (with_prefix = 0; with_prefix <= 1; with_prefix++)
2069 {
2070 std::vector<probe *> probes[NUM_PROBES];
2071 int all_probes_found = 1;
2072 int checked_can_use_probe_arguments = 0;
2073
2074 for (int i = 0; i < NUM_PROBES; i++)
2075 {
2076 const char *name = probe_info[i].name;
2077 probe *p;
2078 char buf[32];
2079
2080 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4
2081 shipped with an early version of the probes code in
2082 which the probes' names were prefixed with "rtld_"
2083 and the "map_failed" probe did not exist. The
2084 locations of the probes are otherwise the same, so
2085 we check for probes with prefixed names if probes
2086 with unprefixed names are not present. */
2087 if (with_prefix)
2088 {
2089 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2090 name = buf;
2091 }
2092
2093 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2094
2095 /* The "map_failed" probe did not exist in early
2096 versions of the probes code in which the probes'
2097 names were prefixed with "rtld_". */
2098 if (strcmp (name, "rtld_map_failed") == 0)
2099 continue;
2100
2101 if (probes[i].empty ())
2102 {
2103 all_probes_found = 0;
2104 break;
2105 }
2106
2107 /* Ensure probe arguments can be evaluated. */
2108 if (!checked_can_use_probe_arguments)
2109 {
2110 p = probes[i][0];
2111 if (!p->can_evaluate_arguments ())
2112 {
2113 all_probes_found = 0;
2114 break;
2115 }
2116 checked_can_use_probe_arguments = 1;
2117 }
2118 }
2119
2120 if (all_probes_found)
2121 svr4_create_probe_breakpoints (gdbarch, probes, os->objfile);
2122
2123 if (all_probes_found)
2124 return;
2125 }
2126 }
2127
2128 create_solib_event_breakpoint (gdbarch, address);
2129 }
2130
2131 /* Helper function for gdb_bfd_lookup_symbol. */
2132
2133 static int
2134 cmp_name_and_sec_flags (const asymbol *sym, const void *data)
2135 {
2136 return (strcmp (sym->name, (const char *) data) == 0
2137 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2138 }
2139 /* Arrange for dynamic linker to hit breakpoint.
2140
2141 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2142 debugger interface, support for arranging for the inferior to hit
2143 a breakpoint after mapping in the shared libraries. This function
2144 enables that breakpoint.
2145
2146 For SunOS, there is a special flag location (in_debugger) which we
2147 set to 1. When the dynamic linker sees this flag set, it will set
2148 a breakpoint at a location known only to itself, after saving the
2149 original contents of that place and the breakpoint address itself,
2150 in it's own internal structures. When we resume the inferior, it
2151 will eventually take a SIGTRAP when it runs into the breakpoint.
2152 We handle this (in a different place) by restoring the contents of
2153 the breakpointed location (which is only known after it stops),
2154 chasing around to locate the shared libraries that have been
2155 loaded, then resuming.
2156
2157 For SVR4, the debugger interface structure contains a member (r_brk)
2158 which is statically initialized at the time the shared library is
2159 built, to the offset of a function (_r_debug_state) which is guaran-
2160 teed to be called once before mapping in a library, and again when
2161 the mapping is complete. At the time we are examining this member,
2162 it contains only the unrelocated offset of the function, so we have
2163 to do our own relocation. Later, when the dynamic linker actually
2164 runs, it relocates r_brk to be the actual address of _r_debug_state().
2165
2166 The debugger interface structure also contains an enumeration which
2167 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2168 depending upon whether or not the library is being mapped or unmapped,
2169 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
2170
2171 static int
2172 enable_break (struct svr4_info *info, int from_tty)
2173 {
2174 struct bound_minimal_symbol msymbol;
2175 const char * const *bkpt_namep;
2176 asection *interp_sect;
2177 CORE_ADDR sym_addr;
2178
2179 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2180 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
2181
2182 /* If we already have a shared library list in the target, and
2183 r_debug contains r_brk, set the breakpoint there - this should
2184 mean r_brk has already been relocated. Assume the dynamic linker
2185 is the object containing r_brk. */
2186
2187 solib_add (NULL, from_tty, auto_solib_add);
2188 sym_addr = 0;
2189 if (info->debug_base && solib_svr4_r_map (info) != 0)
2190 sym_addr = solib_svr4_r_brk (info);
2191
2192 if (sym_addr != 0)
2193 {
2194 struct obj_section *os;
2195
2196 sym_addr = gdbarch_addr_bits_remove
2197 (target_gdbarch (),
2198 gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2199 sym_addr,
2200 current_top_target ()));
2201
2202 /* On at least some versions of Solaris there's a dynamic relocation
2203 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2204 we get control before the dynamic linker has self-relocated.
2205 Check if SYM_ADDR is in a known section, if it is assume we can
2206 trust its value. This is just a heuristic though, it could go away
2207 or be replaced if it's getting in the way.
2208
2209 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2210 however it's spelled in your particular system) is ARM or Thumb.
2211 That knowledge is encoded in the address, if it's Thumb the low bit
2212 is 1. However, we've stripped that info above and it's not clear
2213 what all the consequences are of passing a non-addr_bits_remove'd
2214 address to svr4_create_solib_event_breakpoints. The call to
2215 find_pc_section verifies we know about the address and have some
2216 hope of computing the right kind of breakpoint to use (via
2217 symbol info). It does mean that GDB needs to be pointed at a
2218 non-stripped version of the dynamic linker in order to obtain
2219 information it already knows about. Sigh. */
2220
2221 os = find_pc_section (sym_addr);
2222 if (os != NULL)
2223 {
2224 /* Record the relocated start and end address of the dynamic linker
2225 text and plt section for svr4_in_dynsym_resolve_code. */
2226 bfd *tmp_bfd;
2227 CORE_ADDR load_addr;
2228
2229 tmp_bfd = os->objfile->obfd;
2230 load_addr = ANOFFSET (os->objfile->section_offsets,
2231 SECT_OFF_TEXT (os->objfile));
2232
2233 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2234 if (interp_sect)
2235 {
2236 info->interp_text_sect_low =
2237 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2238 info->interp_text_sect_high =
2239 info->interp_text_sect_low
2240 + bfd_section_size (tmp_bfd, interp_sect);
2241 }
2242 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2243 if (interp_sect)
2244 {
2245 info->interp_plt_sect_low =
2246 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2247 info->interp_plt_sect_high =
2248 info->interp_plt_sect_low
2249 + bfd_section_size (tmp_bfd, interp_sect);
2250 }
2251
2252 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2253 return 1;
2254 }
2255 }
2256
2257 /* Find the program interpreter; if not found, warn the user and drop
2258 into the old breakpoint at symbol code. */
2259 gdb::optional<gdb::byte_vector> interp_name_holder
2260 = find_program_interpreter ();
2261 if (interp_name_holder)
2262 {
2263 const char *interp_name = (const char *) interp_name_holder->data ();
2264 CORE_ADDR load_addr = 0;
2265 int load_addr_found = 0;
2266 int loader_found_in_list = 0;
2267 struct so_list *so;
2268 struct target_ops *tmp_bfd_target;
2269
2270 sym_addr = 0;
2271
2272 /* Now we need to figure out where the dynamic linker was
2273 loaded so that we can load its symbols and place a breakpoint
2274 in the dynamic linker itself.
2275
2276 This address is stored on the stack. However, I've been unable
2277 to find any magic formula to find it for Solaris (appears to
2278 be trivial on GNU/Linux). Therefore, we have to try an alternate
2279 mechanism to find the dynamic linker's base address. */
2280
2281 gdb_bfd_ref_ptr tmp_bfd;
2282 TRY
2283 {
2284 tmp_bfd = solib_bfd_open (interp_name);
2285 }
2286 CATCH (ex, RETURN_MASK_ALL)
2287 {
2288 }
2289 END_CATCH
2290
2291 if (tmp_bfd == NULL)
2292 goto bkpt_at_symbol;
2293
2294 /* Now convert the TMP_BFD into a target. That way target, as
2295 well as BFD operations can be used. target_bfd_reopen
2296 acquires its own reference. */
2297 tmp_bfd_target = target_bfd_reopen (tmp_bfd.get ());
2298
2299 /* On a running target, we can get the dynamic linker's base
2300 address from the shared library table. */
2301 so = master_so_list ();
2302 while (so)
2303 {
2304 if (svr4_same_1 (interp_name, so->so_original_name))
2305 {
2306 load_addr_found = 1;
2307 loader_found_in_list = 1;
2308 load_addr = lm_addr_check (so, tmp_bfd.get ());
2309 break;
2310 }
2311 so = so->next;
2312 }
2313
2314 /* If we were not able to find the base address of the loader
2315 from our so_list, then try using the AT_BASE auxilliary entry. */
2316 if (!load_addr_found)
2317 if (target_auxv_search (current_top_target (), AT_BASE, &load_addr) > 0)
2318 {
2319 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
2320
2321 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2322 that `+ load_addr' will overflow CORE_ADDR width not creating
2323 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2324 GDB. */
2325
2326 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
2327 {
2328 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
2329 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd.get (),
2330 tmp_bfd_target);
2331
2332 gdb_assert (load_addr < space_size);
2333
2334 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2335 64bit ld.so with 32bit executable, it should not happen. */
2336
2337 if (tmp_entry_point < space_size
2338 && tmp_entry_point + load_addr >= space_size)
2339 load_addr -= space_size;
2340 }
2341
2342 load_addr_found = 1;
2343 }
2344
2345 /* Otherwise we find the dynamic linker's base address by examining
2346 the current pc (which should point at the entry point for the
2347 dynamic linker) and subtracting the offset of the entry point.
2348
2349 This is more fragile than the previous approaches, but is a good
2350 fallback method because it has actually been working well in
2351 most cases. */
2352 if (!load_addr_found)
2353 {
2354 struct regcache *regcache
2355 = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
2356
2357 load_addr = (regcache_read_pc (regcache)
2358 - exec_entry_point (tmp_bfd.get (), tmp_bfd_target));
2359 }
2360
2361 if (!loader_found_in_list)
2362 {
2363 info->debug_loader_name = xstrdup (interp_name);
2364 info->debug_loader_offset_p = 1;
2365 info->debug_loader_offset = load_addr;
2366 solib_add (NULL, from_tty, auto_solib_add);
2367 }
2368
2369 /* Record the relocated start and end address of the dynamic linker
2370 text and plt section for svr4_in_dynsym_resolve_code. */
2371 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
2372 if (interp_sect)
2373 {
2374 info->interp_text_sect_low =
2375 bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr;
2376 info->interp_text_sect_high =
2377 info->interp_text_sect_low
2378 + bfd_section_size (tmp_bfd.get (), interp_sect);
2379 }
2380 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
2381 if (interp_sect)
2382 {
2383 info->interp_plt_sect_low =
2384 bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr;
2385 info->interp_plt_sect_high =
2386 info->interp_plt_sect_low
2387 + bfd_section_size (tmp_bfd.get (), interp_sect);
2388 }
2389
2390 /* Now try to set a breakpoint in the dynamic linker. */
2391 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2392 {
2393 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd.get (),
2394 cmp_name_and_sec_flags,
2395 *bkpt_namep);
2396 if (sym_addr != 0)
2397 break;
2398 }
2399
2400 if (sym_addr != 0)
2401 /* Convert 'sym_addr' from a function pointer to an address.
2402 Because we pass tmp_bfd_target instead of the current
2403 target, this will always produce an unrelocated value. */
2404 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2405 sym_addr,
2406 tmp_bfd_target);
2407
2408 /* We're done with both the temporary bfd and target. Closing
2409 the target closes the underlying bfd, because it holds the
2410 only remaining reference. */
2411 target_close (tmp_bfd_target);
2412
2413 if (sym_addr != 0)
2414 {
2415 svr4_create_solib_event_breakpoints (target_gdbarch (),
2416 load_addr + sym_addr);
2417 return 1;
2418 }
2419
2420 /* For whatever reason we couldn't set a breakpoint in the dynamic
2421 linker. Warn and drop into the old code. */
2422 bkpt_at_symbol:
2423 warning (_("Unable to find dynamic linker breakpoint function.\n"
2424 "GDB will be unable to debug shared library initializers\n"
2425 "and track explicitly loaded dynamic code."));
2426 }
2427
2428 /* Scan through the lists of symbols, trying to look up the symbol and
2429 set a breakpoint there. Terminate loop when we/if we succeed. */
2430
2431 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2432 {
2433 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
2434 if ((msymbol.minsym != NULL)
2435 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2436 {
2437 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2438 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2439 sym_addr,
2440 current_top_target ());
2441 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2442 return 1;
2443 }
2444 }
2445
2446 if (interp_name_holder && !current_inferior ()->attach_flag)
2447 {
2448 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
2449 {
2450 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
2451 if ((msymbol.minsym != NULL)
2452 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2453 {
2454 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2455 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2456 sym_addr,
2457 current_top_target ());
2458 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2459 return 1;
2460 }
2461 }
2462 }
2463 return 0;
2464 }
2465
2466 /* Read the ELF program headers from ABFD. */
2467
2468 static gdb::optional<gdb::byte_vector>
2469 read_program_headers_from_bfd (bfd *abfd)
2470 {
2471 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
2472 int phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2473 if (phdrs_size == 0)
2474 return {};
2475
2476 gdb::byte_vector buf (phdrs_size);
2477 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
2478 || bfd_bread (buf.data (), phdrs_size, abfd) != phdrs_size)
2479 return {};
2480
2481 return buf;
2482 }
2483
2484 /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2485 exec_bfd. Otherwise return 0.
2486
2487 We relocate all of the sections by the same amount. This
2488 behavior is mandated by recent editions of the System V ABI.
2489 According to the System V Application Binary Interface,
2490 Edition 4.1, page 5-5:
2491
2492 ... Though the system chooses virtual addresses for
2493 individual processes, it maintains the segments' relative
2494 positions. Because position-independent code uses relative
2495 addressesing between segments, the difference between
2496 virtual addresses in memory must match the difference
2497 between virtual addresses in the file. The difference
2498 between the virtual address of any segment in memory and
2499 the corresponding virtual address in the file is thus a
2500 single constant value for any one executable or shared
2501 object in a given process. This difference is the base
2502 address. One use of the base address is to relocate the
2503 memory image of the program during dynamic linking.
2504
2505 The same language also appears in Edition 4.0 of the System V
2506 ABI and is left unspecified in some of the earlier editions.
2507
2508 Decide if the objfile needs to be relocated. As indicated above, we will
2509 only be here when execution is stopped. But during attachment PC can be at
2510 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2511 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2512 regcache_read_pc would point to the interpreter and not the main executable.
2513
2514 So, to summarize, relocations are necessary when the start address obtained
2515 from the executable is different from the address in auxv AT_ENTRY entry.
2516
2517 [ The astute reader will note that we also test to make sure that
2518 the executable in question has the DYNAMIC flag set. It is my
2519 opinion that this test is unnecessary (undesirable even). It
2520 was added to avoid inadvertent relocation of an executable
2521 whose e_type member in the ELF header is not ET_DYN. There may
2522 be a time in the future when it is desirable to do relocations
2523 on other types of files as well in which case this condition
2524 should either be removed or modified to accomodate the new file
2525 type. - Kevin, Nov 2000. ] */
2526
2527 static int
2528 svr4_exec_displacement (CORE_ADDR *displacementp)
2529 {
2530 /* ENTRY_POINT is a possible function descriptor - before
2531 a call to gdbarch_convert_from_func_ptr_addr. */
2532 CORE_ADDR entry_point, exec_displacement;
2533
2534 if (exec_bfd == NULL)
2535 return 0;
2536
2537 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2538 being executed themselves and PIE (Position Independent Executable)
2539 executables are ET_DYN. */
2540
2541 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
2542 return 0;
2543
2544 if (target_auxv_search (current_top_target (), AT_ENTRY, &entry_point) <= 0)
2545 return 0;
2546
2547 exec_displacement = entry_point - bfd_get_start_address (exec_bfd);
2548
2549 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
2550 alignment. It is cheaper than the program headers comparison below. */
2551
2552 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2553 {
2554 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
2555
2556 /* p_align of PT_LOAD segments does not specify any alignment but
2557 only congruency of addresses:
2558 p_offset % p_align == p_vaddr % p_align
2559 Kernel is free to load the executable with lower alignment. */
2560
2561 if ((exec_displacement & (elf->minpagesize - 1)) != 0)
2562 return 0;
2563 }
2564
2565 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2566 comparing their program headers. If the program headers in the auxilliary
2567 vector do not match the program headers in the executable, then we are
2568 looking at a different file than the one used by the kernel - for
2569 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2570
2571 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2572 {
2573 /* Be optimistic and return 0 only if GDB was able to verify the headers
2574 really do not match. */
2575 int arch_size;
2576
2577 gdb::optional<gdb::byte_vector> phdrs_target
2578 = read_program_header (-1, &arch_size, NULL);
2579 gdb::optional<gdb::byte_vector> phdrs_binary
2580 = read_program_headers_from_bfd (exec_bfd);
2581 if (phdrs_target && phdrs_binary)
2582 {
2583 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
2584
2585 /* We are dealing with three different addresses. EXEC_BFD
2586 represents current address in on-disk file. target memory content
2587 may be different from EXEC_BFD as the file may have been prelinked
2588 to a different address after the executable has been loaded.
2589 Moreover the address of placement in target memory can be
2590 different from what the program headers in target memory say -
2591 this is the goal of PIE.
2592
2593 Detected DISPLACEMENT covers both the offsets of PIE placement and
2594 possible new prelink performed after start of the program. Here
2595 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2596 content offset for the verification purpose. */
2597
2598 if (phdrs_target->size () != phdrs_binary->size ()
2599 || bfd_get_arch_size (exec_bfd) != arch_size)
2600 return 0;
2601 else if (arch_size == 32
2602 && phdrs_target->size () >= sizeof (Elf32_External_Phdr)
2603 && phdrs_target->size () % sizeof (Elf32_External_Phdr) == 0)
2604 {
2605 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2606 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2607 CORE_ADDR displacement = 0;
2608 int i;
2609
2610 /* DISPLACEMENT could be found more easily by the difference of
2611 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2612 already have enough information to compute that displacement
2613 with what we've read. */
2614
2615 for (i = 0; i < ehdr2->e_phnum; i++)
2616 if (phdr2[i].p_type == PT_LOAD)
2617 {
2618 Elf32_External_Phdr *phdrp;
2619 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2620 CORE_ADDR vaddr, paddr;
2621 CORE_ADDR displacement_vaddr = 0;
2622 CORE_ADDR displacement_paddr = 0;
2623
2624 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
2625 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2626 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2627
2628 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2629 byte_order);
2630 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2631
2632 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2633 byte_order);
2634 displacement_paddr = paddr - phdr2[i].p_paddr;
2635
2636 if (displacement_vaddr == displacement_paddr)
2637 displacement = displacement_vaddr;
2638
2639 break;
2640 }
2641
2642 /* Now compare program headers from the target and the binary
2643 with optional DISPLACEMENT. */
2644
2645 for (i = 0;
2646 i < phdrs_target->size () / sizeof (Elf32_External_Phdr);
2647 i++)
2648 {
2649 Elf32_External_Phdr *phdrp;
2650 Elf32_External_Phdr *phdr2p;
2651 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2652 CORE_ADDR vaddr, paddr;
2653 asection *plt2_asect;
2654
2655 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
2656 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2657 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2658 phdr2p = &((Elf32_External_Phdr *) phdrs_binary->data ())[i];
2659
2660 /* PT_GNU_STACK is an exception by being never relocated by
2661 prelink as its addresses are always zero. */
2662
2663 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2664 continue;
2665
2666 /* Check also other adjustment combinations - PR 11786. */
2667
2668 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2669 byte_order);
2670 vaddr -= displacement;
2671 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2672
2673 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2674 byte_order);
2675 paddr -= displacement;
2676 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2677
2678 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2679 continue;
2680
2681 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2682 CentOS-5 has problems with filesz, memsz as well.
2683 Strip also modifies memsz of PT_TLS.
2684 See PR 11786. */
2685 if (phdr2[i].p_type == PT_GNU_RELRO
2686 || phdr2[i].p_type == PT_TLS)
2687 {
2688 Elf32_External_Phdr tmp_phdr = *phdrp;
2689 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2690
2691 memset (tmp_phdr.p_filesz, 0, 4);
2692 memset (tmp_phdr.p_memsz, 0, 4);
2693 memset (tmp_phdr.p_flags, 0, 4);
2694 memset (tmp_phdr.p_align, 0, 4);
2695 memset (tmp_phdr2.p_filesz, 0, 4);
2696 memset (tmp_phdr2.p_memsz, 0, 4);
2697 memset (tmp_phdr2.p_flags, 0, 4);
2698 memset (tmp_phdr2.p_align, 0, 4);
2699
2700 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2701 == 0)
2702 continue;
2703 }
2704
2705 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2706 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2707 if (plt2_asect)
2708 {
2709 int content2;
2710 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2711 CORE_ADDR filesz;
2712
2713 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2714 & SEC_HAS_CONTENTS) != 0;
2715
2716 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2717 byte_order);
2718
2719 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2720 FILESZ is from the in-memory image. */
2721 if (content2)
2722 filesz += bfd_get_section_size (plt2_asect);
2723 else
2724 filesz -= bfd_get_section_size (plt2_asect);
2725
2726 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2727 filesz);
2728
2729 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2730 continue;
2731 }
2732
2733 return 0;
2734 }
2735 }
2736 else if (arch_size == 64
2737 && phdrs_target->size () >= sizeof (Elf64_External_Phdr)
2738 && phdrs_target->size () % sizeof (Elf64_External_Phdr) == 0)
2739 {
2740 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2741 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2742 CORE_ADDR displacement = 0;
2743 int i;
2744
2745 /* DISPLACEMENT could be found more easily by the difference of
2746 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2747 already have enough information to compute that displacement
2748 with what we've read. */
2749
2750 for (i = 0; i < ehdr2->e_phnum; i++)
2751 if (phdr2[i].p_type == PT_LOAD)
2752 {
2753 Elf64_External_Phdr *phdrp;
2754 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2755 CORE_ADDR vaddr, paddr;
2756 CORE_ADDR displacement_vaddr = 0;
2757 CORE_ADDR displacement_paddr = 0;
2758
2759 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
2760 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2761 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2762
2763 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2764 byte_order);
2765 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2766
2767 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2768 byte_order);
2769 displacement_paddr = paddr - phdr2[i].p_paddr;
2770
2771 if (displacement_vaddr == displacement_paddr)
2772 displacement = displacement_vaddr;
2773
2774 break;
2775 }
2776
2777 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2778
2779 for (i = 0;
2780 i < phdrs_target->size () / sizeof (Elf64_External_Phdr);
2781 i++)
2782 {
2783 Elf64_External_Phdr *phdrp;
2784 Elf64_External_Phdr *phdr2p;
2785 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2786 CORE_ADDR vaddr, paddr;
2787 asection *plt2_asect;
2788
2789 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
2790 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2791 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2792 phdr2p = &((Elf64_External_Phdr *) phdrs_binary->data ())[i];
2793
2794 /* PT_GNU_STACK is an exception by being never relocated by
2795 prelink as its addresses are always zero. */
2796
2797 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2798 continue;
2799
2800 /* Check also other adjustment combinations - PR 11786. */
2801
2802 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2803 byte_order);
2804 vaddr -= displacement;
2805 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2806
2807 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2808 byte_order);
2809 paddr -= displacement;
2810 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2811
2812 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2813 continue;
2814
2815 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2816 CentOS-5 has problems with filesz, memsz as well.
2817 Strip also modifies memsz of PT_TLS.
2818 See PR 11786. */
2819 if (phdr2[i].p_type == PT_GNU_RELRO
2820 || phdr2[i].p_type == PT_TLS)
2821 {
2822 Elf64_External_Phdr tmp_phdr = *phdrp;
2823 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2824
2825 memset (tmp_phdr.p_filesz, 0, 8);
2826 memset (tmp_phdr.p_memsz, 0, 8);
2827 memset (tmp_phdr.p_flags, 0, 4);
2828 memset (tmp_phdr.p_align, 0, 8);
2829 memset (tmp_phdr2.p_filesz, 0, 8);
2830 memset (tmp_phdr2.p_memsz, 0, 8);
2831 memset (tmp_phdr2.p_flags, 0, 4);
2832 memset (tmp_phdr2.p_align, 0, 8);
2833
2834 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2835 == 0)
2836 continue;
2837 }
2838
2839 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2840 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2841 if (plt2_asect)
2842 {
2843 int content2;
2844 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2845 CORE_ADDR filesz;
2846
2847 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2848 & SEC_HAS_CONTENTS) != 0;
2849
2850 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2851 byte_order);
2852
2853 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2854 FILESZ is from the in-memory image. */
2855 if (content2)
2856 filesz += bfd_get_section_size (plt2_asect);
2857 else
2858 filesz -= bfd_get_section_size (plt2_asect);
2859
2860 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2861 filesz);
2862
2863 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2864 continue;
2865 }
2866
2867 return 0;
2868 }
2869 }
2870 else
2871 return 0;
2872 }
2873 }
2874
2875 if (info_verbose)
2876 {
2877 /* It can be printed repeatedly as there is no easy way to check
2878 the executable symbols/file has been already relocated to
2879 displacement. */
2880
2881 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2882 "displacement %s for \"%s\".\n"),
2883 paddress (target_gdbarch (), exec_displacement),
2884 bfd_get_filename (exec_bfd));
2885 }
2886
2887 *displacementp = exec_displacement;
2888 return 1;
2889 }
2890
2891 /* Relocate the main executable. This function should be called upon
2892 stopping the inferior process at the entry point to the program.
2893 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2894 different, the main executable is relocated by the proper amount. */
2895
2896 static void
2897 svr4_relocate_main_executable (void)
2898 {
2899 CORE_ADDR displacement;
2900
2901 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2902 probably contains the offsets computed using the PIE displacement
2903 from the previous run, which of course are irrelevant for this run.
2904 So we need to determine the new PIE displacement and recompute the
2905 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2906 already contains pre-computed offsets.
2907
2908 If we cannot compute the PIE displacement, either:
2909
2910 - The executable is not PIE.
2911
2912 - SYMFILE_OBJFILE does not match the executable started in the target.
2913 This can happen for main executable symbols loaded at the host while
2914 `ld.so --ld-args main-executable' is loaded in the target.
2915
2916 Then we leave the section offsets untouched and use them as is for
2917 this run. Either:
2918
2919 - These section offsets were properly reset earlier, and thus
2920 already contain the correct values. This can happen for instance
2921 when reconnecting via the remote protocol to a target that supports
2922 the `qOffsets' packet.
2923
2924 - The section offsets were not reset earlier, and the best we can
2925 hope is that the old offsets are still applicable to the new run. */
2926
2927 if (! svr4_exec_displacement (&displacement))
2928 return;
2929
2930 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2931 addresses. */
2932
2933 if (symfile_objfile)
2934 {
2935 struct section_offsets *new_offsets;
2936 int i;
2937
2938 new_offsets = XALLOCAVEC (struct section_offsets,
2939 symfile_objfile->num_sections);
2940
2941 for (i = 0; i < symfile_objfile->num_sections; i++)
2942 new_offsets->offsets[i] = displacement;
2943
2944 objfile_relocate (symfile_objfile, new_offsets);
2945 }
2946 else if (exec_bfd)
2947 {
2948 asection *asect;
2949
2950 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2951 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2952 (bfd_section_vma (exec_bfd, asect)
2953 + displacement));
2954 }
2955 }
2956
2957 /* Implement the "create_inferior_hook" target_solib_ops method.
2958
2959 For SVR4 executables, this first instruction is either the first
2960 instruction in the dynamic linker (for dynamically linked
2961 executables) or the instruction at "start" for statically linked
2962 executables. For dynamically linked executables, the system
2963 first exec's /lib/libc.so.N, which contains the dynamic linker,
2964 and starts it running. The dynamic linker maps in any needed
2965 shared libraries, maps in the actual user executable, and then
2966 jumps to "start" in the user executable.
2967
2968 We can arrange to cooperate with the dynamic linker to discover the
2969 names of shared libraries that are dynamically linked, and the base
2970 addresses to which they are linked.
2971
2972 This function is responsible for discovering those names and
2973 addresses, and saving sufficient information about them to allow
2974 their symbols to be read at a later time. */
2975
2976 static void
2977 svr4_solib_create_inferior_hook (int from_tty)
2978 {
2979 struct svr4_info *info;
2980
2981 info = get_svr4_info ();
2982
2983 /* Clear the probes-based interface's state. */
2984 free_probes_table (info);
2985 free_solib_list (info);
2986
2987 /* Relocate the main executable if necessary. */
2988 svr4_relocate_main_executable ();
2989
2990 /* No point setting a breakpoint in the dynamic linker if we can't
2991 hit it (e.g., a core file, or a trace file). */
2992 if (!target_has_execution)
2993 return;
2994
2995 if (!svr4_have_link_map_offsets ())
2996 return;
2997
2998 if (!enable_break (info, from_tty))
2999 return;
3000 }
3001
3002 static void
3003 svr4_clear_solib (void)
3004 {
3005 struct svr4_info *info;
3006
3007 info = get_svr4_info ();
3008 info->debug_base = 0;
3009 info->debug_loader_offset_p = 0;
3010 info->debug_loader_offset = 0;
3011 xfree (info->debug_loader_name);
3012 info->debug_loader_name = NULL;
3013 }
3014
3015 /* Clear any bits of ADDR that wouldn't fit in a target-format
3016 data pointer. "Data pointer" here refers to whatever sort of
3017 address the dynamic linker uses to manage its sections. At the
3018 moment, we don't support shared libraries on any processors where
3019 code and data pointers are different sizes.
3020
3021 This isn't really the right solution. What we really need here is
3022 a way to do arithmetic on CORE_ADDR values that respects the
3023 natural pointer/address correspondence. (For example, on the MIPS,
3024 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
3025 sign-extend the value. There, simply truncating the bits above
3026 gdbarch_ptr_bit, as we do below, is no good.) This should probably
3027 be a new gdbarch method or something. */
3028 static CORE_ADDR
3029 svr4_truncate_ptr (CORE_ADDR addr)
3030 {
3031 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
3032 /* We don't need to truncate anything, and the bit twiddling below
3033 will fail due to overflow problems. */
3034 return addr;
3035 else
3036 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
3037 }
3038
3039
3040 static void
3041 svr4_relocate_section_addresses (struct so_list *so,
3042 struct target_section *sec)
3043 {
3044 bfd *abfd = sec->the_bfd_section->owner;
3045
3046 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
3047 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
3048 }
3049 \f
3050
3051 /* Architecture-specific operations. */
3052
3053 /* Per-architecture data key. */
3054 static struct gdbarch_data *solib_svr4_data;
3055
3056 struct solib_svr4_ops
3057 {
3058 /* Return a description of the layout of `struct link_map'. */
3059 struct link_map_offsets *(*fetch_link_map_offsets)(void);
3060 };
3061
3062 /* Return a default for the architecture-specific operations. */
3063
3064 static void *
3065 solib_svr4_init (struct obstack *obstack)
3066 {
3067 struct solib_svr4_ops *ops;
3068
3069 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
3070 ops->fetch_link_map_offsets = NULL;
3071 return ops;
3072 }
3073
3074 /* Set the architecture-specific `struct link_map_offsets' fetcher for
3075 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
3076
3077 void
3078 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3079 struct link_map_offsets *(*flmo) (void))
3080 {
3081 struct solib_svr4_ops *ops
3082 = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data);
3083
3084 ops->fetch_link_map_offsets = flmo;
3085
3086 set_solib_ops (gdbarch, &svr4_so_ops);
3087 }
3088
3089 /* Fetch a link_map_offsets structure using the architecture-specific
3090 `struct link_map_offsets' fetcher. */
3091
3092 static struct link_map_offsets *
3093 svr4_fetch_link_map_offsets (void)
3094 {
3095 struct solib_svr4_ops *ops
3096 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3097 solib_svr4_data);
3098
3099 gdb_assert (ops->fetch_link_map_offsets);
3100 return ops->fetch_link_map_offsets ();
3101 }
3102
3103 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3104
3105 static int
3106 svr4_have_link_map_offsets (void)
3107 {
3108 struct solib_svr4_ops *ops
3109 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3110 solib_svr4_data);
3111
3112 return (ops->fetch_link_map_offsets != NULL);
3113 }
3114 \f
3115
3116 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
3117 `struct r_debug' and a `struct link_map' that are binary compatible
3118 with the origional SVR4 implementation. */
3119
3120 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3121 for an ILP32 SVR4 system. */
3122
3123 struct link_map_offsets *
3124 svr4_ilp32_fetch_link_map_offsets (void)
3125 {
3126 static struct link_map_offsets lmo;
3127 static struct link_map_offsets *lmp = NULL;
3128
3129 if (lmp == NULL)
3130 {
3131 lmp = &lmo;
3132
3133 lmo.r_version_offset = 0;
3134 lmo.r_version_size = 4;
3135 lmo.r_map_offset = 4;
3136 lmo.r_brk_offset = 8;
3137 lmo.r_ldsomap_offset = 20;
3138
3139 /* Everything we need is in the first 20 bytes. */
3140 lmo.link_map_size = 20;
3141 lmo.l_addr_offset = 0;
3142 lmo.l_name_offset = 4;
3143 lmo.l_ld_offset = 8;
3144 lmo.l_next_offset = 12;
3145 lmo.l_prev_offset = 16;
3146 }
3147
3148 return lmp;
3149 }
3150
3151 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3152 for an LP64 SVR4 system. */
3153
3154 struct link_map_offsets *
3155 svr4_lp64_fetch_link_map_offsets (void)
3156 {
3157 static struct link_map_offsets lmo;
3158 static struct link_map_offsets *lmp = NULL;
3159
3160 if (lmp == NULL)
3161 {
3162 lmp = &lmo;
3163
3164 lmo.r_version_offset = 0;
3165 lmo.r_version_size = 4;
3166 lmo.r_map_offset = 8;
3167 lmo.r_brk_offset = 16;
3168 lmo.r_ldsomap_offset = 40;
3169
3170 /* Everything we need is in the first 40 bytes. */
3171 lmo.link_map_size = 40;
3172 lmo.l_addr_offset = 0;
3173 lmo.l_name_offset = 8;
3174 lmo.l_ld_offset = 16;
3175 lmo.l_next_offset = 24;
3176 lmo.l_prev_offset = 32;
3177 }
3178
3179 return lmp;
3180 }
3181 \f
3182
3183 struct target_so_ops svr4_so_ops;
3184
3185 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3186 different rule for symbol lookup. The lookup begins here in the DSO, not in
3187 the main executable. */
3188
3189 static struct block_symbol
3190 elf_lookup_lib_symbol (struct objfile *objfile,
3191 const char *name,
3192 const domain_enum domain)
3193 {
3194 bfd *abfd;
3195
3196 if (objfile == symfile_objfile)
3197 abfd = exec_bfd;
3198 else
3199 {
3200 /* OBJFILE should have been passed as the non-debug one. */
3201 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
3202
3203 abfd = objfile->obfd;
3204 }
3205
3206 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL, NULL) != 1)
3207 return {};
3208
3209 return lookup_global_symbol_from_objfile (objfile, name, domain);
3210 }
3211
3212 void
3213 _initialize_svr4_solib (void)
3214 {
3215 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
3216 solib_svr4_pspace_data
3217 = register_program_space_data_with_cleanup (NULL, svr4_pspace_data_cleanup);
3218
3219 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
3220 svr4_so_ops.free_so = svr4_free_so;
3221 svr4_so_ops.clear_so = svr4_clear_so;
3222 svr4_so_ops.clear_solib = svr4_clear_solib;
3223 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
3224 svr4_so_ops.current_sos = svr4_current_sos;
3225 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
3226 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
3227 svr4_so_ops.bfd_open = solib_bfd_open;
3228 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
3229 svr4_so_ops.same = svr4_same;
3230 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
3231 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3232 svr4_so_ops.handle_event = svr4_handle_solib_event;
3233 }
This page took 0.131367 seconds and 5 git commands to generate.