Initialize yet another variable to silence GCC warning from last-but-one commit
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "elf/external.h"
23 #include "elf/common.h"
24 #include "elf/mips.h"
25
26 #include "symtab.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbcore.h"
31 #include "target.h"
32 #include "inferior.h"
33 #include "infrun.h"
34 #include "regcache.h"
35 #include "gdbthread.h"
36 #include "observer.h"
37
38 #include "solist.h"
39 #include "solib.h"
40 #include "solib-svr4.h"
41
42 #include "bfd-target.h"
43 #include "elf-bfd.h"
44 #include "exec.h"
45 #include "auxv.h"
46 #include "gdb_bfd.h"
47 #include "probe.h"
48
49 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
50 static int svr4_have_link_map_offsets (void);
51 static void svr4_relocate_main_executable (void);
52 static void svr4_free_library_list (void *p_list);
53
54 /* Link map info to include in an allocated so_list entry. */
55
56 struct lm_info
57 {
58 /* Amount by which addresses in the binary should be relocated to
59 match the inferior. The direct inferior value is L_ADDR_INFERIOR.
60 When prelinking is involved and the prelink base address changes,
61 we may need a different offset - the recomputed offset is in L_ADDR.
62 It is commonly the same value. It is cached as we want to warn about
63 the difference and compute it only once. L_ADDR is valid
64 iff L_ADDR_P. */
65 CORE_ADDR l_addr, l_addr_inferior;
66 unsigned int l_addr_p : 1;
67
68 /* The target location of lm. */
69 CORE_ADDR lm_addr;
70
71 /* Values read in from inferior's fields of the same name. */
72 CORE_ADDR l_ld, l_next, l_prev, l_name;
73 };
74
75 /* On SVR4 systems, a list of symbols in the dynamic linker where
76 GDB can try to place a breakpoint to monitor shared library
77 events.
78
79 If none of these symbols are found, or other errors occur, then
80 SVR4 systems will fall back to using a symbol as the "startup
81 mapping complete" breakpoint address. */
82
83 static const char * const solib_break_names[] =
84 {
85 "r_debug_state",
86 "_r_debug_state",
87 "_dl_debug_state",
88 "rtld_db_dlactivity",
89 "__dl_rtld_db_dlactivity",
90 "_rtld_debug_state",
91
92 NULL
93 };
94
95 static const char * const bkpt_names[] =
96 {
97 "_start",
98 "__start",
99 "main",
100 NULL
101 };
102
103 static const char * const main_name_list[] =
104 {
105 "main_$main",
106 NULL
107 };
108
109 /* What to do when a probe stop occurs. */
110
111 enum probe_action
112 {
113 /* Something went seriously wrong. Stop using probes and
114 revert to using the older interface. */
115 PROBES_INTERFACE_FAILED,
116
117 /* No action is required. The shared object list is still
118 valid. */
119 DO_NOTHING,
120
121 /* The shared object list should be reloaded entirely. */
122 FULL_RELOAD,
123
124 /* Attempt to incrementally update the shared object list. If
125 the update fails or is not possible, fall back to reloading
126 the list in full. */
127 UPDATE_OR_RELOAD,
128 };
129
130 /* A probe's name and its associated action. */
131
132 struct probe_info
133 {
134 /* The name of the probe. */
135 const char *name;
136
137 /* What to do when a probe stop occurs. */
138 enum probe_action action;
139 };
140
141 /* A list of named probes and their associated actions. If all
142 probes are present in the dynamic linker then the probes-based
143 interface will be used. */
144
145 static const struct probe_info probe_info[] =
146 {
147 { "init_start", DO_NOTHING },
148 { "init_complete", FULL_RELOAD },
149 { "map_start", DO_NOTHING },
150 { "map_failed", DO_NOTHING },
151 { "reloc_complete", UPDATE_OR_RELOAD },
152 { "unmap_start", DO_NOTHING },
153 { "unmap_complete", FULL_RELOAD },
154 };
155
156 #define NUM_PROBES ARRAY_SIZE (probe_info)
157
158 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
159 the same shared library. */
160
161 static int
162 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
163 {
164 if (strcmp (gdb_so_name, inferior_so_name) == 0)
165 return 1;
166
167 /* On Solaris, when starting inferior we think that dynamic linker is
168 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
169 contains /lib/ld.so.1. Sometimes one file is a link to another, but
170 sometimes they have identical content, but are not linked to each
171 other. We don't restrict this check for Solaris, but the chances
172 of running into this situation elsewhere are very low. */
173 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
174 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
175 return 1;
176
177 /* Similarly, we observed the same issue with sparc64, but with
178 different locations. */
179 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
180 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
181 return 1;
182
183 return 0;
184 }
185
186 static int
187 svr4_same (struct so_list *gdb, struct so_list *inferior)
188 {
189 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
190 }
191
192 static struct lm_info *
193 lm_info_read (CORE_ADDR lm_addr)
194 {
195 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
196 gdb_byte *lm;
197 struct lm_info *lm_info;
198 struct cleanup *back_to;
199
200 lm = xmalloc (lmo->link_map_size);
201 back_to = make_cleanup (xfree, lm);
202
203 if (target_read_memory (lm_addr, lm, lmo->link_map_size) != 0)
204 {
205 warning (_("Error reading shared library list entry at %s"),
206 paddress (target_gdbarch (), lm_addr)),
207 lm_info = NULL;
208 }
209 else
210 {
211 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
212
213 lm_info = XCNEW (struct lm_info);
214 lm_info->lm_addr = lm_addr;
215
216 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
217 ptr_type);
218 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
219 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
220 ptr_type);
221 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
222 ptr_type);
223 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
224 ptr_type);
225 }
226
227 do_cleanups (back_to);
228
229 return lm_info;
230 }
231
232 static int
233 has_lm_dynamic_from_link_map (void)
234 {
235 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
236
237 return lmo->l_ld_offset >= 0;
238 }
239
240 static CORE_ADDR
241 lm_addr_check (const struct so_list *so, bfd *abfd)
242 {
243 if (!so->lm_info->l_addr_p)
244 {
245 struct bfd_section *dyninfo_sect;
246 CORE_ADDR l_addr, l_dynaddr, dynaddr;
247
248 l_addr = so->lm_info->l_addr_inferior;
249
250 if (! abfd || ! has_lm_dynamic_from_link_map ())
251 goto set_addr;
252
253 l_dynaddr = so->lm_info->l_ld;
254
255 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
256 if (dyninfo_sect == NULL)
257 goto set_addr;
258
259 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
260
261 if (dynaddr + l_addr != l_dynaddr)
262 {
263 CORE_ADDR align = 0x1000;
264 CORE_ADDR minpagesize = align;
265
266 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
267 {
268 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
269 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
270 int i;
271
272 align = 1;
273
274 for (i = 0; i < ehdr->e_phnum; i++)
275 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
276 align = phdr[i].p_align;
277
278 minpagesize = get_elf_backend_data (abfd)->minpagesize;
279 }
280
281 /* Turn it into a mask. */
282 align--;
283
284 /* If the changes match the alignment requirements, we
285 assume we're using a core file that was generated by the
286 same binary, just prelinked with a different base offset.
287 If it doesn't match, we may have a different binary, the
288 same binary with the dynamic table loaded at an unrelated
289 location, or anything, really. To avoid regressions,
290 don't adjust the base offset in the latter case, although
291 odds are that, if things really changed, debugging won't
292 quite work.
293
294 One could expect more the condition
295 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
296 but the one below is relaxed for PPC. The PPC kernel supports
297 either 4k or 64k page sizes. To be prepared for 64k pages,
298 PPC ELF files are built using an alignment requirement of 64k.
299 However, when running on a kernel supporting 4k pages, the memory
300 mapping of the library may not actually happen on a 64k boundary!
301
302 (In the usual case where (l_addr & align) == 0, this check is
303 equivalent to the possibly expected check above.)
304
305 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
306
307 l_addr = l_dynaddr - dynaddr;
308
309 if ((l_addr & (minpagesize - 1)) == 0
310 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
311 {
312 if (info_verbose)
313 printf_unfiltered (_("Using PIC (Position Independent Code) "
314 "prelink displacement %s for \"%s\".\n"),
315 paddress (target_gdbarch (), l_addr),
316 so->so_name);
317 }
318 else
319 {
320 /* There is no way to verify the library file matches. prelink
321 can during prelinking of an unprelinked file (or unprelinking
322 of a prelinked file) shift the DYNAMIC segment by arbitrary
323 offset without any page size alignment. There is no way to
324 find out the ELF header and/or Program Headers for a limited
325 verification if it they match. One could do a verification
326 of the DYNAMIC segment. Still the found address is the best
327 one GDB could find. */
328
329 warning (_(".dynamic section for \"%s\" "
330 "is not at the expected address "
331 "(wrong library or version mismatch?)"), so->so_name);
332 }
333 }
334
335 set_addr:
336 so->lm_info->l_addr = l_addr;
337 so->lm_info->l_addr_p = 1;
338 }
339
340 return so->lm_info->l_addr;
341 }
342
343 /* Per pspace SVR4 specific data. */
344
345 struct svr4_info
346 {
347 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
348
349 /* Validity flag for debug_loader_offset. */
350 int debug_loader_offset_p;
351
352 /* Load address for the dynamic linker, inferred. */
353 CORE_ADDR debug_loader_offset;
354
355 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
356 char *debug_loader_name;
357
358 /* Load map address for the main executable. */
359 CORE_ADDR main_lm_addr;
360
361 CORE_ADDR interp_text_sect_low;
362 CORE_ADDR interp_text_sect_high;
363 CORE_ADDR interp_plt_sect_low;
364 CORE_ADDR interp_plt_sect_high;
365
366 /* Nonzero if the list of objects was last obtained from the target
367 via qXfer:libraries-svr4:read. */
368 int using_xfer;
369
370 /* Table of struct probe_and_action instances, used by the
371 probes-based interface to map breakpoint addresses to probes
372 and their associated actions. Lookup is performed using
373 probe_and_action->probe->address. */
374 htab_t probes_table;
375
376 /* List of objects loaded into the inferior, used by the probes-
377 based interface. */
378 struct so_list *solib_list;
379 };
380
381 /* Per-program-space data key. */
382 static const struct program_space_data *solib_svr4_pspace_data;
383
384 /* Free the probes table. */
385
386 static void
387 free_probes_table (struct svr4_info *info)
388 {
389 if (info->probes_table == NULL)
390 return;
391
392 htab_delete (info->probes_table);
393 info->probes_table = NULL;
394 }
395
396 /* Free the solib list. */
397
398 static void
399 free_solib_list (struct svr4_info *info)
400 {
401 svr4_free_library_list (&info->solib_list);
402 info->solib_list = NULL;
403 }
404
405 static void
406 svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
407 {
408 struct svr4_info *info = arg;
409
410 free_probes_table (info);
411 free_solib_list (info);
412
413 xfree (info);
414 }
415
416 /* Get the current svr4 data. If none is found yet, add it now. This
417 function always returns a valid object. */
418
419 static struct svr4_info *
420 get_svr4_info (void)
421 {
422 struct svr4_info *info;
423
424 info = program_space_data (current_program_space, solib_svr4_pspace_data);
425 if (info != NULL)
426 return info;
427
428 info = XCNEW (struct svr4_info);
429 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
430 return info;
431 }
432
433 /* Local function prototypes */
434
435 static int match_main (const char *);
436
437 /* Read program header TYPE from inferior memory. The header is found
438 by scanning the OS auxillary vector.
439
440 If TYPE == -1, return the program headers instead of the contents of
441 one program header.
442
443 Return a pointer to allocated memory holding the program header contents,
444 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
445 size of those contents is returned to P_SECT_SIZE. Likewise, the target
446 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE and
447 the base address of the section is returned in BASE_ADDR. */
448
449 static gdb_byte *
450 read_program_header (int type, int *p_sect_size, int *p_arch_size,
451 CORE_ADDR *base_addr)
452 {
453 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
454 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
455 int arch_size, sect_size;
456 CORE_ADDR sect_addr;
457 gdb_byte *buf;
458 int pt_phdr_p = 0;
459
460 /* Get required auxv elements from target. */
461 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
462 return 0;
463 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
464 return 0;
465 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
466 return 0;
467 if (!at_phdr || !at_phnum)
468 return 0;
469
470 /* Determine ELF architecture type. */
471 if (at_phent == sizeof (Elf32_External_Phdr))
472 arch_size = 32;
473 else if (at_phent == sizeof (Elf64_External_Phdr))
474 arch_size = 64;
475 else
476 return 0;
477
478 /* Find the requested segment. */
479 if (type == -1)
480 {
481 sect_addr = at_phdr;
482 sect_size = at_phent * at_phnum;
483 }
484 else if (arch_size == 32)
485 {
486 Elf32_External_Phdr phdr;
487 int i;
488
489 /* Search for requested PHDR. */
490 for (i = 0; i < at_phnum; i++)
491 {
492 int p_type;
493
494 if (target_read_memory (at_phdr + i * sizeof (phdr),
495 (gdb_byte *)&phdr, sizeof (phdr)))
496 return 0;
497
498 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
499 4, byte_order);
500
501 if (p_type == PT_PHDR)
502 {
503 pt_phdr_p = 1;
504 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
505 4, byte_order);
506 }
507
508 if (p_type == type)
509 break;
510 }
511
512 if (i == at_phnum)
513 return 0;
514
515 /* Retrieve address and size. */
516 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
517 4, byte_order);
518 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
519 4, byte_order);
520 }
521 else
522 {
523 Elf64_External_Phdr phdr;
524 int i;
525
526 /* Search for requested PHDR. */
527 for (i = 0; i < at_phnum; i++)
528 {
529 int p_type;
530
531 if (target_read_memory (at_phdr + i * sizeof (phdr),
532 (gdb_byte *)&phdr, sizeof (phdr)))
533 return 0;
534
535 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
536 4, byte_order);
537
538 if (p_type == PT_PHDR)
539 {
540 pt_phdr_p = 1;
541 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
542 8, byte_order);
543 }
544
545 if (p_type == type)
546 break;
547 }
548
549 if (i == at_phnum)
550 return 0;
551
552 /* Retrieve address and size. */
553 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
554 8, byte_order);
555 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
556 8, byte_order);
557 }
558
559 /* PT_PHDR is optional, but we really need it
560 for PIE to make this work in general. */
561
562 if (pt_phdr_p)
563 {
564 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
565 Relocation offset is the difference between the two. */
566 sect_addr = sect_addr + (at_phdr - pt_phdr);
567 }
568
569 /* Read in requested program header. */
570 buf = xmalloc (sect_size);
571 if (target_read_memory (sect_addr, buf, sect_size))
572 {
573 xfree (buf);
574 return NULL;
575 }
576
577 if (p_arch_size)
578 *p_arch_size = arch_size;
579 if (p_sect_size)
580 *p_sect_size = sect_size;
581 if (base_addr)
582 *base_addr = sect_addr;
583
584 return buf;
585 }
586
587
588 /* Return program interpreter string. */
589 static char *
590 find_program_interpreter (void)
591 {
592 gdb_byte *buf = NULL;
593
594 /* If we have an exec_bfd, use its section table. */
595 if (exec_bfd
596 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
597 {
598 struct bfd_section *interp_sect;
599
600 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
601 if (interp_sect != NULL)
602 {
603 int sect_size = bfd_section_size (exec_bfd, interp_sect);
604
605 buf = xmalloc (sect_size);
606 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
607 }
608 }
609
610 /* If we didn't find it, use the target auxillary vector. */
611 if (!buf)
612 buf = read_program_header (PT_INTERP, NULL, NULL, NULL);
613
614 return (char *) buf;
615 }
616
617
618 /* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is
619 found, 1 is returned and the corresponding PTR is set. */
620
621 static int
622 scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr,
623 CORE_ADDR *ptr_addr)
624 {
625 int arch_size, step, sect_size;
626 long current_dyntag;
627 CORE_ADDR dyn_ptr, dyn_addr;
628 gdb_byte *bufend, *bufstart, *buf;
629 Elf32_External_Dyn *x_dynp_32;
630 Elf64_External_Dyn *x_dynp_64;
631 struct bfd_section *sect;
632 struct target_section *target_section;
633
634 if (abfd == NULL)
635 return 0;
636
637 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
638 return 0;
639
640 arch_size = bfd_get_arch_size (abfd);
641 if (arch_size == -1)
642 return 0;
643
644 /* Find the start address of the .dynamic section. */
645 sect = bfd_get_section_by_name (abfd, ".dynamic");
646 if (sect == NULL)
647 return 0;
648
649 for (target_section = current_target_sections->sections;
650 target_section < current_target_sections->sections_end;
651 target_section++)
652 if (sect == target_section->the_bfd_section)
653 break;
654 if (target_section < current_target_sections->sections_end)
655 dyn_addr = target_section->addr;
656 else
657 {
658 /* ABFD may come from OBJFILE acting only as a symbol file without being
659 loaded into the target (see add_symbol_file_command). This case is
660 such fallback to the file VMA address without the possibility of
661 having the section relocated to its actual in-memory address. */
662
663 dyn_addr = bfd_section_vma (abfd, sect);
664 }
665
666 /* Read in .dynamic from the BFD. We will get the actual value
667 from memory later. */
668 sect_size = bfd_section_size (abfd, sect);
669 buf = bufstart = alloca (sect_size);
670 if (!bfd_get_section_contents (abfd, sect,
671 buf, 0, sect_size))
672 return 0;
673
674 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
675 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
676 : sizeof (Elf64_External_Dyn);
677 for (bufend = buf + sect_size;
678 buf < bufend;
679 buf += step)
680 {
681 if (arch_size == 32)
682 {
683 x_dynp_32 = (Elf32_External_Dyn *) buf;
684 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
685 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
686 }
687 else
688 {
689 x_dynp_64 = (Elf64_External_Dyn *) buf;
690 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
691 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
692 }
693 if (current_dyntag == DT_NULL)
694 return 0;
695 if (current_dyntag == desired_dyntag)
696 {
697 /* If requested, try to read the runtime value of this .dynamic
698 entry. */
699 if (ptr)
700 {
701 struct type *ptr_type;
702 gdb_byte ptr_buf[8];
703 CORE_ADDR ptr_addr_1;
704
705 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
706 ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8;
707 if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0)
708 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
709 *ptr = dyn_ptr;
710 if (ptr_addr)
711 *ptr_addr = dyn_addr + (buf - bufstart);
712 }
713 return 1;
714 }
715 }
716
717 return 0;
718 }
719
720 /* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
721 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
722 is returned and the corresponding PTR is set. */
723
724 static int
725 scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
726 CORE_ADDR *ptr_addr)
727 {
728 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
729 int sect_size, arch_size, step;
730 long current_dyntag;
731 CORE_ADDR dyn_ptr;
732 CORE_ADDR base_addr;
733 gdb_byte *bufend, *bufstart, *buf;
734
735 /* Read in .dynamic section. */
736 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size,
737 &base_addr);
738 if (!buf)
739 return 0;
740
741 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
742 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
743 : sizeof (Elf64_External_Dyn);
744 for (bufend = buf + sect_size;
745 buf < bufend;
746 buf += step)
747 {
748 if (arch_size == 32)
749 {
750 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
751
752 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
753 4, byte_order);
754 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
755 4, byte_order);
756 }
757 else
758 {
759 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
760
761 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
762 8, byte_order);
763 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
764 8, byte_order);
765 }
766 if (current_dyntag == DT_NULL)
767 break;
768
769 if (current_dyntag == desired_dyntag)
770 {
771 if (ptr)
772 *ptr = dyn_ptr;
773
774 if (ptr_addr)
775 *ptr_addr = base_addr + buf - bufstart;
776
777 xfree (bufstart);
778 return 1;
779 }
780 }
781
782 xfree (bufstart);
783 return 0;
784 }
785
786 /* Locate the base address of dynamic linker structs for SVR4 elf
787 targets.
788
789 For SVR4 elf targets the address of the dynamic linker's runtime
790 structure is contained within the dynamic info section in the
791 executable file. The dynamic section is also mapped into the
792 inferior address space. Because the runtime loader fills in the
793 real address before starting the inferior, we have to read in the
794 dynamic info section from the inferior address space.
795 If there are any errors while trying to find the address, we
796 silently return 0, otherwise the found address is returned. */
797
798 static CORE_ADDR
799 elf_locate_base (void)
800 {
801 struct bound_minimal_symbol msymbol;
802 CORE_ADDR dyn_ptr, dyn_ptr_addr;
803
804 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
805 instead of DT_DEBUG, although they sometimes contain an unused
806 DT_DEBUG. */
807 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr, NULL)
808 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
809 {
810 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
811 gdb_byte *pbuf;
812 int pbuf_size = TYPE_LENGTH (ptr_type);
813
814 pbuf = alloca (pbuf_size);
815 /* DT_MIPS_RLD_MAP contains a pointer to the address
816 of the dynamic link structure. */
817 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
818 return 0;
819 return extract_typed_address (pbuf, ptr_type);
820 }
821
822 /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
823 because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
824 in non-PIE. */
825 if (scan_dyntag (DT_MIPS_RLD_MAP_REL, exec_bfd, &dyn_ptr, &dyn_ptr_addr)
826 || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
827 {
828 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
829 gdb_byte *pbuf;
830 int pbuf_size = TYPE_LENGTH (ptr_type);
831
832 pbuf = alloca (pbuf_size);
833 /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
834 DT slot to the address of the dynamic link structure. */
835 if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
836 return 0;
837 return extract_typed_address (pbuf, ptr_type);
838 }
839
840 /* Find DT_DEBUG. */
841 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr, NULL)
842 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
843 return dyn_ptr;
844
845 /* This may be a static executable. Look for the symbol
846 conventionally named _r_debug, as a last resort. */
847 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
848 if (msymbol.minsym != NULL)
849 return BMSYMBOL_VALUE_ADDRESS (msymbol);
850
851 /* DT_DEBUG entry not found. */
852 return 0;
853 }
854
855 /* Locate the base address of dynamic linker structs.
856
857 For both the SunOS and SVR4 shared library implementations, if the
858 inferior executable has been linked dynamically, there is a single
859 address somewhere in the inferior's data space which is the key to
860 locating all of the dynamic linker's runtime structures. This
861 address is the value of the debug base symbol. The job of this
862 function is to find and return that address, or to return 0 if there
863 is no such address (the executable is statically linked for example).
864
865 For SunOS, the job is almost trivial, since the dynamic linker and
866 all of it's structures are statically linked to the executable at
867 link time. Thus the symbol for the address we are looking for has
868 already been added to the minimal symbol table for the executable's
869 objfile at the time the symbol file's symbols were read, and all we
870 have to do is look it up there. Note that we explicitly do NOT want
871 to find the copies in the shared library.
872
873 The SVR4 version is a bit more complicated because the address
874 is contained somewhere in the dynamic info section. We have to go
875 to a lot more work to discover the address of the debug base symbol.
876 Because of this complexity, we cache the value we find and return that
877 value on subsequent invocations. Note there is no copy in the
878 executable symbol tables. */
879
880 static CORE_ADDR
881 locate_base (struct svr4_info *info)
882 {
883 /* Check to see if we have a currently valid address, and if so, avoid
884 doing all this work again and just return the cached address. If
885 we have no cached address, try to locate it in the dynamic info
886 section for ELF executables. There's no point in doing any of this
887 though if we don't have some link map offsets to work with. */
888
889 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
890 info->debug_base = elf_locate_base ();
891 return info->debug_base;
892 }
893
894 /* Find the first element in the inferior's dynamic link map, and
895 return its address in the inferior. Return zero if the address
896 could not be determined.
897
898 FIXME: Perhaps we should validate the info somehow, perhaps by
899 checking r_version for a known version number, or r_state for
900 RT_CONSISTENT. */
901
902 static CORE_ADDR
903 solib_svr4_r_map (struct svr4_info *info)
904 {
905 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
906 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
907 CORE_ADDR addr = 0;
908
909 TRY
910 {
911 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
912 ptr_type);
913 }
914 CATCH (ex, RETURN_MASK_ERROR)
915 {
916 exception_print (gdb_stderr, ex);
917 }
918 END_CATCH
919
920 return addr;
921 }
922
923 /* Find r_brk from the inferior's debug base. */
924
925 static CORE_ADDR
926 solib_svr4_r_brk (struct svr4_info *info)
927 {
928 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
929 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
930
931 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
932 ptr_type);
933 }
934
935 /* Find the link map for the dynamic linker (if it is not in the
936 normal list of loaded shared objects). */
937
938 static CORE_ADDR
939 solib_svr4_r_ldsomap (struct svr4_info *info)
940 {
941 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
942 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
943 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
944 ULONGEST version = 0;
945
946 TRY
947 {
948 /* Check version, and return zero if `struct r_debug' doesn't have
949 the r_ldsomap member. */
950 version
951 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
952 lmo->r_version_size, byte_order);
953 }
954 CATCH (ex, RETURN_MASK_ERROR)
955 {
956 exception_print (gdb_stderr, ex);
957 }
958 END_CATCH
959
960 if (version < 2 || lmo->r_ldsomap_offset == -1)
961 return 0;
962
963 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
964 ptr_type);
965 }
966
967 /* On Solaris systems with some versions of the dynamic linker,
968 ld.so's l_name pointer points to the SONAME in the string table
969 rather than into writable memory. So that GDB can find shared
970 libraries when loading a core file generated by gcore, ensure that
971 memory areas containing the l_name string are saved in the core
972 file. */
973
974 static int
975 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
976 {
977 struct svr4_info *info;
978 CORE_ADDR ldsomap;
979 struct so_list *newobj;
980 struct cleanup *old_chain;
981 CORE_ADDR name_lm;
982
983 info = get_svr4_info ();
984
985 info->debug_base = 0;
986 locate_base (info);
987 if (!info->debug_base)
988 return 0;
989
990 ldsomap = solib_svr4_r_ldsomap (info);
991 if (!ldsomap)
992 return 0;
993
994 newobj = XCNEW (struct so_list);
995 old_chain = make_cleanup (xfree, newobj);
996 newobj->lm_info = lm_info_read (ldsomap);
997 make_cleanup (xfree, newobj->lm_info);
998 name_lm = newobj->lm_info ? newobj->lm_info->l_name : 0;
999 do_cleanups (old_chain);
1000
1001 return (name_lm >= vaddr && name_lm < vaddr + size);
1002 }
1003
1004 /* Implement the "open_symbol_file_object" target_so_ops method.
1005
1006 If no open symbol file, attempt to locate and open the main symbol
1007 file. On SVR4 systems, this is the first link map entry. If its
1008 name is here, we can open it. Useful when attaching to a process
1009 without first loading its symbol file. */
1010
1011 static int
1012 open_symbol_file_object (void *from_ttyp)
1013 {
1014 CORE_ADDR lm, l_name;
1015 char *filename;
1016 int errcode;
1017 int from_tty = *(int *)from_ttyp;
1018 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
1019 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
1020 int l_name_size = TYPE_LENGTH (ptr_type);
1021 gdb_byte *l_name_buf = xmalloc (l_name_size);
1022 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
1023 struct svr4_info *info = get_svr4_info ();
1024
1025 if (symfile_objfile)
1026 if (!query (_("Attempt to reload symbols from process? ")))
1027 {
1028 do_cleanups (cleanups);
1029 return 0;
1030 }
1031
1032 /* Always locate the debug struct, in case it has moved. */
1033 info->debug_base = 0;
1034 if (locate_base (info) == 0)
1035 {
1036 do_cleanups (cleanups);
1037 return 0; /* failed somehow... */
1038 }
1039
1040 /* First link map member should be the executable. */
1041 lm = solib_svr4_r_map (info);
1042 if (lm == 0)
1043 {
1044 do_cleanups (cleanups);
1045 return 0; /* failed somehow... */
1046 }
1047
1048 /* Read address of name from target memory to GDB. */
1049 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
1050
1051 /* Convert the address to host format. */
1052 l_name = extract_typed_address (l_name_buf, ptr_type);
1053
1054 if (l_name == 0)
1055 {
1056 do_cleanups (cleanups);
1057 return 0; /* No filename. */
1058 }
1059
1060 /* Now fetch the filename from target memory. */
1061 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1062 make_cleanup (xfree, filename);
1063
1064 if (errcode)
1065 {
1066 warning (_("failed to read exec filename from attached file: %s"),
1067 safe_strerror (errcode));
1068 do_cleanups (cleanups);
1069 return 0;
1070 }
1071
1072 /* Have a pathname: read the symbol file. */
1073 symbol_file_add_main (filename, from_tty);
1074
1075 do_cleanups (cleanups);
1076 return 1;
1077 }
1078
1079 /* Data exchange structure for the XML parser as returned by
1080 svr4_current_sos_via_xfer_libraries. */
1081
1082 struct svr4_library_list
1083 {
1084 struct so_list *head, **tailp;
1085
1086 /* Inferior address of struct link_map used for the main executable. It is
1087 NULL if not known. */
1088 CORE_ADDR main_lm;
1089 };
1090
1091 /* Implementation for target_so_ops.free_so. */
1092
1093 static void
1094 svr4_free_so (struct so_list *so)
1095 {
1096 xfree (so->lm_info);
1097 }
1098
1099 /* Implement target_so_ops.clear_so. */
1100
1101 static void
1102 svr4_clear_so (struct so_list *so)
1103 {
1104 if (so->lm_info != NULL)
1105 so->lm_info->l_addr_p = 0;
1106 }
1107
1108 /* Free so_list built so far (called via cleanup). */
1109
1110 static void
1111 svr4_free_library_list (void *p_list)
1112 {
1113 struct so_list *list = *(struct so_list **) p_list;
1114
1115 while (list != NULL)
1116 {
1117 struct so_list *next = list->next;
1118
1119 free_so (list);
1120 list = next;
1121 }
1122 }
1123
1124 /* Copy library list. */
1125
1126 static struct so_list *
1127 svr4_copy_library_list (struct so_list *src)
1128 {
1129 struct so_list *dst = NULL;
1130 struct so_list **link = &dst;
1131
1132 while (src != NULL)
1133 {
1134 struct so_list *newobj;
1135
1136 newobj = XNEW (struct so_list);
1137 memcpy (newobj, src, sizeof (struct so_list));
1138
1139 newobj->lm_info = XNEW (struct lm_info);
1140 memcpy (newobj->lm_info, src->lm_info, sizeof (struct lm_info));
1141
1142 newobj->next = NULL;
1143 *link = newobj;
1144 link = &newobj->next;
1145
1146 src = src->next;
1147 }
1148
1149 return dst;
1150 }
1151
1152 #ifdef HAVE_LIBEXPAT
1153
1154 #include "xml-support.h"
1155
1156 /* Handle the start of a <library> element. Note: new elements are added
1157 at the tail of the list, keeping the list in order. */
1158
1159 static void
1160 library_list_start_library (struct gdb_xml_parser *parser,
1161 const struct gdb_xml_element *element,
1162 void *user_data, VEC(gdb_xml_value_s) *attributes)
1163 {
1164 struct svr4_library_list *list = user_data;
1165 const char *name = xml_find_attribute (attributes, "name")->value;
1166 ULONGEST *lmp = xml_find_attribute (attributes, "lm")->value;
1167 ULONGEST *l_addrp = xml_find_attribute (attributes, "l_addr")->value;
1168 ULONGEST *l_ldp = xml_find_attribute (attributes, "l_ld")->value;
1169 struct so_list *new_elem;
1170
1171 new_elem = XCNEW (struct so_list);
1172 new_elem->lm_info = XCNEW (struct lm_info);
1173 new_elem->lm_info->lm_addr = *lmp;
1174 new_elem->lm_info->l_addr_inferior = *l_addrp;
1175 new_elem->lm_info->l_ld = *l_ldp;
1176
1177 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1178 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1179 strcpy (new_elem->so_original_name, new_elem->so_name);
1180
1181 *list->tailp = new_elem;
1182 list->tailp = &new_elem->next;
1183 }
1184
1185 /* Handle the start of a <library-list-svr4> element. */
1186
1187 static void
1188 svr4_library_list_start_list (struct gdb_xml_parser *parser,
1189 const struct gdb_xml_element *element,
1190 void *user_data, VEC(gdb_xml_value_s) *attributes)
1191 {
1192 struct svr4_library_list *list = user_data;
1193 const char *version = xml_find_attribute (attributes, "version")->value;
1194 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1195
1196 if (strcmp (version, "1.0") != 0)
1197 gdb_xml_error (parser,
1198 _("SVR4 Library list has unsupported version \"%s\""),
1199 version);
1200
1201 if (main_lm)
1202 list->main_lm = *(ULONGEST *) main_lm->value;
1203 }
1204
1205 /* The allowed elements and attributes for an XML library list.
1206 The root element is a <library-list>. */
1207
1208 static const struct gdb_xml_attribute svr4_library_attributes[] =
1209 {
1210 { "name", GDB_XML_AF_NONE, NULL, NULL },
1211 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1212 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1213 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1214 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1215 };
1216
1217 static const struct gdb_xml_element svr4_library_list_children[] =
1218 {
1219 {
1220 "library", svr4_library_attributes, NULL,
1221 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1222 library_list_start_library, NULL
1223 },
1224 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1225 };
1226
1227 static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1228 {
1229 { "version", GDB_XML_AF_NONE, NULL, NULL },
1230 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1231 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1232 };
1233
1234 static const struct gdb_xml_element svr4_library_list_elements[] =
1235 {
1236 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1237 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1238 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1239 };
1240
1241 /* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1242
1243 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1244 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1245 empty, caller is responsible for freeing all its entries. */
1246
1247 static int
1248 svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1249 {
1250 struct cleanup *back_to = make_cleanup (svr4_free_library_list,
1251 &list->head);
1252
1253 memset (list, 0, sizeof (*list));
1254 list->tailp = &list->head;
1255 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
1256 svr4_library_list_elements, document, list) == 0)
1257 {
1258 /* Parsed successfully, keep the result. */
1259 discard_cleanups (back_to);
1260 return 1;
1261 }
1262
1263 do_cleanups (back_to);
1264 return 0;
1265 }
1266
1267 /* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
1268
1269 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1270 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1271 empty, caller is responsible for freeing all its entries.
1272
1273 Note that ANNEX must be NULL if the remote does not explicitly allow
1274 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1275 this can be checked using target_augmented_libraries_svr4_read (). */
1276
1277 static int
1278 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1279 const char *annex)
1280 {
1281 char *svr4_library_document;
1282 int result;
1283 struct cleanup *back_to;
1284
1285 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1286
1287 /* Fetch the list of shared libraries. */
1288 svr4_library_document = target_read_stralloc (&current_target,
1289 TARGET_OBJECT_LIBRARIES_SVR4,
1290 annex);
1291 if (svr4_library_document == NULL)
1292 return 0;
1293
1294 back_to = make_cleanup (xfree, svr4_library_document);
1295 result = svr4_parse_libraries (svr4_library_document, list);
1296 do_cleanups (back_to);
1297
1298 return result;
1299 }
1300
1301 #else
1302
1303 static int
1304 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1305 const char *annex)
1306 {
1307 return 0;
1308 }
1309
1310 #endif
1311
1312 /* If no shared library information is available from the dynamic
1313 linker, build a fallback list from other sources. */
1314
1315 static struct so_list *
1316 svr4_default_sos (void)
1317 {
1318 struct svr4_info *info = get_svr4_info ();
1319 struct so_list *newobj;
1320
1321 if (!info->debug_loader_offset_p)
1322 return NULL;
1323
1324 newobj = XCNEW (struct so_list);
1325
1326 newobj->lm_info = XCNEW (struct lm_info);
1327
1328 /* Nothing will ever check the other fields if we set l_addr_p. */
1329 newobj->lm_info->l_addr = info->debug_loader_offset;
1330 newobj->lm_info->l_addr_p = 1;
1331
1332 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1333 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1334 strcpy (newobj->so_original_name, newobj->so_name);
1335
1336 return newobj;
1337 }
1338
1339 /* Read the whole inferior libraries chain starting at address LM.
1340 Expect the first entry in the chain's previous entry to be PREV_LM.
1341 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1342 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1343 to it. Returns nonzero upon success. If zero is returned the
1344 entries stored to LINK_PTR_PTR are still valid although they may
1345 represent only part of the inferior library list. */
1346
1347 static int
1348 svr4_read_so_list (CORE_ADDR lm, CORE_ADDR prev_lm,
1349 struct so_list ***link_ptr_ptr, int ignore_first)
1350 {
1351 CORE_ADDR first_l_name = 0;
1352 CORE_ADDR next_lm;
1353
1354 for (; lm != 0; prev_lm = lm, lm = next_lm)
1355 {
1356 struct so_list *newobj;
1357 struct cleanup *old_chain;
1358 int errcode;
1359 char *buffer;
1360
1361 newobj = XCNEW (struct so_list);
1362 old_chain = make_cleanup_free_so (newobj);
1363
1364 newobj->lm_info = lm_info_read (lm);
1365 if (newobj->lm_info == NULL)
1366 {
1367 do_cleanups (old_chain);
1368 return 0;
1369 }
1370
1371 next_lm = newobj->lm_info->l_next;
1372
1373 if (newobj->lm_info->l_prev != prev_lm)
1374 {
1375 warning (_("Corrupted shared library list: %s != %s"),
1376 paddress (target_gdbarch (), prev_lm),
1377 paddress (target_gdbarch (), newobj->lm_info->l_prev));
1378 do_cleanups (old_chain);
1379 return 0;
1380 }
1381
1382 /* For SVR4 versions, the first entry in the link map is for the
1383 inferior executable, so we must ignore it. For some versions of
1384 SVR4, it has no name. For others (Solaris 2.3 for example), it
1385 does have a name, so we can no longer use a missing name to
1386 decide when to ignore it. */
1387 if (ignore_first && newobj->lm_info->l_prev == 0)
1388 {
1389 struct svr4_info *info = get_svr4_info ();
1390
1391 first_l_name = newobj->lm_info->l_name;
1392 info->main_lm_addr = newobj->lm_info->lm_addr;
1393 do_cleanups (old_chain);
1394 continue;
1395 }
1396
1397 /* Extract this shared object's name. */
1398 target_read_string (newobj->lm_info->l_name, &buffer,
1399 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1400 if (errcode != 0)
1401 {
1402 /* If this entry's l_name address matches that of the
1403 inferior executable, then this is not a normal shared
1404 object, but (most likely) a vDSO. In this case, silently
1405 skip it; otherwise emit a warning. */
1406 if (first_l_name == 0 || newobj->lm_info->l_name != first_l_name)
1407 warning (_("Can't read pathname for load map: %s."),
1408 safe_strerror (errcode));
1409 do_cleanups (old_chain);
1410 continue;
1411 }
1412
1413 strncpy (newobj->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1414 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1415 strcpy (newobj->so_original_name, newobj->so_name);
1416 xfree (buffer);
1417
1418 /* If this entry has no name, or its name matches the name
1419 for the main executable, don't include it in the list. */
1420 if (! newobj->so_name[0] || match_main (newobj->so_name))
1421 {
1422 do_cleanups (old_chain);
1423 continue;
1424 }
1425
1426 discard_cleanups (old_chain);
1427 newobj->next = 0;
1428 **link_ptr_ptr = newobj;
1429 *link_ptr_ptr = &newobj->next;
1430 }
1431
1432 return 1;
1433 }
1434
1435 /* Read the full list of currently loaded shared objects directly
1436 from the inferior, without referring to any libraries read and
1437 stored by the probes interface. Handle special cases relating
1438 to the first elements of the list. */
1439
1440 static struct so_list *
1441 svr4_current_sos_direct (struct svr4_info *info)
1442 {
1443 CORE_ADDR lm;
1444 struct so_list *head = NULL;
1445 struct so_list **link_ptr = &head;
1446 struct cleanup *back_to;
1447 int ignore_first;
1448 struct svr4_library_list library_list;
1449
1450 /* Fall back to manual examination of the target if the packet is not
1451 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1452 tests a case where gdbserver cannot find the shared libraries list while
1453 GDB itself is able to find it via SYMFILE_OBJFILE.
1454
1455 Unfortunately statically linked inferiors will also fall back through this
1456 suboptimal code path. */
1457
1458 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1459 NULL);
1460 if (info->using_xfer)
1461 {
1462 if (library_list.main_lm)
1463 info->main_lm_addr = library_list.main_lm;
1464
1465 return library_list.head ? library_list.head : svr4_default_sos ();
1466 }
1467
1468 /* Always locate the debug struct, in case it has moved. */
1469 info->debug_base = 0;
1470 locate_base (info);
1471
1472 /* If we can't find the dynamic linker's base structure, this
1473 must not be a dynamically linked executable. Hmm. */
1474 if (! info->debug_base)
1475 return svr4_default_sos ();
1476
1477 /* Assume that everything is a library if the dynamic loader was loaded
1478 late by a static executable. */
1479 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1480 ignore_first = 0;
1481 else
1482 ignore_first = 1;
1483
1484 back_to = make_cleanup (svr4_free_library_list, &head);
1485
1486 /* Walk the inferior's link map list, and build our list of
1487 `struct so_list' nodes. */
1488 lm = solib_svr4_r_map (info);
1489 if (lm)
1490 svr4_read_so_list (lm, 0, &link_ptr, ignore_first);
1491
1492 /* On Solaris, the dynamic linker is not in the normal list of
1493 shared objects, so make sure we pick it up too. Having
1494 symbol information for the dynamic linker is quite crucial
1495 for skipping dynamic linker resolver code. */
1496 lm = solib_svr4_r_ldsomap (info);
1497 if (lm)
1498 svr4_read_so_list (lm, 0, &link_ptr, 0);
1499
1500 discard_cleanups (back_to);
1501
1502 if (head == NULL)
1503 return svr4_default_sos ();
1504
1505 return head;
1506 }
1507
1508 /* Implement the main part of the "current_sos" target_so_ops
1509 method. */
1510
1511 static struct so_list *
1512 svr4_current_sos_1 (void)
1513 {
1514 struct svr4_info *info = get_svr4_info ();
1515
1516 /* If the solib list has been read and stored by the probes
1517 interface then we return a copy of the stored list. */
1518 if (info->solib_list != NULL)
1519 return svr4_copy_library_list (info->solib_list);
1520
1521 /* Otherwise obtain the solib list directly from the inferior. */
1522 return svr4_current_sos_direct (info);
1523 }
1524
1525 /* Implement the "current_sos" target_so_ops method. */
1526
1527 static struct so_list *
1528 svr4_current_sos (void)
1529 {
1530 struct so_list *so_head = svr4_current_sos_1 ();
1531 struct mem_range vsyscall_range;
1532
1533 /* Filter out the vDSO module, if present. Its symbol file would
1534 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1535 managed by symfile-mem.c:add_vsyscall_page. */
1536 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1537 && vsyscall_range.length != 0)
1538 {
1539 struct so_list **sop;
1540
1541 sop = &so_head;
1542 while (*sop != NULL)
1543 {
1544 struct so_list *so = *sop;
1545
1546 /* We can't simply match the vDSO by starting address alone,
1547 because lm_info->l_addr_inferior (and also l_addr) do not
1548 necessarily represent the real starting address of the
1549 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1550 field (the ".dynamic" section of the shared object)
1551 always points at the absolute/resolved address though.
1552 So check whether that address is inside the vDSO's
1553 mapping instead.
1554
1555 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1556 0-based ELF, and we see:
1557
1558 (gdb) info auxv
1559 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1560 (gdb) p/x *_r_debug.r_map.l_next
1561 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1562
1563 And on Linux 2.6.32 (x86_64) we see:
1564
1565 (gdb) info auxv
1566 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1567 (gdb) p/x *_r_debug.r_map.l_next
1568 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1569
1570 Dumping that vDSO shows:
1571
1572 (gdb) info proc mappings
1573 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1574 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1575 # readelf -Wa vdso.bin
1576 [...]
1577 Entry point address: 0xffffffffff700700
1578 [...]
1579 Section Headers:
1580 [Nr] Name Type Address Off Size
1581 [ 0] NULL 0000000000000000 000000 000000
1582 [ 1] .hash HASH ffffffffff700120 000120 000038
1583 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1584 [...]
1585 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1586 */
1587 if (address_in_mem_range (so->lm_info->l_ld, &vsyscall_range))
1588 {
1589 *sop = so->next;
1590 free_so (so);
1591 break;
1592 }
1593
1594 sop = &so->next;
1595 }
1596 }
1597
1598 return so_head;
1599 }
1600
1601 /* Get the address of the link_map for a given OBJFILE. */
1602
1603 CORE_ADDR
1604 svr4_fetch_objfile_link_map (struct objfile *objfile)
1605 {
1606 struct so_list *so;
1607 struct svr4_info *info = get_svr4_info ();
1608
1609 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1610 if (info->main_lm_addr == 0)
1611 solib_add (NULL, 0, &current_target, auto_solib_add);
1612
1613 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1614 if (objfile == symfile_objfile)
1615 return info->main_lm_addr;
1616
1617 /* The other link map addresses may be found by examining the list
1618 of shared libraries. */
1619 for (so = master_so_list (); so; so = so->next)
1620 if (so->objfile == objfile)
1621 return so->lm_info->lm_addr;
1622
1623 /* Not found! */
1624 return 0;
1625 }
1626
1627 /* On some systems, the only way to recognize the link map entry for
1628 the main executable file is by looking at its name. Return
1629 non-zero iff SONAME matches one of the known main executable names. */
1630
1631 static int
1632 match_main (const char *soname)
1633 {
1634 const char * const *mainp;
1635
1636 for (mainp = main_name_list; *mainp != NULL; mainp++)
1637 {
1638 if (strcmp (soname, *mainp) == 0)
1639 return (1);
1640 }
1641
1642 return (0);
1643 }
1644
1645 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1646 SVR4 run time loader. */
1647
1648 int
1649 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1650 {
1651 struct svr4_info *info = get_svr4_info ();
1652
1653 return ((pc >= info->interp_text_sect_low
1654 && pc < info->interp_text_sect_high)
1655 || (pc >= info->interp_plt_sect_low
1656 && pc < info->interp_plt_sect_high)
1657 || in_plt_section (pc)
1658 || in_gnu_ifunc_stub (pc));
1659 }
1660
1661 /* Given an executable's ABFD and target, compute the entry-point
1662 address. */
1663
1664 static CORE_ADDR
1665 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1666 {
1667 CORE_ADDR addr;
1668
1669 /* KevinB wrote ... for most targets, the address returned by
1670 bfd_get_start_address() is the entry point for the start
1671 function. But, for some targets, bfd_get_start_address() returns
1672 the address of a function descriptor from which the entry point
1673 address may be extracted. This address is extracted by
1674 gdbarch_convert_from_func_ptr_addr(). The method
1675 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1676 function for targets which don't use function descriptors. */
1677 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
1678 bfd_get_start_address (abfd),
1679 targ);
1680 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
1681 }
1682
1683 /* A probe and its associated action. */
1684
1685 struct probe_and_action
1686 {
1687 /* The probe. */
1688 struct probe *probe;
1689
1690 /* The relocated address of the probe. */
1691 CORE_ADDR address;
1692
1693 /* The action. */
1694 enum probe_action action;
1695 };
1696
1697 /* Returns a hash code for the probe_and_action referenced by p. */
1698
1699 static hashval_t
1700 hash_probe_and_action (const void *p)
1701 {
1702 const struct probe_and_action *pa = p;
1703
1704 return (hashval_t) pa->address;
1705 }
1706
1707 /* Returns non-zero if the probe_and_actions referenced by p1 and p2
1708 are equal. */
1709
1710 static int
1711 equal_probe_and_action (const void *p1, const void *p2)
1712 {
1713 const struct probe_and_action *pa1 = p1;
1714 const struct probe_and_action *pa2 = p2;
1715
1716 return pa1->address == pa2->address;
1717 }
1718
1719 /* Register a solib event probe and its associated action in the
1720 probes table. */
1721
1722 static void
1723 register_solib_event_probe (struct probe *probe, CORE_ADDR address,
1724 enum probe_action action)
1725 {
1726 struct svr4_info *info = get_svr4_info ();
1727 struct probe_and_action lookup, *pa;
1728 void **slot;
1729
1730 /* Create the probes table, if necessary. */
1731 if (info->probes_table == NULL)
1732 info->probes_table = htab_create_alloc (1, hash_probe_and_action,
1733 equal_probe_and_action,
1734 xfree, xcalloc, xfree);
1735
1736 lookup.probe = probe;
1737 lookup.address = address;
1738 slot = htab_find_slot (info->probes_table, &lookup, INSERT);
1739 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1740
1741 pa = XCNEW (struct probe_and_action);
1742 pa->probe = probe;
1743 pa->address = address;
1744 pa->action = action;
1745
1746 *slot = pa;
1747 }
1748
1749 /* Get the solib event probe at the specified location, and the
1750 action associated with it. Returns NULL if no solib event probe
1751 was found. */
1752
1753 static struct probe_and_action *
1754 solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1755 {
1756 struct probe_and_action lookup;
1757 void **slot;
1758
1759 lookup.address = address;
1760 slot = htab_find_slot (info->probes_table, &lookup, NO_INSERT);
1761
1762 if (slot == NULL)
1763 return NULL;
1764
1765 return (struct probe_and_action *) *slot;
1766 }
1767
1768 /* Decide what action to take when the specified solib event probe is
1769 hit. */
1770
1771 static enum probe_action
1772 solib_event_probe_action (struct probe_and_action *pa)
1773 {
1774 enum probe_action action;
1775 unsigned probe_argc = 0;
1776 struct frame_info *frame = get_current_frame ();
1777
1778 action = pa->action;
1779 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1780 return action;
1781
1782 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1783
1784 /* Check that an appropriate number of arguments has been supplied.
1785 We expect:
1786 arg0: Lmid_t lmid (mandatory)
1787 arg1: struct r_debug *debug_base (mandatory)
1788 arg2: struct link_map *new (optional, for incremental updates) */
1789 TRY
1790 {
1791 probe_argc = get_probe_argument_count (pa->probe, frame);
1792 }
1793 CATCH (ex, RETURN_MASK_ERROR)
1794 {
1795 exception_print (gdb_stderr, ex);
1796 probe_argc = 0;
1797 }
1798 END_CATCH
1799
1800 /* If get_probe_argument_count throws an exception, probe_argc will
1801 be set to zero. However, if pa->probe does not have arguments,
1802 then get_probe_argument_count will succeed but probe_argc will
1803 also be zero. Both cases happen because of different things, but
1804 they are treated equally here: action will be set to
1805 PROBES_INTERFACE_FAILED. */
1806 if (probe_argc == 2)
1807 action = FULL_RELOAD;
1808 else if (probe_argc < 2)
1809 action = PROBES_INTERFACE_FAILED;
1810
1811 return action;
1812 }
1813
1814 /* Populate the shared object list by reading the entire list of
1815 shared objects from the inferior. Handle special cases relating
1816 to the first elements of the list. Returns nonzero on success. */
1817
1818 static int
1819 solist_update_full (struct svr4_info *info)
1820 {
1821 free_solib_list (info);
1822 info->solib_list = svr4_current_sos_direct (info);
1823
1824 return 1;
1825 }
1826
1827 /* Update the shared object list starting from the link-map entry
1828 passed by the linker in the probe's third argument. Returns
1829 nonzero if the list was successfully updated, or zero to indicate
1830 failure. */
1831
1832 static int
1833 solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1834 {
1835 struct so_list *tail;
1836 CORE_ADDR prev_lm;
1837
1838 /* svr4_current_sos_direct contains logic to handle a number of
1839 special cases relating to the first elements of the list. To
1840 avoid duplicating this logic we defer to solist_update_full
1841 if the list is empty. */
1842 if (info->solib_list == NULL)
1843 return 0;
1844
1845 /* Fall back to a full update if we are using a remote target
1846 that does not support incremental transfers. */
1847 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1848 return 0;
1849
1850 /* Walk to the end of the list. */
1851 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1852 /* Nothing. */;
1853 prev_lm = tail->lm_info->lm_addr;
1854
1855 /* Read the new objects. */
1856 if (info->using_xfer)
1857 {
1858 struct svr4_library_list library_list;
1859 char annex[64];
1860
1861 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1862 phex_nz (lm, sizeof (lm)),
1863 phex_nz (prev_lm, sizeof (prev_lm)));
1864 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1865 return 0;
1866
1867 tail->next = library_list.head;
1868 }
1869 else
1870 {
1871 struct so_list **link = &tail->next;
1872
1873 /* IGNORE_FIRST may safely be set to zero here because the
1874 above check and deferral to solist_update_full ensures
1875 that this call to svr4_read_so_list will never see the
1876 first element. */
1877 if (!svr4_read_so_list (lm, prev_lm, &link, 0))
1878 return 0;
1879 }
1880
1881 return 1;
1882 }
1883
1884 /* Disable the probes-based linker interface and revert to the
1885 original interface. We don't reset the breakpoints as the
1886 ones set up for the probes-based interface are adequate. */
1887
1888 static void
1889 disable_probes_interface_cleanup (void *arg)
1890 {
1891 struct svr4_info *info = get_svr4_info ();
1892
1893 warning (_("Probes-based dynamic linker interface failed.\n"
1894 "Reverting to original interface.\n"));
1895
1896 free_probes_table (info);
1897 free_solib_list (info);
1898 }
1899
1900 /* Update the solib list as appropriate when using the
1901 probes-based linker interface. Do nothing if using the
1902 standard interface. */
1903
1904 static void
1905 svr4_handle_solib_event (void)
1906 {
1907 struct svr4_info *info = get_svr4_info ();
1908 struct probe_and_action *pa;
1909 enum probe_action action;
1910 struct cleanup *old_chain, *usm_chain;
1911 struct value *val = NULL;
1912 CORE_ADDR pc, debug_base, lm = 0;
1913 int is_initial_ns;
1914 struct frame_info *frame = get_current_frame ();
1915
1916 /* Do nothing if not using the probes interface. */
1917 if (info->probes_table == NULL)
1918 return;
1919
1920 /* If anything goes wrong we revert to the original linker
1921 interface. */
1922 old_chain = make_cleanup (disable_probes_interface_cleanup, NULL);
1923
1924 pc = regcache_read_pc (get_current_regcache ());
1925 pa = solib_event_probe_at (info, pc);
1926 if (pa == NULL)
1927 {
1928 do_cleanups (old_chain);
1929 return;
1930 }
1931
1932 action = solib_event_probe_action (pa);
1933 if (action == PROBES_INTERFACE_FAILED)
1934 {
1935 do_cleanups (old_chain);
1936 return;
1937 }
1938
1939 if (action == DO_NOTHING)
1940 {
1941 discard_cleanups (old_chain);
1942 return;
1943 }
1944
1945 /* evaluate_probe_argument looks up symbols in the dynamic linker
1946 using find_pc_section. find_pc_section is accelerated by a cache
1947 called the section map. The section map is invalidated every
1948 time a shared library is loaded or unloaded, and if the inferior
1949 is generating a lot of shared library events then the section map
1950 will be updated every time svr4_handle_solib_event is called.
1951 We called find_pc_section in svr4_create_solib_event_breakpoints,
1952 so we can guarantee that the dynamic linker's sections are in the
1953 section map. We can therefore inhibit section map updates across
1954 these calls to evaluate_probe_argument and save a lot of time. */
1955 inhibit_section_map_updates (current_program_space);
1956 usm_chain = make_cleanup (resume_section_map_updates_cleanup,
1957 current_program_space);
1958
1959 TRY
1960 {
1961 val = evaluate_probe_argument (pa->probe, 1, frame);
1962 }
1963 CATCH (ex, RETURN_MASK_ERROR)
1964 {
1965 exception_print (gdb_stderr, ex);
1966 val = NULL;
1967 }
1968 END_CATCH
1969
1970 if (val == NULL)
1971 {
1972 do_cleanups (old_chain);
1973 return;
1974 }
1975
1976 debug_base = value_as_address (val);
1977 if (debug_base == 0)
1978 {
1979 do_cleanups (old_chain);
1980 return;
1981 }
1982
1983 /* Always locate the debug struct, in case it moved. */
1984 info->debug_base = 0;
1985 if (locate_base (info) == 0)
1986 {
1987 do_cleanups (old_chain);
1988 return;
1989 }
1990
1991 /* GDB does not currently support libraries loaded via dlmopen
1992 into namespaces other than the initial one. We must ignore
1993 any namespace other than the initial namespace here until
1994 support for this is added to GDB. */
1995 if (debug_base != info->debug_base)
1996 action = DO_NOTHING;
1997
1998 if (action == UPDATE_OR_RELOAD)
1999 {
2000 TRY
2001 {
2002 val = evaluate_probe_argument (pa->probe, 2, frame);
2003 }
2004 CATCH (ex, RETURN_MASK_ERROR)
2005 {
2006 exception_print (gdb_stderr, ex);
2007 do_cleanups (old_chain);
2008 return;
2009 }
2010 END_CATCH
2011
2012 if (val != NULL)
2013 lm = value_as_address (val);
2014
2015 if (lm == 0)
2016 action = FULL_RELOAD;
2017 }
2018
2019 /* Resume section map updates. */
2020 do_cleanups (usm_chain);
2021
2022 if (action == UPDATE_OR_RELOAD)
2023 {
2024 if (!solist_update_incremental (info, lm))
2025 action = FULL_RELOAD;
2026 }
2027
2028 if (action == FULL_RELOAD)
2029 {
2030 if (!solist_update_full (info))
2031 {
2032 do_cleanups (old_chain);
2033 return;
2034 }
2035 }
2036
2037 discard_cleanups (old_chain);
2038 }
2039
2040 /* Helper function for svr4_update_solib_event_breakpoints. */
2041
2042 static int
2043 svr4_update_solib_event_breakpoint (struct breakpoint *b, void *arg)
2044 {
2045 struct bp_location *loc;
2046
2047 if (b->type != bp_shlib_event)
2048 {
2049 /* Continue iterating. */
2050 return 0;
2051 }
2052
2053 for (loc = b->loc; loc != NULL; loc = loc->next)
2054 {
2055 struct svr4_info *info;
2056 struct probe_and_action *pa;
2057
2058 info = program_space_data (loc->pspace, solib_svr4_pspace_data);
2059 if (info == NULL || info->probes_table == NULL)
2060 continue;
2061
2062 pa = solib_event_probe_at (info, loc->address);
2063 if (pa == NULL)
2064 continue;
2065
2066 if (pa->action == DO_NOTHING)
2067 {
2068 if (b->enable_state == bp_disabled && stop_on_solib_events)
2069 enable_breakpoint (b);
2070 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
2071 disable_breakpoint (b);
2072 }
2073
2074 break;
2075 }
2076
2077 /* Continue iterating. */
2078 return 0;
2079 }
2080
2081 /* Enable or disable optional solib event breakpoints as appropriate.
2082 Called whenever stop_on_solib_events is changed. */
2083
2084 static void
2085 svr4_update_solib_event_breakpoints (void)
2086 {
2087 iterate_over_breakpoints (svr4_update_solib_event_breakpoint, NULL);
2088 }
2089
2090 /* Create and register solib event breakpoints. PROBES is an array
2091 of NUM_PROBES elements, each of which is vector of probes. A
2092 solib event breakpoint will be created and registered for each
2093 probe. */
2094
2095 static void
2096 svr4_create_probe_breakpoints (struct gdbarch *gdbarch,
2097 VEC (probe_p) **probes,
2098 struct objfile *objfile)
2099 {
2100 int i;
2101
2102 for (i = 0; i < NUM_PROBES; i++)
2103 {
2104 enum probe_action action = probe_info[i].action;
2105 struct probe *probe;
2106 int ix;
2107
2108 for (ix = 0;
2109 VEC_iterate (probe_p, probes[i], ix, probe);
2110 ++ix)
2111 {
2112 CORE_ADDR address = get_probe_address (probe, objfile);
2113
2114 create_solib_event_breakpoint (gdbarch, address);
2115 register_solib_event_probe (probe, address, action);
2116 }
2117 }
2118
2119 svr4_update_solib_event_breakpoints ();
2120 }
2121
2122 /* Both the SunOS and the SVR4 dynamic linkers call a marker function
2123 before and after mapping and unmapping shared libraries. The sole
2124 purpose of this method is to allow debuggers to set a breakpoint so
2125 they can track these changes.
2126
2127 Some versions of the glibc dynamic linker contain named probes
2128 to allow more fine grained stopping. Given the address of the
2129 original marker function, this function attempts to find these
2130 probes, and if found, sets breakpoints on those instead. If the
2131 probes aren't found, a single breakpoint is set on the original
2132 marker function. */
2133
2134 static void
2135 svr4_create_solib_event_breakpoints (struct gdbarch *gdbarch,
2136 CORE_ADDR address)
2137 {
2138 struct obj_section *os;
2139
2140 os = find_pc_section (address);
2141 if (os != NULL)
2142 {
2143 int with_prefix;
2144
2145 for (with_prefix = 0; with_prefix <= 1; with_prefix++)
2146 {
2147 VEC (probe_p) *probes[NUM_PROBES];
2148 int all_probes_found = 1;
2149 int checked_can_use_probe_arguments = 0;
2150 int i;
2151
2152 memset (probes, 0, sizeof (probes));
2153 for (i = 0; i < NUM_PROBES; i++)
2154 {
2155 const char *name = probe_info[i].name;
2156 struct probe *p;
2157 char buf[32];
2158
2159 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4
2160 shipped with an early version of the probes code in
2161 which the probes' names were prefixed with "rtld_"
2162 and the "map_failed" probe did not exist. The
2163 locations of the probes are otherwise the same, so
2164 we check for probes with prefixed names if probes
2165 with unprefixed names are not present. */
2166 if (with_prefix)
2167 {
2168 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2169 name = buf;
2170 }
2171
2172 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2173
2174 /* The "map_failed" probe did not exist in early
2175 versions of the probes code in which the probes'
2176 names were prefixed with "rtld_". */
2177 if (strcmp (name, "rtld_map_failed") == 0)
2178 continue;
2179
2180 if (VEC_empty (probe_p, probes[i]))
2181 {
2182 all_probes_found = 0;
2183 break;
2184 }
2185
2186 /* Ensure probe arguments can be evaluated. */
2187 if (!checked_can_use_probe_arguments)
2188 {
2189 p = VEC_index (probe_p, probes[i], 0);
2190 if (!can_evaluate_probe_arguments (p))
2191 {
2192 all_probes_found = 0;
2193 break;
2194 }
2195 checked_can_use_probe_arguments = 1;
2196 }
2197 }
2198
2199 if (all_probes_found)
2200 svr4_create_probe_breakpoints (gdbarch, probes, os->objfile);
2201
2202 for (i = 0; i < NUM_PROBES; i++)
2203 VEC_free (probe_p, probes[i]);
2204
2205 if (all_probes_found)
2206 return;
2207 }
2208 }
2209
2210 create_solib_event_breakpoint (gdbarch, address);
2211 }
2212
2213 /* Helper function for gdb_bfd_lookup_symbol. */
2214
2215 static int
2216 cmp_name_and_sec_flags (asymbol *sym, void *data)
2217 {
2218 return (strcmp (sym->name, (const char *) data) == 0
2219 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2220 }
2221 /* Arrange for dynamic linker to hit breakpoint.
2222
2223 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2224 debugger interface, support for arranging for the inferior to hit
2225 a breakpoint after mapping in the shared libraries. This function
2226 enables that breakpoint.
2227
2228 For SunOS, there is a special flag location (in_debugger) which we
2229 set to 1. When the dynamic linker sees this flag set, it will set
2230 a breakpoint at a location known only to itself, after saving the
2231 original contents of that place and the breakpoint address itself,
2232 in it's own internal structures. When we resume the inferior, it
2233 will eventually take a SIGTRAP when it runs into the breakpoint.
2234 We handle this (in a different place) by restoring the contents of
2235 the breakpointed location (which is only known after it stops),
2236 chasing around to locate the shared libraries that have been
2237 loaded, then resuming.
2238
2239 For SVR4, the debugger interface structure contains a member (r_brk)
2240 which is statically initialized at the time the shared library is
2241 built, to the offset of a function (_r_debug_state) which is guaran-
2242 teed to be called once before mapping in a library, and again when
2243 the mapping is complete. At the time we are examining this member,
2244 it contains only the unrelocated offset of the function, so we have
2245 to do our own relocation. Later, when the dynamic linker actually
2246 runs, it relocates r_brk to be the actual address of _r_debug_state().
2247
2248 The debugger interface structure also contains an enumeration which
2249 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2250 depending upon whether or not the library is being mapped or unmapped,
2251 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
2252
2253 static int
2254 enable_break (struct svr4_info *info, int from_tty)
2255 {
2256 struct bound_minimal_symbol msymbol;
2257 const char * const *bkpt_namep;
2258 asection *interp_sect;
2259 char *interp_name;
2260 CORE_ADDR sym_addr;
2261
2262 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2263 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
2264
2265 /* If we already have a shared library list in the target, and
2266 r_debug contains r_brk, set the breakpoint there - this should
2267 mean r_brk has already been relocated. Assume the dynamic linker
2268 is the object containing r_brk. */
2269
2270 solib_add (NULL, from_tty, &current_target, auto_solib_add);
2271 sym_addr = 0;
2272 if (info->debug_base && solib_svr4_r_map (info) != 0)
2273 sym_addr = solib_svr4_r_brk (info);
2274
2275 if (sym_addr != 0)
2276 {
2277 struct obj_section *os;
2278
2279 sym_addr = gdbarch_addr_bits_remove
2280 (target_gdbarch (), gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2281 sym_addr,
2282 &current_target));
2283
2284 /* On at least some versions of Solaris there's a dynamic relocation
2285 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2286 we get control before the dynamic linker has self-relocated.
2287 Check if SYM_ADDR is in a known section, if it is assume we can
2288 trust its value. This is just a heuristic though, it could go away
2289 or be replaced if it's getting in the way.
2290
2291 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2292 however it's spelled in your particular system) is ARM or Thumb.
2293 That knowledge is encoded in the address, if it's Thumb the low bit
2294 is 1. However, we've stripped that info above and it's not clear
2295 what all the consequences are of passing a non-addr_bits_remove'd
2296 address to svr4_create_solib_event_breakpoints. The call to
2297 find_pc_section verifies we know about the address and have some
2298 hope of computing the right kind of breakpoint to use (via
2299 symbol info). It does mean that GDB needs to be pointed at a
2300 non-stripped version of the dynamic linker in order to obtain
2301 information it already knows about. Sigh. */
2302
2303 os = find_pc_section (sym_addr);
2304 if (os != NULL)
2305 {
2306 /* Record the relocated start and end address of the dynamic linker
2307 text and plt section for svr4_in_dynsym_resolve_code. */
2308 bfd *tmp_bfd;
2309 CORE_ADDR load_addr;
2310
2311 tmp_bfd = os->objfile->obfd;
2312 load_addr = ANOFFSET (os->objfile->section_offsets,
2313 SECT_OFF_TEXT (os->objfile));
2314
2315 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2316 if (interp_sect)
2317 {
2318 info->interp_text_sect_low =
2319 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2320 info->interp_text_sect_high =
2321 info->interp_text_sect_low
2322 + bfd_section_size (tmp_bfd, interp_sect);
2323 }
2324 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2325 if (interp_sect)
2326 {
2327 info->interp_plt_sect_low =
2328 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2329 info->interp_plt_sect_high =
2330 info->interp_plt_sect_low
2331 + bfd_section_size (tmp_bfd, interp_sect);
2332 }
2333
2334 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2335 return 1;
2336 }
2337 }
2338
2339 /* Find the program interpreter; if not found, warn the user and drop
2340 into the old breakpoint at symbol code. */
2341 interp_name = find_program_interpreter ();
2342 if (interp_name)
2343 {
2344 CORE_ADDR load_addr = 0;
2345 int load_addr_found = 0;
2346 int loader_found_in_list = 0;
2347 struct so_list *so;
2348 bfd *tmp_bfd = NULL;
2349 struct target_ops *tmp_bfd_target;
2350
2351 sym_addr = 0;
2352
2353 /* Now we need to figure out where the dynamic linker was
2354 loaded so that we can load its symbols and place a breakpoint
2355 in the dynamic linker itself.
2356
2357 This address is stored on the stack. However, I've been unable
2358 to find any magic formula to find it for Solaris (appears to
2359 be trivial on GNU/Linux). Therefore, we have to try an alternate
2360 mechanism to find the dynamic linker's base address. */
2361
2362 TRY
2363 {
2364 tmp_bfd = solib_bfd_open (interp_name);
2365 }
2366 CATCH (ex, RETURN_MASK_ALL)
2367 {
2368 }
2369 END_CATCH
2370
2371 if (tmp_bfd == NULL)
2372 goto bkpt_at_symbol;
2373
2374 /* Now convert the TMP_BFD into a target. That way target, as
2375 well as BFD operations can be used. */
2376 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
2377 /* target_bfd_reopen acquired its own reference, so we can
2378 release ours now. */
2379 gdb_bfd_unref (tmp_bfd);
2380
2381 /* On a running target, we can get the dynamic linker's base
2382 address from the shared library table. */
2383 so = master_so_list ();
2384 while (so)
2385 {
2386 if (svr4_same_1 (interp_name, so->so_original_name))
2387 {
2388 load_addr_found = 1;
2389 loader_found_in_list = 1;
2390 load_addr = lm_addr_check (so, tmp_bfd);
2391 break;
2392 }
2393 so = so->next;
2394 }
2395
2396 /* If we were not able to find the base address of the loader
2397 from our so_list, then try using the AT_BASE auxilliary entry. */
2398 if (!load_addr_found)
2399 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
2400 {
2401 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
2402
2403 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2404 that `+ load_addr' will overflow CORE_ADDR width not creating
2405 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2406 GDB. */
2407
2408 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
2409 {
2410 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
2411 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
2412 tmp_bfd_target);
2413
2414 gdb_assert (load_addr < space_size);
2415
2416 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2417 64bit ld.so with 32bit executable, it should not happen. */
2418
2419 if (tmp_entry_point < space_size
2420 && tmp_entry_point + load_addr >= space_size)
2421 load_addr -= space_size;
2422 }
2423
2424 load_addr_found = 1;
2425 }
2426
2427 /* Otherwise we find the dynamic linker's base address by examining
2428 the current pc (which should point at the entry point for the
2429 dynamic linker) and subtracting the offset of the entry point.
2430
2431 This is more fragile than the previous approaches, but is a good
2432 fallback method because it has actually been working well in
2433 most cases. */
2434 if (!load_addr_found)
2435 {
2436 struct regcache *regcache
2437 = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
2438
2439 load_addr = (regcache_read_pc (regcache)
2440 - exec_entry_point (tmp_bfd, tmp_bfd_target));
2441 }
2442
2443 if (!loader_found_in_list)
2444 {
2445 info->debug_loader_name = xstrdup (interp_name);
2446 info->debug_loader_offset_p = 1;
2447 info->debug_loader_offset = load_addr;
2448 solib_add (NULL, from_tty, &current_target, auto_solib_add);
2449 }
2450
2451 /* Record the relocated start and end address of the dynamic linker
2452 text and plt section for svr4_in_dynsym_resolve_code. */
2453 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2454 if (interp_sect)
2455 {
2456 info->interp_text_sect_low =
2457 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2458 info->interp_text_sect_high =
2459 info->interp_text_sect_low
2460 + bfd_section_size (tmp_bfd, interp_sect);
2461 }
2462 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2463 if (interp_sect)
2464 {
2465 info->interp_plt_sect_low =
2466 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2467 info->interp_plt_sect_high =
2468 info->interp_plt_sect_low
2469 + bfd_section_size (tmp_bfd, interp_sect);
2470 }
2471
2472 /* Now try to set a breakpoint in the dynamic linker. */
2473 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2474 {
2475 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd, cmp_name_and_sec_flags,
2476 (void *) *bkpt_namep);
2477 if (sym_addr != 0)
2478 break;
2479 }
2480
2481 if (sym_addr != 0)
2482 /* Convert 'sym_addr' from a function pointer to an address.
2483 Because we pass tmp_bfd_target instead of the current
2484 target, this will always produce an unrelocated value. */
2485 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2486 sym_addr,
2487 tmp_bfd_target);
2488
2489 /* We're done with both the temporary bfd and target. Closing
2490 the target closes the underlying bfd, because it holds the
2491 only remaining reference. */
2492 target_close (tmp_bfd_target);
2493
2494 if (sym_addr != 0)
2495 {
2496 svr4_create_solib_event_breakpoints (target_gdbarch (),
2497 load_addr + sym_addr);
2498 xfree (interp_name);
2499 return 1;
2500 }
2501
2502 /* For whatever reason we couldn't set a breakpoint in the dynamic
2503 linker. Warn and drop into the old code. */
2504 bkpt_at_symbol:
2505 xfree (interp_name);
2506 warning (_("Unable to find dynamic linker breakpoint function.\n"
2507 "GDB will be unable to debug shared library initializers\n"
2508 "and track explicitly loaded dynamic code."));
2509 }
2510
2511 /* Scan through the lists of symbols, trying to look up the symbol and
2512 set a breakpoint there. Terminate loop when we/if we succeed. */
2513
2514 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2515 {
2516 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
2517 if ((msymbol.minsym != NULL)
2518 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2519 {
2520 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2521 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2522 sym_addr,
2523 &current_target);
2524 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2525 return 1;
2526 }
2527 }
2528
2529 if (interp_name != NULL && !current_inferior ()->attach_flag)
2530 {
2531 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
2532 {
2533 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
2534 if ((msymbol.minsym != NULL)
2535 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2536 {
2537 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2538 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2539 sym_addr,
2540 &current_target);
2541 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2542 return 1;
2543 }
2544 }
2545 }
2546 return 0;
2547 }
2548
2549 /* Implement the "special_symbol_handling" target_so_ops method. */
2550
2551 static void
2552 svr4_special_symbol_handling (void)
2553 {
2554 /* Nothing to do. */
2555 }
2556
2557 /* Read the ELF program headers from ABFD. Return the contents and
2558 set *PHDRS_SIZE to the size of the program headers. */
2559
2560 static gdb_byte *
2561 read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
2562 {
2563 Elf_Internal_Ehdr *ehdr;
2564 gdb_byte *buf;
2565
2566 ehdr = elf_elfheader (abfd);
2567
2568 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2569 if (*phdrs_size == 0)
2570 return NULL;
2571
2572 buf = xmalloc (*phdrs_size);
2573 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
2574 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
2575 {
2576 xfree (buf);
2577 return NULL;
2578 }
2579
2580 return buf;
2581 }
2582
2583 /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2584 exec_bfd. Otherwise return 0.
2585
2586 We relocate all of the sections by the same amount. This
2587 behavior is mandated by recent editions of the System V ABI.
2588 According to the System V Application Binary Interface,
2589 Edition 4.1, page 5-5:
2590
2591 ... Though the system chooses virtual addresses for
2592 individual processes, it maintains the segments' relative
2593 positions. Because position-independent code uses relative
2594 addressesing between segments, the difference between
2595 virtual addresses in memory must match the difference
2596 between virtual addresses in the file. The difference
2597 between the virtual address of any segment in memory and
2598 the corresponding virtual address in the file is thus a
2599 single constant value for any one executable or shared
2600 object in a given process. This difference is the base
2601 address. One use of the base address is to relocate the
2602 memory image of the program during dynamic linking.
2603
2604 The same language also appears in Edition 4.0 of the System V
2605 ABI and is left unspecified in some of the earlier editions.
2606
2607 Decide if the objfile needs to be relocated. As indicated above, we will
2608 only be here when execution is stopped. But during attachment PC can be at
2609 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2610 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2611 regcache_read_pc would point to the interpreter and not the main executable.
2612
2613 So, to summarize, relocations are necessary when the start address obtained
2614 from the executable is different from the address in auxv AT_ENTRY entry.
2615
2616 [ The astute reader will note that we also test to make sure that
2617 the executable in question has the DYNAMIC flag set. It is my
2618 opinion that this test is unnecessary (undesirable even). It
2619 was added to avoid inadvertent relocation of an executable
2620 whose e_type member in the ELF header is not ET_DYN. There may
2621 be a time in the future when it is desirable to do relocations
2622 on other types of files as well in which case this condition
2623 should either be removed or modified to accomodate the new file
2624 type. - Kevin, Nov 2000. ] */
2625
2626 static int
2627 svr4_exec_displacement (CORE_ADDR *displacementp)
2628 {
2629 /* ENTRY_POINT is a possible function descriptor - before
2630 a call to gdbarch_convert_from_func_ptr_addr. */
2631 CORE_ADDR entry_point, exec_displacement;
2632
2633 if (exec_bfd == NULL)
2634 return 0;
2635
2636 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2637 being executed themselves and PIE (Position Independent Executable)
2638 executables are ET_DYN. */
2639
2640 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
2641 return 0;
2642
2643 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
2644 return 0;
2645
2646 exec_displacement = entry_point - bfd_get_start_address (exec_bfd);
2647
2648 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
2649 alignment. It is cheaper than the program headers comparison below. */
2650
2651 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2652 {
2653 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
2654
2655 /* p_align of PT_LOAD segments does not specify any alignment but
2656 only congruency of addresses:
2657 p_offset % p_align == p_vaddr % p_align
2658 Kernel is free to load the executable with lower alignment. */
2659
2660 if ((exec_displacement & (elf->minpagesize - 1)) != 0)
2661 return 0;
2662 }
2663
2664 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2665 comparing their program headers. If the program headers in the auxilliary
2666 vector do not match the program headers in the executable, then we are
2667 looking at a different file than the one used by the kernel - for
2668 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2669
2670 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2671 {
2672 /* Be optimistic and clear OK only if GDB was able to verify the headers
2673 really do not match. */
2674 int phdrs_size, phdrs2_size, ok = 1;
2675 gdb_byte *buf, *buf2;
2676 int arch_size;
2677
2678 buf = read_program_header (-1, &phdrs_size, &arch_size, NULL);
2679 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
2680 if (buf != NULL && buf2 != NULL)
2681 {
2682 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
2683
2684 /* We are dealing with three different addresses. EXEC_BFD
2685 represents current address in on-disk file. target memory content
2686 may be different from EXEC_BFD as the file may have been prelinked
2687 to a different address after the executable has been loaded.
2688 Moreover the address of placement in target memory can be
2689 different from what the program headers in target memory say -
2690 this is the goal of PIE.
2691
2692 Detected DISPLACEMENT covers both the offsets of PIE placement and
2693 possible new prelink performed after start of the program. Here
2694 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2695 content offset for the verification purpose. */
2696
2697 if (phdrs_size != phdrs2_size
2698 || bfd_get_arch_size (exec_bfd) != arch_size)
2699 ok = 0;
2700 else if (arch_size == 32
2701 && phdrs_size >= sizeof (Elf32_External_Phdr)
2702 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
2703 {
2704 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2705 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2706 CORE_ADDR displacement = 0;
2707 int i;
2708
2709 /* DISPLACEMENT could be found more easily by the difference of
2710 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2711 already have enough information to compute that displacement
2712 with what we've read. */
2713
2714 for (i = 0; i < ehdr2->e_phnum; i++)
2715 if (phdr2[i].p_type == PT_LOAD)
2716 {
2717 Elf32_External_Phdr *phdrp;
2718 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2719 CORE_ADDR vaddr, paddr;
2720 CORE_ADDR displacement_vaddr = 0;
2721 CORE_ADDR displacement_paddr = 0;
2722
2723 phdrp = &((Elf32_External_Phdr *) buf)[i];
2724 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2725 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2726
2727 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2728 byte_order);
2729 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2730
2731 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2732 byte_order);
2733 displacement_paddr = paddr - phdr2[i].p_paddr;
2734
2735 if (displacement_vaddr == displacement_paddr)
2736 displacement = displacement_vaddr;
2737
2738 break;
2739 }
2740
2741 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2742
2743 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
2744 {
2745 Elf32_External_Phdr *phdrp;
2746 Elf32_External_Phdr *phdr2p;
2747 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2748 CORE_ADDR vaddr, paddr;
2749 asection *plt2_asect;
2750
2751 phdrp = &((Elf32_External_Phdr *) buf)[i];
2752 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2753 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2754 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
2755
2756 /* PT_GNU_STACK is an exception by being never relocated by
2757 prelink as its addresses are always zero. */
2758
2759 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2760 continue;
2761
2762 /* Check also other adjustment combinations - PR 11786. */
2763
2764 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2765 byte_order);
2766 vaddr -= displacement;
2767 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2768
2769 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2770 byte_order);
2771 paddr -= displacement;
2772 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2773
2774 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2775 continue;
2776
2777 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2778 CentOS-5 has problems with filesz, memsz as well.
2779 See PR 11786. */
2780 if (phdr2[i].p_type == PT_GNU_RELRO)
2781 {
2782 Elf32_External_Phdr tmp_phdr = *phdrp;
2783 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2784
2785 memset (tmp_phdr.p_filesz, 0, 4);
2786 memset (tmp_phdr.p_memsz, 0, 4);
2787 memset (tmp_phdr.p_flags, 0, 4);
2788 memset (tmp_phdr.p_align, 0, 4);
2789 memset (tmp_phdr2.p_filesz, 0, 4);
2790 memset (tmp_phdr2.p_memsz, 0, 4);
2791 memset (tmp_phdr2.p_flags, 0, 4);
2792 memset (tmp_phdr2.p_align, 0, 4);
2793
2794 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2795 == 0)
2796 continue;
2797 }
2798
2799 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2800 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2801 if (plt2_asect)
2802 {
2803 int content2;
2804 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2805 CORE_ADDR filesz;
2806
2807 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2808 & SEC_HAS_CONTENTS) != 0;
2809
2810 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2811 byte_order);
2812
2813 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2814 FILESZ is from the in-memory image. */
2815 if (content2)
2816 filesz += bfd_get_section_size (plt2_asect);
2817 else
2818 filesz -= bfd_get_section_size (plt2_asect);
2819
2820 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2821 filesz);
2822
2823 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2824 continue;
2825 }
2826
2827 ok = 0;
2828 break;
2829 }
2830 }
2831 else if (arch_size == 64
2832 && phdrs_size >= sizeof (Elf64_External_Phdr)
2833 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
2834 {
2835 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2836 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2837 CORE_ADDR displacement = 0;
2838 int i;
2839
2840 /* DISPLACEMENT could be found more easily by the difference of
2841 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2842 already have enough information to compute that displacement
2843 with what we've read. */
2844
2845 for (i = 0; i < ehdr2->e_phnum; i++)
2846 if (phdr2[i].p_type == PT_LOAD)
2847 {
2848 Elf64_External_Phdr *phdrp;
2849 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2850 CORE_ADDR vaddr, paddr;
2851 CORE_ADDR displacement_vaddr = 0;
2852 CORE_ADDR displacement_paddr = 0;
2853
2854 phdrp = &((Elf64_External_Phdr *) buf)[i];
2855 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2856 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2857
2858 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2859 byte_order);
2860 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2861
2862 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2863 byte_order);
2864 displacement_paddr = paddr - phdr2[i].p_paddr;
2865
2866 if (displacement_vaddr == displacement_paddr)
2867 displacement = displacement_vaddr;
2868
2869 break;
2870 }
2871
2872 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2873
2874 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
2875 {
2876 Elf64_External_Phdr *phdrp;
2877 Elf64_External_Phdr *phdr2p;
2878 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2879 CORE_ADDR vaddr, paddr;
2880 asection *plt2_asect;
2881
2882 phdrp = &((Elf64_External_Phdr *) buf)[i];
2883 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2884 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2885 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
2886
2887 /* PT_GNU_STACK is an exception by being never relocated by
2888 prelink as its addresses are always zero. */
2889
2890 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2891 continue;
2892
2893 /* Check also other adjustment combinations - PR 11786. */
2894
2895 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2896 byte_order);
2897 vaddr -= displacement;
2898 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2899
2900 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2901 byte_order);
2902 paddr -= displacement;
2903 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2904
2905 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2906 continue;
2907
2908 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2909 CentOS-5 has problems with filesz, memsz as well.
2910 See PR 11786. */
2911 if (phdr2[i].p_type == PT_GNU_RELRO)
2912 {
2913 Elf64_External_Phdr tmp_phdr = *phdrp;
2914 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2915
2916 memset (tmp_phdr.p_filesz, 0, 8);
2917 memset (tmp_phdr.p_memsz, 0, 8);
2918 memset (tmp_phdr.p_flags, 0, 4);
2919 memset (tmp_phdr.p_align, 0, 8);
2920 memset (tmp_phdr2.p_filesz, 0, 8);
2921 memset (tmp_phdr2.p_memsz, 0, 8);
2922 memset (tmp_phdr2.p_flags, 0, 4);
2923 memset (tmp_phdr2.p_align, 0, 8);
2924
2925 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2926 == 0)
2927 continue;
2928 }
2929
2930 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2931 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2932 if (plt2_asect)
2933 {
2934 int content2;
2935 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2936 CORE_ADDR filesz;
2937
2938 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2939 & SEC_HAS_CONTENTS) != 0;
2940
2941 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2942 byte_order);
2943
2944 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2945 FILESZ is from the in-memory image. */
2946 if (content2)
2947 filesz += bfd_get_section_size (plt2_asect);
2948 else
2949 filesz -= bfd_get_section_size (plt2_asect);
2950
2951 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2952 filesz);
2953
2954 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2955 continue;
2956 }
2957
2958 ok = 0;
2959 break;
2960 }
2961 }
2962 else
2963 ok = 0;
2964 }
2965
2966 xfree (buf);
2967 xfree (buf2);
2968
2969 if (!ok)
2970 return 0;
2971 }
2972
2973 if (info_verbose)
2974 {
2975 /* It can be printed repeatedly as there is no easy way to check
2976 the executable symbols/file has been already relocated to
2977 displacement. */
2978
2979 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2980 "displacement %s for \"%s\".\n"),
2981 paddress (target_gdbarch (), exec_displacement),
2982 bfd_get_filename (exec_bfd));
2983 }
2984
2985 *displacementp = exec_displacement;
2986 return 1;
2987 }
2988
2989 /* Relocate the main executable. This function should be called upon
2990 stopping the inferior process at the entry point to the program.
2991 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2992 different, the main executable is relocated by the proper amount. */
2993
2994 static void
2995 svr4_relocate_main_executable (void)
2996 {
2997 CORE_ADDR displacement;
2998
2999 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
3000 probably contains the offsets computed using the PIE displacement
3001 from the previous run, which of course are irrelevant for this run.
3002 So we need to determine the new PIE displacement and recompute the
3003 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
3004 already contains pre-computed offsets.
3005
3006 If we cannot compute the PIE displacement, either:
3007
3008 - The executable is not PIE.
3009
3010 - SYMFILE_OBJFILE does not match the executable started in the target.
3011 This can happen for main executable symbols loaded at the host while
3012 `ld.so --ld-args main-executable' is loaded in the target.
3013
3014 Then we leave the section offsets untouched and use them as is for
3015 this run. Either:
3016
3017 - These section offsets were properly reset earlier, and thus
3018 already contain the correct values. This can happen for instance
3019 when reconnecting via the remote protocol to a target that supports
3020 the `qOffsets' packet.
3021
3022 - The section offsets were not reset earlier, and the best we can
3023 hope is that the old offsets are still applicable to the new run. */
3024
3025 if (! svr4_exec_displacement (&displacement))
3026 return;
3027
3028 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
3029 addresses. */
3030
3031 if (symfile_objfile)
3032 {
3033 struct section_offsets *new_offsets;
3034 int i;
3035
3036 new_offsets = alloca (symfile_objfile->num_sections
3037 * sizeof (*new_offsets));
3038
3039 for (i = 0; i < symfile_objfile->num_sections; i++)
3040 new_offsets->offsets[i] = displacement;
3041
3042 objfile_relocate (symfile_objfile, new_offsets);
3043 }
3044 else if (exec_bfd)
3045 {
3046 asection *asect;
3047
3048 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
3049 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
3050 (bfd_section_vma (exec_bfd, asect)
3051 + displacement));
3052 }
3053 }
3054
3055 /* Implement the "create_inferior_hook" target_solib_ops method.
3056
3057 For SVR4 executables, this first instruction is either the first
3058 instruction in the dynamic linker (for dynamically linked
3059 executables) or the instruction at "start" for statically linked
3060 executables. For dynamically linked executables, the system
3061 first exec's /lib/libc.so.N, which contains the dynamic linker,
3062 and starts it running. The dynamic linker maps in any needed
3063 shared libraries, maps in the actual user executable, and then
3064 jumps to "start" in the user executable.
3065
3066 We can arrange to cooperate with the dynamic linker to discover the
3067 names of shared libraries that are dynamically linked, and the base
3068 addresses to which they are linked.
3069
3070 This function is responsible for discovering those names and
3071 addresses, and saving sufficient information about them to allow
3072 their symbols to be read at a later time. */
3073
3074 static void
3075 svr4_solib_create_inferior_hook (int from_tty)
3076 {
3077 struct svr4_info *info;
3078
3079 info = get_svr4_info ();
3080
3081 /* Clear the probes-based interface's state. */
3082 free_probes_table (info);
3083 free_solib_list (info);
3084
3085 /* Relocate the main executable if necessary. */
3086 svr4_relocate_main_executable ();
3087
3088 /* No point setting a breakpoint in the dynamic linker if we can't
3089 hit it (e.g., a core file, or a trace file). */
3090 if (!target_has_execution)
3091 return;
3092
3093 if (!svr4_have_link_map_offsets ())
3094 return;
3095
3096 if (!enable_break (info, from_tty))
3097 return;
3098 }
3099
3100 static void
3101 svr4_clear_solib (void)
3102 {
3103 struct svr4_info *info;
3104
3105 info = get_svr4_info ();
3106 info->debug_base = 0;
3107 info->debug_loader_offset_p = 0;
3108 info->debug_loader_offset = 0;
3109 xfree (info->debug_loader_name);
3110 info->debug_loader_name = NULL;
3111 }
3112
3113 /* Clear any bits of ADDR that wouldn't fit in a target-format
3114 data pointer. "Data pointer" here refers to whatever sort of
3115 address the dynamic linker uses to manage its sections. At the
3116 moment, we don't support shared libraries on any processors where
3117 code and data pointers are different sizes.
3118
3119 This isn't really the right solution. What we really need here is
3120 a way to do arithmetic on CORE_ADDR values that respects the
3121 natural pointer/address correspondence. (For example, on the MIPS,
3122 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
3123 sign-extend the value. There, simply truncating the bits above
3124 gdbarch_ptr_bit, as we do below, is no good.) This should probably
3125 be a new gdbarch method or something. */
3126 static CORE_ADDR
3127 svr4_truncate_ptr (CORE_ADDR addr)
3128 {
3129 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
3130 /* We don't need to truncate anything, and the bit twiddling below
3131 will fail due to overflow problems. */
3132 return addr;
3133 else
3134 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
3135 }
3136
3137
3138 static void
3139 svr4_relocate_section_addresses (struct so_list *so,
3140 struct target_section *sec)
3141 {
3142 bfd *abfd = sec->the_bfd_section->owner;
3143
3144 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
3145 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
3146 }
3147 \f
3148
3149 /* Architecture-specific operations. */
3150
3151 /* Per-architecture data key. */
3152 static struct gdbarch_data *solib_svr4_data;
3153
3154 struct solib_svr4_ops
3155 {
3156 /* Return a description of the layout of `struct link_map'. */
3157 struct link_map_offsets *(*fetch_link_map_offsets)(void);
3158 };
3159
3160 /* Return a default for the architecture-specific operations. */
3161
3162 static void *
3163 solib_svr4_init (struct obstack *obstack)
3164 {
3165 struct solib_svr4_ops *ops;
3166
3167 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
3168 ops->fetch_link_map_offsets = NULL;
3169 return ops;
3170 }
3171
3172 /* Set the architecture-specific `struct link_map_offsets' fetcher for
3173 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
3174
3175 void
3176 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3177 struct link_map_offsets *(*flmo) (void))
3178 {
3179 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
3180
3181 ops->fetch_link_map_offsets = flmo;
3182
3183 set_solib_ops (gdbarch, &svr4_so_ops);
3184 }
3185
3186 /* Fetch a link_map_offsets structure using the architecture-specific
3187 `struct link_map_offsets' fetcher. */
3188
3189 static struct link_map_offsets *
3190 svr4_fetch_link_map_offsets (void)
3191 {
3192 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch (), solib_svr4_data);
3193
3194 gdb_assert (ops->fetch_link_map_offsets);
3195 return ops->fetch_link_map_offsets ();
3196 }
3197
3198 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3199
3200 static int
3201 svr4_have_link_map_offsets (void)
3202 {
3203 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch (), solib_svr4_data);
3204
3205 return (ops->fetch_link_map_offsets != NULL);
3206 }
3207 \f
3208
3209 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
3210 `struct r_debug' and a `struct link_map' that are binary compatible
3211 with the origional SVR4 implementation. */
3212
3213 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3214 for an ILP32 SVR4 system. */
3215
3216 struct link_map_offsets *
3217 svr4_ilp32_fetch_link_map_offsets (void)
3218 {
3219 static struct link_map_offsets lmo;
3220 static struct link_map_offsets *lmp = NULL;
3221
3222 if (lmp == NULL)
3223 {
3224 lmp = &lmo;
3225
3226 lmo.r_version_offset = 0;
3227 lmo.r_version_size = 4;
3228 lmo.r_map_offset = 4;
3229 lmo.r_brk_offset = 8;
3230 lmo.r_ldsomap_offset = 20;
3231
3232 /* Everything we need is in the first 20 bytes. */
3233 lmo.link_map_size = 20;
3234 lmo.l_addr_offset = 0;
3235 lmo.l_name_offset = 4;
3236 lmo.l_ld_offset = 8;
3237 lmo.l_next_offset = 12;
3238 lmo.l_prev_offset = 16;
3239 }
3240
3241 return lmp;
3242 }
3243
3244 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3245 for an LP64 SVR4 system. */
3246
3247 struct link_map_offsets *
3248 svr4_lp64_fetch_link_map_offsets (void)
3249 {
3250 static struct link_map_offsets lmo;
3251 static struct link_map_offsets *lmp = NULL;
3252
3253 if (lmp == NULL)
3254 {
3255 lmp = &lmo;
3256
3257 lmo.r_version_offset = 0;
3258 lmo.r_version_size = 4;
3259 lmo.r_map_offset = 8;
3260 lmo.r_brk_offset = 16;
3261 lmo.r_ldsomap_offset = 40;
3262
3263 /* Everything we need is in the first 40 bytes. */
3264 lmo.link_map_size = 40;
3265 lmo.l_addr_offset = 0;
3266 lmo.l_name_offset = 8;
3267 lmo.l_ld_offset = 16;
3268 lmo.l_next_offset = 24;
3269 lmo.l_prev_offset = 32;
3270 }
3271
3272 return lmp;
3273 }
3274 \f
3275
3276 struct target_so_ops svr4_so_ops;
3277
3278 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3279 different rule for symbol lookup. The lookup begins here in the DSO, not in
3280 the main executable. */
3281
3282 static struct block_symbol
3283 elf_lookup_lib_symbol (struct objfile *objfile,
3284 const char *name,
3285 const domain_enum domain)
3286 {
3287 bfd *abfd;
3288
3289 if (objfile == symfile_objfile)
3290 abfd = exec_bfd;
3291 else
3292 {
3293 /* OBJFILE should have been passed as the non-debug one. */
3294 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
3295
3296 abfd = objfile->obfd;
3297 }
3298
3299 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL, NULL) != 1)
3300 return (struct block_symbol) {NULL, NULL};
3301
3302 return lookup_global_symbol_from_objfile (objfile, name, domain);
3303 }
3304
3305 extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
3306
3307 void
3308 _initialize_svr4_solib (void)
3309 {
3310 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
3311 solib_svr4_pspace_data
3312 = register_program_space_data_with_cleanup (NULL, svr4_pspace_data_cleanup);
3313
3314 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
3315 svr4_so_ops.free_so = svr4_free_so;
3316 svr4_so_ops.clear_so = svr4_clear_so;
3317 svr4_so_ops.clear_solib = svr4_clear_solib;
3318 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
3319 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
3320 svr4_so_ops.current_sos = svr4_current_sos;
3321 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
3322 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
3323 svr4_so_ops.bfd_open = solib_bfd_open;
3324 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
3325 svr4_so_ops.same = svr4_same;
3326 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
3327 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3328 svr4_so_ops.handle_event = svr4_handle_solib_event;
3329 }
This page took 0.124755 seconds and 5 git commands to generate.