Rewrite TRY/CATCH
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "elf/external.h"
23 #include "elf/common.h"
24 #include "elf/mips.h"
25
26 #include "symtab.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbcore.h"
31 #include "target.h"
32 #include "inferior.h"
33 #include "infrun.h"
34 #include "regcache.h"
35 #include "gdbthread.h"
36 #include "observable.h"
37
38 #include "solist.h"
39 #include "solib.h"
40 #include "solib-svr4.h"
41
42 #include "bfd-target.h"
43 #include "elf-bfd.h"
44 #include "exec.h"
45 #include "auxv.h"
46 #include "gdb_bfd.h"
47 #include "probe.h"
48
49 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
50 static int svr4_have_link_map_offsets (void);
51 static void svr4_relocate_main_executable (void);
52 static void svr4_free_library_list (void *p_list);
53
54 /* On SVR4 systems, a list of symbols in the dynamic linker where
55 GDB can try to place a breakpoint to monitor shared library
56 events.
57
58 If none of these symbols are found, or other errors occur, then
59 SVR4 systems will fall back to using a symbol as the "startup
60 mapping complete" breakpoint address. */
61
62 static const char * const solib_break_names[] =
63 {
64 "r_debug_state",
65 "_r_debug_state",
66 "_dl_debug_state",
67 "rtld_db_dlactivity",
68 "__dl_rtld_db_dlactivity",
69 "_rtld_debug_state",
70
71 NULL
72 };
73
74 static const char * const bkpt_names[] =
75 {
76 "_start",
77 "__start",
78 "main",
79 NULL
80 };
81
82 static const char * const main_name_list[] =
83 {
84 "main_$main",
85 NULL
86 };
87
88 /* What to do when a probe stop occurs. */
89
90 enum probe_action
91 {
92 /* Something went seriously wrong. Stop using probes and
93 revert to using the older interface. */
94 PROBES_INTERFACE_FAILED,
95
96 /* No action is required. The shared object list is still
97 valid. */
98 DO_NOTHING,
99
100 /* The shared object list should be reloaded entirely. */
101 FULL_RELOAD,
102
103 /* Attempt to incrementally update the shared object list. If
104 the update fails or is not possible, fall back to reloading
105 the list in full. */
106 UPDATE_OR_RELOAD,
107 };
108
109 /* A probe's name and its associated action. */
110
111 struct probe_info
112 {
113 /* The name of the probe. */
114 const char *name;
115
116 /* What to do when a probe stop occurs. */
117 enum probe_action action;
118 };
119
120 /* A list of named probes and their associated actions. If all
121 probes are present in the dynamic linker then the probes-based
122 interface will be used. */
123
124 static const struct probe_info probe_info[] =
125 {
126 { "init_start", DO_NOTHING },
127 { "init_complete", FULL_RELOAD },
128 { "map_start", DO_NOTHING },
129 { "map_failed", DO_NOTHING },
130 { "reloc_complete", UPDATE_OR_RELOAD },
131 { "unmap_start", DO_NOTHING },
132 { "unmap_complete", FULL_RELOAD },
133 };
134
135 #define NUM_PROBES ARRAY_SIZE (probe_info)
136
137 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
138 the same shared library. */
139
140 static int
141 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
142 {
143 if (strcmp (gdb_so_name, inferior_so_name) == 0)
144 return 1;
145
146 /* On Solaris, when starting inferior we think that dynamic linker is
147 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
148 contains /lib/ld.so.1. Sometimes one file is a link to another, but
149 sometimes they have identical content, but are not linked to each
150 other. We don't restrict this check for Solaris, but the chances
151 of running into this situation elsewhere are very low. */
152 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
153 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
154 return 1;
155
156 /* Similarly, we observed the same issue with amd64 and sparcv9, but with
157 different locations. */
158 if (strcmp (gdb_so_name, "/usr/lib/amd64/ld.so.1") == 0
159 && strcmp (inferior_so_name, "/lib/amd64/ld.so.1") == 0)
160 return 1;
161
162 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
163 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
164 return 1;
165
166 return 0;
167 }
168
169 static int
170 svr4_same (struct so_list *gdb, struct so_list *inferior)
171 {
172 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
173 }
174
175 static std::unique_ptr<lm_info_svr4>
176 lm_info_read (CORE_ADDR lm_addr)
177 {
178 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
179 std::unique_ptr<lm_info_svr4> lm_info;
180
181 gdb::byte_vector lm (lmo->link_map_size);
182
183 if (target_read_memory (lm_addr, lm.data (), lmo->link_map_size) != 0)
184 warning (_("Error reading shared library list entry at %s"),
185 paddress (target_gdbarch (), lm_addr));
186 else
187 {
188 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
189
190 lm_info.reset (new lm_info_svr4);
191 lm_info->lm_addr = lm_addr;
192
193 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
194 ptr_type);
195 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
196 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
197 ptr_type);
198 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
199 ptr_type);
200 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
201 ptr_type);
202 }
203
204 return lm_info;
205 }
206
207 static int
208 has_lm_dynamic_from_link_map (void)
209 {
210 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
211
212 return lmo->l_ld_offset >= 0;
213 }
214
215 static CORE_ADDR
216 lm_addr_check (const struct so_list *so, bfd *abfd)
217 {
218 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
219
220 if (!li->l_addr_p)
221 {
222 struct bfd_section *dyninfo_sect;
223 CORE_ADDR l_addr, l_dynaddr, dynaddr;
224
225 l_addr = li->l_addr_inferior;
226
227 if (! abfd || ! has_lm_dynamic_from_link_map ())
228 goto set_addr;
229
230 l_dynaddr = li->l_ld;
231
232 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
233 if (dyninfo_sect == NULL)
234 goto set_addr;
235
236 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
237
238 if (dynaddr + l_addr != l_dynaddr)
239 {
240 CORE_ADDR align = 0x1000;
241 CORE_ADDR minpagesize = align;
242
243 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
244 {
245 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
246 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
247 int i;
248
249 align = 1;
250
251 for (i = 0; i < ehdr->e_phnum; i++)
252 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
253 align = phdr[i].p_align;
254
255 minpagesize = get_elf_backend_data (abfd)->minpagesize;
256 }
257
258 /* Turn it into a mask. */
259 align--;
260
261 /* If the changes match the alignment requirements, we
262 assume we're using a core file that was generated by the
263 same binary, just prelinked with a different base offset.
264 If it doesn't match, we may have a different binary, the
265 same binary with the dynamic table loaded at an unrelated
266 location, or anything, really. To avoid regressions,
267 don't adjust the base offset in the latter case, although
268 odds are that, if things really changed, debugging won't
269 quite work.
270
271 One could expect more the condition
272 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
273 but the one below is relaxed for PPC. The PPC kernel supports
274 either 4k or 64k page sizes. To be prepared for 64k pages,
275 PPC ELF files are built using an alignment requirement of 64k.
276 However, when running on a kernel supporting 4k pages, the memory
277 mapping of the library may not actually happen on a 64k boundary!
278
279 (In the usual case where (l_addr & align) == 0, this check is
280 equivalent to the possibly expected check above.)
281
282 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
283
284 l_addr = l_dynaddr - dynaddr;
285
286 if ((l_addr & (minpagesize - 1)) == 0
287 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
288 {
289 if (info_verbose)
290 printf_unfiltered (_("Using PIC (Position Independent Code) "
291 "prelink displacement %s for \"%s\".\n"),
292 paddress (target_gdbarch (), l_addr),
293 so->so_name);
294 }
295 else
296 {
297 /* There is no way to verify the library file matches. prelink
298 can during prelinking of an unprelinked file (or unprelinking
299 of a prelinked file) shift the DYNAMIC segment by arbitrary
300 offset without any page size alignment. There is no way to
301 find out the ELF header and/or Program Headers for a limited
302 verification if it they match. One could do a verification
303 of the DYNAMIC segment. Still the found address is the best
304 one GDB could find. */
305
306 warning (_(".dynamic section for \"%s\" "
307 "is not at the expected address "
308 "(wrong library or version mismatch?)"), so->so_name);
309 }
310 }
311
312 set_addr:
313 li->l_addr = l_addr;
314 li->l_addr_p = 1;
315 }
316
317 return li->l_addr;
318 }
319
320 /* Per pspace SVR4 specific data. */
321
322 struct svr4_info
323 {
324 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
325
326 /* Validity flag for debug_loader_offset. */
327 int debug_loader_offset_p;
328
329 /* Load address for the dynamic linker, inferred. */
330 CORE_ADDR debug_loader_offset;
331
332 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
333 char *debug_loader_name;
334
335 /* Load map address for the main executable. */
336 CORE_ADDR main_lm_addr;
337
338 CORE_ADDR interp_text_sect_low;
339 CORE_ADDR interp_text_sect_high;
340 CORE_ADDR interp_plt_sect_low;
341 CORE_ADDR interp_plt_sect_high;
342
343 /* Nonzero if the list of objects was last obtained from the target
344 via qXfer:libraries-svr4:read. */
345 int using_xfer;
346
347 /* Table of struct probe_and_action instances, used by the
348 probes-based interface to map breakpoint addresses to probes
349 and their associated actions. Lookup is performed using
350 probe_and_action->prob->address. */
351 htab_t probes_table;
352
353 /* List of objects loaded into the inferior, used by the probes-
354 based interface. */
355 struct so_list *solib_list;
356 };
357
358 /* Per-program-space data key. */
359 static const struct program_space_data *solib_svr4_pspace_data;
360
361 /* Free the probes table. */
362
363 static void
364 free_probes_table (struct svr4_info *info)
365 {
366 if (info->probes_table == NULL)
367 return;
368
369 htab_delete (info->probes_table);
370 info->probes_table = NULL;
371 }
372
373 /* Free the solib list. */
374
375 static void
376 free_solib_list (struct svr4_info *info)
377 {
378 svr4_free_library_list (&info->solib_list);
379 info->solib_list = NULL;
380 }
381
382 static void
383 svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
384 {
385 struct svr4_info *info = (struct svr4_info *) arg;
386
387 free_probes_table (info);
388 free_solib_list (info);
389
390 xfree (info);
391 }
392
393 /* Get the current svr4 data. If none is found yet, add it now. This
394 function always returns a valid object. */
395
396 static struct svr4_info *
397 get_svr4_info (void)
398 {
399 struct svr4_info *info;
400
401 info = (struct svr4_info *) program_space_data (current_program_space,
402 solib_svr4_pspace_data);
403 if (info != NULL)
404 return info;
405
406 info = XCNEW (struct svr4_info);
407 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
408 return info;
409 }
410
411 /* Local function prototypes */
412
413 static int match_main (const char *);
414
415 /* Read program header TYPE from inferior memory. The header is found
416 by scanning the OS auxiliary vector.
417
418 If TYPE == -1, return the program headers instead of the contents of
419 one program header.
420
421 Return vector of bytes holding the program header contents, or an empty
422 optional on failure. If successful and P_ARCH_SIZE is non-NULL, the target
423 architecture size (32-bit or 64-bit) is returned to *P_ARCH_SIZE. Likewise,
424 the base address of the section is returned in *BASE_ADDR. */
425
426 static gdb::optional<gdb::byte_vector>
427 read_program_header (int type, int *p_arch_size, CORE_ADDR *base_addr)
428 {
429 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
430 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
431 int arch_size, sect_size;
432 CORE_ADDR sect_addr;
433 int pt_phdr_p = 0;
434
435 /* Get required auxv elements from target. */
436 if (target_auxv_search (current_top_target (), AT_PHDR, &at_phdr) <= 0)
437 return {};
438 if (target_auxv_search (current_top_target (), AT_PHENT, &at_phent) <= 0)
439 return {};
440 if (target_auxv_search (current_top_target (), AT_PHNUM, &at_phnum) <= 0)
441 return {};
442 if (!at_phdr || !at_phnum)
443 return {};
444
445 /* Determine ELF architecture type. */
446 if (at_phent == sizeof (Elf32_External_Phdr))
447 arch_size = 32;
448 else if (at_phent == sizeof (Elf64_External_Phdr))
449 arch_size = 64;
450 else
451 return {};
452
453 /* Find the requested segment. */
454 if (type == -1)
455 {
456 sect_addr = at_phdr;
457 sect_size = at_phent * at_phnum;
458 }
459 else if (arch_size == 32)
460 {
461 Elf32_External_Phdr phdr;
462 int i;
463
464 /* Search for requested PHDR. */
465 for (i = 0; i < at_phnum; i++)
466 {
467 int p_type;
468
469 if (target_read_memory (at_phdr + i * sizeof (phdr),
470 (gdb_byte *)&phdr, sizeof (phdr)))
471 return {};
472
473 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
474 4, byte_order);
475
476 if (p_type == PT_PHDR)
477 {
478 pt_phdr_p = 1;
479 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
480 4, byte_order);
481 }
482
483 if (p_type == type)
484 break;
485 }
486
487 if (i == at_phnum)
488 return {};
489
490 /* Retrieve address and size. */
491 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
492 4, byte_order);
493 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
494 4, byte_order);
495 }
496 else
497 {
498 Elf64_External_Phdr phdr;
499 int i;
500
501 /* Search for requested PHDR. */
502 for (i = 0; i < at_phnum; i++)
503 {
504 int p_type;
505
506 if (target_read_memory (at_phdr + i * sizeof (phdr),
507 (gdb_byte *)&phdr, sizeof (phdr)))
508 return {};
509
510 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
511 4, byte_order);
512
513 if (p_type == PT_PHDR)
514 {
515 pt_phdr_p = 1;
516 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
517 8, byte_order);
518 }
519
520 if (p_type == type)
521 break;
522 }
523
524 if (i == at_phnum)
525 return {};
526
527 /* Retrieve address and size. */
528 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
529 8, byte_order);
530 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
531 8, byte_order);
532 }
533
534 /* PT_PHDR is optional, but we really need it
535 for PIE to make this work in general. */
536
537 if (pt_phdr_p)
538 {
539 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
540 Relocation offset is the difference between the two. */
541 sect_addr = sect_addr + (at_phdr - pt_phdr);
542 }
543
544 /* Read in requested program header. */
545 gdb::byte_vector buf (sect_size);
546 if (target_read_memory (sect_addr, buf.data (), sect_size))
547 return {};
548
549 if (p_arch_size)
550 *p_arch_size = arch_size;
551 if (base_addr)
552 *base_addr = sect_addr;
553
554 return buf;
555 }
556
557
558 /* Return program interpreter string. */
559 static gdb::optional<gdb::byte_vector>
560 find_program_interpreter (void)
561 {
562 /* If we have an exec_bfd, use its section table. */
563 if (exec_bfd
564 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
565 {
566 struct bfd_section *interp_sect;
567
568 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
569 if (interp_sect != NULL)
570 {
571 int sect_size = bfd_section_size (exec_bfd, interp_sect);
572
573 gdb::byte_vector buf (sect_size);
574 bfd_get_section_contents (exec_bfd, interp_sect, buf.data (), 0,
575 sect_size);
576 return buf;
577 }
578 }
579
580 /* If we didn't find it, use the target auxiliary vector. */
581 return read_program_header (PT_INTERP, NULL, NULL);
582 }
583
584
585 /* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is
586 found, 1 is returned and the corresponding PTR is set. */
587
588 static int
589 scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr,
590 CORE_ADDR *ptr_addr)
591 {
592 int arch_size, step, sect_size;
593 long current_dyntag;
594 CORE_ADDR dyn_ptr, dyn_addr;
595 gdb_byte *bufend, *bufstart, *buf;
596 Elf32_External_Dyn *x_dynp_32;
597 Elf64_External_Dyn *x_dynp_64;
598 struct bfd_section *sect;
599 struct target_section *target_section;
600
601 if (abfd == NULL)
602 return 0;
603
604 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
605 return 0;
606
607 arch_size = bfd_get_arch_size (abfd);
608 if (arch_size == -1)
609 return 0;
610
611 /* Find the start address of the .dynamic section. */
612 sect = bfd_get_section_by_name (abfd, ".dynamic");
613 if (sect == NULL)
614 return 0;
615
616 for (target_section = current_target_sections->sections;
617 target_section < current_target_sections->sections_end;
618 target_section++)
619 if (sect == target_section->the_bfd_section)
620 break;
621 if (target_section < current_target_sections->sections_end)
622 dyn_addr = target_section->addr;
623 else
624 {
625 /* ABFD may come from OBJFILE acting only as a symbol file without being
626 loaded into the target (see add_symbol_file_command). This case is
627 such fallback to the file VMA address without the possibility of
628 having the section relocated to its actual in-memory address. */
629
630 dyn_addr = bfd_section_vma (abfd, sect);
631 }
632
633 /* Read in .dynamic from the BFD. We will get the actual value
634 from memory later. */
635 sect_size = bfd_section_size (abfd, sect);
636 buf = bufstart = (gdb_byte *) alloca (sect_size);
637 if (!bfd_get_section_contents (abfd, sect,
638 buf, 0, sect_size))
639 return 0;
640
641 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
642 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
643 : sizeof (Elf64_External_Dyn);
644 for (bufend = buf + sect_size;
645 buf < bufend;
646 buf += step)
647 {
648 if (arch_size == 32)
649 {
650 x_dynp_32 = (Elf32_External_Dyn *) buf;
651 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
652 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
653 }
654 else
655 {
656 x_dynp_64 = (Elf64_External_Dyn *) buf;
657 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
658 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
659 }
660 if (current_dyntag == DT_NULL)
661 return 0;
662 if (current_dyntag == desired_dyntag)
663 {
664 /* If requested, try to read the runtime value of this .dynamic
665 entry. */
666 if (ptr)
667 {
668 struct type *ptr_type;
669 gdb_byte ptr_buf[8];
670 CORE_ADDR ptr_addr_1;
671
672 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
673 ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8;
674 if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0)
675 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
676 *ptr = dyn_ptr;
677 if (ptr_addr)
678 *ptr_addr = dyn_addr + (buf - bufstart);
679 }
680 return 1;
681 }
682 }
683
684 return 0;
685 }
686
687 /* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
688 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
689 is returned and the corresponding PTR is set. */
690
691 static int
692 scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
693 CORE_ADDR *ptr_addr)
694 {
695 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
696 int arch_size, step;
697 long current_dyntag;
698 CORE_ADDR dyn_ptr;
699 CORE_ADDR base_addr;
700
701 /* Read in .dynamic section. */
702 gdb::optional<gdb::byte_vector> ph_data
703 = read_program_header (PT_DYNAMIC, &arch_size, &base_addr);
704 if (!ph_data)
705 return 0;
706
707 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
708 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
709 : sizeof (Elf64_External_Dyn);
710 for (gdb_byte *buf = ph_data->data (), *bufend = buf + ph_data->size ();
711 buf < bufend; buf += step)
712 {
713 if (arch_size == 32)
714 {
715 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
716
717 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
718 4, byte_order);
719 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
720 4, byte_order);
721 }
722 else
723 {
724 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
725
726 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
727 8, byte_order);
728 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
729 8, byte_order);
730 }
731 if (current_dyntag == DT_NULL)
732 break;
733
734 if (current_dyntag == desired_dyntag)
735 {
736 if (ptr)
737 *ptr = dyn_ptr;
738
739 if (ptr_addr)
740 *ptr_addr = base_addr + buf - ph_data->data ();
741
742 return 1;
743 }
744 }
745
746 return 0;
747 }
748
749 /* Locate the base address of dynamic linker structs for SVR4 elf
750 targets.
751
752 For SVR4 elf targets the address of the dynamic linker's runtime
753 structure is contained within the dynamic info section in the
754 executable file. The dynamic section is also mapped into the
755 inferior address space. Because the runtime loader fills in the
756 real address before starting the inferior, we have to read in the
757 dynamic info section from the inferior address space.
758 If there are any errors while trying to find the address, we
759 silently return 0, otherwise the found address is returned. */
760
761 static CORE_ADDR
762 elf_locate_base (void)
763 {
764 struct bound_minimal_symbol msymbol;
765 CORE_ADDR dyn_ptr, dyn_ptr_addr;
766
767 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
768 instead of DT_DEBUG, although they sometimes contain an unused
769 DT_DEBUG. */
770 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr, NULL)
771 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
772 {
773 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
774 gdb_byte *pbuf;
775 int pbuf_size = TYPE_LENGTH (ptr_type);
776
777 pbuf = (gdb_byte *) alloca (pbuf_size);
778 /* DT_MIPS_RLD_MAP contains a pointer to the address
779 of the dynamic link structure. */
780 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
781 return 0;
782 return extract_typed_address (pbuf, ptr_type);
783 }
784
785 /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
786 because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
787 in non-PIE. */
788 if (scan_dyntag (DT_MIPS_RLD_MAP_REL, exec_bfd, &dyn_ptr, &dyn_ptr_addr)
789 || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
790 {
791 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
792 gdb_byte *pbuf;
793 int pbuf_size = TYPE_LENGTH (ptr_type);
794
795 pbuf = (gdb_byte *) alloca (pbuf_size);
796 /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
797 DT slot to the address of the dynamic link structure. */
798 if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
799 return 0;
800 return extract_typed_address (pbuf, ptr_type);
801 }
802
803 /* Find DT_DEBUG. */
804 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr, NULL)
805 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
806 return dyn_ptr;
807
808 /* This may be a static executable. Look for the symbol
809 conventionally named _r_debug, as a last resort. */
810 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
811 if (msymbol.minsym != NULL)
812 return BMSYMBOL_VALUE_ADDRESS (msymbol);
813
814 /* DT_DEBUG entry not found. */
815 return 0;
816 }
817
818 /* Locate the base address of dynamic linker structs.
819
820 For both the SunOS and SVR4 shared library implementations, if the
821 inferior executable has been linked dynamically, there is a single
822 address somewhere in the inferior's data space which is the key to
823 locating all of the dynamic linker's runtime structures. This
824 address is the value of the debug base symbol. The job of this
825 function is to find and return that address, or to return 0 if there
826 is no such address (the executable is statically linked for example).
827
828 For SunOS, the job is almost trivial, since the dynamic linker and
829 all of it's structures are statically linked to the executable at
830 link time. Thus the symbol for the address we are looking for has
831 already been added to the minimal symbol table for the executable's
832 objfile at the time the symbol file's symbols were read, and all we
833 have to do is look it up there. Note that we explicitly do NOT want
834 to find the copies in the shared library.
835
836 The SVR4 version is a bit more complicated because the address
837 is contained somewhere in the dynamic info section. We have to go
838 to a lot more work to discover the address of the debug base symbol.
839 Because of this complexity, we cache the value we find and return that
840 value on subsequent invocations. Note there is no copy in the
841 executable symbol tables. */
842
843 static CORE_ADDR
844 locate_base (struct svr4_info *info)
845 {
846 /* Check to see if we have a currently valid address, and if so, avoid
847 doing all this work again and just return the cached address. If
848 we have no cached address, try to locate it in the dynamic info
849 section for ELF executables. There's no point in doing any of this
850 though if we don't have some link map offsets to work with. */
851
852 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
853 info->debug_base = elf_locate_base ();
854 return info->debug_base;
855 }
856
857 /* Find the first element in the inferior's dynamic link map, and
858 return its address in the inferior. Return zero if the address
859 could not be determined.
860
861 FIXME: Perhaps we should validate the info somehow, perhaps by
862 checking r_version for a known version number, or r_state for
863 RT_CONSISTENT. */
864
865 static CORE_ADDR
866 solib_svr4_r_map (struct svr4_info *info)
867 {
868 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
869 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
870 CORE_ADDR addr = 0;
871
872 try
873 {
874 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
875 ptr_type);
876 }
877 catch (const gdb_exception_RETURN_MASK_ERROR &ex)
878 {
879 exception_print (gdb_stderr, ex);
880 }
881
882 return addr;
883 }
884
885 /* Find r_brk from the inferior's debug base. */
886
887 static CORE_ADDR
888 solib_svr4_r_brk (struct svr4_info *info)
889 {
890 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
891 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
892
893 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
894 ptr_type);
895 }
896
897 /* Find the link map for the dynamic linker (if it is not in the
898 normal list of loaded shared objects). */
899
900 static CORE_ADDR
901 solib_svr4_r_ldsomap (struct svr4_info *info)
902 {
903 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
904 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
905 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
906 ULONGEST version = 0;
907
908 try
909 {
910 /* Check version, and return zero if `struct r_debug' doesn't have
911 the r_ldsomap member. */
912 version
913 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
914 lmo->r_version_size, byte_order);
915 }
916 catch (const gdb_exception_RETURN_MASK_ERROR &ex)
917 {
918 exception_print (gdb_stderr, ex);
919 }
920
921 if (version < 2 || lmo->r_ldsomap_offset == -1)
922 return 0;
923
924 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
925 ptr_type);
926 }
927
928 /* On Solaris systems with some versions of the dynamic linker,
929 ld.so's l_name pointer points to the SONAME in the string table
930 rather than into writable memory. So that GDB can find shared
931 libraries when loading a core file generated by gcore, ensure that
932 memory areas containing the l_name string are saved in the core
933 file. */
934
935 static int
936 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
937 {
938 struct svr4_info *info;
939 CORE_ADDR ldsomap;
940 CORE_ADDR name_lm;
941
942 info = get_svr4_info ();
943
944 info->debug_base = 0;
945 locate_base (info);
946 if (!info->debug_base)
947 return 0;
948
949 ldsomap = solib_svr4_r_ldsomap (info);
950 if (!ldsomap)
951 return 0;
952
953 std::unique_ptr<lm_info_svr4> li = lm_info_read (ldsomap);
954 name_lm = li != NULL ? li->l_name : 0;
955
956 return (name_lm >= vaddr && name_lm < vaddr + size);
957 }
958
959 /* See solist.h. */
960
961 static int
962 open_symbol_file_object (int from_tty)
963 {
964 CORE_ADDR lm, l_name;
965 gdb::unique_xmalloc_ptr<char> filename;
966 int errcode;
967 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
968 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
969 int l_name_size = TYPE_LENGTH (ptr_type);
970 gdb::byte_vector l_name_buf (l_name_size);
971 struct svr4_info *info = get_svr4_info ();
972 symfile_add_flags add_flags = 0;
973
974 if (from_tty)
975 add_flags |= SYMFILE_VERBOSE;
976
977 if (symfile_objfile)
978 if (!query (_("Attempt to reload symbols from process? ")))
979 return 0;
980
981 /* Always locate the debug struct, in case it has moved. */
982 info->debug_base = 0;
983 if (locate_base (info) == 0)
984 return 0; /* failed somehow... */
985
986 /* First link map member should be the executable. */
987 lm = solib_svr4_r_map (info);
988 if (lm == 0)
989 return 0; /* failed somehow... */
990
991 /* Read address of name from target memory to GDB. */
992 read_memory (lm + lmo->l_name_offset, l_name_buf.data (), l_name_size);
993
994 /* Convert the address to host format. */
995 l_name = extract_typed_address (l_name_buf.data (), ptr_type);
996
997 if (l_name == 0)
998 return 0; /* No filename. */
999
1000 /* Now fetch the filename from target memory. */
1001 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1002
1003 if (errcode)
1004 {
1005 warning (_("failed to read exec filename from attached file: %s"),
1006 safe_strerror (errcode));
1007 return 0;
1008 }
1009
1010 /* Have a pathname: read the symbol file. */
1011 symbol_file_add_main (filename.get (), add_flags);
1012
1013 return 1;
1014 }
1015
1016 /* Data exchange structure for the XML parser as returned by
1017 svr4_current_sos_via_xfer_libraries. */
1018
1019 struct svr4_library_list
1020 {
1021 struct so_list *head, **tailp;
1022
1023 /* Inferior address of struct link_map used for the main executable. It is
1024 NULL if not known. */
1025 CORE_ADDR main_lm;
1026 };
1027
1028 /* Implementation for target_so_ops.free_so. */
1029
1030 static void
1031 svr4_free_so (struct so_list *so)
1032 {
1033 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1034
1035 delete li;
1036 }
1037
1038 /* Implement target_so_ops.clear_so. */
1039
1040 static void
1041 svr4_clear_so (struct so_list *so)
1042 {
1043 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1044
1045 if (li != NULL)
1046 li->l_addr_p = 0;
1047 }
1048
1049 /* Free so_list built so far (called via cleanup). */
1050
1051 static void
1052 svr4_free_library_list (void *p_list)
1053 {
1054 struct so_list *list = *(struct so_list **) p_list;
1055
1056 while (list != NULL)
1057 {
1058 struct so_list *next = list->next;
1059
1060 free_so (list);
1061 list = next;
1062 }
1063 }
1064
1065 /* Copy library list. */
1066
1067 static struct so_list *
1068 svr4_copy_library_list (struct so_list *src)
1069 {
1070 struct so_list *dst = NULL;
1071 struct so_list **link = &dst;
1072
1073 while (src != NULL)
1074 {
1075 struct so_list *newobj;
1076
1077 newobj = XNEW (struct so_list);
1078 memcpy (newobj, src, sizeof (struct so_list));
1079
1080 lm_info_svr4 *src_li = (lm_info_svr4 *) src->lm_info;
1081 newobj->lm_info = new lm_info_svr4 (*src_li);
1082
1083 newobj->next = NULL;
1084 *link = newobj;
1085 link = &newobj->next;
1086
1087 src = src->next;
1088 }
1089
1090 return dst;
1091 }
1092
1093 #ifdef HAVE_LIBEXPAT
1094
1095 #include "xml-support.h"
1096
1097 /* Handle the start of a <library> element. Note: new elements are added
1098 at the tail of the list, keeping the list in order. */
1099
1100 static void
1101 library_list_start_library (struct gdb_xml_parser *parser,
1102 const struct gdb_xml_element *element,
1103 void *user_data,
1104 std::vector<gdb_xml_value> &attributes)
1105 {
1106 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1107 const char *name
1108 = (const char *) xml_find_attribute (attributes, "name")->value.get ();
1109 ULONGEST *lmp
1110 = (ULONGEST *) xml_find_attribute (attributes, "lm")->value.get ();
1111 ULONGEST *l_addrp
1112 = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value.get ();
1113 ULONGEST *l_ldp
1114 = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value.get ();
1115 struct so_list *new_elem;
1116
1117 new_elem = XCNEW (struct so_list);
1118 lm_info_svr4 *li = new lm_info_svr4;
1119 new_elem->lm_info = li;
1120 li->lm_addr = *lmp;
1121 li->l_addr_inferior = *l_addrp;
1122 li->l_ld = *l_ldp;
1123
1124 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1125 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1126 strcpy (new_elem->so_original_name, new_elem->so_name);
1127
1128 *list->tailp = new_elem;
1129 list->tailp = &new_elem->next;
1130 }
1131
1132 /* Handle the start of a <library-list-svr4> element. */
1133
1134 static void
1135 svr4_library_list_start_list (struct gdb_xml_parser *parser,
1136 const struct gdb_xml_element *element,
1137 void *user_data,
1138 std::vector<gdb_xml_value> &attributes)
1139 {
1140 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1141 const char *version
1142 = (const char *) xml_find_attribute (attributes, "version")->value.get ();
1143 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1144
1145 if (strcmp (version, "1.0") != 0)
1146 gdb_xml_error (parser,
1147 _("SVR4 Library list has unsupported version \"%s\""),
1148 version);
1149
1150 if (main_lm)
1151 list->main_lm = *(ULONGEST *) main_lm->value.get ();
1152 }
1153
1154 /* The allowed elements and attributes for an XML library list.
1155 The root element is a <library-list>. */
1156
1157 static const struct gdb_xml_attribute svr4_library_attributes[] =
1158 {
1159 { "name", GDB_XML_AF_NONE, NULL, NULL },
1160 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1161 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1162 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1163 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1164 };
1165
1166 static const struct gdb_xml_element svr4_library_list_children[] =
1167 {
1168 {
1169 "library", svr4_library_attributes, NULL,
1170 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1171 library_list_start_library, NULL
1172 },
1173 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1174 };
1175
1176 static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1177 {
1178 { "version", GDB_XML_AF_NONE, NULL, NULL },
1179 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1180 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1181 };
1182
1183 static const struct gdb_xml_element svr4_library_list_elements[] =
1184 {
1185 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1186 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1187 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1188 };
1189
1190 /* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1191
1192 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1193 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1194 empty, caller is responsible for freeing all its entries. */
1195
1196 static int
1197 svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1198 {
1199 auto cleanup = make_scope_exit ([&] ()
1200 {
1201 svr4_free_library_list (&list->head);
1202 });
1203
1204 memset (list, 0, sizeof (*list));
1205 list->tailp = &list->head;
1206 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
1207 svr4_library_list_elements, document, list) == 0)
1208 {
1209 /* Parsed successfully, keep the result. */
1210 cleanup.release ();
1211 return 1;
1212 }
1213
1214 return 0;
1215 }
1216
1217 /* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
1218
1219 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1220 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1221 empty, caller is responsible for freeing all its entries.
1222
1223 Note that ANNEX must be NULL if the remote does not explicitly allow
1224 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1225 this can be checked using target_augmented_libraries_svr4_read (). */
1226
1227 static int
1228 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1229 const char *annex)
1230 {
1231 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1232
1233 /* Fetch the list of shared libraries. */
1234 gdb::optional<gdb::char_vector> svr4_library_document
1235 = target_read_stralloc (current_top_target (), TARGET_OBJECT_LIBRARIES_SVR4,
1236 annex);
1237 if (!svr4_library_document)
1238 return 0;
1239
1240 return svr4_parse_libraries (svr4_library_document->data (), list);
1241 }
1242
1243 #else
1244
1245 static int
1246 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1247 const char *annex)
1248 {
1249 return 0;
1250 }
1251
1252 #endif
1253
1254 /* If no shared library information is available from the dynamic
1255 linker, build a fallback list from other sources. */
1256
1257 static struct so_list *
1258 svr4_default_sos (void)
1259 {
1260 struct svr4_info *info = get_svr4_info ();
1261 struct so_list *newobj;
1262
1263 if (!info->debug_loader_offset_p)
1264 return NULL;
1265
1266 newobj = XCNEW (struct so_list);
1267 lm_info_svr4 *li = new lm_info_svr4;
1268 newobj->lm_info = li;
1269
1270 /* Nothing will ever check the other fields if we set l_addr_p. */
1271 li->l_addr = info->debug_loader_offset;
1272 li->l_addr_p = 1;
1273
1274 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1275 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1276 strcpy (newobj->so_original_name, newobj->so_name);
1277
1278 return newobj;
1279 }
1280
1281 /* Read the whole inferior libraries chain starting at address LM.
1282 Expect the first entry in the chain's previous entry to be PREV_LM.
1283 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1284 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1285 to it. Returns nonzero upon success. If zero is returned the
1286 entries stored to LINK_PTR_PTR are still valid although they may
1287 represent only part of the inferior library list. */
1288
1289 static int
1290 svr4_read_so_list (CORE_ADDR lm, CORE_ADDR prev_lm,
1291 struct so_list ***link_ptr_ptr, int ignore_first)
1292 {
1293 CORE_ADDR first_l_name = 0;
1294 CORE_ADDR next_lm;
1295
1296 for (; lm != 0; prev_lm = lm, lm = next_lm)
1297 {
1298 int errcode;
1299 gdb::unique_xmalloc_ptr<char> buffer;
1300
1301 so_list_up newobj (XCNEW (struct so_list));
1302
1303 lm_info_svr4 *li = lm_info_read (lm).release ();
1304 newobj->lm_info = li;
1305 if (li == NULL)
1306 return 0;
1307
1308 next_lm = li->l_next;
1309
1310 if (li->l_prev != prev_lm)
1311 {
1312 warning (_("Corrupted shared library list: %s != %s"),
1313 paddress (target_gdbarch (), prev_lm),
1314 paddress (target_gdbarch (), li->l_prev));
1315 return 0;
1316 }
1317
1318 /* For SVR4 versions, the first entry in the link map is for the
1319 inferior executable, so we must ignore it. For some versions of
1320 SVR4, it has no name. For others (Solaris 2.3 for example), it
1321 does have a name, so we can no longer use a missing name to
1322 decide when to ignore it. */
1323 if (ignore_first && li->l_prev == 0)
1324 {
1325 struct svr4_info *info = get_svr4_info ();
1326
1327 first_l_name = li->l_name;
1328 info->main_lm_addr = li->lm_addr;
1329 continue;
1330 }
1331
1332 /* Extract this shared object's name. */
1333 target_read_string (li->l_name, &buffer, SO_NAME_MAX_PATH_SIZE - 1,
1334 &errcode);
1335 if (errcode != 0)
1336 {
1337 /* If this entry's l_name address matches that of the
1338 inferior executable, then this is not a normal shared
1339 object, but (most likely) a vDSO. In this case, silently
1340 skip it; otherwise emit a warning. */
1341 if (first_l_name == 0 || li->l_name != first_l_name)
1342 warning (_("Can't read pathname for load map: %s."),
1343 safe_strerror (errcode));
1344 continue;
1345 }
1346
1347 strncpy (newobj->so_name, buffer.get (), SO_NAME_MAX_PATH_SIZE - 1);
1348 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1349 strcpy (newobj->so_original_name, newobj->so_name);
1350
1351 /* If this entry has no name, or its name matches the name
1352 for the main executable, don't include it in the list. */
1353 if (! newobj->so_name[0] || match_main (newobj->so_name))
1354 continue;
1355
1356 newobj->next = 0;
1357 /* Don't free it now. */
1358 **link_ptr_ptr = newobj.release ();
1359 *link_ptr_ptr = &(**link_ptr_ptr)->next;
1360 }
1361
1362 return 1;
1363 }
1364
1365 /* Read the full list of currently loaded shared objects directly
1366 from the inferior, without referring to any libraries read and
1367 stored by the probes interface. Handle special cases relating
1368 to the first elements of the list. */
1369
1370 static struct so_list *
1371 svr4_current_sos_direct (struct svr4_info *info)
1372 {
1373 CORE_ADDR lm;
1374 struct so_list *head = NULL;
1375 struct so_list **link_ptr = &head;
1376 int ignore_first;
1377 struct svr4_library_list library_list;
1378
1379 /* Fall back to manual examination of the target if the packet is not
1380 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1381 tests a case where gdbserver cannot find the shared libraries list while
1382 GDB itself is able to find it via SYMFILE_OBJFILE.
1383
1384 Unfortunately statically linked inferiors will also fall back through this
1385 suboptimal code path. */
1386
1387 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1388 NULL);
1389 if (info->using_xfer)
1390 {
1391 if (library_list.main_lm)
1392 info->main_lm_addr = library_list.main_lm;
1393
1394 return library_list.head ? library_list.head : svr4_default_sos ();
1395 }
1396
1397 /* Always locate the debug struct, in case it has moved. */
1398 info->debug_base = 0;
1399 locate_base (info);
1400
1401 /* If we can't find the dynamic linker's base structure, this
1402 must not be a dynamically linked executable. Hmm. */
1403 if (! info->debug_base)
1404 return svr4_default_sos ();
1405
1406 /* Assume that everything is a library if the dynamic loader was loaded
1407 late by a static executable. */
1408 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1409 ignore_first = 0;
1410 else
1411 ignore_first = 1;
1412
1413 auto cleanup = make_scope_exit ([&] ()
1414 {
1415 svr4_free_library_list (&head);
1416 });
1417
1418 /* Walk the inferior's link map list, and build our list of
1419 `struct so_list' nodes. */
1420 lm = solib_svr4_r_map (info);
1421 if (lm)
1422 svr4_read_so_list (lm, 0, &link_ptr, ignore_first);
1423
1424 /* On Solaris, the dynamic linker is not in the normal list of
1425 shared objects, so make sure we pick it up too. Having
1426 symbol information for the dynamic linker is quite crucial
1427 for skipping dynamic linker resolver code. */
1428 lm = solib_svr4_r_ldsomap (info);
1429 if (lm)
1430 svr4_read_so_list (lm, 0, &link_ptr, 0);
1431
1432 cleanup.release ();
1433
1434 if (head == NULL)
1435 return svr4_default_sos ();
1436
1437 return head;
1438 }
1439
1440 /* Implement the main part of the "current_sos" target_so_ops
1441 method. */
1442
1443 static struct so_list *
1444 svr4_current_sos_1 (void)
1445 {
1446 struct svr4_info *info = get_svr4_info ();
1447
1448 /* If the solib list has been read and stored by the probes
1449 interface then we return a copy of the stored list. */
1450 if (info->solib_list != NULL)
1451 return svr4_copy_library_list (info->solib_list);
1452
1453 /* Otherwise obtain the solib list directly from the inferior. */
1454 return svr4_current_sos_direct (info);
1455 }
1456
1457 /* Implement the "current_sos" target_so_ops method. */
1458
1459 static struct so_list *
1460 svr4_current_sos (void)
1461 {
1462 struct so_list *so_head = svr4_current_sos_1 ();
1463 struct mem_range vsyscall_range;
1464
1465 /* Filter out the vDSO module, if present. Its symbol file would
1466 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1467 managed by symfile-mem.c:add_vsyscall_page. */
1468 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1469 && vsyscall_range.length != 0)
1470 {
1471 struct so_list **sop;
1472
1473 sop = &so_head;
1474 while (*sop != NULL)
1475 {
1476 struct so_list *so = *sop;
1477
1478 /* We can't simply match the vDSO by starting address alone,
1479 because lm_info->l_addr_inferior (and also l_addr) do not
1480 necessarily represent the real starting address of the
1481 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1482 field (the ".dynamic" section of the shared object)
1483 always points at the absolute/resolved address though.
1484 So check whether that address is inside the vDSO's
1485 mapping instead.
1486
1487 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1488 0-based ELF, and we see:
1489
1490 (gdb) info auxv
1491 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1492 (gdb) p/x *_r_debug.r_map.l_next
1493 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1494
1495 And on Linux 2.6.32 (x86_64) we see:
1496
1497 (gdb) info auxv
1498 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1499 (gdb) p/x *_r_debug.r_map.l_next
1500 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1501
1502 Dumping that vDSO shows:
1503
1504 (gdb) info proc mappings
1505 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1506 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1507 # readelf -Wa vdso.bin
1508 [...]
1509 Entry point address: 0xffffffffff700700
1510 [...]
1511 Section Headers:
1512 [Nr] Name Type Address Off Size
1513 [ 0] NULL 0000000000000000 000000 000000
1514 [ 1] .hash HASH ffffffffff700120 000120 000038
1515 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1516 [...]
1517 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1518 */
1519
1520 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1521
1522 if (address_in_mem_range (li->l_ld, &vsyscall_range))
1523 {
1524 *sop = so->next;
1525 free_so (so);
1526 break;
1527 }
1528
1529 sop = &so->next;
1530 }
1531 }
1532
1533 return so_head;
1534 }
1535
1536 /* Get the address of the link_map for a given OBJFILE. */
1537
1538 CORE_ADDR
1539 svr4_fetch_objfile_link_map (struct objfile *objfile)
1540 {
1541 struct so_list *so;
1542 struct svr4_info *info = get_svr4_info ();
1543
1544 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1545 if (info->main_lm_addr == 0)
1546 solib_add (NULL, 0, auto_solib_add);
1547
1548 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1549 if (objfile == symfile_objfile)
1550 return info->main_lm_addr;
1551
1552 /* If OBJFILE is a separate debug object file, look for the
1553 original object file. */
1554 if (objfile->separate_debug_objfile_backlink != NULL)
1555 objfile = objfile->separate_debug_objfile_backlink;
1556
1557 /* The other link map addresses may be found by examining the list
1558 of shared libraries. */
1559 for (so = master_so_list (); so; so = so->next)
1560 if (so->objfile == objfile)
1561 {
1562 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1563
1564 return li->lm_addr;
1565 }
1566
1567 /* Not found! */
1568 return 0;
1569 }
1570
1571 /* On some systems, the only way to recognize the link map entry for
1572 the main executable file is by looking at its name. Return
1573 non-zero iff SONAME matches one of the known main executable names. */
1574
1575 static int
1576 match_main (const char *soname)
1577 {
1578 const char * const *mainp;
1579
1580 for (mainp = main_name_list; *mainp != NULL; mainp++)
1581 {
1582 if (strcmp (soname, *mainp) == 0)
1583 return (1);
1584 }
1585
1586 return (0);
1587 }
1588
1589 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1590 SVR4 run time loader. */
1591
1592 int
1593 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1594 {
1595 struct svr4_info *info = get_svr4_info ();
1596
1597 return ((pc >= info->interp_text_sect_low
1598 && pc < info->interp_text_sect_high)
1599 || (pc >= info->interp_plt_sect_low
1600 && pc < info->interp_plt_sect_high)
1601 || in_plt_section (pc)
1602 || in_gnu_ifunc_stub (pc));
1603 }
1604
1605 /* Given an executable's ABFD and target, compute the entry-point
1606 address. */
1607
1608 static CORE_ADDR
1609 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1610 {
1611 CORE_ADDR addr;
1612
1613 /* KevinB wrote ... for most targets, the address returned by
1614 bfd_get_start_address() is the entry point for the start
1615 function. But, for some targets, bfd_get_start_address() returns
1616 the address of a function descriptor from which the entry point
1617 address may be extracted. This address is extracted by
1618 gdbarch_convert_from_func_ptr_addr(). The method
1619 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1620 function for targets which don't use function descriptors. */
1621 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
1622 bfd_get_start_address (abfd),
1623 targ);
1624 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
1625 }
1626
1627 /* A probe and its associated action. */
1628
1629 struct probe_and_action
1630 {
1631 /* The probe. */
1632 probe *prob;
1633
1634 /* The relocated address of the probe. */
1635 CORE_ADDR address;
1636
1637 /* The action. */
1638 enum probe_action action;
1639 };
1640
1641 /* Returns a hash code for the probe_and_action referenced by p. */
1642
1643 static hashval_t
1644 hash_probe_and_action (const void *p)
1645 {
1646 const struct probe_and_action *pa = (const struct probe_and_action *) p;
1647
1648 return (hashval_t) pa->address;
1649 }
1650
1651 /* Returns non-zero if the probe_and_actions referenced by p1 and p2
1652 are equal. */
1653
1654 static int
1655 equal_probe_and_action (const void *p1, const void *p2)
1656 {
1657 const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
1658 const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;
1659
1660 return pa1->address == pa2->address;
1661 }
1662
1663 /* Register a solib event probe and its associated action in the
1664 probes table. */
1665
1666 static void
1667 register_solib_event_probe (probe *prob, CORE_ADDR address,
1668 enum probe_action action)
1669 {
1670 struct svr4_info *info = get_svr4_info ();
1671 struct probe_and_action lookup, *pa;
1672 void **slot;
1673
1674 /* Create the probes table, if necessary. */
1675 if (info->probes_table == NULL)
1676 info->probes_table = htab_create_alloc (1, hash_probe_and_action,
1677 equal_probe_and_action,
1678 xfree, xcalloc, xfree);
1679
1680 lookup.prob = prob;
1681 lookup.address = address;
1682 slot = htab_find_slot (info->probes_table, &lookup, INSERT);
1683 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1684
1685 pa = XCNEW (struct probe_and_action);
1686 pa->prob = prob;
1687 pa->address = address;
1688 pa->action = action;
1689
1690 *slot = pa;
1691 }
1692
1693 /* Get the solib event probe at the specified location, and the
1694 action associated with it. Returns NULL if no solib event probe
1695 was found. */
1696
1697 static struct probe_and_action *
1698 solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1699 {
1700 struct probe_and_action lookup;
1701 void **slot;
1702
1703 lookup.address = address;
1704 slot = htab_find_slot (info->probes_table, &lookup, NO_INSERT);
1705
1706 if (slot == NULL)
1707 return NULL;
1708
1709 return (struct probe_and_action *) *slot;
1710 }
1711
1712 /* Decide what action to take when the specified solib event probe is
1713 hit. */
1714
1715 static enum probe_action
1716 solib_event_probe_action (struct probe_and_action *pa)
1717 {
1718 enum probe_action action;
1719 unsigned probe_argc = 0;
1720 struct frame_info *frame = get_current_frame ();
1721
1722 action = pa->action;
1723 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1724 return action;
1725
1726 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1727
1728 /* Check that an appropriate number of arguments has been supplied.
1729 We expect:
1730 arg0: Lmid_t lmid (mandatory)
1731 arg1: struct r_debug *debug_base (mandatory)
1732 arg2: struct link_map *new (optional, for incremental updates) */
1733 try
1734 {
1735 probe_argc = pa->prob->get_argument_count (frame);
1736 }
1737 catch (const gdb_exception_RETURN_MASK_ERROR &ex)
1738 {
1739 exception_print (gdb_stderr, ex);
1740 probe_argc = 0;
1741 }
1742
1743 /* If get_argument_count throws an exception, probe_argc will be set
1744 to zero. However, if pa->prob does not have arguments, then
1745 get_argument_count will succeed but probe_argc will also be zero.
1746 Both cases happen because of different things, but they are
1747 treated equally here: action will be set to
1748 PROBES_INTERFACE_FAILED. */
1749 if (probe_argc == 2)
1750 action = FULL_RELOAD;
1751 else if (probe_argc < 2)
1752 action = PROBES_INTERFACE_FAILED;
1753
1754 return action;
1755 }
1756
1757 /* Populate the shared object list by reading the entire list of
1758 shared objects from the inferior. Handle special cases relating
1759 to the first elements of the list. Returns nonzero on success. */
1760
1761 static int
1762 solist_update_full (struct svr4_info *info)
1763 {
1764 free_solib_list (info);
1765 info->solib_list = svr4_current_sos_direct (info);
1766
1767 return 1;
1768 }
1769
1770 /* Update the shared object list starting from the link-map entry
1771 passed by the linker in the probe's third argument. Returns
1772 nonzero if the list was successfully updated, or zero to indicate
1773 failure. */
1774
1775 static int
1776 solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1777 {
1778 struct so_list *tail;
1779 CORE_ADDR prev_lm;
1780
1781 /* svr4_current_sos_direct contains logic to handle a number of
1782 special cases relating to the first elements of the list. To
1783 avoid duplicating this logic we defer to solist_update_full
1784 if the list is empty. */
1785 if (info->solib_list == NULL)
1786 return 0;
1787
1788 /* Fall back to a full update if we are using a remote target
1789 that does not support incremental transfers. */
1790 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1791 return 0;
1792
1793 /* Walk to the end of the list. */
1794 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1795 /* Nothing. */;
1796
1797 lm_info_svr4 *li = (lm_info_svr4 *) tail->lm_info;
1798 prev_lm = li->lm_addr;
1799
1800 /* Read the new objects. */
1801 if (info->using_xfer)
1802 {
1803 struct svr4_library_list library_list;
1804 char annex[64];
1805
1806 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1807 phex_nz (lm, sizeof (lm)),
1808 phex_nz (prev_lm, sizeof (prev_lm)));
1809 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1810 return 0;
1811
1812 tail->next = library_list.head;
1813 }
1814 else
1815 {
1816 struct so_list **link = &tail->next;
1817
1818 /* IGNORE_FIRST may safely be set to zero here because the
1819 above check and deferral to solist_update_full ensures
1820 that this call to svr4_read_so_list will never see the
1821 first element. */
1822 if (!svr4_read_so_list (lm, prev_lm, &link, 0))
1823 return 0;
1824 }
1825
1826 return 1;
1827 }
1828
1829 /* Disable the probes-based linker interface and revert to the
1830 original interface. We don't reset the breakpoints as the
1831 ones set up for the probes-based interface are adequate. */
1832
1833 static void
1834 disable_probes_interface ()
1835 {
1836 struct svr4_info *info = get_svr4_info ();
1837
1838 warning (_("Probes-based dynamic linker interface failed.\n"
1839 "Reverting to original interface.\n"));
1840
1841 free_probes_table (info);
1842 free_solib_list (info);
1843 }
1844
1845 /* Update the solib list as appropriate when using the
1846 probes-based linker interface. Do nothing if using the
1847 standard interface. */
1848
1849 static void
1850 svr4_handle_solib_event (void)
1851 {
1852 struct svr4_info *info = get_svr4_info ();
1853 struct probe_and_action *pa;
1854 enum probe_action action;
1855 struct value *val = NULL;
1856 CORE_ADDR pc, debug_base, lm = 0;
1857 struct frame_info *frame = get_current_frame ();
1858
1859 /* Do nothing if not using the probes interface. */
1860 if (info->probes_table == NULL)
1861 return;
1862
1863 /* If anything goes wrong we revert to the original linker
1864 interface. */
1865 auto cleanup = make_scope_exit (disable_probes_interface);
1866
1867 pc = regcache_read_pc (get_current_regcache ());
1868 pa = solib_event_probe_at (info, pc);
1869 if (pa == NULL)
1870 return;
1871
1872 action = solib_event_probe_action (pa);
1873 if (action == PROBES_INTERFACE_FAILED)
1874 return;
1875
1876 if (action == DO_NOTHING)
1877 {
1878 cleanup.release ();
1879 return;
1880 }
1881
1882 /* evaluate_argument looks up symbols in the dynamic linker
1883 using find_pc_section. find_pc_section is accelerated by a cache
1884 called the section map. The section map is invalidated every
1885 time a shared library is loaded or unloaded, and if the inferior
1886 is generating a lot of shared library events then the section map
1887 will be updated every time svr4_handle_solib_event is called.
1888 We called find_pc_section in svr4_create_solib_event_breakpoints,
1889 so we can guarantee that the dynamic linker's sections are in the
1890 section map. We can therefore inhibit section map updates across
1891 these calls to evaluate_argument and save a lot of time. */
1892 {
1893 scoped_restore inhibit_updates
1894 = inhibit_section_map_updates (current_program_space);
1895
1896 try
1897 {
1898 val = pa->prob->evaluate_argument (1, frame);
1899 }
1900 catch (const gdb_exception_RETURN_MASK_ERROR &ex)
1901 {
1902 exception_print (gdb_stderr, ex);
1903 val = NULL;
1904 }
1905
1906 if (val == NULL)
1907 return;
1908
1909 debug_base = value_as_address (val);
1910 if (debug_base == 0)
1911 return;
1912
1913 /* Always locate the debug struct, in case it moved. */
1914 info->debug_base = 0;
1915 if (locate_base (info) == 0)
1916 return;
1917
1918 /* GDB does not currently support libraries loaded via dlmopen
1919 into namespaces other than the initial one. We must ignore
1920 any namespace other than the initial namespace here until
1921 support for this is added to GDB. */
1922 if (debug_base != info->debug_base)
1923 action = DO_NOTHING;
1924
1925 if (action == UPDATE_OR_RELOAD)
1926 {
1927 try
1928 {
1929 val = pa->prob->evaluate_argument (2, frame);
1930 }
1931 catch (const gdb_exception_RETURN_MASK_ERROR &ex)
1932 {
1933 exception_print (gdb_stderr, ex);
1934 return;
1935 }
1936
1937 if (val != NULL)
1938 lm = value_as_address (val);
1939
1940 if (lm == 0)
1941 action = FULL_RELOAD;
1942 }
1943
1944 /* Resume section map updates. Closing the scope is
1945 sufficient. */
1946 }
1947
1948 if (action == UPDATE_OR_RELOAD)
1949 {
1950 if (!solist_update_incremental (info, lm))
1951 action = FULL_RELOAD;
1952 }
1953
1954 if (action == FULL_RELOAD)
1955 {
1956 if (!solist_update_full (info))
1957 return;
1958 }
1959
1960 cleanup.release ();
1961 }
1962
1963 /* Helper function for svr4_update_solib_event_breakpoints. */
1964
1965 static int
1966 svr4_update_solib_event_breakpoint (struct breakpoint *b, void *arg)
1967 {
1968 struct bp_location *loc;
1969
1970 if (b->type != bp_shlib_event)
1971 {
1972 /* Continue iterating. */
1973 return 0;
1974 }
1975
1976 for (loc = b->loc; loc != NULL; loc = loc->next)
1977 {
1978 struct svr4_info *info;
1979 struct probe_and_action *pa;
1980
1981 info = ((struct svr4_info *)
1982 program_space_data (loc->pspace, solib_svr4_pspace_data));
1983 if (info == NULL || info->probes_table == NULL)
1984 continue;
1985
1986 pa = solib_event_probe_at (info, loc->address);
1987 if (pa == NULL)
1988 continue;
1989
1990 if (pa->action == DO_NOTHING)
1991 {
1992 if (b->enable_state == bp_disabled && stop_on_solib_events)
1993 enable_breakpoint (b);
1994 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
1995 disable_breakpoint (b);
1996 }
1997
1998 break;
1999 }
2000
2001 /* Continue iterating. */
2002 return 0;
2003 }
2004
2005 /* Enable or disable optional solib event breakpoints as appropriate.
2006 Called whenever stop_on_solib_events is changed. */
2007
2008 static void
2009 svr4_update_solib_event_breakpoints (void)
2010 {
2011 iterate_over_breakpoints (svr4_update_solib_event_breakpoint, NULL);
2012 }
2013
2014 /* Create and register solib event breakpoints. PROBES is an array
2015 of NUM_PROBES elements, each of which is vector of probes. A
2016 solib event breakpoint will be created and registered for each
2017 probe. */
2018
2019 static void
2020 svr4_create_probe_breakpoints (struct gdbarch *gdbarch,
2021 const std::vector<probe *> *probes,
2022 struct objfile *objfile)
2023 {
2024 for (int i = 0; i < NUM_PROBES; i++)
2025 {
2026 enum probe_action action = probe_info[i].action;
2027
2028 for (probe *p : probes[i])
2029 {
2030 CORE_ADDR address = p->get_relocated_address (objfile);
2031
2032 create_solib_event_breakpoint (gdbarch, address);
2033 register_solib_event_probe (p, address, action);
2034 }
2035 }
2036
2037 svr4_update_solib_event_breakpoints ();
2038 }
2039
2040 /* Both the SunOS and the SVR4 dynamic linkers call a marker function
2041 before and after mapping and unmapping shared libraries. The sole
2042 purpose of this method is to allow debuggers to set a breakpoint so
2043 they can track these changes.
2044
2045 Some versions of the glibc dynamic linker contain named probes
2046 to allow more fine grained stopping. Given the address of the
2047 original marker function, this function attempts to find these
2048 probes, and if found, sets breakpoints on those instead. If the
2049 probes aren't found, a single breakpoint is set on the original
2050 marker function. */
2051
2052 static void
2053 svr4_create_solib_event_breakpoints (struct gdbarch *gdbarch,
2054 CORE_ADDR address)
2055 {
2056 struct obj_section *os;
2057
2058 os = find_pc_section (address);
2059 if (os != NULL)
2060 {
2061 int with_prefix;
2062
2063 for (with_prefix = 0; with_prefix <= 1; with_prefix++)
2064 {
2065 std::vector<probe *> probes[NUM_PROBES];
2066 int all_probes_found = 1;
2067 int checked_can_use_probe_arguments = 0;
2068
2069 for (int i = 0; i < NUM_PROBES; i++)
2070 {
2071 const char *name = probe_info[i].name;
2072 probe *p;
2073 char buf[32];
2074
2075 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4
2076 shipped with an early version of the probes code in
2077 which the probes' names were prefixed with "rtld_"
2078 and the "map_failed" probe did not exist. The
2079 locations of the probes are otherwise the same, so
2080 we check for probes with prefixed names if probes
2081 with unprefixed names are not present. */
2082 if (with_prefix)
2083 {
2084 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2085 name = buf;
2086 }
2087
2088 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2089
2090 /* The "map_failed" probe did not exist in early
2091 versions of the probes code in which the probes'
2092 names were prefixed with "rtld_". */
2093 if (strcmp (name, "rtld_map_failed") == 0)
2094 continue;
2095
2096 if (probes[i].empty ())
2097 {
2098 all_probes_found = 0;
2099 break;
2100 }
2101
2102 /* Ensure probe arguments can be evaluated. */
2103 if (!checked_can_use_probe_arguments)
2104 {
2105 p = probes[i][0];
2106 if (!p->can_evaluate_arguments ())
2107 {
2108 all_probes_found = 0;
2109 break;
2110 }
2111 checked_can_use_probe_arguments = 1;
2112 }
2113 }
2114
2115 if (all_probes_found)
2116 svr4_create_probe_breakpoints (gdbarch, probes, os->objfile);
2117
2118 if (all_probes_found)
2119 return;
2120 }
2121 }
2122
2123 create_solib_event_breakpoint (gdbarch, address);
2124 }
2125
2126 /* Helper function for gdb_bfd_lookup_symbol. */
2127
2128 static int
2129 cmp_name_and_sec_flags (const asymbol *sym, const void *data)
2130 {
2131 return (strcmp (sym->name, (const char *) data) == 0
2132 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2133 }
2134 /* Arrange for dynamic linker to hit breakpoint.
2135
2136 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2137 debugger interface, support for arranging for the inferior to hit
2138 a breakpoint after mapping in the shared libraries. This function
2139 enables that breakpoint.
2140
2141 For SunOS, there is a special flag location (in_debugger) which we
2142 set to 1. When the dynamic linker sees this flag set, it will set
2143 a breakpoint at a location known only to itself, after saving the
2144 original contents of that place and the breakpoint address itself,
2145 in it's own internal structures. When we resume the inferior, it
2146 will eventually take a SIGTRAP when it runs into the breakpoint.
2147 We handle this (in a different place) by restoring the contents of
2148 the breakpointed location (which is only known after it stops),
2149 chasing around to locate the shared libraries that have been
2150 loaded, then resuming.
2151
2152 For SVR4, the debugger interface structure contains a member (r_brk)
2153 which is statically initialized at the time the shared library is
2154 built, to the offset of a function (_r_debug_state) which is guaran-
2155 teed to be called once before mapping in a library, and again when
2156 the mapping is complete. At the time we are examining this member,
2157 it contains only the unrelocated offset of the function, so we have
2158 to do our own relocation. Later, when the dynamic linker actually
2159 runs, it relocates r_brk to be the actual address of _r_debug_state().
2160
2161 The debugger interface structure also contains an enumeration which
2162 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2163 depending upon whether or not the library is being mapped or unmapped,
2164 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
2165
2166 static int
2167 enable_break (struct svr4_info *info, int from_tty)
2168 {
2169 struct bound_minimal_symbol msymbol;
2170 const char * const *bkpt_namep;
2171 asection *interp_sect;
2172 CORE_ADDR sym_addr;
2173
2174 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2175 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
2176
2177 /* If we already have a shared library list in the target, and
2178 r_debug contains r_brk, set the breakpoint there - this should
2179 mean r_brk has already been relocated. Assume the dynamic linker
2180 is the object containing r_brk. */
2181
2182 solib_add (NULL, from_tty, auto_solib_add);
2183 sym_addr = 0;
2184 if (info->debug_base && solib_svr4_r_map (info) != 0)
2185 sym_addr = solib_svr4_r_brk (info);
2186
2187 if (sym_addr != 0)
2188 {
2189 struct obj_section *os;
2190
2191 sym_addr = gdbarch_addr_bits_remove
2192 (target_gdbarch (),
2193 gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2194 sym_addr,
2195 current_top_target ()));
2196
2197 /* On at least some versions of Solaris there's a dynamic relocation
2198 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2199 we get control before the dynamic linker has self-relocated.
2200 Check if SYM_ADDR is in a known section, if it is assume we can
2201 trust its value. This is just a heuristic though, it could go away
2202 or be replaced if it's getting in the way.
2203
2204 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2205 however it's spelled in your particular system) is ARM or Thumb.
2206 That knowledge is encoded in the address, if it's Thumb the low bit
2207 is 1. However, we've stripped that info above and it's not clear
2208 what all the consequences are of passing a non-addr_bits_remove'd
2209 address to svr4_create_solib_event_breakpoints. The call to
2210 find_pc_section verifies we know about the address and have some
2211 hope of computing the right kind of breakpoint to use (via
2212 symbol info). It does mean that GDB needs to be pointed at a
2213 non-stripped version of the dynamic linker in order to obtain
2214 information it already knows about. Sigh. */
2215
2216 os = find_pc_section (sym_addr);
2217 if (os != NULL)
2218 {
2219 /* Record the relocated start and end address of the dynamic linker
2220 text and plt section for svr4_in_dynsym_resolve_code. */
2221 bfd *tmp_bfd;
2222 CORE_ADDR load_addr;
2223
2224 tmp_bfd = os->objfile->obfd;
2225 load_addr = ANOFFSET (os->objfile->section_offsets,
2226 SECT_OFF_TEXT (os->objfile));
2227
2228 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2229 if (interp_sect)
2230 {
2231 info->interp_text_sect_low =
2232 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2233 info->interp_text_sect_high =
2234 info->interp_text_sect_low
2235 + bfd_section_size (tmp_bfd, interp_sect);
2236 }
2237 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2238 if (interp_sect)
2239 {
2240 info->interp_plt_sect_low =
2241 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2242 info->interp_plt_sect_high =
2243 info->interp_plt_sect_low
2244 + bfd_section_size (tmp_bfd, interp_sect);
2245 }
2246
2247 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2248 return 1;
2249 }
2250 }
2251
2252 /* Find the program interpreter; if not found, warn the user and drop
2253 into the old breakpoint at symbol code. */
2254 gdb::optional<gdb::byte_vector> interp_name_holder
2255 = find_program_interpreter ();
2256 if (interp_name_holder)
2257 {
2258 const char *interp_name = (const char *) interp_name_holder->data ();
2259 CORE_ADDR load_addr = 0;
2260 int load_addr_found = 0;
2261 int loader_found_in_list = 0;
2262 struct so_list *so;
2263 struct target_ops *tmp_bfd_target;
2264
2265 sym_addr = 0;
2266
2267 /* Now we need to figure out where the dynamic linker was
2268 loaded so that we can load its symbols and place a breakpoint
2269 in the dynamic linker itself.
2270
2271 This address is stored on the stack. However, I've been unable
2272 to find any magic formula to find it for Solaris (appears to
2273 be trivial on GNU/Linux). Therefore, we have to try an alternate
2274 mechanism to find the dynamic linker's base address. */
2275
2276 gdb_bfd_ref_ptr tmp_bfd;
2277 try
2278 {
2279 tmp_bfd = solib_bfd_open (interp_name);
2280 }
2281 catch (const gdb_exception_RETURN_MASK_ALL &ex)
2282 {
2283 }
2284
2285 if (tmp_bfd == NULL)
2286 goto bkpt_at_symbol;
2287
2288 /* Now convert the TMP_BFD into a target. That way target, as
2289 well as BFD operations can be used. target_bfd_reopen
2290 acquires its own reference. */
2291 tmp_bfd_target = target_bfd_reopen (tmp_bfd.get ());
2292
2293 /* On a running target, we can get the dynamic linker's base
2294 address from the shared library table. */
2295 so = master_so_list ();
2296 while (so)
2297 {
2298 if (svr4_same_1 (interp_name, so->so_original_name))
2299 {
2300 load_addr_found = 1;
2301 loader_found_in_list = 1;
2302 load_addr = lm_addr_check (so, tmp_bfd.get ());
2303 break;
2304 }
2305 so = so->next;
2306 }
2307
2308 /* If we were not able to find the base address of the loader
2309 from our so_list, then try using the AT_BASE auxilliary entry. */
2310 if (!load_addr_found)
2311 if (target_auxv_search (current_top_target (), AT_BASE, &load_addr) > 0)
2312 {
2313 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
2314
2315 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2316 that `+ load_addr' will overflow CORE_ADDR width not creating
2317 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2318 GDB. */
2319
2320 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
2321 {
2322 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
2323 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd.get (),
2324 tmp_bfd_target);
2325
2326 gdb_assert (load_addr < space_size);
2327
2328 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2329 64bit ld.so with 32bit executable, it should not happen. */
2330
2331 if (tmp_entry_point < space_size
2332 && tmp_entry_point + load_addr >= space_size)
2333 load_addr -= space_size;
2334 }
2335
2336 load_addr_found = 1;
2337 }
2338
2339 /* Otherwise we find the dynamic linker's base address by examining
2340 the current pc (which should point at the entry point for the
2341 dynamic linker) and subtracting the offset of the entry point.
2342
2343 This is more fragile than the previous approaches, but is a good
2344 fallback method because it has actually been working well in
2345 most cases. */
2346 if (!load_addr_found)
2347 {
2348 struct regcache *regcache
2349 = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
2350
2351 load_addr = (regcache_read_pc (regcache)
2352 - exec_entry_point (tmp_bfd.get (), tmp_bfd_target));
2353 }
2354
2355 if (!loader_found_in_list)
2356 {
2357 info->debug_loader_name = xstrdup (interp_name);
2358 info->debug_loader_offset_p = 1;
2359 info->debug_loader_offset = load_addr;
2360 solib_add (NULL, from_tty, auto_solib_add);
2361 }
2362
2363 /* Record the relocated start and end address of the dynamic linker
2364 text and plt section for svr4_in_dynsym_resolve_code. */
2365 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
2366 if (interp_sect)
2367 {
2368 info->interp_text_sect_low =
2369 bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr;
2370 info->interp_text_sect_high =
2371 info->interp_text_sect_low
2372 + bfd_section_size (tmp_bfd.get (), interp_sect);
2373 }
2374 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
2375 if (interp_sect)
2376 {
2377 info->interp_plt_sect_low =
2378 bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr;
2379 info->interp_plt_sect_high =
2380 info->interp_plt_sect_low
2381 + bfd_section_size (tmp_bfd.get (), interp_sect);
2382 }
2383
2384 /* Now try to set a breakpoint in the dynamic linker. */
2385 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2386 {
2387 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd.get (),
2388 cmp_name_and_sec_flags,
2389 *bkpt_namep);
2390 if (sym_addr != 0)
2391 break;
2392 }
2393
2394 if (sym_addr != 0)
2395 /* Convert 'sym_addr' from a function pointer to an address.
2396 Because we pass tmp_bfd_target instead of the current
2397 target, this will always produce an unrelocated value. */
2398 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2399 sym_addr,
2400 tmp_bfd_target);
2401
2402 /* We're done with both the temporary bfd and target. Closing
2403 the target closes the underlying bfd, because it holds the
2404 only remaining reference. */
2405 target_close (tmp_bfd_target);
2406
2407 if (sym_addr != 0)
2408 {
2409 svr4_create_solib_event_breakpoints (target_gdbarch (),
2410 load_addr + sym_addr);
2411 return 1;
2412 }
2413
2414 /* For whatever reason we couldn't set a breakpoint in the dynamic
2415 linker. Warn and drop into the old code. */
2416 bkpt_at_symbol:
2417 warning (_("Unable to find dynamic linker breakpoint function.\n"
2418 "GDB will be unable to debug shared library initializers\n"
2419 "and track explicitly loaded dynamic code."));
2420 }
2421
2422 /* Scan through the lists of symbols, trying to look up the symbol and
2423 set a breakpoint there. Terminate loop when we/if we succeed. */
2424
2425 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2426 {
2427 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
2428 if ((msymbol.minsym != NULL)
2429 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2430 {
2431 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2432 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2433 sym_addr,
2434 current_top_target ());
2435 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2436 return 1;
2437 }
2438 }
2439
2440 if (interp_name_holder && !current_inferior ()->attach_flag)
2441 {
2442 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
2443 {
2444 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
2445 if ((msymbol.minsym != NULL)
2446 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2447 {
2448 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2449 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2450 sym_addr,
2451 current_top_target ());
2452 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2453 return 1;
2454 }
2455 }
2456 }
2457 return 0;
2458 }
2459
2460 /* Read the ELF program headers from ABFD. */
2461
2462 static gdb::optional<gdb::byte_vector>
2463 read_program_headers_from_bfd (bfd *abfd)
2464 {
2465 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
2466 int phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2467 if (phdrs_size == 0)
2468 return {};
2469
2470 gdb::byte_vector buf (phdrs_size);
2471 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
2472 || bfd_bread (buf.data (), phdrs_size, abfd) != phdrs_size)
2473 return {};
2474
2475 return buf;
2476 }
2477
2478 /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2479 exec_bfd. Otherwise return 0.
2480
2481 We relocate all of the sections by the same amount. This
2482 behavior is mandated by recent editions of the System V ABI.
2483 According to the System V Application Binary Interface,
2484 Edition 4.1, page 5-5:
2485
2486 ... Though the system chooses virtual addresses for
2487 individual processes, it maintains the segments' relative
2488 positions. Because position-independent code uses relative
2489 addressesing between segments, the difference between
2490 virtual addresses in memory must match the difference
2491 between virtual addresses in the file. The difference
2492 between the virtual address of any segment in memory and
2493 the corresponding virtual address in the file is thus a
2494 single constant value for any one executable or shared
2495 object in a given process. This difference is the base
2496 address. One use of the base address is to relocate the
2497 memory image of the program during dynamic linking.
2498
2499 The same language also appears in Edition 4.0 of the System V
2500 ABI and is left unspecified in some of the earlier editions.
2501
2502 Decide if the objfile needs to be relocated. As indicated above, we will
2503 only be here when execution is stopped. But during attachment PC can be at
2504 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2505 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2506 regcache_read_pc would point to the interpreter and not the main executable.
2507
2508 So, to summarize, relocations are necessary when the start address obtained
2509 from the executable is different from the address in auxv AT_ENTRY entry.
2510
2511 [ The astute reader will note that we also test to make sure that
2512 the executable in question has the DYNAMIC flag set. It is my
2513 opinion that this test is unnecessary (undesirable even). It
2514 was added to avoid inadvertent relocation of an executable
2515 whose e_type member in the ELF header is not ET_DYN. There may
2516 be a time in the future when it is desirable to do relocations
2517 on other types of files as well in which case this condition
2518 should either be removed or modified to accomodate the new file
2519 type. - Kevin, Nov 2000. ] */
2520
2521 static int
2522 svr4_exec_displacement (CORE_ADDR *displacementp)
2523 {
2524 /* ENTRY_POINT is a possible function descriptor - before
2525 a call to gdbarch_convert_from_func_ptr_addr. */
2526 CORE_ADDR entry_point, exec_displacement;
2527
2528 if (exec_bfd == NULL)
2529 return 0;
2530
2531 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2532 being executed themselves and PIE (Position Independent Executable)
2533 executables are ET_DYN. */
2534
2535 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
2536 return 0;
2537
2538 if (target_auxv_search (current_top_target (), AT_ENTRY, &entry_point) <= 0)
2539 return 0;
2540
2541 exec_displacement = entry_point - bfd_get_start_address (exec_bfd);
2542
2543 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
2544 alignment. It is cheaper than the program headers comparison below. */
2545
2546 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2547 {
2548 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
2549
2550 /* p_align of PT_LOAD segments does not specify any alignment but
2551 only congruency of addresses:
2552 p_offset % p_align == p_vaddr % p_align
2553 Kernel is free to load the executable with lower alignment. */
2554
2555 if ((exec_displacement & (elf->minpagesize - 1)) != 0)
2556 return 0;
2557 }
2558
2559 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2560 comparing their program headers. If the program headers in the auxilliary
2561 vector do not match the program headers in the executable, then we are
2562 looking at a different file than the one used by the kernel - for
2563 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2564
2565 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2566 {
2567 /* Be optimistic and return 0 only if GDB was able to verify the headers
2568 really do not match. */
2569 int arch_size;
2570
2571 gdb::optional<gdb::byte_vector> phdrs_target
2572 = read_program_header (-1, &arch_size, NULL);
2573 gdb::optional<gdb::byte_vector> phdrs_binary
2574 = read_program_headers_from_bfd (exec_bfd);
2575 if (phdrs_target && phdrs_binary)
2576 {
2577 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
2578
2579 /* We are dealing with three different addresses. EXEC_BFD
2580 represents current address in on-disk file. target memory content
2581 may be different from EXEC_BFD as the file may have been prelinked
2582 to a different address after the executable has been loaded.
2583 Moreover the address of placement in target memory can be
2584 different from what the program headers in target memory say -
2585 this is the goal of PIE.
2586
2587 Detected DISPLACEMENT covers both the offsets of PIE placement and
2588 possible new prelink performed after start of the program. Here
2589 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2590 content offset for the verification purpose. */
2591
2592 if (phdrs_target->size () != phdrs_binary->size ()
2593 || bfd_get_arch_size (exec_bfd) != arch_size)
2594 return 0;
2595 else if (arch_size == 32
2596 && phdrs_target->size () >= sizeof (Elf32_External_Phdr)
2597 && phdrs_target->size () % sizeof (Elf32_External_Phdr) == 0)
2598 {
2599 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2600 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2601 CORE_ADDR displacement = 0;
2602 int i;
2603
2604 /* DISPLACEMENT could be found more easily by the difference of
2605 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2606 already have enough information to compute that displacement
2607 with what we've read. */
2608
2609 for (i = 0; i < ehdr2->e_phnum; i++)
2610 if (phdr2[i].p_type == PT_LOAD)
2611 {
2612 Elf32_External_Phdr *phdrp;
2613 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2614 CORE_ADDR vaddr, paddr;
2615 CORE_ADDR displacement_vaddr = 0;
2616 CORE_ADDR displacement_paddr = 0;
2617
2618 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
2619 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2620 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2621
2622 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2623 byte_order);
2624 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2625
2626 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2627 byte_order);
2628 displacement_paddr = paddr - phdr2[i].p_paddr;
2629
2630 if (displacement_vaddr == displacement_paddr)
2631 displacement = displacement_vaddr;
2632
2633 break;
2634 }
2635
2636 /* Now compare program headers from the target and the binary
2637 with optional DISPLACEMENT. */
2638
2639 for (i = 0;
2640 i < phdrs_target->size () / sizeof (Elf32_External_Phdr);
2641 i++)
2642 {
2643 Elf32_External_Phdr *phdrp;
2644 Elf32_External_Phdr *phdr2p;
2645 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2646 CORE_ADDR vaddr, paddr;
2647 asection *plt2_asect;
2648
2649 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
2650 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2651 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2652 phdr2p = &((Elf32_External_Phdr *) phdrs_binary->data ())[i];
2653
2654 /* PT_GNU_STACK is an exception by being never relocated by
2655 prelink as its addresses are always zero. */
2656
2657 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2658 continue;
2659
2660 /* Check also other adjustment combinations - PR 11786. */
2661
2662 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2663 byte_order);
2664 vaddr -= displacement;
2665 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2666
2667 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2668 byte_order);
2669 paddr -= displacement;
2670 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2671
2672 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2673 continue;
2674
2675 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2676 CentOS-5 has problems with filesz, memsz as well.
2677 Strip also modifies memsz of PT_TLS.
2678 See PR 11786. */
2679 if (phdr2[i].p_type == PT_GNU_RELRO
2680 || phdr2[i].p_type == PT_TLS)
2681 {
2682 Elf32_External_Phdr tmp_phdr = *phdrp;
2683 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2684
2685 memset (tmp_phdr.p_filesz, 0, 4);
2686 memset (tmp_phdr.p_memsz, 0, 4);
2687 memset (tmp_phdr.p_flags, 0, 4);
2688 memset (tmp_phdr.p_align, 0, 4);
2689 memset (tmp_phdr2.p_filesz, 0, 4);
2690 memset (tmp_phdr2.p_memsz, 0, 4);
2691 memset (tmp_phdr2.p_flags, 0, 4);
2692 memset (tmp_phdr2.p_align, 0, 4);
2693
2694 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2695 == 0)
2696 continue;
2697 }
2698
2699 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2700 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2701 if (plt2_asect)
2702 {
2703 int content2;
2704 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2705 CORE_ADDR filesz;
2706
2707 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2708 & SEC_HAS_CONTENTS) != 0;
2709
2710 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2711 byte_order);
2712
2713 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2714 FILESZ is from the in-memory image. */
2715 if (content2)
2716 filesz += bfd_get_section_size (plt2_asect);
2717 else
2718 filesz -= bfd_get_section_size (plt2_asect);
2719
2720 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2721 filesz);
2722
2723 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2724 continue;
2725 }
2726
2727 return 0;
2728 }
2729 }
2730 else if (arch_size == 64
2731 && phdrs_target->size () >= sizeof (Elf64_External_Phdr)
2732 && phdrs_target->size () % sizeof (Elf64_External_Phdr) == 0)
2733 {
2734 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2735 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2736 CORE_ADDR displacement = 0;
2737 int i;
2738
2739 /* DISPLACEMENT could be found more easily by the difference of
2740 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2741 already have enough information to compute that displacement
2742 with what we've read. */
2743
2744 for (i = 0; i < ehdr2->e_phnum; i++)
2745 if (phdr2[i].p_type == PT_LOAD)
2746 {
2747 Elf64_External_Phdr *phdrp;
2748 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2749 CORE_ADDR vaddr, paddr;
2750 CORE_ADDR displacement_vaddr = 0;
2751 CORE_ADDR displacement_paddr = 0;
2752
2753 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
2754 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2755 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2756
2757 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2758 byte_order);
2759 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2760
2761 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2762 byte_order);
2763 displacement_paddr = paddr - phdr2[i].p_paddr;
2764
2765 if (displacement_vaddr == displacement_paddr)
2766 displacement = displacement_vaddr;
2767
2768 break;
2769 }
2770
2771 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2772
2773 for (i = 0;
2774 i < phdrs_target->size () / sizeof (Elf64_External_Phdr);
2775 i++)
2776 {
2777 Elf64_External_Phdr *phdrp;
2778 Elf64_External_Phdr *phdr2p;
2779 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2780 CORE_ADDR vaddr, paddr;
2781 asection *plt2_asect;
2782
2783 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
2784 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2785 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2786 phdr2p = &((Elf64_External_Phdr *) phdrs_binary->data ())[i];
2787
2788 /* PT_GNU_STACK is an exception by being never relocated by
2789 prelink as its addresses are always zero. */
2790
2791 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2792 continue;
2793
2794 /* Check also other adjustment combinations - PR 11786. */
2795
2796 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2797 byte_order);
2798 vaddr -= displacement;
2799 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2800
2801 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2802 byte_order);
2803 paddr -= displacement;
2804 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2805
2806 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2807 continue;
2808
2809 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2810 CentOS-5 has problems with filesz, memsz as well.
2811 Strip also modifies memsz of PT_TLS.
2812 See PR 11786. */
2813 if (phdr2[i].p_type == PT_GNU_RELRO
2814 || phdr2[i].p_type == PT_TLS)
2815 {
2816 Elf64_External_Phdr tmp_phdr = *phdrp;
2817 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2818
2819 memset (tmp_phdr.p_filesz, 0, 8);
2820 memset (tmp_phdr.p_memsz, 0, 8);
2821 memset (tmp_phdr.p_flags, 0, 4);
2822 memset (tmp_phdr.p_align, 0, 8);
2823 memset (tmp_phdr2.p_filesz, 0, 8);
2824 memset (tmp_phdr2.p_memsz, 0, 8);
2825 memset (tmp_phdr2.p_flags, 0, 4);
2826 memset (tmp_phdr2.p_align, 0, 8);
2827
2828 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2829 == 0)
2830 continue;
2831 }
2832
2833 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2834 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2835 if (plt2_asect)
2836 {
2837 int content2;
2838 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2839 CORE_ADDR filesz;
2840
2841 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2842 & SEC_HAS_CONTENTS) != 0;
2843
2844 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2845 byte_order);
2846
2847 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2848 FILESZ is from the in-memory image. */
2849 if (content2)
2850 filesz += bfd_get_section_size (plt2_asect);
2851 else
2852 filesz -= bfd_get_section_size (plt2_asect);
2853
2854 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2855 filesz);
2856
2857 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2858 continue;
2859 }
2860
2861 return 0;
2862 }
2863 }
2864 else
2865 return 0;
2866 }
2867 }
2868
2869 if (info_verbose)
2870 {
2871 /* It can be printed repeatedly as there is no easy way to check
2872 the executable symbols/file has been already relocated to
2873 displacement. */
2874
2875 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2876 "displacement %s for \"%s\".\n"),
2877 paddress (target_gdbarch (), exec_displacement),
2878 bfd_get_filename (exec_bfd));
2879 }
2880
2881 *displacementp = exec_displacement;
2882 return 1;
2883 }
2884
2885 /* Relocate the main executable. This function should be called upon
2886 stopping the inferior process at the entry point to the program.
2887 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2888 different, the main executable is relocated by the proper amount. */
2889
2890 static void
2891 svr4_relocate_main_executable (void)
2892 {
2893 CORE_ADDR displacement;
2894
2895 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2896 probably contains the offsets computed using the PIE displacement
2897 from the previous run, which of course are irrelevant for this run.
2898 So we need to determine the new PIE displacement and recompute the
2899 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2900 already contains pre-computed offsets.
2901
2902 If we cannot compute the PIE displacement, either:
2903
2904 - The executable is not PIE.
2905
2906 - SYMFILE_OBJFILE does not match the executable started in the target.
2907 This can happen for main executable symbols loaded at the host while
2908 `ld.so --ld-args main-executable' is loaded in the target.
2909
2910 Then we leave the section offsets untouched and use them as is for
2911 this run. Either:
2912
2913 - These section offsets were properly reset earlier, and thus
2914 already contain the correct values. This can happen for instance
2915 when reconnecting via the remote protocol to a target that supports
2916 the `qOffsets' packet.
2917
2918 - The section offsets were not reset earlier, and the best we can
2919 hope is that the old offsets are still applicable to the new run. */
2920
2921 if (! svr4_exec_displacement (&displacement))
2922 return;
2923
2924 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2925 addresses. */
2926
2927 if (symfile_objfile)
2928 {
2929 struct section_offsets *new_offsets;
2930 int i;
2931
2932 new_offsets = XALLOCAVEC (struct section_offsets,
2933 symfile_objfile->num_sections);
2934
2935 for (i = 0; i < symfile_objfile->num_sections; i++)
2936 new_offsets->offsets[i] = displacement;
2937
2938 objfile_relocate (symfile_objfile, new_offsets);
2939 }
2940 else if (exec_bfd)
2941 {
2942 asection *asect;
2943
2944 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2945 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2946 (bfd_section_vma (exec_bfd, asect)
2947 + displacement));
2948 }
2949 }
2950
2951 /* Implement the "create_inferior_hook" target_solib_ops method.
2952
2953 For SVR4 executables, this first instruction is either the first
2954 instruction in the dynamic linker (for dynamically linked
2955 executables) or the instruction at "start" for statically linked
2956 executables. For dynamically linked executables, the system
2957 first exec's /lib/libc.so.N, which contains the dynamic linker,
2958 and starts it running. The dynamic linker maps in any needed
2959 shared libraries, maps in the actual user executable, and then
2960 jumps to "start" in the user executable.
2961
2962 We can arrange to cooperate with the dynamic linker to discover the
2963 names of shared libraries that are dynamically linked, and the base
2964 addresses to which they are linked.
2965
2966 This function is responsible for discovering those names and
2967 addresses, and saving sufficient information about them to allow
2968 their symbols to be read at a later time. */
2969
2970 static void
2971 svr4_solib_create_inferior_hook (int from_tty)
2972 {
2973 struct svr4_info *info;
2974
2975 info = get_svr4_info ();
2976
2977 /* Clear the probes-based interface's state. */
2978 free_probes_table (info);
2979 free_solib_list (info);
2980
2981 /* Relocate the main executable if necessary. */
2982 svr4_relocate_main_executable ();
2983
2984 /* No point setting a breakpoint in the dynamic linker if we can't
2985 hit it (e.g., a core file, or a trace file). */
2986 if (!target_has_execution)
2987 return;
2988
2989 if (!svr4_have_link_map_offsets ())
2990 return;
2991
2992 if (!enable_break (info, from_tty))
2993 return;
2994 }
2995
2996 static void
2997 svr4_clear_solib (void)
2998 {
2999 struct svr4_info *info;
3000
3001 info = get_svr4_info ();
3002 info->debug_base = 0;
3003 info->debug_loader_offset_p = 0;
3004 info->debug_loader_offset = 0;
3005 xfree (info->debug_loader_name);
3006 info->debug_loader_name = NULL;
3007 }
3008
3009 /* Clear any bits of ADDR that wouldn't fit in a target-format
3010 data pointer. "Data pointer" here refers to whatever sort of
3011 address the dynamic linker uses to manage its sections. At the
3012 moment, we don't support shared libraries on any processors where
3013 code and data pointers are different sizes.
3014
3015 This isn't really the right solution. What we really need here is
3016 a way to do arithmetic on CORE_ADDR values that respects the
3017 natural pointer/address correspondence. (For example, on the MIPS,
3018 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
3019 sign-extend the value. There, simply truncating the bits above
3020 gdbarch_ptr_bit, as we do below, is no good.) This should probably
3021 be a new gdbarch method or something. */
3022 static CORE_ADDR
3023 svr4_truncate_ptr (CORE_ADDR addr)
3024 {
3025 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
3026 /* We don't need to truncate anything, and the bit twiddling below
3027 will fail due to overflow problems. */
3028 return addr;
3029 else
3030 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
3031 }
3032
3033
3034 static void
3035 svr4_relocate_section_addresses (struct so_list *so,
3036 struct target_section *sec)
3037 {
3038 bfd *abfd = sec->the_bfd_section->owner;
3039
3040 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
3041 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
3042 }
3043 \f
3044
3045 /* Architecture-specific operations. */
3046
3047 /* Per-architecture data key. */
3048 static struct gdbarch_data *solib_svr4_data;
3049
3050 struct solib_svr4_ops
3051 {
3052 /* Return a description of the layout of `struct link_map'. */
3053 struct link_map_offsets *(*fetch_link_map_offsets)(void);
3054 };
3055
3056 /* Return a default for the architecture-specific operations. */
3057
3058 static void *
3059 solib_svr4_init (struct obstack *obstack)
3060 {
3061 struct solib_svr4_ops *ops;
3062
3063 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
3064 ops->fetch_link_map_offsets = NULL;
3065 return ops;
3066 }
3067
3068 /* Set the architecture-specific `struct link_map_offsets' fetcher for
3069 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
3070
3071 void
3072 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3073 struct link_map_offsets *(*flmo) (void))
3074 {
3075 struct solib_svr4_ops *ops
3076 = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data);
3077
3078 ops->fetch_link_map_offsets = flmo;
3079
3080 set_solib_ops (gdbarch, &svr4_so_ops);
3081 }
3082
3083 /* Fetch a link_map_offsets structure using the architecture-specific
3084 `struct link_map_offsets' fetcher. */
3085
3086 static struct link_map_offsets *
3087 svr4_fetch_link_map_offsets (void)
3088 {
3089 struct solib_svr4_ops *ops
3090 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3091 solib_svr4_data);
3092
3093 gdb_assert (ops->fetch_link_map_offsets);
3094 return ops->fetch_link_map_offsets ();
3095 }
3096
3097 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3098
3099 static int
3100 svr4_have_link_map_offsets (void)
3101 {
3102 struct solib_svr4_ops *ops
3103 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3104 solib_svr4_data);
3105
3106 return (ops->fetch_link_map_offsets != NULL);
3107 }
3108 \f
3109
3110 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
3111 `struct r_debug' and a `struct link_map' that are binary compatible
3112 with the origional SVR4 implementation. */
3113
3114 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3115 for an ILP32 SVR4 system. */
3116
3117 struct link_map_offsets *
3118 svr4_ilp32_fetch_link_map_offsets (void)
3119 {
3120 static struct link_map_offsets lmo;
3121 static struct link_map_offsets *lmp = NULL;
3122
3123 if (lmp == NULL)
3124 {
3125 lmp = &lmo;
3126
3127 lmo.r_version_offset = 0;
3128 lmo.r_version_size = 4;
3129 lmo.r_map_offset = 4;
3130 lmo.r_brk_offset = 8;
3131 lmo.r_ldsomap_offset = 20;
3132
3133 /* Everything we need is in the first 20 bytes. */
3134 lmo.link_map_size = 20;
3135 lmo.l_addr_offset = 0;
3136 lmo.l_name_offset = 4;
3137 lmo.l_ld_offset = 8;
3138 lmo.l_next_offset = 12;
3139 lmo.l_prev_offset = 16;
3140 }
3141
3142 return lmp;
3143 }
3144
3145 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3146 for an LP64 SVR4 system. */
3147
3148 struct link_map_offsets *
3149 svr4_lp64_fetch_link_map_offsets (void)
3150 {
3151 static struct link_map_offsets lmo;
3152 static struct link_map_offsets *lmp = NULL;
3153
3154 if (lmp == NULL)
3155 {
3156 lmp = &lmo;
3157
3158 lmo.r_version_offset = 0;
3159 lmo.r_version_size = 4;
3160 lmo.r_map_offset = 8;
3161 lmo.r_brk_offset = 16;
3162 lmo.r_ldsomap_offset = 40;
3163
3164 /* Everything we need is in the first 40 bytes. */
3165 lmo.link_map_size = 40;
3166 lmo.l_addr_offset = 0;
3167 lmo.l_name_offset = 8;
3168 lmo.l_ld_offset = 16;
3169 lmo.l_next_offset = 24;
3170 lmo.l_prev_offset = 32;
3171 }
3172
3173 return lmp;
3174 }
3175 \f
3176
3177 struct target_so_ops svr4_so_ops;
3178
3179 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3180 different rule for symbol lookup. The lookup begins here in the DSO, not in
3181 the main executable. */
3182
3183 static struct block_symbol
3184 elf_lookup_lib_symbol (struct objfile *objfile,
3185 const char *name,
3186 const domain_enum domain)
3187 {
3188 bfd *abfd;
3189
3190 if (objfile == symfile_objfile)
3191 abfd = exec_bfd;
3192 else
3193 {
3194 /* OBJFILE should have been passed as the non-debug one. */
3195 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
3196
3197 abfd = objfile->obfd;
3198 }
3199
3200 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL, NULL) != 1)
3201 return {};
3202
3203 return lookup_global_symbol_from_objfile (objfile, name, domain);
3204 }
3205
3206 void
3207 _initialize_svr4_solib (void)
3208 {
3209 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
3210 solib_svr4_pspace_data
3211 = register_program_space_data_with_cleanup (NULL, svr4_pspace_data_cleanup);
3212
3213 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
3214 svr4_so_ops.free_so = svr4_free_so;
3215 svr4_so_ops.clear_so = svr4_clear_so;
3216 svr4_so_ops.clear_solib = svr4_clear_solib;
3217 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
3218 svr4_so_ops.current_sos = svr4_current_sos;
3219 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
3220 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
3221 svr4_so_ops.bfd_open = solib_bfd_open;
3222 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
3223 svr4_so_ops.same = svr4_same;
3224 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
3225 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3226 svr4_so_ops.handle_event = svr4_handle_solib_event;
3227 }
This page took 0.096835 seconds and 5 git commands to generate.