Fix cast of xml_find_attribute's return value
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "elf/external.h"
23 #include "elf/common.h"
24 #include "elf/mips.h"
25
26 #include "symtab.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbcore.h"
31 #include "target.h"
32 #include "inferior.h"
33 #include "infrun.h"
34 #include "regcache.h"
35 #include "gdbthread.h"
36 #include "observer.h"
37
38 #include "solist.h"
39 #include "solib.h"
40 #include "solib-svr4.h"
41
42 #include "bfd-target.h"
43 #include "elf-bfd.h"
44 #include "exec.h"
45 #include "auxv.h"
46 #include "gdb_bfd.h"
47 #include "probe.h"
48
49 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
50 static int svr4_have_link_map_offsets (void);
51 static void svr4_relocate_main_executable (void);
52 static void svr4_free_library_list (void *p_list);
53
54 /* Link map info to include in an allocated so_list entry. */
55
56 struct lm_info
57 {
58 /* Amount by which addresses in the binary should be relocated to
59 match the inferior. The direct inferior value is L_ADDR_INFERIOR.
60 When prelinking is involved and the prelink base address changes,
61 we may need a different offset - the recomputed offset is in L_ADDR.
62 It is commonly the same value. It is cached as we want to warn about
63 the difference and compute it only once. L_ADDR is valid
64 iff L_ADDR_P. */
65 CORE_ADDR l_addr, l_addr_inferior;
66 unsigned int l_addr_p : 1;
67
68 /* The target location of lm. */
69 CORE_ADDR lm_addr;
70
71 /* Values read in from inferior's fields of the same name. */
72 CORE_ADDR l_ld, l_next, l_prev, l_name;
73 };
74
75 /* On SVR4 systems, a list of symbols in the dynamic linker where
76 GDB can try to place a breakpoint to monitor shared library
77 events.
78
79 If none of these symbols are found, or other errors occur, then
80 SVR4 systems will fall back to using a symbol as the "startup
81 mapping complete" breakpoint address. */
82
83 static const char * const solib_break_names[] =
84 {
85 "r_debug_state",
86 "_r_debug_state",
87 "_dl_debug_state",
88 "rtld_db_dlactivity",
89 "__dl_rtld_db_dlactivity",
90 "_rtld_debug_state",
91
92 NULL
93 };
94
95 static const char * const bkpt_names[] =
96 {
97 "_start",
98 "__start",
99 "main",
100 NULL
101 };
102
103 static const char * const main_name_list[] =
104 {
105 "main_$main",
106 NULL
107 };
108
109 /* What to do when a probe stop occurs. */
110
111 enum probe_action
112 {
113 /* Something went seriously wrong. Stop using probes and
114 revert to using the older interface. */
115 PROBES_INTERFACE_FAILED,
116
117 /* No action is required. The shared object list is still
118 valid. */
119 DO_NOTHING,
120
121 /* The shared object list should be reloaded entirely. */
122 FULL_RELOAD,
123
124 /* Attempt to incrementally update the shared object list. If
125 the update fails or is not possible, fall back to reloading
126 the list in full. */
127 UPDATE_OR_RELOAD,
128 };
129
130 /* A probe's name and its associated action. */
131
132 struct probe_info
133 {
134 /* The name of the probe. */
135 const char *name;
136
137 /* What to do when a probe stop occurs. */
138 enum probe_action action;
139 };
140
141 /* A list of named probes and their associated actions. If all
142 probes are present in the dynamic linker then the probes-based
143 interface will be used. */
144
145 static const struct probe_info probe_info[] =
146 {
147 { "init_start", DO_NOTHING },
148 { "init_complete", FULL_RELOAD },
149 { "map_start", DO_NOTHING },
150 { "map_failed", DO_NOTHING },
151 { "reloc_complete", UPDATE_OR_RELOAD },
152 { "unmap_start", DO_NOTHING },
153 { "unmap_complete", FULL_RELOAD },
154 };
155
156 #define NUM_PROBES ARRAY_SIZE (probe_info)
157
158 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
159 the same shared library. */
160
161 static int
162 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
163 {
164 if (strcmp (gdb_so_name, inferior_so_name) == 0)
165 return 1;
166
167 /* On Solaris, when starting inferior we think that dynamic linker is
168 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
169 contains /lib/ld.so.1. Sometimes one file is a link to another, but
170 sometimes they have identical content, but are not linked to each
171 other. We don't restrict this check for Solaris, but the chances
172 of running into this situation elsewhere are very low. */
173 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
174 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
175 return 1;
176
177 /* Similarly, we observed the same issue with sparc64, but with
178 different locations. */
179 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
180 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
181 return 1;
182
183 return 0;
184 }
185
186 static int
187 svr4_same (struct so_list *gdb, struct so_list *inferior)
188 {
189 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
190 }
191
192 static struct lm_info *
193 lm_info_read (CORE_ADDR lm_addr)
194 {
195 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
196 gdb_byte *lm;
197 struct lm_info *lm_info;
198 struct cleanup *back_to;
199
200 lm = (gdb_byte *) xmalloc (lmo->link_map_size);
201 back_to = make_cleanup (xfree, lm);
202
203 if (target_read_memory (lm_addr, lm, lmo->link_map_size) != 0)
204 {
205 warning (_("Error reading shared library list entry at %s"),
206 paddress (target_gdbarch (), lm_addr)),
207 lm_info = NULL;
208 }
209 else
210 {
211 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
212
213 lm_info = XCNEW (struct lm_info);
214 lm_info->lm_addr = lm_addr;
215
216 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
217 ptr_type);
218 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
219 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
220 ptr_type);
221 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
222 ptr_type);
223 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
224 ptr_type);
225 }
226
227 do_cleanups (back_to);
228
229 return lm_info;
230 }
231
232 static int
233 has_lm_dynamic_from_link_map (void)
234 {
235 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
236
237 return lmo->l_ld_offset >= 0;
238 }
239
240 static CORE_ADDR
241 lm_addr_check (const struct so_list *so, bfd *abfd)
242 {
243 if (!so->lm_info->l_addr_p)
244 {
245 struct bfd_section *dyninfo_sect;
246 CORE_ADDR l_addr, l_dynaddr, dynaddr;
247
248 l_addr = so->lm_info->l_addr_inferior;
249
250 if (! abfd || ! has_lm_dynamic_from_link_map ())
251 goto set_addr;
252
253 l_dynaddr = so->lm_info->l_ld;
254
255 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
256 if (dyninfo_sect == NULL)
257 goto set_addr;
258
259 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
260
261 if (dynaddr + l_addr != l_dynaddr)
262 {
263 CORE_ADDR align = 0x1000;
264 CORE_ADDR minpagesize = align;
265
266 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
267 {
268 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
269 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
270 int i;
271
272 align = 1;
273
274 for (i = 0; i < ehdr->e_phnum; i++)
275 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
276 align = phdr[i].p_align;
277
278 minpagesize = get_elf_backend_data (abfd)->minpagesize;
279 }
280
281 /* Turn it into a mask. */
282 align--;
283
284 /* If the changes match the alignment requirements, we
285 assume we're using a core file that was generated by the
286 same binary, just prelinked with a different base offset.
287 If it doesn't match, we may have a different binary, the
288 same binary with the dynamic table loaded at an unrelated
289 location, or anything, really. To avoid regressions,
290 don't adjust the base offset in the latter case, although
291 odds are that, if things really changed, debugging won't
292 quite work.
293
294 One could expect more the condition
295 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
296 but the one below is relaxed for PPC. The PPC kernel supports
297 either 4k or 64k page sizes. To be prepared for 64k pages,
298 PPC ELF files are built using an alignment requirement of 64k.
299 However, when running on a kernel supporting 4k pages, the memory
300 mapping of the library may not actually happen on a 64k boundary!
301
302 (In the usual case where (l_addr & align) == 0, this check is
303 equivalent to the possibly expected check above.)
304
305 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
306
307 l_addr = l_dynaddr - dynaddr;
308
309 if ((l_addr & (minpagesize - 1)) == 0
310 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
311 {
312 if (info_verbose)
313 printf_unfiltered (_("Using PIC (Position Independent Code) "
314 "prelink displacement %s for \"%s\".\n"),
315 paddress (target_gdbarch (), l_addr),
316 so->so_name);
317 }
318 else
319 {
320 /* There is no way to verify the library file matches. prelink
321 can during prelinking of an unprelinked file (or unprelinking
322 of a prelinked file) shift the DYNAMIC segment by arbitrary
323 offset without any page size alignment. There is no way to
324 find out the ELF header and/or Program Headers for a limited
325 verification if it they match. One could do a verification
326 of the DYNAMIC segment. Still the found address is the best
327 one GDB could find. */
328
329 warning (_(".dynamic section for \"%s\" "
330 "is not at the expected address "
331 "(wrong library or version mismatch?)"), so->so_name);
332 }
333 }
334
335 set_addr:
336 so->lm_info->l_addr = l_addr;
337 so->lm_info->l_addr_p = 1;
338 }
339
340 return so->lm_info->l_addr;
341 }
342
343 /* Per pspace SVR4 specific data. */
344
345 struct svr4_info
346 {
347 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
348
349 /* Validity flag for debug_loader_offset. */
350 int debug_loader_offset_p;
351
352 /* Load address for the dynamic linker, inferred. */
353 CORE_ADDR debug_loader_offset;
354
355 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
356 char *debug_loader_name;
357
358 /* Load map address for the main executable. */
359 CORE_ADDR main_lm_addr;
360
361 CORE_ADDR interp_text_sect_low;
362 CORE_ADDR interp_text_sect_high;
363 CORE_ADDR interp_plt_sect_low;
364 CORE_ADDR interp_plt_sect_high;
365
366 /* Nonzero if the list of objects was last obtained from the target
367 via qXfer:libraries-svr4:read. */
368 int using_xfer;
369
370 /* Table of struct probe_and_action instances, used by the
371 probes-based interface to map breakpoint addresses to probes
372 and their associated actions. Lookup is performed using
373 probe_and_action->probe->address. */
374 htab_t probes_table;
375
376 /* List of objects loaded into the inferior, used by the probes-
377 based interface. */
378 struct so_list *solib_list;
379 };
380
381 /* Per-program-space data key. */
382 static const struct program_space_data *solib_svr4_pspace_data;
383
384 /* Free the probes table. */
385
386 static void
387 free_probes_table (struct svr4_info *info)
388 {
389 if (info->probes_table == NULL)
390 return;
391
392 htab_delete (info->probes_table);
393 info->probes_table = NULL;
394 }
395
396 /* Free the solib list. */
397
398 static void
399 free_solib_list (struct svr4_info *info)
400 {
401 svr4_free_library_list (&info->solib_list);
402 info->solib_list = NULL;
403 }
404
405 static void
406 svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
407 {
408 struct svr4_info *info = (struct svr4_info *) arg;
409
410 free_probes_table (info);
411 free_solib_list (info);
412
413 xfree (info);
414 }
415
416 /* Get the current svr4 data. If none is found yet, add it now. This
417 function always returns a valid object. */
418
419 static struct svr4_info *
420 get_svr4_info (void)
421 {
422 struct svr4_info *info;
423
424 info = (struct svr4_info *) program_space_data (current_program_space,
425 solib_svr4_pspace_data);
426 if (info != NULL)
427 return info;
428
429 info = XCNEW (struct svr4_info);
430 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
431 return info;
432 }
433
434 /* Local function prototypes */
435
436 static int match_main (const char *);
437
438 /* Read program header TYPE from inferior memory. The header is found
439 by scanning the OS auxillary vector.
440
441 If TYPE == -1, return the program headers instead of the contents of
442 one program header.
443
444 Return a pointer to allocated memory holding the program header contents,
445 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
446 size of those contents is returned to P_SECT_SIZE. Likewise, the target
447 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE and
448 the base address of the section is returned in BASE_ADDR. */
449
450 static gdb_byte *
451 read_program_header (int type, int *p_sect_size, int *p_arch_size,
452 CORE_ADDR *base_addr)
453 {
454 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
455 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
456 int arch_size, sect_size;
457 CORE_ADDR sect_addr;
458 gdb_byte *buf;
459 int pt_phdr_p = 0;
460
461 /* Get required auxv elements from target. */
462 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
463 return 0;
464 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
465 return 0;
466 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
467 return 0;
468 if (!at_phdr || !at_phnum)
469 return 0;
470
471 /* Determine ELF architecture type. */
472 if (at_phent == sizeof (Elf32_External_Phdr))
473 arch_size = 32;
474 else if (at_phent == sizeof (Elf64_External_Phdr))
475 arch_size = 64;
476 else
477 return 0;
478
479 /* Find the requested segment. */
480 if (type == -1)
481 {
482 sect_addr = at_phdr;
483 sect_size = at_phent * at_phnum;
484 }
485 else if (arch_size == 32)
486 {
487 Elf32_External_Phdr phdr;
488 int i;
489
490 /* Search for requested PHDR. */
491 for (i = 0; i < at_phnum; i++)
492 {
493 int p_type;
494
495 if (target_read_memory (at_phdr + i * sizeof (phdr),
496 (gdb_byte *)&phdr, sizeof (phdr)))
497 return 0;
498
499 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
500 4, byte_order);
501
502 if (p_type == PT_PHDR)
503 {
504 pt_phdr_p = 1;
505 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
506 4, byte_order);
507 }
508
509 if (p_type == type)
510 break;
511 }
512
513 if (i == at_phnum)
514 return 0;
515
516 /* Retrieve address and size. */
517 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
518 4, byte_order);
519 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
520 4, byte_order);
521 }
522 else
523 {
524 Elf64_External_Phdr phdr;
525 int i;
526
527 /* Search for requested PHDR. */
528 for (i = 0; i < at_phnum; i++)
529 {
530 int p_type;
531
532 if (target_read_memory (at_phdr + i * sizeof (phdr),
533 (gdb_byte *)&phdr, sizeof (phdr)))
534 return 0;
535
536 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
537 4, byte_order);
538
539 if (p_type == PT_PHDR)
540 {
541 pt_phdr_p = 1;
542 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
543 8, byte_order);
544 }
545
546 if (p_type == type)
547 break;
548 }
549
550 if (i == at_phnum)
551 return 0;
552
553 /* Retrieve address and size. */
554 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
555 8, byte_order);
556 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
557 8, byte_order);
558 }
559
560 /* PT_PHDR is optional, but we really need it
561 for PIE to make this work in general. */
562
563 if (pt_phdr_p)
564 {
565 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
566 Relocation offset is the difference between the two. */
567 sect_addr = sect_addr + (at_phdr - pt_phdr);
568 }
569
570 /* Read in requested program header. */
571 buf = (gdb_byte *) xmalloc (sect_size);
572 if (target_read_memory (sect_addr, buf, sect_size))
573 {
574 xfree (buf);
575 return NULL;
576 }
577
578 if (p_arch_size)
579 *p_arch_size = arch_size;
580 if (p_sect_size)
581 *p_sect_size = sect_size;
582 if (base_addr)
583 *base_addr = sect_addr;
584
585 return buf;
586 }
587
588
589 /* Return program interpreter string. */
590 static char *
591 find_program_interpreter (void)
592 {
593 gdb_byte *buf = NULL;
594
595 /* If we have an exec_bfd, use its section table. */
596 if (exec_bfd
597 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
598 {
599 struct bfd_section *interp_sect;
600
601 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
602 if (interp_sect != NULL)
603 {
604 int sect_size = bfd_section_size (exec_bfd, interp_sect);
605
606 buf = (gdb_byte *) xmalloc (sect_size);
607 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
608 }
609 }
610
611 /* If we didn't find it, use the target auxillary vector. */
612 if (!buf)
613 buf = read_program_header (PT_INTERP, NULL, NULL, NULL);
614
615 return (char *) buf;
616 }
617
618
619 /* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is
620 found, 1 is returned and the corresponding PTR is set. */
621
622 static int
623 scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr,
624 CORE_ADDR *ptr_addr)
625 {
626 int arch_size, step, sect_size;
627 long current_dyntag;
628 CORE_ADDR dyn_ptr, dyn_addr;
629 gdb_byte *bufend, *bufstart, *buf;
630 Elf32_External_Dyn *x_dynp_32;
631 Elf64_External_Dyn *x_dynp_64;
632 struct bfd_section *sect;
633 struct target_section *target_section;
634
635 if (abfd == NULL)
636 return 0;
637
638 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
639 return 0;
640
641 arch_size = bfd_get_arch_size (abfd);
642 if (arch_size == -1)
643 return 0;
644
645 /* Find the start address of the .dynamic section. */
646 sect = bfd_get_section_by_name (abfd, ".dynamic");
647 if (sect == NULL)
648 return 0;
649
650 for (target_section = current_target_sections->sections;
651 target_section < current_target_sections->sections_end;
652 target_section++)
653 if (sect == target_section->the_bfd_section)
654 break;
655 if (target_section < current_target_sections->sections_end)
656 dyn_addr = target_section->addr;
657 else
658 {
659 /* ABFD may come from OBJFILE acting only as a symbol file without being
660 loaded into the target (see add_symbol_file_command). This case is
661 such fallback to the file VMA address without the possibility of
662 having the section relocated to its actual in-memory address. */
663
664 dyn_addr = bfd_section_vma (abfd, sect);
665 }
666
667 /* Read in .dynamic from the BFD. We will get the actual value
668 from memory later. */
669 sect_size = bfd_section_size (abfd, sect);
670 buf = bufstart = (gdb_byte *) alloca (sect_size);
671 if (!bfd_get_section_contents (abfd, sect,
672 buf, 0, sect_size))
673 return 0;
674
675 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
676 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
677 : sizeof (Elf64_External_Dyn);
678 for (bufend = buf + sect_size;
679 buf < bufend;
680 buf += step)
681 {
682 if (arch_size == 32)
683 {
684 x_dynp_32 = (Elf32_External_Dyn *) buf;
685 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
686 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
687 }
688 else
689 {
690 x_dynp_64 = (Elf64_External_Dyn *) buf;
691 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
692 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
693 }
694 if (current_dyntag == DT_NULL)
695 return 0;
696 if (current_dyntag == desired_dyntag)
697 {
698 /* If requested, try to read the runtime value of this .dynamic
699 entry. */
700 if (ptr)
701 {
702 struct type *ptr_type;
703 gdb_byte ptr_buf[8];
704 CORE_ADDR ptr_addr_1;
705
706 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
707 ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8;
708 if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0)
709 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
710 *ptr = dyn_ptr;
711 if (ptr_addr)
712 *ptr_addr = dyn_addr + (buf - bufstart);
713 }
714 return 1;
715 }
716 }
717
718 return 0;
719 }
720
721 /* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
722 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
723 is returned and the corresponding PTR is set. */
724
725 static int
726 scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
727 CORE_ADDR *ptr_addr)
728 {
729 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
730 int sect_size, arch_size, step;
731 long current_dyntag;
732 CORE_ADDR dyn_ptr;
733 CORE_ADDR base_addr;
734 gdb_byte *bufend, *bufstart, *buf;
735
736 /* Read in .dynamic section. */
737 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size,
738 &base_addr);
739 if (!buf)
740 return 0;
741
742 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
743 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
744 : sizeof (Elf64_External_Dyn);
745 for (bufend = buf + sect_size;
746 buf < bufend;
747 buf += step)
748 {
749 if (arch_size == 32)
750 {
751 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
752
753 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
754 4, byte_order);
755 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
756 4, byte_order);
757 }
758 else
759 {
760 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
761
762 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
763 8, byte_order);
764 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
765 8, byte_order);
766 }
767 if (current_dyntag == DT_NULL)
768 break;
769
770 if (current_dyntag == desired_dyntag)
771 {
772 if (ptr)
773 *ptr = dyn_ptr;
774
775 if (ptr_addr)
776 *ptr_addr = base_addr + buf - bufstart;
777
778 xfree (bufstart);
779 return 1;
780 }
781 }
782
783 xfree (bufstart);
784 return 0;
785 }
786
787 /* Locate the base address of dynamic linker structs for SVR4 elf
788 targets.
789
790 For SVR4 elf targets the address of the dynamic linker's runtime
791 structure is contained within the dynamic info section in the
792 executable file. The dynamic section is also mapped into the
793 inferior address space. Because the runtime loader fills in the
794 real address before starting the inferior, we have to read in the
795 dynamic info section from the inferior address space.
796 If there are any errors while trying to find the address, we
797 silently return 0, otherwise the found address is returned. */
798
799 static CORE_ADDR
800 elf_locate_base (void)
801 {
802 struct bound_minimal_symbol msymbol;
803 CORE_ADDR dyn_ptr, dyn_ptr_addr;
804
805 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
806 instead of DT_DEBUG, although they sometimes contain an unused
807 DT_DEBUG. */
808 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr, NULL)
809 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
810 {
811 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
812 gdb_byte *pbuf;
813 int pbuf_size = TYPE_LENGTH (ptr_type);
814
815 pbuf = (gdb_byte *) alloca (pbuf_size);
816 /* DT_MIPS_RLD_MAP contains a pointer to the address
817 of the dynamic link structure. */
818 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
819 return 0;
820 return extract_typed_address (pbuf, ptr_type);
821 }
822
823 /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
824 because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
825 in non-PIE. */
826 if (scan_dyntag (DT_MIPS_RLD_MAP_REL, exec_bfd, &dyn_ptr, &dyn_ptr_addr)
827 || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
828 {
829 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
830 gdb_byte *pbuf;
831 int pbuf_size = TYPE_LENGTH (ptr_type);
832
833 pbuf = (gdb_byte *) alloca (pbuf_size);
834 /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
835 DT slot to the address of the dynamic link structure. */
836 if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
837 return 0;
838 return extract_typed_address (pbuf, ptr_type);
839 }
840
841 /* Find DT_DEBUG. */
842 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr, NULL)
843 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
844 return dyn_ptr;
845
846 /* This may be a static executable. Look for the symbol
847 conventionally named _r_debug, as a last resort. */
848 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
849 if (msymbol.minsym != NULL)
850 return BMSYMBOL_VALUE_ADDRESS (msymbol);
851
852 /* DT_DEBUG entry not found. */
853 return 0;
854 }
855
856 /* Locate the base address of dynamic linker structs.
857
858 For both the SunOS and SVR4 shared library implementations, if the
859 inferior executable has been linked dynamically, there is a single
860 address somewhere in the inferior's data space which is the key to
861 locating all of the dynamic linker's runtime structures. This
862 address is the value of the debug base symbol. The job of this
863 function is to find and return that address, or to return 0 if there
864 is no such address (the executable is statically linked for example).
865
866 For SunOS, the job is almost trivial, since the dynamic linker and
867 all of it's structures are statically linked to the executable at
868 link time. Thus the symbol for the address we are looking for has
869 already been added to the minimal symbol table for the executable's
870 objfile at the time the symbol file's symbols were read, and all we
871 have to do is look it up there. Note that we explicitly do NOT want
872 to find the copies in the shared library.
873
874 The SVR4 version is a bit more complicated because the address
875 is contained somewhere in the dynamic info section. We have to go
876 to a lot more work to discover the address of the debug base symbol.
877 Because of this complexity, we cache the value we find and return that
878 value on subsequent invocations. Note there is no copy in the
879 executable symbol tables. */
880
881 static CORE_ADDR
882 locate_base (struct svr4_info *info)
883 {
884 /* Check to see if we have a currently valid address, and if so, avoid
885 doing all this work again and just return the cached address. If
886 we have no cached address, try to locate it in the dynamic info
887 section for ELF executables. There's no point in doing any of this
888 though if we don't have some link map offsets to work with. */
889
890 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
891 info->debug_base = elf_locate_base ();
892 return info->debug_base;
893 }
894
895 /* Find the first element in the inferior's dynamic link map, and
896 return its address in the inferior. Return zero if the address
897 could not be determined.
898
899 FIXME: Perhaps we should validate the info somehow, perhaps by
900 checking r_version for a known version number, or r_state for
901 RT_CONSISTENT. */
902
903 static CORE_ADDR
904 solib_svr4_r_map (struct svr4_info *info)
905 {
906 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
907 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
908 CORE_ADDR addr = 0;
909
910 TRY
911 {
912 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
913 ptr_type);
914 }
915 CATCH (ex, RETURN_MASK_ERROR)
916 {
917 exception_print (gdb_stderr, ex);
918 }
919 END_CATCH
920
921 return addr;
922 }
923
924 /* Find r_brk from the inferior's debug base. */
925
926 static CORE_ADDR
927 solib_svr4_r_brk (struct svr4_info *info)
928 {
929 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
930 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
931
932 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
933 ptr_type);
934 }
935
936 /* Find the link map for the dynamic linker (if it is not in the
937 normal list of loaded shared objects). */
938
939 static CORE_ADDR
940 solib_svr4_r_ldsomap (struct svr4_info *info)
941 {
942 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
943 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
944 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
945 ULONGEST version = 0;
946
947 TRY
948 {
949 /* Check version, and return zero if `struct r_debug' doesn't have
950 the r_ldsomap member. */
951 version
952 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
953 lmo->r_version_size, byte_order);
954 }
955 CATCH (ex, RETURN_MASK_ERROR)
956 {
957 exception_print (gdb_stderr, ex);
958 }
959 END_CATCH
960
961 if (version < 2 || lmo->r_ldsomap_offset == -1)
962 return 0;
963
964 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
965 ptr_type);
966 }
967
968 /* On Solaris systems with some versions of the dynamic linker,
969 ld.so's l_name pointer points to the SONAME in the string table
970 rather than into writable memory. So that GDB can find shared
971 libraries when loading a core file generated by gcore, ensure that
972 memory areas containing the l_name string are saved in the core
973 file. */
974
975 static int
976 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
977 {
978 struct svr4_info *info;
979 CORE_ADDR ldsomap;
980 struct so_list *newobj;
981 struct cleanup *old_chain;
982 CORE_ADDR name_lm;
983
984 info = get_svr4_info ();
985
986 info->debug_base = 0;
987 locate_base (info);
988 if (!info->debug_base)
989 return 0;
990
991 ldsomap = solib_svr4_r_ldsomap (info);
992 if (!ldsomap)
993 return 0;
994
995 newobj = XCNEW (struct so_list);
996 old_chain = make_cleanup (xfree, newobj);
997 newobj->lm_info = lm_info_read (ldsomap);
998 make_cleanup (xfree, newobj->lm_info);
999 name_lm = newobj->lm_info ? newobj->lm_info->l_name : 0;
1000 do_cleanups (old_chain);
1001
1002 return (name_lm >= vaddr && name_lm < vaddr + size);
1003 }
1004
1005 /* Implement the "open_symbol_file_object" target_so_ops method.
1006
1007 If no open symbol file, attempt to locate and open the main symbol
1008 file. On SVR4 systems, this is the first link map entry. If its
1009 name is here, we can open it. Useful when attaching to a process
1010 without first loading its symbol file. */
1011
1012 static int
1013 open_symbol_file_object (void *from_ttyp)
1014 {
1015 CORE_ADDR lm, l_name;
1016 char *filename;
1017 int errcode;
1018 int from_tty = *(int *)from_ttyp;
1019 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
1020 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
1021 int l_name_size = TYPE_LENGTH (ptr_type);
1022 gdb_byte *l_name_buf = (gdb_byte *) xmalloc (l_name_size);
1023 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
1024 struct svr4_info *info = get_svr4_info ();
1025
1026 if (symfile_objfile)
1027 if (!query (_("Attempt to reload symbols from process? ")))
1028 {
1029 do_cleanups (cleanups);
1030 return 0;
1031 }
1032
1033 /* Always locate the debug struct, in case it has moved. */
1034 info->debug_base = 0;
1035 if (locate_base (info) == 0)
1036 {
1037 do_cleanups (cleanups);
1038 return 0; /* failed somehow... */
1039 }
1040
1041 /* First link map member should be the executable. */
1042 lm = solib_svr4_r_map (info);
1043 if (lm == 0)
1044 {
1045 do_cleanups (cleanups);
1046 return 0; /* failed somehow... */
1047 }
1048
1049 /* Read address of name from target memory to GDB. */
1050 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
1051
1052 /* Convert the address to host format. */
1053 l_name = extract_typed_address (l_name_buf, ptr_type);
1054
1055 if (l_name == 0)
1056 {
1057 do_cleanups (cleanups);
1058 return 0; /* No filename. */
1059 }
1060
1061 /* Now fetch the filename from target memory. */
1062 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1063 make_cleanup (xfree, filename);
1064
1065 if (errcode)
1066 {
1067 warning (_("failed to read exec filename from attached file: %s"),
1068 safe_strerror (errcode));
1069 do_cleanups (cleanups);
1070 return 0;
1071 }
1072
1073 /* Have a pathname: read the symbol file. */
1074 symbol_file_add_main (filename, from_tty);
1075
1076 do_cleanups (cleanups);
1077 return 1;
1078 }
1079
1080 /* Data exchange structure for the XML parser as returned by
1081 svr4_current_sos_via_xfer_libraries. */
1082
1083 struct svr4_library_list
1084 {
1085 struct so_list *head, **tailp;
1086
1087 /* Inferior address of struct link_map used for the main executable. It is
1088 NULL if not known. */
1089 CORE_ADDR main_lm;
1090 };
1091
1092 /* Implementation for target_so_ops.free_so. */
1093
1094 static void
1095 svr4_free_so (struct so_list *so)
1096 {
1097 xfree (so->lm_info);
1098 }
1099
1100 /* Implement target_so_ops.clear_so. */
1101
1102 static void
1103 svr4_clear_so (struct so_list *so)
1104 {
1105 if (so->lm_info != NULL)
1106 so->lm_info->l_addr_p = 0;
1107 }
1108
1109 /* Free so_list built so far (called via cleanup). */
1110
1111 static void
1112 svr4_free_library_list (void *p_list)
1113 {
1114 struct so_list *list = *(struct so_list **) p_list;
1115
1116 while (list != NULL)
1117 {
1118 struct so_list *next = list->next;
1119
1120 free_so (list);
1121 list = next;
1122 }
1123 }
1124
1125 /* Copy library list. */
1126
1127 static struct so_list *
1128 svr4_copy_library_list (struct so_list *src)
1129 {
1130 struct so_list *dst = NULL;
1131 struct so_list **link = &dst;
1132
1133 while (src != NULL)
1134 {
1135 struct so_list *newobj;
1136
1137 newobj = XNEW (struct so_list);
1138 memcpy (newobj, src, sizeof (struct so_list));
1139
1140 newobj->lm_info = XNEW (struct lm_info);
1141 memcpy (newobj->lm_info, src->lm_info, sizeof (struct lm_info));
1142
1143 newobj->next = NULL;
1144 *link = newobj;
1145 link = &newobj->next;
1146
1147 src = src->next;
1148 }
1149
1150 return dst;
1151 }
1152
1153 #ifdef HAVE_LIBEXPAT
1154
1155 #include "xml-support.h"
1156
1157 /* Handle the start of a <library> element. Note: new elements are added
1158 at the tail of the list, keeping the list in order. */
1159
1160 static void
1161 library_list_start_library (struct gdb_xml_parser *parser,
1162 const struct gdb_xml_element *element,
1163 void *user_data, VEC(gdb_xml_value_s) *attributes)
1164 {
1165 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1166 const char *name
1167 = (const char *) xml_find_attribute (attributes, "name")->value;
1168 ULONGEST *lmp
1169 = (ULONGEST *) xml_find_attribute (attributes, "lm")->value;
1170 ULONGEST *l_addrp
1171 = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value;
1172 ULONGEST *l_ldp
1173 = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value;
1174 struct so_list *new_elem;
1175
1176 new_elem = XCNEW (struct so_list);
1177 new_elem->lm_info = XCNEW (struct lm_info);
1178 new_elem->lm_info->lm_addr = *lmp;
1179 new_elem->lm_info->l_addr_inferior = *l_addrp;
1180 new_elem->lm_info->l_ld = *l_ldp;
1181
1182 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1183 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1184 strcpy (new_elem->so_original_name, new_elem->so_name);
1185
1186 *list->tailp = new_elem;
1187 list->tailp = &new_elem->next;
1188 }
1189
1190 /* Handle the start of a <library-list-svr4> element. */
1191
1192 static void
1193 svr4_library_list_start_list (struct gdb_xml_parser *parser,
1194 const struct gdb_xml_element *element,
1195 void *user_data, VEC(gdb_xml_value_s) *attributes)
1196 {
1197 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1198 const char *version
1199 = (const char *) xml_find_attribute (attributes, "version")->value;
1200 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1201
1202 if (strcmp (version, "1.0") != 0)
1203 gdb_xml_error (parser,
1204 _("SVR4 Library list has unsupported version \"%s\""),
1205 version);
1206
1207 if (main_lm)
1208 list->main_lm = *(ULONGEST *) main_lm->value;
1209 }
1210
1211 /* The allowed elements and attributes for an XML library list.
1212 The root element is a <library-list>. */
1213
1214 static const struct gdb_xml_attribute svr4_library_attributes[] =
1215 {
1216 { "name", GDB_XML_AF_NONE, NULL, NULL },
1217 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1218 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1219 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1220 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1221 };
1222
1223 static const struct gdb_xml_element svr4_library_list_children[] =
1224 {
1225 {
1226 "library", svr4_library_attributes, NULL,
1227 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1228 library_list_start_library, NULL
1229 },
1230 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1231 };
1232
1233 static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1234 {
1235 { "version", GDB_XML_AF_NONE, NULL, NULL },
1236 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1237 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1238 };
1239
1240 static const struct gdb_xml_element svr4_library_list_elements[] =
1241 {
1242 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1243 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1244 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1245 };
1246
1247 /* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1248
1249 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1250 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1251 empty, caller is responsible for freeing all its entries. */
1252
1253 static int
1254 svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1255 {
1256 struct cleanup *back_to = make_cleanup (svr4_free_library_list,
1257 &list->head);
1258
1259 memset (list, 0, sizeof (*list));
1260 list->tailp = &list->head;
1261 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
1262 svr4_library_list_elements, document, list) == 0)
1263 {
1264 /* Parsed successfully, keep the result. */
1265 discard_cleanups (back_to);
1266 return 1;
1267 }
1268
1269 do_cleanups (back_to);
1270 return 0;
1271 }
1272
1273 /* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
1274
1275 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1276 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1277 empty, caller is responsible for freeing all its entries.
1278
1279 Note that ANNEX must be NULL if the remote does not explicitly allow
1280 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1281 this can be checked using target_augmented_libraries_svr4_read (). */
1282
1283 static int
1284 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1285 const char *annex)
1286 {
1287 char *svr4_library_document;
1288 int result;
1289 struct cleanup *back_to;
1290
1291 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1292
1293 /* Fetch the list of shared libraries. */
1294 svr4_library_document = target_read_stralloc (&current_target,
1295 TARGET_OBJECT_LIBRARIES_SVR4,
1296 annex);
1297 if (svr4_library_document == NULL)
1298 return 0;
1299
1300 back_to = make_cleanup (xfree, svr4_library_document);
1301 result = svr4_parse_libraries (svr4_library_document, list);
1302 do_cleanups (back_to);
1303
1304 return result;
1305 }
1306
1307 #else
1308
1309 static int
1310 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1311 const char *annex)
1312 {
1313 return 0;
1314 }
1315
1316 #endif
1317
1318 /* If no shared library information is available from the dynamic
1319 linker, build a fallback list from other sources. */
1320
1321 static struct so_list *
1322 svr4_default_sos (void)
1323 {
1324 struct svr4_info *info = get_svr4_info ();
1325 struct so_list *newobj;
1326
1327 if (!info->debug_loader_offset_p)
1328 return NULL;
1329
1330 newobj = XCNEW (struct so_list);
1331
1332 newobj->lm_info = XCNEW (struct lm_info);
1333
1334 /* Nothing will ever check the other fields if we set l_addr_p. */
1335 newobj->lm_info->l_addr = info->debug_loader_offset;
1336 newobj->lm_info->l_addr_p = 1;
1337
1338 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1339 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1340 strcpy (newobj->so_original_name, newobj->so_name);
1341
1342 return newobj;
1343 }
1344
1345 /* Read the whole inferior libraries chain starting at address LM.
1346 Expect the first entry in the chain's previous entry to be PREV_LM.
1347 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1348 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1349 to it. Returns nonzero upon success. If zero is returned the
1350 entries stored to LINK_PTR_PTR are still valid although they may
1351 represent only part of the inferior library list. */
1352
1353 static int
1354 svr4_read_so_list (CORE_ADDR lm, CORE_ADDR prev_lm,
1355 struct so_list ***link_ptr_ptr, int ignore_first)
1356 {
1357 CORE_ADDR first_l_name = 0;
1358 CORE_ADDR next_lm;
1359
1360 for (; lm != 0; prev_lm = lm, lm = next_lm)
1361 {
1362 struct so_list *newobj;
1363 struct cleanup *old_chain;
1364 int errcode;
1365 char *buffer;
1366
1367 newobj = XCNEW (struct so_list);
1368 old_chain = make_cleanup_free_so (newobj);
1369
1370 newobj->lm_info = lm_info_read (lm);
1371 if (newobj->lm_info == NULL)
1372 {
1373 do_cleanups (old_chain);
1374 return 0;
1375 }
1376
1377 next_lm = newobj->lm_info->l_next;
1378
1379 if (newobj->lm_info->l_prev != prev_lm)
1380 {
1381 warning (_("Corrupted shared library list: %s != %s"),
1382 paddress (target_gdbarch (), prev_lm),
1383 paddress (target_gdbarch (), newobj->lm_info->l_prev));
1384 do_cleanups (old_chain);
1385 return 0;
1386 }
1387
1388 /* For SVR4 versions, the first entry in the link map is for the
1389 inferior executable, so we must ignore it. For some versions of
1390 SVR4, it has no name. For others (Solaris 2.3 for example), it
1391 does have a name, so we can no longer use a missing name to
1392 decide when to ignore it. */
1393 if (ignore_first && newobj->lm_info->l_prev == 0)
1394 {
1395 struct svr4_info *info = get_svr4_info ();
1396
1397 first_l_name = newobj->lm_info->l_name;
1398 info->main_lm_addr = newobj->lm_info->lm_addr;
1399 do_cleanups (old_chain);
1400 continue;
1401 }
1402
1403 /* Extract this shared object's name. */
1404 target_read_string (newobj->lm_info->l_name, &buffer,
1405 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1406 if (errcode != 0)
1407 {
1408 /* If this entry's l_name address matches that of the
1409 inferior executable, then this is not a normal shared
1410 object, but (most likely) a vDSO. In this case, silently
1411 skip it; otherwise emit a warning. */
1412 if (first_l_name == 0 || newobj->lm_info->l_name != first_l_name)
1413 warning (_("Can't read pathname for load map: %s."),
1414 safe_strerror (errcode));
1415 do_cleanups (old_chain);
1416 continue;
1417 }
1418
1419 strncpy (newobj->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1420 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1421 strcpy (newobj->so_original_name, newobj->so_name);
1422 xfree (buffer);
1423
1424 /* If this entry has no name, or its name matches the name
1425 for the main executable, don't include it in the list. */
1426 if (! newobj->so_name[0] || match_main (newobj->so_name))
1427 {
1428 do_cleanups (old_chain);
1429 continue;
1430 }
1431
1432 discard_cleanups (old_chain);
1433 newobj->next = 0;
1434 **link_ptr_ptr = newobj;
1435 *link_ptr_ptr = &newobj->next;
1436 }
1437
1438 return 1;
1439 }
1440
1441 /* Read the full list of currently loaded shared objects directly
1442 from the inferior, without referring to any libraries read and
1443 stored by the probes interface. Handle special cases relating
1444 to the first elements of the list. */
1445
1446 static struct so_list *
1447 svr4_current_sos_direct (struct svr4_info *info)
1448 {
1449 CORE_ADDR lm;
1450 struct so_list *head = NULL;
1451 struct so_list **link_ptr = &head;
1452 struct cleanup *back_to;
1453 int ignore_first;
1454 struct svr4_library_list library_list;
1455
1456 /* Fall back to manual examination of the target if the packet is not
1457 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1458 tests a case where gdbserver cannot find the shared libraries list while
1459 GDB itself is able to find it via SYMFILE_OBJFILE.
1460
1461 Unfortunately statically linked inferiors will also fall back through this
1462 suboptimal code path. */
1463
1464 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1465 NULL);
1466 if (info->using_xfer)
1467 {
1468 if (library_list.main_lm)
1469 info->main_lm_addr = library_list.main_lm;
1470
1471 return library_list.head ? library_list.head : svr4_default_sos ();
1472 }
1473
1474 /* Always locate the debug struct, in case it has moved. */
1475 info->debug_base = 0;
1476 locate_base (info);
1477
1478 /* If we can't find the dynamic linker's base structure, this
1479 must not be a dynamically linked executable. Hmm. */
1480 if (! info->debug_base)
1481 return svr4_default_sos ();
1482
1483 /* Assume that everything is a library if the dynamic loader was loaded
1484 late by a static executable. */
1485 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1486 ignore_first = 0;
1487 else
1488 ignore_first = 1;
1489
1490 back_to = make_cleanup (svr4_free_library_list, &head);
1491
1492 /* Walk the inferior's link map list, and build our list of
1493 `struct so_list' nodes. */
1494 lm = solib_svr4_r_map (info);
1495 if (lm)
1496 svr4_read_so_list (lm, 0, &link_ptr, ignore_first);
1497
1498 /* On Solaris, the dynamic linker is not in the normal list of
1499 shared objects, so make sure we pick it up too. Having
1500 symbol information for the dynamic linker is quite crucial
1501 for skipping dynamic linker resolver code. */
1502 lm = solib_svr4_r_ldsomap (info);
1503 if (lm)
1504 svr4_read_so_list (lm, 0, &link_ptr, 0);
1505
1506 discard_cleanups (back_to);
1507
1508 if (head == NULL)
1509 return svr4_default_sos ();
1510
1511 return head;
1512 }
1513
1514 /* Implement the main part of the "current_sos" target_so_ops
1515 method. */
1516
1517 static struct so_list *
1518 svr4_current_sos_1 (void)
1519 {
1520 struct svr4_info *info = get_svr4_info ();
1521
1522 /* If the solib list has been read and stored by the probes
1523 interface then we return a copy of the stored list. */
1524 if (info->solib_list != NULL)
1525 return svr4_copy_library_list (info->solib_list);
1526
1527 /* Otherwise obtain the solib list directly from the inferior. */
1528 return svr4_current_sos_direct (info);
1529 }
1530
1531 /* Implement the "current_sos" target_so_ops method. */
1532
1533 static struct so_list *
1534 svr4_current_sos (void)
1535 {
1536 struct so_list *so_head = svr4_current_sos_1 ();
1537 struct mem_range vsyscall_range;
1538
1539 /* Filter out the vDSO module, if present. Its symbol file would
1540 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1541 managed by symfile-mem.c:add_vsyscall_page. */
1542 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1543 && vsyscall_range.length != 0)
1544 {
1545 struct so_list **sop;
1546
1547 sop = &so_head;
1548 while (*sop != NULL)
1549 {
1550 struct so_list *so = *sop;
1551
1552 /* We can't simply match the vDSO by starting address alone,
1553 because lm_info->l_addr_inferior (and also l_addr) do not
1554 necessarily represent the real starting address of the
1555 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1556 field (the ".dynamic" section of the shared object)
1557 always points at the absolute/resolved address though.
1558 So check whether that address is inside the vDSO's
1559 mapping instead.
1560
1561 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1562 0-based ELF, and we see:
1563
1564 (gdb) info auxv
1565 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1566 (gdb) p/x *_r_debug.r_map.l_next
1567 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1568
1569 And on Linux 2.6.32 (x86_64) we see:
1570
1571 (gdb) info auxv
1572 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1573 (gdb) p/x *_r_debug.r_map.l_next
1574 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1575
1576 Dumping that vDSO shows:
1577
1578 (gdb) info proc mappings
1579 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1580 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1581 # readelf -Wa vdso.bin
1582 [...]
1583 Entry point address: 0xffffffffff700700
1584 [...]
1585 Section Headers:
1586 [Nr] Name Type Address Off Size
1587 [ 0] NULL 0000000000000000 000000 000000
1588 [ 1] .hash HASH ffffffffff700120 000120 000038
1589 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1590 [...]
1591 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1592 */
1593 if (address_in_mem_range (so->lm_info->l_ld, &vsyscall_range))
1594 {
1595 *sop = so->next;
1596 free_so (so);
1597 break;
1598 }
1599
1600 sop = &so->next;
1601 }
1602 }
1603
1604 return so_head;
1605 }
1606
1607 /* Get the address of the link_map for a given OBJFILE. */
1608
1609 CORE_ADDR
1610 svr4_fetch_objfile_link_map (struct objfile *objfile)
1611 {
1612 struct so_list *so;
1613 struct svr4_info *info = get_svr4_info ();
1614
1615 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1616 if (info->main_lm_addr == 0)
1617 solib_add (NULL, 0, &current_target, auto_solib_add);
1618
1619 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1620 if (objfile == symfile_objfile)
1621 return info->main_lm_addr;
1622
1623 /* The other link map addresses may be found by examining the list
1624 of shared libraries. */
1625 for (so = master_so_list (); so; so = so->next)
1626 if (so->objfile == objfile)
1627 return so->lm_info->lm_addr;
1628
1629 /* Not found! */
1630 return 0;
1631 }
1632
1633 /* On some systems, the only way to recognize the link map entry for
1634 the main executable file is by looking at its name. Return
1635 non-zero iff SONAME matches one of the known main executable names. */
1636
1637 static int
1638 match_main (const char *soname)
1639 {
1640 const char * const *mainp;
1641
1642 for (mainp = main_name_list; *mainp != NULL; mainp++)
1643 {
1644 if (strcmp (soname, *mainp) == 0)
1645 return (1);
1646 }
1647
1648 return (0);
1649 }
1650
1651 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1652 SVR4 run time loader. */
1653
1654 int
1655 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1656 {
1657 struct svr4_info *info = get_svr4_info ();
1658
1659 return ((pc >= info->interp_text_sect_low
1660 && pc < info->interp_text_sect_high)
1661 || (pc >= info->interp_plt_sect_low
1662 && pc < info->interp_plt_sect_high)
1663 || in_plt_section (pc)
1664 || in_gnu_ifunc_stub (pc));
1665 }
1666
1667 /* Given an executable's ABFD and target, compute the entry-point
1668 address. */
1669
1670 static CORE_ADDR
1671 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1672 {
1673 CORE_ADDR addr;
1674
1675 /* KevinB wrote ... for most targets, the address returned by
1676 bfd_get_start_address() is the entry point for the start
1677 function. But, for some targets, bfd_get_start_address() returns
1678 the address of a function descriptor from which the entry point
1679 address may be extracted. This address is extracted by
1680 gdbarch_convert_from_func_ptr_addr(). The method
1681 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1682 function for targets which don't use function descriptors. */
1683 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
1684 bfd_get_start_address (abfd),
1685 targ);
1686 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
1687 }
1688
1689 /* A probe and its associated action. */
1690
1691 struct probe_and_action
1692 {
1693 /* The probe. */
1694 struct probe *probe;
1695
1696 /* The relocated address of the probe. */
1697 CORE_ADDR address;
1698
1699 /* The action. */
1700 enum probe_action action;
1701 };
1702
1703 /* Returns a hash code for the probe_and_action referenced by p. */
1704
1705 static hashval_t
1706 hash_probe_and_action (const void *p)
1707 {
1708 const struct probe_and_action *pa = (const struct probe_and_action *) p;
1709
1710 return (hashval_t) pa->address;
1711 }
1712
1713 /* Returns non-zero if the probe_and_actions referenced by p1 and p2
1714 are equal. */
1715
1716 static int
1717 equal_probe_and_action (const void *p1, const void *p2)
1718 {
1719 const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
1720 const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;
1721
1722 return pa1->address == pa2->address;
1723 }
1724
1725 /* Register a solib event probe and its associated action in the
1726 probes table. */
1727
1728 static void
1729 register_solib_event_probe (struct probe *probe, CORE_ADDR address,
1730 enum probe_action action)
1731 {
1732 struct svr4_info *info = get_svr4_info ();
1733 struct probe_and_action lookup, *pa;
1734 void **slot;
1735
1736 /* Create the probes table, if necessary. */
1737 if (info->probes_table == NULL)
1738 info->probes_table = htab_create_alloc (1, hash_probe_and_action,
1739 equal_probe_and_action,
1740 xfree, xcalloc, xfree);
1741
1742 lookup.probe = probe;
1743 lookup.address = address;
1744 slot = htab_find_slot (info->probes_table, &lookup, INSERT);
1745 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1746
1747 pa = XCNEW (struct probe_and_action);
1748 pa->probe = probe;
1749 pa->address = address;
1750 pa->action = action;
1751
1752 *slot = pa;
1753 }
1754
1755 /* Get the solib event probe at the specified location, and the
1756 action associated with it. Returns NULL if no solib event probe
1757 was found. */
1758
1759 static struct probe_and_action *
1760 solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1761 {
1762 struct probe_and_action lookup;
1763 void **slot;
1764
1765 lookup.address = address;
1766 slot = htab_find_slot (info->probes_table, &lookup, NO_INSERT);
1767
1768 if (slot == NULL)
1769 return NULL;
1770
1771 return (struct probe_and_action *) *slot;
1772 }
1773
1774 /* Decide what action to take when the specified solib event probe is
1775 hit. */
1776
1777 static enum probe_action
1778 solib_event_probe_action (struct probe_and_action *pa)
1779 {
1780 enum probe_action action;
1781 unsigned probe_argc = 0;
1782 struct frame_info *frame = get_current_frame ();
1783
1784 action = pa->action;
1785 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1786 return action;
1787
1788 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1789
1790 /* Check that an appropriate number of arguments has been supplied.
1791 We expect:
1792 arg0: Lmid_t lmid (mandatory)
1793 arg1: struct r_debug *debug_base (mandatory)
1794 arg2: struct link_map *new (optional, for incremental updates) */
1795 TRY
1796 {
1797 probe_argc = get_probe_argument_count (pa->probe, frame);
1798 }
1799 CATCH (ex, RETURN_MASK_ERROR)
1800 {
1801 exception_print (gdb_stderr, ex);
1802 probe_argc = 0;
1803 }
1804 END_CATCH
1805
1806 /* If get_probe_argument_count throws an exception, probe_argc will
1807 be set to zero. However, if pa->probe does not have arguments,
1808 then get_probe_argument_count will succeed but probe_argc will
1809 also be zero. Both cases happen because of different things, but
1810 they are treated equally here: action will be set to
1811 PROBES_INTERFACE_FAILED. */
1812 if (probe_argc == 2)
1813 action = FULL_RELOAD;
1814 else if (probe_argc < 2)
1815 action = PROBES_INTERFACE_FAILED;
1816
1817 return action;
1818 }
1819
1820 /* Populate the shared object list by reading the entire list of
1821 shared objects from the inferior. Handle special cases relating
1822 to the first elements of the list. Returns nonzero on success. */
1823
1824 static int
1825 solist_update_full (struct svr4_info *info)
1826 {
1827 free_solib_list (info);
1828 info->solib_list = svr4_current_sos_direct (info);
1829
1830 return 1;
1831 }
1832
1833 /* Update the shared object list starting from the link-map entry
1834 passed by the linker in the probe's third argument. Returns
1835 nonzero if the list was successfully updated, or zero to indicate
1836 failure. */
1837
1838 static int
1839 solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1840 {
1841 struct so_list *tail;
1842 CORE_ADDR prev_lm;
1843
1844 /* svr4_current_sos_direct contains logic to handle a number of
1845 special cases relating to the first elements of the list. To
1846 avoid duplicating this logic we defer to solist_update_full
1847 if the list is empty. */
1848 if (info->solib_list == NULL)
1849 return 0;
1850
1851 /* Fall back to a full update if we are using a remote target
1852 that does not support incremental transfers. */
1853 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1854 return 0;
1855
1856 /* Walk to the end of the list. */
1857 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1858 /* Nothing. */;
1859 prev_lm = tail->lm_info->lm_addr;
1860
1861 /* Read the new objects. */
1862 if (info->using_xfer)
1863 {
1864 struct svr4_library_list library_list;
1865 char annex[64];
1866
1867 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1868 phex_nz (lm, sizeof (lm)),
1869 phex_nz (prev_lm, sizeof (prev_lm)));
1870 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1871 return 0;
1872
1873 tail->next = library_list.head;
1874 }
1875 else
1876 {
1877 struct so_list **link = &tail->next;
1878
1879 /* IGNORE_FIRST may safely be set to zero here because the
1880 above check and deferral to solist_update_full ensures
1881 that this call to svr4_read_so_list will never see the
1882 first element. */
1883 if (!svr4_read_so_list (lm, prev_lm, &link, 0))
1884 return 0;
1885 }
1886
1887 return 1;
1888 }
1889
1890 /* Disable the probes-based linker interface and revert to the
1891 original interface. We don't reset the breakpoints as the
1892 ones set up for the probes-based interface are adequate. */
1893
1894 static void
1895 disable_probes_interface_cleanup (void *arg)
1896 {
1897 struct svr4_info *info = get_svr4_info ();
1898
1899 warning (_("Probes-based dynamic linker interface failed.\n"
1900 "Reverting to original interface.\n"));
1901
1902 free_probes_table (info);
1903 free_solib_list (info);
1904 }
1905
1906 /* Update the solib list as appropriate when using the
1907 probes-based linker interface. Do nothing if using the
1908 standard interface. */
1909
1910 static void
1911 svr4_handle_solib_event (void)
1912 {
1913 struct svr4_info *info = get_svr4_info ();
1914 struct probe_and_action *pa;
1915 enum probe_action action;
1916 struct cleanup *old_chain, *usm_chain;
1917 struct value *val = NULL;
1918 CORE_ADDR pc, debug_base, lm = 0;
1919 int is_initial_ns;
1920 struct frame_info *frame = get_current_frame ();
1921
1922 /* Do nothing if not using the probes interface. */
1923 if (info->probes_table == NULL)
1924 return;
1925
1926 /* If anything goes wrong we revert to the original linker
1927 interface. */
1928 old_chain = make_cleanup (disable_probes_interface_cleanup, NULL);
1929
1930 pc = regcache_read_pc (get_current_regcache ());
1931 pa = solib_event_probe_at (info, pc);
1932 if (pa == NULL)
1933 {
1934 do_cleanups (old_chain);
1935 return;
1936 }
1937
1938 action = solib_event_probe_action (pa);
1939 if (action == PROBES_INTERFACE_FAILED)
1940 {
1941 do_cleanups (old_chain);
1942 return;
1943 }
1944
1945 if (action == DO_NOTHING)
1946 {
1947 discard_cleanups (old_chain);
1948 return;
1949 }
1950
1951 /* evaluate_probe_argument looks up symbols in the dynamic linker
1952 using find_pc_section. find_pc_section is accelerated by a cache
1953 called the section map. The section map is invalidated every
1954 time a shared library is loaded or unloaded, and if the inferior
1955 is generating a lot of shared library events then the section map
1956 will be updated every time svr4_handle_solib_event is called.
1957 We called find_pc_section in svr4_create_solib_event_breakpoints,
1958 so we can guarantee that the dynamic linker's sections are in the
1959 section map. We can therefore inhibit section map updates across
1960 these calls to evaluate_probe_argument and save a lot of time. */
1961 inhibit_section_map_updates (current_program_space);
1962 usm_chain = make_cleanup (resume_section_map_updates_cleanup,
1963 current_program_space);
1964
1965 TRY
1966 {
1967 val = evaluate_probe_argument (pa->probe, 1, frame);
1968 }
1969 CATCH (ex, RETURN_MASK_ERROR)
1970 {
1971 exception_print (gdb_stderr, ex);
1972 val = NULL;
1973 }
1974 END_CATCH
1975
1976 if (val == NULL)
1977 {
1978 do_cleanups (old_chain);
1979 return;
1980 }
1981
1982 debug_base = value_as_address (val);
1983 if (debug_base == 0)
1984 {
1985 do_cleanups (old_chain);
1986 return;
1987 }
1988
1989 /* Always locate the debug struct, in case it moved. */
1990 info->debug_base = 0;
1991 if (locate_base (info) == 0)
1992 {
1993 do_cleanups (old_chain);
1994 return;
1995 }
1996
1997 /* GDB does not currently support libraries loaded via dlmopen
1998 into namespaces other than the initial one. We must ignore
1999 any namespace other than the initial namespace here until
2000 support for this is added to GDB. */
2001 if (debug_base != info->debug_base)
2002 action = DO_NOTHING;
2003
2004 if (action == UPDATE_OR_RELOAD)
2005 {
2006 TRY
2007 {
2008 val = evaluate_probe_argument (pa->probe, 2, frame);
2009 }
2010 CATCH (ex, RETURN_MASK_ERROR)
2011 {
2012 exception_print (gdb_stderr, ex);
2013 do_cleanups (old_chain);
2014 return;
2015 }
2016 END_CATCH
2017
2018 if (val != NULL)
2019 lm = value_as_address (val);
2020
2021 if (lm == 0)
2022 action = FULL_RELOAD;
2023 }
2024
2025 /* Resume section map updates. */
2026 do_cleanups (usm_chain);
2027
2028 if (action == UPDATE_OR_RELOAD)
2029 {
2030 if (!solist_update_incremental (info, lm))
2031 action = FULL_RELOAD;
2032 }
2033
2034 if (action == FULL_RELOAD)
2035 {
2036 if (!solist_update_full (info))
2037 {
2038 do_cleanups (old_chain);
2039 return;
2040 }
2041 }
2042
2043 discard_cleanups (old_chain);
2044 }
2045
2046 /* Helper function for svr4_update_solib_event_breakpoints. */
2047
2048 static int
2049 svr4_update_solib_event_breakpoint (struct breakpoint *b, void *arg)
2050 {
2051 struct bp_location *loc;
2052
2053 if (b->type != bp_shlib_event)
2054 {
2055 /* Continue iterating. */
2056 return 0;
2057 }
2058
2059 for (loc = b->loc; loc != NULL; loc = loc->next)
2060 {
2061 struct svr4_info *info;
2062 struct probe_and_action *pa;
2063
2064 info = ((struct svr4_info *)
2065 program_space_data (loc->pspace, solib_svr4_pspace_data));
2066 if (info == NULL || info->probes_table == NULL)
2067 continue;
2068
2069 pa = solib_event_probe_at (info, loc->address);
2070 if (pa == NULL)
2071 continue;
2072
2073 if (pa->action == DO_NOTHING)
2074 {
2075 if (b->enable_state == bp_disabled && stop_on_solib_events)
2076 enable_breakpoint (b);
2077 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
2078 disable_breakpoint (b);
2079 }
2080
2081 break;
2082 }
2083
2084 /* Continue iterating. */
2085 return 0;
2086 }
2087
2088 /* Enable or disable optional solib event breakpoints as appropriate.
2089 Called whenever stop_on_solib_events is changed. */
2090
2091 static void
2092 svr4_update_solib_event_breakpoints (void)
2093 {
2094 iterate_over_breakpoints (svr4_update_solib_event_breakpoint, NULL);
2095 }
2096
2097 /* Create and register solib event breakpoints. PROBES is an array
2098 of NUM_PROBES elements, each of which is vector of probes. A
2099 solib event breakpoint will be created and registered for each
2100 probe. */
2101
2102 static void
2103 svr4_create_probe_breakpoints (struct gdbarch *gdbarch,
2104 VEC (probe_p) **probes,
2105 struct objfile *objfile)
2106 {
2107 int i;
2108
2109 for (i = 0; i < NUM_PROBES; i++)
2110 {
2111 enum probe_action action = probe_info[i].action;
2112 struct probe *probe;
2113 int ix;
2114
2115 for (ix = 0;
2116 VEC_iterate (probe_p, probes[i], ix, probe);
2117 ++ix)
2118 {
2119 CORE_ADDR address = get_probe_address (probe, objfile);
2120
2121 create_solib_event_breakpoint (gdbarch, address);
2122 register_solib_event_probe (probe, address, action);
2123 }
2124 }
2125
2126 svr4_update_solib_event_breakpoints ();
2127 }
2128
2129 /* Both the SunOS and the SVR4 dynamic linkers call a marker function
2130 before and after mapping and unmapping shared libraries. The sole
2131 purpose of this method is to allow debuggers to set a breakpoint so
2132 they can track these changes.
2133
2134 Some versions of the glibc dynamic linker contain named probes
2135 to allow more fine grained stopping. Given the address of the
2136 original marker function, this function attempts to find these
2137 probes, and if found, sets breakpoints on those instead. If the
2138 probes aren't found, a single breakpoint is set on the original
2139 marker function. */
2140
2141 static void
2142 svr4_create_solib_event_breakpoints (struct gdbarch *gdbarch,
2143 CORE_ADDR address)
2144 {
2145 struct obj_section *os;
2146
2147 os = find_pc_section (address);
2148 if (os != NULL)
2149 {
2150 int with_prefix;
2151
2152 for (with_prefix = 0; with_prefix <= 1; with_prefix++)
2153 {
2154 VEC (probe_p) *probes[NUM_PROBES];
2155 int all_probes_found = 1;
2156 int checked_can_use_probe_arguments = 0;
2157 int i;
2158
2159 memset (probes, 0, sizeof (probes));
2160 for (i = 0; i < NUM_PROBES; i++)
2161 {
2162 const char *name = probe_info[i].name;
2163 struct probe *p;
2164 char buf[32];
2165
2166 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4
2167 shipped with an early version of the probes code in
2168 which the probes' names were prefixed with "rtld_"
2169 and the "map_failed" probe did not exist. The
2170 locations of the probes are otherwise the same, so
2171 we check for probes with prefixed names if probes
2172 with unprefixed names are not present. */
2173 if (with_prefix)
2174 {
2175 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2176 name = buf;
2177 }
2178
2179 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2180
2181 /* The "map_failed" probe did not exist in early
2182 versions of the probes code in which the probes'
2183 names were prefixed with "rtld_". */
2184 if (strcmp (name, "rtld_map_failed") == 0)
2185 continue;
2186
2187 if (VEC_empty (probe_p, probes[i]))
2188 {
2189 all_probes_found = 0;
2190 break;
2191 }
2192
2193 /* Ensure probe arguments can be evaluated. */
2194 if (!checked_can_use_probe_arguments)
2195 {
2196 p = VEC_index (probe_p, probes[i], 0);
2197 if (!can_evaluate_probe_arguments (p))
2198 {
2199 all_probes_found = 0;
2200 break;
2201 }
2202 checked_can_use_probe_arguments = 1;
2203 }
2204 }
2205
2206 if (all_probes_found)
2207 svr4_create_probe_breakpoints (gdbarch, probes, os->objfile);
2208
2209 for (i = 0; i < NUM_PROBES; i++)
2210 VEC_free (probe_p, probes[i]);
2211
2212 if (all_probes_found)
2213 return;
2214 }
2215 }
2216
2217 create_solib_event_breakpoint (gdbarch, address);
2218 }
2219
2220 /* Helper function for gdb_bfd_lookup_symbol. */
2221
2222 static int
2223 cmp_name_and_sec_flags (asymbol *sym, void *data)
2224 {
2225 return (strcmp (sym->name, (const char *) data) == 0
2226 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2227 }
2228 /* Arrange for dynamic linker to hit breakpoint.
2229
2230 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2231 debugger interface, support for arranging for the inferior to hit
2232 a breakpoint after mapping in the shared libraries. This function
2233 enables that breakpoint.
2234
2235 For SunOS, there is a special flag location (in_debugger) which we
2236 set to 1. When the dynamic linker sees this flag set, it will set
2237 a breakpoint at a location known only to itself, after saving the
2238 original contents of that place and the breakpoint address itself,
2239 in it's own internal structures. When we resume the inferior, it
2240 will eventually take a SIGTRAP when it runs into the breakpoint.
2241 We handle this (in a different place) by restoring the contents of
2242 the breakpointed location (which is only known after it stops),
2243 chasing around to locate the shared libraries that have been
2244 loaded, then resuming.
2245
2246 For SVR4, the debugger interface structure contains a member (r_brk)
2247 which is statically initialized at the time the shared library is
2248 built, to the offset of a function (_r_debug_state) which is guaran-
2249 teed to be called once before mapping in a library, and again when
2250 the mapping is complete. At the time we are examining this member,
2251 it contains only the unrelocated offset of the function, so we have
2252 to do our own relocation. Later, when the dynamic linker actually
2253 runs, it relocates r_brk to be the actual address of _r_debug_state().
2254
2255 The debugger interface structure also contains an enumeration which
2256 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2257 depending upon whether or not the library is being mapped or unmapped,
2258 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
2259
2260 static int
2261 enable_break (struct svr4_info *info, int from_tty)
2262 {
2263 struct bound_minimal_symbol msymbol;
2264 const char * const *bkpt_namep;
2265 asection *interp_sect;
2266 char *interp_name;
2267 CORE_ADDR sym_addr;
2268
2269 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2270 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
2271
2272 /* If we already have a shared library list in the target, and
2273 r_debug contains r_brk, set the breakpoint there - this should
2274 mean r_brk has already been relocated. Assume the dynamic linker
2275 is the object containing r_brk. */
2276
2277 solib_add (NULL, from_tty, &current_target, auto_solib_add);
2278 sym_addr = 0;
2279 if (info->debug_base && solib_svr4_r_map (info) != 0)
2280 sym_addr = solib_svr4_r_brk (info);
2281
2282 if (sym_addr != 0)
2283 {
2284 struct obj_section *os;
2285
2286 sym_addr = gdbarch_addr_bits_remove
2287 (target_gdbarch (), gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2288 sym_addr,
2289 &current_target));
2290
2291 /* On at least some versions of Solaris there's a dynamic relocation
2292 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2293 we get control before the dynamic linker has self-relocated.
2294 Check if SYM_ADDR is in a known section, if it is assume we can
2295 trust its value. This is just a heuristic though, it could go away
2296 or be replaced if it's getting in the way.
2297
2298 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2299 however it's spelled in your particular system) is ARM or Thumb.
2300 That knowledge is encoded in the address, if it's Thumb the low bit
2301 is 1. However, we've stripped that info above and it's not clear
2302 what all the consequences are of passing a non-addr_bits_remove'd
2303 address to svr4_create_solib_event_breakpoints. The call to
2304 find_pc_section verifies we know about the address and have some
2305 hope of computing the right kind of breakpoint to use (via
2306 symbol info). It does mean that GDB needs to be pointed at a
2307 non-stripped version of the dynamic linker in order to obtain
2308 information it already knows about. Sigh. */
2309
2310 os = find_pc_section (sym_addr);
2311 if (os != NULL)
2312 {
2313 /* Record the relocated start and end address of the dynamic linker
2314 text and plt section for svr4_in_dynsym_resolve_code. */
2315 bfd *tmp_bfd;
2316 CORE_ADDR load_addr;
2317
2318 tmp_bfd = os->objfile->obfd;
2319 load_addr = ANOFFSET (os->objfile->section_offsets,
2320 SECT_OFF_TEXT (os->objfile));
2321
2322 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2323 if (interp_sect)
2324 {
2325 info->interp_text_sect_low =
2326 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2327 info->interp_text_sect_high =
2328 info->interp_text_sect_low
2329 + bfd_section_size (tmp_bfd, interp_sect);
2330 }
2331 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2332 if (interp_sect)
2333 {
2334 info->interp_plt_sect_low =
2335 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2336 info->interp_plt_sect_high =
2337 info->interp_plt_sect_low
2338 + bfd_section_size (tmp_bfd, interp_sect);
2339 }
2340
2341 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2342 return 1;
2343 }
2344 }
2345
2346 /* Find the program interpreter; if not found, warn the user and drop
2347 into the old breakpoint at symbol code. */
2348 interp_name = find_program_interpreter ();
2349 if (interp_name)
2350 {
2351 CORE_ADDR load_addr = 0;
2352 int load_addr_found = 0;
2353 int loader_found_in_list = 0;
2354 struct so_list *so;
2355 bfd *tmp_bfd = NULL;
2356 struct target_ops *tmp_bfd_target;
2357
2358 sym_addr = 0;
2359
2360 /* Now we need to figure out where the dynamic linker was
2361 loaded so that we can load its symbols and place a breakpoint
2362 in the dynamic linker itself.
2363
2364 This address is stored on the stack. However, I've been unable
2365 to find any magic formula to find it for Solaris (appears to
2366 be trivial on GNU/Linux). Therefore, we have to try an alternate
2367 mechanism to find the dynamic linker's base address. */
2368
2369 TRY
2370 {
2371 tmp_bfd = solib_bfd_open (interp_name);
2372 }
2373 CATCH (ex, RETURN_MASK_ALL)
2374 {
2375 }
2376 END_CATCH
2377
2378 if (tmp_bfd == NULL)
2379 goto bkpt_at_symbol;
2380
2381 /* Now convert the TMP_BFD into a target. That way target, as
2382 well as BFD operations can be used. */
2383 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
2384 /* target_bfd_reopen acquired its own reference, so we can
2385 release ours now. */
2386 gdb_bfd_unref (tmp_bfd);
2387
2388 /* On a running target, we can get the dynamic linker's base
2389 address from the shared library table. */
2390 so = master_so_list ();
2391 while (so)
2392 {
2393 if (svr4_same_1 (interp_name, so->so_original_name))
2394 {
2395 load_addr_found = 1;
2396 loader_found_in_list = 1;
2397 load_addr = lm_addr_check (so, tmp_bfd);
2398 break;
2399 }
2400 so = so->next;
2401 }
2402
2403 /* If we were not able to find the base address of the loader
2404 from our so_list, then try using the AT_BASE auxilliary entry. */
2405 if (!load_addr_found)
2406 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
2407 {
2408 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
2409
2410 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2411 that `+ load_addr' will overflow CORE_ADDR width not creating
2412 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2413 GDB. */
2414
2415 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
2416 {
2417 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
2418 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
2419 tmp_bfd_target);
2420
2421 gdb_assert (load_addr < space_size);
2422
2423 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2424 64bit ld.so with 32bit executable, it should not happen. */
2425
2426 if (tmp_entry_point < space_size
2427 && tmp_entry_point + load_addr >= space_size)
2428 load_addr -= space_size;
2429 }
2430
2431 load_addr_found = 1;
2432 }
2433
2434 /* Otherwise we find the dynamic linker's base address by examining
2435 the current pc (which should point at the entry point for the
2436 dynamic linker) and subtracting the offset of the entry point.
2437
2438 This is more fragile than the previous approaches, but is a good
2439 fallback method because it has actually been working well in
2440 most cases. */
2441 if (!load_addr_found)
2442 {
2443 struct regcache *regcache
2444 = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
2445
2446 load_addr = (regcache_read_pc (regcache)
2447 - exec_entry_point (tmp_bfd, tmp_bfd_target));
2448 }
2449
2450 if (!loader_found_in_list)
2451 {
2452 info->debug_loader_name = xstrdup (interp_name);
2453 info->debug_loader_offset_p = 1;
2454 info->debug_loader_offset = load_addr;
2455 solib_add (NULL, from_tty, &current_target, auto_solib_add);
2456 }
2457
2458 /* Record the relocated start and end address of the dynamic linker
2459 text and plt section for svr4_in_dynsym_resolve_code. */
2460 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2461 if (interp_sect)
2462 {
2463 info->interp_text_sect_low =
2464 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2465 info->interp_text_sect_high =
2466 info->interp_text_sect_low
2467 + bfd_section_size (tmp_bfd, interp_sect);
2468 }
2469 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2470 if (interp_sect)
2471 {
2472 info->interp_plt_sect_low =
2473 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2474 info->interp_plt_sect_high =
2475 info->interp_plt_sect_low
2476 + bfd_section_size (tmp_bfd, interp_sect);
2477 }
2478
2479 /* Now try to set a breakpoint in the dynamic linker. */
2480 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2481 {
2482 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd, cmp_name_and_sec_flags,
2483 (void *) *bkpt_namep);
2484 if (sym_addr != 0)
2485 break;
2486 }
2487
2488 if (sym_addr != 0)
2489 /* Convert 'sym_addr' from a function pointer to an address.
2490 Because we pass tmp_bfd_target instead of the current
2491 target, this will always produce an unrelocated value. */
2492 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2493 sym_addr,
2494 tmp_bfd_target);
2495
2496 /* We're done with both the temporary bfd and target. Closing
2497 the target closes the underlying bfd, because it holds the
2498 only remaining reference. */
2499 target_close (tmp_bfd_target);
2500
2501 if (sym_addr != 0)
2502 {
2503 svr4_create_solib_event_breakpoints (target_gdbarch (),
2504 load_addr + sym_addr);
2505 xfree (interp_name);
2506 return 1;
2507 }
2508
2509 /* For whatever reason we couldn't set a breakpoint in the dynamic
2510 linker. Warn and drop into the old code. */
2511 bkpt_at_symbol:
2512 xfree (interp_name);
2513 warning (_("Unable to find dynamic linker breakpoint function.\n"
2514 "GDB will be unable to debug shared library initializers\n"
2515 "and track explicitly loaded dynamic code."));
2516 }
2517
2518 /* Scan through the lists of symbols, trying to look up the symbol and
2519 set a breakpoint there. Terminate loop when we/if we succeed. */
2520
2521 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2522 {
2523 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
2524 if ((msymbol.minsym != NULL)
2525 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2526 {
2527 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2528 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2529 sym_addr,
2530 &current_target);
2531 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2532 return 1;
2533 }
2534 }
2535
2536 if (interp_name != NULL && !current_inferior ()->attach_flag)
2537 {
2538 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
2539 {
2540 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
2541 if ((msymbol.minsym != NULL)
2542 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2543 {
2544 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2545 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2546 sym_addr,
2547 &current_target);
2548 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2549 return 1;
2550 }
2551 }
2552 }
2553 return 0;
2554 }
2555
2556 /* Implement the "special_symbol_handling" target_so_ops method. */
2557
2558 static void
2559 svr4_special_symbol_handling (void)
2560 {
2561 /* Nothing to do. */
2562 }
2563
2564 /* Read the ELF program headers from ABFD. Return the contents and
2565 set *PHDRS_SIZE to the size of the program headers. */
2566
2567 static gdb_byte *
2568 read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
2569 {
2570 Elf_Internal_Ehdr *ehdr;
2571 gdb_byte *buf;
2572
2573 ehdr = elf_elfheader (abfd);
2574
2575 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2576 if (*phdrs_size == 0)
2577 return NULL;
2578
2579 buf = (gdb_byte *) xmalloc (*phdrs_size);
2580 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
2581 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
2582 {
2583 xfree (buf);
2584 return NULL;
2585 }
2586
2587 return buf;
2588 }
2589
2590 /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2591 exec_bfd. Otherwise return 0.
2592
2593 We relocate all of the sections by the same amount. This
2594 behavior is mandated by recent editions of the System V ABI.
2595 According to the System V Application Binary Interface,
2596 Edition 4.1, page 5-5:
2597
2598 ... Though the system chooses virtual addresses for
2599 individual processes, it maintains the segments' relative
2600 positions. Because position-independent code uses relative
2601 addressesing between segments, the difference between
2602 virtual addresses in memory must match the difference
2603 between virtual addresses in the file. The difference
2604 between the virtual address of any segment in memory and
2605 the corresponding virtual address in the file is thus a
2606 single constant value for any one executable or shared
2607 object in a given process. This difference is the base
2608 address. One use of the base address is to relocate the
2609 memory image of the program during dynamic linking.
2610
2611 The same language also appears in Edition 4.0 of the System V
2612 ABI and is left unspecified in some of the earlier editions.
2613
2614 Decide if the objfile needs to be relocated. As indicated above, we will
2615 only be here when execution is stopped. But during attachment PC can be at
2616 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2617 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2618 regcache_read_pc would point to the interpreter and not the main executable.
2619
2620 So, to summarize, relocations are necessary when the start address obtained
2621 from the executable is different from the address in auxv AT_ENTRY entry.
2622
2623 [ The astute reader will note that we also test to make sure that
2624 the executable in question has the DYNAMIC flag set. It is my
2625 opinion that this test is unnecessary (undesirable even). It
2626 was added to avoid inadvertent relocation of an executable
2627 whose e_type member in the ELF header is not ET_DYN. There may
2628 be a time in the future when it is desirable to do relocations
2629 on other types of files as well in which case this condition
2630 should either be removed or modified to accomodate the new file
2631 type. - Kevin, Nov 2000. ] */
2632
2633 static int
2634 svr4_exec_displacement (CORE_ADDR *displacementp)
2635 {
2636 /* ENTRY_POINT is a possible function descriptor - before
2637 a call to gdbarch_convert_from_func_ptr_addr. */
2638 CORE_ADDR entry_point, exec_displacement;
2639
2640 if (exec_bfd == NULL)
2641 return 0;
2642
2643 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2644 being executed themselves and PIE (Position Independent Executable)
2645 executables are ET_DYN. */
2646
2647 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
2648 return 0;
2649
2650 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
2651 return 0;
2652
2653 exec_displacement = entry_point - bfd_get_start_address (exec_bfd);
2654
2655 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
2656 alignment. It is cheaper than the program headers comparison below. */
2657
2658 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2659 {
2660 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
2661
2662 /* p_align of PT_LOAD segments does not specify any alignment but
2663 only congruency of addresses:
2664 p_offset % p_align == p_vaddr % p_align
2665 Kernel is free to load the executable with lower alignment. */
2666
2667 if ((exec_displacement & (elf->minpagesize - 1)) != 0)
2668 return 0;
2669 }
2670
2671 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2672 comparing their program headers. If the program headers in the auxilliary
2673 vector do not match the program headers in the executable, then we are
2674 looking at a different file than the one used by the kernel - for
2675 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2676
2677 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2678 {
2679 /* Be optimistic and clear OK only if GDB was able to verify the headers
2680 really do not match. */
2681 int phdrs_size, phdrs2_size, ok = 1;
2682 gdb_byte *buf, *buf2;
2683 int arch_size;
2684
2685 buf = read_program_header (-1, &phdrs_size, &arch_size, NULL);
2686 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
2687 if (buf != NULL && buf2 != NULL)
2688 {
2689 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
2690
2691 /* We are dealing with three different addresses. EXEC_BFD
2692 represents current address in on-disk file. target memory content
2693 may be different from EXEC_BFD as the file may have been prelinked
2694 to a different address after the executable has been loaded.
2695 Moreover the address of placement in target memory can be
2696 different from what the program headers in target memory say -
2697 this is the goal of PIE.
2698
2699 Detected DISPLACEMENT covers both the offsets of PIE placement and
2700 possible new prelink performed after start of the program. Here
2701 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2702 content offset for the verification purpose. */
2703
2704 if (phdrs_size != phdrs2_size
2705 || bfd_get_arch_size (exec_bfd) != arch_size)
2706 ok = 0;
2707 else if (arch_size == 32
2708 && phdrs_size >= sizeof (Elf32_External_Phdr)
2709 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
2710 {
2711 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2712 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2713 CORE_ADDR displacement = 0;
2714 int i;
2715
2716 /* DISPLACEMENT could be found more easily by the difference of
2717 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2718 already have enough information to compute that displacement
2719 with what we've read. */
2720
2721 for (i = 0; i < ehdr2->e_phnum; i++)
2722 if (phdr2[i].p_type == PT_LOAD)
2723 {
2724 Elf32_External_Phdr *phdrp;
2725 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2726 CORE_ADDR vaddr, paddr;
2727 CORE_ADDR displacement_vaddr = 0;
2728 CORE_ADDR displacement_paddr = 0;
2729
2730 phdrp = &((Elf32_External_Phdr *) buf)[i];
2731 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2732 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2733
2734 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2735 byte_order);
2736 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2737
2738 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2739 byte_order);
2740 displacement_paddr = paddr - phdr2[i].p_paddr;
2741
2742 if (displacement_vaddr == displacement_paddr)
2743 displacement = displacement_vaddr;
2744
2745 break;
2746 }
2747
2748 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2749
2750 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
2751 {
2752 Elf32_External_Phdr *phdrp;
2753 Elf32_External_Phdr *phdr2p;
2754 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2755 CORE_ADDR vaddr, paddr;
2756 asection *plt2_asect;
2757
2758 phdrp = &((Elf32_External_Phdr *) buf)[i];
2759 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2760 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2761 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
2762
2763 /* PT_GNU_STACK is an exception by being never relocated by
2764 prelink as its addresses are always zero. */
2765
2766 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2767 continue;
2768
2769 /* Check also other adjustment combinations - PR 11786. */
2770
2771 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2772 byte_order);
2773 vaddr -= displacement;
2774 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2775
2776 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2777 byte_order);
2778 paddr -= displacement;
2779 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2780
2781 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2782 continue;
2783
2784 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2785 CentOS-5 has problems with filesz, memsz as well.
2786 See PR 11786. */
2787 if (phdr2[i].p_type == PT_GNU_RELRO)
2788 {
2789 Elf32_External_Phdr tmp_phdr = *phdrp;
2790 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2791
2792 memset (tmp_phdr.p_filesz, 0, 4);
2793 memset (tmp_phdr.p_memsz, 0, 4);
2794 memset (tmp_phdr.p_flags, 0, 4);
2795 memset (tmp_phdr.p_align, 0, 4);
2796 memset (tmp_phdr2.p_filesz, 0, 4);
2797 memset (tmp_phdr2.p_memsz, 0, 4);
2798 memset (tmp_phdr2.p_flags, 0, 4);
2799 memset (tmp_phdr2.p_align, 0, 4);
2800
2801 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2802 == 0)
2803 continue;
2804 }
2805
2806 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2807 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2808 if (plt2_asect)
2809 {
2810 int content2;
2811 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2812 CORE_ADDR filesz;
2813
2814 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2815 & SEC_HAS_CONTENTS) != 0;
2816
2817 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2818 byte_order);
2819
2820 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2821 FILESZ is from the in-memory image. */
2822 if (content2)
2823 filesz += bfd_get_section_size (plt2_asect);
2824 else
2825 filesz -= bfd_get_section_size (plt2_asect);
2826
2827 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2828 filesz);
2829
2830 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2831 continue;
2832 }
2833
2834 ok = 0;
2835 break;
2836 }
2837 }
2838 else if (arch_size == 64
2839 && phdrs_size >= sizeof (Elf64_External_Phdr)
2840 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
2841 {
2842 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2843 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2844 CORE_ADDR displacement = 0;
2845 int i;
2846
2847 /* DISPLACEMENT could be found more easily by the difference of
2848 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2849 already have enough information to compute that displacement
2850 with what we've read. */
2851
2852 for (i = 0; i < ehdr2->e_phnum; i++)
2853 if (phdr2[i].p_type == PT_LOAD)
2854 {
2855 Elf64_External_Phdr *phdrp;
2856 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2857 CORE_ADDR vaddr, paddr;
2858 CORE_ADDR displacement_vaddr = 0;
2859 CORE_ADDR displacement_paddr = 0;
2860
2861 phdrp = &((Elf64_External_Phdr *) buf)[i];
2862 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2863 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2864
2865 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2866 byte_order);
2867 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2868
2869 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2870 byte_order);
2871 displacement_paddr = paddr - phdr2[i].p_paddr;
2872
2873 if (displacement_vaddr == displacement_paddr)
2874 displacement = displacement_vaddr;
2875
2876 break;
2877 }
2878
2879 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2880
2881 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
2882 {
2883 Elf64_External_Phdr *phdrp;
2884 Elf64_External_Phdr *phdr2p;
2885 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2886 CORE_ADDR vaddr, paddr;
2887 asection *plt2_asect;
2888
2889 phdrp = &((Elf64_External_Phdr *) buf)[i];
2890 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2891 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2892 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
2893
2894 /* PT_GNU_STACK is an exception by being never relocated by
2895 prelink as its addresses are always zero. */
2896
2897 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2898 continue;
2899
2900 /* Check also other adjustment combinations - PR 11786. */
2901
2902 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2903 byte_order);
2904 vaddr -= displacement;
2905 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2906
2907 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2908 byte_order);
2909 paddr -= displacement;
2910 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2911
2912 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2913 continue;
2914
2915 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2916 CentOS-5 has problems with filesz, memsz as well.
2917 See PR 11786. */
2918 if (phdr2[i].p_type == PT_GNU_RELRO)
2919 {
2920 Elf64_External_Phdr tmp_phdr = *phdrp;
2921 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2922
2923 memset (tmp_phdr.p_filesz, 0, 8);
2924 memset (tmp_phdr.p_memsz, 0, 8);
2925 memset (tmp_phdr.p_flags, 0, 4);
2926 memset (tmp_phdr.p_align, 0, 8);
2927 memset (tmp_phdr2.p_filesz, 0, 8);
2928 memset (tmp_phdr2.p_memsz, 0, 8);
2929 memset (tmp_phdr2.p_flags, 0, 4);
2930 memset (tmp_phdr2.p_align, 0, 8);
2931
2932 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2933 == 0)
2934 continue;
2935 }
2936
2937 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2938 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2939 if (plt2_asect)
2940 {
2941 int content2;
2942 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2943 CORE_ADDR filesz;
2944
2945 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2946 & SEC_HAS_CONTENTS) != 0;
2947
2948 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2949 byte_order);
2950
2951 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2952 FILESZ is from the in-memory image. */
2953 if (content2)
2954 filesz += bfd_get_section_size (plt2_asect);
2955 else
2956 filesz -= bfd_get_section_size (plt2_asect);
2957
2958 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2959 filesz);
2960
2961 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2962 continue;
2963 }
2964
2965 ok = 0;
2966 break;
2967 }
2968 }
2969 else
2970 ok = 0;
2971 }
2972
2973 xfree (buf);
2974 xfree (buf2);
2975
2976 if (!ok)
2977 return 0;
2978 }
2979
2980 if (info_verbose)
2981 {
2982 /* It can be printed repeatedly as there is no easy way to check
2983 the executable symbols/file has been already relocated to
2984 displacement. */
2985
2986 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2987 "displacement %s for \"%s\".\n"),
2988 paddress (target_gdbarch (), exec_displacement),
2989 bfd_get_filename (exec_bfd));
2990 }
2991
2992 *displacementp = exec_displacement;
2993 return 1;
2994 }
2995
2996 /* Relocate the main executable. This function should be called upon
2997 stopping the inferior process at the entry point to the program.
2998 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2999 different, the main executable is relocated by the proper amount. */
3000
3001 static void
3002 svr4_relocate_main_executable (void)
3003 {
3004 CORE_ADDR displacement;
3005
3006 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
3007 probably contains the offsets computed using the PIE displacement
3008 from the previous run, which of course are irrelevant for this run.
3009 So we need to determine the new PIE displacement and recompute the
3010 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
3011 already contains pre-computed offsets.
3012
3013 If we cannot compute the PIE displacement, either:
3014
3015 - The executable is not PIE.
3016
3017 - SYMFILE_OBJFILE does not match the executable started in the target.
3018 This can happen for main executable symbols loaded at the host while
3019 `ld.so --ld-args main-executable' is loaded in the target.
3020
3021 Then we leave the section offsets untouched and use them as is for
3022 this run. Either:
3023
3024 - These section offsets were properly reset earlier, and thus
3025 already contain the correct values. This can happen for instance
3026 when reconnecting via the remote protocol to a target that supports
3027 the `qOffsets' packet.
3028
3029 - The section offsets were not reset earlier, and the best we can
3030 hope is that the old offsets are still applicable to the new run. */
3031
3032 if (! svr4_exec_displacement (&displacement))
3033 return;
3034
3035 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
3036 addresses. */
3037
3038 if (symfile_objfile)
3039 {
3040 struct section_offsets *new_offsets;
3041 int i;
3042
3043 new_offsets = XALLOCAVEC (struct section_offsets,
3044 symfile_objfile->num_sections);
3045
3046 for (i = 0; i < symfile_objfile->num_sections; i++)
3047 new_offsets->offsets[i] = displacement;
3048
3049 objfile_relocate (symfile_objfile, new_offsets);
3050 }
3051 else if (exec_bfd)
3052 {
3053 asection *asect;
3054
3055 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
3056 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
3057 (bfd_section_vma (exec_bfd, asect)
3058 + displacement));
3059 }
3060 }
3061
3062 /* Implement the "create_inferior_hook" target_solib_ops method.
3063
3064 For SVR4 executables, this first instruction is either the first
3065 instruction in the dynamic linker (for dynamically linked
3066 executables) or the instruction at "start" for statically linked
3067 executables. For dynamically linked executables, the system
3068 first exec's /lib/libc.so.N, which contains the dynamic linker,
3069 and starts it running. The dynamic linker maps in any needed
3070 shared libraries, maps in the actual user executable, and then
3071 jumps to "start" in the user executable.
3072
3073 We can arrange to cooperate with the dynamic linker to discover the
3074 names of shared libraries that are dynamically linked, and the base
3075 addresses to which they are linked.
3076
3077 This function is responsible for discovering those names and
3078 addresses, and saving sufficient information about them to allow
3079 their symbols to be read at a later time. */
3080
3081 static void
3082 svr4_solib_create_inferior_hook (int from_tty)
3083 {
3084 struct svr4_info *info;
3085
3086 info = get_svr4_info ();
3087
3088 /* Clear the probes-based interface's state. */
3089 free_probes_table (info);
3090 free_solib_list (info);
3091
3092 /* Relocate the main executable if necessary. */
3093 svr4_relocate_main_executable ();
3094
3095 /* No point setting a breakpoint in the dynamic linker if we can't
3096 hit it (e.g., a core file, or a trace file). */
3097 if (!target_has_execution)
3098 return;
3099
3100 if (!svr4_have_link_map_offsets ())
3101 return;
3102
3103 if (!enable_break (info, from_tty))
3104 return;
3105 }
3106
3107 static void
3108 svr4_clear_solib (void)
3109 {
3110 struct svr4_info *info;
3111
3112 info = get_svr4_info ();
3113 info->debug_base = 0;
3114 info->debug_loader_offset_p = 0;
3115 info->debug_loader_offset = 0;
3116 xfree (info->debug_loader_name);
3117 info->debug_loader_name = NULL;
3118 }
3119
3120 /* Clear any bits of ADDR that wouldn't fit in a target-format
3121 data pointer. "Data pointer" here refers to whatever sort of
3122 address the dynamic linker uses to manage its sections. At the
3123 moment, we don't support shared libraries on any processors where
3124 code and data pointers are different sizes.
3125
3126 This isn't really the right solution. What we really need here is
3127 a way to do arithmetic on CORE_ADDR values that respects the
3128 natural pointer/address correspondence. (For example, on the MIPS,
3129 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
3130 sign-extend the value. There, simply truncating the bits above
3131 gdbarch_ptr_bit, as we do below, is no good.) This should probably
3132 be a new gdbarch method or something. */
3133 static CORE_ADDR
3134 svr4_truncate_ptr (CORE_ADDR addr)
3135 {
3136 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
3137 /* We don't need to truncate anything, and the bit twiddling below
3138 will fail due to overflow problems. */
3139 return addr;
3140 else
3141 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
3142 }
3143
3144
3145 static void
3146 svr4_relocate_section_addresses (struct so_list *so,
3147 struct target_section *sec)
3148 {
3149 bfd *abfd = sec->the_bfd_section->owner;
3150
3151 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
3152 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
3153 }
3154 \f
3155
3156 /* Architecture-specific operations. */
3157
3158 /* Per-architecture data key. */
3159 static struct gdbarch_data *solib_svr4_data;
3160
3161 struct solib_svr4_ops
3162 {
3163 /* Return a description of the layout of `struct link_map'. */
3164 struct link_map_offsets *(*fetch_link_map_offsets)(void);
3165 };
3166
3167 /* Return a default for the architecture-specific operations. */
3168
3169 static void *
3170 solib_svr4_init (struct obstack *obstack)
3171 {
3172 struct solib_svr4_ops *ops;
3173
3174 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
3175 ops->fetch_link_map_offsets = NULL;
3176 return ops;
3177 }
3178
3179 /* Set the architecture-specific `struct link_map_offsets' fetcher for
3180 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
3181
3182 void
3183 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3184 struct link_map_offsets *(*flmo) (void))
3185 {
3186 struct solib_svr4_ops *ops
3187 = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data);
3188
3189 ops->fetch_link_map_offsets = flmo;
3190
3191 set_solib_ops (gdbarch, &svr4_so_ops);
3192 }
3193
3194 /* Fetch a link_map_offsets structure using the architecture-specific
3195 `struct link_map_offsets' fetcher. */
3196
3197 static struct link_map_offsets *
3198 svr4_fetch_link_map_offsets (void)
3199 {
3200 struct solib_svr4_ops *ops
3201 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3202 solib_svr4_data);
3203
3204 gdb_assert (ops->fetch_link_map_offsets);
3205 return ops->fetch_link_map_offsets ();
3206 }
3207
3208 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3209
3210 static int
3211 svr4_have_link_map_offsets (void)
3212 {
3213 struct solib_svr4_ops *ops
3214 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3215 solib_svr4_data);
3216
3217 return (ops->fetch_link_map_offsets != NULL);
3218 }
3219 \f
3220
3221 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
3222 `struct r_debug' and a `struct link_map' that are binary compatible
3223 with the origional SVR4 implementation. */
3224
3225 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3226 for an ILP32 SVR4 system. */
3227
3228 struct link_map_offsets *
3229 svr4_ilp32_fetch_link_map_offsets (void)
3230 {
3231 static struct link_map_offsets lmo;
3232 static struct link_map_offsets *lmp = NULL;
3233
3234 if (lmp == NULL)
3235 {
3236 lmp = &lmo;
3237
3238 lmo.r_version_offset = 0;
3239 lmo.r_version_size = 4;
3240 lmo.r_map_offset = 4;
3241 lmo.r_brk_offset = 8;
3242 lmo.r_ldsomap_offset = 20;
3243
3244 /* Everything we need is in the first 20 bytes. */
3245 lmo.link_map_size = 20;
3246 lmo.l_addr_offset = 0;
3247 lmo.l_name_offset = 4;
3248 lmo.l_ld_offset = 8;
3249 lmo.l_next_offset = 12;
3250 lmo.l_prev_offset = 16;
3251 }
3252
3253 return lmp;
3254 }
3255
3256 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3257 for an LP64 SVR4 system. */
3258
3259 struct link_map_offsets *
3260 svr4_lp64_fetch_link_map_offsets (void)
3261 {
3262 static struct link_map_offsets lmo;
3263 static struct link_map_offsets *lmp = NULL;
3264
3265 if (lmp == NULL)
3266 {
3267 lmp = &lmo;
3268
3269 lmo.r_version_offset = 0;
3270 lmo.r_version_size = 4;
3271 lmo.r_map_offset = 8;
3272 lmo.r_brk_offset = 16;
3273 lmo.r_ldsomap_offset = 40;
3274
3275 /* Everything we need is in the first 40 bytes. */
3276 lmo.link_map_size = 40;
3277 lmo.l_addr_offset = 0;
3278 lmo.l_name_offset = 8;
3279 lmo.l_ld_offset = 16;
3280 lmo.l_next_offset = 24;
3281 lmo.l_prev_offset = 32;
3282 }
3283
3284 return lmp;
3285 }
3286 \f
3287
3288 struct target_so_ops svr4_so_ops;
3289
3290 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3291 different rule for symbol lookup. The lookup begins here in the DSO, not in
3292 the main executable. */
3293
3294 static struct block_symbol
3295 elf_lookup_lib_symbol (struct objfile *objfile,
3296 const char *name,
3297 const domain_enum domain)
3298 {
3299 bfd *abfd;
3300
3301 if (objfile == symfile_objfile)
3302 abfd = exec_bfd;
3303 else
3304 {
3305 /* OBJFILE should have been passed as the non-debug one. */
3306 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
3307
3308 abfd = objfile->obfd;
3309 }
3310
3311 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL, NULL) != 1)
3312 return (struct block_symbol) {NULL, NULL};
3313
3314 return lookup_global_symbol_from_objfile (objfile, name, domain);
3315 }
3316
3317 extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
3318
3319 void
3320 _initialize_svr4_solib (void)
3321 {
3322 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
3323 solib_svr4_pspace_data
3324 = register_program_space_data_with_cleanup (NULL, svr4_pspace_data_cleanup);
3325
3326 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
3327 svr4_so_ops.free_so = svr4_free_so;
3328 svr4_so_ops.clear_so = svr4_clear_so;
3329 svr4_so_ops.clear_solib = svr4_clear_solib;
3330 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
3331 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
3332 svr4_so_ops.current_sos = svr4_current_sos;
3333 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
3334 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
3335 svr4_so_ops.bfd_open = solib_bfd_open;
3336 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
3337 svr4_so_ops.same = svr4_same;
3338 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
3339 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3340 svr4_so_ops.handle_event = svr4_handle_solib_event;
3341 }
This page took 0.094216 seconds and 5 git commands to generate.