Make various lm_info implementations inherit from a base class
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "elf/external.h"
23 #include "elf/common.h"
24 #include "elf/mips.h"
25
26 #include "symtab.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbcore.h"
31 #include "target.h"
32 #include "inferior.h"
33 #include "infrun.h"
34 #include "regcache.h"
35 #include "gdbthread.h"
36 #include "observer.h"
37
38 #include "solist.h"
39 #include "solib.h"
40 #include "solib-svr4.h"
41
42 #include "bfd-target.h"
43 #include "elf-bfd.h"
44 #include "exec.h"
45 #include "auxv.h"
46 #include "gdb_bfd.h"
47 #include "probe.h"
48
49 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
50 static int svr4_have_link_map_offsets (void);
51 static void svr4_relocate_main_executable (void);
52 static void svr4_free_library_list (void *p_list);
53
54 /* On SVR4 systems, a list of symbols in the dynamic linker where
55 GDB can try to place a breakpoint to monitor shared library
56 events.
57
58 If none of these symbols are found, or other errors occur, then
59 SVR4 systems will fall back to using a symbol as the "startup
60 mapping complete" breakpoint address. */
61
62 static const char * const solib_break_names[] =
63 {
64 "r_debug_state",
65 "_r_debug_state",
66 "_dl_debug_state",
67 "rtld_db_dlactivity",
68 "__dl_rtld_db_dlactivity",
69 "_rtld_debug_state",
70
71 NULL
72 };
73
74 static const char * const bkpt_names[] =
75 {
76 "_start",
77 "__start",
78 "main",
79 NULL
80 };
81
82 static const char * const main_name_list[] =
83 {
84 "main_$main",
85 NULL
86 };
87
88 /* What to do when a probe stop occurs. */
89
90 enum probe_action
91 {
92 /* Something went seriously wrong. Stop using probes and
93 revert to using the older interface. */
94 PROBES_INTERFACE_FAILED,
95
96 /* No action is required. The shared object list is still
97 valid. */
98 DO_NOTHING,
99
100 /* The shared object list should be reloaded entirely. */
101 FULL_RELOAD,
102
103 /* Attempt to incrementally update the shared object list. If
104 the update fails or is not possible, fall back to reloading
105 the list in full. */
106 UPDATE_OR_RELOAD,
107 };
108
109 /* A probe's name and its associated action. */
110
111 struct probe_info
112 {
113 /* The name of the probe. */
114 const char *name;
115
116 /* What to do when a probe stop occurs. */
117 enum probe_action action;
118 };
119
120 /* A list of named probes and their associated actions. If all
121 probes are present in the dynamic linker then the probes-based
122 interface will be used. */
123
124 static const struct probe_info probe_info[] =
125 {
126 { "init_start", DO_NOTHING },
127 { "init_complete", FULL_RELOAD },
128 { "map_start", DO_NOTHING },
129 { "map_failed", DO_NOTHING },
130 { "reloc_complete", UPDATE_OR_RELOAD },
131 { "unmap_start", DO_NOTHING },
132 { "unmap_complete", FULL_RELOAD },
133 };
134
135 #define NUM_PROBES ARRAY_SIZE (probe_info)
136
137 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
138 the same shared library. */
139
140 static int
141 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
142 {
143 if (strcmp (gdb_so_name, inferior_so_name) == 0)
144 return 1;
145
146 /* On Solaris, when starting inferior we think that dynamic linker is
147 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
148 contains /lib/ld.so.1. Sometimes one file is a link to another, but
149 sometimes they have identical content, but are not linked to each
150 other. We don't restrict this check for Solaris, but the chances
151 of running into this situation elsewhere are very low. */
152 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
153 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
154 return 1;
155
156 /* Similarly, we observed the same issue with sparc64, but with
157 different locations. */
158 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
159 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
160 return 1;
161
162 return 0;
163 }
164
165 static int
166 svr4_same (struct so_list *gdb, struct so_list *inferior)
167 {
168 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
169 }
170
171 static lm_info_svr4 *
172 lm_info_read (CORE_ADDR lm_addr)
173 {
174 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
175 gdb_byte *lm;
176 lm_info_svr4 *lm_info;
177 struct cleanup *back_to;
178
179 lm = (gdb_byte *) xmalloc (lmo->link_map_size);
180 back_to = make_cleanup (xfree, lm);
181
182 if (target_read_memory (lm_addr, lm, lmo->link_map_size) != 0)
183 {
184 warning (_("Error reading shared library list entry at %s"),
185 paddress (target_gdbarch (), lm_addr)),
186 lm_info = NULL;
187 }
188 else
189 {
190 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
191
192 lm_info = XCNEW (lm_info_svr4);
193 lm_info->lm_addr = lm_addr;
194
195 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
196 ptr_type);
197 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
198 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
199 ptr_type);
200 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
201 ptr_type);
202 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
203 ptr_type);
204 }
205
206 do_cleanups (back_to);
207
208 return lm_info;
209 }
210
211 static int
212 has_lm_dynamic_from_link_map (void)
213 {
214 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
215
216 return lmo->l_ld_offset >= 0;
217 }
218
219 static CORE_ADDR
220 lm_addr_check (const struct so_list *so, bfd *abfd)
221 {
222 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
223
224 if (!li->l_addr_p)
225 {
226 struct bfd_section *dyninfo_sect;
227 CORE_ADDR l_addr, l_dynaddr, dynaddr;
228
229 l_addr = li->l_addr_inferior;
230
231 if (! abfd || ! has_lm_dynamic_from_link_map ())
232 goto set_addr;
233
234 l_dynaddr = li->l_ld;
235
236 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
237 if (dyninfo_sect == NULL)
238 goto set_addr;
239
240 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
241
242 if (dynaddr + l_addr != l_dynaddr)
243 {
244 CORE_ADDR align = 0x1000;
245 CORE_ADDR minpagesize = align;
246
247 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
248 {
249 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
250 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
251 int i;
252
253 align = 1;
254
255 for (i = 0; i < ehdr->e_phnum; i++)
256 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
257 align = phdr[i].p_align;
258
259 minpagesize = get_elf_backend_data (abfd)->minpagesize;
260 }
261
262 /* Turn it into a mask. */
263 align--;
264
265 /* If the changes match the alignment requirements, we
266 assume we're using a core file that was generated by the
267 same binary, just prelinked with a different base offset.
268 If it doesn't match, we may have a different binary, the
269 same binary with the dynamic table loaded at an unrelated
270 location, or anything, really. To avoid regressions,
271 don't adjust the base offset in the latter case, although
272 odds are that, if things really changed, debugging won't
273 quite work.
274
275 One could expect more the condition
276 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
277 but the one below is relaxed for PPC. The PPC kernel supports
278 either 4k or 64k page sizes. To be prepared for 64k pages,
279 PPC ELF files are built using an alignment requirement of 64k.
280 However, when running on a kernel supporting 4k pages, the memory
281 mapping of the library may not actually happen on a 64k boundary!
282
283 (In the usual case where (l_addr & align) == 0, this check is
284 equivalent to the possibly expected check above.)
285
286 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
287
288 l_addr = l_dynaddr - dynaddr;
289
290 if ((l_addr & (minpagesize - 1)) == 0
291 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
292 {
293 if (info_verbose)
294 printf_unfiltered (_("Using PIC (Position Independent Code) "
295 "prelink displacement %s for \"%s\".\n"),
296 paddress (target_gdbarch (), l_addr),
297 so->so_name);
298 }
299 else
300 {
301 /* There is no way to verify the library file matches. prelink
302 can during prelinking of an unprelinked file (or unprelinking
303 of a prelinked file) shift the DYNAMIC segment by arbitrary
304 offset without any page size alignment. There is no way to
305 find out the ELF header and/or Program Headers for a limited
306 verification if it they match. One could do a verification
307 of the DYNAMIC segment. Still the found address is the best
308 one GDB could find. */
309
310 warning (_(".dynamic section for \"%s\" "
311 "is not at the expected address "
312 "(wrong library or version mismatch?)"), so->so_name);
313 }
314 }
315
316 set_addr:
317 li->l_addr = l_addr;
318 li->l_addr_p = 1;
319 }
320
321 return li->l_addr;
322 }
323
324 /* Per pspace SVR4 specific data. */
325
326 struct svr4_info
327 {
328 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
329
330 /* Validity flag for debug_loader_offset. */
331 int debug_loader_offset_p;
332
333 /* Load address for the dynamic linker, inferred. */
334 CORE_ADDR debug_loader_offset;
335
336 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
337 char *debug_loader_name;
338
339 /* Load map address for the main executable. */
340 CORE_ADDR main_lm_addr;
341
342 CORE_ADDR interp_text_sect_low;
343 CORE_ADDR interp_text_sect_high;
344 CORE_ADDR interp_plt_sect_low;
345 CORE_ADDR interp_plt_sect_high;
346
347 /* Nonzero if the list of objects was last obtained from the target
348 via qXfer:libraries-svr4:read. */
349 int using_xfer;
350
351 /* Table of struct probe_and_action instances, used by the
352 probes-based interface to map breakpoint addresses to probes
353 and their associated actions. Lookup is performed using
354 probe_and_action->probe->address. */
355 htab_t probes_table;
356
357 /* List of objects loaded into the inferior, used by the probes-
358 based interface. */
359 struct so_list *solib_list;
360 };
361
362 /* Per-program-space data key. */
363 static const struct program_space_data *solib_svr4_pspace_data;
364
365 /* Free the probes table. */
366
367 static void
368 free_probes_table (struct svr4_info *info)
369 {
370 if (info->probes_table == NULL)
371 return;
372
373 htab_delete (info->probes_table);
374 info->probes_table = NULL;
375 }
376
377 /* Free the solib list. */
378
379 static void
380 free_solib_list (struct svr4_info *info)
381 {
382 svr4_free_library_list (&info->solib_list);
383 info->solib_list = NULL;
384 }
385
386 static void
387 svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
388 {
389 struct svr4_info *info = (struct svr4_info *) arg;
390
391 free_probes_table (info);
392 free_solib_list (info);
393
394 xfree (info);
395 }
396
397 /* Get the current svr4 data. If none is found yet, add it now. This
398 function always returns a valid object. */
399
400 static struct svr4_info *
401 get_svr4_info (void)
402 {
403 struct svr4_info *info;
404
405 info = (struct svr4_info *) program_space_data (current_program_space,
406 solib_svr4_pspace_data);
407 if (info != NULL)
408 return info;
409
410 info = XCNEW (struct svr4_info);
411 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
412 return info;
413 }
414
415 /* Local function prototypes */
416
417 static int match_main (const char *);
418
419 /* Read program header TYPE from inferior memory. The header is found
420 by scanning the OS auxillary vector.
421
422 If TYPE == -1, return the program headers instead of the contents of
423 one program header.
424
425 Return a pointer to allocated memory holding the program header contents,
426 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
427 size of those contents is returned to P_SECT_SIZE. Likewise, the target
428 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE and
429 the base address of the section is returned in BASE_ADDR. */
430
431 static gdb_byte *
432 read_program_header (int type, int *p_sect_size, int *p_arch_size,
433 CORE_ADDR *base_addr)
434 {
435 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
436 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
437 int arch_size, sect_size;
438 CORE_ADDR sect_addr;
439 gdb_byte *buf;
440 int pt_phdr_p = 0;
441
442 /* Get required auxv elements from target. */
443 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
444 return 0;
445 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
446 return 0;
447 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
448 return 0;
449 if (!at_phdr || !at_phnum)
450 return 0;
451
452 /* Determine ELF architecture type. */
453 if (at_phent == sizeof (Elf32_External_Phdr))
454 arch_size = 32;
455 else if (at_phent == sizeof (Elf64_External_Phdr))
456 arch_size = 64;
457 else
458 return 0;
459
460 /* Find the requested segment. */
461 if (type == -1)
462 {
463 sect_addr = at_phdr;
464 sect_size = at_phent * at_phnum;
465 }
466 else if (arch_size == 32)
467 {
468 Elf32_External_Phdr phdr;
469 int i;
470
471 /* Search for requested PHDR. */
472 for (i = 0; i < at_phnum; i++)
473 {
474 int p_type;
475
476 if (target_read_memory (at_phdr + i * sizeof (phdr),
477 (gdb_byte *)&phdr, sizeof (phdr)))
478 return 0;
479
480 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
481 4, byte_order);
482
483 if (p_type == PT_PHDR)
484 {
485 pt_phdr_p = 1;
486 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
487 4, byte_order);
488 }
489
490 if (p_type == type)
491 break;
492 }
493
494 if (i == at_phnum)
495 return 0;
496
497 /* Retrieve address and size. */
498 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
499 4, byte_order);
500 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
501 4, byte_order);
502 }
503 else
504 {
505 Elf64_External_Phdr phdr;
506 int i;
507
508 /* Search for requested PHDR. */
509 for (i = 0; i < at_phnum; i++)
510 {
511 int p_type;
512
513 if (target_read_memory (at_phdr + i * sizeof (phdr),
514 (gdb_byte *)&phdr, sizeof (phdr)))
515 return 0;
516
517 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
518 4, byte_order);
519
520 if (p_type == PT_PHDR)
521 {
522 pt_phdr_p = 1;
523 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
524 8, byte_order);
525 }
526
527 if (p_type == type)
528 break;
529 }
530
531 if (i == at_phnum)
532 return 0;
533
534 /* Retrieve address and size. */
535 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
536 8, byte_order);
537 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
538 8, byte_order);
539 }
540
541 /* PT_PHDR is optional, but we really need it
542 for PIE to make this work in general. */
543
544 if (pt_phdr_p)
545 {
546 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
547 Relocation offset is the difference between the two. */
548 sect_addr = sect_addr + (at_phdr - pt_phdr);
549 }
550
551 /* Read in requested program header. */
552 buf = (gdb_byte *) xmalloc (sect_size);
553 if (target_read_memory (sect_addr, buf, sect_size))
554 {
555 xfree (buf);
556 return NULL;
557 }
558
559 if (p_arch_size)
560 *p_arch_size = arch_size;
561 if (p_sect_size)
562 *p_sect_size = sect_size;
563 if (base_addr)
564 *base_addr = sect_addr;
565
566 return buf;
567 }
568
569
570 /* Return program interpreter string. */
571 static char *
572 find_program_interpreter (void)
573 {
574 gdb_byte *buf = NULL;
575
576 /* If we have an exec_bfd, use its section table. */
577 if (exec_bfd
578 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
579 {
580 struct bfd_section *interp_sect;
581
582 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
583 if (interp_sect != NULL)
584 {
585 int sect_size = bfd_section_size (exec_bfd, interp_sect);
586
587 buf = (gdb_byte *) xmalloc (sect_size);
588 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
589 }
590 }
591
592 /* If we didn't find it, use the target auxillary vector. */
593 if (!buf)
594 buf = read_program_header (PT_INTERP, NULL, NULL, NULL);
595
596 return (char *) buf;
597 }
598
599
600 /* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is
601 found, 1 is returned and the corresponding PTR is set. */
602
603 static int
604 scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr,
605 CORE_ADDR *ptr_addr)
606 {
607 int arch_size, step, sect_size;
608 long current_dyntag;
609 CORE_ADDR dyn_ptr, dyn_addr;
610 gdb_byte *bufend, *bufstart, *buf;
611 Elf32_External_Dyn *x_dynp_32;
612 Elf64_External_Dyn *x_dynp_64;
613 struct bfd_section *sect;
614 struct target_section *target_section;
615
616 if (abfd == NULL)
617 return 0;
618
619 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
620 return 0;
621
622 arch_size = bfd_get_arch_size (abfd);
623 if (arch_size == -1)
624 return 0;
625
626 /* Find the start address of the .dynamic section. */
627 sect = bfd_get_section_by_name (abfd, ".dynamic");
628 if (sect == NULL)
629 return 0;
630
631 for (target_section = current_target_sections->sections;
632 target_section < current_target_sections->sections_end;
633 target_section++)
634 if (sect == target_section->the_bfd_section)
635 break;
636 if (target_section < current_target_sections->sections_end)
637 dyn_addr = target_section->addr;
638 else
639 {
640 /* ABFD may come from OBJFILE acting only as a symbol file without being
641 loaded into the target (see add_symbol_file_command). This case is
642 such fallback to the file VMA address without the possibility of
643 having the section relocated to its actual in-memory address. */
644
645 dyn_addr = bfd_section_vma (abfd, sect);
646 }
647
648 /* Read in .dynamic from the BFD. We will get the actual value
649 from memory later. */
650 sect_size = bfd_section_size (abfd, sect);
651 buf = bufstart = (gdb_byte *) alloca (sect_size);
652 if (!bfd_get_section_contents (abfd, sect,
653 buf, 0, sect_size))
654 return 0;
655
656 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
657 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
658 : sizeof (Elf64_External_Dyn);
659 for (bufend = buf + sect_size;
660 buf < bufend;
661 buf += step)
662 {
663 if (arch_size == 32)
664 {
665 x_dynp_32 = (Elf32_External_Dyn *) buf;
666 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
667 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
668 }
669 else
670 {
671 x_dynp_64 = (Elf64_External_Dyn *) buf;
672 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
673 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
674 }
675 if (current_dyntag == DT_NULL)
676 return 0;
677 if (current_dyntag == desired_dyntag)
678 {
679 /* If requested, try to read the runtime value of this .dynamic
680 entry. */
681 if (ptr)
682 {
683 struct type *ptr_type;
684 gdb_byte ptr_buf[8];
685 CORE_ADDR ptr_addr_1;
686
687 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
688 ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8;
689 if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0)
690 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
691 *ptr = dyn_ptr;
692 if (ptr_addr)
693 *ptr_addr = dyn_addr + (buf - bufstart);
694 }
695 return 1;
696 }
697 }
698
699 return 0;
700 }
701
702 /* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
703 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
704 is returned and the corresponding PTR is set. */
705
706 static int
707 scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
708 CORE_ADDR *ptr_addr)
709 {
710 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
711 int sect_size, arch_size, step;
712 long current_dyntag;
713 CORE_ADDR dyn_ptr;
714 CORE_ADDR base_addr;
715 gdb_byte *bufend, *bufstart, *buf;
716
717 /* Read in .dynamic section. */
718 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size,
719 &base_addr);
720 if (!buf)
721 return 0;
722
723 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
724 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
725 : sizeof (Elf64_External_Dyn);
726 for (bufend = buf + sect_size;
727 buf < bufend;
728 buf += step)
729 {
730 if (arch_size == 32)
731 {
732 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
733
734 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
735 4, byte_order);
736 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
737 4, byte_order);
738 }
739 else
740 {
741 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
742
743 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
744 8, byte_order);
745 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
746 8, byte_order);
747 }
748 if (current_dyntag == DT_NULL)
749 break;
750
751 if (current_dyntag == desired_dyntag)
752 {
753 if (ptr)
754 *ptr = dyn_ptr;
755
756 if (ptr_addr)
757 *ptr_addr = base_addr + buf - bufstart;
758
759 xfree (bufstart);
760 return 1;
761 }
762 }
763
764 xfree (bufstart);
765 return 0;
766 }
767
768 /* Locate the base address of dynamic linker structs for SVR4 elf
769 targets.
770
771 For SVR4 elf targets the address of the dynamic linker's runtime
772 structure is contained within the dynamic info section in the
773 executable file. The dynamic section is also mapped into the
774 inferior address space. Because the runtime loader fills in the
775 real address before starting the inferior, we have to read in the
776 dynamic info section from the inferior address space.
777 If there are any errors while trying to find the address, we
778 silently return 0, otherwise the found address is returned. */
779
780 static CORE_ADDR
781 elf_locate_base (void)
782 {
783 struct bound_minimal_symbol msymbol;
784 CORE_ADDR dyn_ptr, dyn_ptr_addr;
785
786 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
787 instead of DT_DEBUG, although they sometimes contain an unused
788 DT_DEBUG. */
789 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr, NULL)
790 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
791 {
792 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
793 gdb_byte *pbuf;
794 int pbuf_size = TYPE_LENGTH (ptr_type);
795
796 pbuf = (gdb_byte *) alloca (pbuf_size);
797 /* DT_MIPS_RLD_MAP contains a pointer to the address
798 of the dynamic link structure. */
799 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
800 return 0;
801 return extract_typed_address (pbuf, ptr_type);
802 }
803
804 /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
805 because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
806 in non-PIE. */
807 if (scan_dyntag (DT_MIPS_RLD_MAP_REL, exec_bfd, &dyn_ptr, &dyn_ptr_addr)
808 || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
809 {
810 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
811 gdb_byte *pbuf;
812 int pbuf_size = TYPE_LENGTH (ptr_type);
813
814 pbuf = (gdb_byte *) alloca (pbuf_size);
815 /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
816 DT slot to the address of the dynamic link structure. */
817 if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
818 return 0;
819 return extract_typed_address (pbuf, ptr_type);
820 }
821
822 /* Find DT_DEBUG. */
823 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr, NULL)
824 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
825 return dyn_ptr;
826
827 /* This may be a static executable. Look for the symbol
828 conventionally named _r_debug, as a last resort. */
829 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
830 if (msymbol.minsym != NULL)
831 return BMSYMBOL_VALUE_ADDRESS (msymbol);
832
833 /* DT_DEBUG entry not found. */
834 return 0;
835 }
836
837 /* Locate the base address of dynamic linker structs.
838
839 For both the SunOS and SVR4 shared library implementations, if the
840 inferior executable has been linked dynamically, there is a single
841 address somewhere in the inferior's data space which is the key to
842 locating all of the dynamic linker's runtime structures. This
843 address is the value of the debug base symbol. The job of this
844 function is to find and return that address, or to return 0 if there
845 is no such address (the executable is statically linked for example).
846
847 For SunOS, the job is almost trivial, since the dynamic linker and
848 all of it's structures are statically linked to the executable at
849 link time. Thus the symbol for the address we are looking for has
850 already been added to the minimal symbol table for the executable's
851 objfile at the time the symbol file's symbols were read, and all we
852 have to do is look it up there. Note that we explicitly do NOT want
853 to find the copies in the shared library.
854
855 The SVR4 version is a bit more complicated because the address
856 is contained somewhere in the dynamic info section. We have to go
857 to a lot more work to discover the address of the debug base symbol.
858 Because of this complexity, we cache the value we find and return that
859 value on subsequent invocations. Note there is no copy in the
860 executable symbol tables. */
861
862 static CORE_ADDR
863 locate_base (struct svr4_info *info)
864 {
865 /* Check to see if we have a currently valid address, and if so, avoid
866 doing all this work again and just return the cached address. If
867 we have no cached address, try to locate it in the dynamic info
868 section for ELF executables. There's no point in doing any of this
869 though if we don't have some link map offsets to work with. */
870
871 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
872 info->debug_base = elf_locate_base ();
873 return info->debug_base;
874 }
875
876 /* Find the first element in the inferior's dynamic link map, and
877 return its address in the inferior. Return zero if the address
878 could not be determined.
879
880 FIXME: Perhaps we should validate the info somehow, perhaps by
881 checking r_version for a known version number, or r_state for
882 RT_CONSISTENT. */
883
884 static CORE_ADDR
885 solib_svr4_r_map (struct svr4_info *info)
886 {
887 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
888 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
889 CORE_ADDR addr = 0;
890
891 TRY
892 {
893 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
894 ptr_type);
895 }
896 CATCH (ex, RETURN_MASK_ERROR)
897 {
898 exception_print (gdb_stderr, ex);
899 }
900 END_CATCH
901
902 return addr;
903 }
904
905 /* Find r_brk from the inferior's debug base. */
906
907 static CORE_ADDR
908 solib_svr4_r_brk (struct svr4_info *info)
909 {
910 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
911 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
912
913 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
914 ptr_type);
915 }
916
917 /* Find the link map for the dynamic linker (if it is not in the
918 normal list of loaded shared objects). */
919
920 static CORE_ADDR
921 solib_svr4_r_ldsomap (struct svr4_info *info)
922 {
923 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
924 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
925 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
926 ULONGEST version = 0;
927
928 TRY
929 {
930 /* Check version, and return zero if `struct r_debug' doesn't have
931 the r_ldsomap member. */
932 version
933 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
934 lmo->r_version_size, byte_order);
935 }
936 CATCH (ex, RETURN_MASK_ERROR)
937 {
938 exception_print (gdb_stderr, ex);
939 }
940 END_CATCH
941
942 if (version < 2 || lmo->r_ldsomap_offset == -1)
943 return 0;
944
945 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
946 ptr_type);
947 }
948
949 /* On Solaris systems with some versions of the dynamic linker,
950 ld.so's l_name pointer points to the SONAME in the string table
951 rather than into writable memory. So that GDB can find shared
952 libraries when loading a core file generated by gcore, ensure that
953 memory areas containing the l_name string are saved in the core
954 file. */
955
956 static int
957 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
958 {
959 struct svr4_info *info;
960 CORE_ADDR ldsomap;
961 struct so_list *newobj;
962 struct cleanup *old_chain;
963 CORE_ADDR name_lm;
964
965 info = get_svr4_info ();
966
967 info->debug_base = 0;
968 locate_base (info);
969 if (!info->debug_base)
970 return 0;
971
972 ldsomap = solib_svr4_r_ldsomap (info);
973 if (!ldsomap)
974 return 0;
975
976 newobj = XCNEW (struct so_list);
977 old_chain = make_cleanup (xfree, newobj);
978 lm_info_svr4 *li = lm_info_read (ldsomap);
979 newobj->lm_info = li;
980 make_cleanup (xfree, newobj->lm_info);
981 name_lm = li != NULL ? li->l_name : 0;
982 do_cleanups (old_chain);
983
984 return (name_lm >= vaddr && name_lm < vaddr + size);
985 }
986
987 /* Implement the "open_symbol_file_object" target_so_ops method.
988
989 If no open symbol file, attempt to locate and open the main symbol
990 file. On SVR4 systems, this is the first link map entry. If its
991 name is here, we can open it. Useful when attaching to a process
992 without first loading its symbol file. */
993
994 static int
995 open_symbol_file_object (void *from_ttyp)
996 {
997 CORE_ADDR lm, l_name;
998 char *filename;
999 int errcode;
1000 int from_tty = *(int *)from_ttyp;
1001 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
1002 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
1003 int l_name_size = TYPE_LENGTH (ptr_type);
1004 gdb_byte *l_name_buf = (gdb_byte *) xmalloc (l_name_size);
1005 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
1006 struct svr4_info *info = get_svr4_info ();
1007 symfile_add_flags add_flags = 0;
1008
1009 if (from_tty)
1010 add_flags |= SYMFILE_VERBOSE;
1011
1012 if (symfile_objfile)
1013 if (!query (_("Attempt to reload symbols from process? ")))
1014 {
1015 do_cleanups (cleanups);
1016 return 0;
1017 }
1018
1019 /* Always locate the debug struct, in case it has moved. */
1020 info->debug_base = 0;
1021 if (locate_base (info) == 0)
1022 {
1023 do_cleanups (cleanups);
1024 return 0; /* failed somehow... */
1025 }
1026
1027 /* First link map member should be the executable. */
1028 lm = solib_svr4_r_map (info);
1029 if (lm == 0)
1030 {
1031 do_cleanups (cleanups);
1032 return 0; /* failed somehow... */
1033 }
1034
1035 /* Read address of name from target memory to GDB. */
1036 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
1037
1038 /* Convert the address to host format. */
1039 l_name = extract_typed_address (l_name_buf, ptr_type);
1040
1041 if (l_name == 0)
1042 {
1043 do_cleanups (cleanups);
1044 return 0; /* No filename. */
1045 }
1046
1047 /* Now fetch the filename from target memory. */
1048 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1049 make_cleanup (xfree, filename);
1050
1051 if (errcode)
1052 {
1053 warning (_("failed to read exec filename from attached file: %s"),
1054 safe_strerror (errcode));
1055 do_cleanups (cleanups);
1056 return 0;
1057 }
1058
1059 /* Have a pathname: read the symbol file. */
1060 symbol_file_add_main (filename, add_flags);
1061
1062 do_cleanups (cleanups);
1063 return 1;
1064 }
1065
1066 /* Data exchange structure for the XML parser as returned by
1067 svr4_current_sos_via_xfer_libraries. */
1068
1069 struct svr4_library_list
1070 {
1071 struct so_list *head, **tailp;
1072
1073 /* Inferior address of struct link_map used for the main executable. It is
1074 NULL if not known. */
1075 CORE_ADDR main_lm;
1076 };
1077
1078 /* Implementation for target_so_ops.free_so. */
1079
1080 static void
1081 svr4_free_so (struct so_list *so)
1082 {
1083 xfree (so->lm_info);
1084 }
1085
1086 /* Implement target_so_ops.clear_so. */
1087
1088 static void
1089 svr4_clear_so (struct so_list *so)
1090 {
1091 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1092
1093 if (li != NULL)
1094 li->l_addr_p = 0;
1095 }
1096
1097 /* Free so_list built so far (called via cleanup). */
1098
1099 static void
1100 svr4_free_library_list (void *p_list)
1101 {
1102 struct so_list *list = *(struct so_list **) p_list;
1103
1104 while (list != NULL)
1105 {
1106 struct so_list *next = list->next;
1107
1108 free_so (list);
1109 list = next;
1110 }
1111 }
1112
1113 /* Copy library list. */
1114
1115 static struct so_list *
1116 svr4_copy_library_list (struct so_list *src)
1117 {
1118 struct so_list *dst = NULL;
1119 struct so_list **link = &dst;
1120
1121 while (src != NULL)
1122 {
1123 struct so_list *newobj;
1124
1125 newobj = XNEW (struct so_list);
1126 memcpy (newobj, src, sizeof (struct so_list));
1127
1128 newobj->lm_info = XNEW (lm_info_svr4);
1129 memcpy (newobj->lm_info, src->lm_info, sizeof (lm_info_svr4));
1130
1131 newobj->next = NULL;
1132 *link = newobj;
1133 link = &newobj->next;
1134
1135 src = src->next;
1136 }
1137
1138 return dst;
1139 }
1140
1141 #ifdef HAVE_LIBEXPAT
1142
1143 #include "xml-support.h"
1144
1145 /* Handle the start of a <library> element. Note: new elements are added
1146 at the tail of the list, keeping the list in order. */
1147
1148 static void
1149 library_list_start_library (struct gdb_xml_parser *parser,
1150 const struct gdb_xml_element *element,
1151 void *user_data, VEC(gdb_xml_value_s) *attributes)
1152 {
1153 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1154 const char *name
1155 = (const char *) xml_find_attribute (attributes, "name")->value;
1156 ULONGEST *lmp
1157 = (ULONGEST *) xml_find_attribute (attributes, "lm")->value;
1158 ULONGEST *l_addrp
1159 = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value;
1160 ULONGEST *l_ldp
1161 = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value;
1162 struct so_list *new_elem;
1163
1164 new_elem = XCNEW (struct so_list);
1165 lm_info_svr4 *li = XCNEW (lm_info_svr4);
1166 new_elem->lm_info = li;
1167 li->lm_addr = *lmp;
1168 li->l_addr_inferior = *l_addrp;
1169 li->l_ld = *l_ldp;
1170
1171 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1172 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1173 strcpy (new_elem->so_original_name, new_elem->so_name);
1174
1175 *list->tailp = new_elem;
1176 list->tailp = &new_elem->next;
1177 }
1178
1179 /* Handle the start of a <library-list-svr4> element. */
1180
1181 static void
1182 svr4_library_list_start_list (struct gdb_xml_parser *parser,
1183 const struct gdb_xml_element *element,
1184 void *user_data, VEC(gdb_xml_value_s) *attributes)
1185 {
1186 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1187 const char *version
1188 = (const char *) xml_find_attribute (attributes, "version")->value;
1189 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1190
1191 if (strcmp (version, "1.0") != 0)
1192 gdb_xml_error (parser,
1193 _("SVR4 Library list has unsupported version \"%s\""),
1194 version);
1195
1196 if (main_lm)
1197 list->main_lm = *(ULONGEST *) main_lm->value;
1198 }
1199
1200 /* The allowed elements and attributes for an XML library list.
1201 The root element is a <library-list>. */
1202
1203 static const struct gdb_xml_attribute svr4_library_attributes[] =
1204 {
1205 { "name", GDB_XML_AF_NONE, NULL, NULL },
1206 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1207 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1208 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1209 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1210 };
1211
1212 static const struct gdb_xml_element svr4_library_list_children[] =
1213 {
1214 {
1215 "library", svr4_library_attributes, NULL,
1216 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1217 library_list_start_library, NULL
1218 },
1219 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1220 };
1221
1222 static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1223 {
1224 { "version", GDB_XML_AF_NONE, NULL, NULL },
1225 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1226 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1227 };
1228
1229 static const struct gdb_xml_element svr4_library_list_elements[] =
1230 {
1231 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1232 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1233 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1234 };
1235
1236 /* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1237
1238 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1239 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1240 empty, caller is responsible for freeing all its entries. */
1241
1242 static int
1243 svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1244 {
1245 struct cleanup *back_to = make_cleanup (svr4_free_library_list,
1246 &list->head);
1247
1248 memset (list, 0, sizeof (*list));
1249 list->tailp = &list->head;
1250 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
1251 svr4_library_list_elements, document, list) == 0)
1252 {
1253 /* Parsed successfully, keep the result. */
1254 discard_cleanups (back_to);
1255 return 1;
1256 }
1257
1258 do_cleanups (back_to);
1259 return 0;
1260 }
1261
1262 /* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
1263
1264 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1265 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1266 empty, caller is responsible for freeing all its entries.
1267
1268 Note that ANNEX must be NULL if the remote does not explicitly allow
1269 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1270 this can be checked using target_augmented_libraries_svr4_read (). */
1271
1272 static int
1273 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1274 const char *annex)
1275 {
1276 char *svr4_library_document;
1277 int result;
1278 struct cleanup *back_to;
1279
1280 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1281
1282 /* Fetch the list of shared libraries. */
1283 svr4_library_document = target_read_stralloc (&current_target,
1284 TARGET_OBJECT_LIBRARIES_SVR4,
1285 annex);
1286 if (svr4_library_document == NULL)
1287 return 0;
1288
1289 back_to = make_cleanup (xfree, svr4_library_document);
1290 result = svr4_parse_libraries (svr4_library_document, list);
1291 do_cleanups (back_to);
1292
1293 return result;
1294 }
1295
1296 #else
1297
1298 static int
1299 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1300 const char *annex)
1301 {
1302 return 0;
1303 }
1304
1305 #endif
1306
1307 /* If no shared library information is available from the dynamic
1308 linker, build a fallback list from other sources. */
1309
1310 static struct so_list *
1311 svr4_default_sos (void)
1312 {
1313 struct svr4_info *info = get_svr4_info ();
1314 struct so_list *newobj;
1315
1316 if (!info->debug_loader_offset_p)
1317 return NULL;
1318
1319 newobj = XCNEW (struct so_list);
1320 lm_info_svr4 *li = XCNEW (lm_info_svr4);
1321 newobj->lm_info = li;
1322
1323 /* Nothing will ever check the other fields if we set l_addr_p. */
1324 li->l_addr = info->debug_loader_offset;
1325 li->l_addr_p = 1;
1326
1327 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1328 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1329 strcpy (newobj->so_original_name, newobj->so_name);
1330
1331 return newobj;
1332 }
1333
1334 /* Read the whole inferior libraries chain starting at address LM.
1335 Expect the first entry in the chain's previous entry to be PREV_LM.
1336 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1337 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1338 to it. Returns nonzero upon success. If zero is returned the
1339 entries stored to LINK_PTR_PTR are still valid although they may
1340 represent only part of the inferior library list. */
1341
1342 static int
1343 svr4_read_so_list (CORE_ADDR lm, CORE_ADDR prev_lm,
1344 struct so_list ***link_ptr_ptr, int ignore_first)
1345 {
1346 CORE_ADDR first_l_name = 0;
1347 CORE_ADDR next_lm;
1348
1349 for (; lm != 0; prev_lm = lm, lm = next_lm)
1350 {
1351 struct so_list *newobj;
1352 struct cleanup *old_chain;
1353 int errcode;
1354 char *buffer;
1355
1356 newobj = XCNEW (struct so_list);
1357 old_chain = make_cleanup_free_so (newobj);
1358
1359 lm_info_svr4 *li = lm_info_read (lm);
1360 newobj->lm_info = li;
1361 if (li == NULL)
1362 {
1363 do_cleanups (old_chain);
1364 return 0;
1365 }
1366
1367 next_lm = li->l_next;
1368
1369 if (li->l_prev != prev_lm)
1370 {
1371 warning (_("Corrupted shared library list: %s != %s"),
1372 paddress (target_gdbarch (), prev_lm),
1373 paddress (target_gdbarch (), li->l_prev));
1374 do_cleanups (old_chain);
1375 return 0;
1376 }
1377
1378 /* For SVR4 versions, the first entry in the link map is for the
1379 inferior executable, so we must ignore it. For some versions of
1380 SVR4, it has no name. For others (Solaris 2.3 for example), it
1381 does have a name, so we can no longer use a missing name to
1382 decide when to ignore it. */
1383 if (ignore_first && li->l_prev == 0)
1384 {
1385 struct svr4_info *info = get_svr4_info ();
1386
1387 first_l_name = li->l_name;
1388 info->main_lm_addr = li->lm_addr;
1389 do_cleanups (old_chain);
1390 continue;
1391 }
1392
1393 /* Extract this shared object's name. */
1394 target_read_string (li->l_name, &buffer, SO_NAME_MAX_PATH_SIZE - 1,
1395 &errcode);
1396 if (errcode != 0)
1397 {
1398 /* If this entry's l_name address matches that of the
1399 inferior executable, then this is not a normal shared
1400 object, but (most likely) a vDSO. In this case, silently
1401 skip it; otherwise emit a warning. */
1402 if (first_l_name == 0 || li->l_name != first_l_name)
1403 warning (_("Can't read pathname for load map: %s."),
1404 safe_strerror (errcode));
1405 do_cleanups (old_chain);
1406 continue;
1407 }
1408
1409 strncpy (newobj->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1410 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1411 strcpy (newobj->so_original_name, newobj->so_name);
1412 xfree (buffer);
1413
1414 /* If this entry has no name, or its name matches the name
1415 for the main executable, don't include it in the list. */
1416 if (! newobj->so_name[0] || match_main (newobj->so_name))
1417 {
1418 do_cleanups (old_chain);
1419 continue;
1420 }
1421
1422 discard_cleanups (old_chain);
1423 newobj->next = 0;
1424 **link_ptr_ptr = newobj;
1425 *link_ptr_ptr = &newobj->next;
1426 }
1427
1428 return 1;
1429 }
1430
1431 /* Read the full list of currently loaded shared objects directly
1432 from the inferior, without referring to any libraries read and
1433 stored by the probes interface. Handle special cases relating
1434 to the first elements of the list. */
1435
1436 static struct so_list *
1437 svr4_current_sos_direct (struct svr4_info *info)
1438 {
1439 CORE_ADDR lm;
1440 struct so_list *head = NULL;
1441 struct so_list **link_ptr = &head;
1442 struct cleanup *back_to;
1443 int ignore_first;
1444 struct svr4_library_list library_list;
1445
1446 /* Fall back to manual examination of the target if the packet is not
1447 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1448 tests a case where gdbserver cannot find the shared libraries list while
1449 GDB itself is able to find it via SYMFILE_OBJFILE.
1450
1451 Unfortunately statically linked inferiors will also fall back through this
1452 suboptimal code path. */
1453
1454 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1455 NULL);
1456 if (info->using_xfer)
1457 {
1458 if (library_list.main_lm)
1459 info->main_lm_addr = library_list.main_lm;
1460
1461 return library_list.head ? library_list.head : svr4_default_sos ();
1462 }
1463
1464 /* Always locate the debug struct, in case it has moved. */
1465 info->debug_base = 0;
1466 locate_base (info);
1467
1468 /* If we can't find the dynamic linker's base structure, this
1469 must not be a dynamically linked executable. Hmm. */
1470 if (! info->debug_base)
1471 return svr4_default_sos ();
1472
1473 /* Assume that everything is a library if the dynamic loader was loaded
1474 late by a static executable. */
1475 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1476 ignore_first = 0;
1477 else
1478 ignore_first = 1;
1479
1480 back_to = make_cleanup (svr4_free_library_list, &head);
1481
1482 /* Walk the inferior's link map list, and build our list of
1483 `struct so_list' nodes. */
1484 lm = solib_svr4_r_map (info);
1485 if (lm)
1486 svr4_read_so_list (lm, 0, &link_ptr, ignore_first);
1487
1488 /* On Solaris, the dynamic linker is not in the normal list of
1489 shared objects, so make sure we pick it up too. Having
1490 symbol information for the dynamic linker is quite crucial
1491 for skipping dynamic linker resolver code. */
1492 lm = solib_svr4_r_ldsomap (info);
1493 if (lm)
1494 svr4_read_so_list (lm, 0, &link_ptr, 0);
1495
1496 discard_cleanups (back_to);
1497
1498 if (head == NULL)
1499 return svr4_default_sos ();
1500
1501 return head;
1502 }
1503
1504 /* Implement the main part of the "current_sos" target_so_ops
1505 method. */
1506
1507 static struct so_list *
1508 svr4_current_sos_1 (void)
1509 {
1510 struct svr4_info *info = get_svr4_info ();
1511
1512 /* If the solib list has been read and stored by the probes
1513 interface then we return a copy of the stored list. */
1514 if (info->solib_list != NULL)
1515 return svr4_copy_library_list (info->solib_list);
1516
1517 /* Otherwise obtain the solib list directly from the inferior. */
1518 return svr4_current_sos_direct (info);
1519 }
1520
1521 /* Implement the "current_sos" target_so_ops method. */
1522
1523 static struct so_list *
1524 svr4_current_sos (void)
1525 {
1526 struct so_list *so_head = svr4_current_sos_1 ();
1527 struct mem_range vsyscall_range;
1528
1529 /* Filter out the vDSO module, if present. Its symbol file would
1530 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1531 managed by symfile-mem.c:add_vsyscall_page. */
1532 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1533 && vsyscall_range.length != 0)
1534 {
1535 struct so_list **sop;
1536
1537 sop = &so_head;
1538 while (*sop != NULL)
1539 {
1540 struct so_list *so = *sop;
1541
1542 /* We can't simply match the vDSO by starting address alone,
1543 because lm_info->l_addr_inferior (and also l_addr) do not
1544 necessarily represent the real starting address of the
1545 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1546 field (the ".dynamic" section of the shared object)
1547 always points at the absolute/resolved address though.
1548 So check whether that address is inside the vDSO's
1549 mapping instead.
1550
1551 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1552 0-based ELF, and we see:
1553
1554 (gdb) info auxv
1555 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1556 (gdb) p/x *_r_debug.r_map.l_next
1557 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1558
1559 And on Linux 2.6.32 (x86_64) we see:
1560
1561 (gdb) info auxv
1562 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1563 (gdb) p/x *_r_debug.r_map.l_next
1564 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1565
1566 Dumping that vDSO shows:
1567
1568 (gdb) info proc mappings
1569 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1570 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1571 # readelf -Wa vdso.bin
1572 [...]
1573 Entry point address: 0xffffffffff700700
1574 [...]
1575 Section Headers:
1576 [Nr] Name Type Address Off Size
1577 [ 0] NULL 0000000000000000 000000 000000
1578 [ 1] .hash HASH ffffffffff700120 000120 000038
1579 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1580 [...]
1581 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1582 */
1583
1584 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1585
1586 if (address_in_mem_range (li->l_ld, &vsyscall_range))
1587 {
1588 *sop = so->next;
1589 free_so (so);
1590 break;
1591 }
1592
1593 sop = &so->next;
1594 }
1595 }
1596
1597 return so_head;
1598 }
1599
1600 /* Get the address of the link_map for a given OBJFILE. */
1601
1602 CORE_ADDR
1603 svr4_fetch_objfile_link_map (struct objfile *objfile)
1604 {
1605 struct so_list *so;
1606 struct svr4_info *info = get_svr4_info ();
1607
1608 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1609 if (info->main_lm_addr == 0)
1610 solib_add (NULL, 0, auto_solib_add);
1611
1612 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1613 if (objfile == symfile_objfile)
1614 return info->main_lm_addr;
1615
1616 /* The other link map addresses may be found by examining the list
1617 of shared libraries. */
1618 for (so = master_so_list (); so; so = so->next)
1619 if (so->objfile == objfile)
1620 {
1621 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1622
1623 return li->lm_addr;
1624 }
1625
1626 /* Not found! */
1627 return 0;
1628 }
1629
1630 /* On some systems, the only way to recognize the link map entry for
1631 the main executable file is by looking at its name. Return
1632 non-zero iff SONAME matches one of the known main executable names. */
1633
1634 static int
1635 match_main (const char *soname)
1636 {
1637 const char * const *mainp;
1638
1639 for (mainp = main_name_list; *mainp != NULL; mainp++)
1640 {
1641 if (strcmp (soname, *mainp) == 0)
1642 return (1);
1643 }
1644
1645 return (0);
1646 }
1647
1648 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1649 SVR4 run time loader. */
1650
1651 int
1652 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1653 {
1654 struct svr4_info *info = get_svr4_info ();
1655
1656 return ((pc >= info->interp_text_sect_low
1657 && pc < info->interp_text_sect_high)
1658 || (pc >= info->interp_plt_sect_low
1659 && pc < info->interp_plt_sect_high)
1660 || in_plt_section (pc)
1661 || in_gnu_ifunc_stub (pc));
1662 }
1663
1664 /* Given an executable's ABFD and target, compute the entry-point
1665 address. */
1666
1667 static CORE_ADDR
1668 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1669 {
1670 CORE_ADDR addr;
1671
1672 /* KevinB wrote ... for most targets, the address returned by
1673 bfd_get_start_address() is the entry point for the start
1674 function. But, for some targets, bfd_get_start_address() returns
1675 the address of a function descriptor from which the entry point
1676 address may be extracted. This address is extracted by
1677 gdbarch_convert_from_func_ptr_addr(). The method
1678 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1679 function for targets which don't use function descriptors. */
1680 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
1681 bfd_get_start_address (abfd),
1682 targ);
1683 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
1684 }
1685
1686 /* A probe and its associated action. */
1687
1688 struct probe_and_action
1689 {
1690 /* The probe. */
1691 struct probe *probe;
1692
1693 /* The relocated address of the probe. */
1694 CORE_ADDR address;
1695
1696 /* The action. */
1697 enum probe_action action;
1698 };
1699
1700 /* Returns a hash code for the probe_and_action referenced by p. */
1701
1702 static hashval_t
1703 hash_probe_and_action (const void *p)
1704 {
1705 const struct probe_and_action *pa = (const struct probe_and_action *) p;
1706
1707 return (hashval_t) pa->address;
1708 }
1709
1710 /* Returns non-zero if the probe_and_actions referenced by p1 and p2
1711 are equal. */
1712
1713 static int
1714 equal_probe_and_action (const void *p1, const void *p2)
1715 {
1716 const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
1717 const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;
1718
1719 return pa1->address == pa2->address;
1720 }
1721
1722 /* Register a solib event probe and its associated action in the
1723 probes table. */
1724
1725 static void
1726 register_solib_event_probe (struct probe *probe, CORE_ADDR address,
1727 enum probe_action action)
1728 {
1729 struct svr4_info *info = get_svr4_info ();
1730 struct probe_and_action lookup, *pa;
1731 void **slot;
1732
1733 /* Create the probes table, if necessary. */
1734 if (info->probes_table == NULL)
1735 info->probes_table = htab_create_alloc (1, hash_probe_and_action,
1736 equal_probe_and_action,
1737 xfree, xcalloc, xfree);
1738
1739 lookup.probe = probe;
1740 lookup.address = address;
1741 slot = htab_find_slot (info->probes_table, &lookup, INSERT);
1742 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1743
1744 pa = XCNEW (struct probe_and_action);
1745 pa->probe = probe;
1746 pa->address = address;
1747 pa->action = action;
1748
1749 *slot = pa;
1750 }
1751
1752 /* Get the solib event probe at the specified location, and the
1753 action associated with it. Returns NULL if no solib event probe
1754 was found. */
1755
1756 static struct probe_and_action *
1757 solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1758 {
1759 struct probe_and_action lookup;
1760 void **slot;
1761
1762 lookup.address = address;
1763 slot = htab_find_slot (info->probes_table, &lookup, NO_INSERT);
1764
1765 if (slot == NULL)
1766 return NULL;
1767
1768 return (struct probe_and_action *) *slot;
1769 }
1770
1771 /* Decide what action to take when the specified solib event probe is
1772 hit. */
1773
1774 static enum probe_action
1775 solib_event_probe_action (struct probe_and_action *pa)
1776 {
1777 enum probe_action action;
1778 unsigned probe_argc = 0;
1779 struct frame_info *frame = get_current_frame ();
1780
1781 action = pa->action;
1782 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1783 return action;
1784
1785 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1786
1787 /* Check that an appropriate number of arguments has been supplied.
1788 We expect:
1789 arg0: Lmid_t lmid (mandatory)
1790 arg1: struct r_debug *debug_base (mandatory)
1791 arg2: struct link_map *new (optional, for incremental updates) */
1792 TRY
1793 {
1794 probe_argc = get_probe_argument_count (pa->probe, frame);
1795 }
1796 CATCH (ex, RETURN_MASK_ERROR)
1797 {
1798 exception_print (gdb_stderr, ex);
1799 probe_argc = 0;
1800 }
1801 END_CATCH
1802
1803 /* If get_probe_argument_count throws an exception, probe_argc will
1804 be set to zero. However, if pa->probe does not have arguments,
1805 then get_probe_argument_count will succeed but probe_argc will
1806 also be zero. Both cases happen because of different things, but
1807 they are treated equally here: action will be set to
1808 PROBES_INTERFACE_FAILED. */
1809 if (probe_argc == 2)
1810 action = FULL_RELOAD;
1811 else if (probe_argc < 2)
1812 action = PROBES_INTERFACE_FAILED;
1813
1814 return action;
1815 }
1816
1817 /* Populate the shared object list by reading the entire list of
1818 shared objects from the inferior. Handle special cases relating
1819 to the first elements of the list. Returns nonzero on success. */
1820
1821 static int
1822 solist_update_full (struct svr4_info *info)
1823 {
1824 free_solib_list (info);
1825 info->solib_list = svr4_current_sos_direct (info);
1826
1827 return 1;
1828 }
1829
1830 /* Update the shared object list starting from the link-map entry
1831 passed by the linker in the probe's third argument. Returns
1832 nonzero if the list was successfully updated, or zero to indicate
1833 failure. */
1834
1835 static int
1836 solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1837 {
1838 struct so_list *tail;
1839 CORE_ADDR prev_lm;
1840
1841 /* svr4_current_sos_direct contains logic to handle a number of
1842 special cases relating to the first elements of the list. To
1843 avoid duplicating this logic we defer to solist_update_full
1844 if the list is empty. */
1845 if (info->solib_list == NULL)
1846 return 0;
1847
1848 /* Fall back to a full update if we are using a remote target
1849 that does not support incremental transfers. */
1850 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1851 return 0;
1852
1853 /* Walk to the end of the list. */
1854 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1855 /* Nothing. */;
1856
1857 lm_info_svr4 *li = (lm_info_svr4 *) tail->lm_info;
1858 prev_lm = li->lm_addr;
1859
1860 /* Read the new objects. */
1861 if (info->using_xfer)
1862 {
1863 struct svr4_library_list library_list;
1864 char annex[64];
1865
1866 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1867 phex_nz (lm, sizeof (lm)),
1868 phex_nz (prev_lm, sizeof (prev_lm)));
1869 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1870 return 0;
1871
1872 tail->next = library_list.head;
1873 }
1874 else
1875 {
1876 struct so_list **link = &tail->next;
1877
1878 /* IGNORE_FIRST may safely be set to zero here because the
1879 above check and deferral to solist_update_full ensures
1880 that this call to svr4_read_so_list will never see the
1881 first element. */
1882 if (!svr4_read_so_list (lm, prev_lm, &link, 0))
1883 return 0;
1884 }
1885
1886 return 1;
1887 }
1888
1889 /* Disable the probes-based linker interface and revert to the
1890 original interface. We don't reset the breakpoints as the
1891 ones set up for the probes-based interface are adequate. */
1892
1893 static void
1894 disable_probes_interface_cleanup (void *arg)
1895 {
1896 struct svr4_info *info = get_svr4_info ();
1897
1898 warning (_("Probes-based dynamic linker interface failed.\n"
1899 "Reverting to original interface.\n"));
1900
1901 free_probes_table (info);
1902 free_solib_list (info);
1903 }
1904
1905 /* Update the solib list as appropriate when using the
1906 probes-based linker interface. Do nothing if using the
1907 standard interface. */
1908
1909 static void
1910 svr4_handle_solib_event (void)
1911 {
1912 struct svr4_info *info = get_svr4_info ();
1913 struct probe_and_action *pa;
1914 enum probe_action action;
1915 struct cleanup *old_chain, *usm_chain;
1916 struct value *val = NULL;
1917 CORE_ADDR pc, debug_base, lm = 0;
1918 struct frame_info *frame = get_current_frame ();
1919
1920 /* Do nothing if not using the probes interface. */
1921 if (info->probes_table == NULL)
1922 return;
1923
1924 /* If anything goes wrong we revert to the original linker
1925 interface. */
1926 old_chain = make_cleanup (disable_probes_interface_cleanup, NULL);
1927
1928 pc = regcache_read_pc (get_current_regcache ());
1929 pa = solib_event_probe_at (info, pc);
1930 if (pa == NULL)
1931 {
1932 do_cleanups (old_chain);
1933 return;
1934 }
1935
1936 action = solib_event_probe_action (pa);
1937 if (action == PROBES_INTERFACE_FAILED)
1938 {
1939 do_cleanups (old_chain);
1940 return;
1941 }
1942
1943 if (action == DO_NOTHING)
1944 {
1945 discard_cleanups (old_chain);
1946 return;
1947 }
1948
1949 /* evaluate_probe_argument looks up symbols in the dynamic linker
1950 using find_pc_section. find_pc_section is accelerated by a cache
1951 called the section map. The section map is invalidated every
1952 time a shared library is loaded or unloaded, and if the inferior
1953 is generating a lot of shared library events then the section map
1954 will be updated every time svr4_handle_solib_event is called.
1955 We called find_pc_section in svr4_create_solib_event_breakpoints,
1956 so we can guarantee that the dynamic linker's sections are in the
1957 section map. We can therefore inhibit section map updates across
1958 these calls to evaluate_probe_argument and save a lot of time. */
1959 inhibit_section_map_updates (current_program_space);
1960 usm_chain = make_cleanup (resume_section_map_updates_cleanup,
1961 current_program_space);
1962
1963 TRY
1964 {
1965 val = evaluate_probe_argument (pa->probe, 1, frame);
1966 }
1967 CATCH (ex, RETURN_MASK_ERROR)
1968 {
1969 exception_print (gdb_stderr, ex);
1970 val = NULL;
1971 }
1972 END_CATCH
1973
1974 if (val == NULL)
1975 {
1976 do_cleanups (old_chain);
1977 return;
1978 }
1979
1980 debug_base = value_as_address (val);
1981 if (debug_base == 0)
1982 {
1983 do_cleanups (old_chain);
1984 return;
1985 }
1986
1987 /* Always locate the debug struct, in case it moved. */
1988 info->debug_base = 0;
1989 if (locate_base (info) == 0)
1990 {
1991 do_cleanups (old_chain);
1992 return;
1993 }
1994
1995 /* GDB does not currently support libraries loaded via dlmopen
1996 into namespaces other than the initial one. We must ignore
1997 any namespace other than the initial namespace here until
1998 support for this is added to GDB. */
1999 if (debug_base != info->debug_base)
2000 action = DO_NOTHING;
2001
2002 if (action == UPDATE_OR_RELOAD)
2003 {
2004 TRY
2005 {
2006 val = evaluate_probe_argument (pa->probe, 2, frame);
2007 }
2008 CATCH (ex, RETURN_MASK_ERROR)
2009 {
2010 exception_print (gdb_stderr, ex);
2011 do_cleanups (old_chain);
2012 return;
2013 }
2014 END_CATCH
2015
2016 if (val != NULL)
2017 lm = value_as_address (val);
2018
2019 if (lm == 0)
2020 action = FULL_RELOAD;
2021 }
2022
2023 /* Resume section map updates. */
2024 do_cleanups (usm_chain);
2025
2026 if (action == UPDATE_OR_RELOAD)
2027 {
2028 if (!solist_update_incremental (info, lm))
2029 action = FULL_RELOAD;
2030 }
2031
2032 if (action == FULL_RELOAD)
2033 {
2034 if (!solist_update_full (info))
2035 {
2036 do_cleanups (old_chain);
2037 return;
2038 }
2039 }
2040
2041 discard_cleanups (old_chain);
2042 }
2043
2044 /* Helper function for svr4_update_solib_event_breakpoints. */
2045
2046 static int
2047 svr4_update_solib_event_breakpoint (struct breakpoint *b, void *arg)
2048 {
2049 struct bp_location *loc;
2050
2051 if (b->type != bp_shlib_event)
2052 {
2053 /* Continue iterating. */
2054 return 0;
2055 }
2056
2057 for (loc = b->loc; loc != NULL; loc = loc->next)
2058 {
2059 struct svr4_info *info;
2060 struct probe_and_action *pa;
2061
2062 info = ((struct svr4_info *)
2063 program_space_data (loc->pspace, solib_svr4_pspace_data));
2064 if (info == NULL || info->probes_table == NULL)
2065 continue;
2066
2067 pa = solib_event_probe_at (info, loc->address);
2068 if (pa == NULL)
2069 continue;
2070
2071 if (pa->action == DO_NOTHING)
2072 {
2073 if (b->enable_state == bp_disabled && stop_on_solib_events)
2074 enable_breakpoint (b);
2075 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
2076 disable_breakpoint (b);
2077 }
2078
2079 break;
2080 }
2081
2082 /* Continue iterating. */
2083 return 0;
2084 }
2085
2086 /* Enable or disable optional solib event breakpoints as appropriate.
2087 Called whenever stop_on_solib_events is changed. */
2088
2089 static void
2090 svr4_update_solib_event_breakpoints (void)
2091 {
2092 iterate_over_breakpoints (svr4_update_solib_event_breakpoint, NULL);
2093 }
2094
2095 /* Create and register solib event breakpoints. PROBES is an array
2096 of NUM_PROBES elements, each of which is vector of probes. A
2097 solib event breakpoint will be created and registered for each
2098 probe. */
2099
2100 static void
2101 svr4_create_probe_breakpoints (struct gdbarch *gdbarch,
2102 VEC (probe_p) **probes,
2103 struct objfile *objfile)
2104 {
2105 int i;
2106
2107 for (i = 0; i < NUM_PROBES; i++)
2108 {
2109 enum probe_action action = probe_info[i].action;
2110 struct probe *probe;
2111 int ix;
2112
2113 for (ix = 0;
2114 VEC_iterate (probe_p, probes[i], ix, probe);
2115 ++ix)
2116 {
2117 CORE_ADDR address = get_probe_address (probe, objfile);
2118
2119 create_solib_event_breakpoint (gdbarch, address);
2120 register_solib_event_probe (probe, address, action);
2121 }
2122 }
2123
2124 svr4_update_solib_event_breakpoints ();
2125 }
2126
2127 /* Both the SunOS and the SVR4 dynamic linkers call a marker function
2128 before and after mapping and unmapping shared libraries. The sole
2129 purpose of this method is to allow debuggers to set a breakpoint so
2130 they can track these changes.
2131
2132 Some versions of the glibc dynamic linker contain named probes
2133 to allow more fine grained stopping. Given the address of the
2134 original marker function, this function attempts to find these
2135 probes, and if found, sets breakpoints on those instead. If the
2136 probes aren't found, a single breakpoint is set on the original
2137 marker function. */
2138
2139 static void
2140 svr4_create_solib_event_breakpoints (struct gdbarch *gdbarch,
2141 CORE_ADDR address)
2142 {
2143 struct obj_section *os;
2144
2145 os = find_pc_section (address);
2146 if (os != NULL)
2147 {
2148 int with_prefix;
2149
2150 for (with_prefix = 0; with_prefix <= 1; with_prefix++)
2151 {
2152 VEC (probe_p) *probes[NUM_PROBES];
2153 int all_probes_found = 1;
2154 int checked_can_use_probe_arguments = 0;
2155 int i;
2156
2157 memset (probes, 0, sizeof (probes));
2158 for (i = 0; i < NUM_PROBES; i++)
2159 {
2160 const char *name = probe_info[i].name;
2161 struct probe *p;
2162 char buf[32];
2163
2164 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4
2165 shipped with an early version of the probes code in
2166 which the probes' names were prefixed with "rtld_"
2167 and the "map_failed" probe did not exist. The
2168 locations of the probes are otherwise the same, so
2169 we check for probes with prefixed names if probes
2170 with unprefixed names are not present. */
2171 if (with_prefix)
2172 {
2173 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2174 name = buf;
2175 }
2176
2177 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2178
2179 /* The "map_failed" probe did not exist in early
2180 versions of the probes code in which the probes'
2181 names were prefixed with "rtld_". */
2182 if (strcmp (name, "rtld_map_failed") == 0)
2183 continue;
2184
2185 if (VEC_empty (probe_p, probes[i]))
2186 {
2187 all_probes_found = 0;
2188 break;
2189 }
2190
2191 /* Ensure probe arguments can be evaluated. */
2192 if (!checked_can_use_probe_arguments)
2193 {
2194 p = VEC_index (probe_p, probes[i], 0);
2195 if (!can_evaluate_probe_arguments (p))
2196 {
2197 all_probes_found = 0;
2198 break;
2199 }
2200 checked_can_use_probe_arguments = 1;
2201 }
2202 }
2203
2204 if (all_probes_found)
2205 svr4_create_probe_breakpoints (gdbarch, probes, os->objfile);
2206
2207 for (i = 0; i < NUM_PROBES; i++)
2208 VEC_free (probe_p, probes[i]);
2209
2210 if (all_probes_found)
2211 return;
2212 }
2213 }
2214
2215 create_solib_event_breakpoint (gdbarch, address);
2216 }
2217
2218 /* Helper function for gdb_bfd_lookup_symbol. */
2219
2220 static int
2221 cmp_name_and_sec_flags (const asymbol *sym, const void *data)
2222 {
2223 return (strcmp (sym->name, (const char *) data) == 0
2224 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2225 }
2226 /* Arrange for dynamic linker to hit breakpoint.
2227
2228 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2229 debugger interface, support for arranging for the inferior to hit
2230 a breakpoint after mapping in the shared libraries. This function
2231 enables that breakpoint.
2232
2233 For SunOS, there is a special flag location (in_debugger) which we
2234 set to 1. When the dynamic linker sees this flag set, it will set
2235 a breakpoint at a location known only to itself, after saving the
2236 original contents of that place and the breakpoint address itself,
2237 in it's own internal structures. When we resume the inferior, it
2238 will eventually take a SIGTRAP when it runs into the breakpoint.
2239 We handle this (in a different place) by restoring the contents of
2240 the breakpointed location (which is only known after it stops),
2241 chasing around to locate the shared libraries that have been
2242 loaded, then resuming.
2243
2244 For SVR4, the debugger interface structure contains a member (r_brk)
2245 which is statically initialized at the time the shared library is
2246 built, to the offset of a function (_r_debug_state) which is guaran-
2247 teed to be called once before mapping in a library, and again when
2248 the mapping is complete. At the time we are examining this member,
2249 it contains only the unrelocated offset of the function, so we have
2250 to do our own relocation. Later, when the dynamic linker actually
2251 runs, it relocates r_brk to be the actual address of _r_debug_state().
2252
2253 The debugger interface structure also contains an enumeration which
2254 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2255 depending upon whether or not the library is being mapped or unmapped,
2256 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
2257
2258 static int
2259 enable_break (struct svr4_info *info, int from_tty)
2260 {
2261 struct bound_minimal_symbol msymbol;
2262 const char * const *bkpt_namep;
2263 asection *interp_sect;
2264 char *interp_name;
2265 CORE_ADDR sym_addr;
2266
2267 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2268 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
2269
2270 /* If we already have a shared library list in the target, and
2271 r_debug contains r_brk, set the breakpoint there - this should
2272 mean r_brk has already been relocated. Assume the dynamic linker
2273 is the object containing r_brk. */
2274
2275 solib_add (NULL, from_tty, auto_solib_add);
2276 sym_addr = 0;
2277 if (info->debug_base && solib_svr4_r_map (info) != 0)
2278 sym_addr = solib_svr4_r_brk (info);
2279
2280 if (sym_addr != 0)
2281 {
2282 struct obj_section *os;
2283
2284 sym_addr = gdbarch_addr_bits_remove
2285 (target_gdbarch (), gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2286 sym_addr,
2287 &current_target));
2288
2289 /* On at least some versions of Solaris there's a dynamic relocation
2290 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2291 we get control before the dynamic linker has self-relocated.
2292 Check if SYM_ADDR is in a known section, if it is assume we can
2293 trust its value. This is just a heuristic though, it could go away
2294 or be replaced if it's getting in the way.
2295
2296 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2297 however it's spelled in your particular system) is ARM or Thumb.
2298 That knowledge is encoded in the address, if it's Thumb the low bit
2299 is 1. However, we've stripped that info above and it's not clear
2300 what all the consequences are of passing a non-addr_bits_remove'd
2301 address to svr4_create_solib_event_breakpoints. The call to
2302 find_pc_section verifies we know about the address and have some
2303 hope of computing the right kind of breakpoint to use (via
2304 symbol info). It does mean that GDB needs to be pointed at a
2305 non-stripped version of the dynamic linker in order to obtain
2306 information it already knows about. Sigh. */
2307
2308 os = find_pc_section (sym_addr);
2309 if (os != NULL)
2310 {
2311 /* Record the relocated start and end address of the dynamic linker
2312 text and plt section for svr4_in_dynsym_resolve_code. */
2313 bfd *tmp_bfd;
2314 CORE_ADDR load_addr;
2315
2316 tmp_bfd = os->objfile->obfd;
2317 load_addr = ANOFFSET (os->objfile->section_offsets,
2318 SECT_OFF_TEXT (os->objfile));
2319
2320 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2321 if (interp_sect)
2322 {
2323 info->interp_text_sect_low =
2324 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2325 info->interp_text_sect_high =
2326 info->interp_text_sect_low
2327 + bfd_section_size (tmp_bfd, interp_sect);
2328 }
2329 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2330 if (interp_sect)
2331 {
2332 info->interp_plt_sect_low =
2333 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2334 info->interp_plt_sect_high =
2335 info->interp_plt_sect_low
2336 + bfd_section_size (tmp_bfd, interp_sect);
2337 }
2338
2339 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2340 return 1;
2341 }
2342 }
2343
2344 /* Find the program interpreter; if not found, warn the user and drop
2345 into the old breakpoint at symbol code. */
2346 interp_name = find_program_interpreter ();
2347 if (interp_name)
2348 {
2349 CORE_ADDR load_addr = 0;
2350 int load_addr_found = 0;
2351 int loader_found_in_list = 0;
2352 struct so_list *so;
2353 struct target_ops *tmp_bfd_target;
2354
2355 sym_addr = 0;
2356
2357 /* Now we need to figure out where the dynamic linker was
2358 loaded so that we can load its symbols and place a breakpoint
2359 in the dynamic linker itself.
2360
2361 This address is stored on the stack. However, I've been unable
2362 to find any magic formula to find it for Solaris (appears to
2363 be trivial on GNU/Linux). Therefore, we have to try an alternate
2364 mechanism to find the dynamic linker's base address. */
2365
2366 gdb_bfd_ref_ptr tmp_bfd;
2367 TRY
2368 {
2369 tmp_bfd = solib_bfd_open (interp_name);
2370 }
2371 CATCH (ex, RETURN_MASK_ALL)
2372 {
2373 }
2374 END_CATCH
2375
2376 if (tmp_bfd == NULL)
2377 goto bkpt_at_symbol;
2378
2379 /* Now convert the TMP_BFD into a target. That way target, as
2380 well as BFD operations can be used. target_bfd_reopen
2381 acquires its own reference. */
2382 tmp_bfd_target = target_bfd_reopen (tmp_bfd.get ());
2383
2384 /* On a running target, we can get the dynamic linker's base
2385 address from the shared library table. */
2386 so = master_so_list ();
2387 while (so)
2388 {
2389 if (svr4_same_1 (interp_name, so->so_original_name))
2390 {
2391 load_addr_found = 1;
2392 loader_found_in_list = 1;
2393 load_addr = lm_addr_check (so, tmp_bfd.get ());
2394 break;
2395 }
2396 so = so->next;
2397 }
2398
2399 /* If we were not able to find the base address of the loader
2400 from our so_list, then try using the AT_BASE auxilliary entry. */
2401 if (!load_addr_found)
2402 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
2403 {
2404 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
2405
2406 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2407 that `+ load_addr' will overflow CORE_ADDR width not creating
2408 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2409 GDB. */
2410
2411 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
2412 {
2413 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
2414 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd.get (),
2415 tmp_bfd_target);
2416
2417 gdb_assert (load_addr < space_size);
2418
2419 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2420 64bit ld.so with 32bit executable, it should not happen. */
2421
2422 if (tmp_entry_point < space_size
2423 && tmp_entry_point + load_addr >= space_size)
2424 load_addr -= space_size;
2425 }
2426
2427 load_addr_found = 1;
2428 }
2429
2430 /* Otherwise we find the dynamic linker's base address by examining
2431 the current pc (which should point at the entry point for the
2432 dynamic linker) and subtracting the offset of the entry point.
2433
2434 This is more fragile than the previous approaches, but is a good
2435 fallback method because it has actually been working well in
2436 most cases. */
2437 if (!load_addr_found)
2438 {
2439 struct regcache *regcache
2440 = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
2441
2442 load_addr = (regcache_read_pc (regcache)
2443 - exec_entry_point (tmp_bfd.get (), tmp_bfd_target));
2444 }
2445
2446 if (!loader_found_in_list)
2447 {
2448 info->debug_loader_name = xstrdup (interp_name);
2449 info->debug_loader_offset_p = 1;
2450 info->debug_loader_offset = load_addr;
2451 solib_add (NULL, from_tty, auto_solib_add);
2452 }
2453
2454 /* Record the relocated start and end address of the dynamic linker
2455 text and plt section for svr4_in_dynsym_resolve_code. */
2456 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
2457 if (interp_sect)
2458 {
2459 info->interp_text_sect_low =
2460 bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr;
2461 info->interp_text_sect_high =
2462 info->interp_text_sect_low
2463 + bfd_section_size (tmp_bfd.get (), interp_sect);
2464 }
2465 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
2466 if (interp_sect)
2467 {
2468 info->interp_plt_sect_low =
2469 bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr;
2470 info->interp_plt_sect_high =
2471 info->interp_plt_sect_low
2472 + bfd_section_size (tmp_bfd.get (), interp_sect);
2473 }
2474
2475 /* Now try to set a breakpoint in the dynamic linker. */
2476 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2477 {
2478 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd.get (),
2479 cmp_name_and_sec_flags,
2480 *bkpt_namep);
2481 if (sym_addr != 0)
2482 break;
2483 }
2484
2485 if (sym_addr != 0)
2486 /* Convert 'sym_addr' from a function pointer to an address.
2487 Because we pass tmp_bfd_target instead of the current
2488 target, this will always produce an unrelocated value. */
2489 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2490 sym_addr,
2491 tmp_bfd_target);
2492
2493 /* We're done with both the temporary bfd and target. Closing
2494 the target closes the underlying bfd, because it holds the
2495 only remaining reference. */
2496 target_close (tmp_bfd_target);
2497
2498 if (sym_addr != 0)
2499 {
2500 svr4_create_solib_event_breakpoints (target_gdbarch (),
2501 load_addr + sym_addr);
2502 xfree (interp_name);
2503 return 1;
2504 }
2505
2506 /* For whatever reason we couldn't set a breakpoint in the dynamic
2507 linker. Warn and drop into the old code. */
2508 bkpt_at_symbol:
2509 xfree (interp_name);
2510 warning (_("Unable to find dynamic linker breakpoint function.\n"
2511 "GDB will be unable to debug shared library initializers\n"
2512 "and track explicitly loaded dynamic code."));
2513 }
2514
2515 /* Scan through the lists of symbols, trying to look up the symbol and
2516 set a breakpoint there. Terminate loop when we/if we succeed. */
2517
2518 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2519 {
2520 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
2521 if ((msymbol.minsym != NULL)
2522 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2523 {
2524 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2525 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2526 sym_addr,
2527 &current_target);
2528 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2529 return 1;
2530 }
2531 }
2532
2533 if (interp_name != NULL && !current_inferior ()->attach_flag)
2534 {
2535 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
2536 {
2537 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
2538 if ((msymbol.minsym != NULL)
2539 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2540 {
2541 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2542 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2543 sym_addr,
2544 &current_target);
2545 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2546 return 1;
2547 }
2548 }
2549 }
2550 return 0;
2551 }
2552
2553 /* Read the ELF program headers from ABFD. Return the contents and
2554 set *PHDRS_SIZE to the size of the program headers. */
2555
2556 static gdb_byte *
2557 read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
2558 {
2559 Elf_Internal_Ehdr *ehdr;
2560 gdb_byte *buf;
2561
2562 ehdr = elf_elfheader (abfd);
2563
2564 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2565 if (*phdrs_size == 0)
2566 return NULL;
2567
2568 buf = (gdb_byte *) xmalloc (*phdrs_size);
2569 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
2570 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
2571 {
2572 xfree (buf);
2573 return NULL;
2574 }
2575
2576 return buf;
2577 }
2578
2579 /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2580 exec_bfd. Otherwise return 0.
2581
2582 We relocate all of the sections by the same amount. This
2583 behavior is mandated by recent editions of the System V ABI.
2584 According to the System V Application Binary Interface,
2585 Edition 4.1, page 5-5:
2586
2587 ... Though the system chooses virtual addresses for
2588 individual processes, it maintains the segments' relative
2589 positions. Because position-independent code uses relative
2590 addressesing between segments, the difference between
2591 virtual addresses in memory must match the difference
2592 between virtual addresses in the file. The difference
2593 between the virtual address of any segment in memory and
2594 the corresponding virtual address in the file is thus a
2595 single constant value for any one executable or shared
2596 object in a given process. This difference is the base
2597 address. One use of the base address is to relocate the
2598 memory image of the program during dynamic linking.
2599
2600 The same language also appears in Edition 4.0 of the System V
2601 ABI and is left unspecified in some of the earlier editions.
2602
2603 Decide if the objfile needs to be relocated. As indicated above, we will
2604 only be here when execution is stopped. But during attachment PC can be at
2605 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2606 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2607 regcache_read_pc would point to the interpreter and not the main executable.
2608
2609 So, to summarize, relocations are necessary when the start address obtained
2610 from the executable is different from the address in auxv AT_ENTRY entry.
2611
2612 [ The astute reader will note that we also test to make sure that
2613 the executable in question has the DYNAMIC flag set. It is my
2614 opinion that this test is unnecessary (undesirable even). It
2615 was added to avoid inadvertent relocation of an executable
2616 whose e_type member in the ELF header is not ET_DYN. There may
2617 be a time in the future when it is desirable to do relocations
2618 on other types of files as well in which case this condition
2619 should either be removed or modified to accomodate the new file
2620 type. - Kevin, Nov 2000. ] */
2621
2622 static int
2623 svr4_exec_displacement (CORE_ADDR *displacementp)
2624 {
2625 /* ENTRY_POINT is a possible function descriptor - before
2626 a call to gdbarch_convert_from_func_ptr_addr. */
2627 CORE_ADDR entry_point, exec_displacement;
2628
2629 if (exec_bfd == NULL)
2630 return 0;
2631
2632 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2633 being executed themselves and PIE (Position Independent Executable)
2634 executables are ET_DYN. */
2635
2636 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
2637 return 0;
2638
2639 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
2640 return 0;
2641
2642 exec_displacement = entry_point - bfd_get_start_address (exec_bfd);
2643
2644 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
2645 alignment. It is cheaper than the program headers comparison below. */
2646
2647 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2648 {
2649 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
2650
2651 /* p_align of PT_LOAD segments does not specify any alignment but
2652 only congruency of addresses:
2653 p_offset % p_align == p_vaddr % p_align
2654 Kernel is free to load the executable with lower alignment. */
2655
2656 if ((exec_displacement & (elf->minpagesize - 1)) != 0)
2657 return 0;
2658 }
2659
2660 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2661 comparing their program headers. If the program headers in the auxilliary
2662 vector do not match the program headers in the executable, then we are
2663 looking at a different file than the one used by the kernel - for
2664 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2665
2666 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2667 {
2668 /* Be optimistic and clear OK only if GDB was able to verify the headers
2669 really do not match. */
2670 int phdrs_size, phdrs2_size, ok = 1;
2671 gdb_byte *buf, *buf2;
2672 int arch_size;
2673
2674 buf = read_program_header (-1, &phdrs_size, &arch_size, NULL);
2675 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
2676 if (buf != NULL && buf2 != NULL)
2677 {
2678 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
2679
2680 /* We are dealing with three different addresses. EXEC_BFD
2681 represents current address in on-disk file. target memory content
2682 may be different from EXEC_BFD as the file may have been prelinked
2683 to a different address after the executable has been loaded.
2684 Moreover the address of placement in target memory can be
2685 different from what the program headers in target memory say -
2686 this is the goal of PIE.
2687
2688 Detected DISPLACEMENT covers both the offsets of PIE placement and
2689 possible new prelink performed after start of the program. Here
2690 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2691 content offset for the verification purpose. */
2692
2693 if (phdrs_size != phdrs2_size
2694 || bfd_get_arch_size (exec_bfd) != arch_size)
2695 ok = 0;
2696 else if (arch_size == 32
2697 && phdrs_size >= sizeof (Elf32_External_Phdr)
2698 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
2699 {
2700 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2701 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2702 CORE_ADDR displacement = 0;
2703 int i;
2704
2705 /* DISPLACEMENT could be found more easily by the difference of
2706 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2707 already have enough information to compute that displacement
2708 with what we've read. */
2709
2710 for (i = 0; i < ehdr2->e_phnum; i++)
2711 if (phdr2[i].p_type == PT_LOAD)
2712 {
2713 Elf32_External_Phdr *phdrp;
2714 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2715 CORE_ADDR vaddr, paddr;
2716 CORE_ADDR displacement_vaddr = 0;
2717 CORE_ADDR displacement_paddr = 0;
2718
2719 phdrp = &((Elf32_External_Phdr *) buf)[i];
2720 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2721 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2722
2723 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2724 byte_order);
2725 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2726
2727 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2728 byte_order);
2729 displacement_paddr = paddr - phdr2[i].p_paddr;
2730
2731 if (displacement_vaddr == displacement_paddr)
2732 displacement = displacement_vaddr;
2733
2734 break;
2735 }
2736
2737 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2738
2739 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
2740 {
2741 Elf32_External_Phdr *phdrp;
2742 Elf32_External_Phdr *phdr2p;
2743 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2744 CORE_ADDR vaddr, paddr;
2745 asection *plt2_asect;
2746
2747 phdrp = &((Elf32_External_Phdr *) buf)[i];
2748 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2749 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2750 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
2751
2752 /* PT_GNU_STACK is an exception by being never relocated by
2753 prelink as its addresses are always zero. */
2754
2755 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2756 continue;
2757
2758 /* Check also other adjustment combinations - PR 11786. */
2759
2760 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2761 byte_order);
2762 vaddr -= displacement;
2763 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2764
2765 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2766 byte_order);
2767 paddr -= displacement;
2768 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2769
2770 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2771 continue;
2772
2773 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2774 CentOS-5 has problems with filesz, memsz as well.
2775 See PR 11786. */
2776 if (phdr2[i].p_type == PT_GNU_RELRO)
2777 {
2778 Elf32_External_Phdr tmp_phdr = *phdrp;
2779 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2780
2781 memset (tmp_phdr.p_filesz, 0, 4);
2782 memset (tmp_phdr.p_memsz, 0, 4);
2783 memset (tmp_phdr.p_flags, 0, 4);
2784 memset (tmp_phdr.p_align, 0, 4);
2785 memset (tmp_phdr2.p_filesz, 0, 4);
2786 memset (tmp_phdr2.p_memsz, 0, 4);
2787 memset (tmp_phdr2.p_flags, 0, 4);
2788 memset (tmp_phdr2.p_align, 0, 4);
2789
2790 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2791 == 0)
2792 continue;
2793 }
2794
2795 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2796 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2797 if (plt2_asect)
2798 {
2799 int content2;
2800 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2801 CORE_ADDR filesz;
2802
2803 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2804 & SEC_HAS_CONTENTS) != 0;
2805
2806 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2807 byte_order);
2808
2809 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2810 FILESZ is from the in-memory image. */
2811 if (content2)
2812 filesz += bfd_get_section_size (plt2_asect);
2813 else
2814 filesz -= bfd_get_section_size (plt2_asect);
2815
2816 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2817 filesz);
2818
2819 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2820 continue;
2821 }
2822
2823 ok = 0;
2824 break;
2825 }
2826 }
2827 else if (arch_size == 64
2828 && phdrs_size >= sizeof (Elf64_External_Phdr)
2829 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
2830 {
2831 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2832 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2833 CORE_ADDR displacement = 0;
2834 int i;
2835
2836 /* DISPLACEMENT could be found more easily by the difference of
2837 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2838 already have enough information to compute that displacement
2839 with what we've read. */
2840
2841 for (i = 0; i < ehdr2->e_phnum; i++)
2842 if (phdr2[i].p_type == PT_LOAD)
2843 {
2844 Elf64_External_Phdr *phdrp;
2845 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2846 CORE_ADDR vaddr, paddr;
2847 CORE_ADDR displacement_vaddr = 0;
2848 CORE_ADDR displacement_paddr = 0;
2849
2850 phdrp = &((Elf64_External_Phdr *) buf)[i];
2851 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2852 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2853
2854 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2855 byte_order);
2856 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2857
2858 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2859 byte_order);
2860 displacement_paddr = paddr - phdr2[i].p_paddr;
2861
2862 if (displacement_vaddr == displacement_paddr)
2863 displacement = displacement_vaddr;
2864
2865 break;
2866 }
2867
2868 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2869
2870 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
2871 {
2872 Elf64_External_Phdr *phdrp;
2873 Elf64_External_Phdr *phdr2p;
2874 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2875 CORE_ADDR vaddr, paddr;
2876 asection *plt2_asect;
2877
2878 phdrp = &((Elf64_External_Phdr *) buf)[i];
2879 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2880 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2881 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
2882
2883 /* PT_GNU_STACK is an exception by being never relocated by
2884 prelink as its addresses are always zero. */
2885
2886 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2887 continue;
2888
2889 /* Check also other adjustment combinations - PR 11786. */
2890
2891 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2892 byte_order);
2893 vaddr -= displacement;
2894 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2895
2896 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2897 byte_order);
2898 paddr -= displacement;
2899 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2900
2901 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2902 continue;
2903
2904 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2905 CentOS-5 has problems with filesz, memsz as well.
2906 See PR 11786. */
2907 if (phdr2[i].p_type == PT_GNU_RELRO)
2908 {
2909 Elf64_External_Phdr tmp_phdr = *phdrp;
2910 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2911
2912 memset (tmp_phdr.p_filesz, 0, 8);
2913 memset (tmp_phdr.p_memsz, 0, 8);
2914 memset (tmp_phdr.p_flags, 0, 4);
2915 memset (tmp_phdr.p_align, 0, 8);
2916 memset (tmp_phdr2.p_filesz, 0, 8);
2917 memset (tmp_phdr2.p_memsz, 0, 8);
2918 memset (tmp_phdr2.p_flags, 0, 4);
2919 memset (tmp_phdr2.p_align, 0, 8);
2920
2921 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2922 == 0)
2923 continue;
2924 }
2925
2926 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2927 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2928 if (plt2_asect)
2929 {
2930 int content2;
2931 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2932 CORE_ADDR filesz;
2933
2934 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2935 & SEC_HAS_CONTENTS) != 0;
2936
2937 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2938 byte_order);
2939
2940 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2941 FILESZ is from the in-memory image. */
2942 if (content2)
2943 filesz += bfd_get_section_size (plt2_asect);
2944 else
2945 filesz -= bfd_get_section_size (plt2_asect);
2946
2947 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2948 filesz);
2949
2950 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2951 continue;
2952 }
2953
2954 ok = 0;
2955 break;
2956 }
2957 }
2958 else
2959 ok = 0;
2960 }
2961
2962 xfree (buf);
2963 xfree (buf2);
2964
2965 if (!ok)
2966 return 0;
2967 }
2968
2969 if (info_verbose)
2970 {
2971 /* It can be printed repeatedly as there is no easy way to check
2972 the executable symbols/file has been already relocated to
2973 displacement. */
2974
2975 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2976 "displacement %s for \"%s\".\n"),
2977 paddress (target_gdbarch (), exec_displacement),
2978 bfd_get_filename (exec_bfd));
2979 }
2980
2981 *displacementp = exec_displacement;
2982 return 1;
2983 }
2984
2985 /* Relocate the main executable. This function should be called upon
2986 stopping the inferior process at the entry point to the program.
2987 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2988 different, the main executable is relocated by the proper amount. */
2989
2990 static void
2991 svr4_relocate_main_executable (void)
2992 {
2993 CORE_ADDR displacement;
2994
2995 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2996 probably contains the offsets computed using the PIE displacement
2997 from the previous run, which of course are irrelevant for this run.
2998 So we need to determine the new PIE displacement and recompute the
2999 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
3000 already contains pre-computed offsets.
3001
3002 If we cannot compute the PIE displacement, either:
3003
3004 - The executable is not PIE.
3005
3006 - SYMFILE_OBJFILE does not match the executable started in the target.
3007 This can happen for main executable symbols loaded at the host while
3008 `ld.so --ld-args main-executable' is loaded in the target.
3009
3010 Then we leave the section offsets untouched and use them as is for
3011 this run. Either:
3012
3013 - These section offsets were properly reset earlier, and thus
3014 already contain the correct values. This can happen for instance
3015 when reconnecting via the remote protocol to a target that supports
3016 the `qOffsets' packet.
3017
3018 - The section offsets were not reset earlier, and the best we can
3019 hope is that the old offsets are still applicable to the new run. */
3020
3021 if (! svr4_exec_displacement (&displacement))
3022 return;
3023
3024 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
3025 addresses. */
3026
3027 if (symfile_objfile)
3028 {
3029 struct section_offsets *new_offsets;
3030 int i;
3031
3032 new_offsets = XALLOCAVEC (struct section_offsets,
3033 symfile_objfile->num_sections);
3034
3035 for (i = 0; i < symfile_objfile->num_sections; i++)
3036 new_offsets->offsets[i] = displacement;
3037
3038 objfile_relocate (symfile_objfile, new_offsets);
3039 }
3040 else if (exec_bfd)
3041 {
3042 asection *asect;
3043
3044 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
3045 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
3046 (bfd_section_vma (exec_bfd, asect)
3047 + displacement));
3048 }
3049 }
3050
3051 /* Implement the "create_inferior_hook" target_solib_ops method.
3052
3053 For SVR4 executables, this first instruction is either the first
3054 instruction in the dynamic linker (for dynamically linked
3055 executables) or the instruction at "start" for statically linked
3056 executables. For dynamically linked executables, the system
3057 first exec's /lib/libc.so.N, which contains the dynamic linker,
3058 and starts it running. The dynamic linker maps in any needed
3059 shared libraries, maps in the actual user executable, and then
3060 jumps to "start" in the user executable.
3061
3062 We can arrange to cooperate with the dynamic linker to discover the
3063 names of shared libraries that are dynamically linked, and the base
3064 addresses to which they are linked.
3065
3066 This function is responsible for discovering those names and
3067 addresses, and saving sufficient information about them to allow
3068 their symbols to be read at a later time. */
3069
3070 static void
3071 svr4_solib_create_inferior_hook (int from_tty)
3072 {
3073 struct svr4_info *info;
3074
3075 info = get_svr4_info ();
3076
3077 /* Clear the probes-based interface's state. */
3078 free_probes_table (info);
3079 free_solib_list (info);
3080
3081 /* Relocate the main executable if necessary. */
3082 svr4_relocate_main_executable ();
3083
3084 /* No point setting a breakpoint in the dynamic linker if we can't
3085 hit it (e.g., a core file, or a trace file). */
3086 if (!target_has_execution)
3087 return;
3088
3089 if (!svr4_have_link_map_offsets ())
3090 return;
3091
3092 if (!enable_break (info, from_tty))
3093 return;
3094 }
3095
3096 static void
3097 svr4_clear_solib (void)
3098 {
3099 struct svr4_info *info;
3100
3101 info = get_svr4_info ();
3102 info->debug_base = 0;
3103 info->debug_loader_offset_p = 0;
3104 info->debug_loader_offset = 0;
3105 xfree (info->debug_loader_name);
3106 info->debug_loader_name = NULL;
3107 }
3108
3109 /* Clear any bits of ADDR that wouldn't fit in a target-format
3110 data pointer. "Data pointer" here refers to whatever sort of
3111 address the dynamic linker uses to manage its sections. At the
3112 moment, we don't support shared libraries on any processors where
3113 code and data pointers are different sizes.
3114
3115 This isn't really the right solution. What we really need here is
3116 a way to do arithmetic on CORE_ADDR values that respects the
3117 natural pointer/address correspondence. (For example, on the MIPS,
3118 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
3119 sign-extend the value. There, simply truncating the bits above
3120 gdbarch_ptr_bit, as we do below, is no good.) This should probably
3121 be a new gdbarch method or something. */
3122 static CORE_ADDR
3123 svr4_truncate_ptr (CORE_ADDR addr)
3124 {
3125 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
3126 /* We don't need to truncate anything, and the bit twiddling below
3127 will fail due to overflow problems. */
3128 return addr;
3129 else
3130 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
3131 }
3132
3133
3134 static void
3135 svr4_relocate_section_addresses (struct so_list *so,
3136 struct target_section *sec)
3137 {
3138 bfd *abfd = sec->the_bfd_section->owner;
3139
3140 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
3141 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
3142 }
3143 \f
3144
3145 /* Architecture-specific operations. */
3146
3147 /* Per-architecture data key. */
3148 static struct gdbarch_data *solib_svr4_data;
3149
3150 struct solib_svr4_ops
3151 {
3152 /* Return a description of the layout of `struct link_map'. */
3153 struct link_map_offsets *(*fetch_link_map_offsets)(void);
3154 };
3155
3156 /* Return a default for the architecture-specific operations. */
3157
3158 static void *
3159 solib_svr4_init (struct obstack *obstack)
3160 {
3161 struct solib_svr4_ops *ops;
3162
3163 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
3164 ops->fetch_link_map_offsets = NULL;
3165 return ops;
3166 }
3167
3168 /* Set the architecture-specific `struct link_map_offsets' fetcher for
3169 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
3170
3171 void
3172 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3173 struct link_map_offsets *(*flmo) (void))
3174 {
3175 struct solib_svr4_ops *ops
3176 = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data);
3177
3178 ops->fetch_link_map_offsets = flmo;
3179
3180 set_solib_ops (gdbarch, &svr4_so_ops);
3181 }
3182
3183 /* Fetch a link_map_offsets structure using the architecture-specific
3184 `struct link_map_offsets' fetcher. */
3185
3186 static struct link_map_offsets *
3187 svr4_fetch_link_map_offsets (void)
3188 {
3189 struct solib_svr4_ops *ops
3190 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3191 solib_svr4_data);
3192
3193 gdb_assert (ops->fetch_link_map_offsets);
3194 return ops->fetch_link_map_offsets ();
3195 }
3196
3197 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3198
3199 static int
3200 svr4_have_link_map_offsets (void)
3201 {
3202 struct solib_svr4_ops *ops
3203 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3204 solib_svr4_data);
3205
3206 return (ops->fetch_link_map_offsets != NULL);
3207 }
3208 \f
3209
3210 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
3211 `struct r_debug' and a `struct link_map' that are binary compatible
3212 with the origional SVR4 implementation. */
3213
3214 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3215 for an ILP32 SVR4 system. */
3216
3217 struct link_map_offsets *
3218 svr4_ilp32_fetch_link_map_offsets (void)
3219 {
3220 static struct link_map_offsets lmo;
3221 static struct link_map_offsets *lmp = NULL;
3222
3223 if (lmp == NULL)
3224 {
3225 lmp = &lmo;
3226
3227 lmo.r_version_offset = 0;
3228 lmo.r_version_size = 4;
3229 lmo.r_map_offset = 4;
3230 lmo.r_brk_offset = 8;
3231 lmo.r_ldsomap_offset = 20;
3232
3233 /* Everything we need is in the first 20 bytes. */
3234 lmo.link_map_size = 20;
3235 lmo.l_addr_offset = 0;
3236 lmo.l_name_offset = 4;
3237 lmo.l_ld_offset = 8;
3238 lmo.l_next_offset = 12;
3239 lmo.l_prev_offset = 16;
3240 }
3241
3242 return lmp;
3243 }
3244
3245 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3246 for an LP64 SVR4 system. */
3247
3248 struct link_map_offsets *
3249 svr4_lp64_fetch_link_map_offsets (void)
3250 {
3251 static struct link_map_offsets lmo;
3252 static struct link_map_offsets *lmp = NULL;
3253
3254 if (lmp == NULL)
3255 {
3256 lmp = &lmo;
3257
3258 lmo.r_version_offset = 0;
3259 lmo.r_version_size = 4;
3260 lmo.r_map_offset = 8;
3261 lmo.r_brk_offset = 16;
3262 lmo.r_ldsomap_offset = 40;
3263
3264 /* Everything we need is in the first 40 bytes. */
3265 lmo.link_map_size = 40;
3266 lmo.l_addr_offset = 0;
3267 lmo.l_name_offset = 8;
3268 lmo.l_ld_offset = 16;
3269 lmo.l_next_offset = 24;
3270 lmo.l_prev_offset = 32;
3271 }
3272
3273 return lmp;
3274 }
3275 \f
3276
3277 struct target_so_ops svr4_so_ops;
3278
3279 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3280 different rule for symbol lookup. The lookup begins here in the DSO, not in
3281 the main executable. */
3282
3283 static struct block_symbol
3284 elf_lookup_lib_symbol (struct objfile *objfile,
3285 const char *name,
3286 const domain_enum domain)
3287 {
3288 bfd *abfd;
3289
3290 if (objfile == symfile_objfile)
3291 abfd = exec_bfd;
3292 else
3293 {
3294 /* OBJFILE should have been passed as the non-debug one. */
3295 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
3296
3297 abfd = objfile->obfd;
3298 }
3299
3300 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL, NULL) != 1)
3301 return (struct block_symbol) {NULL, NULL};
3302
3303 return lookup_global_symbol_from_objfile (objfile, name, domain);
3304 }
3305
3306 extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
3307
3308 void
3309 _initialize_svr4_solib (void)
3310 {
3311 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
3312 solib_svr4_pspace_data
3313 = register_program_space_data_with_cleanup (NULL, svr4_pspace_data_cleanup);
3314
3315 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
3316 svr4_so_ops.free_so = svr4_free_so;
3317 svr4_so_ops.clear_so = svr4_clear_so;
3318 svr4_so_ops.clear_solib = svr4_clear_solib;
3319 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
3320 svr4_so_ops.current_sos = svr4_current_sos;
3321 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
3322 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
3323 svr4_so_ops.bfd_open = solib_bfd_open;
3324 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
3325 svr4_so_ops.same = svr4_same;
3326 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
3327 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3328 svr4_so_ops.handle_event = svr4_handle_solib_event;
3329 }
This page took 0.09958 seconds and 5 git commands to generate.