Remove cleanups from solib.c
[deliverable/binutils-gdb.git] / gdb / solib.c
1 /* Handle shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include <sys/types.h>
23 #include <fcntl.h>
24 #include "symtab.h"
25 #include "bfd.h"
26 #include "symfile.h"
27 #include "objfiles.h"
28 #include "gdbcore.h"
29 #include "command.h"
30 #include "target.h"
31 #include "frame.h"
32 #include "gdb_regex.h"
33 #include "inferior.h"
34 #include "environ.h"
35 #include "language.h"
36 #include "gdbcmd.h"
37 #include "completer.h"
38 #include "filenames.h" /* for DOSish file names */
39 #include "exec.h"
40 #include "solist.h"
41 #include "observer.h"
42 #include "readline/readline.h"
43 #include "remote.h"
44 #include "solib.h"
45 #include "interps.h"
46 #include "filesystem.h"
47 #include "gdb_bfd.h"
48 #include "filestuff.h"
49
50 /* Architecture-specific operations. */
51
52 /* Per-architecture data key. */
53 static struct gdbarch_data *solib_data;
54
55 static void *
56 solib_init (struct obstack *obstack)
57 {
58 struct target_so_ops **ops;
59
60 ops = OBSTACK_ZALLOC (obstack, struct target_so_ops *);
61 *ops = current_target_so_ops;
62 return ops;
63 }
64
65 static const struct target_so_ops *
66 solib_ops (struct gdbarch *gdbarch)
67 {
68 const struct target_so_ops **ops
69 = (const struct target_so_ops **) gdbarch_data (gdbarch, solib_data);
70
71 return *ops;
72 }
73
74 /* Set the solib operations for GDBARCH to NEW_OPS. */
75
76 void
77 set_solib_ops (struct gdbarch *gdbarch, const struct target_so_ops *new_ops)
78 {
79 const struct target_so_ops **ops
80 = (const struct target_so_ops **) gdbarch_data (gdbarch, solib_data);
81
82 *ops = new_ops;
83 }
84 \f
85
86 /* external data declarations */
87
88 /* FIXME: gdbarch needs to control this variable, or else every
89 configuration needs to call set_solib_ops. */
90 struct target_so_ops *current_target_so_ops;
91
92 /* Local function prototypes */
93
94 /* If non-empty, this is a search path for loading non-absolute shared library
95 symbol files. This takes precedence over the environment variables PATH
96 and LD_LIBRARY_PATH. */
97 static char *solib_search_path = NULL;
98 static void
99 show_solib_search_path (struct ui_file *file, int from_tty,
100 struct cmd_list_element *c, const char *value)
101 {
102 fprintf_filtered (file, _("The search path for loading non-absolute "
103 "shared library symbol files is %s.\n"),
104 value);
105 }
106
107 /* Same as HAVE_DOS_BASED_FILE_SYSTEM, but useable as an rvalue. */
108 #if (HAVE_DOS_BASED_FILE_SYSTEM)
109 # define DOS_BASED_FILE_SYSTEM 1
110 #else
111 # define DOS_BASED_FILE_SYSTEM 0
112 #endif
113
114 /* Return the full pathname of a binary file (the main executable
115 or a shared library file), or NULL if not found. The returned
116 pathname is malloc'ed and must be freed by the caller. If FD
117 is non-NULL, *FD is set to either -1 or an open file handle for
118 the binary file.
119
120 Global variable GDB_SYSROOT is used as a prefix directory
121 to search for binary files if they have an absolute path.
122 If GDB_SYSROOT starts with "target:" and target filesystem
123 is the local filesystem then the "target:" prefix will be
124 stripped before the search starts. This ensures that the
125 same search algorithm is used for local files regardless of
126 whether a "target:" prefix was used.
127
128 Global variable SOLIB_SEARCH_PATH is used as a prefix directory
129 (or set of directories, as in LD_LIBRARY_PATH) to search for all
130 shared libraries if not found in either the sysroot (if set) or
131 the local filesystem. SOLIB_SEARCH_PATH is not used when searching
132 for the main executable.
133
134 Search algorithm:
135 * If a sysroot is set and path is absolute:
136 * Search for sysroot/path.
137 * else
138 * Look for it literally (unmodified).
139 * If IS_SOLIB is non-zero:
140 * Look in SOLIB_SEARCH_PATH.
141 * If available, use target defined search function.
142 * If NO sysroot is set, perform the following two searches:
143 * Look in inferior's $PATH.
144 * If IS_SOLIB is non-zero:
145 * Look in inferior's $LD_LIBRARY_PATH.
146 *
147 * The last check avoids doing this search when targetting remote
148 * machines since a sysroot will almost always be set.
149 */
150
151 static char *
152 solib_find_1 (const char *in_pathname, int *fd, int is_solib)
153 {
154 const struct target_so_ops *ops = solib_ops (target_gdbarch ());
155 int found_file = -1;
156 char *temp_pathname = NULL;
157 const char *fskind = effective_target_file_system_kind ();
158 const char *sysroot = gdb_sysroot;
159 int prefix_len, orig_prefix_len;
160
161 /* If the absolute prefix starts with "target:" but the filesystem
162 accessed by the target_fileio_* methods is the local filesystem
163 then we strip the "target:" prefix now and work with the local
164 filesystem. This ensures that the same search algorithm is used
165 for all local files regardless of whether a "target:" prefix was
166 used. */
167 if (is_target_filename (sysroot) && target_filesystem_is_local ())
168 sysroot += strlen (TARGET_SYSROOT_PREFIX);
169
170 /* Strip any trailing slashes from the absolute prefix. */
171 prefix_len = orig_prefix_len = strlen (sysroot);
172
173 while (prefix_len > 0 && IS_DIR_SEPARATOR (sysroot[prefix_len - 1]))
174 prefix_len--;
175
176 std::string sysroot_holder;
177 if (prefix_len == 0)
178 sysroot = NULL;
179 else if (prefix_len != orig_prefix_len)
180 {
181 sysroot_holder = std::string (sysroot, prefix_len);
182 sysroot = sysroot_holder.c_str ();
183 }
184
185 /* If we're on a non-DOS-based system, backslashes won't be
186 understood as directory separator, so, convert them to forward
187 slashes, iff we're supposed to handle DOS-based file system
188 semantics for target paths. */
189 if (!DOS_BASED_FILE_SYSTEM && fskind == file_system_kind_dos_based)
190 {
191 char *p;
192
193 /* Avoid clobbering our input. */
194 p = (char *) alloca (strlen (in_pathname) + 1);
195 strcpy (p, in_pathname);
196 in_pathname = p;
197
198 for (; *p; p++)
199 {
200 if (*p == '\\')
201 *p = '/';
202 }
203 }
204
205 /* Note, we're interested in IS_TARGET_ABSOLUTE_PATH, not
206 IS_ABSOLUTE_PATH. The latter is for host paths only, while
207 IN_PATHNAME is a target path. For example, if we're supposed to
208 be handling DOS-like semantics we want to consider a
209 'c:/foo/bar.dll' path as an absolute path, even on a Unix box.
210 With such a path, before giving up on the sysroot, we'll try:
211
212 1st attempt, c:/foo/bar.dll ==> /sysroot/c:/foo/bar.dll
213 2nd attempt, c:/foo/bar.dll ==> /sysroot/c/foo/bar.dll
214 3rd attempt, c:/foo/bar.dll ==> /sysroot/foo/bar.dll
215 */
216
217 if (!IS_TARGET_ABSOLUTE_PATH (fskind, in_pathname) || sysroot == NULL)
218 temp_pathname = xstrdup (in_pathname);
219 else
220 {
221 int need_dir_separator;
222
223 /* Concatenate the sysroot and the target reported filename. We
224 may need to glue them with a directory separator. Cases to
225 consider:
226
227 | sysroot | separator | in_pathname |
228 |-----------------+-----------+----------------|
229 | /some/dir | / | c:/foo/bar.dll |
230 | /some/dir | | /foo/bar.dll |
231 | target: | | c:/foo/bar.dll |
232 | target: | | /foo/bar.dll |
233 | target:some/dir | / | c:/foo/bar.dll |
234 | target:some/dir | | /foo/bar.dll |
235
236 IOW, we don't need to add a separator if IN_PATHNAME already
237 has one, or when the the sysroot is exactly "target:".
238 There's no need to check for drive spec explicitly, as we only
239 get here if IN_PATHNAME is considered an absolute path. */
240 need_dir_separator = !(IS_DIR_SEPARATOR (in_pathname[0])
241 || strcmp (TARGET_SYSROOT_PREFIX, sysroot) == 0);
242
243 /* Cat the prefixed pathname together. */
244 temp_pathname = concat (sysroot,
245 need_dir_separator ? SLASH_STRING : "",
246 in_pathname, (char *) NULL);
247 }
248
249 /* Handle files to be accessed via the target. */
250 if (is_target_filename (temp_pathname))
251 {
252 if (fd != NULL)
253 *fd = -1;
254 return temp_pathname;
255 }
256
257 /* Now see if we can open it. */
258 found_file = gdb_open_cloexec (temp_pathname, O_RDONLY | O_BINARY, 0);
259 if (found_file < 0)
260 xfree (temp_pathname);
261
262 /* If the search in gdb_sysroot failed, and the path name has a
263 drive spec (e.g, c:/foo), try stripping ':' from the drive spec,
264 and retrying in the sysroot:
265 c:/foo/bar.dll ==> /sysroot/c/foo/bar.dll. */
266
267 if (found_file < 0
268 && sysroot != NULL
269 && HAS_TARGET_DRIVE_SPEC (fskind, in_pathname))
270 {
271 int need_dir_separator = !IS_DIR_SEPARATOR (in_pathname[2]);
272 char *drive = savestring (in_pathname, 1);
273
274 temp_pathname = concat (sysroot,
275 SLASH_STRING,
276 drive,
277 need_dir_separator ? SLASH_STRING : "",
278 in_pathname + 2, (char *) NULL);
279 xfree (drive);
280
281 found_file = gdb_open_cloexec (temp_pathname, O_RDONLY | O_BINARY, 0);
282 if (found_file < 0)
283 {
284 xfree (temp_pathname);
285
286 /* If the search in gdb_sysroot still failed, try fully
287 stripping the drive spec, and trying once more in the
288 sysroot before giving up.
289
290 c:/foo/bar.dll ==> /sysroot/foo/bar.dll. */
291
292 temp_pathname = concat (sysroot,
293 need_dir_separator ? SLASH_STRING : "",
294 in_pathname + 2, (char *) NULL);
295
296 found_file = gdb_open_cloexec (temp_pathname, O_RDONLY | O_BINARY, 0);
297 if (found_file < 0)
298 xfree (temp_pathname);
299 }
300 }
301
302 /* We try to find the library in various ways. After each attempt,
303 either found_file >= 0 and temp_pathname is a malloc'd string, or
304 found_file < 0 and temp_pathname does not point to storage that
305 needs to be freed. */
306
307 if (found_file < 0)
308 temp_pathname = NULL;
309
310 /* If the search in gdb_sysroot failed, and the path name is
311 absolute at this point, make it relative. (openp will try and open the
312 file according to its absolute path otherwise, which is not what we want.)
313 Affects subsequent searches for this solib. */
314 if (found_file < 0 && IS_TARGET_ABSOLUTE_PATH (fskind, in_pathname))
315 {
316 /* First, get rid of any drive letters etc. */
317 while (!IS_TARGET_DIR_SEPARATOR (fskind, *in_pathname))
318 in_pathname++;
319
320 /* Next, get rid of all leading dir separators. */
321 while (IS_TARGET_DIR_SEPARATOR (fskind, *in_pathname))
322 in_pathname++;
323 }
324
325 /* If not found, and we're looking for a solib, search the
326 solib_search_path (if any). */
327 if (is_solib && found_file < 0 && solib_search_path != NULL)
328 found_file = openp (solib_search_path,
329 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
330 in_pathname, O_RDONLY | O_BINARY, &temp_pathname);
331
332 /* If not found, and we're looking for a solib, next search the
333 solib_search_path (if any) for the basename only (ignoring the
334 path). This is to allow reading solibs from a path that differs
335 from the opened path. */
336 if (is_solib && found_file < 0 && solib_search_path != NULL)
337 found_file = openp (solib_search_path,
338 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
339 target_lbasename (fskind, in_pathname),
340 O_RDONLY | O_BINARY, &temp_pathname);
341
342 /* If not found, and we're looking for a solib, try to use target
343 supplied solib search method. */
344 if (is_solib && found_file < 0 && ops->find_and_open_solib)
345 found_file = ops->find_and_open_solib (in_pathname, O_RDONLY | O_BINARY,
346 &temp_pathname);
347
348 /* If not found, next search the inferior's $PATH environment variable. */
349 if (found_file < 0 && sysroot == NULL)
350 found_file = openp (current_inferior ()->environment.get ("PATH"),
351 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, in_pathname,
352 O_RDONLY | O_BINARY, &temp_pathname);
353
354 /* If not found, and we're looking for a solib, next search the
355 inferior's $LD_LIBRARY_PATH environment variable. */
356 if (is_solib && found_file < 0 && sysroot == NULL)
357 found_file = openp (current_inferior ()->environment.get
358 ("LD_LIBRARY_PATH"),
359 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, in_pathname,
360 O_RDONLY | O_BINARY, &temp_pathname);
361
362 if (fd == NULL)
363 {
364 if (found_file >= 0)
365 close (found_file);
366 }
367 else
368 *fd = found_file;
369
370 return temp_pathname;
371 }
372
373 /* Return the full pathname of the main executable, or NULL if not
374 found. The returned pathname is malloc'ed and must be freed by
375 the caller. If FD is non-NULL, *FD is set to either -1 or an open
376 file handle for the main executable. */
377
378 char *
379 exec_file_find (const char *in_pathname, int *fd)
380 {
381 char *result;
382 const char *fskind = effective_target_file_system_kind ();
383
384 if (in_pathname == NULL)
385 return NULL;
386
387 if (*gdb_sysroot != '\0' && IS_TARGET_ABSOLUTE_PATH (fskind, in_pathname))
388 {
389 result = solib_find_1 (in_pathname, fd, 0);
390
391 if (result == NULL && fskind == file_system_kind_dos_based)
392 {
393 char *new_pathname;
394
395 new_pathname = (char *) alloca (strlen (in_pathname) + 5);
396 strcpy (new_pathname, in_pathname);
397 strcat (new_pathname, ".exe");
398
399 result = solib_find_1 (new_pathname, fd, 0);
400 }
401 }
402 else
403 {
404 /* It's possible we don't have a full path, but rather just a
405 filename. Some targets, such as HP-UX, don't provide the
406 full path, sigh.
407
408 Attempt to qualify the filename against the source path.
409 (If that fails, we'll just fall back on the original
410 filename. Not much more we can do...) */
411
412 if (!source_full_path_of (in_pathname, &result))
413 result = xstrdup (in_pathname);
414 if (fd != NULL)
415 *fd = -1;
416 }
417
418 return result;
419 }
420
421 /* Return the full pathname of a shared library file, or NULL if not
422 found. The returned pathname is malloc'ed and must be freed by
423 the caller. If FD is non-NULL, *FD is set to either -1 or an open
424 file handle for the shared library.
425
426 The search algorithm used is described in solib_find_1's comment
427 above. */
428
429 char *
430 solib_find (const char *in_pathname, int *fd)
431 {
432 const char *solib_symbols_extension
433 = gdbarch_solib_symbols_extension (target_gdbarch ());
434
435 /* If solib_symbols_extension is set, replace the file's
436 extension. */
437 if (solib_symbols_extension != NULL)
438 {
439 const char *p = in_pathname + strlen (in_pathname);
440
441 while (p > in_pathname && *p != '.')
442 p--;
443
444 if (*p == '.')
445 {
446 char *new_pathname;
447
448 new_pathname
449 = (char *) alloca (p - in_pathname + 1
450 + strlen (solib_symbols_extension) + 1);
451 memcpy (new_pathname, in_pathname, p - in_pathname + 1);
452 strcpy (new_pathname + (p - in_pathname) + 1,
453 solib_symbols_extension);
454
455 in_pathname = new_pathname;
456 }
457 }
458
459 return solib_find_1 (in_pathname, fd, 1);
460 }
461
462 /* Open and return a BFD for the shared library PATHNAME. If FD is not -1,
463 it is used as file handle to open the file. Throws an error if the file
464 could not be opened. Handles both local and remote file access.
465
466 PATHNAME must be malloc'ed by the caller. It will be freed by this
467 function. If unsuccessful, the FD will be closed (unless FD was
468 -1). */
469
470 gdb_bfd_ref_ptr
471 solib_bfd_fopen (char *pathname, int fd)
472 {
473 gdb_bfd_ref_ptr abfd (gdb_bfd_open (pathname, gnutarget, fd));
474
475 if (abfd != NULL && !gdb_bfd_has_target_filename (abfd.get ()))
476 bfd_set_cacheable (abfd.get (), 1);
477
478 if (abfd == NULL)
479 {
480 /* Arrange to free PATHNAME when the error is thrown. */
481 gdb::unique_xmalloc_ptr<char> free_pathname (pathname);
482 error (_("Could not open `%s' as an executable file: %s"),
483 pathname, bfd_errmsg (bfd_get_error ()));
484 }
485
486 xfree (pathname);
487
488 return abfd;
489 }
490
491 /* Find shared library PATHNAME and open a BFD for it. */
492
493 gdb_bfd_ref_ptr
494 solib_bfd_open (char *pathname)
495 {
496 char *found_pathname;
497 int found_file;
498 const struct bfd_arch_info *b;
499
500 /* Search for shared library file. */
501 found_pathname = solib_find (pathname, &found_file);
502 if (found_pathname == NULL)
503 {
504 /* Return failure if the file could not be found, so that we can
505 accumulate messages about missing libraries. */
506 if (errno == ENOENT)
507 return NULL;
508
509 perror_with_name (pathname);
510 }
511
512 /* Open bfd for shared library. */
513 gdb_bfd_ref_ptr abfd (solib_bfd_fopen (found_pathname, found_file));
514
515 /* Check bfd format. */
516 if (!bfd_check_format (abfd.get (), bfd_object))
517 error (_("`%s': not in executable format: %s"),
518 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
519
520 /* Check bfd arch. */
521 b = gdbarch_bfd_arch_info (target_gdbarch ());
522 if (!b->compatible (b, bfd_get_arch_info (abfd.get ())))
523 warning (_("`%s': Shared library architecture %s is not compatible "
524 "with target architecture %s."), bfd_get_filename (abfd),
525 bfd_get_arch_info (abfd.get ())->printable_name,
526 b->printable_name);
527
528 return abfd;
529 }
530
531 /* Given a pointer to one of the shared objects in our list of mapped
532 objects, use the recorded name to open a bfd descriptor for the
533 object, build a section table, relocate all the section addresses
534 by the base address at which the shared object was mapped, and then
535 add the sections to the target's section table.
536
537 FIXME: In most (all?) cases the shared object file name recorded in
538 the dynamic linkage tables will be a fully qualified pathname. For
539 cases where it isn't, do we really mimic the systems search
540 mechanism correctly in the below code (particularly the tilde
541 expansion stuff?). */
542
543 static int
544 solib_map_sections (struct so_list *so)
545 {
546 const struct target_so_ops *ops = solib_ops (target_gdbarch ());
547 struct target_section *p;
548
549 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (so->so_name));
550 gdb_bfd_ref_ptr abfd (ops->bfd_open (filename.get ()));
551
552 if (abfd == NULL)
553 return 0;
554
555 /* Leave bfd open, core_xfer_memory and "info files" need it. */
556 so->abfd = abfd.release ();
557
558 /* Copy the full path name into so_name, allowing symbol_file_add
559 to find it later. This also affects the =library-loaded GDB/MI
560 event, and in particular the part of that notification providing
561 the library's host-side path. If we let the target dictate
562 that objfile's path, and the target is different from the host,
563 GDB/MI will not provide the correct host-side path. */
564 if (strlen (bfd_get_filename (so->abfd)) >= SO_NAME_MAX_PATH_SIZE)
565 error (_("Shared library file name is too long."));
566 strcpy (so->so_name, bfd_get_filename (so->abfd));
567
568 if (build_section_table (so->abfd, &so->sections, &so->sections_end))
569 {
570 error (_("Can't find the file sections in `%s': %s"),
571 bfd_get_filename (so->abfd), bfd_errmsg (bfd_get_error ()));
572 }
573
574 for (p = so->sections; p < so->sections_end; p++)
575 {
576 /* Relocate the section binding addresses as recorded in the shared
577 object's file by the base address to which the object was actually
578 mapped. */
579 ops->relocate_section_addresses (so, p);
580
581 /* If the target didn't provide information about the address
582 range of the shared object, assume we want the location of
583 the .text section. */
584 if (so->addr_low == 0 && so->addr_high == 0
585 && strcmp (p->the_bfd_section->name, ".text") == 0)
586 {
587 so->addr_low = p->addr;
588 so->addr_high = p->endaddr;
589 }
590 }
591
592 /* Add the shared object's sections to the current set of file
593 section tables. Do this immediately after mapping the object so
594 that later nodes in the list can query this object, as is needed
595 in solib-osf.c. */
596 add_target_sections (so, so->sections, so->sections_end);
597
598 return 1;
599 }
600
601 /* Free symbol-file related contents of SO and reset for possible reloading
602 of SO. If we have opened a BFD for SO, close it. If we have placed SO's
603 sections in some target's section table, the caller is responsible for
604 removing them.
605
606 This function doesn't mess with objfiles at all. If there is an
607 objfile associated with SO that needs to be removed, the caller is
608 responsible for taking care of that. */
609
610 static void
611 clear_so (struct so_list *so)
612 {
613 const struct target_so_ops *ops = solib_ops (target_gdbarch ());
614
615 if (so->sections)
616 {
617 xfree (so->sections);
618 so->sections = so->sections_end = NULL;
619 }
620
621 gdb_bfd_unref (so->abfd);
622 so->abfd = NULL;
623
624 /* Our caller closed the objfile, possibly via objfile_purge_solibs. */
625 so->symbols_loaded = 0;
626 so->objfile = NULL;
627
628 so->addr_low = so->addr_high = 0;
629
630 /* Restore the target-supplied file name. SO_NAME may be the path
631 of the symbol file. */
632 strcpy (so->so_name, so->so_original_name);
633
634 /* Do the same for target-specific data. */
635 if (ops->clear_so != NULL)
636 ops->clear_so (so);
637 }
638
639 /* Free the storage associated with the `struct so_list' object SO.
640 If we have opened a BFD for SO, close it.
641
642 The caller is responsible for removing SO from whatever list it is
643 a member of. If we have placed SO's sections in some target's
644 section table, the caller is responsible for removing them.
645
646 This function doesn't mess with objfiles at all. If there is an
647 objfile associated with SO that needs to be removed, the caller is
648 responsible for taking care of that. */
649
650 void
651 free_so (struct so_list *so)
652 {
653 const struct target_so_ops *ops = solib_ops (target_gdbarch ());
654
655 clear_so (so);
656 ops->free_so (so);
657
658 xfree (so);
659 }
660
661
662 /* Return address of first so_list entry in master shared object list. */
663 struct so_list *
664 master_so_list (void)
665 {
666 return so_list_head;
667 }
668
669 /* Read in symbols for shared object SO. If SYMFILE_VERBOSE is set in FLAGS,
670 be chatty about it. Return non-zero if any symbols were actually
671 loaded. */
672
673 int
674 solib_read_symbols (struct so_list *so, symfile_add_flags flags)
675 {
676 if (so->symbols_loaded)
677 {
678 /* If needed, we've already warned in our caller. */
679 }
680 else if (so->abfd == NULL)
681 {
682 /* We've already warned about this library, when trying to open
683 it. */
684 }
685 else
686 {
687
688 flags |= current_inferior ()->symfile_flags;
689
690 TRY
691 {
692 struct section_addr_info *sap;
693
694 /* Have we already loaded this shared object? */
695 ALL_OBJFILES (so->objfile)
696 {
697 if (filename_cmp (objfile_name (so->objfile), so->so_name) == 0
698 && so->objfile->addr_low == so->addr_low)
699 break;
700 }
701 if (so->objfile == NULL)
702 {
703 sap = build_section_addr_info_from_section_table (so->sections,
704 so->sections_end);
705 so->objfile = symbol_file_add_from_bfd (so->abfd, so->so_name,
706 flags, sap, OBJF_SHARED,
707 NULL);
708 so->objfile->addr_low = so->addr_low;
709 free_section_addr_info (sap);
710 }
711
712 so->symbols_loaded = 1;
713 }
714 CATCH (e, RETURN_MASK_ERROR)
715 {
716 exception_fprintf (gdb_stderr, e, _("Error while reading shared"
717 " library symbols for %s:\n"),
718 so->so_name);
719 }
720 END_CATCH
721
722 return 1;
723 }
724
725 return 0;
726 }
727
728 /* Return 1 if KNOWN->objfile is used by any other so_list object in the
729 SO_LIST_HEAD list. Return 0 otherwise. */
730
731 static int
732 solib_used (const struct so_list *const known)
733 {
734 const struct so_list *pivot;
735
736 for (pivot = so_list_head; pivot != NULL; pivot = pivot->next)
737 if (pivot != known && pivot->objfile == known->objfile)
738 return 1;
739 return 0;
740 }
741
742 /* See solib.h. */
743
744 void
745 update_solib_list (int from_tty)
746 {
747 const struct target_so_ops *ops = solib_ops (target_gdbarch ());
748 struct so_list *inferior = ops->current_sos();
749 struct so_list *gdb, **gdb_link;
750
751 /* We can reach here due to changing solib-search-path or the
752 sysroot, before having any inferior. */
753 if (target_has_execution && !ptid_equal (inferior_ptid, null_ptid))
754 {
755 struct inferior *inf = current_inferior ();
756
757 /* If we are attaching to a running process for which we
758 have not opened a symbol file, we may be able to get its
759 symbols now! */
760 if (inf->attach_flag && symfile_objfile == NULL)
761 {
762 TRY
763 {
764 ops->open_symbol_file_object (from_tty);
765 }
766 CATCH (ex, RETURN_MASK_ALL)
767 {
768 exception_fprintf (gdb_stderr, ex,
769 "Error reading attached "
770 "process's symbol file.\n");
771 }
772 END_CATCH
773 }
774 }
775
776 /* GDB and the inferior's dynamic linker each maintain their own
777 list of currently loaded shared objects; we want to bring the
778 former in sync with the latter. Scan both lists, seeing which
779 shared objects appear where. There are three cases:
780
781 - A shared object appears on both lists. This means that GDB
782 knows about it already, and it's still loaded in the inferior.
783 Nothing needs to happen.
784
785 - A shared object appears only on GDB's list. This means that
786 the inferior has unloaded it. We should remove the shared
787 object from GDB's tables.
788
789 - A shared object appears only on the inferior's list. This
790 means that it's just been loaded. We should add it to GDB's
791 tables.
792
793 So we walk GDB's list, checking each entry to see if it appears
794 in the inferior's list too. If it does, no action is needed, and
795 we remove it from the inferior's list. If it doesn't, the
796 inferior has unloaded it, and we remove it from GDB's list. By
797 the time we're done walking GDB's list, the inferior's list
798 contains only the new shared objects, which we then add. */
799
800 gdb = so_list_head;
801 gdb_link = &so_list_head;
802 while (gdb)
803 {
804 struct so_list *i = inferior;
805 struct so_list **i_link = &inferior;
806
807 /* Check to see whether the shared object *gdb also appears in
808 the inferior's current list. */
809 while (i)
810 {
811 if (ops->same)
812 {
813 if (ops->same (gdb, i))
814 break;
815 }
816 else
817 {
818 if (! filename_cmp (gdb->so_original_name, i->so_original_name))
819 break;
820 }
821
822 i_link = &i->next;
823 i = *i_link;
824 }
825
826 /* If the shared object appears on the inferior's list too, then
827 it's still loaded, so we don't need to do anything. Delete
828 it from the inferior's list, and leave it on GDB's list. */
829 if (i)
830 {
831 *i_link = i->next;
832 free_so (i);
833 gdb_link = &gdb->next;
834 gdb = *gdb_link;
835 }
836
837 /* If it's not on the inferior's list, remove it from GDB's tables. */
838 else
839 {
840 /* Notify any observer that the shared object has been
841 unloaded before we remove it from GDB's tables. */
842 observer_notify_solib_unloaded (gdb);
843
844 VEC_safe_push (char_ptr, current_program_space->deleted_solibs,
845 xstrdup (gdb->so_name));
846
847 *gdb_link = gdb->next;
848
849 /* Unless the user loaded it explicitly, free SO's objfile. */
850 if (gdb->objfile && ! (gdb->objfile->flags & OBJF_USERLOADED)
851 && !solib_used (gdb))
852 delete gdb->objfile;
853
854 /* Some targets' section tables might be referring to
855 sections from so->abfd; remove them. */
856 remove_target_sections (gdb);
857
858 free_so (gdb);
859 gdb = *gdb_link;
860 }
861 }
862
863 /* Now the inferior's list contains only shared objects that don't
864 appear in GDB's list --- those that are newly loaded. Add them
865 to GDB's shared object list. */
866 if (inferior)
867 {
868 int not_found = 0;
869 const char *not_found_filename = NULL;
870
871 struct so_list *i;
872
873 /* Add the new shared objects to GDB's list. */
874 *gdb_link = inferior;
875
876 /* Fill in the rest of each of the `struct so_list' nodes. */
877 for (i = inferior; i; i = i->next)
878 {
879
880 i->pspace = current_program_space;
881 VEC_safe_push (so_list_ptr, current_program_space->added_solibs, i);
882
883 TRY
884 {
885 /* Fill in the rest of the `struct so_list' node. */
886 if (!solib_map_sections (i))
887 {
888 not_found++;
889 if (not_found_filename == NULL)
890 not_found_filename = i->so_original_name;
891 }
892 }
893
894 CATCH (e, RETURN_MASK_ERROR)
895 {
896 exception_fprintf (gdb_stderr, e,
897 _("Error while mapping shared "
898 "library sections:\n"));
899 }
900 END_CATCH
901
902 /* Notify any observer that the shared object has been
903 loaded now that we've added it to GDB's tables. */
904 observer_notify_solib_loaded (i);
905 }
906
907 /* If a library was not found, issue an appropriate warning
908 message. We have to use a single call to warning in case the
909 front end does something special with warnings, e.g., pop up
910 a dialog box. It Would Be Nice if we could get a "warning: "
911 prefix on each line in the CLI front end, though - it doesn't
912 stand out well. */
913
914 if (not_found == 1)
915 warning (_("Could not load shared library symbols for %s.\n"
916 "Do you need \"set solib-search-path\" "
917 "or \"set sysroot\"?"),
918 not_found_filename);
919 else if (not_found > 1)
920 warning (_("\
921 Could not load shared library symbols for %d libraries, e.g. %s.\n\
922 Use the \"info sharedlibrary\" command to see the complete listing.\n\
923 Do you need \"set solib-search-path\" or \"set sysroot\"?"),
924 not_found, not_found_filename);
925 }
926 }
927
928
929 /* Return non-zero if NAME is the libpthread shared library.
930
931 Uses a fairly simplistic heuristic approach where we check
932 the file name against "/libpthread". This can lead to false
933 positives, but this should be good enough in practice. */
934
935 int
936 libpthread_name_p (const char *name)
937 {
938 return (strstr (name, "/libpthread") != NULL);
939 }
940
941 /* Return non-zero if SO is the libpthread shared library. */
942
943 static int
944 libpthread_solib_p (struct so_list *so)
945 {
946 return libpthread_name_p (so->so_name);
947 }
948
949 /* Read in symbolic information for any shared objects whose names
950 match PATTERN. (If we've already read a shared object's symbol
951 info, leave it alone.) If PATTERN is zero, read them all.
952
953 If READSYMS is 0, defer reading symbolic information until later
954 but still do any needed low level processing.
955
956 FROM_TTY is described for update_solib_list, above. */
957
958 void
959 solib_add (const char *pattern, int from_tty, int readsyms)
960 {
961 struct so_list *gdb;
962
963 if (print_symbol_loading_p (from_tty, 0, 0))
964 {
965 if (pattern != NULL)
966 {
967 printf_unfiltered (_("Loading symbols for shared libraries: %s\n"),
968 pattern);
969 }
970 else
971 printf_unfiltered (_("Loading symbols for shared libraries.\n"));
972 }
973
974 current_program_space->solib_add_generation++;
975
976 if (pattern)
977 {
978 char *re_err = re_comp (pattern);
979
980 if (re_err)
981 error (_("Invalid regexp: %s"), re_err);
982 }
983
984 update_solib_list (from_tty);
985
986 /* Walk the list of currently loaded shared libraries, and read
987 symbols for any that match the pattern --- or any whose symbols
988 aren't already loaded, if no pattern was given. */
989 {
990 int any_matches = 0;
991 int loaded_any_symbols = 0;
992 symfile_add_flags add_flags = SYMFILE_DEFER_BP_RESET;
993
994 if (from_tty)
995 add_flags |= SYMFILE_VERBOSE;
996
997 for (gdb = so_list_head; gdb; gdb = gdb->next)
998 if (! pattern || re_exec (gdb->so_name))
999 {
1000 /* Normally, we would read the symbols from that library
1001 only if READSYMS is set. However, we're making a small
1002 exception for the pthread library, because we sometimes
1003 need the library symbols to be loaded in order to provide
1004 thread support (x86-linux for instance). */
1005 const int add_this_solib =
1006 (readsyms || libpthread_solib_p (gdb));
1007
1008 any_matches = 1;
1009 if (add_this_solib)
1010 {
1011 if (gdb->symbols_loaded)
1012 {
1013 /* If no pattern was given, be quiet for shared
1014 libraries we have already loaded. */
1015 if (pattern && (from_tty || info_verbose))
1016 printf_unfiltered (_("Symbols already loaded for %s\n"),
1017 gdb->so_name);
1018 }
1019 else if (solib_read_symbols (gdb, add_flags))
1020 loaded_any_symbols = 1;
1021 }
1022 }
1023
1024 if (loaded_any_symbols)
1025 breakpoint_re_set ();
1026
1027 if (from_tty && pattern && ! any_matches)
1028 printf_unfiltered
1029 ("No loaded shared libraries match the pattern `%s'.\n", pattern);
1030
1031 if (loaded_any_symbols)
1032 {
1033 /* Getting new symbols may change our opinion about what is
1034 frameless. */
1035 reinit_frame_cache ();
1036 }
1037 }
1038 }
1039
1040 /* Implement the "info sharedlibrary" command. Walk through the
1041 shared library list and print information about each attached
1042 library matching PATTERN. If PATTERN is elided, print them
1043 all. */
1044
1045 static void
1046 info_sharedlibrary_command (const char *pattern, int from_tty)
1047 {
1048 struct so_list *so = NULL; /* link map state variable */
1049 int so_missing_debug_info = 0;
1050 int addr_width;
1051 int nr_libs;
1052 struct gdbarch *gdbarch = target_gdbarch ();
1053 struct ui_out *uiout = current_uiout;
1054
1055 if (pattern)
1056 {
1057 char *re_err = re_comp (pattern);
1058
1059 if (re_err)
1060 error (_("Invalid regexp: %s"), re_err);
1061 }
1062
1063 /* "0x", a little whitespace, and two hex digits per byte of pointers. */
1064 addr_width = 4 + (gdbarch_ptr_bit (gdbarch) / 4);
1065
1066 update_solib_list (from_tty);
1067
1068 /* ui_out_emit_table table_emitter needs to know the number of rows,
1069 so we need to make two passes over the libs. */
1070
1071 for (nr_libs = 0, so = so_list_head; so; so = so->next)
1072 {
1073 if (so->so_name[0])
1074 {
1075 if (pattern && ! re_exec (so->so_name))
1076 continue;
1077 ++nr_libs;
1078 }
1079 }
1080
1081 {
1082 ui_out_emit_table table_emitter (uiout, 4, nr_libs, "SharedLibraryTable");
1083
1084 /* The "- 1" is because ui_out adds one space between columns. */
1085 uiout->table_header (addr_width - 1, ui_left, "from", "From");
1086 uiout->table_header (addr_width - 1, ui_left, "to", "To");
1087 uiout->table_header (12 - 1, ui_left, "syms-read", "Syms Read");
1088 uiout->table_header (0, ui_noalign, "name", "Shared Object Library");
1089
1090 uiout->table_body ();
1091
1092 ALL_SO_LIBS (so)
1093 {
1094 if (! so->so_name[0])
1095 continue;
1096 if (pattern && ! re_exec (so->so_name))
1097 continue;
1098
1099 ui_out_emit_tuple tuple_emitter (uiout, "lib");
1100
1101 if (so->addr_high != 0)
1102 {
1103 uiout->field_core_addr ("from", gdbarch, so->addr_low);
1104 uiout->field_core_addr ("to", gdbarch, so->addr_high);
1105 }
1106 else
1107 {
1108 uiout->field_skip ("from");
1109 uiout->field_skip ("to");
1110 }
1111
1112 if (! interp_ui_out (top_level_interpreter ())->is_mi_like_p ()
1113 && so->symbols_loaded
1114 && !objfile_has_symbols (so->objfile))
1115 {
1116 so_missing_debug_info = 1;
1117 uiout->field_string ("syms-read", "Yes (*)");
1118 }
1119 else
1120 uiout->field_string ("syms-read", so->symbols_loaded ? "Yes" : "No");
1121
1122 uiout->field_string ("name", so->so_name);
1123
1124 uiout->text ("\n");
1125 }
1126 }
1127
1128 if (nr_libs == 0)
1129 {
1130 if (pattern)
1131 uiout->message (_("No shared libraries matched.\n"));
1132 else
1133 uiout->message (_("No shared libraries loaded at this time.\n"));
1134 }
1135 else
1136 {
1137 if (so_missing_debug_info)
1138 uiout->message (_("(*): Shared library is missing "
1139 "debugging information.\n"));
1140 }
1141 }
1142
1143 /* Return 1 if ADDRESS lies within SOLIB. */
1144
1145 int
1146 solib_contains_address_p (const struct so_list *const solib,
1147 CORE_ADDR address)
1148 {
1149 struct target_section *p;
1150
1151 for (p = solib->sections; p < solib->sections_end; p++)
1152 if (p->addr <= address && address < p->endaddr)
1153 return 1;
1154
1155 return 0;
1156 }
1157
1158 /* If ADDRESS is in a shared lib in program space PSPACE, return its
1159 name.
1160
1161 Provides a hook for other gdb routines to discover whether or not a
1162 particular address is within the mapped address space of a shared
1163 library.
1164
1165 For example, this routine is called at one point to disable
1166 breakpoints which are in shared libraries that are not currently
1167 mapped in. */
1168
1169 char *
1170 solib_name_from_address (struct program_space *pspace, CORE_ADDR address)
1171 {
1172 struct so_list *so = NULL;
1173
1174 for (so = pspace->so_list; so; so = so->next)
1175 if (solib_contains_address_p (so, address))
1176 return (so->so_name);
1177
1178 return (0);
1179 }
1180
1181 /* Return whether the data starting at VADDR, size SIZE, must be kept
1182 in a core file for shared libraries loaded before "gcore" is used
1183 to be handled correctly when the core file is loaded. This only
1184 applies when the section would otherwise not be kept in the core
1185 file (in particular, for readonly sections). */
1186
1187 int
1188 solib_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
1189 {
1190 const struct target_so_ops *ops = solib_ops (target_gdbarch ());
1191
1192 if (ops->keep_data_in_core)
1193 return ops->keep_data_in_core (vaddr, size);
1194 else
1195 return 0;
1196 }
1197
1198 /* Called by free_all_symtabs */
1199
1200 void
1201 clear_solib (void)
1202 {
1203 const struct target_so_ops *ops = solib_ops (target_gdbarch ());
1204
1205 disable_breakpoints_in_shlibs ();
1206
1207 while (so_list_head)
1208 {
1209 struct so_list *so = so_list_head;
1210
1211 so_list_head = so->next;
1212 observer_notify_solib_unloaded (so);
1213 remove_target_sections (so);
1214 free_so (so);
1215 }
1216
1217 ops->clear_solib ();
1218 }
1219
1220 /* Shared library startup support. When GDB starts up the inferior,
1221 it nurses it along (through the shell) until it is ready to execute
1222 its first instruction. At this point, this function gets
1223 called. */
1224
1225 void
1226 solib_create_inferior_hook (int from_tty)
1227 {
1228 const struct target_so_ops *ops = solib_ops (target_gdbarch ());
1229
1230 ops->solib_create_inferior_hook (from_tty);
1231 }
1232
1233 /* Check to see if an address is in the dynamic loader's dynamic
1234 symbol resolution code. Return 1 if so, 0 otherwise. */
1235
1236 int
1237 in_solib_dynsym_resolve_code (CORE_ADDR pc)
1238 {
1239 const struct target_so_ops *ops = solib_ops (target_gdbarch ());
1240
1241 return ops->in_dynsym_resolve_code (pc);
1242 }
1243
1244 /* Implements the "sharedlibrary" command. */
1245
1246 static void
1247 sharedlibrary_command (const char *args, int from_tty)
1248 {
1249 dont_repeat ();
1250 solib_add (args, from_tty, 1);
1251 }
1252
1253 /* Implements the command "nosharedlibrary", which discards symbols
1254 that have been auto-loaded from shared libraries. Symbols from
1255 shared libraries that were added by explicit request of the user
1256 are not discarded. Also called from remote.c. */
1257
1258 void
1259 no_shared_libraries (const char *ignored, int from_tty)
1260 {
1261 /* The order of the two routines below is important: clear_solib notifies
1262 the solib_unloaded observers, and some of these observers might need
1263 access to their associated objfiles. Therefore, we can not purge the
1264 solibs' objfiles before clear_solib has been called. */
1265
1266 clear_solib ();
1267 objfile_purge_solibs ();
1268 }
1269
1270 /* See solib.h. */
1271
1272 void
1273 update_solib_breakpoints (void)
1274 {
1275 const struct target_so_ops *ops = solib_ops (target_gdbarch ());
1276
1277 if (ops->update_breakpoints != NULL)
1278 ops->update_breakpoints ();
1279 }
1280
1281 /* See solib.h. */
1282
1283 void
1284 handle_solib_event (void)
1285 {
1286 const struct target_so_ops *ops = solib_ops (target_gdbarch ());
1287
1288 if (ops->handle_event != NULL)
1289 ops->handle_event ();
1290
1291 clear_program_space_solib_cache (current_inferior ()->pspace);
1292
1293 /* Check for any newly added shared libraries if we're supposed to
1294 be adding them automatically. Switch terminal for any messages
1295 produced by breakpoint_re_set. */
1296 target_terminal::ours_for_output ();
1297 solib_add (NULL, 0, auto_solib_add);
1298 target_terminal::inferior ();
1299 }
1300
1301 /* Reload shared libraries, but avoid reloading the same symbol file
1302 we already have loaded. */
1303
1304 static void
1305 reload_shared_libraries_1 (int from_tty)
1306 {
1307 struct so_list *so;
1308
1309 if (print_symbol_loading_p (from_tty, 0, 0))
1310 printf_unfiltered (_("Loading symbols for shared libraries.\n"));
1311
1312 for (so = so_list_head; so != NULL; so = so->next)
1313 {
1314 char *found_pathname = NULL;
1315 int was_loaded = so->symbols_loaded;
1316 symfile_add_flags add_flags = SYMFILE_DEFER_BP_RESET;
1317
1318 if (from_tty)
1319 add_flags |= SYMFILE_VERBOSE;
1320
1321 gdb::unique_xmalloc_ptr<char> filename
1322 (tilde_expand (so->so_original_name));
1323 gdb_bfd_ref_ptr abfd (solib_bfd_open (filename.get ()));
1324 if (abfd != NULL)
1325 found_pathname = bfd_get_filename (abfd.get ());
1326
1327 /* If this shared library is no longer associated with its previous
1328 symbol file, close that. */
1329 if ((found_pathname == NULL && was_loaded)
1330 || (found_pathname != NULL
1331 && filename_cmp (found_pathname, so->so_name) != 0))
1332 {
1333 if (so->objfile && ! (so->objfile->flags & OBJF_USERLOADED)
1334 && !solib_used (so))
1335 delete so->objfile;
1336 remove_target_sections (so);
1337 clear_so (so);
1338 }
1339
1340 /* If this shared library is now associated with a new symbol
1341 file, open it. */
1342 if (found_pathname != NULL
1343 && (!was_loaded
1344 || filename_cmp (found_pathname, so->so_name) != 0))
1345 {
1346 int got_error = 0;
1347
1348 TRY
1349 {
1350 solib_map_sections (so);
1351 }
1352
1353 CATCH (e, RETURN_MASK_ERROR)
1354 {
1355 exception_fprintf (gdb_stderr, e,
1356 _("Error while mapping "
1357 "shared library sections:\n"));
1358 got_error = 1;
1359 }
1360 END_CATCH
1361
1362 if (!got_error
1363 && (auto_solib_add || was_loaded || libpthread_solib_p (so)))
1364 solib_read_symbols (so, add_flags);
1365 }
1366 }
1367 }
1368
1369 static void
1370 reload_shared_libraries (const char *ignored, int from_tty,
1371 struct cmd_list_element *e)
1372 {
1373 const struct target_so_ops *ops;
1374
1375 reload_shared_libraries_1 (from_tty);
1376
1377 ops = solib_ops (target_gdbarch ());
1378
1379 /* Creating inferior hooks here has two purposes. First, if we reload
1380 shared libraries then the address of solib breakpoint we've computed
1381 previously might be no longer valid. For example, if we forgot to set
1382 solib-absolute-prefix and are setting it right now, then the previous
1383 breakpoint address is plain wrong. Second, installing solib hooks
1384 also implicitly figures were ld.so is and loads symbols for it.
1385 Absent this call, if we've just connected to a target and set
1386 solib-absolute-prefix or solib-search-path, we'll lose all information
1387 about ld.so. */
1388 if (target_has_execution)
1389 {
1390 /* Reset or free private data structures not associated with
1391 so_list entries. */
1392 ops->clear_solib ();
1393
1394 /* Remove any previous solib event breakpoint. This is usually
1395 done in common code, at breakpoint_init_inferior time, but
1396 we're not really starting up the inferior here. */
1397 remove_solib_event_breakpoints ();
1398
1399 solib_create_inferior_hook (from_tty);
1400 }
1401
1402 /* Sometimes the platform-specific hook loads initial shared
1403 libraries, and sometimes it doesn't. If it doesn't FROM_TTY will be
1404 incorrectly 0 but such solib targets should be fixed anyway. If we
1405 made all the inferior hook methods consistent, this call could be
1406 removed. Call it only after the solib target has been initialized by
1407 solib_create_inferior_hook. */
1408
1409 solib_add (NULL, 0, auto_solib_add);
1410
1411 breakpoint_re_set ();
1412
1413 /* We may have loaded or unloaded debug info for some (or all)
1414 shared libraries. However, frames may still reference them. For
1415 example, a frame's unwinder might still point at DWARF FDE
1416 structures that are now freed. Also, getting new symbols may
1417 change our opinion about what is frameless. */
1418 reinit_frame_cache ();
1419 }
1420
1421 /* Wrapper for reload_shared_libraries that replaces "remote:"
1422 at the start of gdb_sysroot with "target:". */
1423
1424 static void
1425 gdb_sysroot_changed (const char *ignored, int from_tty,
1426 struct cmd_list_element *e)
1427 {
1428 const char *old_prefix = "remote:";
1429 const char *new_prefix = TARGET_SYSROOT_PREFIX;
1430
1431 if (startswith (gdb_sysroot, old_prefix))
1432 {
1433 static int warning_issued = 0;
1434
1435 gdb_assert (strlen (old_prefix) == strlen (new_prefix));
1436 memcpy (gdb_sysroot, new_prefix, strlen (new_prefix));
1437
1438 if (!warning_issued)
1439 {
1440 warning (_("\"%s\" is deprecated, use \"%s\" instead."),
1441 old_prefix, new_prefix);
1442 warning (_("sysroot set to \"%s\"."), gdb_sysroot);
1443
1444 warning_issued = 1;
1445 }
1446 }
1447
1448 reload_shared_libraries (ignored, from_tty, e);
1449 }
1450
1451 static void
1452 show_auto_solib_add (struct ui_file *file, int from_tty,
1453 struct cmd_list_element *c, const char *value)
1454 {
1455 fprintf_filtered (file, _("Autoloading of shared library symbols is %s.\n"),
1456 value);
1457 }
1458
1459
1460 /* Handler for library-specific lookup of global symbol NAME in OBJFILE. Call
1461 the library-specific handler if it is installed for the current target. */
1462
1463 struct block_symbol
1464 solib_global_lookup (struct objfile *objfile,
1465 const char *name,
1466 const domain_enum domain)
1467 {
1468 const struct target_so_ops *ops = solib_ops (target_gdbarch ());
1469
1470 if (ops->lookup_lib_global_symbol != NULL)
1471 return ops->lookup_lib_global_symbol (objfile, name, domain);
1472 return (struct block_symbol) {NULL, NULL};
1473 }
1474
1475 /* Lookup the value for a specific symbol from dynamic symbol table. Look
1476 up symbol from ABFD. MATCH_SYM is a callback function to determine
1477 whether to pick up a symbol. DATA is the input of this callback
1478 function. Return NULL if symbol is not found. */
1479
1480 CORE_ADDR
1481 gdb_bfd_lookup_symbol_from_symtab (bfd *abfd,
1482 int (*match_sym) (const asymbol *,
1483 const void *),
1484 const void *data)
1485 {
1486 long storage_needed = bfd_get_symtab_upper_bound (abfd);
1487 CORE_ADDR symaddr = 0;
1488
1489 if (storage_needed > 0)
1490 {
1491 unsigned int i;
1492
1493 asymbol **symbol_table = (asymbol **) xmalloc (storage_needed);
1494 struct cleanup *back_to = make_cleanup (xfree, symbol_table);
1495 unsigned int number_of_symbols =
1496 bfd_canonicalize_symtab (abfd, symbol_table);
1497
1498 for (i = 0; i < number_of_symbols; i++)
1499 {
1500 asymbol *sym = *symbol_table++;
1501
1502 if (match_sym (sym, data))
1503 {
1504 struct gdbarch *gdbarch = target_gdbarch ();
1505 symaddr = sym->value;
1506
1507 /* Some ELF targets fiddle with addresses of symbols they
1508 consider special. They use minimal symbols to do that
1509 and this is needed for correct breakpoint placement,
1510 but we do not have full data here to build a complete
1511 minimal symbol, so just set the address and let the
1512 targets cope with that. */
1513 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1514 && gdbarch_elf_make_msymbol_special_p (gdbarch))
1515 {
1516 struct minimal_symbol msym;
1517
1518 memset (&msym, 0, sizeof (msym));
1519 SET_MSYMBOL_VALUE_ADDRESS (&msym, symaddr);
1520 gdbarch_elf_make_msymbol_special (gdbarch, sym, &msym);
1521 symaddr = MSYMBOL_VALUE_RAW_ADDRESS (&msym);
1522 }
1523
1524 /* BFD symbols are section relative. */
1525 symaddr += sym->section->vma;
1526 break;
1527 }
1528 }
1529 do_cleanups (back_to);
1530 }
1531
1532 return symaddr;
1533 }
1534
1535 /* Lookup the value for a specific symbol from symbol table. Look up symbol
1536 from ABFD. MATCH_SYM is a callback function to determine whether to pick
1537 up a symbol. DATA is the input of this callback function. Return NULL
1538 if symbol is not found. */
1539
1540 static CORE_ADDR
1541 bfd_lookup_symbol_from_dyn_symtab (bfd *abfd,
1542 int (*match_sym) (const asymbol *,
1543 const void *),
1544 const void *data)
1545 {
1546 long storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1547 CORE_ADDR symaddr = 0;
1548
1549 if (storage_needed > 0)
1550 {
1551 unsigned int i;
1552 asymbol **symbol_table = (asymbol **) xmalloc (storage_needed);
1553 struct cleanup *back_to = make_cleanup (xfree, symbol_table);
1554 unsigned int number_of_symbols =
1555 bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
1556
1557 for (i = 0; i < number_of_symbols; i++)
1558 {
1559 asymbol *sym = *symbol_table++;
1560
1561 if (match_sym (sym, data))
1562 {
1563 /* BFD symbols are section relative. */
1564 symaddr = sym->value + sym->section->vma;
1565 break;
1566 }
1567 }
1568 do_cleanups (back_to);
1569 }
1570 return symaddr;
1571 }
1572
1573 /* Lookup the value for a specific symbol from symbol table and dynamic
1574 symbol table. Look up symbol from ABFD. MATCH_SYM is a callback
1575 function to determine whether to pick up a symbol. DATA is the
1576 input of this callback function. Return NULL if symbol is not
1577 found. */
1578
1579 CORE_ADDR
1580 gdb_bfd_lookup_symbol (bfd *abfd,
1581 int (*match_sym) (const asymbol *, const void *),
1582 const void *data)
1583 {
1584 CORE_ADDR symaddr = gdb_bfd_lookup_symbol_from_symtab (abfd, match_sym, data);
1585
1586 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
1587 have to check the dynamic string table too. */
1588 if (symaddr == 0)
1589 symaddr = bfd_lookup_symbol_from_dyn_symtab (abfd, match_sym, data);
1590
1591 return symaddr;
1592 }
1593
1594 /* SO_LIST_HEAD may contain user-loaded object files that can be removed
1595 out-of-band by the user. So upon notification of free_objfile remove
1596 all references to any user-loaded file that is about to be freed. */
1597
1598 static void
1599 remove_user_added_objfile (struct objfile *objfile)
1600 {
1601 struct so_list *so;
1602
1603 if (objfile != 0 && objfile->flags & OBJF_USERLOADED)
1604 {
1605 for (so = so_list_head; so != NULL; so = so->next)
1606 if (so->objfile == objfile)
1607 so->objfile = NULL;
1608 }
1609 }
1610
1611 void
1612 _initialize_solib (void)
1613 {
1614 solib_data = gdbarch_data_register_pre_init (solib_init);
1615
1616 observer_attach_free_objfile (remove_user_added_objfile);
1617
1618 add_com ("sharedlibrary", class_files, sharedlibrary_command,
1619 _("Load shared object library symbols for files matching REGEXP."));
1620 add_info ("sharedlibrary", info_sharedlibrary_command,
1621 _("Status of loaded shared object libraries."));
1622 add_info_alias ("dll", "sharedlibrary", 1);
1623 add_com ("nosharedlibrary", class_files, no_shared_libraries,
1624 _("Unload all shared object library symbols."));
1625
1626 add_setshow_boolean_cmd ("auto-solib-add", class_support,
1627 &auto_solib_add, _("\
1628 Set autoloading of shared library symbols."), _("\
1629 Show autoloading of shared library symbols."), _("\
1630 If \"on\", symbols from all shared object libraries will be loaded\n\
1631 automatically when the inferior begins execution, when the dynamic linker\n\
1632 informs gdb that a new library has been loaded, or when attaching to the\n\
1633 inferior. Otherwise, symbols must be loaded manually, using \
1634 `sharedlibrary'."),
1635 NULL,
1636 show_auto_solib_add,
1637 &setlist, &showlist);
1638
1639 add_setshow_optional_filename_cmd ("sysroot", class_support,
1640 &gdb_sysroot, _("\
1641 Set an alternate system root."), _("\
1642 Show the current system root."), _("\
1643 The system root is used to load absolute shared library symbol files.\n\
1644 For other (relative) files, you can add directories using\n\
1645 `set solib-search-path'."),
1646 gdb_sysroot_changed,
1647 NULL,
1648 &setlist, &showlist);
1649
1650 add_alias_cmd ("solib-absolute-prefix", "sysroot", class_support, 0,
1651 &setlist);
1652 add_alias_cmd ("solib-absolute-prefix", "sysroot", class_support, 0,
1653 &showlist);
1654
1655 add_setshow_optional_filename_cmd ("solib-search-path", class_support,
1656 &solib_search_path, _("\
1657 Set the search path for loading non-absolute shared library symbol files."),
1658 _("\
1659 Show the search path for loading non-absolute shared library symbol files."),
1660 _("\
1661 This takes precedence over the environment variables \
1662 PATH and LD_LIBRARY_PATH."),
1663 reload_shared_libraries,
1664 show_solib_search_path,
1665 &setlist, &showlist);
1666 }
This page took 0.066909 seconds and 5 git commands to generate.