gdb/remote: Use true/false instead of 1/0
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
1 /* Target-dependent code for SPARC.
2
3 Copyright (C) 2003-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "dis-asm.h"
23 #include "dwarf2.h"
24 #include "dwarf2/frame.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "inferior.h"
31 #include "symtab.h"
32 #include "objfiles.h"
33 #include "osabi.h"
34 #include "regcache.h"
35 #include "target.h"
36 #include "target-descriptions.h"
37 #include "value.h"
38
39 #include "sparc-tdep.h"
40 #include "sparc-ravenscar-thread.h"
41 #include <algorithm>
42
43 struct regset;
44
45 /* This file implements the SPARC 32-bit ABI as defined by the section
46 "Low-Level System Information" of the SPARC Compliance Definition
47 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
48 lists changes with respect to the original 32-bit psABI as defined
49 in the "System V ABI, SPARC Processor Supplement".
50
51 Note that if we talk about SunOS, we mean SunOS 4.x, which was
52 BSD-based, which is sometimes (retroactively?) referred to as
53 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
54 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
55 suffering from severe version number inflation). Solaris 2.x is
56 also known as SunOS 5.x, since that's what uname(1) says. Solaris
57 2.x is SVR4-based. */
58
59 /* Please use the sparc32_-prefix for 32-bit specific code, the
60 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
61 code that can handle both. The 64-bit specific code lives in
62 sparc64-tdep.c; don't add any here. */
63
64 /* The SPARC Floating-Point Quad-Precision format is similar to
65 big-endian IA-64 Quad-Precision format. */
66 #define floatformats_sparc_quad floatformats_ia64_quad
67
68 /* The stack pointer is offset from the stack frame by a BIAS of 2047
69 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
70 hosts, so undefine it first. */
71 #undef BIAS
72 #define BIAS 2047
73
74 /* Macros to extract fields from SPARC instructions. */
75 #define X_OP(i) (((i) >> 30) & 0x3)
76 #define X_RD(i) (((i) >> 25) & 0x1f)
77 #define X_A(i) (((i) >> 29) & 1)
78 #define X_COND(i) (((i) >> 25) & 0xf)
79 #define X_OP2(i) (((i) >> 22) & 0x7)
80 #define X_IMM22(i) ((i) & 0x3fffff)
81 #define X_OP3(i) (((i) >> 19) & 0x3f)
82 #define X_RS1(i) (((i) >> 14) & 0x1f)
83 #define X_RS2(i) ((i) & 0x1f)
84 #define X_I(i) (((i) >> 13) & 1)
85 /* Sign extension macros. */
86 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
87 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
88 #define X_DISP10(i) ((((((i) >> 11) && 0x300) | (((i) >> 5) & 0xff)) ^ 0x200) - 0x200)
89 #define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
90 /* Macros to identify some instructions. */
91 /* RETURN (RETT in V8) */
92 #define X_RETTURN(i) ((X_OP (i) == 0x2) && (X_OP3 (i) == 0x39))
93
94 /* Fetch the instruction at PC. Instructions are always big-endian
95 even if the processor operates in little-endian mode. */
96
97 unsigned long
98 sparc_fetch_instruction (CORE_ADDR pc)
99 {
100 gdb_byte buf[4];
101 unsigned long insn;
102 int i;
103
104 /* If we can't read the instruction at PC, return zero. */
105 if (target_read_memory (pc, buf, sizeof (buf)))
106 return 0;
107
108 insn = 0;
109 for (i = 0; i < sizeof (buf); i++)
110 insn = (insn << 8) | buf[i];
111 return insn;
112 }
113 \f
114
115 /* Return non-zero if the instruction corresponding to PC is an "unimp"
116 instruction. */
117
118 static int
119 sparc_is_unimp_insn (CORE_ADDR pc)
120 {
121 const unsigned long insn = sparc_fetch_instruction (pc);
122
123 return ((insn & 0xc1c00000) == 0);
124 }
125
126 /* Return non-zero if the instruction corresponding to PC is an
127 "annulled" branch, i.e. the annul bit is set. */
128
129 int
130 sparc_is_annulled_branch_insn (CORE_ADDR pc)
131 {
132 /* The branch instructions featuring an annul bit can be identified
133 by the following bit patterns:
134
135 OP=0
136 OP2=1: Branch on Integer Condition Codes with Prediction (BPcc).
137 OP2=2: Branch on Integer Condition Codes (Bcc).
138 OP2=5: Branch on FP Condition Codes with Prediction (FBfcc).
139 OP2=6: Branch on FP Condition Codes (FBcc).
140 OP2=3 && Bit28=0:
141 Branch on Integer Register with Prediction (BPr).
142
143 This leaves out ILLTRAP (OP2=0), SETHI/NOP (OP2=4) and the V8
144 coprocessor branch instructions (Op2=7). */
145
146 const unsigned long insn = sparc_fetch_instruction (pc);
147 const unsigned op2 = X_OP2 (insn);
148
149 if ((X_OP (insn) == 0)
150 && ((op2 == 1) || (op2 == 2) || (op2 == 5) || (op2 == 6)
151 || ((op2 == 3) && ((insn & 0x10000000) == 0))))
152 return X_A (insn);
153 else
154 return 0;
155 }
156
157 /* OpenBSD/sparc includes StackGhost, which according to the author's
158 website http://stackghost.cerias.purdue.edu "... transparently and
159 automatically protects applications' stack frames; more
160 specifically, it guards the return pointers. The protection
161 mechanisms require no application source or binary modification and
162 imposes only a negligible performance penalty."
163
164 The same website provides the following description of how
165 StackGhost works:
166
167 "StackGhost interfaces with the kernel trap handler that would
168 normally write out registers to the stack and the handler that
169 would read them back in. By XORing a cookie into the
170 return-address saved in the user stack when it is actually written
171 to the stack, and then XOR it out when the return-address is pulled
172 from the stack, StackGhost can cause attacker corrupted return
173 pointers to behave in a manner the attacker cannot predict.
174 StackGhost can also use several unused bits in the return pointer
175 to detect a smashed return pointer and abort the process."
176
177 For GDB this means that whenever we're reading %i7 from a stack
178 frame's window save area, we'll have to XOR the cookie.
179
180 More information on StackGuard can be found on in:
181
182 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
183 Stack Protection." 2001. Published in USENIX Security Symposium
184 '01. */
185
186 /* Fetch StackGhost Per-Process XOR cookie. */
187
188 ULONGEST
189 sparc_fetch_wcookie (struct gdbarch *gdbarch)
190 {
191 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
192 struct target_ops *ops = current_inferior ()->top_target ();
193 gdb_byte buf[8];
194 int len;
195
196 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
197 if (len == -1)
198 return 0;
199
200 /* We should have either an 32-bit or an 64-bit cookie. */
201 gdb_assert (len == 4 || len == 8);
202
203 return extract_unsigned_integer (buf, len, byte_order);
204 }
205 \f
206
207 /* The functions on this page are intended to be used to classify
208 function arguments. */
209
210 /* Check whether TYPE is "Integral or Pointer". */
211
212 static int
213 sparc_integral_or_pointer_p (const struct type *type)
214 {
215 int len = TYPE_LENGTH (type);
216
217 switch (type->code ())
218 {
219 case TYPE_CODE_INT:
220 case TYPE_CODE_BOOL:
221 case TYPE_CODE_CHAR:
222 case TYPE_CODE_ENUM:
223 case TYPE_CODE_RANGE:
224 /* We have byte, half-word, word and extended-word/doubleword
225 integral types. The doubleword is an extension to the
226 original 32-bit ABI by the SCD 2.4.x. */
227 return (len == 1 || len == 2 || len == 4 || len == 8);
228 case TYPE_CODE_PTR:
229 case TYPE_CODE_REF:
230 case TYPE_CODE_RVALUE_REF:
231 /* Allow either 32-bit or 64-bit pointers. */
232 return (len == 4 || len == 8);
233 default:
234 break;
235 }
236
237 return 0;
238 }
239
240 /* Check whether TYPE is "Floating". */
241
242 static int
243 sparc_floating_p (const struct type *type)
244 {
245 switch (type->code ())
246 {
247 case TYPE_CODE_FLT:
248 {
249 int len = TYPE_LENGTH (type);
250 return (len == 4 || len == 8 || len == 16);
251 }
252 default:
253 break;
254 }
255
256 return 0;
257 }
258
259 /* Check whether TYPE is "Complex Floating". */
260
261 static int
262 sparc_complex_floating_p (const struct type *type)
263 {
264 switch (type->code ())
265 {
266 case TYPE_CODE_COMPLEX:
267 {
268 int len = TYPE_LENGTH (type);
269 return (len == 8 || len == 16 || len == 32);
270 }
271 default:
272 break;
273 }
274
275 return 0;
276 }
277
278 /* Check whether TYPE is "Structure or Union".
279
280 In terms of Ada subprogram calls, arrays are treated the same as
281 struct and union types. So this function also returns non-zero
282 for array types. */
283
284 static int
285 sparc_structure_or_union_p (const struct type *type)
286 {
287 switch (type->code ())
288 {
289 case TYPE_CODE_STRUCT:
290 case TYPE_CODE_UNION:
291 case TYPE_CODE_ARRAY:
292 return 1;
293 default:
294 break;
295 }
296
297 return 0;
298 }
299
300 /* Return true if TYPE is returned by memory, false if returned by
301 register. */
302
303 static bool
304 sparc_structure_return_p (const struct type *type)
305 {
306 if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
307 {
308 /* Float vectors are always returned by memory. */
309 if (sparc_floating_p (check_typedef (TYPE_TARGET_TYPE (type))))
310 return true;
311 /* Integer vectors are returned by memory if the vector size
312 is greater than 8 bytes long. */
313 return (TYPE_LENGTH (type) > 8);
314 }
315
316 if (sparc_floating_p (type))
317 {
318 /* Floating point types are passed by register for size 4 and
319 8 bytes, and by memory for size 16 bytes. */
320 return (TYPE_LENGTH (type) == 16);
321 }
322
323 /* Other than that, only aggregates of all sizes get returned by
324 memory. */
325 return sparc_structure_or_union_p (type);
326 }
327
328 /* Return true if arguments of the given TYPE are passed by
329 memory; false if returned by register. */
330
331 static bool
332 sparc_arg_by_memory_p (const struct type *type)
333 {
334 if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
335 {
336 /* Float vectors are always passed by memory. */
337 if (sparc_floating_p (check_typedef (TYPE_TARGET_TYPE (type))))
338 return true;
339 /* Integer vectors are passed by memory if the vector size
340 is greater than 8 bytes long. */
341 return (TYPE_LENGTH (type) > 8);
342 }
343
344 /* Floats are passed by register for size 4 and 8 bytes, and by memory
345 for size 16 bytes. */
346 if (sparc_floating_p (type))
347 return (TYPE_LENGTH (type) == 16);
348
349 /* Complex floats and aggregates of all sizes are passed by memory. */
350 if (sparc_complex_floating_p (type) || sparc_structure_or_union_p (type))
351 return true;
352
353 /* Everything else gets passed by register. */
354 return false;
355 }
356
357 /* Register information. */
358 #define SPARC32_FPU_REGISTERS \
359 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
360 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
361 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
362 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
363 #define SPARC32_CP0_REGISTERS \
364 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
365
366 static const char * const sparc_core_register_names[] = {
367 SPARC_CORE_REGISTERS
368 };
369 static const char * const sparc32_fpu_register_names[] = {
370 SPARC32_FPU_REGISTERS
371 };
372 static const char * const sparc32_cp0_register_names[] = {
373 SPARC32_CP0_REGISTERS
374 };
375
376 static const char * const sparc32_register_names[] =
377 {
378 SPARC_CORE_REGISTERS,
379 SPARC32_FPU_REGISTERS,
380 SPARC32_CP0_REGISTERS
381 };
382
383 /* Total number of registers. */
384 #define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
385
386 /* We provide the aliases %d0..%d30 for the floating registers as
387 "psuedo" registers. */
388
389 static const char * const sparc32_pseudo_register_names[] =
390 {
391 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
392 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
393 };
394
395 /* Total number of pseudo registers. */
396 #define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
397
398 /* Return the name of pseudo register REGNUM. */
399
400 static const char *
401 sparc32_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
402 {
403 regnum -= gdbarch_num_regs (gdbarch);
404
405 if (regnum < SPARC32_NUM_PSEUDO_REGS)
406 return sparc32_pseudo_register_names[regnum];
407
408 internal_error (__FILE__, __LINE__,
409 _("sparc32_pseudo_register_name: bad register number %d"),
410 regnum);
411 }
412
413 /* Return the name of register REGNUM. */
414
415 static const char *
416 sparc32_register_name (struct gdbarch *gdbarch, int regnum)
417 {
418 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
419 return tdesc_register_name (gdbarch, regnum);
420
421 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
422 return sparc32_register_names[regnum];
423
424 return sparc32_pseudo_register_name (gdbarch, regnum);
425 }
426 \f
427 /* Construct types for ISA-specific registers. */
428
429 static struct type *
430 sparc_psr_type (struct gdbarch *gdbarch)
431 {
432 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
433
434 if (!tdep->sparc_psr_type)
435 {
436 struct type *type;
437
438 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 32);
439 append_flags_type_flag (type, 5, "ET");
440 append_flags_type_flag (type, 6, "PS");
441 append_flags_type_flag (type, 7, "S");
442 append_flags_type_flag (type, 12, "EF");
443 append_flags_type_flag (type, 13, "EC");
444
445 tdep->sparc_psr_type = type;
446 }
447
448 return tdep->sparc_psr_type;
449 }
450
451 static struct type *
452 sparc_fsr_type (struct gdbarch *gdbarch)
453 {
454 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
455
456 if (!tdep->sparc_fsr_type)
457 {
458 struct type *type;
459
460 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 32);
461 append_flags_type_flag (type, 0, "NXA");
462 append_flags_type_flag (type, 1, "DZA");
463 append_flags_type_flag (type, 2, "UFA");
464 append_flags_type_flag (type, 3, "OFA");
465 append_flags_type_flag (type, 4, "NVA");
466 append_flags_type_flag (type, 5, "NXC");
467 append_flags_type_flag (type, 6, "DZC");
468 append_flags_type_flag (type, 7, "UFC");
469 append_flags_type_flag (type, 8, "OFC");
470 append_flags_type_flag (type, 9, "NVC");
471 append_flags_type_flag (type, 22, "NS");
472 append_flags_type_flag (type, 23, "NXM");
473 append_flags_type_flag (type, 24, "DZM");
474 append_flags_type_flag (type, 25, "UFM");
475 append_flags_type_flag (type, 26, "OFM");
476 append_flags_type_flag (type, 27, "NVM");
477
478 tdep->sparc_fsr_type = type;
479 }
480
481 return tdep->sparc_fsr_type;
482 }
483
484 /* Return the GDB type object for the "standard" data type of data in
485 pseudo register REGNUM. */
486
487 static struct type *
488 sparc32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
489 {
490 regnum -= gdbarch_num_regs (gdbarch);
491
492 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
493 return builtin_type (gdbarch)->builtin_double;
494
495 internal_error (__FILE__, __LINE__,
496 _("sparc32_pseudo_register_type: bad register number %d"),
497 regnum);
498 }
499
500 /* Return the GDB type object for the "standard" data type of data in
501 register REGNUM. */
502
503 static struct type *
504 sparc32_register_type (struct gdbarch *gdbarch, int regnum)
505 {
506 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
507 return tdesc_register_type (gdbarch, regnum);
508
509 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
510 return builtin_type (gdbarch)->builtin_float;
511
512 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
513 return builtin_type (gdbarch)->builtin_data_ptr;
514
515 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
516 return builtin_type (gdbarch)->builtin_func_ptr;
517
518 if (regnum == SPARC32_PSR_REGNUM)
519 return sparc_psr_type (gdbarch);
520
521 if (regnum == SPARC32_FSR_REGNUM)
522 return sparc_fsr_type (gdbarch);
523
524 if (regnum >= gdbarch_num_regs (gdbarch))
525 return sparc32_pseudo_register_type (gdbarch, regnum);
526
527 return builtin_type (gdbarch)->builtin_int32;
528 }
529
530 static enum register_status
531 sparc32_pseudo_register_read (struct gdbarch *gdbarch,
532 readable_regcache *regcache,
533 int regnum, gdb_byte *buf)
534 {
535 enum register_status status;
536
537 regnum -= gdbarch_num_regs (gdbarch);
538 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
539
540 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
541 status = regcache->raw_read (regnum, buf);
542 if (status == REG_VALID)
543 status = regcache->raw_read (regnum + 1, buf + 4);
544 return status;
545 }
546
547 static void
548 sparc32_pseudo_register_write (struct gdbarch *gdbarch,
549 struct regcache *regcache,
550 int regnum, const gdb_byte *buf)
551 {
552 regnum -= gdbarch_num_regs (gdbarch);
553 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
554
555 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
556 regcache->raw_write (regnum, buf);
557 regcache->raw_write (regnum + 1, buf + 4);
558 }
559 \f
560 /* Implement the stack_frame_destroyed_p gdbarch method. */
561
562 int
563 sparc_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
564 {
565 /* This function must return true if we are one instruction after an
566 instruction that destroyed the stack frame of the current
567 function. The SPARC instructions used to restore the callers
568 stack frame are RESTORE and RETURN/RETT.
569
570 Of these RETURN/RETT is a branch instruction and thus we return
571 true if we are in its delay slot.
572
573 RESTORE is almost always found in the delay slot of a branch
574 instruction that transfers control to the caller, such as JMPL.
575 Thus the next instruction is in the caller frame and we don't
576 need to do anything about it. */
577
578 unsigned int insn = sparc_fetch_instruction (pc - 4);
579
580 return X_RETTURN (insn);
581 }
582 \f
583
584 static CORE_ADDR
585 sparc32_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
586 {
587 /* The ABI requires double-word alignment. */
588 return address & ~0x7;
589 }
590
591 static CORE_ADDR
592 sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
593 CORE_ADDR funcaddr,
594 struct value **args, int nargs,
595 struct type *value_type,
596 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
597 struct regcache *regcache)
598 {
599 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
600
601 *bp_addr = sp - 4;
602 *real_pc = funcaddr;
603
604 if (using_struct_return (gdbarch, NULL, value_type))
605 {
606 gdb_byte buf[4];
607
608 /* This is an UNIMP instruction. */
609 store_unsigned_integer (buf, 4, byte_order,
610 TYPE_LENGTH (value_type) & 0x1fff);
611 write_memory (sp - 8, buf, 4);
612 return sp - 8;
613 }
614
615 return sp - 4;
616 }
617
618 static CORE_ADDR
619 sparc32_store_arguments (struct regcache *regcache, int nargs,
620 struct value **args, CORE_ADDR sp,
621 function_call_return_method return_method,
622 CORE_ADDR struct_addr)
623 {
624 struct gdbarch *gdbarch = regcache->arch ();
625 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
626 /* Number of words in the "parameter array". */
627 int num_elements = 0;
628 int element = 0;
629 int i;
630
631 for (i = 0; i < nargs; i++)
632 {
633 struct type *type = value_type (args[i]);
634 int len = TYPE_LENGTH (type);
635
636 if (sparc_arg_by_memory_p (type))
637 {
638 /* Structure, Union and Quad-Precision Arguments. */
639 sp -= len;
640
641 /* Use doubleword alignment for these values. That's always
642 correct, and wasting a few bytes shouldn't be a problem. */
643 sp &= ~0x7;
644
645 write_memory (sp, value_contents (args[i]), len);
646 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
647 num_elements++;
648 }
649 else if (sparc_floating_p (type))
650 {
651 /* Floating arguments. */
652 gdb_assert (len == 4 || len == 8);
653 num_elements += (len / 4);
654 }
655 else
656 {
657 /* Arguments passed via the General Purpose Registers. */
658 num_elements += ((len + 3) / 4);
659 }
660 }
661
662 /* Always allocate at least six words. */
663 sp -= std::max (6, num_elements) * 4;
664
665 /* The psABI says that "Software convention requires space for the
666 struct/union return value pointer, even if the word is unused." */
667 sp -= 4;
668
669 /* The psABI says that "Although software convention and the
670 operating system require every stack frame to be doubleword
671 aligned." */
672 sp &= ~0x7;
673
674 for (i = 0; i < nargs; i++)
675 {
676 const bfd_byte *valbuf = value_contents (args[i]);
677 struct type *type = value_type (args[i]);
678 int len = TYPE_LENGTH (type);
679 gdb_byte buf[4];
680
681 if (len < 4)
682 {
683 memset (buf, 0, 4 - len);
684 memcpy (buf + 4 - len, valbuf, len);
685 valbuf = buf;
686 len = 4;
687 }
688
689 gdb_assert (len == 4 || len == 8);
690
691 if (element < 6)
692 {
693 int regnum = SPARC_O0_REGNUM + element;
694
695 regcache->cooked_write (regnum, valbuf);
696 if (len > 4 && element < 5)
697 regcache->cooked_write (regnum + 1, valbuf + 4);
698 }
699
700 /* Always store the argument in memory. */
701 write_memory (sp + 4 + element * 4, valbuf, len);
702 element += len / 4;
703 }
704
705 gdb_assert (element == num_elements);
706
707 if (return_method == return_method_struct)
708 {
709 gdb_byte buf[4];
710
711 store_unsigned_integer (buf, 4, byte_order, struct_addr);
712 write_memory (sp, buf, 4);
713 }
714
715 return sp;
716 }
717
718 static CORE_ADDR
719 sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
720 struct regcache *regcache, CORE_ADDR bp_addr,
721 int nargs, struct value **args, CORE_ADDR sp,
722 function_call_return_method return_method,
723 CORE_ADDR struct_addr)
724 {
725 CORE_ADDR call_pc = (return_method == return_method_struct
726 ? (bp_addr - 12) : (bp_addr - 8));
727
728 /* Set return address. */
729 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
730
731 /* Set up function arguments. */
732 sp = sparc32_store_arguments (regcache, nargs, args, sp, return_method,
733 struct_addr);
734
735 /* Allocate the 16-word window save area. */
736 sp -= 16 * 4;
737
738 /* Stack should be doubleword aligned at this point. */
739 gdb_assert (sp % 8 == 0);
740
741 /* Finally, update the stack pointer. */
742 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
743
744 return sp;
745 }
746 \f
747
748 /* Use the program counter to determine the contents and size of a
749 breakpoint instruction. Return a pointer to a string of bytes that
750 encode a breakpoint instruction, store the length of the string in
751 *LEN and optionally adjust *PC to point to the correct memory
752 location for inserting the breakpoint. */
753 constexpr gdb_byte sparc_break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
754
755 typedef BP_MANIPULATION (sparc_break_insn) sparc_breakpoint;
756 \f
757
758 /* Allocate and initialize a frame cache. */
759
760 static struct sparc_frame_cache *
761 sparc_alloc_frame_cache (void)
762 {
763 struct sparc_frame_cache *cache;
764
765 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
766
767 /* Base address. */
768 cache->base = 0;
769 cache->pc = 0;
770
771 /* Frameless until proven otherwise. */
772 cache->frameless_p = 1;
773 cache->frame_offset = 0;
774 cache->saved_regs_mask = 0;
775 cache->copied_regs_mask = 0;
776 cache->struct_return_p = 0;
777
778 return cache;
779 }
780
781 /* GCC generates several well-known sequences of instructions at the begining
782 of each function prologue when compiling with -fstack-check. If one of
783 such sequences starts at START_PC, then return the address of the
784 instruction immediately past this sequence. Otherwise, return START_PC. */
785
786 static CORE_ADDR
787 sparc_skip_stack_check (const CORE_ADDR start_pc)
788 {
789 CORE_ADDR pc = start_pc;
790 unsigned long insn;
791 int probing_loop = 0;
792
793 /* With GCC, all stack checking sequences begin with the same two
794 instructions, plus an optional one in the case of a probing loop:
795
796 sethi <some immediate>, %g1
797 sub %sp, %g1, %g1
798
799 or:
800
801 sethi <some immediate>, %g1
802 sethi <some immediate>, %g4
803 sub %sp, %g1, %g1
804
805 or:
806
807 sethi <some immediate>, %g1
808 sub %sp, %g1, %g1
809 sethi <some immediate>, %g4
810
811 If the optional instruction is found (setting g4), assume that a
812 probing loop will follow. */
813
814 /* sethi <some immediate>, %g1 */
815 insn = sparc_fetch_instruction (pc);
816 pc = pc + 4;
817 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
818 return start_pc;
819
820 /* optional: sethi <some immediate>, %g4 */
821 insn = sparc_fetch_instruction (pc);
822 pc = pc + 4;
823 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
824 {
825 probing_loop = 1;
826 insn = sparc_fetch_instruction (pc);
827 pc = pc + 4;
828 }
829
830 /* sub %sp, %g1, %g1 */
831 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
832 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
833 return start_pc;
834
835 insn = sparc_fetch_instruction (pc);
836 pc = pc + 4;
837
838 /* optional: sethi <some immediate>, %g4 */
839 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
840 {
841 probing_loop = 1;
842 insn = sparc_fetch_instruction (pc);
843 pc = pc + 4;
844 }
845
846 /* First possible sequence:
847 [first two instructions above]
848 clr [%g1 - some immediate] */
849
850 /* clr [%g1 - some immediate] */
851 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
852 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
853 {
854 /* Valid stack-check sequence, return the new PC. */
855 return pc;
856 }
857
858 /* Second possible sequence: A small number of probes.
859 [first two instructions above]
860 clr [%g1]
861 add %g1, -<some immediate>, %g1
862 clr [%g1]
863 [repeat the two instructions above any (small) number of times]
864 clr [%g1 - some immediate] */
865
866 /* clr [%g1] */
867 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
868 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
869 {
870 while (1)
871 {
872 /* add %g1, -<some immediate>, %g1 */
873 insn = sparc_fetch_instruction (pc);
874 pc = pc + 4;
875 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
876 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
877 break;
878
879 /* clr [%g1] */
880 insn = sparc_fetch_instruction (pc);
881 pc = pc + 4;
882 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
883 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
884 return start_pc;
885 }
886
887 /* clr [%g1 - some immediate] */
888 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
889 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
890 return start_pc;
891
892 /* We found a valid stack-check sequence, return the new PC. */
893 return pc;
894 }
895
896 /* Third sequence: A probing loop.
897 [first three instructions above]
898 sub %g1, %g4, %g4
899 cmp %g1, %g4
900 be <disp>
901 add %g1, -<some immediate>, %g1
902 ba <disp>
903 clr [%g1]
904
905 And an optional last probe for the remainder:
906
907 clr [%g4 - some immediate] */
908
909 if (probing_loop)
910 {
911 /* sub %g1, %g4, %g4 */
912 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
913 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
914 return start_pc;
915
916 /* cmp %g1, %g4 */
917 insn = sparc_fetch_instruction (pc);
918 pc = pc + 4;
919 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
920 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
921 return start_pc;
922
923 /* be <disp> */
924 insn = sparc_fetch_instruction (pc);
925 pc = pc + 4;
926 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
927 return start_pc;
928
929 /* add %g1, -<some immediate>, %g1 */
930 insn = sparc_fetch_instruction (pc);
931 pc = pc + 4;
932 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
933 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
934 return start_pc;
935
936 /* ba <disp> */
937 insn = sparc_fetch_instruction (pc);
938 pc = pc + 4;
939 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
940 return start_pc;
941
942 /* clr [%g1] (st %g0, [%g1] or st %g0, [%g1+0]) */
943 insn = sparc_fetch_instruction (pc);
944 pc = pc + 4;
945 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4
946 && X_RD (insn) == 0 && X_RS1 (insn) == 1
947 && (!X_I(insn) || X_SIMM13 (insn) == 0)))
948 return start_pc;
949
950 /* We found a valid stack-check sequence, return the new PC. */
951
952 /* optional: clr [%g4 - some immediate] */
953 insn = sparc_fetch_instruction (pc);
954 pc = pc + 4;
955 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
956 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
957 return pc - 4;
958 else
959 return pc;
960 }
961
962 /* No stack check code in our prologue, return the start_pc. */
963 return start_pc;
964 }
965
966 /* Record the effect of a SAVE instruction on CACHE. */
967
968 void
969 sparc_record_save_insn (struct sparc_frame_cache *cache)
970 {
971 /* The frame is set up. */
972 cache->frameless_p = 0;
973
974 /* The frame pointer contains the CFA. */
975 cache->frame_offset = 0;
976
977 /* The `local' and `in' registers are all saved. */
978 cache->saved_regs_mask = 0xffff;
979
980 /* The `out' registers are all renamed. */
981 cache->copied_regs_mask = 0xff;
982 }
983
984 /* Do a full analysis of the prologue at PC and update CACHE accordingly.
985 Bail out early if CURRENT_PC is reached. Return the address where
986 the analysis stopped.
987
988 We handle both the traditional register window model and the single
989 register window (aka flat) model. */
990
991 CORE_ADDR
992 sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
993 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
994 {
995 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
996 unsigned long insn;
997 int offset = 0;
998 int dest = -1;
999
1000 pc = sparc_skip_stack_check (pc);
1001
1002 if (current_pc <= pc)
1003 return current_pc;
1004
1005 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
1006 SPARC the linker usually defines a symbol (typically
1007 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
1008 This symbol makes us end up here with PC pointing at the start of
1009 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
1010 would do our normal prologue analysis, we would probably conclude
1011 that we've got a frame when in reality we don't, since the
1012 dynamic linker patches up the first PLT with some code that
1013 starts with a SAVE instruction. Patch up PC such that it points
1014 at the start of our PLT entry. */
1015 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc))
1016 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
1017
1018 insn = sparc_fetch_instruction (pc);
1019
1020 /* Recognize store insns and record their sources. */
1021 while (X_OP (insn) == 3
1022 && (X_OP3 (insn) == 0x4 /* stw */
1023 || X_OP3 (insn) == 0x7 /* std */
1024 || X_OP3 (insn) == 0xe) /* stx */
1025 && X_RS1 (insn) == SPARC_SP_REGNUM)
1026 {
1027 int regnum = X_RD (insn);
1028
1029 /* Recognize stores into the corresponding stack slots. */
1030 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1031 && ((X_I (insn)
1032 && X_SIMM13 (insn) == (X_OP3 (insn) == 0xe
1033 ? (regnum - SPARC_L0_REGNUM) * 8 + BIAS
1034 : (regnum - SPARC_L0_REGNUM) * 4))
1035 || (!X_I (insn) && regnum == SPARC_L0_REGNUM)))
1036 {
1037 cache->saved_regs_mask |= (1 << (regnum - SPARC_L0_REGNUM));
1038 if (X_OP3 (insn) == 0x7)
1039 cache->saved_regs_mask |= (1 << (regnum + 1 - SPARC_L0_REGNUM));
1040 }
1041
1042 offset += 4;
1043
1044 insn = sparc_fetch_instruction (pc + offset);
1045 }
1046
1047 /* Recognize a SETHI insn and record its destination. */
1048 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
1049 {
1050 dest = X_RD (insn);
1051 offset += 4;
1052
1053 insn = sparc_fetch_instruction (pc + offset);
1054 }
1055
1056 /* Allow for an arithmetic operation on DEST or %g1. */
1057 if (X_OP (insn) == 2 && X_I (insn)
1058 && (X_RD (insn) == 1 || X_RD (insn) == dest))
1059 {
1060 offset += 4;
1061
1062 insn = sparc_fetch_instruction (pc + offset);
1063 }
1064
1065 /* Check for the SAVE instruction that sets up the frame. */
1066 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
1067 {
1068 sparc_record_save_insn (cache);
1069 offset += 4;
1070 return pc + offset;
1071 }
1072
1073 /* Check for an arithmetic operation on %sp. */
1074 if (X_OP (insn) == 2
1075 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
1076 && X_RS1 (insn) == SPARC_SP_REGNUM
1077 && X_RD (insn) == SPARC_SP_REGNUM)
1078 {
1079 if (X_I (insn))
1080 {
1081 cache->frame_offset = X_SIMM13 (insn);
1082 if (X_OP3 (insn) == 0)
1083 cache->frame_offset = -cache->frame_offset;
1084 }
1085 offset += 4;
1086
1087 insn = sparc_fetch_instruction (pc + offset);
1088
1089 /* Check for an arithmetic operation that sets up the frame. */
1090 if (X_OP (insn) == 2
1091 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
1092 && X_RS1 (insn) == SPARC_SP_REGNUM
1093 && X_RD (insn) == SPARC_FP_REGNUM)
1094 {
1095 cache->frameless_p = 0;
1096 cache->frame_offset = 0;
1097 /* We could check that the amount subtracted to %sp above is the
1098 same as the one added here, but this seems superfluous. */
1099 cache->copied_regs_mask |= 0x40;
1100 offset += 4;
1101
1102 insn = sparc_fetch_instruction (pc + offset);
1103 }
1104
1105 /* Check for a move (or) operation that copies the return register. */
1106 if (X_OP (insn) == 2
1107 && X_OP3 (insn) == 0x2
1108 && !X_I (insn)
1109 && X_RS1 (insn) == SPARC_G0_REGNUM
1110 && X_RS2 (insn) == SPARC_O7_REGNUM
1111 && X_RD (insn) == SPARC_I7_REGNUM)
1112 {
1113 cache->copied_regs_mask |= 0x80;
1114 offset += 4;
1115 }
1116
1117 return pc + offset;
1118 }
1119
1120 return pc;
1121 }
1122
1123 /* Return PC of first real instruction of the function starting at
1124 START_PC. */
1125
1126 static CORE_ADDR
1127 sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1128 {
1129 struct symtab_and_line sal;
1130 CORE_ADDR func_addr;
1131 struct sparc_frame_cache cache;
1132
1133 /* This is the preferred method, find the end of the prologue by
1134 using the debugging information. */
1135
1136 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1137 {
1138 CORE_ADDR post_prologue_pc
1139 = skip_prologue_using_sal (gdbarch, func_addr);
1140
1141 if (post_prologue_pc != 0)
1142 return std::max (start_pc, post_prologue_pc);
1143 }
1144
1145 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
1146
1147 /* The psABI says that "Although the first 6 words of arguments
1148 reside in registers, the standard stack frame reserves space for
1149 them.". It also suggests that a function may use that space to
1150 "write incoming arguments 0 to 5" into that space, and that's
1151 indeed what GCC seems to be doing. In that case GCC will
1152 generate debug information that points to the stack slots instead
1153 of the registers, so we should consider the instructions that
1154 write out these incoming arguments onto the stack. */
1155
1156 while (1)
1157 {
1158 unsigned long insn = sparc_fetch_instruction (start_pc);
1159
1160 /* Recognize instructions that store incoming arguments into the
1161 corresponding stack slots. */
1162 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04
1163 && X_I (insn) && X_RS1 (insn) == SPARC_FP_REGNUM)
1164 {
1165 int regnum = X_RD (insn);
1166
1167 /* Case of arguments still in %o[0..5]. */
1168 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O5_REGNUM
1169 && !(cache.copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM)))
1170 && X_SIMM13 (insn) == 68 + (regnum - SPARC_O0_REGNUM) * 4)
1171 {
1172 start_pc += 4;
1173 continue;
1174 }
1175
1176 /* Case of arguments copied into %i[0..5]. */
1177 if (regnum >= SPARC_I0_REGNUM && regnum <= SPARC_I5_REGNUM
1178 && (cache.copied_regs_mask & (1 << (regnum - SPARC_I0_REGNUM)))
1179 && X_SIMM13 (insn) == 68 + (regnum - SPARC_I0_REGNUM) * 4)
1180 {
1181 start_pc += 4;
1182 continue;
1183 }
1184 }
1185
1186 break;
1187 }
1188
1189 return start_pc;
1190 }
1191
1192 /* Normal frames. */
1193
1194 struct sparc_frame_cache *
1195 sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
1196 {
1197 struct sparc_frame_cache *cache;
1198
1199 if (*this_cache)
1200 return (struct sparc_frame_cache *) *this_cache;
1201
1202 cache = sparc_alloc_frame_cache ();
1203 *this_cache = cache;
1204
1205 cache->pc = get_frame_func (this_frame);
1206 if (cache->pc != 0)
1207 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
1208 get_frame_pc (this_frame), cache);
1209
1210 if (cache->frameless_p)
1211 {
1212 /* This function is frameless, so %fp (%i6) holds the frame
1213 pointer for our calling frame. Use %sp (%o6) as this frame's
1214 base address. */
1215 cache->base =
1216 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1217 }
1218 else
1219 {
1220 /* For normal frames, %fp (%i6) holds the frame pointer, the
1221 base address for the current stack frame. */
1222 cache->base =
1223 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
1224 }
1225
1226 cache->base += cache->frame_offset;
1227
1228 if (cache->base & 1)
1229 cache->base += BIAS;
1230
1231 return cache;
1232 }
1233
1234 static int
1235 sparc32_struct_return_from_sym (struct symbol *sym)
1236 {
1237 struct type *type = check_typedef (SYMBOL_TYPE (sym));
1238 enum type_code code = type->code ();
1239
1240 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1241 {
1242 type = check_typedef (TYPE_TARGET_TYPE (type));
1243 if (sparc_structure_or_union_p (type)
1244 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1245 return 1;
1246 }
1247
1248 return 0;
1249 }
1250
1251 struct sparc_frame_cache *
1252 sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
1253 {
1254 struct sparc_frame_cache *cache;
1255 struct symbol *sym;
1256
1257 if (*this_cache)
1258 return (struct sparc_frame_cache *) *this_cache;
1259
1260 cache = sparc_frame_cache (this_frame, this_cache);
1261
1262 sym = find_pc_function (cache->pc);
1263 if (sym)
1264 {
1265 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
1266 }
1267 else
1268 {
1269 /* There is no debugging information for this function to
1270 help us determine whether this function returns a struct
1271 or not. So we rely on another heuristic which is to check
1272 the instruction at the return address and see if this is
1273 an "unimp" instruction. If it is, then it is a struct-return
1274 function. */
1275 CORE_ADDR pc;
1276 int regnum =
1277 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
1278
1279 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
1280 if (sparc_is_unimp_insn (pc))
1281 cache->struct_return_p = 1;
1282 }
1283
1284 return cache;
1285 }
1286
1287 static void
1288 sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
1289 struct frame_id *this_id)
1290 {
1291 struct sparc_frame_cache *cache =
1292 sparc32_frame_cache (this_frame, this_cache);
1293
1294 /* This marks the outermost frame. */
1295 if (cache->base == 0)
1296 return;
1297
1298 (*this_id) = frame_id_build (cache->base, cache->pc);
1299 }
1300
1301 static struct value *
1302 sparc32_frame_prev_register (struct frame_info *this_frame,
1303 void **this_cache, int regnum)
1304 {
1305 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1306 struct sparc_frame_cache *cache =
1307 sparc32_frame_cache (this_frame, this_cache);
1308
1309 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
1310 {
1311 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
1312
1313 /* If this functions has a Structure, Union or Quad-Precision
1314 return value, we have to skip the UNIMP instruction that encodes
1315 the size of the structure. */
1316 if (cache->struct_return_p)
1317 pc += 4;
1318
1319 regnum =
1320 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
1321 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
1322 return frame_unwind_got_constant (this_frame, regnum, pc);
1323 }
1324
1325 /* Handle StackGhost. */
1326 {
1327 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1328
1329 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
1330 {
1331 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1332 ULONGEST i7;
1333
1334 /* Read the value in from memory. */
1335 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
1336 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
1337 }
1338 }
1339
1340 /* The previous frame's `local' and `in' registers may have been saved
1341 in the register save area. */
1342 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1343 && (cache->saved_regs_mask & (1 << (regnum - SPARC_L0_REGNUM))))
1344 {
1345 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1346
1347 return frame_unwind_got_memory (this_frame, regnum, addr);
1348 }
1349
1350 /* The previous frame's `out' registers may be accessible as the current
1351 frame's `in' registers. */
1352 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM
1353 && (cache->copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM))))
1354 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
1355
1356 return frame_unwind_got_register (this_frame, regnum, regnum);
1357 }
1358
1359 static const struct frame_unwind sparc32_frame_unwind =
1360 {
1361 NORMAL_FRAME,
1362 default_frame_unwind_stop_reason,
1363 sparc32_frame_this_id,
1364 sparc32_frame_prev_register,
1365 NULL,
1366 default_frame_sniffer
1367 };
1368 \f
1369
1370 static CORE_ADDR
1371 sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
1372 {
1373 struct sparc_frame_cache *cache =
1374 sparc32_frame_cache (this_frame, this_cache);
1375
1376 return cache->base;
1377 }
1378
1379 static const struct frame_base sparc32_frame_base =
1380 {
1381 &sparc32_frame_unwind,
1382 sparc32_frame_base_address,
1383 sparc32_frame_base_address,
1384 sparc32_frame_base_address
1385 };
1386
1387 static struct frame_id
1388 sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1389 {
1390 CORE_ADDR sp;
1391
1392 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1393 if (sp & 1)
1394 sp += BIAS;
1395 return frame_id_build (sp, get_frame_pc (this_frame));
1396 }
1397 \f
1398
1399 /* Extract a function return value of TYPE from REGCACHE, and copy
1400 that into VALBUF. */
1401
1402 static void
1403 sparc32_extract_return_value (struct type *type, struct regcache *regcache,
1404 gdb_byte *valbuf)
1405 {
1406 int len = TYPE_LENGTH (type);
1407 gdb_byte buf[32];
1408
1409 gdb_assert (!sparc_structure_return_p (type));
1410
1411 if (sparc_floating_p (type) || sparc_complex_floating_p (type)
1412 || type->code () == TYPE_CODE_ARRAY)
1413 {
1414 /* Floating return values. */
1415 regcache->cooked_read (SPARC_F0_REGNUM, buf);
1416 if (len > 4)
1417 regcache->cooked_read (SPARC_F1_REGNUM, buf + 4);
1418 if (len > 8)
1419 {
1420 regcache->cooked_read (SPARC_F2_REGNUM, buf + 8);
1421 regcache->cooked_read (SPARC_F3_REGNUM, buf + 12);
1422 }
1423 if (len > 16)
1424 {
1425 regcache->cooked_read (SPARC_F4_REGNUM, buf + 16);
1426 regcache->cooked_read (SPARC_F5_REGNUM, buf + 20);
1427 regcache->cooked_read (SPARC_F6_REGNUM, buf + 24);
1428 regcache->cooked_read (SPARC_F7_REGNUM, buf + 28);
1429 }
1430 memcpy (valbuf, buf, len);
1431 }
1432 else
1433 {
1434 /* Integral and pointer return values. */
1435 gdb_assert (sparc_integral_or_pointer_p (type));
1436
1437 regcache->cooked_read (SPARC_O0_REGNUM, buf);
1438 if (len > 4)
1439 {
1440 regcache->cooked_read (SPARC_O1_REGNUM, buf + 4);
1441 gdb_assert (len == 8);
1442 memcpy (valbuf, buf, 8);
1443 }
1444 else
1445 {
1446 /* Just stripping off any unused bytes should preserve the
1447 signed-ness just fine. */
1448 memcpy (valbuf, buf + 4 - len, len);
1449 }
1450 }
1451 }
1452
1453 /* Store the function return value of type TYPE from VALBUF into
1454 REGCACHE. */
1455
1456 static void
1457 sparc32_store_return_value (struct type *type, struct regcache *regcache,
1458 const gdb_byte *valbuf)
1459 {
1460 int len = TYPE_LENGTH (type);
1461 gdb_byte buf[32];
1462
1463 gdb_assert (!sparc_structure_return_p (type));
1464
1465 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
1466 {
1467 /* Floating return values. */
1468 memcpy (buf, valbuf, len);
1469 regcache->cooked_write (SPARC_F0_REGNUM, buf);
1470 if (len > 4)
1471 regcache->cooked_write (SPARC_F1_REGNUM, buf + 4);
1472 if (len > 8)
1473 {
1474 regcache->cooked_write (SPARC_F2_REGNUM, buf + 8);
1475 regcache->cooked_write (SPARC_F3_REGNUM, buf + 12);
1476 }
1477 if (len > 16)
1478 {
1479 regcache->cooked_write (SPARC_F4_REGNUM, buf + 16);
1480 regcache->cooked_write (SPARC_F5_REGNUM, buf + 20);
1481 regcache->cooked_write (SPARC_F6_REGNUM, buf + 24);
1482 regcache->cooked_write (SPARC_F7_REGNUM, buf + 28);
1483 }
1484 }
1485 else
1486 {
1487 /* Integral and pointer return values. */
1488 gdb_assert (sparc_integral_or_pointer_p (type));
1489
1490 if (len > 4)
1491 {
1492 gdb_assert (len == 8);
1493 memcpy (buf, valbuf, 8);
1494 regcache->cooked_write (SPARC_O1_REGNUM, buf + 4);
1495 }
1496 else
1497 {
1498 /* ??? Do we need to do any sign-extension here? */
1499 memcpy (buf + 4 - len, valbuf, len);
1500 }
1501 regcache->cooked_write (SPARC_O0_REGNUM, buf);
1502 }
1503 }
1504
1505 static enum return_value_convention
1506 sparc32_return_value (struct gdbarch *gdbarch, struct value *function,
1507 struct type *type, struct regcache *regcache,
1508 gdb_byte *readbuf, const gdb_byte *writebuf)
1509 {
1510 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1511
1512 /* The psABI says that "...every stack frame reserves the word at
1513 %fp+64. If a function returns a structure, union, or
1514 quad-precision value, this word should hold the address of the
1515 object into which the return value should be copied." This
1516 guarantees that we can always find the return value, not just
1517 before the function returns. */
1518
1519 if (sparc_structure_return_p (type))
1520 {
1521 ULONGEST sp;
1522 CORE_ADDR addr;
1523
1524 if (readbuf)
1525 {
1526 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1527 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1528 read_memory (addr, readbuf, TYPE_LENGTH (type));
1529 }
1530 if (writebuf)
1531 {
1532 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1533 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1534 write_memory (addr, writebuf, TYPE_LENGTH (type));
1535 }
1536
1537 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1538 }
1539
1540 if (readbuf)
1541 sparc32_extract_return_value (type, regcache, readbuf);
1542 if (writebuf)
1543 sparc32_store_return_value (type, regcache, writebuf);
1544
1545 return RETURN_VALUE_REGISTER_CONVENTION;
1546 }
1547
1548 static int
1549 sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
1550 {
1551 return (sparc_structure_or_union_p (type)
1552 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16)
1553 || sparc_complex_floating_p (type));
1554 }
1555
1556 static int
1557 sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
1558 {
1559 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1560 struct symbol *sym = find_pc_function (pc);
1561
1562 if (sym)
1563 return sparc32_struct_return_from_sym (sym);
1564 return 0;
1565 }
1566
1567 static void
1568 sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1569 struct dwarf2_frame_state_reg *reg,
1570 struct frame_info *this_frame)
1571 {
1572 int off;
1573
1574 switch (regnum)
1575 {
1576 case SPARC_G0_REGNUM:
1577 /* Since %g0 is always zero, there is no point in saving it, and
1578 people will be inclined omit it from the CFI. Make sure we
1579 don't warn about that. */
1580 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1581 break;
1582 case SPARC_SP_REGNUM:
1583 reg->how = DWARF2_FRAME_REG_CFA;
1584 break;
1585 case SPARC32_PC_REGNUM:
1586 case SPARC32_NPC_REGNUM:
1587 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1588 off = 8;
1589 if (sparc32_dwarf2_struct_return_p (this_frame))
1590 off += 4;
1591 if (regnum == SPARC32_NPC_REGNUM)
1592 off += 4;
1593 reg->loc.offset = off;
1594 break;
1595 }
1596 }
1597
1598 /* Implement the execute_dwarf_cfa_vendor_op method. */
1599
1600 static bool
1601 sparc_execute_dwarf_cfa_vendor_op (struct gdbarch *gdbarch, gdb_byte op,
1602 struct dwarf2_frame_state *fs)
1603 {
1604 /* Only DW_CFA_GNU_window_save is expected on SPARC. */
1605 if (op != DW_CFA_GNU_window_save)
1606 return false;
1607
1608 uint64_t reg;
1609 int size = register_size (gdbarch, 0);
1610
1611 fs->regs.alloc_regs (32);
1612 for (reg = 8; reg < 16; reg++)
1613 {
1614 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
1615 fs->regs.reg[reg].loc.reg = reg + 16;
1616 }
1617 for (reg = 16; reg < 32; reg++)
1618 {
1619 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
1620 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
1621 }
1622
1623 return true;
1624 }
1625
1626 \f
1627 /* The SPARC Architecture doesn't have hardware single-step support,
1628 and most operating systems don't implement it either, so we provide
1629 software single-step mechanism. */
1630
1631 static CORE_ADDR
1632 sparc_analyze_control_transfer (struct regcache *regcache,
1633 CORE_ADDR pc, CORE_ADDR *npc)
1634 {
1635 unsigned long insn = sparc_fetch_instruction (pc);
1636 int conditional_p = X_COND (insn) & 0x7;
1637 int branch_p = 0, fused_p = 0;
1638 long offset = 0; /* Must be signed for sign-extend. */
1639
1640 if (X_OP (insn) == 0 && X_OP2 (insn) == 3)
1641 {
1642 if ((insn & 0x10000000) == 0)
1643 {
1644 /* Branch on Integer Register with Prediction (BPr). */
1645 branch_p = 1;
1646 conditional_p = 1;
1647 }
1648 else
1649 {
1650 /* Compare and Branch */
1651 branch_p = 1;
1652 fused_p = 1;
1653 offset = 4 * X_DISP10 (insn);
1654 }
1655 }
1656 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
1657 {
1658 /* Branch on Floating-Point Condition Codes (FBfcc). */
1659 branch_p = 1;
1660 offset = 4 * X_DISP22 (insn);
1661 }
1662 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1663 {
1664 /* Branch on Floating-Point Condition Codes with Prediction
1665 (FBPfcc). */
1666 branch_p = 1;
1667 offset = 4 * X_DISP19 (insn);
1668 }
1669 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1670 {
1671 /* Branch on Integer Condition Codes (Bicc). */
1672 branch_p = 1;
1673 offset = 4 * X_DISP22 (insn);
1674 }
1675 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
1676 {
1677 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1678 branch_p = 1;
1679 offset = 4 * X_DISP19 (insn);
1680 }
1681 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1682 {
1683 struct frame_info *frame = get_current_frame ();
1684
1685 /* Trap instruction (TRAP). */
1686 return gdbarch_tdep (regcache->arch ())->step_trap (frame,
1687 insn);
1688 }
1689
1690 /* FIXME: Handle DONE and RETRY instructions. */
1691
1692 if (branch_p)
1693 {
1694 if (fused_p)
1695 {
1696 /* Fused compare-and-branch instructions are non-delayed,
1697 and do not have an annulling capability. So we need to
1698 always set a breakpoint on both the NPC and the branch
1699 target address. */
1700 gdb_assert (offset != 0);
1701 return pc + offset;
1702 }
1703 else if (conditional_p)
1704 {
1705 /* For conditional branches, return nPC + 4 iff the annul
1706 bit is 1. */
1707 return (X_A (insn) ? *npc + 4 : 0);
1708 }
1709 else
1710 {
1711 /* For unconditional branches, return the target if its
1712 specified condition is "always" and return nPC + 4 if the
1713 condition is "never". If the annul bit is 1, set *NPC to
1714 zero. */
1715 if (X_COND (insn) == 0x0)
1716 pc = *npc, offset = 4;
1717 if (X_A (insn))
1718 *npc = 0;
1719
1720 return pc + offset;
1721 }
1722 }
1723
1724 return 0;
1725 }
1726
1727 static CORE_ADDR
1728 sparc_step_trap (struct frame_info *frame, unsigned long insn)
1729 {
1730 return 0;
1731 }
1732
1733 static std::vector<CORE_ADDR>
1734 sparc_software_single_step (struct regcache *regcache)
1735 {
1736 struct gdbarch *arch = regcache->arch ();
1737 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1738 CORE_ADDR npc, nnpc;
1739
1740 CORE_ADDR pc, orig_npc;
1741 std::vector<CORE_ADDR> next_pcs;
1742
1743 pc = regcache_raw_get_unsigned (regcache, tdep->pc_regnum);
1744 orig_npc = npc = regcache_raw_get_unsigned (regcache, tdep->npc_regnum);
1745
1746 /* Analyze the instruction at PC. */
1747 nnpc = sparc_analyze_control_transfer (regcache, pc, &npc);
1748 if (npc != 0)
1749 next_pcs.push_back (npc);
1750
1751 if (nnpc != 0)
1752 next_pcs.push_back (nnpc);
1753
1754 /* Assert that we have set at least one breakpoint, and that
1755 they're not set at the same spot - unless we're going
1756 from here straight to NULL, i.e. a call or jump to 0. */
1757 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1758 gdb_assert (nnpc != npc || orig_npc == 0);
1759
1760 return next_pcs;
1761 }
1762
1763 static void
1764 sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
1765 {
1766 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
1767
1768 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1769 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
1770 }
1771 \f
1772
1773 /* Iterate over core file register note sections. */
1774
1775 static void
1776 sparc_iterate_over_regset_sections (struct gdbarch *gdbarch,
1777 iterate_over_regset_sections_cb *cb,
1778 void *cb_data,
1779 const struct regcache *regcache)
1780 {
1781 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1782
1783 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, tdep->gregset, NULL,
1784 cb_data);
1785 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
1786 NULL, cb_data);
1787 }
1788 \f
1789
1790 static int
1791 validate_tdesc_registers (const struct target_desc *tdesc,
1792 struct tdesc_arch_data *tdesc_data,
1793 const char *feature_name,
1794 const char * const register_names[],
1795 unsigned int registers_num,
1796 unsigned int reg_start)
1797 {
1798 int valid_p = 1;
1799 const struct tdesc_feature *feature;
1800
1801 feature = tdesc_find_feature (tdesc, feature_name);
1802 if (feature == NULL)
1803 return 0;
1804
1805 for (unsigned int i = 0; i < registers_num; i++)
1806 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1807 reg_start + i,
1808 register_names[i]);
1809
1810 return valid_p;
1811 }
1812
1813 static struct gdbarch *
1814 sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1815 {
1816 struct gdbarch_tdep *tdep;
1817 const struct target_desc *tdesc = info.target_desc;
1818 struct gdbarch *gdbarch;
1819 int valid_p = 1;
1820
1821 /* If there is already a candidate, use it. */
1822 arches = gdbarch_list_lookup_by_info (arches, &info);
1823 if (arches != NULL)
1824 return arches->gdbarch;
1825
1826 /* Allocate space for the new architecture. */
1827 tdep = XCNEW (struct gdbarch_tdep);
1828 gdbarch = gdbarch_alloc (&info, tdep);
1829
1830 tdep->pc_regnum = SPARC32_PC_REGNUM;
1831 tdep->npc_regnum = SPARC32_NPC_REGNUM;
1832 tdep->step_trap = sparc_step_trap;
1833 tdep->fpu_register_names = sparc32_fpu_register_names;
1834 tdep->fpu_registers_num = ARRAY_SIZE (sparc32_fpu_register_names);
1835 tdep->cp0_register_names = sparc32_cp0_register_names;
1836 tdep->cp0_registers_num = ARRAY_SIZE (sparc32_cp0_register_names);
1837
1838 set_gdbarch_long_double_bit (gdbarch, 128);
1839 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
1840
1841 set_gdbarch_wchar_bit (gdbarch, 16);
1842 set_gdbarch_wchar_signed (gdbarch, 1);
1843
1844 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1845 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1846 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1847 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1848 set_tdesc_pseudo_register_name (gdbarch, sparc32_pseudo_register_name);
1849 set_tdesc_pseudo_register_type (gdbarch, sparc32_pseudo_register_type);
1850 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1851 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1852
1853 /* Register numbers of various important registers. */
1854 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1855 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1856 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1857
1858 /* Call dummy code. */
1859 set_gdbarch_frame_align (gdbarch, sparc32_frame_align);
1860 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1861 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1862 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1863
1864 set_gdbarch_return_value (gdbarch, sparc32_return_value);
1865 set_gdbarch_stabs_argument_has_addr
1866 (gdbarch, sparc32_stabs_argument_has_addr);
1867
1868 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1869
1870 /* Stack grows downward. */
1871 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1872
1873 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1874 sparc_breakpoint::kind_from_pc);
1875 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1876 sparc_breakpoint::bp_from_kind);
1877
1878 set_gdbarch_frame_args_skip (gdbarch, 8);
1879
1880 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1881 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
1882
1883 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
1884
1885 frame_base_set_default (gdbarch, &sparc32_frame_base);
1886
1887 /* Hook in the DWARF CFI frame unwinder. */
1888 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1889 /* Register DWARF vendor CFI handler. */
1890 set_gdbarch_execute_dwarf_cfa_vendor_op (gdbarch,
1891 sparc_execute_dwarf_cfa_vendor_op);
1892 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1893 StackGhost issues have been resolved. */
1894
1895 /* Hook in ABI-specific overrides, if they have been registered. */
1896 gdbarch_init_osabi (info, gdbarch);
1897
1898 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
1899
1900 if (tdesc_has_registers (tdesc))
1901 {
1902 tdesc_arch_data_up tdesc_data = tdesc_data_alloc ();
1903
1904 /* Validate that the descriptor provides the mandatory registers
1905 and allocate their numbers. */
1906 valid_p &= validate_tdesc_registers (tdesc, tdesc_data.get (),
1907 "org.gnu.gdb.sparc.cpu",
1908 sparc_core_register_names,
1909 ARRAY_SIZE (sparc_core_register_names),
1910 SPARC_G0_REGNUM);
1911 valid_p &= validate_tdesc_registers (tdesc, tdesc_data.get (),
1912 "org.gnu.gdb.sparc.fpu",
1913 tdep->fpu_register_names,
1914 tdep->fpu_registers_num,
1915 SPARC_F0_REGNUM);
1916 valid_p &= validate_tdesc_registers (tdesc, tdesc_data.get (),
1917 "org.gnu.gdb.sparc.cp0",
1918 tdep->cp0_register_names,
1919 tdep->cp0_registers_num,
1920 SPARC_F0_REGNUM
1921 + tdep->fpu_registers_num);
1922 if (!valid_p)
1923 return NULL;
1924
1925 /* Target description may have changed. */
1926 info.tdesc_data = tdesc_data.get ();
1927 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
1928 }
1929
1930 /* If we have register sets, enable the generic core file support. */
1931 if (tdep->gregset)
1932 set_gdbarch_iterate_over_regset_sections
1933 (gdbarch, sparc_iterate_over_regset_sections);
1934
1935 register_sparc_ravenscar_ops (gdbarch);
1936
1937 return gdbarch;
1938 }
1939 \f
1940 /* Helper functions for dealing with register windows. */
1941
1942 void
1943 sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
1944 {
1945 struct gdbarch *gdbarch = regcache->arch ();
1946 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1947 int offset = 0;
1948 gdb_byte buf[8];
1949 int i;
1950
1951 /* This function calls functions that depend on the global current thread. */
1952 gdb_assert (regcache->ptid () == inferior_ptid);
1953
1954 if (sp & 1)
1955 {
1956 /* Registers are 64-bit. */
1957 sp += BIAS;
1958
1959 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1960 {
1961 if (regnum == i || regnum == -1)
1962 {
1963 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1964
1965 /* Handle StackGhost. */
1966 if (i == SPARC_I7_REGNUM)
1967 {
1968 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1969 ULONGEST i7;
1970
1971 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1972 store_unsigned_integer (buf + offset, 8, byte_order,
1973 i7 ^ wcookie);
1974 }
1975
1976 regcache->raw_supply (i, buf);
1977 }
1978 }
1979 }
1980 else
1981 {
1982 /* Registers are 32-bit. Toss any sign-extension of the stack
1983 pointer. */
1984 sp &= 0xffffffffUL;
1985
1986 /* Clear out the top half of the temporary buffer, and put the
1987 register value in the bottom half if we're in 64-bit mode. */
1988 if (gdbarch_ptr_bit (regcache->arch ()) == 64)
1989 {
1990 memset (buf, 0, 4);
1991 offset = 4;
1992 }
1993
1994 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1995 {
1996 if (regnum == i || regnum == -1)
1997 {
1998 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1999 buf + offset, 4);
2000
2001 /* Handle StackGhost. */
2002 if (i == SPARC_I7_REGNUM)
2003 {
2004 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
2005 ULONGEST i7;
2006
2007 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
2008 store_unsigned_integer (buf + offset, 4, byte_order,
2009 i7 ^ wcookie);
2010 }
2011
2012 regcache->raw_supply (i, buf);
2013 }
2014 }
2015 }
2016 }
2017
2018 void
2019 sparc_collect_rwindow (const struct regcache *regcache,
2020 CORE_ADDR sp, int regnum)
2021 {
2022 struct gdbarch *gdbarch = regcache->arch ();
2023 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2024 int offset = 0;
2025 gdb_byte buf[8];
2026 int i;
2027
2028 /* This function calls functions that depend on the global current thread. */
2029 gdb_assert (regcache->ptid () == inferior_ptid);
2030
2031 if (sp & 1)
2032 {
2033 /* Registers are 64-bit. */
2034 sp += BIAS;
2035
2036 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2037 {
2038 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
2039 {
2040 regcache->raw_collect (i, buf);
2041
2042 /* Handle StackGhost. */
2043 if (i == SPARC_I7_REGNUM)
2044 {
2045 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
2046 ULONGEST i7;
2047
2048 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
2049 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
2050 }
2051
2052 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
2053 }
2054 }
2055 }
2056 else
2057 {
2058 /* Registers are 32-bit. Toss any sign-extension of the stack
2059 pointer. */
2060 sp &= 0xffffffffUL;
2061
2062 /* Only use the bottom half if we're in 64-bit mode. */
2063 if (gdbarch_ptr_bit (regcache->arch ()) == 64)
2064 offset = 4;
2065
2066 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2067 {
2068 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
2069 {
2070 regcache->raw_collect (i, buf);
2071
2072 /* Handle StackGhost. */
2073 if (i == SPARC_I7_REGNUM)
2074 {
2075 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
2076 ULONGEST i7;
2077
2078 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
2079 store_unsigned_integer (buf + offset, 4, byte_order,
2080 i7 ^ wcookie);
2081 }
2082
2083 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
2084 buf + offset, 4);
2085 }
2086 }
2087 }
2088 }
2089
2090 /* Helper functions for dealing with register sets. */
2091
2092 void
2093 sparc32_supply_gregset (const struct sparc_gregmap *gregmap,
2094 struct regcache *regcache,
2095 int regnum, const void *gregs)
2096 {
2097 const gdb_byte *regs = (const gdb_byte *) gregs;
2098 gdb_byte zero[4] = { 0 };
2099 int i;
2100
2101 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
2102 regcache->raw_supply (SPARC32_PSR_REGNUM, regs + gregmap->r_psr_offset);
2103
2104 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
2105 regcache->raw_supply (SPARC32_PC_REGNUM, regs + gregmap->r_pc_offset);
2106
2107 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
2108 regcache->raw_supply (SPARC32_NPC_REGNUM, regs + gregmap->r_npc_offset);
2109
2110 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
2111 regcache->raw_supply (SPARC32_Y_REGNUM, regs + gregmap->r_y_offset);
2112
2113 if (regnum == SPARC_G0_REGNUM || regnum == -1)
2114 regcache->raw_supply (SPARC_G0_REGNUM, &zero);
2115
2116 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
2117 {
2118 int offset = gregmap->r_g1_offset;
2119
2120 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
2121 {
2122 if (regnum == i || regnum == -1)
2123 regcache->raw_supply (i, regs + offset);
2124 offset += 4;
2125 }
2126 }
2127
2128 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
2129 {
2130 /* Not all of the register set variants include Locals and
2131 Inputs. For those that don't, we read them off the stack. */
2132 if (gregmap->r_l0_offset == -1)
2133 {
2134 ULONGEST sp;
2135
2136 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
2137 sparc_supply_rwindow (regcache, sp, regnum);
2138 }
2139 else
2140 {
2141 int offset = gregmap->r_l0_offset;
2142
2143 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2144 {
2145 if (regnum == i || regnum == -1)
2146 regcache->raw_supply (i, regs + offset);
2147 offset += 4;
2148 }
2149 }
2150 }
2151 }
2152
2153 void
2154 sparc32_collect_gregset (const struct sparc_gregmap *gregmap,
2155 const struct regcache *regcache,
2156 int regnum, void *gregs)
2157 {
2158 gdb_byte *regs = (gdb_byte *) gregs;
2159 int i;
2160
2161 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
2162 regcache->raw_collect (SPARC32_PSR_REGNUM, regs + gregmap->r_psr_offset);
2163
2164 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
2165 regcache->raw_collect (SPARC32_PC_REGNUM, regs + gregmap->r_pc_offset);
2166
2167 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
2168 regcache->raw_collect (SPARC32_NPC_REGNUM, regs + gregmap->r_npc_offset);
2169
2170 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
2171 regcache->raw_collect (SPARC32_Y_REGNUM, regs + gregmap->r_y_offset);
2172
2173 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
2174 {
2175 int offset = gregmap->r_g1_offset;
2176
2177 /* %g0 is always zero. */
2178 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
2179 {
2180 if (regnum == i || regnum == -1)
2181 regcache->raw_collect (i, regs + offset);
2182 offset += 4;
2183 }
2184 }
2185
2186 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
2187 {
2188 /* Not all of the register set variants include Locals and
2189 Inputs. For those that don't, we read them off the stack. */
2190 if (gregmap->r_l0_offset != -1)
2191 {
2192 int offset = gregmap->r_l0_offset;
2193
2194 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2195 {
2196 if (regnum == i || regnum == -1)
2197 regcache->raw_collect (i, regs + offset);
2198 offset += 4;
2199 }
2200 }
2201 }
2202 }
2203
2204 void
2205 sparc32_supply_fpregset (const struct sparc_fpregmap *fpregmap,
2206 struct regcache *regcache,
2207 int regnum, const void *fpregs)
2208 {
2209 const gdb_byte *regs = (const gdb_byte *) fpregs;
2210 int i;
2211
2212 for (i = 0; i < 32; i++)
2213 {
2214 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
2215 regcache->raw_supply (SPARC_F0_REGNUM + i,
2216 regs + fpregmap->r_f0_offset + (i * 4));
2217 }
2218
2219 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
2220 regcache->raw_supply (SPARC32_FSR_REGNUM, regs + fpregmap->r_fsr_offset);
2221 }
2222
2223 void
2224 sparc32_collect_fpregset (const struct sparc_fpregmap *fpregmap,
2225 const struct regcache *regcache,
2226 int regnum, void *fpregs)
2227 {
2228 gdb_byte *regs = (gdb_byte *) fpregs;
2229 int i;
2230
2231 for (i = 0; i < 32; i++)
2232 {
2233 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
2234 regcache->raw_collect (SPARC_F0_REGNUM + i,
2235 regs + fpregmap->r_f0_offset + (i * 4));
2236 }
2237
2238 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
2239 regcache->raw_collect (SPARC32_FSR_REGNUM,
2240 regs + fpregmap->r_fsr_offset);
2241 }
2242 \f
2243
2244 /* SunOS 4. */
2245
2246 /* From <machine/reg.h>. */
2247 const struct sparc_gregmap sparc32_sunos4_gregmap =
2248 {
2249 0 * 4, /* %psr */
2250 1 * 4, /* %pc */
2251 2 * 4, /* %npc */
2252 3 * 4, /* %y */
2253 -1, /* %wim */
2254 -1, /* %tbr */
2255 4 * 4, /* %g1 */
2256 -1 /* %l0 */
2257 };
2258
2259 const struct sparc_fpregmap sparc32_sunos4_fpregmap =
2260 {
2261 0 * 4, /* %f0 */
2262 33 * 4, /* %fsr */
2263 };
2264
2265 const struct sparc_fpregmap sparc32_bsd_fpregmap =
2266 {
2267 0 * 4, /* %f0 */
2268 32 * 4, /* %fsr */
2269 };
2270
2271 void _initialize_sparc_tdep ();
2272 void
2273 _initialize_sparc_tdep ()
2274 {
2275 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
2276 }
This page took 0.078561 seconds and 4 git commands to generate.