Remove regcache_raw_write
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
1 /* Target-dependent code for SPARC.
2
3 Copyright (C) 2003-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "dis-asm.h"
23 #include "dwarf2.h"
24 #include "dwarf2-frame.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "inferior.h"
31 #include "symtab.h"
32 #include "objfiles.h"
33 #include "osabi.h"
34 #include "regcache.h"
35 #include "target.h"
36 #include "target-descriptions.h"
37 #include "value.h"
38
39 #include "sparc-tdep.h"
40 #include "sparc-ravenscar-thread.h"
41 #include <algorithm>
42
43 struct regset;
44
45 /* This file implements the SPARC 32-bit ABI as defined by the section
46 "Low-Level System Information" of the SPARC Compliance Definition
47 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
48 lists changes with respect to the original 32-bit psABI as defined
49 in the "System V ABI, SPARC Processor Supplement".
50
51 Note that if we talk about SunOS, we mean SunOS 4.x, which was
52 BSD-based, which is sometimes (retroactively?) referred to as
53 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
54 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
55 suffering from severe version number inflation). Solaris 2.x is
56 also known as SunOS 5.x, since that's what uname(1) says. Solaris
57 2.x is SVR4-based. */
58
59 /* Please use the sparc32_-prefix for 32-bit specific code, the
60 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
61 code that can handle both. The 64-bit specific code lives in
62 sparc64-tdep.c; don't add any here. */
63
64 /* The SPARC Floating-Point Quad-Precision format is similar to
65 big-endian IA-64 Quad-Precision format. */
66 #define floatformats_sparc_quad floatformats_ia64_quad
67
68 /* The stack pointer is offset from the stack frame by a BIAS of 2047
69 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
70 hosts, so undefine it first. */
71 #undef BIAS
72 #define BIAS 2047
73
74 /* Macros to extract fields from SPARC instructions. */
75 #define X_OP(i) (((i) >> 30) & 0x3)
76 #define X_RD(i) (((i) >> 25) & 0x1f)
77 #define X_A(i) (((i) >> 29) & 1)
78 #define X_COND(i) (((i) >> 25) & 0xf)
79 #define X_OP2(i) (((i) >> 22) & 0x7)
80 #define X_IMM22(i) ((i) & 0x3fffff)
81 #define X_OP3(i) (((i) >> 19) & 0x3f)
82 #define X_RS1(i) (((i) >> 14) & 0x1f)
83 #define X_RS2(i) ((i) & 0x1f)
84 #define X_I(i) (((i) >> 13) & 1)
85 /* Sign extension macros. */
86 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
87 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
88 #define X_DISP10(i) ((((((i) >> 11) && 0x300) | (((i) >> 5) & 0xff)) ^ 0x200) - 0x200)
89 #define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
90 /* Macros to identify some instructions. */
91 /* RETURN (RETT in V8) */
92 #define X_RETTURN(i) ((X_OP (i) == 0x2) && (X_OP3 (i) == 0x39))
93
94 /* Fetch the instruction at PC. Instructions are always big-endian
95 even if the processor operates in little-endian mode. */
96
97 unsigned long
98 sparc_fetch_instruction (CORE_ADDR pc)
99 {
100 gdb_byte buf[4];
101 unsigned long insn;
102 int i;
103
104 /* If we can't read the instruction at PC, return zero. */
105 if (target_read_memory (pc, buf, sizeof (buf)))
106 return 0;
107
108 insn = 0;
109 for (i = 0; i < sizeof (buf); i++)
110 insn = (insn << 8) | buf[i];
111 return insn;
112 }
113 \f
114
115 /* Return non-zero if the instruction corresponding to PC is an "unimp"
116 instruction. */
117
118 static int
119 sparc_is_unimp_insn (CORE_ADDR pc)
120 {
121 const unsigned long insn = sparc_fetch_instruction (pc);
122
123 return ((insn & 0xc1c00000) == 0);
124 }
125
126 /* Return non-zero if the instruction corresponding to PC is an
127 "annulled" branch, i.e. the annul bit is set. */
128
129 int
130 sparc_is_annulled_branch_insn (CORE_ADDR pc)
131 {
132 /* The branch instructions featuring an annul bit can be identified
133 by the following bit patterns:
134
135 OP=0
136 OP2=1: Branch on Integer Condition Codes with Prediction (BPcc).
137 OP2=2: Branch on Integer Condition Codes (Bcc).
138 OP2=5: Branch on FP Condition Codes with Prediction (FBfcc).
139 OP2=6: Branch on FP Condition Codes (FBcc).
140 OP2=3 && Bit28=0:
141 Branch on Integer Register with Prediction (BPr).
142
143 This leaves out ILLTRAP (OP2=0), SETHI/NOP (OP2=4) and the V8
144 coprocessor branch instructions (Op2=7). */
145
146 const unsigned long insn = sparc_fetch_instruction (pc);
147 const unsigned op2 = X_OP2 (insn);
148
149 if ((X_OP (insn) == 0)
150 && ((op2 == 1) || (op2 == 2) || (op2 == 5) || (op2 == 6)
151 || ((op2 == 3) && ((insn & 0x10000000) == 0))))
152 return X_A (insn);
153 else
154 return 0;
155 }
156
157 /* OpenBSD/sparc includes StackGhost, which according to the author's
158 website http://stackghost.cerias.purdue.edu "... transparently and
159 automatically protects applications' stack frames; more
160 specifically, it guards the return pointers. The protection
161 mechanisms require no application source or binary modification and
162 imposes only a negligible performance penalty."
163
164 The same website provides the following description of how
165 StackGhost works:
166
167 "StackGhost interfaces with the kernel trap handler that would
168 normally write out registers to the stack and the handler that
169 would read them back in. By XORing a cookie into the
170 return-address saved in the user stack when it is actually written
171 to the stack, and then XOR it out when the return-address is pulled
172 from the stack, StackGhost can cause attacker corrupted return
173 pointers to behave in a manner the attacker cannot predict.
174 StackGhost can also use several unused bits in the return pointer
175 to detect a smashed return pointer and abort the process."
176
177 For GDB this means that whenever we're reading %i7 from a stack
178 frame's window save area, we'll have to XOR the cookie.
179
180 More information on StackGuard can be found on in:
181
182 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
183 Stack Protection." 2001. Published in USENIX Security Symposium
184 '01. */
185
186 /* Fetch StackGhost Per-Process XOR cookie. */
187
188 ULONGEST
189 sparc_fetch_wcookie (struct gdbarch *gdbarch)
190 {
191 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
192 struct target_ops *ops = target_stack;
193 gdb_byte buf[8];
194 int len;
195
196 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
197 if (len == -1)
198 return 0;
199
200 /* We should have either an 32-bit or an 64-bit cookie. */
201 gdb_assert (len == 4 || len == 8);
202
203 return extract_unsigned_integer (buf, len, byte_order);
204 }
205 \f
206
207 /* The functions on this page are intended to be used to classify
208 function arguments. */
209
210 /* Check whether TYPE is "Integral or Pointer". */
211
212 static int
213 sparc_integral_or_pointer_p (const struct type *type)
214 {
215 int len = TYPE_LENGTH (type);
216
217 switch (TYPE_CODE (type))
218 {
219 case TYPE_CODE_INT:
220 case TYPE_CODE_BOOL:
221 case TYPE_CODE_CHAR:
222 case TYPE_CODE_ENUM:
223 case TYPE_CODE_RANGE:
224 /* We have byte, half-word, word and extended-word/doubleword
225 integral types. The doubleword is an extension to the
226 original 32-bit ABI by the SCD 2.4.x. */
227 return (len == 1 || len == 2 || len == 4 || len == 8);
228 case TYPE_CODE_PTR:
229 case TYPE_CODE_REF:
230 case TYPE_CODE_RVALUE_REF:
231 /* Allow either 32-bit or 64-bit pointers. */
232 return (len == 4 || len == 8);
233 default:
234 break;
235 }
236
237 return 0;
238 }
239
240 /* Check whether TYPE is "Floating". */
241
242 static int
243 sparc_floating_p (const struct type *type)
244 {
245 switch (TYPE_CODE (type))
246 {
247 case TYPE_CODE_FLT:
248 {
249 int len = TYPE_LENGTH (type);
250 return (len == 4 || len == 8 || len == 16);
251 }
252 default:
253 break;
254 }
255
256 return 0;
257 }
258
259 /* Check whether TYPE is "Complex Floating". */
260
261 static int
262 sparc_complex_floating_p (const struct type *type)
263 {
264 switch (TYPE_CODE (type))
265 {
266 case TYPE_CODE_COMPLEX:
267 {
268 int len = TYPE_LENGTH (type);
269 return (len == 8 || len == 16 || len == 32);
270 }
271 default:
272 break;
273 }
274
275 return 0;
276 }
277
278 /* Check whether TYPE is "Structure or Union".
279
280 In terms of Ada subprogram calls, arrays are treated the same as
281 struct and union types. So this function also returns non-zero
282 for array types. */
283
284 static int
285 sparc_structure_or_union_p (const struct type *type)
286 {
287 switch (TYPE_CODE (type))
288 {
289 case TYPE_CODE_STRUCT:
290 case TYPE_CODE_UNION:
291 case TYPE_CODE_ARRAY:
292 return 1;
293 default:
294 break;
295 }
296
297 return 0;
298 }
299
300 /* Return true if TYPE is returned by memory, false if returned by
301 register. */
302
303 static bool
304 sparc_structure_return_p (const struct type *type)
305 {
306 if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type))
307 {
308 /* Float vectors are always returned by memory. */
309 if (sparc_floating_p (check_typedef (TYPE_TARGET_TYPE (type))))
310 return true;
311 /* Integer vectors are returned by memory if the vector size
312 is greater than 8 bytes long. */
313 return (TYPE_LENGTH (type) > 8);
314 }
315
316 if (sparc_floating_p (type))
317 {
318 /* Floating point types are passed by register for size 4 and
319 8 bytes, and by memory for size 16 bytes. */
320 return (TYPE_LENGTH (type) == 16);
321 }
322
323 /* Other than that, only aggregates of all sizes get returned by
324 memory. */
325 return sparc_structure_or_union_p (type);
326 }
327
328 /* Return true if arguments of the given TYPE are passed by
329 memory; false if returned by register. */
330
331 static bool
332 sparc_arg_by_memory_p (const struct type *type)
333 {
334 if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type))
335 {
336 /* Float vectors are always passed by memory. */
337 if (sparc_floating_p (check_typedef (TYPE_TARGET_TYPE (type))))
338 return true;
339 /* Integer vectors are passed by memory if the vector size
340 is greater than 8 bytes long. */
341 return (TYPE_LENGTH (type) > 8);
342 }
343
344 /* Floats are passed by register for size 4 and 8 bytes, and by memory
345 for size 16 bytes. */
346 if (sparc_floating_p (type))
347 return (TYPE_LENGTH (type) == 16);
348
349 /* Complex floats and aggregates of all sizes are passed by memory. */
350 if (sparc_complex_floating_p (type) || sparc_structure_or_union_p (type))
351 return true;
352
353 /* Everything else gets passed by register. */
354 return false;
355 }
356
357 /* Register information. */
358 #define SPARC32_FPU_REGISTERS \
359 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
360 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
361 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
362 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
363 #define SPARC32_CP0_REGISTERS \
364 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
365
366 static const char *sparc_core_register_names[] = { SPARC_CORE_REGISTERS };
367 static const char *sparc32_fpu_register_names[] = { SPARC32_FPU_REGISTERS };
368 static const char *sparc32_cp0_register_names[] = { SPARC32_CP0_REGISTERS };
369
370 static const char *sparc32_register_names[] =
371 {
372 SPARC_CORE_REGISTERS,
373 SPARC32_FPU_REGISTERS,
374 SPARC32_CP0_REGISTERS
375 };
376
377 /* Total number of registers. */
378 #define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
379
380 /* We provide the aliases %d0..%d30 for the floating registers as
381 "psuedo" registers. */
382
383 static const char *sparc32_pseudo_register_names[] =
384 {
385 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
386 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
387 };
388
389 /* Total number of pseudo registers. */
390 #define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
391
392 /* Return the name of pseudo register REGNUM. */
393
394 static const char *
395 sparc32_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
396 {
397 regnum -= gdbarch_num_regs (gdbarch);
398
399 if (regnum < SPARC32_NUM_PSEUDO_REGS)
400 return sparc32_pseudo_register_names[regnum];
401
402 internal_error (__FILE__, __LINE__,
403 _("sparc32_pseudo_register_name: bad register number %d"),
404 regnum);
405 }
406
407 /* Return the name of register REGNUM. */
408
409 static const char *
410 sparc32_register_name (struct gdbarch *gdbarch, int regnum)
411 {
412 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
413 return tdesc_register_name (gdbarch, regnum);
414
415 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
416 return sparc32_register_names[regnum];
417
418 return sparc32_pseudo_register_name (gdbarch, regnum);
419 }
420 \f
421 /* Construct types for ISA-specific registers. */
422
423 static struct type *
424 sparc_psr_type (struct gdbarch *gdbarch)
425 {
426 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
427
428 if (!tdep->sparc_psr_type)
429 {
430 struct type *type;
431
432 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 32);
433 append_flags_type_flag (type, 5, "ET");
434 append_flags_type_flag (type, 6, "PS");
435 append_flags_type_flag (type, 7, "S");
436 append_flags_type_flag (type, 12, "EF");
437 append_flags_type_flag (type, 13, "EC");
438
439 tdep->sparc_psr_type = type;
440 }
441
442 return tdep->sparc_psr_type;
443 }
444
445 static struct type *
446 sparc_fsr_type (struct gdbarch *gdbarch)
447 {
448 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
449
450 if (!tdep->sparc_fsr_type)
451 {
452 struct type *type;
453
454 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 32);
455 append_flags_type_flag (type, 0, "NXA");
456 append_flags_type_flag (type, 1, "DZA");
457 append_flags_type_flag (type, 2, "UFA");
458 append_flags_type_flag (type, 3, "OFA");
459 append_flags_type_flag (type, 4, "NVA");
460 append_flags_type_flag (type, 5, "NXC");
461 append_flags_type_flag (type, 6, "DZC");
462 append_flags_type_flag (type, 7, "UFC");
463 append_flags_type_flag (type, 8, "OFC");
464 append_flags_type_flag (type, 9, "NVC");
465 append_flags_type_flag (type, 22, "NS");
466 append_flags_type_flag (type, 23, "NXM");
467 append_flags_type_flag (type, 24, "DZM");
468 append_flags_type_flag (type, 25, "UFM");
469 append_flags_type_flag (type, 26, "OFM");
470 append_flags_type_flag (type, 27, "NVM");
471
472 tdep->sparc_fsr_type = type;
473 }
474
475 return tdep->sparc_fsr_type;
476 }
477
478 /* Return the GDB type object for the "standard" data type of data in
479 pseudo register REGNUM. */
480
481 static struct type *
482 sparc32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
483 {
484 regnum -= gdbarch_num_regs (gdbarch);
485
486 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
487 return builtin_type (gdbarch)->builtin_double;
488
489 internal_error (__FILE__, __LINE__,
490 _("sparc32_pseudo_register_type: bad register number %d"),
491 regnum);
492 }
493
494 /* Return the GDB type object for the "standard" data type of data in
495 register REGNUM. */
496
497 static struct type *
498 sparc32_register_type (struct gdbarch *gdbarch, int regnum)
499 {
500 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
501 return tdesc_register_type (gdbarch, regnum);
502
503 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
504 return builtin_type (gdbarch)->builtin_float;
505
506 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
507 return builtin_type (gdbarch)->builtin_data_ptr;
508
509 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
510 return builtin_type (gdbarch)->builtin_func_ptr;
511
512 if (regnum == SPARC32_PSR_REGNUM)
513 return sparc_psr_type (gdbarch);
514
515 if (regnum == SPARC32_FSR_REGNUM)
516 return sparc_fsr_type (gdbarch);
517
518 if (regnum >= gdbarch_num_regs (gdbarch))
519 return sparc32_pseudo_register_type (gdbarch, regnum);
520
521 return builtin_type (gdbarch)->builtin_int32;
522 }
523
524 static enum register_status
525 sparc32_pseudo_register_read (struct gdbarch *gdbarch,
526 readable_regcache *regcache,
527 int regnum, gdb_byte *buf)
528 {
529 enum register_status status;
530
531 regnum -= gdbarch_num_regs (gdbarch);
532 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
533
534 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
535 status = regcache->raw_read (regnum, buf);
536 if (status == REG_VALID)
537 status = regcache->raw_read (regnum + 1, buf + 4);
538 return status;
539 }
540
541 static void
542 sparc32_pseudo_register_write (struct gdbarch *gdbarch,
543 struct regcache *regcache,
544 int regnum, const gdb_byte *buf)
545 {
546 regnum -= gdbarch_num_regs (gdbarch);
547 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
548
549 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
550 regcache->raw_write (regnum, buf);
551 regcache->raw_write (regnum + 1, buf + 4);
552 }
553 \f
554 /* Implement the stack_frame_destroyed_p gdbarch method. */
555
556 int
557 sparc_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
558 {
559 /* This function must return true if we are one instruction after an
560 instruction that destroyed the stack frame of the current
561 function. The SPARC instructions used to restore the callers
562 stack frame are RESTORE and RETURN/RETT.
563
564 Of these RETURN/RETT is a branch instruction and thus we return
565 true if we are in its delay slot.
566
567 RESTORE is almost always found in the delay slot of a branch
568 instruction that transfers control to the caller, such as JMPL.
569 Thus the next instruction is in the caller frame and we don't
570 need to do anything about it. */
571
572 unsigned int insn = sparc_fetch_instruction (pc - 4);
573
574 return X_RETTURN (insn);
575 }
576 \f
577
578 static CORE_ADDR
579 sparc32_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
580 {
581 /* The ABI requires double-word alignment. */
582 return address & ~0x7;
583 }
584
585 static CORE_ADDR
586 sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
587 CORE_ADDR funcaddr,
588 struct value **args, int nargs,
589 struct type *value_type,
590 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
591 struct regcache *regcache)
592 {
593 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
594
595 *bp_addr = sp - 4;
596 *real_pc = funcaddr;
597
598 if (using_struct_return (gdbarch, NULL, value_type))
599 {
600 gdb_byte buf[4];
601
602 /* This is an UNIMP instruction. */
603 store_unsigned_integer (buf, 4, byte_order,
604 TYPE_LENGTH (value_type) & 0x1fff);
605 write_memory (sp - 8, buf, 4);
606 return sp - 8;
607 }
608
609 return sp - 4;
610 }
611
612 static CORE_ADDR
613 sparc32_store_arguments (struct regcache *regcache, int nargs,
614 struct value **args, CORE_ADDR sp,
615 int struct_return, CORE_ADDR struct_addr)
616 {
617 struct gdbarch *gdbarch = regcache->arch ();
618 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
619 /* Number of words in the "parameter array". */
620 int num_elements = 0;
621 int element = 0;
622 int i;
623
624 for (i = 0; i < nargs; i++)
625 {
626 struct type *type = value_type (args[i]);
627 int len = TYPE_LENGTH (type);
628
629 if (sparc_arg_by_memory_p (type))
630 {
631 /* Structure, Union and Quad-Precision Arguments. */
632 sp -= len;
633
634 /* Use doubleword alignment for these values. That's always
635 correct, and wasting a few bytes shouldn't be a problem. */
636 sp &= ~0x7;
637
638 write_memory (sp, value_contents (args[i]), len);
639 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
640 num_elements++;
641 }
642 else if (sparc_floating_p (type))
643 {
644 /* Floating arguments. */
645 gdb_assert (len == 4 || len == 8);
646 num_elements += (len / 4);
647 }
648 else
649 {
650 /* Arguments passed via the General Purpose Registers. */
651 num_elements += ((len + 3) / 4);
652 }
653 }
654
655 /* Always allocate at least six words. */
656 sp -= std::max (6, num_elements) * 4;
657
658 /* The psABI says that "Software convention requires space for the
659 struct/union return value pointer, even if the word is unused." */
660 sp -= 4;
661
662 /* The psABI says that "Although software convention and the
663 operating system require every stack frame to be doubleword
664 aligned." */
665 sp &= ~0x7;
666
667 for (i = 0; i < nargs; i++)
668 {
669 const bfd_byte *valbuf = value_contents (args[i]);
670 struct type *type = value_type (args[i]);
671 int len = TYPE_LENGTH (type);
672 gdb_byte buf[4];
673
674 if (len < 4)
675 {
676 memset (buf, 0, 4 - len);
677 memcpy (buf + 4 - len, valbuf, len);
678 valbuf = buf;
679 len = 4;
680 }
681
682 gdb_assert (len == 4 || len == 8);
683
684 if (element < 6)
685 {
686 int regnum = SPARC_O0_REGNUM + element;
687
688 regcache_cooked_write (regcache, regnum, valbuf);
689 if (len > 4 && element < 5)
690 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
691 }
692
693 /* Always store the argument in memory. */
694 write_memory (sp + 4 + element * 4, valbuf, len);
695 element += len / 4;
696 }
697
698 gdb_assert (element == num_elements);
699
700 if (struct_return)
701 {
702 gdb_byte buf[4];
703
704 store_unsigned_integer (buf, 4, byte_order, struct_addr);
705 write_memory (sp, buf, 4);
706 }
707
708 return sp;
709 }
710
711 static CORE_ADDR
712 sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
713 struct regcache *regcache, CORE_ADDR bp_addr,
714 int nargs, struct value **args, CORE_ADDR sp,
715 int struct_return, CORE_ADDR struct_addr)
716 {
717 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
718
719 /* Set return address. */
720 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
721
722 /* Set up function arguments. */
723 sp = sparc32_store_arguments (regcache, nargs, args, sp,
724 struct_return, struct_addr);
725
726 /* Allocate the 16-word window save area. */
727 sp -= 16 * 4;
728
729 /* Stack should be doubleword aligned at this point. */
730 gdb_assert (sp % 8 == 0);
731
732 /* Finally, update the stack pointer. */
733 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
734
735 return sp;
736 }
737 \f
738
739 /* Use the program counter to determine the contents and size of a
740 breakpoint instruction. Return a pointer to a string of bytes that
741 encode a breakpoint instruction, store the length of the string in
742 *LEN and optionally adjust *PC to point to the correct memory
743 location for inserting the breakpoint. */
744 constexpr gdb_byte sparc_break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
745
746 typedef BP_MANIPULATION (sparc_break_insn) sparc_breakpoint;
747 \f
748
749 /* Allocate and initialize a frame cache. */
750
751 static struct sparc_frame_cache *
752 sparc_alloc_frame_cache (void)
753 {
754 struct sparc_frame_cache *cache;
755
756 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
757
758 /* Base address. */
759 cache->base = 0;
760 cache->pc = 0;
761
762 /* Frameless until proven otherwise. */
763 cache->frameless_p = 1;
764 cache->frame_offset = 0;
765 cache->saved_regs_mask = 0;
766 cache->copied_regs_mask = 0;
767 cache->struct_return_p = 0;
768
769 return cache;
770 }
771
772 /* GCC generates several well-known sequences of instructions at the begining
773 of each function prologue when compiling with -fstack-check. If one of
774 such sequences starts at START_PC, then return the address of the
775 instruction immediately past this sequence. Otherwise, return START_PC. */
776
777 static CORE_ADDR
778 sparc_skip_stack_check (const CORE_ADDR start_pc)
779 {
780 CORE_ADDR pc = start_pc;
781 unsigned long insn;
782 int probing_loop = 0;
783
784 /* With GCC, all stack checking sequences begin with the same two
785 instructions, plus an optional one in the case of a probing loop:
786
787 sethi <some immediate>, %g1
788 sub %sp, %g1, %g1
789
790 or:
791
792 sethi <some immediate>, %g1
793 sethi <some immediate>, %g4
794 sub %sp, %g1, %g1
795
796 or:
797
798 sethi <some immediate>, %g1
799 sub %sp, %g1, %g1
800 sethi <some immediate>, %g4
801
802 If the optional instruction is found (setting g4), assume that a
803 probing loop will follow. */
804
805 /* sethi <some immediate>, %g1 */
806 insn = sparc_fetch_instruction (pc);
807 pc = pc + 4;
808 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
809 return start_pc;
810
811 /* optional: sethi <some immediate>, %g4 */
812 insn = sparc_fetch_instruction (pc);
813 pc = pc + 4;
814 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
815 {
816 probing_loop = 1;
817 insn = sparc_fetch_instruction (pc);
818 pc = pc + 4;
819 }
820
821 /* sub %sp, %g1, %g1 */
822 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
823 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
824 return start_pc;
825
826 insn = sparc_fetch_instruction (pc);
827 pc = pc + 4;
828
829 /* optional: sethi <some immediate>, %g4 */
830 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
831 {
832 probing_loop = 1;
833 insn = sparc_fetch_instruction (pc);
834 pc = pc + 4;
835 }
836
837 /* First possible sequence:
838 [first two instructions above]
839 clr [%g1 - some immediate] */
840
841 /* clr [%g1 - some immediate] */
842 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
843 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
844 {
845 /* Valid stack-check sequence, return the new PC. */
846 return pc;
847 }
848
849 /* Second possible sequence: A small number of probes.
850 [first two instructions above]
851 clr [%g1]
852 add %g1, -<some immediate>, %g1
853 clr [%g1]
854 [repeat the two instructions above any (small) number of times]
855 clr [%g1 - some immediate] */
856
857 /* clr [%g1] */
858 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
859 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
860 {
861 while (1)
862 {
863 /* add %g1, -<some immediate>, %g1 */
864 insn = sparc_fetch_instruction (pc);
865 pc = pc + 4;
866 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
867 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
868 break;
869
870 /* clr [%g1] */
871 insn = sparc_fetch_instruction (pc);
872 pc = pc + 4;
873 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
874 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
875 return start_pc;
876 }
877
878 /* clr [%g1 - some immediate] */
879 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
880 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
881 return start_pc;
882
883 /* We found a valid stack-check sequence, return the new PC. */
884 return pc;
885 }
886
887 /* Third sequence: A probing loop.
888 [first three instructions above]
889 sub %g1, %g4, %g4
890 cmp %g1, %g4
891 be <disp>
892 add %g1, -<some immediate>, %g1
893 ba <disp>
894 clr [%g1]
895
896 And an optional last probe for the remainder:
897
898 clr [%g4 - some immediate] */
899
900 if (probing_loop)
901 {
902 /* sub %g1, %g4, %g4 */
903 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
904 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
905 return start_pc;
906
907 /* cmp %g1, %g4 */
908 insn = sparc_fetch_instruction (pc);
909 pc = pc + 4;
910 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
911 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
912 return start_pc;
913
914 /* be <disp> */
915 insn = sparc_fetch_instruction (pc);
916 pc = pc + 4;
917 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
918 return start_pc;
919
920 /* add %g1, -<some immediate>, %g1 */
921 insn = sparc_fetch_instruction (pc);
922 pc = pc + 4;
923 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
924 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
925 return start_pc;
926
927 /* ba <disp> */
928 insn = sparc_fetch_instruction (pc);
929 pc = pc + 4;
930 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
931 return start_pc;
932
933 /* clr [%g1] (st %g0, [%g1] or st %g0, [%g1+0]) */
934 insn = sparc_fetch_instruction (pc);
935 pc = pc + 4;
936 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4
937 && X_RD (insn) == 0 && X_RS1 (insn) == 1
938 && (!X_I(insn) || X_SIMM13 (insn) == 0)))
939 return start_pc;
940
941 /* We found a valid stack-check sequence, return the new PC. */
942
943 /* optional: clr [%g4 - some immediate] */
944 insn = sparc_fetch_instruction (pc);
945 pc = pc + 4;
946 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
947 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
948 return pc - 4;
949 else
950 return pc;
951 }
952
953 /* No stack check code in our prologue, return the start_pc. */
954 return start_pc;
955 }
956
957 /* Record the effect of a SAVE instruction on CACHE. */
958
959 void
960 sparc_record_save_insn (struct sparc_frame_cache *cache)
961 {
962 /* The frame is set up. */
963 cache->frameless_p = 0;
964
965 /* The frame pointer contains the CFA. */
966 cache->frame_offset = 0;
967
968 /* The `local' and `in' registers are all saved. */
969 cache->saved_regs_mask = 0xffff;
970
971 /* The `out' registers are all renamed. */
972 cache->copied_regs_mask = 0xff;
973 }
974
975 /* Do a full analysis of the prologue at PC and update CACHE accordingly.
976 Bail out early if CURRENT_PC is reached. Return the address where
977 the analysis stopped.
978
979 We handle both the traditional register window model and the single
980 register window (aka flat) model. */
981
982 CORE_ADDR
983 sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
984 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
985 {
986 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
987 unsigned long insn;
988 int offset = 0;
989 int dest = -1;
990
991 pc = sparc_skip_stack_check (pc);
992
993 if (current_pc <= pc)
994 return current_pc;
995
996 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
997 SPARC the linker usually defines a symbol (typically
998 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
999 This symbol makes us end up here with PC pointing at the start of
1000 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
1001 would do our normal prologue analysis, we would probably conclude
1002 that we've got a frame when in reality we don't, since the
1003 dynamic linker patches up the first PLT with some code that
1004 starts with a SAVE instruction. Patch up PC such that it points
1005 at the start of our PLT entry. */
1006 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc))
1007 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
1008
1009 insn = sparc_fetch_instruction (pc);
1010
1011 /* Recognize store insns and record their sources. */
1012 while (X_OP (insn) == 3
1013 && (X_OP3 (insn) == 0x4 /* stw */
1014 || X_OP3 (insn) == 0x7 /* std */
1015 || X_OP3 (insn) == 0xe) /* stx */
1016 && X_RS1 (insn) == SPARC_SP_REGNUM)
1017 {
1018 int regnum = X_RD (insn);
1019
1020 /* Recognize stores into the corresponding stack slots. */
1021 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1022 && ((X_I (insn)
1023 && X_SIMM13 (insn) == (X_OP3 (insn) == 0xe
1024 ? (regnum - SPARC_L0_REGNUM) * 8 + BIAS
1025 : (regnum - SPARC_L0_REGNUM) * 4))
1026 || (!X_I (insn) && regnum == SPARC_L0_REGNUM)))
1027 {
1028 cache->saved_regs_mask |= (1 << (regnum - SPARC_L0_REGNUM));
1029 if (X_OP3 (insn) == 0x7)
1030 cache->saved_regs_mask |= (1 << (regnum + 1 - SPARC_L0_REGNUM));
1031 }
1032
1033 offset += 4;
1034
1035 insn = sparc_fetch_instruction (pc + offset);
1036 }
1037
1038 /* Recognize a SETHI insn and record its destination. */
1039 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
1040 {
1041 dest = X_RD (insn);
1042 offset += 4;
1043
1044 insn = sparc_fetch_instruction (pc + offset);
1045 }
1046
1047 /* Allow for an arithmetic operation on DEST or %g1. */
1048 if (X_OP (insn) == 2 && X_I (insn)
1049 && (X_RD (insn) == 1 || X_RD (insn) == dest))
1050 {
1051 offset += 4;
1052
1053 insn = sparc_fetch_instruction (pc + offset);
1054 }
1055
1056 /* Check for the SAVE instruction that sets up the frame. */
1057 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
1058 {
1059 sparc_record_save_insn (cache);
1060 offset += 4;
1061 return pc + offset;
1062 }
1063
1064 /* Check for an arithmetic operation on %sp. */
1065 if (X_OP (insn) == 2
1066 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
1067 && X_RS1 (insn) == SPARC_SP_REGNUM
1068 && X_RD (insn) == SPARC_SP_REGNUM)
1069 {
1070 if (X_I (insn))
1071 {
1072 cache->frame_offset = X_SIMM13 (insn);
1073 if (X_OP3 (insn) == 0)
1074 cache->frame_offset = -cache->frame_offset;
1075 }
1076 offset += 4;
1077
1078 insn = sparc_fetch_instruction (pc + offset);
1079
1080 /* Check for an arithmetic operation that sets up the frame. */
1081 if (X_OP (insn) == 2
1082 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
1083 && X_RS1 (insn) == SPARC_SP_REGNUM
1084 && X_RD (insn) == SPARC_FP_REGNUM)
1085 {
1086 cache->frameless_p = 0;
1087 cache->frame_offset = 0;
1088 /* We could check that the amount subtracted to %sp above is the
1089 same as the one added here, but this seems superfluous. */
1090 cache->copied_regs_mask |= 0x40;
1091 offset += 4;
1092
1093 insn = sparc_fetch_instruction (pc + offset);
1094 }
1095
1096 /* Check for a move (or) operation that copies the return register. */
1097 if (X_OP (insn) == 2
1098 && X_OP3 (insn) == 0x2
1099 && !X_I (insn)
1100 && X_RS1 (insn) == SPARC_G0_REGNUM
1101 && X_RS2 (insn) == SPARC_O7_REGNUM
1102 && X_RD (insn) == SPARC_I7_REGNUM)
1103 {
1104 cache->copied_regs_mask |= 0x80;
1105 offset += 4;
1106 }
1107
1108 return pc + offset;
1109 }
1110
1111 return pc;
1112 }
1113
1114 static CORE_ADDR
1115 sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1116 {
1117 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1118 return frame_unwind_register_unsigned (this_frame, tdep->pc_regnum);
1119 }
1120
1121 /* Return PC of first real instruction of the function starting at
1122 START_PC. */
1123
1124 static CORE_ADDR
1125 sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1126 {
1127 struct symtab_and_line sal;
1128 CORE_ADDR func_start, func_end;
1129 struct sparc_frame_cache cache;
1130
1131 /* This is the preferred method, find the end of the prologue by
1132 using the debugging information. */
1133 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
1134 {
1135 sal = find_pc_line (func_start, 0);
1136
1137 if (sal.end < func_end
1138 && start_pc <= sal.end)
1139 return sal.end;
1140 }
1141
1142 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
1143
1144 /* The psABI says that "Although the first 6 words of arguments
1145 reside in registers, the standard stack frame reserves space for
1146 them.". It also suggests that a function may use that space to
1147 "write incoming arguments 0 to 5" into that space, and that's
1148 indeed what GCC seems to be doing. In that case GCC will
1149 generate debug information that points to the stack slots instead
1150 of the registers, so we should consider the instructions that
1151 write out these incoming arguments onto the stack. */
1152
1153 while (1)
1154 {
1155 unsigned long insn = sparc_fetch_instruction (start_pc);
1156
1157 /* Recognize instructions that store incoming arguments into the
1158 corresponding stack slots. */
1159 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04
1160 && X_I (insn) && X_RS1 (insn) == SPARC_FP_REGNUM)
1161 {
1162 int regnum = X_RD (insn);
1163
1164 /* Case of arguments still in %o[0..5]. */
1165 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O5_REGNUM
1166 && !(cache.copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM)))
1167 && X_SIMM13 (insn) == 68 + (regnum - SPARC_O0_REGNUM) * 4)
1168 {
1169 start_pc += 4;
1170 continue;
1171 }
1172
1173 /* Case of arguments copied into %i[0..5]. */
1174 if (regnum >= SPARC_I0_REGNUM && regnum <= SPARC_I5_REGNUM
1175 && (cache.copied_regs_mask & (1 << (regnum - SPARC_I0_REGNUM)))
1176 && X_SIMM13 (insn) == 68 + (regnum - SPARC_I0_REGNUM) * 4)
1177 {
1178 start_pc += 4;
1179 continue;
1180 }
1181 }
1182
1183 break;
1184 }
1185
1186 return start_pc;
1187 }
1188
1189 /* Normal frames. */
1190
1191 struct sparc_frame_cache *
1192 sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
1193 {
1194 struct sparc_frame_cache *cache;
1195
1196 if (*this_cache)
1197 return (struct sparc_frame_cache *) *this_cache;
1198
1199 cache = sparc_alloc_frame_cache ();
1200 *this_cache = cache;
1201
1202 cache->pc = get_frame_func (this_frame);
1203 if (cache->pc != 0)
1204 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
1205 get_frame_pc (this_frame), cache);
1206
1207 if (cache->frameless_p)
1208 {
1209 /* This function is frameless, so %fp (%i6) holds the frame
1210 pointer for our calling frame. Use %sp (%o6) as this frame's
1211 base address. */
1212 cache->base =
1213 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1214 }
1215 else
1216 {
1217 /* For normal frames, %fp (%i6) holds the frame pointer, the
1218 base address for the current stack frame. */
1219 cache->base =
1220 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
1221 }
1222
1223 cache->base += cache->frame_offset;
1224
1225 if (cache->base & 1)
1226 cache->base += BIAS;
1227
1228 return cache;
1229 }
1230
1231 static int
1232 sparc32_struct_return_from_sym (struct symbol *sym)
1233 {
1234 struct type *type = check_typedef (SYMBOL_TYPE (sym));
1235 enum type_code code = TYPE_CODE (type);
1236
1237 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1238 {
1239 type = check_typedef (TYPE_TARGET_TYPE (type));
1240 if (sparc_structure_or_union_p (type)
1241 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1242 return 1;
1243 }
1244
1245 return 0;
1246 }
1247
1248 struct sparc_frame_cache *
1249 sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
1250 {
1251 struct sparc_frame_cache *cache;
1252 struct symbol *sym;
1253
1254 if (*this_cache)
1255 return (struct sparc_frame_cache *) *this_cache;
1256
1257 cache = sparc_frame_cache (this_frame, this_cache);
1258
1259 sym = find_pc_function (cache->pc);
1260 if (sym)
1261 {
1262 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
1263 }
1264 else
1265 {
1266 /* There is no debugging information for this function to
1267 help us determine whether this function returns a struct
1268 or not. So we rely on another heuristic which is to check
1269 the instruction at the return address and see if this is
1270 an "unimp" instruction. If it is, then it is a struct-return
1271 function. */
1272 CORE_ADDR pc;
1273 int regnum =
1274 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
1275
1276 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
1277 if (sparc_is_unimp_insn (pc))
1278 cache->struct_return_p = 1;
1279 }
1280
1281 return cache;
1282 }
1283
1284 static void
1285 sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
1286 struct frame_id *this_id)
1287 {
1288 struct sparc_frame_cache *cache =
1289 sparc32_frame_cache (this_frame, this_cache);
1290
1291 /* This marks the outermost frame. */
1292 if (cache->base == 0)
1293 return;
1294
1295 (*this_id) = frame_id_build (cache->base, cache->pc);
1296 }
1297
1298 static struct value *
1299 sparc32_frame_prev_register (struct frame_info *this_frame,
1300 void **this_cache, int regnum)
1301 {
1302 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1303 struct sparc_frame_cache *cache =
1304 sparc32_frame_cache (this_frame, this_cache);
1305
1306 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
1307 {
1308 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
1309
1310 /* If this functions has a Structure, Union or Quad-Precision
1311 return value, we have to skip the UNIMP instruction that encodes
1312 the size of the structure. */
1313 if (cache->struct_return_p)
1314 pc += 4;
1315
1316 regnum =
1317 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
1318 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
1319 return frame_unwind_got_constant (this_frame, regnum, pc);
1320 }
1321
1322 /* Handle StackGhost. */
1323 {
1324 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1325
1326 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
1327 {
1328 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1329 ULONGEST i7;
1330
1331 /* Read the value in from memory. */
1332 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
1333 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
1334 }
1335 }
1336
1337 /* The previous frame's `local' and `in' registers may have been saved
1338 in the register save area. */
1339 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1340 && (cache->saved_regs_mask & (1 << (regnum - SPARC_L0_REGNUM))))
1341 {
1342 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1343
1344 return frame_unwind_got_memory (this_frame, regnum, addr);
1345 }
1346
1347 /* The previous frame's `out' registers may be accessible as the current
1348 frame's `in' registers. */
1349 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM
1350 && (cache->copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM))))
1351 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
1352
1353 return frame_unwind_got_register (this_frame, regnum, regnum);
1354 }
1355
1356 static const struct frame_unwind sparc32_frame_unwind =
1357 {
1358 NORMAL_FRAME,
1359 default_frame_unwind_stop_reason,
1360 sparc32_frame_this_id,
1361 sparc32_frame_prev_register,
1362 NULL,
1363 default_frame_sniffer
1364 };
1365 \f
1366
1367 static CORE_ADDR
1368 sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
1369 {
1370 struct sparc_frame_cache *cache =
1371 sparc32_frame_cache (this_frame, this_cache);
1372
1373 return cache->base;
1374 }
1375
1376 static const struct frame_base sparc32_frame_base =
1377 {
1378 &sparc32_frame_unwind,
1379 sparc32_frame_base_address,
1380 sparc32_frame_base_address,
1381 sparc32_frame_base_address
1382 };
1383
1384 static struct frame_id
1385 sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1386 {
1387 CORE_ADDR sp;
1388
1389 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1390 if (sp & 1)
1391 sp += BIAS;
1392 return frame_id_build (sp, get_frame_pc (this_frame));
1393 }
1394 \f
1395
1396 /* Extract a function return value of TYPE from REGCACHE, and copy
1397 that into VALBUF. */
1398
1399 static void
1400 sparc32_extract_return_value (struct type *type, struct regcache *regcache,
1401 gdb_byte *valbuf)
1402 {
1403 int len = TYPE_LENGTH (type);
1404 gdb_byte buf[32];
1405
1406 gdb_assert (!sparc_structure_return_p (type));
1407
1408 if (sparc_floating_p (type) || sparc_complex_floating_p (type)
1409 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
1410 {
1411 /* Floating return values. */
1412 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1413 if (len > 4)
1414 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
1415 if (len > 8)
1416 {
1417 regcache_cooked_read (regcache, SPARC_F2_REGNUM, buf + 8);
1418 regcache_cooked_read (regcache, SPARC_F3_REGNUM, buf + 12);
1419 }
1420 if (len > 16)
1421 {
1422 regcache_cooked_read (regcache, SPARC_F4_REGNUM, buf + 16);
1423 regcache_cooked_read (regcache, SPARC_F5_REGNUM, buf + 20);
1424 regcache_cooked_read (regcache, SPARC_F6_REGNUM, buf + 24);
1425 regcache_cooked_read (regcache, SPARC_F7_REGNUM, buf + 28);
1426 }
1427 memcpy (valbuf, buf, len);
1428 }
1429 else
1430 {
1431 /* Integral and pointer return values. */
1432 gdb_assert (sparc_integral_or_pointer_p (type));
1433
1434 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1435 if (len > 4)
1436 {
1437 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1438 gdb_assert (len == 8);
1439 memcpy (valbuf, buf, 8);
1440 }
1441 else
1442 {
1443 /* Just stripping off any unused bytes should preserve the
1444 signed-ness just fine. */
1445 memcpy (valbuf, buf + 4 - len, len);
1446 }
1447 }
1448 }
1449
1450 /* Store the function return value of type TYPE from VALBUF into
1451 REGCACHE. */
1452
1453 static void
1454 sparc32_store_return_value (struct type *type, struct regcache *regcache,
1455 const gdb_byte *valbuf)
1456 {
1457 int len = TYPE_LENGTH (type);
1458 gdb_byte buf[32];
1459
1460 gdb_assert (!sparc_structure_return_p (type));
1461
1462 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
1463 {
1464 /* Floating return values. */
1465 memcpy (buf, valbuf, len);
1466 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1467 if (len > 4)
1468 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
1469 if (len > 8)
1470 {
1471 regcache_cooked_write (regcache, SPARC_F2_REGNUM, buf + 8);
1472 regcache_cooked_write (regcache, SPARC_F3_REGNUM, buf + 12);
1473 }
1474 if (len > 16)
1475 {
1476 regcache_cooked_write (regcache, SPARC_F4_REGNUM, buf + 16);
1477 regcache_cooked_write (regcache, SPARC_F5_REGNUM, buf + 20);
1478 regcache_cooked_write (regcache, SPARC_F6_REGNUM, buf + 24);
1479 regcache_cooked_write (regcache, SPARC_F7_REGNUM, buf + 28);
1480 }
1481 }
1482 else
1483 {
1484 /* Integral and pointer return values. */
1485 gdb_assert (sparc_integral_or_pointer_p (type));
1486
1487 if (len > 4)
1488 {
1489 gdb_assert (len == 8);
1490 memcpy (buf, valbuf, 8);
1491 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
1492 }
1493 else
1494 {
1495 /* ??? Do we need to do any sign-extension here? */
1496 memcpy (buf + 4 - len, valbuf, len);
1497 }
1498 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
1499 }
1500 }
1501
1502 static enum return_value_convention
1503 sparc32_return_value (struct gdbarch *gdbarch, struct value *function,
1504 struct type *type, struct regcache *regcache,
1505 gdb_byte *readbuf, const gdb_byte *writebuf)
1506 {
1507 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1508
1509 /* The psABI says that "...every stack frame reserves the word at
1510 %fp+64. If a function returns a structure, union, or
1511 quad-precision value, this word should hold the address of the
1512 object into which the return value should be copied." This
1513 guarantees that we can always find the return value, not just
1514 before the function returns. */
1515
1516 if (sparc_structure_return_p (type))
1517 {
1518 ULONGEST sp;
1519 CORE_ADDR addr;
1520
1521 if (readbuf)
1522 {
1523 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1524 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1525 read_memory (addr, readbuf, TYPE_LENGTH (type));
1526 }
1527 if (writebuf)
1528 {
1529 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1530 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1531 write_memory (addr, writebuf, TYPE_LENGTH (type));
1532 }
1533
1534 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1535 }
1536
1537 if (readbuf)
1538 sparc32_extract_return_value (type, regcache, readbuf);
1539 if (writebuf)
1540 sparc32_store_return_value (type, regcache, writebuf);
1541
1542 return RETURN_VALUE_REGISTER_CONVENTION;
1543 }
1544
1545 static int
1546 sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
1547 {
1548 return (sparc_structure_or_union_p (type)
1549 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16)
1550 || sparc_complex_floating_p (type));
1551 }
1552
1553 static int
1554 sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
1555 {
1556 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1557 struct symbol *sym = find_pc_function (pc);
1558
1559 if (sym)
1560 return sparc32_struct_return_from_sym (sym);
1561 return 0;
1562 }
1563
1564 static void
1565 sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1566 struct dwarf2_frame_state_reg *reg,
1567 struct frame_info *this_frame)
1568 {
1569 int off;
1570
1571 switch (regnum)
1572 {
1573 case SPARC_G0_REGNUM:
1574 /* Since %g0 is always zero, there is no point in saving it, and
1575 people will be inclined omit it from the CFI. Make sure we
1576 don't warn about that. */
1577 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1578 break;
1579 case SPARC_SP_REGNUM:
1580 reg->how = DWARF2_FRAME_REG_CFA;
1581 break;
1582 case SPARC32_PC_REGNUM:
1583 case SPARC32_NPC_REGNUM:
1584 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1585 off = 8;
1586 if (sparc32_dwarf2_struct_return_p (this_frame))
1587 off += 4;
1588 if (regnum == SPARC32_NPC_REGNUM)
1589 off += 4;
1590 reg->loc.offset = off;
1591 break;
1592 }
1593 }
1594
1595 /* Implement the execute_dwarf_cfa_vendor_op method. */
1596
1597 static bool
1598 sparc_execute_dwarf_cfa_vendor_op (struct gdbarch *gdbarch, gdb_byte op,
1599 struct dwarf2_frame_state *fs)
1600 {
1601 /* Only DW_CFA_GNU_window_save is expected on SPARC. */
1602 if (op != DW_CFA_GNU_window_save)
1603 return false;
1604
1605 uint64_t reg;
1606 int size = register_size (gdbarch, 0);
1607
1608 fs->regs.alloc_regs (32);
1609 for (reg = 8; reg < 16; reg++)
1610 {
1611 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
1612 fs->regs.reg[reg].loc.reg = reg + 16;
1613 }
1614 for (reg = 16; reg < 32; reg++)
1615 {
1616 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
1617 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
1618 }
1619
1620 return true;
1621 }
1622
1623 \f
1624 /* The SPARC Architecture doesn't have hardware single-step support,
1625 and most operating systems don't implement it either, so we provide
1626 software single-step mechanism. */
1627
1628 static CORE_ADDR
1629 sparc_analyze_control_transfer (struct regcache *regcache,
1630 CORE_ADDR pc, CORE_ADDR *npc)
1631 {
1632 unsigned long insn = sparc_fetch_instruction (pc);
1633 int conditional_p = X_COND (insn) & 0x7;
1634 int branch_p = 0, fused_p = 0;
1635 long offset = 0; /* Must be signed for sign-extend. */
1636
1637 if (X_OP (insn) == 0 && X_OP2 (insn) == 3)
1638 {
1639 if ((insn & 0x10000000) == 0)
1640 {
1641 /* Branch on Integer Register with Prediction (BPr). */
1642 branch_p = 1;
1643 conditional_p = 1;
1644 }
1645 else
1646 {
1647 /* Compare and Branch */
1648 branch_p = 1;
1649 fused_p = 1;
1650 offset = 4 * X_DISP10 (insn);
1651 }
1652 }
1653 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
1654 {
1655 /* Branch on Floating-Point Condition Codes (FBfcc). */
1656 branch_p = 1;
1657 offset = 4 * X_DISP22 (insn);
1658 }
1659 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1660 {
1661 /* Branch on Floating-Point Condition Codes with Prediction
1662 (FBPfcc). */
1663 branch_p = 1;
1664 offset = 4 * X_DISP19 (insn);
1665 }
1666 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1667 {
1668 /* Branch on Integer Condition Codes (Bicc). */
1669 branch_p = 1;
1670 offset = 4 * X_DISP22 (insn);
1671 }
1672 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
1673 {
1674 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1675 branch_p = 1;
1676 offset = 4 * X_DISP19 (insn);
1677 }
1678 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1679 {
1680 struct frame_info *frame = get_current_frame ();
1681
1682 /* Trap instruction (TRAP). */
1683 return gdbarch_tdep (regcache->arch ())->step_trap (frame,
1684 insn);
1685 }
1686
1687 /* FIXME: Handle DONE and RETRY instructions. */
1688
1689 if (branch_p)
1690 {
1691 if (fused_p)
1692 {
1693 /* Fused compare-and-branch instructions are non-delayed,
1694 and do not have an annuling capability. So we need to
1695 always set a breakpoint on both the NPC and the branch
1696 target address. */
1697 gdb_assert (offset != 0);
1698 return pc + offset;
1699 }
1700 else if (conditional_p)
1701 {
1702 /* For conditional branches, return nPC + 4 iff the annul
1703 bit is 1. */
1704 return (X_A (insn) ? *npc + 4 : 0);
1705 }
1706 else
1707 {
1708 /* For unconditional branches, return the target if its
1709 specified condition is "always" and return nPC + 4 if the
1710 condition is "never". If the annul bit is 1, set *NPC to
1711 zero. */
1712 if (X_COND (insn) == 0x0)
1713 pc = *npc, offset = 4;
1714 if (X_A (insn))
1715 *npc = 0;
1716
1717 return pc + offset;
1718 }
1719 }
1720
1721 return 0;
1722 }
1723
1724 static CORE_ADDR
1725 sparc_step_trap (struct frame_info *frame, unsigned long insn)
1726 {
1727 return 0;
1728 }
1729
1730 static std::vector<CORE_ADDR>
1731 sparc_software_single_step (struct regcache *regcache)
1732 {
1733 struct gdbarch *arch = regcache->arch ();
1734 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1735 CORE_ADDR npc, nnpc;
1736
1737 CORE_ADDR pc, orig_npc;
1738 std::vector<CORE_ADDR> next_pcs;
1739
1740 pc = regcache_raw_get_unsigned (regcache, tdep->pc_regnum);
1741 orig_npc = npc = regcache_raw_get_unsigned (regcache, tdep->npc_regnum);
1742
1743 /* Analyze the instruction at PC. */
1744 nnpc = sparc_analyze_control_transfer (regcache, pc, &npc);
1745 if (npc != 0)
1746 next_pcs.push_back (npc);
1747
1748 if (nnpc != 0)
1749 next_pcs.push_back (nnpc);
1750
1751 /* Assert that we have set at least one breakpoint, and that
1752 they're not set at the same spot - unless we're going
1753 from here straight to NULL, i.e. a call or jump to 0. */
1754 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1755 gdb_assert (nnpc != npc || orig_npc == 0);
1756
1757 return next_pcs;
1758 }
1759
1760 static void
1761 sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
1762 {
1763 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
1764
1765 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1766 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
1767 }
1768 \f
1769
1770 /* Iterate over core file register note sections. */
1771
1772 static void
1773 sparc_iterate_over_regset_sections (struct gdbarch *gdbarch,
1774 iterate_over_regset_sections_cb *cb,
1775 void *cb_data,
1776 const struct regcache *regcache)
1777 {
1778 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1779
1780 cb (".reg", tdep->sizeof_gregset, tdep->gregset, NULL, cb_data);
1781 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
1782 }
1783 \f
1784
1785 static int
1786 validate_tdesc_registers (const struct target_desc *tdesc,
1787 struct tdesc_arch_data *tdesc_data,
1788 const char *feature_name,
1789 const char *register_names[],
1790 unsigned int registers_num,
1791 unsigned int reg_start)
1792 {
1793 int valid_p = 1;
1794 const struct tdesc_feature *feature;
1795
1796 feature = tdesc_find_feature (tdesc, feature_name);
1797 if (feature == NULL)
1798 return 0;
1799
1800 for (unsigned int i = 0; i < registers_num; i++)
1801 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1802 reg_start + i,
1803 register_names[i]);
1804
1805 return valid_p;
1806 }
1807
1808 static struct gdbarch *
1809 sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1810 {
1811 struct gdbarch_tdep *tdep;
1812 const struct target_desc *tdesc = info.target_desc;
1813 struct gdbarch *gdbarch;
1814 int valid_p = 1;
1815
1816 /* If there is already a candidate, use it. */
1817 arches = gdbarch_list_lookup_by_info (arches, &info);
1818 if (arches != NULL)
1819 return arches->gdbarch;
1820
1821 /* Allocate space for the new architecture. */
1822 tdep = XCNEW (struct gdbarch_tdep);
1823 gdbarch = gdbarch_alloc (&info, tdep);
1824
1825 tdep->pc_regnum = SPARC32_PC_REGNUM;
1826 tdep->npc_regnum = SPARC32_NPC_REGNUM;
1827 tdep->step_trap = sparc_step_trap;
1828 tdep->fpu_register_names = sparc32_fpu_register_names;
1829 tdep->fpu_registers_num = ARRAY_SIZE (sparc32_fpu_register_names);
1830 tdep->cp0_register_names = sparc32_cp0_register_names;
1831 tdep->cp0_registers_num = ARRAY_SIZE (sparc32_cp0_register_names);
1832
1833 set_gdbarch_long_double_bit (gdbarch, 128);
1834 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
1835
1836 set_gdbarch_wchar_bit (gdbarch, 16);
1837 set_gdbarch_wchar_signed (gdbarch, 1);
1838
1839 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1840 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1841 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1842 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1843 set_tdesc_pseudo_register_name (gdbarch, sparc32_pseudo_register_name);
1844 set_tdesc_pseudo_register_type (gdbarch, sparc32_pseudo_register_type);
1845 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1846 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1847
1848 /* Register numbers of various important registers. */
1849 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1850 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1851 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1852
1853 /* Call dummy code. */
1854 set_gdbarch_frame_align (gdbarch, sparc32_frame_align);
1855 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1856 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1857 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1858
1859 set_gdbarch_return_value (gdbarch, sparc32_return_value);
1860 set_gdbarch_stabs_argument_has_addr
1861 (gdbarch, sparc32_stabs_argument_has_addr);
1862
1863 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1864
1865 /* Stack grows downward. */
1866 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1867
1868 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1869 sparc_breakpoint::kind_from_pc);
1870 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1871 sparc_breakpoint::bp_from_kind);
1872
1873 set_gdbarch_frame_args_skip (gdbarch, 8);
1874
1875 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1876 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
1877
1878 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
1879
1880 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
1881
1882 frame_base_set_default (gdbarch, &sparc32_frame_base);
1883
1884 /* Hook in the DWARF CFI frame unwinder. */
1885 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1886 /* Register DWARF vendor CFI handler. */
1887 set_gdbarch_execute_dwarf_cfa_vendor_op (gdbarch,
1888 sparc_execute_dwarf_cfa_vendor_op);
1889 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1890 StackGhost issues have been resolved. */
1891
1892 /* Hook in ABI-specific overrides, if they have been registered. */
1893 gdbarch_init_osabi (info, gdbarch);
1894
1895 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
1896
1897 if (tdesc_has_registers (tdesc))
1898 {
1899 struct tdesc_arch_data *tdesc_data = tdesc_data_alloc ();
1900
1901 /* Validate that the descriptor provides the mandatory registers
1902 and allocate their numbers. */
1903 valid_p &= validate_tdesc_registers (tdesc, tdesc_data,
1904 "org.gnu.gdb.sparc.cpu",
1905 sparc_core_register_names,
1906 ARRAY_SIZE (sparc_core_register_names),
1907 SPARC_G0_REGNUM);
1908 valid_p &= validate_tdesc_registers (tdesc, tdesc_data,
1909 "org.gnu.gdb.sparc.fpu",
1910 tdep->fpu_register_names,
1911 tdep->fpu_registers_num,
1912 SPARC_F0_REGNUM);
1913 valid_p &= validate_tdesc_registers (tdesc, tdesc_data,
1914 "org.gnu.gdb.sparc.cp0",
1915 tdep->cp0_register_names,
1916 tdep->cp0_registers_num,
1917 SPARC_F0_REGNUM
1918 + tdep->fpu_registers_num);
1919 if (!valid_p)
1920 {
1921 tdesc_data_cleanup (tdesc_data);
1922 return NULL;
1923 }
1924
1925 /* Target description may have changed. */
1926 info.tdesc_data = tdesc_data;
1927 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
1928 }
1929
1930 /* If we have register sets, enable the generic core file support. */
1931 if (tdep->gregset)
1932 set_gdbarch_iterate_over_regset_sections
1933 (gdbarch, sparc_iterate_over_regset_sections);
1934
1935 register_sparc_ravenscar_ops (gdbarch);
1936
1937 return gdbarch;
1938 }
1939 \f
1940 /* Helper functions for dealing with register windows. */
1941
1942 void
1943 sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
1944 {
1945 struct gdbarch *gdbarch = regcache->arch ();
1946 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1947 int offset = 0;
1948 gdb_byte buf[8];
1949 int i;
1950
1951 if (sp & 1)
1952 {
1953 /* Registers are 64-bit. */
1954 sp += BIAS;
1955
1956 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1957 {
1958 if (regnum == i || regnum == -1)
1959 {
1960 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1961
1962 /* Handle StackGhost. */
1963 if (i == SPARC_I7_REGNUM)
1964 {
1965 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1966 ULONGEST i7;
1967
1968 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1969 store_unsigned_integer (buf + offset, 8, byte_order,
1970 i7 ^ wcookie);
1971 }
1972
1973 regcache_raw_supply (regcache, i, buf);
1974 }
1975 }
1976 }
1977 else
1978 {
1979 /* Registers are 32-bit. Toss any sign-extension of the stack
1980 pointer. */
1981 sp &= 0xffffffffUL;
1982
1983 /* Clear out the top half of the temporary buffer, and put the
1984 register value in the bottom half if we're in 64-bit mode. */
1985 if (gdbarch_ptr_bit (regcache->arch ()) == 64)
1986 {
1987 memset (buf, 0, 4);
1988 offset = 4;
1989 }
1990
1991 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1992 {
1993 if (regnum == i || regnum == -1)
1994 {
1995 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1996 buf + offset, 4);
1997
1998 /* Handle StackGhost. */
1999 if (i == SPARC_I7_REGNUM)
2000 {
2001 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
2002 ULONGEST i7;
2003
2004 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
2005 store_unsigned_integer (buf + offset, 4, byte_order,
2006 i7 ^ wcookie);
2007 }
2008
2009 regcache_raw_supply (regcache, i, buf);
2010 }
2011 }
2012 }
2013 }
2014
2015 void
2016 sparc_collect_rwindow (const struct regcache *regcache,
2017 CORE_ADDR sp, int regnum)
2018 {
2019 struct gdbarch *gdbarch = regcache->arch ();
2020 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2021 int offset = 0;
2022 gdb_byte buf[8];
2023 int i;
2024
2025 if (sp & 1)
2026 {
2027 /* Registers are 64-bit. */
2028 sp += BIAS;
2029
2030 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2031 {
2032 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
2033 {
2034 regcache_raw_collect (regcache, i, buf);
2035
2036 /* Handle StackGhost. */
2037 if (i == SPARC_I7_REGNUM)
2038 {
2039 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
2040 ULONGEST i7;
2041
2042 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
2043 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
2044 }
2045
2046 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
2047 }
2048 }
2049 }
2050 else
2051 {
2052 /* Registers are 32-bit. Toss any sign-extension of the stack
2053 pointer. */
2054 sp &= 0xffffffffUL;
2055
2056 /* Only use the bottom half if we're in 64-bit mode. */
2057 if (gdbarch_ptr_bit (regcache->arch ()) == 64)
2058 offset = 4;
2059
2060 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2061 {
2062 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
2063 {
2064 regcache_raw_collect (regcache, i, buf);
2065
2066 /* Handle StackGhost. */
2067 if (i == SPARC_I7_REGNUM)
2068 {
2069 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
2070 ULONGEST i7;
2071
2072 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
2073 store_unsigned_integer (buf + offset, 4, byte_order,
2074 i7 ^ wcookie);
2075 }
2076
2077 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
2078 buf + offset, 4);
2079 }
2080 }
2081 }
2082 }
2083
2084 /* Helper functions for dealing with register sets. */
2085
2086 void
2087 sparc32_supply_gregset (const struct sparc_gregmap *gregmap,
2088 struct regcache *regcache,
2089 int regnum, const void *gregs)
2090 {
2091 const gdb_byte *regs = (const gdb_byte *) gregs;
2092 gdb_byte zero[4] = { 0 };
2093 int i;
2094
2095 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
2096 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
2097 regs + gregmap->r_psr_offset);
2098
2099 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
2100 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
2101 regs + gregmap->r_pc_offset);
2102
2103 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
2104 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
2105 regs + gregmap->r_npc_offset);
2106
2107 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
2108 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
2109 regs + gregmap->r_y_offset);
2110
2111 if (regnum == SPARC_G0_REGNUM || regnum == -1)
2112 regcache_raw_supply (regcache, SPARC_G0_REGNUM, &zero);
2113
2114 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
2115 {
2116 int offset = gregmap->r_g1_offset;
2117
2118 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
2119 {
2120 if (regnum == i || regnum == -1)
2121 regcache_raw_supply (regcache, i, regs + offset);
2122 offset += 4;
2123 }
2124 }
2125
2126 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
2127 {
2128 /* Not all of the register set variants include Locals and
2129 Inputs. For those that don't, we read them off the stack. */
2130 if (gregmap->r_l0_offset == -1)
2131 {
2132 ULONGEST sp;
2133
2134 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
2135 sparc_supply_rwindow (regcache, sp, regnum);
2136 }
2137 else
2138 {
2139 int offset = gregmap->r_l0_offset;
2140
2141 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2142 {
2143 if (regnum == i || regnum == -1)
2144 regcache_raw_supply (regcache, i, regs + offset);
2145 offset += 4;
2146 }
2147 }
2148 }
2149 }
2150
2151 void
2152 sparc32_collect_gregset (const struct sparc_gregmap *gregmap,
2153 const struct regcache *regcache,
2154 int regnum, void *gregs)
2155 {
2156 gdb_byte *regs = (gdb_byte *) gregs;
2157 int i;
2158
2159 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
2160 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
2161 regs + gregmap->r_psr_offset);
2162
2163 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
2164 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
2165 regs + gregmap->r_pc_offset);
2166
2167 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
2168 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
2169 regs + gregmap->r_npc_offset);
2170
2171 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
2172 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
2173 regs + gregmap->r_y_offset);
2174
2175 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
2176 {
2177 int offset = gregmap->r_g1_offset;
2178
2179 /* %g0 is always zero. */
2180 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
2181 {
2182 if (regnum == i || regnum == -1)
2183 regcache_raw_collect (regcache, i, regs + offset);
2184 offset += 4;
2185 }
2186 }
2187
2188 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
2189 {
2190 /* Not all of the register set variants include Locals and
2191 Inputs. For those that don't, we read them off the stack. */
2192 if (gregmap->r_l0_offset != -1)
2193 {
2194 int offset = gregmap->r_l0_offset;
2195
2196 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2197 {
2198 if (regnum == i || regnum == -1)
2199 regcache_raw_collect (regcache, i, regs + offset);
2200 offset += 4;
2201 }
2202 }
2203 }
2204 }
2205
2206 void
2207 sparc32_supply_fpregset (const struct sparc_fpregmap *fpregmap,
2208 struct regcache *regcache,
2209 int regnum, const void *fpregs)
2210 {
2211 const gdb_byte *regs = (const gdb_byte *) fpregs;
2212 int i;
2213
2214 for (i = 0; i < 32; i++)
2215 {
2216 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
2217 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i,
2218 regs + fpregmap->r_f0_offset + (i * 4));
2219 }
2220
2221 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
2222 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM,
2223 regs + fpregmap->r_fsr_offset);
2224 }
2225
2226 void
2227 sparc32_collect_fpregset (const struct sparc_fpregmap *fpregmap,
2228 const struct regcache *regcache,
2229 int regnum, void *fpregs)
2230 {
2231 gdb_byte *regs = (gdb_byte *) fpregs;
2232 int i;
2233
2234 for (i = 0; i < 32; i++)
2235 {
2236 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
2237 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i,
2238 regs + fpregmap->r_f0_offset + (i * 4));
2239 }
2240
2241 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
2242 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM,
2243 regs + fpregmap->r_fsr_offset);
2244 }
2245 \f
2246
2247 /* SunOS 4. */
2248
2249 /* From <machine/reg.h>. */
2250 const struct sparc_gregmap sparc32_sunos4_gregmap =
2251 {
2252 0 * 4, /* %psr */
2253 1 * 4, /* %pc */
2254 2 * 4, /* %npc */
2255 3 * 4, /* %y */
2256 -1, /* %wim */
2257 -1, /* %tbr */
2258 4 * 4, /* %g1 */
2259 -1 /* %l0 */
2260 };
2261
2262 const struct sparc_fpregmap sparc32_sunos4_fpregmap =
2263 {
2264 0 * 4, /* %f0 */
2265 33 * 4, /* %fsr */
2266 };
2267
2268 const struct sparc_fpregmap sparc32_bsd_fpregmap =
2269 {
2270 0 * 4, /* %f0 */
2271 32 * 4, /* %fsr */
2272 };
2273
2274 void
2275 _initialize_sparc_tdep (void)
2276 {
2277 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
2278 }
This page took 0.075388 seconds and 5 git commands to generate.