* i386-tdep.h (struct gdbarch_tdep): Add i386_eflags_type and
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
1 /* Target-dependent code for SPARC.
2
3 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "arch-utils.h"
23 #include "dis-asm.h"
24 #include "dwarf2-frame.h"
25 #include "floatformat.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "gdbcore.h"
30 #include "gdbtypes.h"
31 #include "inferior.h"
32 #include "symtab.h"
33 #include "objfiles.h"
34 #include "osabi.h"
35 #include "regcache.h"
36 #include "target.h"
37 #include "value.h"
38
39 #include "gdb_assert.h"
40 #include "gdb_string.h"
41
42 #include "sparc-tdep.h"
43
44 struct regset;
45
46 /* This file implements the SPARC 32-bit ABI as defined by the section
47 "Low-Level System Information" of the SPARC Compliance Definition
48 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
49 lists changes with respect to the original 32-bit psABI as defined
50 in the "System V ABI, SPARC Processor Supplement".
51
52 Note that if we talk about SunOS, we mean SunOS 4.x, which was
53 BSD-based, which is sometimes (retroactively?) referred to as
54 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
55 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
56 suffering from severe version number inflation). Solaris 2.x is
57 also known as SunOS 5.x, since that's what uname(1) says. Solaris
58 2.x is SVR4-based. */
59
60 /* Please use the sparc32_-prefix for 32-bit specific code, the
61 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
62 code that can handle both. The 64-bit specific code lives in
63 sparc64-tdep.c; don't add any here. */
64
65 /* The SPARC Floating-Point Quad-Precision format is similar to
66 big-endian IA-64 Quad-recision format. */
67 #define floatformats_sparc_quad floatformats_ia64_quad
68
69 /* The stack pointer is offset from the stack frame by a BIAS of 2047
70 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
71 hosts, so undefine it first. */
72 #undef BIAS
73 #define BIAS 2047
74
75 /* Macros to extract fields from SPARC instructions. */
76 #define X_OP(i) (((i) >> 30) & 0x3)
77 #define X_RD(i) (((i) >> 25) & 0x1f)
78 #define X_A(i) (((i) >> 29) & 1)
79 #define X_COND(i) (((i) >> 25) & 0xf)
80 #define X_OP2(i) (((i) >> 22) & 0x7)
81 #define X_IMM22(i) ((i) & 0x3fffff)
82 #define X_OP3(i) (((i) >> 19) & 0x3f)
83 #define X_RS1(i) (((i) >> 14) & 0x1f)
84 #define X_RS2(i) ((i) & 0x1f)
85 #define X_I(i) (((i) >> 13) & 1)
86 /* Sign extension macros. */
87 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
88 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
89 #define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
90
91 /* Fetch the instruction at PC. Instructions are always big-endian
92 even if the processor operates in little-endian mode. */
93
94 unsigned long
95 sparc_fetch_instruction (CORE_ADDR pc)
96 {
97 gdb_byte buf[4];
98 unsigned long insn;
99 int i;
100
101 /* If we can't read the instruction at PC, return zero. */
102 if (target_read_memory (pc, buf, sizeof (buf)))
103 return 0;
104
105 insn = 0;
106 for (i = 0; i < sizeof (buf); i++)
107 insn = (insn << 8) | buf[i];
108 return insn;
109 }
110 \f
111
112 /* Return non-zero if the instruction corresponding to PC is an "unimp"
113 instruction. */
114
115 static int
116 sparc_is_unimp_insn (CORE_ADDR pc)
117 {
118 const unsigned long insn = sparc_fetch_instruction (pc);
119
120 return ((insn & 0xc1c00000) == 0);
121 }
122
123 /* OpenBSD/sparc includes StackGhost, which according to the author's
124 website http://stackghost.cerias.purdue.edu "... transparently and
125 automatically protects applications' stack frames; more
126 specifically, it guards the return pointers. The protection
127 mechanisms require no application source or binary modification and
128 imposes only a negligible performance penalty."
129
130 The same website provides the following description of how
131 StackGhost works:
132
133 "StackGhost interfaces with the kernel trap handler that would
134 normally write out registers to the stack and the handler that
135 would read them back in. By XORing a cookie into the
136 return-address saved in the user stack when it is actually written
137 to the stack, and then XOR it out when the return-address is pulled
138 from the stack, StackGhost can cause attacker corrupted return
139 pointers to behave in a manner the attacker cannot predict.
140 StackGhost can also use several unused bits in the return pointer
141 to detect a smashed return pointer and abort the process."
142
143 For GDB this means that whenever we're reading %i7 from a stack
144 frame's window save area, we'll have to XOR the cookie.
145
146 More information on StackGuard can be found on in:
147
148 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
149 Stack Protection." 2001. Published in USENIX Security Symposium
150 '01. */
151
152 /* Fetch StackGhost Per-Process XOR cookie. */
153
154 ULONGEST
155 sparc_fetch_wcookie (void)
156 {
157 struct target_ops *ops = &current_target;
158 gdb_byte buf[8];
159 int len;
160
161 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
162 if (len == -1)
163 return 0;
164
165 /* We should have either an 32-bit or an 64-bit cookie. */
166 gdb_assert (len == 4 || len == 8);
167
168 return extract_unsigned_integer (buf, len);
169 }
170 \f
171
172 /* The functions on this page are intended to be used to classify
173 function arguments. */
174
175 /* Check whether TYPE is "Integral or Pointer". */
176
177 static int
178 sparc_integral_or_pointer_p (const struct type *type)
179 {
180 int len = TYPE_LENGTH (type);
181
182 switch (TYPE_CODE (type))
183 {
184 case TYPE_CODE_INT:
185 case TYPE_CODE_BOOL:
186 case TYPE_CODE_CHAR:
187 case TYPE_CODE_ENUM:
188 case TYPE_CODE_RANGE:
189 /* We have byte, half-word, word and extended-word/doubleword
190 integral types. The doubleword is an extension to the
191 original 32-bit ABI by the SCD 2.4.x. */
192 return (len == 1 || len == 2 || len == 4 || len == 8);
193 case TYPE_CODE_PTR:
194 case TYPE_CODE_REF:
195 /* Allow either 32-bit or 64-bit pointers. */
196 return (len == 4 || len == 8);
197 default:
198 break;
199 }
200
201 return 0;
202 }
203
204 /* Check whether TYPE is "Floating". */
205
206 static int
207 sparc_floating_p (const struct type *type)
208 {
209 switch (TYPE_CODE (type))
210 {
211 case TYPE_CODE_FLT:
212 {
213 int len = TYPE_LENGTH (type);
214 return (len == 4 || len == 8 || len == 16);
215 }
216 default:
217 break;
218 }
219
220 return 0;
221 }
222
223 /* Check whether TYPE is "Structure or Union". */
224
225 static int
226 sparc_structure_or_union_p (const struct type *type)
227 {
228 switch (TYPE_CODE (type))
229 {
230 case TYPE_CODE_STRUCT:
231 case TYPE_CODE_UNION:
232 return 1;
233 default:
234 break;
235 }
236
237 return 0;
238 }
239
240 /* Register information. */
241
242 static const char *sparc32_register_names[] =
243 {
244 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
245 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
246 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
247 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
248
249 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
250 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
251 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
252 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
253
254 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
255 };
256
257 /* Total number of registers. */
258 #define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
259
260 /* We provide the aliases %d0..%d30 for the floating registers as
261 "psuedo" registers. */
262
263 static const char *sparc32_pseudo_register_names[] =
264 {
265 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
266 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
267 };
268
269 /* Total number of pseudo registers. */
270 #define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
271
272 /* Return the name of register REGNUM. */
273
274 static const char *
275 sparc32_register_name (struct gdbarch *gdbarch, int regnum)
276 {
277 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
278 return sparc32_register_names[regnum];
279
280 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
281 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
282
283 return NULL;
284 }
285 \f
286 /* Construct types for ISA-specific registers. */
287
288 static struct type *
289 sparc_psr_type (struct gdbarch *gdbarch)
290 {
291 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
292
293 if (!tdep->sparc_psr_type)
294 {
295 struct type *type;
296
297 type = init_flags_type ("builtin_type_sparc_psr", 4);
298 append_flags_type_flag (type, 5, "ET");
299 append_flags_type_flag (type, 6, "PS");
300 append_flags_type_flag (type, 7, "S");
301 append_flags_type_flag (type, 12, "EF");
302 append_flags_type_flag (type, 13, "EC");
303
304 tdep->sparc_psr_type = type;
305 }
306
307 return tdep->sparc_psr_type;
308 }
309
310 static struct type *
311 sparc_fsr_type (struct gdbarch *gdbarch)
312 {
313 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
314
315 if (!tdep->sparc_fsr_type)
316 {
317 struct type *type;
318
319 type = init_flags_type ("builtin_type_sparc_fsr", 4);
320 append_flags_type_flag (type, 0, "NXA");
321 append_flags_type_flag (type, 1, "DZA");
322 append_flags_type_flag (type, 2, "UFA");
323 append_flags_type_flag (type, 3, "OFA");
324 append_flags_type_flag (type, 4, "NVA");
325 append_flags_type_flag (type, 5, "NXC");
326 append_flags_type_flag (type, 6, "DZC");
327 append_flags_type_flag (type, 7, "UFC");
328 append_flags_type_flag (type, 8, "OFC");
329 append_flags_type_flag (type, 9, "NVC");
330 append_flags_type_flag (type, 22, "NS");
331 append_flags_type_flag (type, 23, "NXM");
332 append_flags_type_flag (type, 24, "DZM");
333 append_flags_type_flag (type, 25, "UFM");
334 append_flags_type_flag (type, 26, "OFM");
335 append_flags_type_flag (type, 27, "NVM");
336
337 tdep->sparc_fsr_type = type;
338 }
339
340 return tdep->sparc_fsr_type;
341 }
342
343 /* Return the GDB type object for the "standard" data type of data in
344 register REGNUM. */
345
346 static struct type *
347 sparc32_register_type (struct gdbarch *gdbarch, int regnum)
348 {
349 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
350 return builtin_type (gdbarch)->builtin_float;
351
352 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
353 return builtin_type (gdbarch)->builtin_double;
354
355 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
356 return builtin_type (gdbarch)->builtin_data_ptr;
357
358 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
359 return builtin_type (gdbarch)->builtin_func_ptr;
360
361 if (regnum == SPARC32_PSR_REGNUM)
362 return sparc_psr_type (gdbarch);
363
364 if (regnum == SPARC32_FSR_REGNUM)
365 return sparc_fsr_type (gdbarch);
366
367 return builtin_type (gdbarch)->builtin_int32;
368 }
369
370 static void
371 sparc32_pseudo_register_read (struct gdbarch *gdbarch,
372 struct regcache *regcache,
373 int regnum, gdb_byte *buf)
374 {
375 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
376
377 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
378 regcache_raw_read (regcache, regnum, buf);
379 regcache_raw_read (regcache, regnum + 1, buf + 4);
380 }
381
382 static void
383 sparc32_pseudo_register_write (struct gdbarch *gdbarch,
384 struct regcache *regcache,
385 int regnum, const gdb_byte *buf)
386 {
387 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
388
389 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
390 regcache_raw_write (regcache, regnum, buf);
391 regcache_raw_write (regcache, regnum + 1, buf + 4);
392 }
393 \f
394
395 static CORE_ADDR
396 sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
397 CORE_ADDR funcaddr,
398 struct value **args, int nargs,
399 struct type *value_type,
400 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
401 struct regcache *regcache)
402 {
403 *bp_addr = sp - 4;
404 *real_pc = funcaddr;
405
406 if (using_struct_return (gdbarch, NULL, value_type))
407 {
408 gdb_byte buf[4];
409
410 /* This is an UNIMP instruction. */
411 store_unsigned_integer (buf, 4, TYPE_LENGTH (value_type) & 0x1fff);
412 write_memory (sp - 8, buf, 4);
413 return sp - 8;
414 }
415
416 return sp - 4;
417 }
418
419 static CORE_ADDR
420 sparc32_store_arguments (struct regcache *regcache, int nargs,
421 struct value **args, CORE_ADDR sp,
422 int struct_return, CORE_ADDR struct_addr)
423 {
424 struct gdbarch *gdbarch = get_regcache_arch (regcache);
425 /* Number of words in the "parameter array". */
426 int num_elements = 0;
427 int element = 0;
428 int i;
429
430 for (i = 0; i < nargs; i++)
431 {
432 struct type *type = value_type (args[i]);
433 int len = TYPE_LENGTH (type);
434
435 if (sparc_structure_or_union_p (type)
436 || (sparc_floating_p (type) && len == 16))
437 {
438 /* Structure, Union and Quad-Precision Arguments. */
439 sp -= len;
440
441 /* Use doubleword alignment for these values. That's always
442 correct, and wasting a few bytes shouldn't be a problem. */
443 sp &= ~0x7;
444
445 write_memory (sp, value_contents (args[i]), len);
446 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
447 num_elements++;
448 }
449 else if (sparc_floating_p (type))
450 {
451 /* Floating arguments. */
452 gdb_assert (len == 4 || len == 8);
453 num_elements += (len / 4);
454 }
455 else
456 {
457 /* Integral and pointer arguments. */
458 gdb_assert (sparc_integral_or_pointer_p (type));
459
460 if (len < 4)
461 args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
462 args[i]);
463 num_elements += ((len + 3) / 4);
464 }
465 }
466
467 /* Always allocate at least six words. */
468 sp -= max (6, num_elements) * 4;
469
470 /* The psABI says that "Software convention requires space for the
471 struct/union return value pointer, even if the word is unused." */
472 sp -= 4;
473
474 /* The psABI says that "Although software convention and the
475 operating system require every stack frame to be doubleword
476 aligned." */
477 sp &= ~0x7;
478
479 for (i = 0; i < nargs; i++)
480 {
481 const bfd_byte *valbuf = value_contents (args[i]);
482 struct type *type = value_type (args[i]);
483 int len = TYPE_LENGTH (type);
484
485 gdb_assert (len == 4 || len == 8);
486
487 if (element < 6)
488 {
489 int regnum = SPARC_O0_REGNUM + element;
490
491 regcache_cooked_write (regcache, regnum, valbuf);
492 if (len > 4 && element < 5)
493 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
494 }
495
496 /* Always store the argument in memory. */
497 write_memory (sp + 4 + element * 4, valbuf, len);
498 element += len / 4;
499 }
500
501 gdb_assert (element == num_elements);
502
503 if (struct_return)
504 {
505 gdb_byte buf[4];
506
507 store_unsigned_integer (buf, 4, struct_addr);
508 write_memory (sp, buf, 4);
509 }
510
511 return sp;
512 }
513
514 static CORE_ADDR
515 sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
516 struct regcache *regcache, CORE_ADDR bp_addr,
517 int nargs, struct value **args, CORE_ADDR sp,
518 int struct_return, CORE_ADDR struct_addr)
519 {
520 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
521
522 /* Set return address. */
523 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
524
525 /* Set up function arguments. */
526 sp = sparc32_store_arguments (regcache, nargs, args, sp,
527 struct_return, struct_addr);
528
529 /* Allocate the 16-word window save area. */
530 sp -= 16 * 4;
531
532 /* Stack should be doubleword aligned at this point. */
533 gdb_assert (sp % 8 == 0);
534
535 /* Finally, update the stack pointer. */
536 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
537
538 return sp;
539 }
540 \f
541
542 /* Use the program counter to determine the contents and size of a
543 breakpoint instruction. Return a pointer to a string of bytes that
544 encode a breakpoint instruction, store the length of the string in
545 *LEN and optionally adjust *PC to point to the correct memory
546 location for inserting the breakpoint. */
547
548 static const gdb_byte *
549 sparc_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
550 {
551 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
552
553 *len = sizeof (break_insn);
554 return break_insn;
555 }
556 \f
557
558 /* Allocate and initialize a frame cache. */
559
560 static struct sparc_frame_cache *
561 sparc_alloc_frame_cache (void)
562 {
563 struct sparc_frame_cache *cache;
564 int i;
565
566 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
567
568 /* Base address. */
569 cache->base = 0;
570 cache->pc = 0;
571
572 /* Frameless until proven otherwise. */
573 cache->frameless_p = 1;
574
575 cache->struct_return_p = 0;
576
577 return cache;
578 }
579
580 /* GCC generates several well-known sequences of instructions at the begining
581 of each function prologue when compiling with -fstack-check. If one of
582 such sequences starts at START_PC, then return the address of the
583 instruction immediately past this sequence. Otherwise, return START_PC. */
584
585 static CORE_ADDR
586 sparc_skip_stack_check (const CORE_ADDR start_pc)
587 {
588 CORE_ADDR pc = start_pc;
589 unsigned long insn;
590 int offset_stack_checking_sequence = 0;
591
592 /* With GCC, all stack checking sequences begin with the same two
593 instructions. */
594
595 /* sethi <some immediate>,%g1 */
596 insn = sparc_fetch_instruction (pc);
597 pc = pc + 4;
598 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
599 return start_pc;
600
601 /* sub %sp, %g1, %g1 */
602 insn = sparc_fetch_instruction (pc);
603 pc = pc + 4;
604 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
605 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
606 return start_pc;
607
608 insn = sparc_fetch_instruction (pc);
609 pc = pc + 4;
610
611 /* First possible sequence:
612 [first two instructions above]
613 clr [%g1 - some immediate] */
614
615 /* clr [%g1 - some immediate] */
616 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
617 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
618 {
619 /* Valid stack-check sequence, return the new PC. */
620 return pc;
621 }
622
623 /* Second possible sequence: A small number of probes.
624 [first two instructions above]
625 clr [%g1]
626 add %g1, -<some immediate>, %g1
627 clr [%g1]
628 [repeat the two instructions above any (small) number of times]
629 clr [%g1 - some immediate] */
630
631 /* clr [%g1] */
632 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
633 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
634 {
635 while (1)
636 {
637 /* add %g1, -<some immediate>, %g1 */
638 insn = sparc_fetch_instruction (pc);
639 pc = pc + 4;
640 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
641 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
642 break;
643
644 /* clr [%g1] */
645 insn = sparc_fetch_instruction (pc);
646 pc = pc + 4;
647 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
648 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
649 return start_pc;
650 }
651
652 /* clr [%g1 - some immediate] */
653 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
654 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
655 return start_pc;
656
657 /* We found a valid stack-check sequence, return the new PC. */
658 return pc;
659 }
660
661 /* Third sequence: A probing loop.
662 [first two instructions above]
663 sethi <some immediate>, %g4
664 sub %g1, %g4, %g4
665 cmp %g1, %g4
666 be <disp>
667 add %g1, -<some immediate>, %g1
668 ba <disp>
669 clr [%g1]
670 clr [%g4 - some immediate] */
671
672 /* sethi <some immediate>, %g4 */
673 else if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
674 {
675 /* sub %g1, %g4, %g4 */
676 insn = sparc_fetch_instruction (pc);
677 pc = pc + 4;
678 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
679 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
680 return start_pc;
681
682 /* cmp %g1, %g4 */
683 insn = sparc_fetch_instruction (pc);
684 pc = pc + 4;
685 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
686 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
687 return start_pc;
688
689 /* be <disp> */
690 insn = sparc_fetch_instruction (pc);
691 pc = pc + 4;
692 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
693 return start_pc;
694
695 /* add %g1, -<some immediate>, %g1 */
696 insn = sparc_fetch_instruction (pc);
697 pc = pc + 4;
698 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
699 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
700 return start_pc;
701
702 /* ba <disp> */
703 insn = sparc_fetch_instruction (pc);
704 pc = pc + 4;
705 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
706 return start_pc;
707
708 /* clr [%g1] */
709 insn = sparc_fetch_instruction (pc);
710 pc = pc + 4;
711 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
712 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
713 return start_pc;
714
715 /* clr [%g4 - some immediate] */
716 insn = sparc_fetch_instruction (pc);
717 pc = pc + 4;
718 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
719 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
720 return start_pc;
721
722 /* We found a valid stack-check sequence, return the new PC. */
723 return pc;
724 }
725
726 /* No stack check code in our prologue, return the start_pc. */
727 return start_pc;
728 }
729
730 CORE_ADDR
731 sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
732 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
733 {
734 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
735 unsigned long insn;
736 int offset = 0;
737 int dest = -1;
738
739 pc = sparc_skip_stack_check (pc);
740
741 if (current_pc <= pc)
742 return current_pc;
743
744 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
745 SPARC the linker usually defines a symbol (typically
746 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
747 This symbol makes us end up here with PC pointing at the start of
748 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
749 would do our normal prologue analysis, we would probably conclude
750 that we've got a frame when in reality we don't, since the
751 dynamic linker patches up the first PLT with some code that
752 starts with a SAVE instruction. Patch up PC such that it points
753 at the start of our PLT entry. */
754 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL))
755 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
756
757 insn = sparc_fetch_instruction (pc);
758
759 /* Recognize a SETHI insn and record its destination. */
760 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
761 {
762 dest = X_RD (insn);
763 offset += 4;
764
765 insn = sparc_fetch_instruction (pc + 4);
766 }
767
768 /* Allow for an arithmetic operation on DEST or %g1. */
769 if (X_OP (insn) == 2 && X_I (insn)
770 && (X_RD (insn) == 1 || X_RD (insn) == dest))
771 {
772 offset += 4;
773
774 insn = sparc_fetch_instruction (pc + 8);
775 }
776
777 /* Check for the SAVE instruction that sets up the frame. */
778 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
779 {
780 cache->frameless_p = 0;
781 return pc + offset + 4;
782 }
783
784 return pc;
785 }
786
787 static CORE_ADDR
788 sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
789 {
790 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
791 return frame_unwind_register_unsigned (this_frame, tdep->pc_regnum);
792 }
793
794 /* Return PC of first real instruction of the function starting at
795 START_PC. */
796
797 static CORE_ADDR
798 sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
799 {
800 struct symtab_and_line sal;
801 CORE_ADDR func_start, func_end;
802 struct sparc_frame_cache cache;
803
804 /* This is the preferred method, find the end of the prologue by
805 using the debugging information. */
806 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
807 {
808 sal = find_pc_line (func_start, 0);
809
810 if (sal.end < func_end
811 && start_pc <= sal.end)
812 return sal.end;
813 }
814
815 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
816
817 /* The psABI says that "Although the first 6 words of arguments
818 reside in registers, the standard stack frame reserves space for
819 them.". It also suggests that a function may use that space to
820 "write incoming arguments 0 to 5" into that space, and that's
821 indeed what GCC seems to be doing. In that case GCC will
822 generate debug information that points to the stack slots instead
823 of the registers, so we should consider the instructions that
824 write out these incoming arguments onto the stack. Of course we
825 only need to do this if we have a stack frame. */
826
827 while (!cache.frameless_p)
828 {
829 unsigned long insn = sparc_fetch_instruction (start_pc);
830
831 /* Recognize instructions that store incoming arguments in
832 %i0...%i5 into the corresponding stack slot. */
833 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04 && X_I (insn)
834 && (X_RD (insn) >= 24 && X_RD (insn) <= 29) && X_RS1 (insn) == 30
835 && X_SIMM13 (insn) == 68 + (X_RD (insn) - 24) * 4)
836 {
837 start_pc += 4;
838 continue;
839 }
840
841 break;
842 }
843
844 return start_pc;
845 }
846
847 /* Normal frames. */
848
849 struct sparc_frame_cache *
850 sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
851 {
852 struct sparc_frame_cache *cache;
853
854 if (*this_cache)
855 return *this_cache;
856
857 cache = sparc_alloc_frame_cache ();
858 *this_cache = cache;
859
860 cache->pc = get_frame_func (this_frame);
861 if (cache->pc != 0)
862 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
863 get_frame_pc (this_frame), cache);
864
865 if (cache->frameless_p)
866 {
867 /* This function is frameless, so %fp (%i6) holds the frame
868 pointer for our calling frame. Use %sp (%o6) as this frame's
869 base address. */
870 cache->base =
871 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
872 }
873 else
874 {
875 /* For normal frames, %fp (%i6) holds the frame pointer, the
876 base address for the current stack frame. */
877 cache->base =
878 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
879 }
880
881 if (cache->base & 1)
882 cache->base += BIAS;
883
884 return cache;
885 }
886
887 static int
888 sparc32_struct_return_from_sym (struct symbol *sym)
889 {
890 struct type *type = check_typedef (SYMBOL_TYPE (sym));
891 enum type_code code = TYPE_CODE (type);
892
893 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
894 {
895 type = check_typedef (TYPE_TARGET_TYPE (type));
896 if (sparc_structure_or_union_p (type)
897 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
898 return 1;
899 }
900
901 return 0;
902 }
903
904 struct sparc_frame_cache *
905 sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
906 {
907 struct sparc_frame_cache *cache;
908 struct symbol *sym;
909
910 if (*this_cache)
911 return *this_cache;
912
913 cache = sparc_frame_cache (this_frame, this_cache);
914
915 sym = find_pc_function (cache->pc);
916 if (sym)
917 {
918 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
919 }
920 else
921 {
922 /* There is no debugging information for this function to
923 help us determine whether this function returns a struct
924 or not. So we rely on another heuristic which is to check
925 the instruction at the return address and see if this is
926 an "unimp" instruction. If it is, then it is a struct-return
927 function. */
928 CORE_ADDR pc;
929 int regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
930
931 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
932 if (sparc_is_unimp_insn (pc))
933 cache->struct_return_p = 1;
934 }
935
936 return cache;
937 }
938
939 static void
940 sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
941 struct frame_id *this_id)
942 {
943 struct sparc_frame_cache *cache =
944 sparc32_frame_cache (this_frame, this_cache);
945
946 /* This marks the outermost frame. */
947 if (cache->base == 0)
948 return;
949
950 (*this_id) = frame_id_build (cache->base, cache->pc);
951 }
952
953 static struct value *
954 sparc32_frame_prev_register (struct frame_info *this_frame,
955 void **this_cache, int regnum)
956 {
957 struct sparc_frame_cache *cache =
958 sparc32_frame_cache (this_frame, this_cache);
959
960 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
961 {
962 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
963
964 /* If this functions has a Structure, Union or Quad-Precision
965 return value, we have to skip the UNIMP instruction that encodes
966 the size of the structure. */
967 if (cache->struct_return_p)
968 pc += 4;
969
970 regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
971 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
972 return frame_unwind_got_constant (this_frame, regnum, pc);
973 }
974
975 /* Handle StackGhost. */
976 {
977 ULONGEST wcookie = sparc_fetch_wcookie ();
978
979 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
980 {
981 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
982 ULONGEST i7;
983
984 /* Read the value in from memory. */
985 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
986 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
987 }
988 }
989
990 /* The previous frame's `local' and `in' registers have been saved
991 in the register save area. */
992 if (!cache->frameless_p
993 && regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM)
994 {
995 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
996
997 return frame_unwind_got_memory (this_frame, regnum, addr);
998 }
999
1000 /* The previous frame's `out' registers are accessible as the
1001 current frame's `in' registers. */
1002 if (!cache->frameless_p
1003 && regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM)
1004 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
1005
1006 return frame_unwind_got_register (this_frame, regnum, regnum);
1007 }
1008
1009 static const struct frame_unwind sparc32_frame_unwind =
1010 {
1011 NORMAL_FRAME,
1012 sparc32_frame_this_id,
1013 sparc32_frame_prev_register,
1014 NULL,
1015 default_frame_sniffer
1016 };
1017 \f
1018
1019 static CORE_ADDR
1020 sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
1021 {
1022 struct sparc_frame_cache *cache =
1023 sparc32_frame_cache (this_frame, this_cache);
1024
1025 return cache->base;
1026 }
1027
1028 static const struct frame_base sparc32_frame_base =
1029 {
1030 &sparc32_frame_unwind,
1031 sparc32_frame_base_address,
1032 sparc32_frame_base_address,
1033 sparc32_frame_base_address
1034 };
1035
1036 static struct frame_id
1037 sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1038 {
1039 CORE_ADDR sp;
1040
1041 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1042 if (sp & 1)
1043 sp += BIAS;
1044 return frame_id_build (sp, get_frame_pc (this_frame));
1045 }
1046 \f
1047
1048 /* Extract a function return value of TYPE from REGCACHE, and copy
1049 that into VALBUF. */
1050
1051 static void
1052 sparc32_extract_return_value (struct type *type, struct regcache *regcache,
1053 gdb_byte *valbuf)
1054 {
1055 int len = TYPE_LENGTH (type);
1056 gdb_byte buf[8];
1057
1058 gdb_assert (!sparc_structure_or_union_p (type));
1059 gdb_assert (!(sparc_floating_p (type) && len == 16));
1060
1061 if (sparc_floating_p (type))
1062 {
1063 /* Floating return values. */
1064 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1065 if (len > 4)
1066 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
1067 memcpy (valbuf, buf, len);
1068 }
1069 else
1070 {
1071 /* Integral and pointer return values. */
1072 gdb_assert (sparc_integral_or_pointer_p (type));
1073
1074 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1075 if (len > 4)
1076 {
1077 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1078 gdb_assert (len == 8);
1079 memcpy (valbuf, buf, 8);
1080 }
1081 else
1082 {
1083 /* Just stripping off any unused bytes should preserve the
1084 signed-ness just fine. */
1085 memcpy (valbuf, buf + 4 - len, len);
1086 }
1087 }
1088 }
1089
1090 /* Store the function return value of type TYPE from VALBUF into
1091 REGCACHE. */
1092
1093 static void
1094 sparc32_store_return_value (struct type *type, struct regcache *regcache,
1095 const gdb_byte *valbuf)
1096 {
1097 int len = TYPE_LENGTH (type);
1098 gdb_byte buf[8];
1099
1100 gdb_assert (!sparc_structure_or_union_p (type));
1101 gdb_assert (!(sparc_floating_p (type) && len == 16));
1102
1103 if (sparc_floating_p (type))
1104 {
1105 /* Floating return values. */
1106 memcpy (buf, valbuf, len);
1107 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1108 if (len > 4)
1109 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
1110 }
1111 else
1112 {
1113 /* Integral and pointer return values. */
1114 gdb_assert (sparc_integral_or_pointer_p (type));
1115
1116 if (len > 4)
1117 {
1118 gdb_assert (len == 8);
1119 memcpy (buf, valbuf, 8);
1120 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
1121 }
1122 else
1123 {
1124 /* ??? Do we need to do any sign-extension here? */
1125 memcpy (buf + 4 - len, valbuf, len);
1126 }
1127 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
1128 }
1129 }
1130
1131 static enum return_value_convention
1132 sparc32_return_value (struct gdbarch *gdbarch, struct type *func_type,
1133 struct type *type, struct regcache *regcache,
1134 gdb_byte *readbuf, const gdb_byte *writebuf)
1135 {
1136 /* The psABI says that "...every stack frame reserves the word at
1137 %fp+64. If a function returns a structure, union, or
1138 quad-precision value, this word should hold the address of the
1139 object into which the return value should be copied." This
1140 guarantees that we can always find the return value, not just
1141 before the function returns. */
1142
1143 if (sparc_structure_or_union_p (type)
1144 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1145 {
1146 if (readbuf)
1147 {
1148 ULONGEST sp;
1149 CORE_ADDR addr;
1150
1151 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1152 addr = read_memory_unsigned_integer (sp + 64, 4);
1153 read_memory (addr, readbuf, TYPE_LENGTH (type));
1154 }
1155
1156 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1157 }
1158
1159 if (readbuf)
1160 sparc32_extract_return_value (type, regcache, readbuf);
1161 if (writebuf)
1162 sparc32_store_return_value (type, regcache, writebuf);
1163
1164 return RETURN_VALUE_REGISTER_CONVENTION;
1165 }
1166
1167 static int
1168 sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
1169 {
1170 return (sparc_structure_or_union_p (type)
1171 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16));
1172 }
1173
1174 static int
1175 sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
1176 {
1177 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1178 struct symbol *sym = find_pc_function (pc);
1179
1180 if (sym)
1181 return sparc32_struct_return_from_sym (sym);
1182 return 0;
1183 }
1184
1185 static void
1186 sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1187 struct dwarf2_frame_state_reg *reg,
1188 struct frame_info *this_frame)
1189 {
1190 int off;
1191
1192 switch (regnum)
1193 {
1194 case SPARC_G0_REGNUM:
1195 /* Since %g0 is always zero, there is no point in saving it, and
1196 people will be inclined omit it from the CFI. Make sure we
1197 don't warn about that. */
1198 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1199 break;
1200 case SPARC_SP_REGNUM:
1201 reg->how = DWARF2_FRAME_REG_CFA;
1202 break;
1203 case SPARC32_PC_REGNUM:
1204 case SPARC32_NPC_REGNUM:
1205 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1206 off = 8;
1207 if (sparc32_dwarf2_struct_return_p (this_frame))
1208 off += 4;
1209 if (regnum == SPARC32_NPC_REGNUM)
1210 off += 4;
1211 reg->loc.offset = off;
1212 break;
1213 }
1214 }
1215
1216 \f
1217 /* The SPARC Architecture doesn't have hardware single-step support,
1218 and most operating systems don't implement it either, so we provide
1219 software single-step mechanism. */
1220
1221 static CORE_ADDR
1222 sparc_analyze_control_transfer (struct frame_info *frame,
1223 CORE_ADDR pc, CORE_ADDR *npc)
1224 {
1225 unsigned long insn = sparc_fetch_instruction (pc);
1226 int conditional_p = X_COND (insn) & 0x7;
1227 int branch_p = 0;
1228 long offset = 0; /* Must be signed for sign-extend. */
1229
1230 if (X_OP (insn) == 0 && X_OP2 (insn) == 3 && (insn & 0x1000000) == 0)
1231 {
1232 /* Branch on Integer Register with Prediction (BPr). */
1233 branch_p = 1;
1234 conditional_p = 1;
1235 }
1236 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
1237 {
1238 /* Branch on Floating-Point Condition Codes (FBfcc). */
1239 branch_p = 1;
1240 offset = 4 * X_DISP22 (insn);
1241 }
1242 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1243 {
1244 /* Branch on Floating-Point Condition Codes with Prediction
1245 (FBPfcc). */
1246 branch_p = 1;
1247 offset = 4 * X_DISP19 (insn);
1248 }
1249 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1250 {
1251 /* Branch on Integer Condition Codes (Bicc). */
1252 branch_p = 1;
1253 offset = 4 * X_DISP22 (insn);
1254 }
1255 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
1256 {
1257 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1258 branch_p = 1;
1259 offset = 4 * X_DISP19 (insn);
1260 }
1261 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1262 {
1263 /* Trap instruction (TRAP). */
1264 return gdbarch_tdep (get_frame_arch (frame))->step_trap (frame, insn);
1265 }
1266
1267 /* FIXME: Handle DONE and RETRY instructions. */
1268
1269 if (branch_p)
1270 {
1271 if (conditional_p)
1272 {
1273 /* For conditional branches, return nPC + 4 iff the annul
1274 bit is 1. */
1275 return (X_A (insn) ? *npc + 4 : 0);
1276 }
1277 else
1278 {
1279 /* For unconditional branches, return the target if its
1280 specified condition is "always" and return nPC + 4 if the
1281 condition is "never". If the annul bit is 1, set *NPC to
1282 zero. */
1283 if (X_COND (insn) == 0x0)
1284 pc = *npc, offset = 4;
1285 if (X_A (insn))
1286 *npc = 0;
1287
1288 gdb_assert (offset != 0);
1289 return pc + offset;
1290 }
1291 }
1292
1293 return 0;
1294 }
1295
1296 static CORE_ADDR
1297 sparc_step_trap (struct frame_info *frame, unsigned long insn)
1298 {
1299 return 0;
1300 }
1301
1302 int
1303 sparc_software_single_step (struct frame_info *frame)
1304 {
1305 struct gdbarch *arch = get_frame_arch (frame);
1306 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1307 CORE_ADDR npc, nnpc;
1308
1309 CORE_ADDR pc, orig_npc;
1310
1311 pc = get_frame_register_unsigned (frame, tdep->pc_regnum);
1312 orig_npc = npc = get_frame_register_unsigned (frame, tdep->npc_regnum);
1313
1314 /* Analyze the instruction at PC. */
1315 nnpc = sparc_analyze_control_transfer (frame, pc, &npc);
1316 if (npc != 0)
1317 insert_single_step_breakpoint (npc);
1318
1319 if (nnpc != 0)
1320 insert_single_step_breakpoint (nnpc);
1321
1322 /* Assert that we have set at least one breakpoint, and that
1323 they're not set at the same spot - unless we're going
1324 from here straight to NULL, i.e. a call or jump to 0. */
1325 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1326 gdb_assert (nnpc != npc || orig_npc == 0);
1327
1328 return 1;
1329 }
1330
1331 static void
1332 sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
1333 {
1334 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1335
1336 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1337 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
1338 }
1339 \f
1340
1341 /* Return the appropriate register set for the core section identified
1342 by SECT_NAME and SECT_SIZE. */
1343
1344 static const struct regset *
1345 sparc_regset_from_core_section (struct gdbarch *gdbarch,
1346 const char *sect_name, size_t sect_size)
1347 {
1348 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1349
1350 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
1351 return tdep->gregset;
1352
1353 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
1354 return tdep->fpregset;
1355
1356 return NULL;
1357 }
1358 \f
1359
1360 static struct gdbarch *
1361 sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1362 {
1363 struct gdbarch_tdep *tdep;
1364 struct gdbarch *gdbarch;
1365
1366 /* If there is already a candidate, use it. */
1367 arches = gdbarch_list_lookup_by_info (arches, &info);
1368 if (arches != NULL)
1369 return arches->gdbarch;
1370
1371 /* Allocate space for the new architecture. */
1372 tdep = XMALLOC (struct gdbarch_tdep);
1373 gdbarch = gdbarch_alloc (&info, tdep);
1374
1375 tdep->pc_regnum = SPARC32_PC_REGNUM;
1376 tdep->npc_regnum = SPARC32_NPC_REGNUM;
1377 tdep->gregset = NULL;
1378 tdep->sizeof_gregset = 0;
1379 tdep->fpregset = NULL;
1380 tdep->sizeof_fpregset = 0;
1381 tdep->plt_entry_size = 0;
1382 tdep->step_trap = sparc_step_trap;
1383
1384 set_gdbarch_long_double_bit (gdbarch, 128);
1385 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
1386
1387 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1388 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1389 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1390 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1391 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1392 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1393
1394 /* Register numbers of various important registers. */
1395 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1396 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1397 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1398
1399 /* Call dummy code. */
1400 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1401 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1402 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1403
1404 set_gdbarch_return_value (gdbarch, sparc32_return_value);
1405 set_gdbarch_stabs_argument_has_addr
1406 (gdbarch, sparc32_stabs_argument_has_addr);
1407
1408 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1409
1410 /* Stack grows downward. */
1411 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1412
1413 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
1414
1415 set_gdbarch_frame_args_skip (gdbarch, 8);
1416
1417 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
1418
1419 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1420 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
1421
1422 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
1423
1424 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
1425
1426 frame_base_set_default (gdbarch, &sparc32_frame_base);
1427
1428 /* Hook in the DWARF CFI frame unwinder. */
1429 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1430 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1431 StackGhost issues have been resolved. */
1432
1433 /* Hook in ABI-specific overrides, if they have been registered. */
1434 gdbarch_init_osabi (info, gdbarch);
1435
1436 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
1437
1438 /* If we have register sets, enable the generic core file support. */
1439 if (tdep->gregset)
1440 set_gdbarch_regset_from_core_section (gdbarch,
1441 sparc_regset_from_core_section);
1442
1443 return gdbarch;
1444 }
1445 \f
1446 /* Helper functions for dealing with register windows. */
1447
1448 void
1449 sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
1450 {
1451 int offset = 0;
1452 gdb_byte buf[8];
1453 int i;
1454
1455 if (sp & 1)
1456 {
1457 /* Registers are 64-bit. */
1458 sp += BIAS;
1459
1460 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1461 {
1462 if (regnum == i || regnum == -1)
1463 {
1464 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1465
1466 /* Handle StackGhost. */
1467 if (i == SPARC_I7_REGNUM)
1468 {
1469 ULONGEST wcookie = sparc_fetch_wcookie ();
1470 ULONGEST i7 = extract_unsigned_integer (buf + offset, 8);
1471
1472 store_unsigned_integer (buf + offset, 8, i7 ^ wcookie);
1473 }
1474
1475 regcache_raw_supply (regcache, i, buf);
1476 }
1477 }
1478 }
1479 else
1480 {
1481 /* Registers are 32-bit. Toss any sign-extension of the stack
1482 pointer. */
1483 sp &= 0xffffffffUL;
1484
1485 /* Clear out the top half of the temporary buffer, and put the
1486 register value in the bottom half if we're in 64-bit mode. */
1487 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1488 {
1489 memset (buf, 0, 4);
1490 offset = 4;
1491 }
1492
1493 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1494 {
1495 if (regnum == i || regnum == -1)
1496 {
1497 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1498 buf + offset, 4);
1499
1500 /* Handle StackGhost. */
1501 if (i == SPARC_I7_REGNUM)
1502 {
1503 ULONGEST wcookie = sparc_fetch_wcookie ();
1504 ULONGEST i7 = extract_unsigned_integer (buf + offset, 4);
1505
1506 store_unsigned_integer (buf + offset, 4, i7 ^ wcookie);
1507 }
1508
1509 regcache_raw_supply (regcache, i, buf);
1510 }
1511 }
1512 }
1513 }
1514
1515 void
1516 sparc_collect_rwindow (const struct regcache *regcache,
1517 CORE_ADDR sp, int regnum)
1518 {
1519 int offset = 0;
1520 gdb_byte buf[8];
1521 int i;
1522
1523 if (sp & 1)
1524 {
1525 /* Registers are 64-bit. */
1526 sp += BIAS;
1527
1528 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1529 {
1530 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1531 {
1532 regcache_raw_collect (regcache, i, buf);
1533
1534 /* Handle StackGhost. */
1535 if (i == SPARC_I7_REGNUM)
1536 {
1537 ULONGEST wcookie = sparc_fetch_wcookie ();
1538 ULONGEST i7 = extract_unsigned_integer (buf + offset, 8);
1539
1540 store_unsigned_integer (buf, 8, i7 ^ wcookie);
1541 }
1542
1543 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1544 }
1545 }
1546 }
1547 else
1548 {
1549 /* Registers are 32-bit. Toss any sign-extension of the stack
1550 pointer. */
1551 sp &= 0xffffffffUL;
1552
1553 /* Only use the bottom half if we're in 64-bit mode. */
1554 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1555 offset = 4;
1556
1557 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1558 {
1559 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1560 {
1561 regcache_raw_collect (regcache, i, buf);
1562
1563 /* Handle StackGhost. */
1564 if (i == SPARC_I7_REGNUM)
1565 {
1566 ULONGEST wcookie = sparc_fetch_wcookie ();
1567 ULONGEST i7 = extract_unsigned_integer (buf + offset, 4);
1568
1569 store_unsigned_integer (buf + offset, 4, i7 ^ wcookie);
1570 }
1571
1572 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1573 buf + offset, 4);
1574 }
1575 }
1576 }
1577 }
1578
1579 /* Helper functions for dealing with register sets. */
1580
1581 void
1582 sparc32_supply_gregset (const struct sparc_gregset *gregset,
1583 struct regcache *regcache,
1584 int regnum, const void *gregs)
1585 {
1586 const gdb_byte *regs = gregs;
1587 int i;
1588
1589 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1590 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1591 regs + gregset->r_psr_offset);
1592
1593 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1594 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1595 regs + gregset->r_pc_offset);
1596
1597 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1598 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1599 regs + gregset->r_npc_offset);
1600
1601 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1602 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1603 regs + gregset->r_y_offset);
1604
1605 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1606 regcache_raw_supply (regcache, SPARC_G0_REGNUM, NULL);
1607
1608 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1609 {
1610 int offset = gregset->r_g1_offset;
1611
1612 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1613 {
1614 if (regnum == i || regnum == -1)
1615 regcache_raw_supply (regcache, i, regs + offset);
1616 offset += 4;
1617 }
1618 }
1619
1620 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1621 {
1622 /* Not all of the register set variants include Locals and
1623 Inputs. For those that don't, we read them off the stack. */
1624 if (gregset->r_l0_offset == -1)
1625 {
1626 ULONGEST sp;
1627
1628 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1629 sparc_supply_rwindow (regcache, sp, regnum);
1630 }
1631 else
1632 {
1633 int offset = gregset->r_l0_offset;
1634
1635 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1636 {
1637 if (regnum == i || regnum == -1)
1638 regcache_raw_supply (regcache, i, regs + offset);
1639 offset += 4;
1640 }
1641 }
1642 }
1643 }
1644
1645 void
1646 sparc32_collect_gregset (const struct sparc_gregset *gregset,
1647 const struct regcache *regcache,
1648 int regnum, void *gregs)
1649 {
1650 gdb_byte *regs = gregs;
1651 int i;
1652
1653 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1654 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1655 regs + gregset->r_psr_offset);
1656
1657 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1658 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1659 regs + gregset->r_pc_offset);
1660
1661 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1662 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1663 regs + gregset->r_npc_offset);
1664
1665 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1666 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1667 regs + gregset->r_y_offset);
1668
1669 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1670 {
1671 int offset = gregset->r_g1_offset;
1672
1673 /* %g0 is always zero. */
1674 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1675 {
1676 if (regnum == i || regnum == -1)
1677 regcache_raw_collect (regcache, i, regs + offset);
1678 offset += 4;
1679 }
1680 }
1681
1682 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1683 {
1684 /* Not all of the register set variants include Locals and
1685 Inputs. For those that don't, we read them off the stack. */
1686 if (gregset->r_l0_offset != -1)
1687 {
1688 int offset = gregset->r_l0_offset;
1689
1690 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1691 {
1692 if (regnum == i || regnum == -1)
1693 regcache_raw_collect (regcache, i, regs + offset);
1694 offset += 4;
1695 }
1696 }
1697 }
1698 }
1699
1700 void
1701 sparc32_supply_fpregset (struct regcache *regcache,
1702 int regnum, const void *fpregs)
1703 {
1704 const gdb_byte *regs = fpregs;
1705 int i;
1706
1707 for (i = 0; i < 32; i++)
1708 {
1709 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1710 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1711 }
1712
1713 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1714 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
1715 }
1716
1717 void
1718 sparc32_collect_fpregset (const struct regcache *regcache,
1719 int regnum, void *fpregs)
1720 {
1721 gdb_byte *regs = fpregs;
1722 int i;
1723
1724 for (i = 0; i < 32; i++)
1725 {
1726 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1727 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1728 }
1729
1730 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1731 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
1732 }
1733 \f
1734
1735 /* SunOS 4. */
1736
1737 /* From <machine/reg.h>. */
1738 const struct sparc_gregset sparc32_sunos4_gregset =
1739 {
1740 0 * 4, /* %psr */
1741 1 * 4, /* %pc */
1742 2 * 4, /* %npc */
1743 3 * 4, /* %y */
1744 -1, /* %wim */
1745 -1, /* %tbr */
1746 4 * 4, /* %g1 */
1747 -1 /* %l0 */
1748 };
1749 \f
1750
1751 /* Provide a prototype to silence -Wmissing-prototypes. */
1752 void _initialize_sparc_tdep (void);
1753
1754 void
1755 _initialize_sparc_tdep (void)
1756 {
1757 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
1758 }
This page took 0.127851 seconds and 5 git commands to generate.