gdb/
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
1 /* Target-dependent code for SPARC.
2
3 Copyright (C) 2003-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "dis-asm.h"
23 #include "dwarf2-frame.h"
24 #include "floatformat.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "inferior.h"
31 #include "symtab.h"
32 #include "objfiles.h"
33 #include "osabi.h"
34 #include "regcache.h"
35 #include "target.h"
36 #include "value.h"
37
38 #include "gdb_assert.h"
39 #include "gdb_string.h"
40
41 #include "sparc-tdep.h"
42
43 struct regset;
44
45 /* This file implements the SPARC 32-bit ABI as defined by the section
46 "Low-Level System Information" of the SPARC Compliance Definition
47 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
48 lists changes with respect to the original 32-bit psABI as defined
49 in the "System V ABI, SPARC Processor Supplement".
50
51 Note that if we talk about SunOS, we mean SunOS 4.x, which was
52 BSD-based, which is sometimes (retroactively?) referred to as
53 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
54 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
55 suffering from severe version number inflation). Solaris 2.x is
56 also known as SunOS 5.x, since that's what uname(1) says. Solaris
57 2.x is SVR4-based. */
58
59 /* Please use the sparc32_-prefix for 32-bit specific code, the
60 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
61 code that can handle both. The 64-bit specific code lives in
62 sparc64-tdep.c; don't add any here. */
63
64 /* The SPARC Floating-Point Quad-Precision format is similar to
65 big-endian IA-64 Quad-Precision format. */
66 #define floatformats_sparc_quad floatformats_ia64_quad
67
68 /* The stack pointer is offset from the stack frame by a BIAS of 2047
69 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
70 hosts, so undefine it first. */
71 #undef BIAS
72 #define BIAS 2047
73
74 /* Macros to extract fields from SPARC instructions. */
75 #define X_OP(i) (((i) >> 30) & 0x3)
76 #define X_RD(i) (((i) >> 25) & 0x1f)
77 #define X_A(i) (((i) >> 29) & 1)
78 #define X_COND(i) (((i) >> 25) & 0xf)
79 #define X_OP2(i) (((i) >> 22) & 0x7)
80 #define X_IMM22(i) ((i) & 0x3fffff)
81 #define X_OP3(i) (((i) >> 19) & 0x3f)
82 #define X_RS1(i) (((i) >> 14) & 0x1f)
83 #define X_RS2(i) ((i) & 0x1f)
84 #define X_I(i) (((i) >> 13) & 1)
85 /* Sign extension macros. */
86 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
87 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
88 #define X_DISP10(i) ((((((i) >> 11) && 0x300) | (((i) >> 5) & 0xff)) ^ 0x200) - 0x200)
89 #define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
90
91 /* Fetch the instruction at PC. Instructions are always big-endian
92 even if the processor operates in little-endian mode. */
93
94 unsigned long
95 sparc_fetch_instruction (CORE_ADDR pc)
96 {
97 gdb_byte buf[4];
98 unsigned long insn;
99 int i;
100
101 /* If we can't read the instruction at PC, return zero. */
102 if (target_read_memory (pc, buf, sizeof (buf)))
103 return 0;
104
105 insn = 0;
106 for (i = 0; i < sizeof (buf); i++)
107 insn = (insn << 8) | buf[i];
108 return insn;
109 }
110 \f
111
112 /* Return non-zero if the instruction corresponding to PC is an "unimp"
113 instruction. */
114
115 static int
116 sparc_is_unimp_insn (CORE_ADDR pc)
117 {
118 const unsigned long insn = sparc_fetch_instruction (pc);
119
120 return ((insn & 0xc1c00000) == 0);
121 }
122
123 /* OpenBSD/sparc includes StackGhost, which according to the author's
124 website http://stackghost.cerias.purdue.edu "... transparently and
125 automatically protects applications' stack frames; more
126 specifically, it guards the return pointers. The protection
127 mechanisms require no application source or binary modification and
128 imposes only a negligible performance penalty."
129
130 The same website provides the following description of how
131 StackGhost works:
132
133 "StackGhost interfaces with the kernel trap handler that would
134 normally write out registers to the stack and the handler that
135 would read them back in. By XORing a cookie into the
136 return-address saved in the user stack when it is actually written
137 to the stack, and then XOR it out when the return-address is pulled
138 from the stack, StackGhost can cause attacker corrupted return
139 pointers to behave in a manner the attacker cannot predict.
140 StackGhost can also use several unused bits in the return pointer
141 to detect a smashed return pointer and abort the process."
142
143 For GDB this means that whenever we're reading %i7 from a stack
144 frame's window save area, we'll have to XOR the cookie.
145
146 More information on StackGuard can be found on in:
147
148 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
149 Stack Protection." 2001. Published in USENIX Security Symposium
150 '01. */
151
152 /* Fetch StackGhost Per-Process XOR cookie. */
153
154 ULONGEST
155 sparc_fetch_wcookie (struct gdbarch *gdbarch)
156 {
157 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
158 struct target_ops *ops = &current_target;
159 gdb_byte buf[8];
160 int len;
161
162 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
163 if (len == -1)
164 return 0;
165
166 /* We should have either an 32-bit or an 64-bit cookie. */
167 gdb_assert (len == 4 || len == 8);
168
169 return extract_unsigned_integer (buf, len, byte_order);
170 }
171 \f
172
173 /* The functions on this page are intended to be used to classify
174 function arguments. */
175
176 /* Check whether TYPE is "Integral or Pointer". */
177
178 static int
179 sparc_integral_or_pointer_p (const struct type *type)
180 {
181 int len = TYPE_LENGTH (type);
182
183 switch (TYPE_CODE (type))
184 {
185 case TYPE_CODE_INT:
186 case TYPE_CODE_BOOL:
187 case TYPE_CODE_CHAR:
188 case TYPE_CODE_ENUM:
189 case TYPE_CODE_RANGE:
190 /* We have byte, half-word, word and extended-word/doubleword
191 integral types. The doubleword is an extension to the
192 original 32-bit ABI by the SCD 2.4.x. */
193 return (len == 1 || len == 2 || len == 4 || len == 8);
194 case TYPE_CODE_PTR:
195 case TYPE_CODE_REF:
196 /* Allow either 32-bit or 64-bit pointers. */
197 return (len == 4 || len == 8);
198 default:
199 break;
200 }
201
202 return 0;
203 }
204
205 /* Check whether TYPE is "Floating". */
206
207 static int
208 sparc_floating_p (const struct type *type)
209 {
210 switch (TYPE_CODE (type))
211 {
212 case TYPE_CODE_FLT:
213 {
214 int len = TYPE_LENGTH (type);
215 return (len == 4 || len == 8 || len == 16);
216 }
217 default:
218 break;
219 }
220
221 return 0;
222 }
223
224 /* Check whether TYPE is "Complex Floating". */
225
226 static int
227 sparc_complex_floating_p (const struct type *type)
228 {
229 switch (TYPE_CODE (type))
230 {
231 case TYPE_CODE_COMPLEX:
232 {
233 int len = TYPE_LENGTH (type);
234 return (len == 8 || len == 16 || len == 32);
235 }
236 default:
237 break;
238 }
239
240 return 0;
241 }
242
243 /* Check whether TYPE is "Structure or Union".
244
245 In terms of Ada subprogram calls, arrays are treated the same as
246 struct and union types. So this function also returns non-zero
247 for array types. */
248
249 static int
250 sparc_structure_or_union_p (const struct type *type)
251 {
252 switch (TYPE_CODE (type))
253 {
254 case TYPE_CODE_STRUCT:
255 case TYPE_CODE_UNION:
256 case TYPE_CODE_ARRAY:
257 return 1;
258 default:
259 break;
260 }
261
262 return 0;
263 }
264
265 /* Register information. */
266
267 static const char *sparc32_register_names[] =
268 {
269 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
270 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
271 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
272 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
273
274 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
275 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
276 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
277 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
278
279 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
280 };
281
282 /* Total number of registers. */
283 #define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
284
285 /* We provide the aliases %d0..%d30 for the floating registers as
286 "psuedo" registers. */
287
288 static const char *sparc32_pseudo_register_names[] =
289 {
290 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
291 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
292 };
293
294 /* Total number of pseudo registers. */
295 #define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
296
297 /* Return the name of register REGNUM. */
298
299 static const char *
300 sparc32_register_name (struct gdbarch *gdbarch, int regnum)
301 {
302 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
303 return sparc32_register_names[regnum];
304
305 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
306 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
307
308 return NULL;
309 }
310 \f
311 /* Construct types for ISA-specific registers. */
312
313 static struct type *
314 sparc_psr_type (struct gdbarch *gdbarch)
315 {
316 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
317
318 if (!tdep->sparc_psr_type)
319 {
320 struct type *type;
321
322 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 4);
323 append_flags_type_flag (type, 5, "ET");
324 append_flags_type_flag (type, 6, "PS");
325 append_flags_type_flag (type, 7, "S");
326 append_flags_type_flag (type, 12, "EF");
327 append_flags_type_flag (type, 13, "EC");
328
329 tdep->sparc_psr_type = type;
330 }
331
332 return tdep->sparc_psr_type;
333 }
334
335 static struct type *
336 sparc_fsr_type (struct gdbarch *gdbarch)
337 {
338 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
339
340 if (!tdep->sparc_fsr_type)
341 {
342 struct type *type;
343
344 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 4);
345 append_flags_type_flag (type, 0, "NXA");
346 append_flags_type_flag (type, 1, "DZA");
347 append_flags_type_flag (type, 2, "UFA");
348 append_flags_type_flag (type, 3, "OFA");
349 append_flags_type_flag (type, 4, "NVA");
350 append_flags_type_flag (type, 5, "NXC");
351 append_flags_type_flag (type, 6, "DZC");
352 append_flags_type_flag (type, 7, "UFC");
353 append_flags_type_flag (type, 8, "OFC");
354 append_flags_type_flag (type, 9, "NVC");
355 append_flags_type_flag (type, 22, "NS");
356 append_flags_type_flag (type, 23, "NXM");
357 append_flags_type_flag (type, 24, "DZM");
358 append_flags_type_flag (type, 25, "UFM");
359 append_flags_type_flag (type, 26, "OFM");
360 append_flags_type_flag (type, 27, "NVM");
361
362 tdep->sparc_fsr_type = type;
363 }
364
365 return tdep->sparc_fsr_type;
366 }
367
368 /* Return the GDB type object for the "standard" data type of data in
369 register REGNUM. */
370
371 static struct type *
372 sparc32_register_type (struct gdbarch *gdbarch, int regnum)
373 {
374 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
375 return builtin_type (gdbarch)->builtin_float;
376
377 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
378 return builtin_type (gdbarch)->builtin_double;
379
380 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
381 return builtin_type (gdbarch)->builtin_data_ptr;
382
383 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
384 return builtin_type (gdbarch)->builtin_func_ptr;
385
386 if (regnum == SPARC32_PSR_REGNUM)
387 return sparc_psr_type (gdbarch);
388
389 if (regnum == SPARC32_FSR_REGNUM)
390 return sparc_fsr_type (gdbarch);
391
392 return builtin_type (gdbarch)->builtin_int32;
393 }
394
395 static enum register_status
396 sparc32_pseudo_register_read (struct gdbarch *gdbarch,
397 struct regcache *regcache,
398 int regnum, gdb_byte *buf)
399 {
400 enum register_status status;
401
402 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
403
404 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
405 status = regcache_raw_read (regcache, regnum, buf);
406 if (status == REG_VALID)
407 status = regcache_raw_read (regcache, regnum + 1, buf + 4);
408 return status;
409 }
410
411 static void
412 sparc32_pseudo_register_write (struct gdbarch *gdbarch,
413 struct regcache *regcache,
414 int regnum, const gdb_byte *buf)
415 {
416 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
417
418 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
419 regcache_raw_write (regcache, regnum, buf);
420 regcache_raw_write (regcache, regnum + 1, buf + 4);
421 }
422 \f
423
424 static CORE_ADDR
425 sparc32_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
426 {
427 /* The ABI requires double-word alignment. */
428 return address & ~0x7;
429 }
430
431 static CORE_ADDR
432 sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
433 CORE_ADDR funcaddr,
434 struct value **args, int nargs,
435 struct type *value_type,
436 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
437 struct regcache *regcache)
438 {
439 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
440
441 *bp_addr = sp - 4;
442 *real_pc = funcaddr;
443
444 if (using_struct_return (gdbarch, NULL, value_type))
445 {
446 gdb_byte buf[4];
447
448 /* This is an UNIMP instruction. */
449 store_unsigned_integer (buf, 4, byte_order,
450 TYPE_LENGTH (value_type) & 0x1fff);
451 write_memory (sp - 8, buf, 4);
452 return sp - 8;
453 }
454
455 return sp - 4;
456 }
457
458 static CORE_ADDR
459 sparc32_store_arguments (struct regcache *regcache, int nargs,
460 struct value **args, CORE_ADDR sp,
461 int struct_return, CORE_ADDR struct_addr)
462 {
463 struct gdbarch *gdbarch = get_regcache_arch (regcache);
464 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
465 /* Number of words in the "parameter array". */
466 int num_elements = 0;
467 int element = 0;
468 int i;
469
470 for (i = 0; i < nargs; i++)
471 {
472 struct type *type = value_type (args[i]);
473 int len = TYPE_LENGTH (type);
474
475 if (sparc_structure_or_union_p (type)
476 || (sparc_floating_p (type) && len == 16)
477 || sparc_complex_floating_p (type))
478 {
479 /* Structure, Union and Quad-Precision Arguments. */
480 sp -= len;
481
482 /* Use doubleword alignment for these values. That's always
483 correct, and wasting a few bytes shouldn't be a problem. */
484 sp &= ~0x7;
485
486 write_memory (sp, value_contents (args[i]), len);
487 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
488 num_elements++;
489 }
490 else if (sparc_floating_p (type))
491 {
492 /* Floating arguments. */
493 gdb_assert (len == 4 || len == 8);
494 num_elements += (len / 4);
495 }
496 else
497 {
498 /* Integral and pointer arguments. */
499 gdb_assert (sparc_integral_or_pointer_p (type));
500
501 if (len < 4)
502 args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
503 args[i]);
504 num_elements += ((len + 3) / 4);
505 }
506 }
507
508 /* Always allocate at least six words. */
509 sp -= max (6, num_elements) * 4;
510
511 /* The psABI says that "Software convention requires space for the
512 struct/union return value pointer, even if the word is unused." */
513 sp -= 4;
514
515 /* The psABI says that "Although software convention and the
516 operating system require every stack frame to be doubleword
517 aligned." */
518 sp &= ~0x7;
519
520 for (i = 0; i < nargs; i++)
521 {
522 const bfd_byte *valbuf = value_contents (args[i]);
523 struct type *type = value_type (args[i]);
524 int len = TYPE_LENGTH (type);
525
526 gdb_assert (len == 4 || len == 8);
527
528 if (element < 6)
529 {
530 int regnum = SPARC_O0_REGNUM + element;
531
532 regcache_cooked_write (regcache, regnum, valbuf);
533 if (len > 4 && element < 5)
534 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
535 }
536
537 /* Always store the argument in memory. */
538 write_memory (sp + 4 + element * 4, valbuf, len);
539 element += len / 4;
540 }
541
542 gdb_assert (element == num_elements);
543
544 if (struct_return)
545 {
546 gdb_byte buf[4];
547
548 store_unsigned_integer (buf, 4, byte_order, struct_addr);
549 write_memory (sp, buf, 4);
550 }
551
552 return sp;
553 }
554
555 static CORE_ADDR
556 sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
557 struct regcache *regcache, CORE_ADDR bp_addr,
558 int nargs, struct value **args, CORE_ADDR sp,
559 int struct_return, CORE_ADDR struct_addr)
560 {
561 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
562
563 /* Set return address. */
564 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
565
566 /* Set up function arguments. */
567 sp = sparc32_store_arguments (regcache, nargs, args, sp,
568 struct_return, struct_addr);
569
570 /* Allocate the 16-word window save area. */
571 sp -= 16 * 4;
572
573 /* Stack should be doubleword aligned at this point. */
574 gdb_assert (sp % 8 == 0);
575
576 /* Finally, update the stack pointer. */
577 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
578
579 return sp;
580 }
581 \f
582
583 /* Use the program counter to determine the contents and size of a
584 breakpoint instruction. Return a pointer to a string of bytes that
585 encode a breakpoint instruction, store the length of the string in
586 *LEN and optionally adjust *PC to point to the correct memory
587 location for inserting the breakpoint. */
588
589 static const gdb_byte *
590 sparc_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
591 {
592 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
593
594 *len = sizeof (break_insn);
595 return break_insn;
596 }
597 \f
598
599 /* Allocate and initialize a frame cache. */
600
601 static struct sparc_frame_cache *
602 sparc_alloc_frame_cache (void)
603 {
604 struct sparc_frame_cache *cache;
605 int i;
606
607 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
608
609 /* Base address. */
610 cache->base = 0;
611 cache->pc = 0;
612
613 /* Frameless until proven otherwise. */
614 cache->frameless_p = 1;
615 cache->frame_offset = 0;
616 cache->saved_regs_mask = 0;
617 cache->copied_regs_mask = 0;
618 cache->struct_return_p = 0;
619
620 return cache;
621 }
622
623 /* GCC generates several well-known sequences of instructions at the begining
624 of each function prologue when compiling with -fstack-check. If one of
625 such sequences starts at START_PC, then return the address of the
626 instruction immediately past this sequence. Otherwise, return START_PC. */
627
628 static CORE_ADDR
629 sparc_skip_stack_check (const CORE_ADDR start_pc)
630 {
631 CORE_ADDR pc = start_pc;
632 unsigned long insn;
633 int offset_stack_checking_sequence = 0;
634 int probing_loop = 0;
635
636 /* With GCC, all stack checking sequences begin with the same two
637 instructions, plus an optional one in the case of a probing loop:
638
639 sethi <some immediate>, %g1
640 sub %sp, %g1, %g1
641
642 or:
643
644 sethi <some immediate>, %g1
645 sethi <some immediate>, %g4
646 sub %sp, %g1, %g1
647
648 or:
649
650 sethi <some immediate>, %g1
651 sub %sp, %g1, %g1
652 sethi <some immediate>, %g4
653
654 If the optional instruction is found (setting g4), assume that a
655 probing loop will follow. */
656
657 /* sethi <some immediate>, %g1 */
658 insn = sparc_fetch_instruction (pc);
659 pc = pc + 4;
660 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
661 return start_pc;
662
663 /* optional: sethi <some immediate>, %g4 */
664 insn = sparc_fetch_instruction (pc);
665 pc = pc + 4;
666 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
667 {
668 probing_loop = 1;
669 insn = sparc_fetch_instruction (pc);
670 pc = pc + 4;
671 }
672
673 /* sub %sp, %g1, %g1 */
674 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
675 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
676 return start_pc;
677
678 insn = sparc_fetch_instruction (pc);
679 pc = pc + 4;
680
681 /* optional: sethi <some immediate>, %g4 */
682 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
683 {
684 probing_loop = 1;
685 insn = sparc_fetch_instruction (pc);
686 pc = pc + 4;
687 }
688
689 /* First possible sequence:
690 [first two instructions above]
691 clr [%g1 - some immediate] */
692
693 /* clr [%g1 - some immediate] */
694 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
695 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
696 {
697 /* Valid stack-check sequence, return the new PC. */
698 return pc;
699 }
700
701 /* Second possible sequence: A small number of probes.
702 [first two instructions above]
703 clr [%g1]
704 add %g1, -<some immediate>, %g1
705 clr [%g1]
706 [repeat the two instructions above any (small) number of times]
707 clr [%g1 - some immediate] */
708
709 /* clr [%g1] */
710 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
711 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
712 {
713 while (1)
714 {
715 /* add %g1, -<some immediate>, %g1 */
716 insn = sparc_fetch_instruction (pc);
717 pc = pc + 4;
718 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
719 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
720 break;
721
722 /* clr [%g1] */
723 insn = sparc_fetch_instruction (pc);
724 pc = pc + 4;
725 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
726 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
727 return start_pc;
728 }
729
730 /* clr [%g1 - some immediate] */
731 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
732 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
733 return start_pc;
734
735 /* We found a valid stack-check sequence, return the new PC. */
736 return pc;
737 }
738
739 /* Third sequence: A probing loop.
740 [first three instructions above]
741 sub %g1, %g4, %g4
742 cmp %g1, %g4
743 be <disp>
744 add %g1, -<some immediate>, %g1
745 ba <disp>
746 clr [%g1]
747
748 And an optional last probe for the remainder:
749
750 clr [%g4 - some immediate] */
751
752 if (probing_loop)
753 {
754 /* sub %g1, %g4, %g4 */
755 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
756 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
757 return start_pc;
758
759 /* cmp %g1, %g4 */
760 insn = sparc_fetch_instruction (pc);
761 pc = pc + 4;
762 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
763 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
764 return start_pc;
765
766 /* be <disp> */
767 insn = sparc_fetch_instruction (pc);
768 pc = pc + 4;
769 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
770 return start_pc;
771
772 /* add %g1, -<some immediate>, %g1 */
773 insn = sparc_fetch_instruction (pc);
774 pc = pc + 4;
775 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
776 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
777 return start_pc;
778
779 /* ba <disp> */
780 insn = sparc_fetch_instruction (pc);
781 pc = pc + 4;
782 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
783 return start_pc;
784
785 /* clr [%g1] (st %g0, [%g1] or st %g0, [%g1+0]) */
786 insn = sparc_fetch_instruction (pc);
787 pc = pc + 4;
788 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4
789 && X_RD (insn) == 0 && X_RS1 (insn) == 1
790 && (!X_I(insn) || X_SIMM13 (insn) == 0)))
791 return start_pc;
792
793 /* We found a valid stack-check sequence, return the new PC. */
794
795 /* optional: clr [%g4 - some immediate] */
796 insn = sparc_fetch_instruction (pc);
797 pc = pc + 4;
798 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
799 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
800 return pc - 4;
801 else
802 return pc;
803 }
804
805 /* No stack check code in our prologue, return the start_pc. */
806 return start_pc;
807 }
808
809 /* Record the effect of a SAVE instruction on CACHE. */
810
811 void
812 sparc_record_save_insn (struct sparc_frame_cache *cache)
813 {
814 /* The frame is set up. */
815 cache->frameless_p = 0;
816
817 /* The frame pointer contains the CFA. */
818 cache->frame_offset = 0;
819
820 /* The `local' and `in' registers are all saved. */
821 cache->saved_regs_mask = 0xffff;
822
823 /* The `out' registers are all renamed. */
824 cache->copied_regs_mask = 0xff;
825 }
826
827 /* Do a full analysis of the prologue at PC and update CACHE accordingly.
828 Bail out early if CURRENT_PC is reached. Return the address where
829 the analysis stopped.
830
831 We handle both the traditional register window model and the single
832 register window (aka flat) model. */
833
834 CORE_ADDR
835 sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
836 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
837 {
838 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
839 unsigned long insn;
840 int offset = 0;
841 int dest = -1;
842
843 pc = sparc_skip_stack_check (pc);
844
845 if (current_pc <= pc)
846 return current_pc;
847
848 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
849 SPARC the linker usually defines a symbol (typically
850 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
851 This symbol makes us end up here with PC pointing at the start of
852 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
853 would do our normal prologue analysis, we would probably conclude
854 that we've got a frame when in reality we don't, since the
855 dynamic linker patches up the first PLT with some code that
856 starts with a SAVE instruction. Patch up PC such that it points
857 at the start of our PLT entry. */
858 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL))
859 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
860
861 insn = sparc_fetch_instruction (pc);
862
863 /* Recognize store insns and record their sources. */
864 while (X_OP (insn) == 3
865 && (X_OP3 (insn) == 0x4 /* stw */
866 || X_OP3 (insn) == 0x7 /* std */
867 || X_OP3 (insn) == 0xe) /* stx */
868 && X_RS1 (insn) == SPARC_SP_REGNUM)
869 {
870 int regnum = X_RD (insn);
871
872 /* Recognize stores into the corresponding stack slots. */
873 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
874 && ((X_I (insn)
875 && X_SIMM13 (insn) == (X_OP3 (insn) == 0xe
876 ? (regnum - SPARC_L0_REGNUM) * 8 + BIAS
877 : (regnum - SPARC_L0_REGNUM) * 4))
878 || (!X_I (insn) && regnum == SPARC_L0_REGNUM)))
879 {
880 cache->saved_regs_mask |= (1 << (regnum - SPARC_L0_REGNUM));
881 if (X_OP3 (insn) == 0x7)
882 cache->saved_regs_mask |= (1 << (regnum + 1 - SPARC_L0_REGNUM));
883 }
884
885 offset += 4;
886
887 insn = sparc_fetch_instruction (pc + offset);
888 }
889
890 /* Recognize a SETHI insn and record its destination. */
891 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
892 {
893 dest = X_RD (insn);
894 offset += 4;
895
896 insn = sparc_fetch_instruction (pc + offset);
897 }
898
899 /* Allow for an arithmetic operation on DEST or %g1. */
900 if (X_OP (insn) == 2 && X_I (insn)
901 && (X_RD (insn) == 1 || X_RD (insn) == dest))
902 {
903 offset += 4;
904
905 insn = sparc_fetch_instruction (pc + offset);
906 }
907
908 /* Check for the SAVE instruction that sets up the frame. */
909 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
910 {
911 sparc_record_save_insn (cache);
912 offset += 4;
913 return pc + offset;
914 }
915
916 /* Check for an arithmetic operation on %sp. */
917 if (X_OP (insn) == 2
918 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
919 && X_RS1 (insn) == SPARC_SP_REGNUM
920 && X_RD (insn) == SPARC_SP_REGNUM)
921 {
922 if (X_I (insn))
923 {
924 cache->frame_offset = X_SIMM13 (insn);
925 if (X_OP3 (insn) == 0)
926 cache->frame_offset = -cache->frame_offset;
927 }
928 offset += 4;
929
930 insn = sparc_fetch_instruction (pc + offset);
931
932 /* Check for an arithmetic operation that sets up the frame. */
933 if (X_OP (insn) == 2
934 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
935 && X_RS1 (insn) == SPARC_SP_REGNUM
936 && X_RD (insn) == SPARC_FP_REGNUM)
937 {
938 cache->frameless_p = 0;
939 cache->frame_offset = 0;
940 /* We could check that the amount subtracted to %sp above is the
941 same as the one added here, but this seems superfluous. */
942 cache->copied_regs_mask |= 0x40;
943 offset += 4;
944
945 insn = sparc_fetch_instruction (pc + offset);
946 }
947
948 /* Check for a move (or) operation that copies the return register. */
949 if (X_OP (insn) == 2
950 && X_OP3 (insn) == 0x2
951 && !X_I (insn)
952 && X_RS1 (insn) == SPARC_G0_REGNUM
953 && X_RS2 (insn) == SPARC_O7_REGNUM
954 && X_RD (insn) == SPARC_I7_REGNUM)
955 {
956 cache->copied_regs_mask |= 0x80;
957 offset += 4;
958 }
959
960 return pc + offset;
961 }
962
963 return pc;
964 }
965
966 static CORE_ADDR
967 sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
968 {
969 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
970 return frame_unwind_register_unsigned (this_frame, tdep->pc_regnum);
971 }
972
973 /* Return PC of first real instruction of the function starting at
974 START_PC. */
975
976 static CORE_ADDR
977 sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
978 {
979 struct symtab_and_line sal;
980 CORE_ADDR func_start, func_end;
981 struct sparc_frame_cache cache;
982
983 /* This is the preferred method, find the end of the prologue by
984 using the debugging information. */
985 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
986 {
987 sal = find_pc_line (func_start, 0);
988
989 if (sal.end < func_end
990 && start_pc <= sal.end)
991 return sal.end;
992 }
993
994 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
995
996 /* The psABI says that "Although the first 6 words of arguments
997 reside in registers, the standard stack frame reserves space for
998 them.". It also suggests that a function may use that space to
999 "write incoming arguments 0 to 5" into that space, and that's
1000 indeed what GCC seems to be doing. In that case GCC will
1001 generate debug information that points to the stack slots instead
1002 of the registers, so we should consider the instructions that
1003 write out these incoming arguments onto the stack. */
1004
1005 while (1)
1006 {
1007 unsigned long insn = sparc_fetch_instruction (start_pc);
1008
1009 /* Recognize instructions that store incoming arguments into the
1010 corresponding stack slots. */
1011 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04
1012 && X_I (insn) && X_RS1 (insn) == SPARC_FP_REGNUM)
1013 {
1014 int regnum = X_RD (insn);
1015
1016 /* Case of arguments still in %o[0..5]. */
1017 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O5_REGNUM
1018 && !(cache.copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM)))
1019 && X_SIMM13 (insn) == 68 + (regnum - SPARC_O0_REGNUM) * 4)
1020 {
1021 start_pc += 4;
1022 continue;
1023 }
1024
1025 /* Case of arguments copied into %i[0..5]. */
1026 if (regnum >= SPARC_I0_REGNUM && regnum <= SPARC_I5_REGNUM
1027 && (cache.copied_regs_mask & (1 << (regnum - SPARC_I0_REGNUM)))
1028 && X_SIMM13 (insn) == 68 + (regnum - SPARC_I0_REGNUM) * 4)
1029 {
1030 start_pc += 4;
1031 continue;
1032 }
1033 }
1034
1035 break;
1036 }
1037
1038 return start_pc;
1039 }
1040
1041 /* Normal frames. */
1042
1043 struct sparc_frame_cache *
1044 sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
1045 {
1046 struct sparc_frame_cache *cache;
1047
1048 if (*this_cache)
1049 return *this_cache;
1050
1051 cache = sparc_alloc_frame_cache ();
1052 *this_cache = cache;
1053
1054 cache->pc = get_frame_func (this_frame);
1055 if (cache->pc != 0)
1056 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
1057 get_frame_pc (this_frame), cache);
1058
1059 if (cache->frameless_p)
1060 {
1061 /* This function is frameless, so %fp (%i6) holds the frame
1062 pointer for our calling frame. Use %sp (%o6) as this frame's
1063 base address. */
1064 cache->base =
1065 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1066 }
1067 else
1068 {
1069 /* For normal frames, %fp (%i6) holds the frame pointer, the
1070 base address for the current stack frame. */
1071 cache->base =
1072 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
1073 }
1074
1075 cache->base += cache->frame_offset;
1076
1077 if (cache->base & 1)
1078 cache->base += BIAS;
1079
1080 return cache;
1081 }
1082
1083 static int
1084 sparc32_struct_return_from_sym (struct symbol *sym)
1085 {
1086 struct type *type = check_typedef (SYMBOL_TYPE (sym));
1087 enum type_code code = TYPE_CODE (type);
1088
1089 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1090 {
1091 type = check_typedef (TYPE_TARGET_TYPE (type));
1092 if (sparc_structure_or_union_p (type)
1093 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1094 return 1;
1095 }
1096
1097 return 0;
1098 }
1099
1100 struct sparc_frame_cache *
1101 sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
1102 {
1103 struct sparc_frame_cache *cache;
1104 struct symbol *sym;
1105
1106 if (*this_cache)
1107 return *this_cache;
1108
1109 cache = sparc_frame_cache (this_frame, this_cache);
1110
1111 sym = find_pc_function (cache->pc);
1112 if (sym)
1113 {
1114 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
1115 }
1116 else
1117 {
1118 /* There is no debugging information for this function to
1119 help us determine whether this function returns a struct
1120 or not. So we rely on another heuristic which is to check
1121 the instruction at the return address and see if this is
1122 an "unimp" instruction. If it is, then it is a struct-return
1123 function. */
1124 CORE_ADDR pc;
1125 int regnum =
1126 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
1127
1128 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
1129 if (sparc_is_unimp_insn (pc))
1130 cache->struct_return_p = 1;
1131 }
1132
1133 return cache;
1134 }
1135
1136 static void
1137 sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
1138 struct frame_id *this_id)
1139 {
1140 struct sparc_frame_cache *cache =
1141 sparc32_frame_cache (this_frame, this_cache);
1142
1143 /* This marks the outermost frame. */
1144 if (cache->base == 0)
1145 return;
1146
1147 (*this_id) = frame_id_build (cache->base, cache->pc);
1148 }
1149
1150 static struct value *
1151 sparc32_frame_prev_register (struct frame_info *this_frame,
1152 void **this_cache, int regnum)
1153 {
1154 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1155 struct sparc_frame_cache *cache =
1156 sparc32_frame_cache (this_frame, this_cache);
1157
1158 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
1159 {
1160 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
1161
1162 /* If this functions has a Structure, Union or Quad-Precision
1163 return value, we have to skip the UNIMP instruction that encodes
1164 the size of the structure. */
1165 if (cache->struct_return_p)
1166 pc += 4;
1167
1168 regnum =
1169 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
1170 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
1171 return frame_unwind_got_constant (this_frame, regnum, pc);
1172 }
1173
1174 /* Handle StackGhost. */
1175 {
1176 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1177
1178 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
1179 {
1180 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1181 ULONGEST i7;
1182
1183 /* Read the value in from memory. */
1184 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
1185 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
1186 }
1187 }
1188
1189 /* The previous frame's `local' and `in' registers may have been saved
1190 in the register save area. */
1191 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1192 && (cache->saved_regs_mask & (1 << (regnum - SPARC_L0_REGNUM))))
1193 {
1194 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1195
1196 return frame_unwind_got_memory (this_frame, regnum, addr);
1197 }
1198
1199 /* The previous frame's `out' registers may be accessible as the current
1200 frame's `in' registers. */
1201 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM
1202 && (cache->copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM))))
1203 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
1204
1205 return frame_unwind_got_register (this_frame, regnum, regnum);
1206 }
1207
1208 static const struct frame_unwind sparc32_frame_unwind =
1209 {
1210 NORMAL_FRAME,
1211 default_frame_unwind_stop_reason,
1212 sparc32_frame_this_id,
1213 sparc32_frame_prev_register,
1214 NULL,
1215 default_frame_sniffer
1216 };
1217 \f
1218
1219 static CORE_ADDR
1220 sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
1221 {
1222 struct sparc_frame_cache *cache =
1223 sparc32_frame_cache (this_frame, this_cache);
1224
1225 return cache->base;
1226 }
1227
1228 static const struct frame_base sparc32_frame_base =
1229 {
1230 &sparc32_frame_unwind,
1231 sparc32_frame_base_address,
1232 sparc32_frame_base_address,
1233 sparc32_frame_base_address
1234 };
1235
1236 static struct frame_id
1237 sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1238 {
1239 CORE_ADDR sp;
1240
1241 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1242 if (sp & 1)
1243 sp += BIAS;
1244 return frame_id_build (sp, get_frame_pc (this_frame));
1245 }
1246 \f
1247
1248 /* Extract a function return value of TYPE from REGCACHE, and copy
1249 that into VALBUF. */
1250
1251 static void
1252 sparc32_extract_return_value (struct type *type, struct regcache *regcache,
1253 gdb_byte *valbuf)
1254 {
1255 int len = TYPE_LENGTH (type);
1256 gdb_byte buf[32];
1257
1258 gdb_assert (!sparc_structure_or_union_p (type));
1259 gdb_assert (!(sparc_floating_p (type) && len == 16));
1260
1261 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
1262 {
1263 /* Floating return values. */
1264 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1265 if (len > 4)
1266 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
1267 if (len > 8)
1268 {
1269 regcache_cooked_read (regcache, SPARC_F2_REGNUM, buf + 8);
1270 regcache_cooked_read (regcache, SPARC_F3_REGNUM, buf + 12);
1271 }
1272 if (len > 16)
1273 {
1274 regcache_cooked_read (regcache, SPARC_F4_REGNUM, buf + 16);
1275 regcache_cooked_read (regcache, SPARC_F5_REGNUM, buf + 20);
1276 regcache_cooked_read (regcache, SPARC_F6_REGNUM, buf + 24);
1277 regcache_cooked_read (regcache, SPARC_F7_REGNUM, buf + 28);
1278 }
1279 memcpy (valbuf, buf, len);
1280 }
1281 else
1282 {
1283 /* Integral and pointer return values. */
1284 gdb_assert (sparc_integral_or_pointer_p (type));
1285
1286 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1287 if (len > 4)
1288 {
1289 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1290 gdb_assert (len == 8);
1291 memcpy (valbuf, buf, 8);
1292 }
1293 else
1294 {
1295 /* Just stripping off any unused bytes should preserve the
1296 signed-ness just fine. */
1297 memcpy (valbuf, buf + 4 - len, len);
1298 }
1299 }
1300 }
1301
1302 /* Store the function return value of type TYPE from VALBUF into
1303 REGCACHE. */
1304
1305 static void
1306 sparc32_store_return_value (struct type *type, struct regcache *regcache,
1307 const gdb_byte *valbuf)
1308 {
1309 int len = TYPE_LENGTH (type);
1310 gdb_byte buf[8];
1311
1312 gdb_assert (!sparc_structure_or_union_p (type));
1313 gdb_assert (!(sparc_floating_p (type) && len == 16));
1314 gdb_assert (len <= 8);
1315
1316 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
1317 {
1318 /* Floating return values. */
1319 memcpy (buf, valbuf, len);
1320 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1321 if (len > 4)
1322 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
1323 if (len > 8)
1324 {
1325 regcache_cooked_write (regcache, SPARC_F2_REGNUM, buf + 8);
1326 regcache_cooked_write (regcache, SPARC_F3_REGNUM, buf + 12);
1327 }
1328 if (len > 16)
1329 {
1330 regcache_cooked_write (regcache, SPARC_F4_REGNUM, buf + 16);
1331 regcache_cooked_write (regcache, SPARC_F5_REGNUM, buf + 20);
1332 regcache_cooked_write (regcache, SPARC_F6_REGNUM, buf + 24);
1333 regcache_cooked_write (regcache, SPARC_F7_REGNUM, buf + 28);
1334 }
1335 }
1336 else
1337 {
1338 /* Integral and pointer return values. */
1339 gdb_assert (sparc_integral_or_pointer_p (type));
1340
1341 if (len > 4)
1342 {
1343 gdb_assert (len == 8);
1344 memcpy (buf, valbuf, 8);
1345 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
1346 }
1347 else
1348 {
1349 /* ??? Do we need to do any sign-extension here? */
1350 memcpy (buf + 4 - len, valbuf, len);
1351 }
1352 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
1353 }
1354 }
1355
1356 static enum return_value_convention
1357 sparc32_return_value (struct gdbarch *gdbarch, struct value *function,
1358 struct type *type, struct regcache *regcache,
1359 gdb_byte *readbuf, const gdb_byte *writebuf)
1360 {
1361 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1362
1363 /* The psABI says that "...every stack frame reserves the word at
1364 %fp+64. If a function returns a structure, union, or
1365 quad-precision value, this word should hold the address of the
1366 object into which the return value should be copied." This
1367 guarantees that we can always find the return value, not just
1368 before the function returns. */
1369
1370 if (sparc_structure_or_union_p (type)
1371 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1372 {
1373 if (readbuf)
1374 {
1375 ULONGEST sp;
1376 CORE_ADDR addr;
1377
1378 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1379 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1380 read_memory (addr, readbuf, TYPE_LENGTH (type));
1381 }
1382
1383 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1384 }
1385
1386 if (readbuf)
1387 sparc32_extract_return_value (type, regcache, readbuf);
1388 if (writebuf)
1389 sparc32_store_return_value (type, regcache, writebuf);
1390
1391 return RETURN_VALUE_REGISTER_CONVENTION;
1392 }
1393
1394 static int
1395 sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
1396 {
1397 return (sparc_structure_or_union_p (type)
1398 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16)
1399 || sparc_complex_floating_p (type));
1400 }
1401
1402 static int
1403 sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
1404 {
1405 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1406 struct symbol *sym = find_pc_function (pc);
1407
1408 if (sym)
1409 return sparc32_struct_return_from_sym (sym);
1410 return 0;
1411 }
1412
1413 static void
1414 sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1415 struct dwarf2_frame_state_reg *reg,
1416 struct frame_info *this_frame)
1417 {
1418 int off;
1419
1420 switch (regnum)
1421 {
1422 case SPARC_G0_REGNUM:
1423 /* Since %g0 is always zero, there is no point in saving it, and
1424 people will be inclined omit it from the CFI. Make sure we
1425 don't warn about that. */
1426 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1427 break;
1428 case SPARC_SP_REGNUM:
1429 reg->how = DWARF2_FRAME_REG_CFA;
1430 break;
1431 case SPARC32_PC_REGNUM:
1432 case SPARC32_NPC_REGNUM:
1433 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1434 off = 8;
1435 if (sparc32_dwarf2_struct_return_p (this_frame))
1436 off += 4;
1437 if (regnum == SPARC32_NPC_REGNUM)
1438 off += 4;
1439 reg->loc.offset = off;
1440 break;
1441 }
1442 }
1443
1444 \f
1445 /* The SPARC Architecture doesn't have hardware single-step support,
1446 and most operating systems don't implement it either, so we provide
1447 software single-step mechanism. */
1448
1449 static CORE_ADDR
1450 sparc_analyze_control_transfer (struct frame_info *frame,
1451 CORE_ADDR pc, CORE_ADDR *npc)
1452 {
1453 unsigned long insn = sparc_fetch_instruction (pc);
1454 int conditional_p = X_COND (insn) & 0x7;
1455 int branch_p = 0, fused_p = 0;
1456 long offset = 0; /* Must be signed for sign-extend. */
1457
1458 if (X_OP (insn) == 0 && X_OP2 (insn) == 3)
1459 {
1460 if ((insn & 0x10000000) == 0)
1461 {
1462 /* Branch on Integer Register with Prediction (BPr). */
1463 branch_p = 1;
1464 conditional_p = 1;
1465 }
1466 else
1467 {
1468 /* Compare and Branch */
1469 branch_p = 1;
1470 fused_p = 1;
1471 offset = 4 * X_DISP10 (insn);
1472 }
1473 }
1474 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
1475 {
1476 /* Branch on Floating-Point Condition Codes (FBfcc). */
1477 branch_p = 1;
1478 offset = 4 * X_DISP22 (insn);
1479 }
1480 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1481 {
1482 /* Branch on Floating-Point Condition Codes with Prediction
1483 (FBPfcc). */
1484 branch_p = 1;
1485 offset = 4 * X_DISP19 (insn);
1486 }
1487 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1488 {
1489 /* Branch on Integer Condition Codes (Bicc). */
1490 branch_p = 1;
1491 offset = 4 * X_DISP22 (insn);
1492 }
1493 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
1494 {
1495 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1496 branch_p = 1;
1497 offset = 4 * X_DISP19 (insn);
1498 }
1499 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1500 {
1501 /* Trap instruction (TRAP). */
1502 return gdbarch_tdep (get_frame_arch (frame))->step_trap (frame, insn);
1503 }
1504
1505 /* FIXME: Handle DONE and RETRY instructions. */
1506
1507 if (branch_p)
1508 {
1509 if (fused_p)
1510 {
1511 /* Fused compare-and-branch instructions are non-delayed,
1512 and do not have an annuling capability. So we need to
1513 always set a breakpoint on both the NPC and the branch
1514 target address. */
1515 gdb_assert (offset != 0);
1516 return pc + offset;
1517 }
1518 else if (conditional_p)
1519 {
1520 /* For conditional branches, return nPC + 4 iff the annul
1521 bit is 1. */
1522 return (X_A (insn) ? *npc + 4 : 0);
1523 }
1524 else
1525 {
1526 /* For unconditional branches, return the target if its
1527 specified condition is "always" and return nPC + 4 if the
1528 condition is "never". If the annul bit is 1, set *NPC to
1529 zero. */
1530 if (X_COND (insn) == 0x0)
1531 pc = *npc, offset = 4;
1532 if (X_A (insn))
1533 *npc = 0;
1534
1535 gdb_assert (offset != 0);
1536 return pc + offset;
1537 }
1538 }
1539
1540 return 0;
1541 }
1542
1543 static CORE_ADDR
1544 sparc_step_trap (struct frame_info *frame, unsigned long insn)
1545 {
1546 return 0;
1547 }
1548
1549 int
1550 sparc_software_single_step (struct frame_info *frame)
1551 {
1552 struct gdbarch *arch = get_frame_arch (frame);
1553 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1554 struct address_space *aspace = get_frame_address_space (frame);
1555 CORE_ADDR npc, nnpc;
1556
1557 CORE_ADDR pc, orig_npc;
1558
1559 pc = get_frame_register_unsigned (frame, tdep->pc_regnum);
1560 orig_npc = npc = get_frame_register_unsigned (frame, tdep->npc_regnum);
1561
1562 /* Analyze the instruction at PC. */
1563 nnpc = sparc_analyze_control_transfer (frame, pc, &npc);
1564 if (npc != 0)
1565 insert_single_step_breakpoint (arch, aspace, npc);
1566
1567 if (nnpc != 0)
1568 insert_single_step_breakpoint (arch, aspace, nnpc);
1569
1570 /* Assert that we have set at least one breakpoint, and that
1571 they're not set at the same spot - unless we're going
1572 from here straight to NULL, i.e. a call or jump to 0. */
1573 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1574 gdb_assert (nnpc != npc || orig_npc == 0);
1575
1576 return 1;
1577 }
1578
1579 static void
1580 sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
1581 {
1582 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1583
1584 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1585 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
1586 }
1587 \f
1588
1589 /* Return the appropriate register set for the core section identified
1590 by SECT_NAME and SECT_SIZE. */
1591
1592 static const struct regset *
1593 sparc_regset_from_core_section (struct gdbarch *gdbarch,
1594 const char *sect_name, size_t sect_size)
1595 {
1596 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1597
1598 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
1599 return tdep->gregset;
1600
1601 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
1602 return tdep->fpregset;
1603
1604 return NULL;
1605 }
1606 \f
1607
1608 static struct gdbarch *
1609 sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1610 {
1611 struct gdbarch_tdep *tdep;
1612 struct gdbarch *gdbarch;
1613
1614 /* If there is already a candidate, use it. */
1615 arches = gdbarch_list_lookup_by_info (arches, &info);
1616 if (arches != NULL)
1617 return arches->gdbarch;
1618
1619 /* Allocate space for the new architecture. */
1620 tdep = XZALLOC (struct gdbarch_tdep);
1621 gdbarch = gdbarch_alloc (&info, tdep);
1622
1623 tdep->pc_regnum = SPARC32_PC_REGNUM;
1624 tdep->npc_regnum = SPARC32_NPC_REGNUM;
1625 tdep->step_trap = sparc_step_trap;
1626
1627 set_gdbarch_long_double_bit (gdbarch, 128);
1628 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
1629
1630 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1631 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1632 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1633 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1634 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1635 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1636
1637 /* Register numbers of various important registers. */
1638 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1639 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1640 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1641
1642 /* Call dummy code. */
1643 set_gdbarch_frame_align (gdbarch, sparc32_frame_align);
1644 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1645 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1646 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1647
1648 set_gdbarch_return_value (gdbarch, sparc32_return_value);
1649 set_gdbarch_stabs_argument_has_addr
1650 (gdbarch, sparc32_stabs_argument_has_addr);
1651
1652 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1653
1654 /* Stack grows downward. */
1655 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1656
1657 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
1658
1659 set_gdbarch_frame_args_skip (gdbarch, 8);
1660
1661 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
1662
1663 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1664 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
1665
1666 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
1667
1668 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
1669
1670 frame_base_set_default (gdbarch, &sparc32_frame_base);
1671
1672 /* Hook in the DWARF CFI frame unwinder. */
1673 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1674 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1675 StackGhost issues have been resolved. */
1676
1677 /* Hook in ABI-specific overrides, if they have been registered. */
1678 gdbarch_init_osabi (info, gdbarch);
1679
1680 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
1681
1682 /* If we have register sets, enable the generic core file support. */
1683 if (tdep->gregset)
1684 set_gdbarch_regset_from_core_section (gdbarch,
1685 sparc_regset_from_core_section);
1686
1687 return gdbarch;
1688 }
1689 \f
1690 /* Helper functions for dealing with register windows. */
1691
1692 void
1693 sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
1694 {
1695 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1696 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1697 int offset = 0;
1698 gdb_byte buf[8];
1699 int i;
1700
1701 if (sp & 1)
1702 {
1703 /* Registers are 64-bit. */
1704 sp += BIAS;
1705
1706 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1707 {
1708 if (regnum == i || regnum == -1)
1709 {
1710 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1711
1712 /* Handle StackGhost. */
1713 if (i == SPARC_I7_REGNUM)
1714 {
1715 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1716 ULONGEST i7;
1717
1718 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1719 store_unsigned_integer (buf + offset, 8, byte_order,
1720 i7 ^ wcookie);
1721 }
1722
1723 regcache_raw_supply (regcache, i, buf);
1724 }
1725 }
1726 }
1727 else
1728 {
1729 /* Registers are 32-bit. Toss any sign-extension of the stack
1730 pointer. */
1731 sp &= 0xffffffffUL;
1732
1733 /* Clear out the top half of the temporary buffer, and put the
1734 register value in the bottom half if we're in 64-bit mode. */
1735 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1736 {
1737 memset (buf, 0, 4);
1738 offset = 4;
1739 }
1740
1741 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1742 {
1743 if (regnum == i || regnum == -1)
1744 {
1745 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1746 buf + offset, 4);
1747
1748 /* Handle StackGhost. */
1749 if (i == SPARC_I7_REGNUM)
1750 {
1751 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1752 ULONGEST i7;
1753
1754 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1755 store_unsigned_integer (buf + offset, 4, byte_order,
1756 i7 ^ wcookie);
1757 }
1758
1759 regcache_raw_supply (regcache, i, buf);
1760 }
1761 }
1762 }
1763 }
1764
1765 void
1766 sparc_collect_rwindow (const struct regcache *regcache,
1767 CORE_ADDR sp, int regnum)
1768 {
1769 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1770 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1771 int offset = 0;
1772 gdb_byte buf[8];
1773 int i;
1774
1775 if (sp & 1)
1776 {
1777 /* Registers are 64-bit. */
1778 sp += BIAS;
1779
1780 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1781 {
1782 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1783 {
1784 regcache_raw_collect (regcache, i, buf);
1785
1786 /* Handle StackGhost. */
1787 if (i == SPARC_I7_REGNUM)
1788 {
1789 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1790 ULONGEST i7;
1791
1792 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1793 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
1794 }
1795
1796 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1797 }
1798 }
1799 }
1800 else
1801 {
1802 /* Registers are 32-bit. Toss any sign-extension of the stack
1803 pointer. */
1804 sp &= 0xffffffffUL;
1805
1806 /* Only use the bottom half if we're in 64-bit mode. */
1807 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1808 offset = 4;
1809
1810 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1811 {
1812 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1813 {
1814 regcache_raw_collect (regcache, i, buf);
1815
1816 /* Handle StackGhost. */
1817 if (i == SPARC_I7_REGNUM)
1818 {
1819 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1820 ULONGEST i7;
1821
1822 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1823 store_unsigned_integer (buf + offset, 4, byte_order,
1824 i7 ^ wcookie);
1825 }
1826
1827 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1828 buf + offset, 4);
1829 }
1830 }
1831 }
1832 }
1833
1834 /* Helper functions for dealing with register sets. */
1835
1836 void
1837 sparc32_supply_gregset (const struct sparc_gregset *gregset,
1838 struct regcache *regcache,
1839 int regnum, const void *gregs)
1840 {
1841 const gdb_byte *regs = gregs;
1842 gdb_byte zero[4] = { 0 };
1843 int i;
1844
1845 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1846 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1847 regs + gregset->r_psr_offset);
1848
1849 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1850 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1851 regs + gregset->r_pc_offset);
1852
1853 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1854 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1855 regs + gregset->r_npc_offset);
1856
1857 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1858 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1859 regs + gregset->r_y_offset);
1860
1861 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1862 regcache_raw_supply (regcache, SPARC_G0_REGNUM, &zero);
1863
1864 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1865 {
1866 int offset = gregset->r_g1_offset;
1867
1868 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1869 {
1870 if (regnum == i || regnum == -1)
1871 regcache_raw_supply (regcache, i, regs + offset);
1872 offset += 4;
1873 }
1874 }
1875
1876 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1877 {
1878 /* Not all of the register set variants include Locals and
1879 Inputs. For those that don't, we read them off the stack. */
1880 if (gregset->r_l0_offset == -1)
1881 {
1882 ULONGEST sp;
1883
1884 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1885 sparc_supply_rwindow (regcache, sp, regnum);
1886 }
1887 else
1888 {
1889 int offset = gregset->r_l0_offset;
1890
1891 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1892 {
1893 if (regnum == i || regnum == -1)
1894 regcache_raw_supply (regcache, i, regs + offset);
1895 offset += 4;
1896 }
1897 }
1898 }
1899 }
1900
1901 void
1902 sparc32_collect_gregset (const struct sparc_gregset *gregset,
1903 const struct regcache *regcache,
1904 int regnum, void *gregs)
1905 {
1906 gdb_byte *regs = gregs;
1907 int i;
1908
1909 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1910 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1911 regs + gregset->r_psr_offset);
1912
1913 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1914 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1915 regs + gregset->r_pc_offset);
1916
1917 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1918 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1919 regs + gregset->r_npc_offset);
1920
1921 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1922 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1923 regs + gregset->r_y_offset);
1924
1925 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1926 {
1927 int offset = gregset->r_g1_offset;
1928
1929 /* %g0 is always zero. */
1930 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1931 {
1932 if (regnum == i || regnum == -1)
1933 regcache_raw_collect (regcache, i, regs + offset);
1934 offset += 4;
1935 }
1936 }
1937
1938 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1939 {
1940 /* Not all of the register set variants include Locals and
1941 Inputs. For those that don't, we read them off the stack. */
1942 if (gregset->r_l0_offset != -1)
1943 {
1944 int offset = gregset->r_l0_offset;
1945
1946 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1947 {
1948 if (regnum == i || regnum == -1)
1949 regcache_raw_collect (regcache, i, regs + offset);
1950 offset += 4;
1951 }
1952 }
1953 }
1954 }
1955
1956 void
1957 sparc32_supply_fpregset (struct regcache *regcache,
1958 int regnum, const void *fpregs)
1959 {
1960 const gdb_byte *regs = fpregs;
1961 int i;
1962
1963 for (i = 0; i < 32; i++)
1964 {
1965 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1966 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1967 }
1968
1969 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1970 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
1971 }
1972
1973 void
1974 sparc32_collect_fpregset (const struct regcache *regcache,
1975 int regnum, void *fpregs)
1976 {
1977 gdb_byte *regs = fpregs;
1978 int i;
1979
1980 for (i = 0; i < 32; i++)
1981 {
1982 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1983 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1984 }
1985
1986 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1987 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
1988 }
1989 \f
1990
1991 /* SunOS 4. */
1992
1993 /* From <machine/reg.h>. */
1994 const struct sparc_gregset sparc32_sunos4_gregset =
1995 {
1996 0 * 4, /* %psr */
1997 1 * 4, /* %pc */
1998 2 * 4, /* %npc */
1999 3 * 4, /* %y */
2000 -1, /* %wim */
2001 -1, /* %tbr */
2002 4 * 4, /* %g1 */
2003 -1 /* %l0 */
2004 };
2005 \f
2006
2007 /* Provide a prototype to silence -Wmissing-prototypes. */
2008 void _initialize_sparc_tdep (void);
2009
2010 void
2011 _initialize_sparc_tdep (void)
2012 {
2013 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
2014 }
This page took 0.117539 seconds and 5 git commands to generate.