* gdbarch.sh: Document the return_value method. Explain that
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
1 /* Target-dependent code for SPARC.
2
3 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "arch-utils.h"
23 #include "dis-asm.h"
24 #include "dwarf2-frame.h"
25 #include "floatformat.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "gdbcore.h"
30 #include "gdbtypes.h"
31 #include "inferior.h"
32 #include "symtab.h"
33 #include "objfiles.h"
34 #include "osabi.h"
35 #include "regcache.h"
36 #include "target.h"
37 #include "value.h"
38
39 #include "gdb_assert.h"
40 #include "gdb_string.h"
41
42 #include "sparc-tdep.h"
43
44 struct regset;
45
46 /* This file implements the SPARC 32-bit ABI as defined by the section
47 "Low-Level System Information" of the SPARC Compliance Definition
48 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
49 lists changes with respect to the original 32-bit psABI as defined
50 in the "System V ABI, SPARC Processor Supplement".
51
52 Note that if we talk about SunOS, we mean SunOS 4.x, which was
53 BSD-based, which is sometimes (retroactively?) referred to as
54 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
55 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
56 suffering from severe version number inflation). Solaris 2.x is
57 also known as SunOS 5.x, since that's what uname(1) says. Solaris
58 2.x is SVR4-based. */
59
60 /* Please use the sparc32_-prefix for 32-bit specific code, the
61 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
62 code that can handle both. The 64-bit specific code lives in
63 sparc64-tdep.c; don't add any here. */
64
65 /* The SPARC Floating-Point Quad-Precision format is similar to
66 big-endian IA-64 Quad-recision format. */
67 #define floatformats_sparc_quad floatformats_ia64_quad
68
69 /* The stack pointer is offset from the stack frame by a BIAS of 2047
70 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
71 hosts, so undefine it first. */
72 #undef BIAS
73 #define BIAS 2047
74
75 /* Macros to extract fields from SPARC instructions. */
76 #define X_OP(i) (((i) >> 30) & 0x3)
77 #define X_RD(i) (((i) >> 25) & 0x1f)
78 #define X_A(i) (((i) >> 29) & 1)
79 #define X_COND(i) (((i) >> 25) & 0xf)
80 #define X_OP2(i) (((i) >> 22) & 0x7)
81 #define X_IMM22(i) ((i) & 0x3fffff)
82 #define X_OP3(i) (((i) >> 19) & 0x3f)
83 #define X_RS1(i) (((i) >> 14) & 0x1f)
84 #define X_RS2(i) ((i) & 0x1f)
85 #define X_I(i) (((i) >> 13) & 1)
86 /* Sign extension macros. */
87 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
88 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
89 #define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
90
91 /* Fetch the instruction at PC. Instructions are always big-endian
92 even if the processor operates in little-endian mode. */
93
94 unsigned long
95 sparc_fetch_instruction (CORE_ADDR pc)
96 {
97 gdb_byte buf[4];
98 unsigned long insn;
99 int i;
100
101 /* If we can't read the instruction at PC, return zero. */
102 if (target_read_memory (pc, buf, sizeof (buf)))
103 return 0;
104
105 insn = 0;
106 for (i = 0; i < sizeof (buf); i++)
107 insn = (insn << 8) | buf[i];
108 return insn;
109 }
110 \f
111
112 /* Return non-zero if the instruction corresponding to PC is an "unimp"
113 instruction. */
114
115 static int
116 sparc_is_unimp_insn (CORE_ADDR pc)
117 {
118 const unsigned long insn = sparc_fetch_instruction (pc);
119
120 return ((insn & 0xc1c00000) == 0);
121 }
122
123 /* OpenBSD/sparc includes StackGhost, which according to the author's
124 website http://stackghost.cerias.purdue.edu "... transparently and
125 automatically protects applications' stack frames; more
126 specifically, it guards the return pointers. The protection
127 mechanisms require no application source or binary modification and
128 imposes only a negligible performance penalty."
129
130 The same website provides the following description of how
131 StackGhost works:
132
133 "StackGhost interfaces with the kernel trap handler that would
134 normally write out registers to the stack and the handler that
135 would read them back in. By XORing a cookie into the
136 return-address saved in the user stack when it is actually written
137 to the stack, and then XOR it out when the return-address is pulled
138 from the stack, StackGhost can cause attacker corrupted return
139 pointers to behave in a manner the attacker cannot predict.
140 StackGhost can also use several unused bits in the return pointer
141 to detect a smashed return pointer and abort the process."
142
143 For GDB this means that whenever we're reading %i7 from a stack
144 frame's window save area, we'll have to XOR the cookie.
145
146 More information on StackGuard can be found on in:
147
148 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
149 Stack Protection." 2001. Published in USENIX Security Symposium
150 '01. */
151
152 /* Fetch StackGhost Per-Process XOR cookie. */
153
154 ULONGEST
155 sparc_fetch_wcookie (void)
156 {
157 struct target_ops *ops = &current_target;
158 gdb_byte buf[8];
159 int len;
160
161 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
162 if (len == -1)
163 return 0;
164
165 /* We should have either an 32-bit or an 64-bit cookie. */
166 gdb_assert (len == 4 || len == 8);
167
168 return extract_unsigned_integer (buf, len);
169 }
170 \f
171
172 /* The functions on this page are intended to be used to classify
173 function arguments. */
174
175 /* Check whether TYPE is "Integral or Pointer". */
176
177 static int
178 sparc_integral_or_pointer_p (const struct type *type)
179 {
180 int len = TYPE_LENGTH (type);
181
182 switch (TYPE_CODE (type))
183 {
184 case TYPE_CODE_INT:
185 case TYPE_CODE_BOOL:
186 case TYPE_CODE_CHAR:
187 case TYPE_CODE_ENUM:
188 case TYPE_CODE_RANGE:
189 /* We have byte, half-word, word and extended-word/doubleword
190 integral types. The doubleword is an extension to the
191 original 32-bit ABI by the SCD 2.4.x. */
192 return (len == 1 || len == 2 || len == 4 || len == 8);
193 case TYPE_CODE_PTR:
194 case TYPE_CODE_REF:
195 /* Allow either 32-bit or 64-bit pointers. */
196 return (len == 4 || len == 8);
197 default:
198 break;
199 }
200
201 return 0;
202 }
203
204 /* Check whether TYPE is "Floating". */
205
206 static int
207 sparc_floating_p (const struct type *type)
208 {
209 switch (TYPE_CODE (type))
210 {
211 case TYPE_CODE_FLT:
212 {
213 int len = TYPE_LENGTH (type);
214 return (len == 4 || len == 8 || len == 16);
215 }
216 default:
217 break;
218 }
219
220 return 0;
221 }
222
223 /* Check whether TYPE is "Structure or Union". */
224
225 static int
226 sparc_structure_or_union_p (const struct type *type)
227 {
228 switch (TYPE_CODE (type))
229 {
230 case TYPE_CODE_STRUCT:
231 case TYPE_CODE_UNION:
232 return 1;
233 default:
234 break;
235 }
236
237 return 0;
238 }
239
240 /* Register information. */
241
242 static const char *sparc32_register_names[] =
243 {
244 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
245 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
246 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
247 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
248
249 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
250 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
251 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
252 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
253
254 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
255 };
256
257 /* Total number of registers. */
258 #define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
259
260 /* We provide the aliases %d0..%d30 for the floating registers as
261 "psuedo" registers. */
262
263 static const char *sparc32_pseudo_register_names[] =
264 {
265 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
266 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
267 };
268
269 /* Total number of pseudo registers. */
270 #define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
271
272 /* Return the name of register REGNUM. */
273
274 static const char *
275 sparc32_register_name (struct gdbarch *gdbarch, int regnum)
276 {
277 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
278 return sparc32_register_names[regnum];
279
280 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
281 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
282
283 return NULL;
284 }
285 \f
286
287 /* Type for %psr. */
288 struct type *sparc_psr_type;
289
290 /* Type for %fsr. */
291 struct type *sparc_fsr_type;
292
293 /* Construct types for ISA-specific registers. */
294
295 static void
296 sparc_init_types (void)
297 {
298 struct type *type;
299
300 type = init_flags_type ("builtin_type_sparc_psr", 4);
301 append_flags_type_flag (type, 5, "ET");
302 append_flags_type_flag (type, 6, "PS");
303 append_flags_type_flag (type, 7, "S");
304 append_flags_type_flag (type, 12, "EF");
305 append_flags_type_flag (type, 13, "EC");
306 sparc_psr_type = type;
307
308 type = init_flags_type ("builtin_type_sparc_fsr", 4);
309 append_flags_type_flag (type, 0, "NXA");
310 append_flags_type_flag (type, 1, "DZA");
311 append_flags_type_flag (type, 2, "UFA");
312 append_flags_type_flag (type, 3, "OFA");
313 append_flags_type_flag (type, 4, "NVA");
314 append_flags_type_flag (type, 5, "NXC");
315 append_flags_type_flag (type, 6, "DZC");
316 append_flags_type_flag (type, 7, "UFC");
317 append_flags_type_flag (type, 8, "OFC");
318 append_flags_type_flag (type, 9, "NVC");
319 append_flags_type_flag (type, 22, "NS");
320 append_flags_type_flag (type, 23, "NXM");
321 append_flags_type_flag (type, 24, "DZM");
322 append_flags_type_flag (type, 25, "UFM");
323 append_flags_type_flag (type, 26, "OFM");
324 append_flags_type_flag (type, 27, "NVM");
325 sparc_fsr_type = type;
326 }
327
328 /* Return the GDB type object for the "standard" data type of data in
329 register REGNUM. */
330
331 static struct type *
332 sparc32_register_type (struct gdbarch *gdbarch, int regnum)
333 {
334 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
335 return builtin_type_float;
336
337 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
338 return builtin_type_double;
339
340 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
341 return builtin_type_void_data_ptr;
342
343 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
344 return builtin_type_void_func_ptr;
345
346 if (regnum == SPARC32_PSR_REGNUM)
347 return sparc_psr_type;
348
349 if (regnum == SPARC32_FSR_REGNUM)
350 return sparc_fsr_type;
351
352 return builtin_type_int32;
353 }
354
355 static void
356 sparc32_pseudo_register_read (struct gdbarch *gdbarch,
357 struct regcache *regcache,
358 int regnum, gdb_byte *buf)
359 {
360 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
361
362 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
363 regcache_raw_read (regcache, regnum, buf);
364 regcache_raw_read (regcache, regnum + 1, buf + 4);
365 }
366
367 static void
368 sparc32_pseudo_register_write (struct gdbarch *gdbarch,
369 struct regcache *regcache,
370 int regnum, const gdb_byte *buf)
371 {
372 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
373
374 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
375 regcache_raw_write (regcache, regnum, buf);
376 regcache_raw_write (regcache, regnum + 1, buf + 4);
377 }
378 \f
379
380 static CORE_ADDR
381 sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
382 CORE_ADDR funcaddr,
383 struct value **args, int nargs,
384 struct type *value_type,
385 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
386 struct regcache *regcache)
387 {
388 *bp_addr = sp - 4;
389 *real_pc = funcaddr;
390
391 if (using_struct_return (NULL, value_type))
392 {
393 gdb_byte buf[4];
394
395 /* This is an UNIMP instruction. */
396 store_unsigned_integer (buf, 4, TYPE_LENGTH (value_type) & 0x1fff);
397 write_memory (sp - 8, buf, 4);
398 return sp - 8;
399 }
400
401 return sp - 4;
402 }
403
404 static CORE_ADDR
405 sparc32_store_arguments (struct regcache *regcache, int nargs,
406 struct value **args, CORE_ADDR sp,
407 int struct_return, CORE_ADDR struct_addr)
408 {
409 /* Number of words in the "parameter array". */
410 int num_elements = 0;
411 int element = 0;
412 int i;
413
414 for (i = 0; i < nargs; i++)
415 {
416 struct type *type = value_type (args[i]);
417 int len = TYPE_LENGTH (type);
418
419 if (sparc_structure_or_union_p (type)
420 || (sparc_floating_p (type) && len == 16))
421 {
422 /* Structure, Union and Quad-Precision Arguments. */
423 sp -= len;
424
425 /* Use doubleword alignment for these values. That's always
426 correct, and wasting a few bytes shouldn't be a problem. */
427 sp &= ~0x7;
428
429 write_memory (sp, value_contents (args[i]), len);
430 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
431 num_elements++;
432 }
433 else if (sparc_floating_p (type))
434 {
435 /* Floating arguments. */
436 gdb_assert (len == 4 || len == 8);
437 num_elements += (len / 4);
438 }
439 else
440 {
441 /* Integral and pointer arguments. */
442 gdb_assert (sparc_integral_or_pointer_p (type));
443
444 if (len < 4)
445 args[i] = value_cast (builtin_type_int32, args[i]);
446 num_elements += ((len + 3) / 4);
447 }
448 }
449
450 /* Always allocate at least six words. */
451 sp -= max (6, num_elements) * 4;
452
453 /* The psABI says that "Software convention requires space for the
454 struct/union return value pointer, even if the word is unused." */
455 sp -= 4;
456
457 /* The psABI says that "Although software convention and the
458 operating system require every stack frame to be doubleword
459 aligned." */
460 sp &= ~0x7;
461
462 for (i = 0; i < nargs; i++)
463 {
464 const bfd_byte *valbuf = value_contents (args[i]);
465 struct type *type = value_type (args[i]);
466 int len = TYPE_LENGTH (type);
467
468 gdb_assert (len == 4 || len == 8);
469
470 if (element < 6)
471 {
472 int regnum = SPARC_O0_REGNUM + element;
473
474 regcache_cooked_write (regcache, regnum, valbuf);
475 if (len > 4 && element < 5)
476 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
477 }
478
479 /* Always store the argument in memory. */
480 write_memory (sp + 4 + element * 4, valbuf, len);
481 element += len / 4;
482 }
483
484 gdb_assert (element == num_elements);
485
486 if (struct_return)
487 {
488 gdb_byte buf[4];
489
490 store_unsigned_integer (buf, 4, struct_addr);
491 write_memory (sp, buf, 4);
492 }
493
494 return sp;
495 }
496
497 static CORE_ADDR
498 sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
499 struct regcache *regcache, CORE_ADDR bp_addr,
500 int nargs, struct value **args, CORE_ADDR sp,
501 int struct_return, CORE_ADDR struct_addr)
502 {
503 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
504
505 /* Set return address. */
506 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
507
508 /* Set up function arguments. */
509 sp = sparc32_store_arguments (regcache, nargs, args, sp,
510 struct_return, struct_addr);
511
512 /* Allocate the 16-word window save area. */
513 sp -= 16 * 4;
514
515 /* Stack should be doubleword aligned at this point. */
516 gdb_assert (sp % 8 == 0);
517
518 /* Finally, update the stack pointer. */
519 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
520
521 return sp;
522 }
523 \f
524
525 /* Use the program counter to determine the contents and size of a
526 breakpoint instruction. Return a pointer to a string of bytes that
527 encode a breakpoint instruction, store the length of the string in
528 *LEN and optionally adjust *PC to point to the correct memory
529 location for inserting the breakpoint. */
530
531 static const gdb_byte *
532 sparc_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
533 {
534 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
535
536 *len = sizeof (break_insn);
537 return break_insn;
538 }
539 \f
540
541 /* Allocate and initialize a frame cache. */
542
543 static struct sparc_frame_cache *
544 sparc_alloc_frame_cache (void)
545 {
546 struct sparc_frame_cache *cache;
547 int i;
548
549 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
550
551 /* Base address. */
552 cache->base = 0;
553 cache->pc = 0;
554
555 /* Frameless until proven otherwise. */
556 cache->frameless_p = 1;
557
558 cache->struct_return_p = 0;
559
560 return cache;
561 }
562
563 /* GCC generates several well-known sequences of instructions at the begining
564 of each function prologue when compiling with -fstack-check. If one of
565 such sequences starts at START_PC, then return the address of the
566 instruction immediately past this sequence. Otherwise, return START_PC. */
567
568 static CORE_ADDR
569 sparc_skip_stack_check (const CORE_ADDR start_pc)
570 {
571 CORE_ADDR pc = start_pc;
572 unsigned long insn;
573 int offset_stack_checking_sequence = 0;
574
575 /* With GCC, all stack checking sequences begin with the same two
576 instructions. */
577
578 /* sethi <some immediate>,%g1 */
579 insn = sparc_fetch_instruction (pc);
580 pc = pc + 4;
581 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
582 return start_pc;
583
584 /* sub %sp, %g1, %g1 */
585 insn = sparc_fetch_instruction (pc);
586 pc = pc + 4;
587 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
588 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
589 return start_pc;
590
591 insn = sparc_fetch_instruction (pc);
592 pc = pc + 4;
593
594 /* First possible sequence:
595 [first two instructions above]
596 clr [%g1 - some immediate] */
597
598 /* clr [%g1 - some immediate] */
599 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
600 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
601 {
602 /* Valid stack-check sequence, return the new PC. */
603 return pc;
604 }
605
606 /* Second possible sequence: A small number of probes.
607 [first two instructions above]
608 clr [%g1]
609 add %g1, -<some immediate>, %g1
610 clr [%g1]
611 [repeat the two instructions above any (small) number of times]
612 clr [%g1 - some immediate] */
613
614 /* clr [%g1] */
615 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
616 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
617 {
618 while (1)
619 {
620 /* add %g1, -<some immediate>, %g1 */
621 insn = sparc_fetch_instruction (pc);
622 pc = pc + 4;
623 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
624 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
625 break;
626
627 /* clr [%g1] */
628 insn = sparc_fetch_instruction (pc);
629 pc = pc + 4;
630 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
631 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
632 return start_pc;
633 }
634
635 /* clr [%g1 - some immediate] */
636 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
637 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
638 return start_pc;
639
640 /* We found a valid stack-check sequence, return the new PC. */
641 return pc;
642 }
643
644 /* Third sequence: A probing loop.
645 [first two instructions above]
646 sethi <some immediate>, %g4
647 sub %g1, %g4, %g4
648 cmp %g1, %g4
649 be <disp>
650 add %g1, -<some immediate>, %g1
651 ba <disp>
652 clr [%g1]
653 clr [%g4 - some immediate] */
654
655 /* sethi <some immediate>, %g4 */
656 else if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
657 {
658 /* sub %g1, %g4, %g4 */
659 insn = sparc_fetch_instruction (pc);
660 pc = pc + 4;
661 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
662 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
663 return start_pc;
664
665 /* cmp %g1, %g4 */
666 insn = sparc_fetch_instruction (pc);
667 pc = pc + 4;
668 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
669 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
670 return start_pc;
671
672 /* be <disp> */
673 insn = sparc_fetch_instruction (pc);
674 pc = pc + 4;
675 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
676 return start_pc;
677
678 /* add %g1, -<some immediate>, %g1 */
679 insn = sparc_fetch_instruction (pc);
680 pc = pc + 4;
681 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
682 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
683 return start_pc;
684
685 /* ba <disp> */
686 insn = sparc_fetch_instruction (pc);
687 pc = pc + 4;
688 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
689 return start_pc;
690
691 /* clr [%g1] */
692 insn = sparc_fetch_instruction (pc);
693 pc = pc + 4;
694 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
695 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
696 return start_pc;
697
698 /* clr [%g4 - some immediate] */
699 insn = sparc_fetch_instruction (pc);
700 pc = pc + 4;
701 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
702 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
703 return start_pc;
704
705 /* We found a valid stack-check sequence, return the new PC. */
706 return pc;
707 }
708
709 /* No stack check code in our prologue, return the start_pc. */
710 return start_pc;
711 }
712
713 CORE_ADDR
714 sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
715 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
716 {
717 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
718 unsigned long insn;
719 int offset = 0;
720 int dest = -1;
721
722 pc = sparc_skip_stack_check (pc);
723
724 if (current_pc <= pc)
725 return current_pc;
726
727 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
728 SPARC the linker usually defines a symbol (typically
729 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
730 This symbol makes us end up here with PC pointing at the start of
731 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
732 would do our normal prologue analysis, we would probably conclude
733 that we've got a frame when in reality we don't, since the
734 dynamic linker patches up the first PLT with some code that
735 starts with a SAVE instruction. Patch up PC such that it points
736 at the start of our PLT entry. */
737 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL))
738 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
739
740 insn = sparc_fetch_instruction (pc);
741
742 /* Recognize a SETHI insn and record its destination. */
743 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
744 {
745 dest = X_RD (insn);
746 offset += 4;
747
748 insn = sparc_fetch_instruction (pc + 4);
749 }
750
751 /* Allow for an arithmetic operation on DEST or %g1. */
752 if (X_OP (insn) == 2 && X_I (insn)
753 && (X_RD (insn) == 1 || X_RD (insn) == dest))
754 {
755 offset += 4;
756
757 insn = sparc_fetch_instruction (pc + 8);
758 }
759
760 /* Check for the SAVE instruction that sets up the frame. */
761 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
762 {
763 cache->frameless_p = 0;
764 return pc + offset + 4;
765 }
766
767 return pc;
768 }
769
770 static CORE_ADDR
771 sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
772 {
773 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
774 return frame_unwind_register_unsigned (next_frame, tdep->pc_regnum);
775 }
776
777 /* Return PC of first real instruction of the function starting at
778 START_PC. */
779
780 static CORE_ADDR
781 sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
782 {
783 struct symtab_and_line sal;
784 CORE_ADDR func_start, func_end;
785 struct sparc_frame_cache cache;
786
787 /* This is the preferred method, find the end of the prologue by
788 using the debugging information. */
789 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
790 {
791 sal = find_pc_line (func_start, 0);
792
793 if (sal.end < func_end
794 && start_pc <= sal.end)
795 return sal.end;
796 }
797
798 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
799
800 /* The psABI says that "Although the first 6 words of arguments
801 reside in registers, the standard stack frame reserves space for
802 them.". It also suggests that a function may use that space to
803 "write incoming arguments 0 to 5" into that space, and that's
804 indeed what GCC seems to be doing. In that case GCC will
805 generate debug information that points to the stack slots instead
806 of the registers, so we should consider the instructions that
807 write out these incoming arguments onto the stack. Of course we
808 only need to do this if we have a stack frame. */
809
810 while (!cache.frameless_p)
811 {
812 unsigned long insn = sparc_fetch_instruction (start_pc);
813
814 /* Recognize instructions that store incoming arguments in
815 %i0...%i5 into the corresponding stack slot. */
816 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04 && X_I (insn)
817 && (X_RD (insn) >= 24 && X_RD (insn) <= 29) && X_RS1 (insn) == 30
818 && X_SIMM13 (insn) == 68 + (X_RD (insn) - 24) * 4)
819 {
820 start_pc += 4;
821 continue;
822 }
823
824 break;
825 }
826
827 return start_pc;
828 }
829
830 /* Normal frames. */
831
832 struct sparc_frame_cache *
833 sparc_frame_cache (struct frame_info *next_frame, void **this_cache)
834 {
835 struct sparc_frame_cache *cache;
836
837 if (*this_cache)
838 return *this_cache;
839
840 cache = sparc_alloc_frame_cache ();
841 *this_cache = cache;
842
843 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
844 if (cache->pc != 0)
845 sparc_analyze_prologue (get_frame_arch (next_frame), cache->pc,
846 frame_pc_unwind (next_frame), cache);
847
848 if (cache->frameless_p)
849 {
850 /* This function is frameless, so %fp (%i6) holds the frame
851 pointer for our calling frame. Use %sp (%o6) as this frame's
852 base address. */
853 cache->base =
854 frame_unwind_register_unsigned (next_frame, SPARC_SP_REGNUM);
855 }
856 else
857 {
858 /* For normal frames, %fp (%i6) holds the frame pointer, the
859 base address for the current stack frame. */
860 cache->base =
861 frame_unwind_register_unsigned (next_frame, SPARC_FP_REGNUM);
862 }
863
864 if (cache->base & 1)
865 cache->base += BIAS;
866
867 return cache;
868 }
869
870 static int
871 sparc32_struct_return_from_sym (struct symbol *sym)
872 {
873 struct type *type = check_typedef (SYMBOL_TYPE (sym));
874 enum type_code code = TYPE_CODE (type);
875
876 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
877 {
878 type = check_typedef (TYPE_TARGET_TYPE (type));
879 if (sparc_structure_or_union_p (type)
880 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
881 return 1;
882 }
883
884 return 0;
885 }
886
887 struct sparc_frame_cache *
888 sparc32_frame_cache (struct frame_info *next_frame, void **this_cache)
889 {
890 struct sparc_frame_cache *cache;
891 struct symbol *sym;
892
893 if (*this_cache)
894 return *this_cache;
895
896 cache = sparc_frame_cache (next_frame, this_cache);
897
898 sym = find_pc_function (cache->pc);
899 if (sym)
900 {
901 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
902 }
903 else
904 {
905 /* There is no debugging information for this function to
906 help us determine whether this function returns a struct
907 or not. So we rely on another heuristic which is to check
908 the instruction at the return address and see if this is
909 an "unimp" instruction. If it is, then it is a struct-return
910 function. */
911 CORE_ADDR pc;
912 int regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
913
914 pc = frame_unwind_register_unsigned (next_frame, regnum) + 8;
915 if (sparc_is_unimp_insn (pc))
916 cache->struct_return_p = 1;
917 }
918
919 return cache;
920 }
921
922 static void
923 sparc32_frame_this_id (struct frame_info *next_frame, void **this_cache,
924 struct frame_id *this_id)
925 {
926 struct sparc_frame_cache *cache =
927 sparc32_frame_cache (next_frame, this_cache);
928
929 /* This marks the outermost frame. */
930 if (cache->base == 0)
931 return;
932
933 (*this_id) = frame_id_build (cache->base, cache->pc);
934 }
935
936 static void
937 sparc32_frame_prev_register (struct frame_info *next_frame, void **this_cache,
938 int regnum, int *optimizedp,
939 enum lval_type *lvalp, CORE_ADDR *addrp,
940 int *realnump, gdb_byte *valuep)
941 {
942 struct sparc_frame_cache *cache =
943 sparc32_frame_cache (next_frame, this_cache);
944
945 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
946 {
947 *optimizedp = 0;
948 *lvalp = not_lval;
949 *addrp = 0;
950 *realnump = -1;
951 if (valuep)
952 {
953 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
954
955 /* If this functions has a Structure, Union or
956 Quad-Precision return value, we have to skip the UNIMP
957 instruction that encodes the size of the structure. */
958 if (cache->struct_return_p)
959 pc += 4;
960
961 regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
962 pc += frame_unwind_register_unsigned (next_frame, regnum) + 8;
963 store_unsigned_integer (valuep, 4, pc);
964 }
965 return;
966 }
967
968 /* Handle StackGhost. */
969 {
970 ULONGEST wcookie = sparc_fetch_wcookie ();
971
972 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
973 {
974 *optimizedp = 0;
975 *lvalp = not_lval;
976 *addrp = 0;
977 *realnump = -1;
978 if (valuep)
979 {
980 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
981 ULONGEST i7;
982
983 /* Read the value in from memory. */
984 i7 = get_frame_memory_unsigned (next_frame, addr, 4);
985 store_unsigned_integer (valuep, 4, i7 ^ wcookie);
986 }
987 return;
988 }
989 }
990
991 /* The previous frame's `local' and `in' registers have been saved
992 in the register save area. */
993 if (!cache->frameless_p
994 && regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM)
995 {
996 *optimizedp = 0;
997 *lvalp = lval_memory;
998 *addrp = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
999 *realnump = -1;
1000 if (valuep)
1001 {
1002 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1003
1004 /* Read the value in from memory. */
1005 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
1006 }
1007 return;
1008 }
1009
1010 /* The previous frame's `out' registers are accessable as the
1011 current frame's `in' registers. */
1012 if (!cache->frameless_p
1013 && regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM)
1014 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
1015
1016 *optimizedp = 0;
1017 *lvalp = lval_register;
1018 *addrp = 0;
1019 *realnump = regnum;
1020 if (valuep)
1021 frame_unwind_register (next_frame, (*realnump), valuep);
1022 }
1023
1024 static const struct frame_unwind sparc32_frame_unwind =
1025 {
1026 NORMAL_FRAME,
1027 sparc32_frame_this_id,
1028 sparc32_frame_prev_register
1029 };
1030
1031 static const struct frame_unwind *
1032 sparc32_frame_sniffer (struct frame_info *next_frame)
1033 {
1034 return &sparc32_frame_unwind;
1035 }
1036 \f
1037
1038 static CORE_ADDR
1039 sparc32_frame_base_address (struct frame_info *next_frame, void **this_cache)
1040 {
1041 struct sparc_frame_cache *cache =
1042 sparc32_frame_cache (next_frame, this_cache);
1043
1044 return cache->base;
1045 }
1046
1047 static const struct frame_base sparc32_frame_base =
1048 {
1049 &sparc32_frame_unwind,
1050 sparc32_frame_base_address,
1051 sparc32_frame_base_address,
1052 sparc32_frame_base_address
1053 };
1054
1055 static struct frame_id
1056 sparc_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1057 {
1058 CORE_ADDR sp;
1059
1060 sp = frame_unwind_register_unsigned (next_frame, SPARC_SP_REGNUM);
1061 if (sp & 1)
1062 sp += BIAS;
1063 return frame_id_build (sp, frame_pc_unwind (next_frame));
1064 }
1065 \f
1066
1067 /* Extract from an array REGBUF containing the (raw) register state, a
1068 function return value of TYPE, and copy that into VALBUF. */
1069
1070 static void
1071 sparc32_extract_return_value (struct type *type, struct regcache *regcache,
1072 gdb_byte *valbuf)
1073 {
1074 int len = TYPE_LENGTH (type);
1075 gdb_byte buf[8];
1076
1077 gdb_assert (!sparc_structure_or_union_p (type));
1078 gdb_assert (!(sparc_floating_p (type) && len == 16));
1079
1080 if (sparc_floating_p (type))
1081 {
1082 /* Floating return values. */
1083 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1084 if (len > 4)
1085 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
1086 memcpy (valbuf, buf, len);
1087 }
1088 else
1089 {
1090 /* Integral and pointer return values. */
1091 gdb_assert (sparc_integral_or_pointer_p (type));
1092
1093 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1094 if (len > 4)
1095 {
1096 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1097 gdb_assert (len == 8);
1098 memcpy (valbuf, buf, 8);
1099 }
1100 else
1101 {
1102 /* Just stripping off any unused bytes should preserve the
1103 signed-ness just fine. */
1104 memcpy (valbuf, buf + 4 - len, len);
1105 }
1106 }
1107 }
1108
1109 /* Write into the appropriate registers a function return value stored
1110 in VALBUF of type TYPE. */
1111
1112 static void
1113 sparc32_store_return_value (struct type *type, struct regcache *regcache,
1114 const gdb_byte *valbuf)
1115 {
1116 int len = TYPE_LENGTH (type);
1117 gdb_byte buf[8];
1118
1119 gdb_assert (!sparc_structure_or_union_p (type));
1120 gdb_assert (!(sparc_floating_p (type) && len == 16));
1121
1122 if (sparc_floating_p (type))
1123 {
1124 /* Floating return values. */
1125 memcpy (buf, valbuf, len);
1126 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1127 if (len > 4)
1128 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
1129 }
1130 else
1131 {
1132 /* Integral and pointer return values. */
1133 gdb_assert (sparc_integral_or_pointer_p (type));
1134
1135 if (len > 4)
1136 {
1137 gdb_assert (len == 8);
1138 memcpy (buf, valbuf, 8);
1139 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
1140 }
1141 else
1142 {
1143 /* ??? Do we need to do any sign-extension here? */
1144 memcpy (buf + 4 - len, valbuf, len);
1145 }
1146 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
1147 }
1148 }
1149
1150 static enum return_value_convention
1151 sparc32_return_value (struct gdbarch *gdbarch, struct type *func_type,
1152 struct type *type, struct regcache *regcache,
1153 gdb_byte *readbuf, const gdb_byte *writebuf)
1154 {
1155 /* The psABI says that "...every stack frame reserves the word at
1156 %fp+64. If a function returns a structure, union, or
1157 quad-precision value, this word should hold the address of the
1158 object into which the return value should be copied." This
1159 guarantees that we can always find the return value, not just
1160 before the function returns. */
1161
1162 if (sparc_structure_or_union_p (type)
1163 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1164 {
1165 if (readbuf)
1166 {
1167 ULONGEST sp;
1168 CORE_ADDR addr;
1169
1170 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1171 addr = read_memory_unsigned_integer (sp + 64, 4);
1172 read_memory (addr, readbuf, TYPE_LENGTH (type));
1173 }
1174
1175 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1176 }
1177
1178 if (readbuf)
1179 sparc32_extract_return_value (type, regcache, readbuf);
1180 if (writebuf)
1181 sparc32_store_return_value (type, regcache, writebuf);
1182
1183 return RETURN_VALUE_REGISTER_CONVENTION;
1184 }
1185
1186 static int
1187 sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
1188 {
1189 return (sparc_structure_or_union_p (type)
1190 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16));
1191 }
1192
1193 static int
1194 sparc32_dwarf2_struct_return_p (struct frame_info *next_frame)
1195 {
1196 CORE_ADDR pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
1197 struct symbol *sym = find_pc_function (pc);
1198
1199 if (sym)
1200 return sparc32_struct_return_from_sym (sym);
1201 return 0;
1202 }
1203
1204 static void
1205 sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1206 struct dwarf2_frame_state_reg *reg,
1207 struct frame_info *next_frame)
1208 {
1209 int off;
1210
1211 switch (regnum)
1212 {
1213 case SPARC_G0_REGNUM:
1214 /* Since %g0 is always zero, there is no point in saving it, and
1215 people will be inclined omit it from the CFI. Make sure we
1216 don't warn about that. */
1217 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1218 break;
1219 case SPARC_SP_REGNUM:
1220 reg->how = DWARF2_FRAME_REG_CFA;
1221 break;
1222 case SPARC32_PC_REGNUM:
1223 case SPARC32_NPC_REGNUM:
1224 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1225 off = 8;
1226 if (sparc32_dwarf2_struct_return_p (next_frame))
1227 off += 4;
1228 if (regnum == SPARC32_NPC_REGNUM)
1229 off += 4;
1230 reg->loc.offset = off;
1231 break;
1232 }
1233 }
1234
1235 \f
1236 /* The SPARC Architecture doesn't have hardware single-step support,
1237 and most operating systems don't implement it either, so we provide
1238 software single-step mechanism. */
1239
1240 static CORE_ADDR
1241 sparc_analyze_control_transfer (struct frame_info *frame,
1242 CORE_ADDR pc, CORE_ADDR *npc)
1243 {
1244 unsigned long insn = sparc_fetch_instruction (pc);
1245 int conditional_p = X_COND (insn) & 0x7;
1246 int branch_p = 0;
1247 long offset = 0; /* Must be signed for sign-extend. */
1248
1249 if (X_OP (insn) == 0 && X_OP2 (insn) == 3 && (insn & 0x1000000) == 0)
1250 {
1251 /* Branch on Integer Register with Prediction (BPr). */
1252 branch_p = 1;
1253 conditional_p = 1;
1254 }
1255 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
1256 {
1257 /* Branch on Floating-Point Condition Codes (FBfcc). */
1258 branch_p = 1;
1259 offset = 4 * X_DISP22 (insn);
1260 }
1261 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1262 {
1263 /* Branch on Floating-Point Condition Codes with Prediction
1264 (FBPfcc). */
1265 branch_p = 1;
1266 offset = 4 * X_DISP19 (insn);
1267 }
1268 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1269 {
1270 /* Branch on Integer Condition Codes (Bicc). */
1271 branch_p = 1;
1272 offset = 4 * X_DISP22 (insn);
1273 }
1274 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
1275 {
1276 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1277 branch_p = 1;
1278 offset = 4 * X_DISP19 (insn);
1279 }
1280 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1281 {
1282 /* Trap instruction (TRAP). */
1283 return gdbarch_tdep (get_frame_arch (frame))->step_trap (frame, insn);
1284 }
1285
1286 /* FIXME: Handle DONE and RETRY instructions. */
1287
1288 if (branch_p)
1289 {
1290 if (conditional_p)
1291 {
1292 /* For conditional branches, return nPC + 4 iff the annul
1293 bit is 1. */
1294 return (X_A (insn) ? *npc + 4 : 0);
1295 }
1296 else
1297 {
1298 /* For unconditional branches, return the target if its
1299 specified condition is "always" and return nPC + 4 if the
1300 condition is "never". If the annul bit is 1, set *NPC to
1301 zero. */
1302 if (X_COND (insn) == 0x0)
1303 pc = *npc, offset = 4;
1304 if (X_A (insn))
1305 *npc = 0;
1306
1307 gdb_assert (offset != 0);
1308 return pc + offset;
1309 }
1310 }
1311
1312 return 0;
1313 }
1314
1315 static CORE_ADDR
1316 sparc_step_trap (struct frame_info *frame, unsigned long insn)
1317 {
1318 return 0;
1319 }
1320
1321 int
1322 sparc_software_single_step (struct frame_info *frame)
1323 {
1324 struct gdbarch *arch = get_frame_arch (frame);
1325 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1326 CORE_ADDR npc, nnpc;
1327
1328 CORE_ADDR pc, orig_npc;
1329
1330 pc = get_frame_register_unsigned (frame, tdep->pc_regnum);
1331 orig_npc = npc = get_frame_register_unsigned (frame, tdep->npc_regnum);
1332
1333 /* Analyze the instruction at PC. */
1334 nnpc = sparc_analyze_control_transfer (frame, pc, &npc);
1335 if (npc != 0)
1336 insert_single_step_breakpoint (npc);
1337
1338 if (nnpc != 0)
1339 insert_single_step_breakpoint (nnpc);
1340
1341 /* Assert that we have set at least one breakpoint, and that
1342 they're not set at the same spot - unless we're going
1343 from here straight to NULL, i.e. a call or jump to 0. */
1344 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1345 gdb_assert (nnpc != npc || orig_npc == 0);
1346
1347 return 1;
1348 }
1349
1350 static void
1351 sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
1352 {
1353 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1354
1355 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1356 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
1357 }
1358 \f
1359
1360 /* Return the appropriate register set for the core section identified
1361 by SECT_NAME and SECT_SIZE. */
1362
1363 const struct regset *
1364 sparc_regset_from_core_section (struct gdbarch *gdbarch,
1365 const char *sect_name, size_t sect_size)
1366 {
1367 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1368
1369 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
1370 return tdep->gregset;
1371
1372 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
1373 return tdep->fpregset;
1374
1375 return NULL;
1376 }
1377 \f
1378
1379 static struct gdbarch *
1380 sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1381 {
1382 struct gdbarch_tdep *tdep;
1383 struct gdbarch *gdbarch;
1384
1385 /* If there is already a candidate, use it. */
1386 arches = gdbarch_list_lookup_by_info (arches, &info);
1387 if (arches != NULL)
1388 return arches->gdbarch;
1389
1390 /* Allocate space for the new architecture. */
1391 tdep = XMALLOC (struct gdbarch_tdep);
1392 gdbarch = gdbarch_alloc (&info, tdep);
1393
1394 tdep->pc_regnum = SPARC32_PC_REGNUM;
1395 tdep->npc_regnum = SPARC32_NPC_REGNUM;
1396 tdep->gregset = NULL;
1397 tdep->sizeof_gregset = 0;
1398 tdep->fpregset = NULL;
1399 tdep->sizeof_fpregset = 0;
1400 tdep->plt_entry_size = 0;
1401 tdep->step_trap = sparc_step_trap;
1402
1403 set_gdbarch_long_double_bit (gdbarch, 128);
1404 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
1405
1406 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1407 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1408 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1409 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1410 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1411 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1412
1413 /* Register numbers of various important registers. */
1414 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1415 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1416 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1417
1418 /* Call dummy code. */
1419 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1420 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1421 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1422
1423 set_gdbarch_return_value (gdbarch, sparc32_return_value);
1424 set_gdbarch_stabs_argument_has_addr
1425 (gdbarch, sparc32_stabs_argument_has_addr);
1426
1427 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1428
1429 /* Stack grows downward. */
1430 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1431
1432 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
1433
1434 set_gdbarch_frame_args_skip (gdbarch, 8);
1435
1436 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
1437
1438 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1439 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
1440
1441 set_gdbarch_unwind_dummy_id (gdbarch, sparc_unwind_dummy_id);
1442
1443 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
1444
1445 frame_base_set_default (gdbarch, &sparc32_frame_base);
1446
1447 /* Hook in the DWARF CFI frame unwinder. */
1448 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1449 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1450 StackGhost issues have been resolved. */
1451
1452 /* Hook in ABI-specific overrides, if they have been registered. */
1453 gdbarch_init_osabi (info, gdbarch);
1454
1455 frame_unwind_append_sniffer (gdbarch, sparc32_frame_sniffer);
1456
1457 /* If we have register sets, enable the generic core file support. */
1458 if (tdep->gregset)
1459 set_gdbarch_regset_from_core_section (gdbarch,
1460 sparc_regset_from_core_section);
1461
1462 return gdbarch;
1463 }
1464 \f
1465 /* Helper functions for dealing with register windows. */
1466
1467 void
1468 sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
1469 {
1470 int offset = 0;
1471 gdb_byte buf[8];
1472 int i;
1473
1474 if (sp & 1)
1475 {
1476 /* Registers are 64-bit. */
1477 sp += BIAS;
1478
1479 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1480 {
1481 if (regnum == i || regnum == -1)
1482 {
1483 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1484
1485 /* Handle StackGhost. */
1486 if (i == SPARC_I7_REGNUM)
1487 {
1488 ULONGEST wcookie = sparc_fetch_wcookie ();
1489 ULONGEST i7 = extract_unsigned_integer (buf + offset, 8);
1490
1491 store_unsigned_integer (buf + offset, 8, i7 ^ wcookie);
1492 }
1493
1494 regcache_raw_supply (regcache, i, buf);
1495 }
1496 }
1497 }
1498 else
1499 {
1500 /* Registers are 32-bit. Toss any sign-extension of the stack
1501 pointer. */
1502 sp &= 0xffffffffUL;
1503
1504 /* Clear out the top half of the temporary buffer, and put the
1505 register value in the bottom half if we're in 64-bit mode. */
1506 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1507 {
1508 memset (buf, 0, 4);
1509 offset = 4;
1510 }
1511
1512 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1513 {
1514 if (regnum == i || regnum == -1)
1515 {
1516 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1517 buf + offset, 4);
1518
1519 /* Handle StackGhost. */
1520 if (i == SPARC_I7_REGNUM)
1521 {
1522 ULONGEST wcookie = sparc_fetch_wcookie ();
1523 ULONGEST i7 = extract_unsigned_integer (buf + offset, 4);
1524
1525 store_unsigned_integer (buf + offset, 4, i7 ^ wcookie);
1526 }
1527
1528 regcache_raw_supply (regcache, i, buf);
1529 }
1530 }
1531 }
1532 }
1533
1534 void
1535 sparc_collect_rwindow (const struct regcache *regcache,
1536 CORE_ADDR sp, int regnum)
1537 {
1538 int offset = 0;
1539 gdb_byte buf[8];
1540 int i;
1541
1542 if (sp & 1)
1543 {
1544 /* Registers are 64-bit. */
1545 sp += BIAS;
1546
1547 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1548 {
1549 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1550 {
1551 regcache_raw_collect (regcache, i, buf);
1552
1553 /* Handle StackGhost. */
1554 if (i == SPARC_I7_REGNUM)
1555 {
1556 ULONGEST wcookie = sparc_fetch_wcookie ();
1557 ULONGEST i7 = extract_unsigned_integer (buf + offset, 8);
1558
1559 store_unsigned_integer (buf, 8, i7 ^ wcookie);
1560 }
1561
1562 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1563 }
1564 }
1565 }
1566 else
1567 {
1568 /* Registers are 32-bit. Toss any sign-extension of the stack
1569 pointer. */
1570 sp &= 0xffffffffUL;
1571
1572 /* Only use the bottom half if we're in 64-bit mode. */
1573 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1574 offset = 4;
1575
1576 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1577 {
1578 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1579 {
1580 regcache_raw_collect (regcache, i, buf);
1581
1582 /* Handle StackGhost. */
1583 if (i == SPARC_I7_REGNUM)
1584 {
1585 ULONGEST wcookie = sparc_fetch_wcookie ();
1586 ULONGEST i7 = extract_unsigned_integer (buf + offset, 4);
1587
1588 store_unsigned_integer (buf + offset, 4, i7 ^ wcookie);
1589 }
1590
1591 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1592 buf + offset, 4);
1593 }
1594 }
1595 }
1596 }
1597
1598 /* Helper functions for dealing with register sets. */
1599
1600 void
1601 sparc32_supply_gregset (const struct sparc_gregset *gregset,
1602 struct regcache *regcache,
1603 int regnum, const void *gregs)
1604 {
1605 const gdb_byte *regs = gregs;
1606 int i;
1607
1608 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1609 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1610 regs + gregset->r_psr_offset);
1611
1612 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1613 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1614 regs + gregset->r_pc_offset);
1615
1616 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1617 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1618 regs + gregset->r_npc_offset);
1619
1620 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1621 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1622 regs + gregset->r_y_offset);
1623
1624 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1625 regcache_raw_supply (regcache, SPARC_G0_REGNUM, NULL);
1626
1627 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1628 {
1629 int offset = gregset->r_g1_offset;
1630
1631 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1632 {
1633 if (regnum == i || regnum == -1)
1634 regcache_raw_supply (regcache, i, regs + offset);
1635 offset += 4;
1636 }
1637 }
1638
1639 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1640 {
1641 /* Not all of the register set variants include Locals and
1642 Inputs. For those that don't, we read them off the stack. */
1643 if (gregset->r_l0_offset == -1)
1644 {
1645 ULONGEST sp;
1646
1647 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1648 sparc_supply_rwindow (regcache, sp, regnum);
1649 }
1650 else
1651 {
1652 int offset = gregset->r_l0_offset;
1653
1654 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1655 {
1656 if (regnum == i || regnum == -1)
1657 regcache_raw_supply (regcache, i, regs + offset);
1658 offset += 4;
1659 }
1660 }
1661 }
1662 }
1663
1664 void
1665 sparc32_collect_gregset (const struct sparc_gregset *gregset,
1666 const struct regcache *regcache,
1667 int regnum, void *gregs)
1668 {
1669 gdb_byte *regs = gregs;
1670 int i;
1671
1672 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1673 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1674 regs + gregset->r_psr_offset);
1675
1676 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1677 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1678 regs + gregset->r_pc_offset);
1679
1680 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1681 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1682 regs + gregset->r_npc_offset);
1683
1684 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1685 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1686 regs + gregset->r_y_offset);
1687
1688 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1689 {
1690 int offset = gregset->r_g1_offset;
1691
1692 /* %g0 is always zero. */
1693 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1694 {
1695 if (regnum == i || regnum == -1)
1696 regcache_raw_collect (regcache, i, regs + offset);
1697 offset += 4;
1698 }
1699 }
1700
1701 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1702 {
1703 /* Not all of the register set variants include Locals and
1704 Inputs. For those that don't, we read them off the stack. */
1705 if (gregset->r_l0_offset != -1)
1706 {
1707 int offset = gregset->r_l0_offset;
1708
1709 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1710 {
1711 if (regnum == i || regnum == -1)
1712 regcache_raw_collect (regcache, i, regs + offset);
1713 offset += 4;
1714 }
1715 }
1716 }
1717 }
1718
1719 void
1720 sparc32_supply_fpregset (struct regcache *regcache,
1721 int regnum, const void *fpregs)
1722 {
1723 const gdb_byte *regs = fpregs;
1724 int i;
1725
1726 for (i = 0; i < 32; i++)
1727 {
1728 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1729 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1730 }
1731
1732 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1733 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
1734 }
1735
1736 void
1737 sparc32_collect_fpregset (const struct regcache *regcache,
1738 int regnum, void *fpregs)
1739 {
1740 gdb_byte *regs = fpregs;
1741 int i;
1742
1743 for (i = 0; i < 32; i++)
1744 {
1745 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1746 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1747 }
1748
1749 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1750 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
1751 }
1752 \f
1753
1754 /* SunOS 4. */
1755
1756 /* From <machine/reg.h>. */
1757 const struct sparc_gregset sparc32_sunos4_gregset =
1758 {
1759 0 * 4, /* %psr */
1760 1 * 4, /* %pc */
1761 2 * 4, /* %npc */
1762 3 * 4, /* %y */
1763 -1, /* %wim */
1764 -1, /* %tbr */
1765 4 * 4, /* %g1 */
1766 -1 /* %l0 */
1767 };
1768 \f
1769
1770 /* Provide a prototype to silence -Wmissing-prototypes. */
1771 void _initialize_sparc_tdep (void);
1772
1773 void
1774 _initialize_sparc_tdep (void)
1775 {
1776 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
1777
1778 /* Initialize the SPARC-specific register types. */
1779 sparc_init_types();
1780 }
This page took 0.114476 seconds and 5 git commands to generate.