Teach GDB that wchar_t is a built-in type in C++ mode
[deliverable/binutils-gdb.git] / gdb / sparc64-tdep.c
1 /* Target-dependent code for UltraSPARC.
2
3 Copyright (C) 2003-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "dwarf2-frame.h"
23 #include "floatformat.h"
24 #include "frame.h"
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "gdbcore.h"
28 #include "gdbtypes.h"
29 #include "inferior.h"
30 #include "symtab.h"
31 #include "objfiles.h"
32 #include "osabi.h"
33 #include "regcache.h"
34 #include "target-descriptions.h"
35 #include "target.h"
36 #include "value.h"
37
38 #include "sparc64-tdep.h"
39
40 /* This file implements the SPARC 64-bit ABI as defined by the
41 section "Low-Level System Information" of the SPARC Compliance
42 Definition (SCD) 2.4.1, which is the 64-bit System V psABI for
43 SPARC. */
44
45 /* Please use the sparc32_-prefix for 32-bit specific code, the
46 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
47 code can handle both. */
48 \f
49 /* The functions on this page are intended to be used to classify
50 function arguments. */
51
52 /* Check whether TYPE is "Integral or Pointer". */
53
54 static int
55 sparc64_integral_or_pointer_p (const struct type *type)
56 {
57 switch (TYPE_CODE (type))
58 {
59 case TYPE_CODE_INT:
60 case TYPE_CODE_BOOL:
61 case TYPE_CODE_CHAR:
62 case TYPE_CODE_ENUM:
63 case TYPE_CODE_RANGE:
64 {
65 int len = TYPE_LENGTH (type);
66 gdb_assert (len == 1 || len == 2 || len == 4 || len == 8);
67 }
68 return 1;
69 case TYPE_CODE_PTR:
70 case TYPE_CODE_REF:
71 case TYPE_CODE_RVALUE_REF:
72 {
73 int len = TYPE_LENGTH (type);
74 gdb_assert (len == 8);
75 }
76 return 1;
77 default:
78 break;
79 }
80
81 return 0;
82 }
83
84 /* Check whether TYPE is "Floating". */
85
86 static int
87 sparc64_floating_p (const struct type *type)
88 {
89 switch (TYPE_CODE (type))
90 {
91 case TYPE_CODE_FLT:
92 {
93 int len = TYPE_LENGTH (type);
94 gdb_assert (len == 4 || len == 8 || len == 16);
95 }
96 return 1;
97 default:
98 break;
99 }
100
101 return 0;
102 }
103
104 /* Check whether TYPE is "Complex Floating". */
105
106 static int
107 sparc64_complex_floating_p (const struct type *type)
108 {
109 switch (TYPE_CODE (type))
110 {
111 case TYPE_CODE_COMPLEX:
112 {
113 int len = TYPE_LENGTH (type);
114 gdb_assert (len == 8 || len == 16 || len == 32);
115 }
116 return 1;
117 default:
118 break;
119 }
120
121 return 0;
122 }
123
124 /* Check whether TYPE is "Structure or Union".
125
126 In terms of Ada subprogram calls, arrays are treated the same as
127 struct and union types. So this function also returns non-zero
128 for array types. */
129
130 static int
131 sparc64_structure_or_union_p (const struct type *type)
132 {
133 switch (TYPE_CODE (type))
134 {
135 case TYPE_CODE_STRUCT:
136 case TYPE_CODE_UNION:
137 case TYPE_CODE_ARRAY:
138 return 1;
139 default:
140 break;
141 }
142
143 return 0;
144 }
145 \f
146
147 /* Construct types for ISA-specific registers. */
148
149 static struct type *
150 sparc64_pstate_type (struct gdbarch *gdbarch)
151 {
152 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
153
154 if (!tdep->sparc64_pstate_type)
155 {
156 struct type *type;
157
158 type = arch_flags_type (gdbarch, "builtin_type_sparc64_pstate", 8);
159 append_flags_type_flag (type, 0, "AG");
160 append_flags_type_flag (type, 1, "IE");
161 append_flags_type_flag (type, 2, "PRIV");
162 append_flags_type_flag (type, 3, "AM");
163 append_flags_type_flag (type, 4, "PEF");
164 append_flags_type_flag (type, 5, "RED");
165 append_flags_type_flag (type, 8, "TLE");
166 append_flags_type_flag (type, 9, "CLE");
167 append_flags_type_flag (type, 10, "PID0");
168 append_flags_type_flag (type, 11, "PID1");
169
170 tdep->sparc64_pstate_type = type;
171 }
172
173 return tdep->sparc64_pstate_type;
174 }
175
176 static struct type *
177 sparc64_ccr_type (struct gdbarch *gdbarch)
178 {
179 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
180
181 if (tdep->sparc64_ccr_type == NULL)
182 {
183 struct type *type;
184
185 type = arch_flags_type (gdbarch, "builtin_type_sparc64_ccr", 8);
186 append_flags_type_flag (type, 0, "icc.c");
187 append_flags_type_flag (type, 1, "icc.v");
188 append_flags_type_flag (type, 2, "icc.z");
189 append_flags_type_flag (type, 3, "icc.n");
190 append_flags_type_flag (type, 4, "xcc.c");
191 append_flags_type_flag (type, 5, "xcc.v");
192 append_flags_type_flag (type, 6, "xcc.z");
193 append_flags_type_flag (type, 7, "xcc.n");
194
195 tdep->sparc64_ccr_type = type;
196 }
197
198 return tdep->sparc64_ccr_type;
199 }
200
201 static struct type *
202 sparc64_fsr_type (struct gdbarch *gdbarch)
203 {
204 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
205
206 if (!tdep->sparc64_fsr_type)
207 {
208 struct type *type;
209
210 type = arch_flags_type (gdbarch, "builtin_type_sparc64_fsr", 8);
211 append_flags_type_flag (type, 0, "NXC");
212 append_flags_type_flag (type, 1, "DZC");
213 append_flags_type_flag (type, 2, "UFC");
214 append_flags_type_flag (type, 3, "OFC");
215 append_flags_type_flag (type, 4, "NVC");
216 append_flags_type_flag (type, 5, "NXA");
217 append_flags_type_flag (type, 6, "DZA");
218 append_flags_type_flag (type, 7, "UFA");
219 append_flags_type_flag (type, 8, "OFA");
220 append_flags_type_flag (type, 9, "NVA");
221 append_flags_type_flag (type, 22, "NS");
222 append_flags_type_flag (type, 23, "NXM");
223 append_flags_type_flag (type, 24, "DZM");
224 append_flags_type_flag (type, 25, "UFM");
225 append_flags_type_flag (type, 26, "OFM");
226 append_flags_type_flag (type, 27, "NVM");
227
228 tdep->sparc64_fsr_type = type;
229 }
230
231 return tdep->sparc64_fsr_type;
232 }
233
234 static struct type *
235 sparc64_fprs_type (struct gdbarch *gdbarch)
236 {
237 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
238
239 if (!tdep->sparc64_fprs_type)
240 {
241 struct type *type;
242
243 type = arch_flags_type (gdbarch, "builtin_type_sparc64_fprs", 8);
244 append_flags_type_flag (type, 0, "DL");
245 append_flags_type_flag (type, 1, "DU");
246 append_flags_type_flag (type, 2, "FEF");
247
248 tdep->sparc64_fprs_type = type;
249 }
250
251 return tdep->sparc64_fprs_type;
252 }
253
254
255 /* Register information. */
256 #define SPARC64_FPU_REGISTERS \
257 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
258 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
259 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
260 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
261 "f32", "f34", "f36", "f38", "f40", "f42", "f44", "f46", \
262 "f48", "f50", "f52", "f54", "f56", "f58", "f60", "f62"
263 #define SPARC64_CP0_REGISTERS \
264 "pc", "npc", \
265 /* FIXME: Give "state" a name until we start using register groups. */ \
266 "state", \
267 "fsr", \
268 "fprs", \
269 "y"
270
271 static const char *sparc64_fpu_register_names[] = { SPARC64_FPU_REGISTERS };
272 static const char *sparc64_cp0_register_names[] = { SPARC64_CP0_REGISTERS };
273
274 static const char *sparc64_register_names[] =
275 {
276 SPARC_CORE_REGISTERS,
277 SPARC64_FPU_REGISTERS,
278 SPARC64_CP0_REGISTERS
279 };
280
281 /* Total number of registers. */
282 #define SPARC64_NUM_REGS ARRAY_SIZE (sparc64_register_names)
283
284 /* We provide the aliases %d0..%d62 and %q0..%q60 for the floating
285 registers as "psuedo" registers. */
286
287 static const char *sparc64_pseudo_register_names[] =
288 {
289 "cwp", "pstate", "asi", "ccr",
290
291 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
292 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30",
293 "d32", "d34", "d36", "d38", "d40", "d42", "d44", "d46",
294 "d48", "d50", "d52", "d54", "d56", "d58", "d60", "d62",
295
296 "q0", "q4", "q8", "q12", "q16", "q20", "q24", "q28",
297 "q32", "q36", "q40", "q44", "q48", "q52", "q56", "q60",
298 };
299
300 /* Total number of pseudo registers. */
301 #define SPARC64_NUM_PSEUDO_REGS ARRAY_SIZE (sparc64_pseudo_register_names)
302
303 /* Return the name of pseudo register REGNUM. */
304
305 static const char *
306 sparc64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
307 {
308 regnum -= gdbarch_num_regs (gdbarch);
309
310 if (regnum < SPARC64_NUM_PSEUDO_REGS)
311 return sparc64_pseudo_register_names[regnum];
312
313 internal_error (__FILE__, __LINE__,
314 _("sparc64_pseudo_register_name: bad register number %d"),
315 regnum);
316 }
317
318 /* Return the name of register REGNUM. */
319
320 static const char *
321 sparc64_register_name (struct gdbarch *gdbarch, int regnum)
322 {
323 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
324 return tdesc_register_name (gdbarch, regnum);
325
326 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
327 return sparc64_register_names[regnum];
328
329 return sparc64_pseudo_register_name (gdbarch, regnum);
330 }
331
332 /* Return the GDB type object for the "standard" data type of data in
333 pseudo register REGNUM. */
334
335 static struct type *
336 sparc64_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
337 {
338 regnum -= gdbarch_num_regs (gdbarch);
339
340 if (regnum == SPARC64_CWP_REGNUM)
341 return builtin_type (gdbarch)->builtin_int64;
342 if (regnum == SPARC64_PSTATE_REGNUM)
343 return sparc64_pstate_type (gdbarch);
344 if (regnum == SPARC64_ASI_REGNUM)
345 return builtin_type (gdbarch)->builtin_int64;
346 if (regnum == SPARC64_CCR_REGNUM)
347 return sparc64_ccr_type (gdbarch);
348 if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D62_REGNUM)
349 return builtin_type (gdbarch)->builtin_double;
350 if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q60_REGNUM)
351 return builtin_type (gdbarch)->builtin_long_double;
352
353 internal_error (__FILE__, __LINE__,
354 _("sparc64_pseudo_register_type: bad register number %d"),
355 regnum);
356 }
357
358 /* Return the GDB type object for the "standard" data type of data in
359 register REGNUM. */
360
361 static struct type *
362 sparc64_register_type (struct gdbarch *gdbarch, int regnum)
363 {
364 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
365 return tdesc_register_type (gdbarch, regnum);
366
367 /* Raw registers. */
368 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
369 return builtin_type (gdbarch)->builtin_data_ptr;
370 if (regnum >= SPARC_G0_REGNUM && regnum <= SPARC_I7_REGNUM)
371 return builtin_type (gdbarch)->builtin_int64;
372 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
373 return builtin_type (gdbarch)->builtin_float;
374 if (regnum >= SPARC64_F32_REGNUM && regnum <= SPARC64_F62_REGNUM)
375 return builtin_type (gdbarch)->builtin_double;
376 if (regnum == SPARC64_PC_REGNUM || regnum == SPARC64_NPC_REGNUM)
377 return builtin_type (gdbarch)->builtin_func_ptr;
378 /* This raw register contains the contents of %cwp, %pstate, %asi
379 and %ccr as laid out in a %tstate register. */
380 if (regnum == SPARC64_STATE_REGNUM)
381 return builtin_type (gdbarch)->builtin_int64;
382 if (regnum == SPARC64_FSR_REGNUM)
383 return sparc64_fsr_type (gdbarch);
384 if (regnum == SPARC64_FPRS_REGNUM)
385 return sparc64_fprs_type (gdbarch);
386 /* "Although Y is a 64-bit register, its high-order 32 bits are
387 reserved and always read as 0." */
388 if (regnum == SPARC64_Y_REGNUM)
389 return builtin_type (gdbarch)->builtin_int64;
390
391 /* Pseudo registers. */
392 if (regnum >= gdbarch_num_regs (gdbarch))
393 return sparc64_pseudo_register_type (gdbarch, regnum);
394
395 internal_error (__FILE__, __LINE__, _("invalid regnum"));
396 }
397
398 static enum register_status
399 sparc64_pseudo_register_read (struct gdbarch *gdbarch,
400 struct regcache *regcache,
401 int regnum, gdb_byte *buf)
402 {
403 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
404 enum register_status status;
405
406 regnum -= gdbarch_num_regs (gdbarch);
407
408 if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D30_REGNUM)
409 {
410 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC64_D0_REGNUM);
411 status = regcache_raw_read (regcache, regnum, buf);
412 if (status == REG_VALID)
413 status = regcache_raw_read (regcache, regnum + 1, buf + 4);
414 return status;
415 }
416 else if (regnum >= SPARC64_D32_REGNUM && regnum <= SPARC64_D62_REGNUM)
417 {
418 regnum = SPARC64_F32_REGNUM + (regnum - SPARC64_D32_REGNUM);
419 return regcache_raw_read (regcache, regnum, buf);
420 }
421 else if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q28_REGNUM)
422 {
423 regnum = SPARC_F0_REGNUM + 4 * (regnum - SPARC64_Q0_REGNUM);
424
425 status = regcache_raw_read (regcache, regnum, buf);
426 if (status == REG_VALID)
427 status = regcache_raw_read (regcache, regnum + 1, buf + 4);
428 if (status == REG_VALID)
429 status = regcache_raw_read (regcache, regnum + 2, buf + 8);
430 if (status == REG_VALID)
431 status = regcache_raw_read (regcache, regnum + 3, buf + 12);
432
433 return status;
434 }
435 else if (regnum >= SPARC64_Q32_REGNUM && regnum <= SPARC64_Q60_REGNUM)
436 {
437 regnum = SPARC64_F32_REGNUM + 2 * (regnum - SPARC64_Q32_REGNUM);
438
439 status = regcache_raw_read (regcache, regnum, buf);
440 if (status == REG_VALID)
441 status = regcache_raw_read (regcache, regnum + 1, buf + 8);
442
443 return status;
444 }
445 else if (regnum == SPARC64_CWP_REGNUM
446 || regnum == SPARC64_PSTATE_REGNUM
447 || regnum == SPARC64_ASI_REGNUM
448 || regnum == SPARC64_CCR_REGNUM)
449 {
450 ULONGEST state;
451
452 status = regcache_raw_read_unsigned (regcache, SPARC64_STATE_REGNUM, &state);
453 if (status != REG_VALID)
454 return status;
455
456 switch (regnum)
457 {
458 case SPARC64_CWP_REGNUM:
459 state = (state >> 0) & ((1 << 5) - 1);
460 break;
461 case SPARC64_PSTATE_REGNUM:
462 state = (state >> 8) & ((1 << 12) - 1);
463 break;
464 case SPARC64_ASI_REGNUM:
465 state = (state >> 24) & ((1 << 8) - 1);
466 break;
467 case SPARC64_CCR_REGNUM:
468 state = (state >> 32) & ((1 << 8) - 1);
469 break;
470 }
471 store_unsigned_integer (buf, 8, byte_order, state);
472 }
473
474 return REG_VALID;
475 }
476
477 static void
478 sparc64_pseudo_register_write (struct gdbarch *gdbarch,
479 struct regcache *regcache,
480 int regnum, const gdb_byte *buf)
481 {
482 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
483
484 regnum -= gdbarch_num_regs (gdbarch);
485
486 if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D30_REGNUM)
487 {
488 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC64_D0_REGNUM);
489 regcache_raw_write (regcache, regnum, buf);
490 regcache_raw_write (regcache, regnum + 1, buf + 4);
491 }
492 else if (regnum >= SPARC64_D32_REGNUM && regnum <= SPARC64_D62_REGNUM)
493 {
494 regnum = SPARC64_F32_REGNUM + (regnum - SPARC64_D32_REGNUM);
495 regcache_raw_write (regcache, regnum, buf);
496 }
497 else if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q28_REGNUM)
498 {
499 regnum = SPARC_F0_REGNUM + 4 * (regnum - SPARC64_Q0_REGNUM);
500 regcache_raw_write (regcache, regnum, buf);
501 regcache_raw_write (regcache, regnum + 1, buf + 4);
502 regcache_raw_write (regcache, regnum + 2, buf + 8);
503 regcache_raw_write (regcache, regnum + 3, buf + 12);
504 }
505 else if (regnum >= SPARC64_Q32_REGNUM && regnum <= SPARC64_Q60_REGNUM)
506 {
507 regnum = SPARC64_F32_REGNUM + 2 * (regnum - SPARC64_Q32_REGNUM);
508 regcache_raw_write (regcache, regnum, buf);
509 regcache_raw_write (regcache, regnum + 1, buf + 8);
510 }
511 else if (regnum == SPARC64_CWP_REGNUM
512 || regnum == SPARC64_PSTATE_REGNUM
513 || regnum == SPARC64_ASI_REGNUM
514 || regnum == SPARC64_CCR_REGNUM)
515 {
516 ULONGEST state, bits;
517
518 regcache_raw_read_unsigned (regcache, SPARC64_STATE_REGNUM, &state);
519 bits = extract_unsigned_integer (buf, 8, byte_order);
520 switch (regnum)
521 {
522 case SPARC64_CWP_REGNUM:
523 state |= ((bits & ((1 << 5) - 1)) << 0);
524 break;
525 case SPARC64_PSTATE_REGNUM:
526 state |= ((bits & ((1 << 12) - 1)) << 8);
527 break;
528 case SPARC64_ASI_REGNUM:
529 state |= ((bits & ((1 << 8) - 1)) << 24);
530 break;
531 case SPARC64_CCR_REGNUM:
532 state |= ((bits & ((1 << 8) - 1)) << 32);
533 break;
534 }
535 regcache_raw_write_unsigned (regcache, SPARC64_STATE_REGNUM, state);
536 }
537 }
538 \f
539
540 /* Return PC of first real instruction of the function starting at
541 START_PC. */
542
543 static CORE_ADDR
544 sparc64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
545 {
546 struct symtab_and_line sal;
547 CORE_ADDR func_start, func_end;
548 struct sparc_frame_cache cache;
549
550 /* This is the preferred method, find the end of the prologue by
551 using the debugging information. */
552 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
553 {
554 sal = find_pc_line (func_start, 0);
555
556 if (sal.end < func_end
557 && start_pc <= sal.end)
558 return sal.end;
559 }
560
561 return sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffULL,
562 &cache);
563 }
564
565 /* Normal frames. */
566
567 static struct sparc_frame_cache *
568 sparc64_frame_cache (struct frame_info *this_frame, void **this_cache)
569 {
570 return sparc_frame_cache (this_frame, this_cache);
571 }
572
573 static void
574 sparc64_frame_this_id (struct frame_info *this_frame, void **this_cache,
575 struct frame_id *this_id)
576 {
577 struct sparc_frame_cache *cache =
578 sparc64_frame_cache (this_frame, this_cache);
579
580 /* This marks the outermost frame. */
581 if (cache->base == 0)
582 return;
583
584 (*this_id) = frame_id_build (cache->base, cache->pc);
585 }
586
587 static struct value *
588 sparc64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
589 int regnum)
590 {
591 struct gdbarch *gdbarch = get_frame_arch (this_frame);
592 struct sparc_frame_cache *cache =
593 sparc64_frame_cache (this_frame, this_cache);
594
595 if (regnum == SPARC64_PC_REGNUM || regnum == SPARC64_NPC_REGNUM)
596 {
597 CORE_ADDR pc = (regnum == SPARC64_NPC_REGNUM) ? 4 : 0;
598
599 regnum =
600 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
601 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
602 return frame_unwind_got_constant (this_frame, regnum, pc);
603 }
604
605 /* Handle StackGhost. */
606 {
607 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
608
609 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
610 {
611 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 8;
612 ULONGEST i7;
613
614 /* Read the value in from memory. */
615 i7 = get_frame_memory_unsigned (this_frame, addr, 8);
616 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
617 }
618 }
619
620 /* The previous frame's `local' and `in' registers may have been saved
621 in the register save area. */
622 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
623 && (cache->saved_regs_mask & (1 << (regnum - SPARC_L0_REGNUM))))
624 {
625 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 8;
626
627 return frame_unwind_got_memory (this_frame, regnum, addr);
628 }
629
630 /* The previous frame's `out' registers may be accessible as the current
631 frame's `in' registers. */
632 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM
633 && (cache->copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM))))
634 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
635
636 return frame_unwind_got_register (this_frame, regnum, regnum);
637 }
638
639 static const struct frame_unwind sparc64_frame_unwind =
640 {
641 NORMAL_FRAME,
642 default_frame_unwind_stop_reason,
643 sparc64_frame_this_id,
644 sparc64_frame_prev_register,
645 NULL,
646 default_frame_sniffer
647 };
648 \f
649
650 static CORE_ADDR
651 sparc64_frame_base_address (struct frame_info *this_frame, void **this_cache)
652 {
653 struct sparc_frame_cache *cache =
654 sparc64_frame_cache (this_frame, this_cache);
655
656 return cache->base;
657 }
658
659 static const struct frame_base sparc64_frame_base =
660 {
661 &sparc64_frame_unwind,
662 sparc64_frame_base_address,
663 sparc64_frame_base_address,
664 sparc64_frame_base_address
665 };
666 \f
667 /* Check whether TYPE must be 16-byte aligned. */
668
669 static int
670 sparc64_16_byte_align_p (struct type *type)
671 {
672 if (sparc64_floating_p (type) && TYPE_LENGTH (type) == 16)
673 return 1;
674
675 if (sparc64_structure_or_union_p (type))
676 {
677 int i;
678
679 for (i = 0; i < TYPE_NFIELDS (type); i++)
680 {
681 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
682
683 if (sparc64_16_byte_align_p (subtype))
684 return 1;
685 }
686 }
687
688 return 0;
689 }
690
691 /* Store floating fields of element ELEMENT of an "parameter array"
692 that has type TYPE and is stored at BITPOS in VALBUF in the
693 apropriate registers of REGCACHE. This function can be called
694 recursively and therefore handles floating types in addition to
695 structures. */
696
697 static void
698 sparc64_store_floating_fields (struct regcache *regcache, struct type *type,
699 const gdb_byte *valbuf, int element, int bitpos)
700 {
701 struct gdbarch *gdbarch = get_regcache_arch (regcache);
702 int len = TYPE_LENGTH (type);
703
704 gdb_assert (element < 16);
705
706 if (sparc64_floating_p (type)
707 || (sparc64_complex_floating_p (type) && len <= 16))
708 {
709 int regnum;
710
711 if (len == 16)
712 {
713 gdb_assert (bitpos == 0);
714 gdb_assert ((element % 2) == 0);
715
716 regnum = gdbarch_num_regs (gdbarch) + SPARC64_Q0_REGNUM + element / 2;
717 regcache_cooked_write (regcache, regnum, valbuf);
718 }
719 else if (len == 8)
720 {
721 gdb_assert (bitpos == 0 || bitpos == 64);
722
723 regnum = gdbarch_num_regs (gdbarch) + SPARC64_D0_REGNUM
724 + element + bitpos / 64;
725 regcache_cooked_write (regcache, regnum, valbuf + (bitpos / 8));
726 }
727 else
728 {
729 gdb_assert (len == 4);
730 gdb_assert (bitpos % 32 == 0 && bitpos >= 0 && bitpos < 128);
731
732 regnum = SPARC_F0_REGNUM + element * 2 + bitpos / 32;
733 regcache_cooked_write (regcache, regnum, valbuf + (bitpos / 8));
734 }
735 }
736 else if (sparc64_structure_or_union_p (type))
737 {
738 int i;
739
740 for (i = 0; i < TYPE_NFIELDS (type); i++)
741 {
742 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
743 int subpos = bitpos + TYPE_FIELD_BITPOS (type, i);
744
745 sparc64_store_floating_fields (regcache, subtype, valbuf,
746 element, subpos);
747 }
748
749 /* GCC has an interesting bug. If TYPE is a structure that has
750 a single `float' member, GCC doesn't treat it as a structure
751 at all, but rather as an ordinary `float' argument. This
752 argument will be stored in %f1, as required by the psABI.
753 However, as a member of a structure the psABI requires it to
754 be stored in %f0. This bug is present in GCC 3.3.2, but
755 probably in older releases to. To appease GCC, if a
756 structure has only a single `float' member, we store its
757 value in %f1 too (we already have stored in %f0). */
758 if (TYPE_NFIELDS (type) == 1)
759 {
760 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, 0));
761
762 if (sparc64_floating_p (subtype) && TYPE_LENGTH (subtype) == 4)
763 regcache_cooked_write (regcache, SPARC_F1_REGNUM, valbuf);
764 }
765 }
766 }
767
768 /* Fetch floating fields from a variable of type TYPE from the
769 appropriate registers for BITPOS in REGCACHE and store it at BITPOS
770 in VALBUF. This function can be called recursively and therefore
771 handles floating types in addition to structures. */
772
773 static void
774 sparc64_extract_floating_fields (struct regcache *regcache, struct type *type,
775 gdb_byte *valbuf, int bitpos)
776 {
777 struct gdbarch *gdbarch = get_regcache_arch (regcache);
778
779 if (sparc64_floating_p (type))
780 {
781 int len = TYPE_LENGTH (type);
782 int regnum;
783
784 if (len == 16)
785 {
786 gdb_assert (bitpos == 0 || bitpos == 128);
787
788 regnum = gdbarch_num_regs (gdbarch) + SPARC64_Q0_REGNUM
789 + bitpos / 128;
790 regcache_cooked_read (regcache, regnum, valbuf + (bitpos / 8));
791 }
792 else if (len == 8)
793 {
794 gdb_assert (bitpos % 64 == 0 && bitpos >= 0 && bitpos < 256);
795
796 regnum = gdbarch_num_regs (gdbarch) + SPARC64_D0_REGNUM + bitpos / 64;
797 regcache_cooked_read (regcache, regnum, valbuf + (bitpos / 8));
798 }
799 else
800 {
801 gdb_assert (len == 4);
802 gdb_assert (bitpos % 32 == 0 && bitpos >= 0 && bitpos < 256);
803
804 regnum = SPARC_F0_REGNUM + bitpos / 32;
805 regcache_cooked_read (regcache, regnum, valbuf + (bitpos / 8));
806 }
807 }
808 else if (sparc64_structure_or_union_p (type))
809 {
810 int i;
811
812 for (i = 0; i < TYPE_NFIELDS (type); i++)
813 {
814 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
815 int subpos = bitpos + TYPE_FIELD_BITPOS (type, i);
816
817 sparc64_extract_floating_fields (regcache, subtype, valbuf, subpos);
818 }
819 }
820 }
821
822 /* Store the NARGS arguments ARGS and STRUCT_ADDR (if STRUCT_RETURN is
823 non-zero) in REGCACHE and on the stack (starting from address SP). */
824
825 static CORE_ADDR
826 sparc64_store_arguments (struct regcache *regcache, int nargs,
827 struct value **args, CORE_ADDR sp,
828 int struct_return, CORE_ADDR struct_addr)
829 {
830 struct gdbarch *gdbarch = get_regcache_arch (regcache);
831 /* Number of extended words in the "parameter array". */
832 int num_elements = 0;
833 int element = 0;
834 int i;
835
836 /* Take BIAS into account. */
837 sp += BIAS;
838
839 /* First we calculate the number of extended words in the "parameter
840 array". While doing so we also convert some of the arguments. */
841
842 if (struct_return)
843 num_elements++;
844
845 for (i = 0; i < nargs; i++)
846 {
847 struct type *type = value_type (args[i]);
848 int len = TYPE_LENGTH (type);
849
850 if (sparc64_structure_or_union_p (type)
851 || (sparc64_complex_floating_p (type) && len == 32))
852 {
853 /* Structure or Union arguments. */
854 if (len <= 16)
855 {
856 if (num_elements % 2 && sparc64_16_byte_align_p (type))
857 num_elements++;
858 num_elements += ((len + 7) / 8);
859 }
860 else
861 {
862 /* The psABI says that "Structures or unions larger than
863 sixteen bytes are copied by the caller and passed
864 indirectly; the caller will pass the address of a
865 correctly aligned structure value. This sixty-four
866 bit address will occupy one word in the parameter
867 array, and may be promoted to an %o register like any
868 other pointer value." Allocate memory for these
869 values on the stack. */
870 sp -= len;
871
872 /* Use 16-byte alignment for these values. That's
873 always correct, and wasting a few bytes shouldn't be
874 a problem. */
875 sp &= ~0xf;
876
877 write_memory (sp, value_contents (args[i]), len);
878 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
879 num_elements++;
880 }
881 }
882 else if (sparc64_floating_p (type) || sparc64_complex_floating_p (type))
883 {
884 /* Floating arguments. */
885 if (len == 16)
886 {
887 /* The psABI says that "Each quad-precision parameter
888 value will be assigned to two extended words in the
889 parameter array. */
890 num_elements += 2;
891
892 /* The psABI says that "Long doubles must be
893 quad-aligned, and thus a hole might be introduced
894 into the parameter array to force alignment." Skip
895 an element if necessary. */
896 if ((num_elements % 2) && sparc64_16_byte_align_p (type))
897 num_elements++;
898 }
899 else
900 num_elements++;
901 }
902 else
903 {
904 /* Integral and pointer arguments. */
905 gdb_assert (sparc64_integral_or_pointer_p (type));
906
907 /* The psABI says that "Each argument value of integral type
908 smaller than an extended word will be widened by the
909 caller to an extended word according to the signed-ness
910 of the argument type." */
911 if (len < 8)
912 args[i] = value_cast (builtin_type (gdbarch)->builtin_int64,
913 args[i]);
914 num_elements++;
915 }
916 }
917
918 /* Allocate the "parameter array". */
919 sp -= num_elements * 8;
920
921 /* The psABI says that "Every stack frame must be 16-byte aligned." */
922 sp &= ~0xf;
923
924 /* Now we store the arguments in to the "paramater array". Some
925 Integer or Pointer arguments and Structure or Union arguments
926 will be passed in %o registers. Some Floating arguments and
927 floating members of structures are passed in floating-point
928 registers. However, for functions with variable arguments,
929 floating arguments are stored in an %0 register, and for
930 functions without a prototype floating arguments are stored in
931 both a floating-point and an %o registers, or a floating-point
932 register and memory. To simplify the logic here we always pass
933 arguments in memory, an %o register, and a floating-point
934 register if appropriate. This should be no problem since the
935 contents of any unused memory or registers in the "parameter
936 array" are undefined. */
937
938 if (struct_return)
939 {
940 regcache_cooked_write_unsigned (regcache, SPARC_O0_REGNUM, struct_addr);
941 element++;
942 }
943
944 for (i = 0; i < nargs; i++)
945 {
946 const gdb_byte *valbuf = value_contents (args[i]);
947 struct type *type = value_type (args[i]);
948 int len = TYPE_LENGTH (type);
949 int regnum = -1;
950 gdb_byte buf[16];
951
952 if (sparc64_structure_or_union_p (type)
953 || (sparc64_complex_floating_p (type) && len == 32))
954 {
955 /* Structure, Union or long double Complex arguments. */
956 gdb_assert (len <= 16);
957 memset (buf, 0, sizeof (buf));
958 memcpy (buf, valbuf, len);
959 valbuf = buf;
960
961 if (element % 2 && sparc64_16_byte_align_p (type))
962 element++;
963
964 if (element < 6)
965 {
966 regnum = SPARC_O0_REGNUM + element;
967 if (len > 8 && element < 5)
968 regcache_cooked_write (regcache, regnum + 1, valbuf + 8);
969 }
970
971 if (element < 16)
972 sparc64_store_floating_fields (regcache, type, valbuf, element, 0);
973 }
974 else if (sparc64_complex_floating_p (type))
975 {
976 /* Float Complex or double Complex arguments. */
977 if (element < 16)
978 {
979 regnum = gdbarch_num_regs (gdbarch) + SPARC64_D0_REGNUM + element;
980
981 if (len == 16)
982 {
983 if (regnum < gdbarch_num_regs (gdbarch) + SPARC64_D30_REGNUM)
984 regcache_cooked_write (regcache, regnum + 1, valbuf + 8);
985 if (regnum < gdbarch_num_regs (gdbarch) + SPARC64_D10_REGNUM)
986 regcache_cooked_write (regcache,
987 SPARC_O0_REGNUM + element + 1,
988 valbuf + 8);
989 }
990 }
991 }
992 else if (sparc64_floating_p (type))
993 {
994 /* Floating arguments. */
995 if (len == 16)
996 {
997 if (element % 2)
998 element++;
999 if (element < 16)
1000 regnum = gdbarch_num_regs (gdbarch) + SPARC64_Q0_REGNUM
1001 + element / 2;
1002 }
1003 else if (len == 8)
1004 {
1005 if (element < 16)
1006 regnum = gdbarch_num_regs (gdbarch) + SPARC64_D0_REGNUM
1007 + element;
1008 }
1009 else if (len == 4)
1010 {
1011 /* The psABI says "Each single-precision parameter value
1012 will be assigned to one extended word in the
1013 parameter array, and right-justified within that
1014 word; the left half (even float register) is
1015 undefined." Even though the psABI says that "the
1016 left half is undefined", set it to zero here. */
1017 memset (buf, 0, 4);
1018 memcpy (buf + 4, valbuf, 4);
1019 valbuf = buf;
1020 len = 8;
1021 if (element < 16)
1022 regnum = gdbarch_num_regs (gdbarch) + SPARC64_D0_REGNUM
1023 + element;
1024 }
1025 }
1026 else
1027 {
1028 /* Integral and pointer arguments. */
1029 gdb_assert (len == 8);
1030 if (element < 6)
1031 regnum = SPARC_O0_REGNUM + element;
1032 }
1033
1034 if (regnum != -1)
1035 {
1036 regcache_cooked_write (regcache, regnum, valbuf);
1037
1038 /* If we're storing the value in a floating-point register,
1039 also store it in the corresponding %0 register(s). */
1040 if (regnum >= gdbarch_num_regs (gdbarch))
1041 {
1042 regnum -= gdbarch_num_regs (gdbarch);
1043
1044 if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D10_REGNUM)
1045 {
1046 gdb_assert (element < 6);
1047 regnum = SPARC_O0_REGNUM + element;
1048 regcache_cooked_write (regcache, regnum, valbuf);
1049 }
1050 else if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q8_REGNUM)
1051 {
1052 gdb_assert (element < 5);
1053 regnum = SPARC_O0_REGNUM + element;
1054 regcache_cooked_write (regcache, regnum, valbuf);
1055 regcache_cooked_write (regcache, regnum + 1, valbuf + 8);
1056 }
1057 }
1058 }
1059
1060 /* Always store the argument in memory. */
1061 write_memory (sp + element * 8, valbuf, len);
1062 element += ((len + 7) / 8);
1063 }
1064
1065 gdb_assert (element == num_elements);
1066
1067 /* Take BIAS into account. */
1068 sp -= BIAS;
1069 return sp;
1070 }
1071
1072 static CORE_ADDR
1073 sparc64_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1074 {
1075 /* The ABI requires 16-byte alignment. */
1076 return address & ~0xf;
1077 }
1078
1079 static CORE_ADDR
1080 sparc64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1081 struct regcache *regcache, CORE_ADDR bp_addr,
1082 int nargs, struct value **args, CORE_ADDR sp,
1083 int struct_return, CORE_ADDR struct_addr)
1084 {
1085 /* Set return address. */
1086 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, bp_addr - 8);
1087
1088 /* Set up function arguments. */
1089 sp = sparc64_store_arguments (regcache, nargs, args, sp,
1090 struct_return, struct_addr);
1091
1092 /* Allocate the register save area. */
1093 sp -= 16 * 8;
1094
1095 /* Stack should be 16-byte aligned at this point. */
1096 gdb_assert ((sp + BIAS) % 16 == 0);
1097
1098 /* Finally, update the stack pointer. */
1099 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
1100
1101 return sp + BIAS;
1102 }
1103 \f
1104
1105 /* Extract from an array REGBUF containing the (raw) register state, a
1106 function return value of TYPE, and copy that into VALBUF. */
1107
1108 static void
1109 sparc64_extract_return_value (struct type *type, struct regcache *regcache,
1110 gdb_byte *valbuf)
1111 {
1112 int len = TYPE_LENGTH (type);
1113 gdb_byte buf[32];
1114 int i;
1115
1116 if (sparc64_structure_or_union_p (type))
1117 {
1118 /* Structure or Union return values. */
1119 gdb_assert (len <= 32);
1120
1121 for (i = 0; i < ((len + 7) / 8); i++)
1122 regcache_cooked_read (regcache, SPARC_O0_REGNUM + i, buf + i * 8);
1123 if (TYPE_CODE (type) != TYPE_CODE_UNION)
1124 sparc64_extract_floating_fields (regcache, type, buf, 0);
1125 memcpy (valbuf, buf, len);
1126 }
1127 else if (sparc64_floating_p (type) || sparc64_complex_floating_p (type))
1128 {
1129 /* Floating return values. */
1130 for (i = 0; i < len / 4; i++)
1131 regcache_cooked_read (regcache, SPARC_F0_REGNUM + i, buf + i * 4);
1132 memcpy (valbuf, buf, len);
1133 }
1134 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1135 {
1136 /* Small arrays are returned the same way as small structures. */
1137 gdb_assert (len <= 32);
1138
1139 for (i = 0; i < ((len + 7) / 8); i++)
1140 regcache_cooked_read (regcache, SPARC_O0_REGNUM + i, buf + i * 8);
1141 memcpy (valbuf, buf, len);
1142 }
1143 else
1144 {
1145 /* Integral and pointer return values. */
1146 gdb_assert (sparc64_integral_or_pointer_p (type));
1147
1148 /* Just stripping off any unused bytes should preserve the
1149 signed-ness just fine. */
1150 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1151 memcpy (valbuf, buf + 8 - len, len);
1152 }
1153 }
1154
1155 /* Write into the appropriate registers a function return value stored
1156 in VALBUF of type TYPE. */
1157
1158 static void
1159 sparc64_store_return_value (struct type *type, struct regcache *regcache,
1160 const gdb_byte *valbuf)
1161 {
1162 int len = TYPE_LENGTH (type);
1163 gdb_byte buf[16];
1164 int i;
1165
1166 if (sparc64_structure_or_union_p (type))
1167 {
1168 /* Structure or Union return values. */
1169 gdb_assert (len <= 32);
1170
1171 /* Simplify matters by storing the complete value (including
1172 floating members) into %o0 and %o1. Floating members are
1173 also store in the appropriate floating-point registers. */
1174 memset (buf, 0, sizeof (buf));
1175 memcpy (buf, valbuf, len);
1176 for (i = 0; i < ((len + 7) / 8); i++)
1177 regcache_cooked_write (regcache, SPARC_O0_REGNUM + i, buf + i * 8);
1178 if (TYPE_CODE (type) != TYPE_CODE_UNION)
1179 sparc64_store_floating_fields (regcache, type, buf, 0, 0);
1180 }
1181 else if (sparc64_floating_p (type) || sparc64_complex_floating_p (type))
1182 {
1183 /* Floating return values. */
1184 memcpy (buf, valbuf, len);
1185 for (i = 0; i < len / 4; i++)
1186 regcache_cooked_write (regcache, SPARC_F0_REGNUM + i, buf + i * 4);
1187 }
1188 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1189 {
1190 /* Small arrays are returned the same way as small structures. */
1191 gdb_assert (len <= 32);
1192
1193 memset (buf, 0, sizeof (buf));
1194 memcpy (buf, valbuf, len);
1195 for (i = 0; i < ((len + 7) / 8); i++)
1196 regcache_cooked_write (regcache, SPARC_O0_REGNUM + i, buf + i * 8);
1197 }
1198 else
1199 {
1200 /* Integral and pointer return values. */
1201 gdb_assert (sparc64_integral_or_pointer_p (type));
1202
1203 /* ??? Do we need to do any sign-extension here? */
1204 memset (buf, 0, 8);
1205 memcpy (buf + 8 - len, valbuf, len);
1206 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
1207 }
1208 }
1209
1210 static enum return_value_convention
1211 sparc64_return_value (struct gdbarch *gdbarch, struct value *function,
1212 struct type *type, struct regcache *regcache,
1213 gdb_byte *readbuf, const gdb_byte *writebuf)
1214 {
1215 if (TYPE_LENGTH (type) > 32)
1216 return RETURN_VALUE_STRUCT_CONVENTION;
1217
1218 if (readbuf)
1219 sparc64_extract_return_value (type, regcache, readbuf);
1220 if (writebuf)
1221 sparc64_store_return_value (type, regcache, writebuf);
1222
1223 return RETURN_VALUE_REGISTER_CONVENTION;
1224 }
1225 \f
1226
1227 static void
1228 sparc64_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1229 struct dwarf2_frame_state_reg *reg,
1230 struct frame_info *this_frame)
1231 {
1232 switch (regnum)
1233 {
1234 case SPARC_G0_REGNUM:
1235 /* Since %g0 is always zero, there is no point in saving it, and
1236 people will be inclined omit it from the CFI. Make sure we
1237 don't warn about that. */
1238 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1239 break;
1240 case SPARC_SP_REGNUM:
1241 reg->how = DWARF2_FRAME_REG_CFA;
1242 break;
1243 case SPARC64_PC_REGNUM:
1244 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1245 reg->loc.offset = 8;
1246 break;
1247 case SPARC64_NPC_REGNUM:
1248 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1249 reg->loc.offset = 12;
1250 break;
1251 }
1252 }
1253
1254 void
1255 sparc64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1256 {
1257 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1258
1259 tdep->pc_regnum = SPARC64_PC_REGNUM;
1260 tdep->npc_regnum = SPARC64_NPC_REGNUM;
1261 tdep->fpu_register_names = sparc64_fpu_register_names;
1262 tdep->fpu_registers_num = ARRAY_SIZE (sparc64_fpu_register_names);
1263 tdep->cp0_register_names = sparc64_cp0_register_names;
1264 tdep->cp0_registers_num = ARRAY_SIZE (sparc64_cp0_register_names);
1265
1266 /* This is what all the fuss is about. */
1267 set_gdbarch_long_bit (gdbarch, 64);
1268 set_gdbarch_long_long_bit (gdbarch, 64);
1269 set_gdbarch_ptr_bit (gdbarch, 64);
1270
1271 set_gdbarch_wchar_bit (gdbarch, 16);
1272 set_gdbarch_wchar_signed (gdbarch, 0);
1273
1274 set_gdbarch_num_regs (gdbarch, SPARC64_NUM_REGS);
1275 set_gdbarch_register_name (gdbarch, sparc64_register_name);
1276 set_gdbarch_register_type (gdbarch, sparc64_register_type);
1277 set_gdbarch_num_pseudo_regs (gdbarch, SPARC64_NUM_PSEUDO_REGS);
1278 set_tdesc_pseudo_register_name (gdbarch, sparc64_pseudo_register_name);
1279 set_tdesc_pseudo_register_type (gdbarch, sparc64_pseudo_register_type);
1280 set_gdbarch_pseudo_register_read (gdbarch, sparc64_pseudo_register_read);
1281 set_gdbarch_pseudo_register_write (gdbarch, sparc64_pseudo_register_write);
1282
1283 /* Register numbers of various important registers. */
1284 set_gdbarch_pc_regnum (gdbarch, SPARC64_PC_REGNUM); /* %pc */
1285
1286 /* Call dummy code. */
1287 set_gdbarch_frame_align (gdbarch, sparc64_frame_align);
1288 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1289 set_gdbarch_push_dummy_code (gdbarch, NULL);
1290 set_gdbarch_push_dummy_call (gdbarch, sparc64_push_dummy_call);
1291
1292 set_gdbarch_return_value (gdbarch, sparc64_return_value);
1293 set_gdbarch_stabs_argument_has_addr
1294 (gdbarch, default_stabs_argument_has_addr);
1295
1296 set_gdbarch_skip_prologue (gdbarch, sparc64_skip_prologue);
1297 set_gdbarch_stack_frame_destroyed_p (gdbarch, sparc_stack_frame_destroyed_p);
1298
1299 /* Hook in the DWARF CFI frame unwinder. */
1300 dwarf2_frame_set_init_reg (gdbarch, sparc64_dwarf2_frame_init_reg);
1301 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1302 StackGhost issues have been resolved. */
1303
1304 frame_unwind_append_unwinder (gdbarch, &sparc64_frame_unwind);
1305 frame_base_set_default (gdbarch, &sparc64_frame_base);
1306 }
1307 \f
1308
1309 /* Helper functions for dealing with register sets. */
1310
1311 #define TSTATE_CWP 0x000000000000001fULL
1312 #define TSTATE_ICC 0x0000000f00000000ULL
1313 #define TSTATE_XCC 0x000000f000000000ULL
1314
1315 #define PSR_S 0x00000080
1316 #define PSR_ICC 0x00f00000
1317 #define PSR_VERS 0x0f000000
1318 #define PSR_IMPL 0xf0000000
1319 #define PSR_V8PLUS 0xff000000
1320 #define PSR_XCC 0x000f0000
1321
1322 void
1323 sparc64_supply_gregset (const struct sparc_gregmap *gregmap,
1324 struct regcache *regcache,
1325 int regnum, const void *gregs)
1326 {
1327 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1328 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1329 int sparc32 = (gdbarch_ptr_bit (gdbarch) == 32);
1330 const gdb_byte *regs = (const gdb_byte *) gregs;
1331 gdb_byte zero[8] = { 0 };
1332 int i;
1333
1334 if (sparc32)
1335 {
1336 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1337 {
1338 int offset = gregmap->r_tstate_offset;
1339 ULONGEST tstate, psr;
1340 gdb_byte buf[4];
1341
1342 tstate = extract_unsigned_integer (regs + offset, 8, byte_order);
1343 psr = ((tstate & TSTATE_CWP) | PSR_S | ((tstate & TSTATE_ICC) >> 12)
1344 | ((tstate & TSTATE_XCC) >> 20) | PSR_V8PLUS);
1345 store_unsigned_integer (buf, 4, byte_order, psr);
1346 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM, buf);
1347 }
1348
1349 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1350 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1351 regs + gregmap->r_pc_offset + 4);
1352
1353 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1354 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1355 regs + gregmap->r_npc_offset + 4);
1356
1357 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1358 {
1359 int offset = gregmap->r_y_offset + 8 - gregmap->r_y_size;
1360 regcache_raw_supply (regcache, SPARC32_Y_REGNUM, regs + offset);
1361 }
1362 }
1363 else
1364 {
1365 if (regnum == SPARC64_STATE_REGNUM || regnum == -1)
1366 regcache_raw_supply (regcache, SPARC64_STATE_REGNUM,
1367 regs + gregmap->r_tstate_offset);
1368
1369 if (regnum == SPARC64_PC_REGNUM || regnum == -1)
1370 regcache_raw_supply (regcache, SPARC64_PC_REGNUM,
1371 regs + gregmap->r_pc_offset);
1372
1373 if (regnum == SPARC64_NPC_REGNUM || regnum == -1)
1374 regcache_raw_supply (regcache, SPARC64_NPC_REGNUM,
1375 regs + gregmap->r_npc_offset);
1376
1377 if (regnum == SPARC64_Y_REGNUM || regnum == -1)
1378 {
1379 gdb_byte buf[8];
1380
1381 memset (buf, 0, 8);
1382 memcpy (buf + 8 - gregmap->r_y_size,
1383 regs + gregmap->r_y_offset, gregmap->r_y_size);
1384 regcache_raw_supply (regcache, SPARC64_Y_REGNUM, buf);
1385 }
1386
1387 if ((regnum == SPARC64_FPRS_REGNUM || regnum == -1)
1388 && gregmap->r_fprs_offset != -1)
1389 regcache_raw_supply (regcache, SPARC64_FPRS_REGNUM,
1390 regs + gregmap->r_fprs_offset);
1391 }
1392
1393 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1394 regcache_raw_supply (regcache, SPARC_G0_REGNUM, &zero);
1395
1396 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1397 {
1398 int offset = gregmap->r_g1_offset;
1399
1400 if (sparc32)
1401 offset += 4;
1402
1403 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1404 {
1405 if (regnum == i || regnum == -1)
1406 regcache_raw_supply (regcache, i, regs + offset);
1407 offset += 8;
1408 }
1409 }
1410
1411 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1412 {
1413 /* Not all of the register set variants include Locals and
1414 Inputs. For those that don't, we read them off the stack. */
1415 if (gregmap->r_l0_offset == -1)
1416 {
1417 ULONGEST sp;
1418
1419 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1420 sparc_supply_rwindow (regcache, sp, regnum);
1421 }
1422 else
1423 {
1424 int offset = gregmap->r_l0_offset;
1425
1426 if (sparc32)
1427 offset += 4;
1428
1429 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1430 {
1431 if (regnum == i || regnum == -1)
1432 regcache_raw_supply (regcache, i, regs + offset);
1433 offset += 8;
1434 }
1435 }
1436 }
1437 }
1438
1439 void
1440 sparc64_collect_gregset (const struct sparc_gregmap *gregmap,
1441 const struct regcache *regcache,
1442 int regnum, void *gregs)
1443 {
1444 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1445 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1446 int sparc32 = (gdbarch_ptr_bit (gdbarch) == 32);
1447 gdb_byte *regs = (gdb_byte *) gregs;
1448 int i;
1449
1450 if (sparc32)
1451 {
1452 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1453 {
1454 int offset = gregmap->r_tstate_offset;
1455 ULONGEST tstate, psr;
1456 gdb_byte buf[8];
1457
1458 tstate = extract_unsigned_integer (regs + offset, 8, byte_order);
1459 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM, buf);
1460 psr = extract_unsigned_integer (buf, 4, byte_order);
1461 tstate |= (psr & PSR_ICC) << 12;
1462 if ((psr & (PSR_VERS | PSR_IMPL)) == PSR_V8PLUS)
1463 tstate |= (psr & PSR_XCC) << 20;
1464 store_unsigned_integer (buf, 8, byte_order, tstate);
1465 memcpy (regs + offset, buf, 8);
1466 }
1467
1468 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1469 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1470 regs + gregmap->r_pc_offset + 4);
1471
1472 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1473 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1474 regs + gregmap->r_npc_offset + 4);
1475
1476 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1477 {
1478 int offset = gregmap->r_y_offset + 8 - gregmap->r_y_size;
1479 regcache_raw_collect (regcache, SPARC32_Y_REGNUM, regs + offset);
1480 }
1481 }
1482 else
1483 {
1484 if (regnum == SPARC64_STATE_REGNUM || regnum == -1)
1485 regcache_raw_collect (regcache, SPARC64_STATE_REGNUM,
1486 regs + gregmap->r_tstate_offset);
1487
1488 if (regnum == SPARC64_PC_REGNUM || regnum == -1)
1489 regcache_raw_collect (regcache, SPARC64_PC_REGNUM,
1490 regs + gregmap->r_pc_offset);
1491
1492 if (regnum == SPARC64_NPC_REGNUM || regnum == -1)
1493 regcache_raw_collect (regcache, SPARC64_NPC_REGNUM,
1494 regs + gregmap->r_npc_offset);
1495
1496 if (regnum == SPARC64_Y_REGNUM || regnum == -1)
1497 {
1498 gdb_byte buf[8];
1499
1500 regcache_raw_collect (regcache, SPARC64_Y_REGNUM, buf);
1501 memcpy (regs + gregmap->r_y_offset,
1502 buf + 8 - gregmap->r_y_size, gregmap->r_y_size);
1503 }
1504
1505 if ((regnum == SPARC64_FPRS_REGNUM || regnum == -1)
1506 && gregmap->r_fprs_offset != -1)
1507 regcache_raw_collect (regcache, SPARC64_FPRS_REGNUM,
1508 regs + gregmap->r_fprs_offset);
1509
1510 }
1511
1512 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1513 {
1514 int offset = gregmap->r_g1_offset;
1515
1516 if (sparc32)
1517 offset += 4;
1518
1519 /* %g0 is always zero. */
1520 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1521 {
1522 if (regnum == i || regnum == -1)
1523 regcache_raw_collect (regcache, i, regs + offset);
1524 offset += 8;
1525 }
1526 }
1527
1528 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1529 {
1530 /* Not all of the register set variants include Locals and
1531 Inputs. For those that don't, we read them off the stack. */
1532 if (gregmap->r_l0_offset != -1)
1533 {
1534 int offset = gregmap->r_l0_offset;
1535
1536 if (sparc32)
1537 offset += 4;
1538
1539 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1540 {
1541 if (regnum == i || regnum == -1)
1542 regcache_raw_collect (regcache, i, regs + offset);
1543 offset += 8;
1544 }
1545 }
1546 }
1547 }
1548
1549 void
1550 sparc64_supply_fpregset (const struct sparc_fpregmap *fpregmap,
1551 struct regcache *regcache,
1552 int regnum, const void *fpregs)
1553 {
1554 int sparc32 = (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 32);
1555 const gdb_byte *regs = (const gdb_byte *) fpregs;
1556 int i;
1557
1558 for (i = 0; i < 32; i++)
1559 {
1560 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1561 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i,
1562 regs + fpregmap->r_f0_offset + (i * 4));
1563 }
1564
1565 if (sparc32)
1566 {
1567 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1568 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM,
1569 regs + fpregmap->r_fsr_offset);
1570 }
1571 else
1572 {
1573 for (i = 0; i < 16; i++)
1574 {
1575 if (regnum == (SPARC64_F32_REGNUM + i) || regnum == -1)
1576 regcache_raw_supply (regcache, SPARC64_F32_REGNUM + i,
1577 (regs + fpregmap->r_f0_offset
1578 + (32 * 4) + (i * 8)));
1579 }
1580
1581 if (regnum == SPARC64_FSR_REGNUM || regnum == -1)
1582 regcache_raw_supply (regcache, SPARC64_FSR_REGNUM,
1583 regs + fpregmap->r_fsr_offset);
1584 }
1585 }
1586
1587 void
1588 sparc64_collect_fpregset (const struct sparc_fpregmap *fpregmap,
1589 const struct regcache *regcache,
1590 int regnum, void *fpregs)
1591 {
1592 int sparc32 = (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 32);
1593 gdb_byte *regs = (gdb_byte *) fpregs;
1594 int i;
1595
1596 for (i = 0; i < 32; i++)
1597 {
1598 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1599 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i,
1600 regs + fpregmap->r_f0_offset + (i * 4));
1601 }
1602
1603 if (sparc32)
1604 {
1605 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1606 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM,
1607 regs + fpregmap->r_fsr_offset);
1608 }
1609 else
1610 {
1611 for (i = 0; i < 16; i++)
1612 {
1613 if (regnum == (SPARC64_F32_REGNUM + i) || regnum == -1)
1614 regcache_raw_collect (regcache, SPARC64_F32_REGNUM + i,
1615 (regs + fpregmap->r_f0_offset
1616 + (32 * 4) + (i * 8)));
1617 }
1618
1619 if (regnum == SPARC64_FSR_REGNUM || regnum == -1)
1620 regcache_raw_collect (regcache, SPARC64_FSR_REGNUM,
1621 regs + fpregmap->r_fsr_offset);
1622 }
1623 }
1624
1625 const struct sparc_fpregmap sparc64_bsd_fpregmap =
1626 {
1627 0 * 8, /* %f0 */
1628 32 * 8, /* %fsr */
1629 };
This page took 0.066226 seconds and 5 git commands to generate.