gdb: add back declarations for _initialize functions
[deliverable/binutils-gdb.git] / gdb / sparc64-tdep.c
1 /* Target-dependent code for UltraSPARC.
2
3 Copyright (C) 2003-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "dwarf2-frame.h"
23 #include "frame.h"
24 #include "frame-base.h"
25 #include "frame-unwind.h"
26 #include "gdbcore.h"
27 #include "gdbtypes.h"
28 #include "inferior.h"
29 #include "symtab.h"
30 #include "objfiles.h"
31 #include "osabi.h"
32 #include "regcache.h"
33 #include "target-descriptions.h"
34 #include "target.h"
35 #include "value.h"
36
37 #include "sparc64-tdep.h"
38
39 /* This file implements the SPARC 64-bit ABI as defined by the
40 section "Low-Level System Information" of the SPARC Compliance
41 Definition (SCD) 2.4.1, which is the 64-bit System V psABI for
42 SPARC. */
43
44 /* Please use the sparc32_-prefix for 32-bit specific code, the
45 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
46 code can handle both. */
47 \f
48 /* The M7 processor supports an Application Data Integrity (ADI) feature
49 that detects invalid data accesses. When software allocates memory and
50 enables ADI on the allocated memory, it chooses a 4-bit version number,
51 sets the version in the upper 4 bits of the 64-bit pointer to that data,
52 and stores the 4-bit version in every cacheline of the object. Hardware
53 saves the latter in spare bits in the cache and memory hierarchy. On each
54 load and store, the processor compares the upper 4 VA (virtual address) bits
55 to the cacheline's version. If there is a mismatch, the processor generates
56 a version mismatch trap which can be either precise or disrupting.
57 The trap is an error condition which the kernel delivers to the process
58 as a SIGSEGV signal.
59
60 The upper 4 bits of the VA represent a version and are not part of the
61 true address. The processor clears these bits and sign extends bit 59
62 to generate the true address.
63
64 Note that 32-bit applications cannot use ADI. */
65
66
67 #include <algorithm>
68 #include "cli/cli-utils.h"
69 #include "gdbcmd.h"
70 #include "auxv.h"
71
72 #define MAX_PROC_NAME_SIZE sizeof("/proc/99999/lwp/9999/adi/lstatus")
73
74 /* ELF Auxiliary vectors */
75 #ifndef AT_ADI_BLKSZ
76 #define AT_ADI_BLKSZ 34
77 #endif
78 #ifndef AT_ADI_NBITS
79 #define AT_ADI_NBITS 35
80 #endif
81 #ifndef AT_ADI_UEONADI
82 #define AT_ADI_UEONADI 36
83 #endif
84
85 /* ADI command list. */
86 static struct cmd_list_element *sparc64adilist = NULL;
87
88 /* ADI stat settings. */
89 typedef struct
90 {
91 /* The ADI block size. */
92 unsigned long blksize;
93
94 /* Number of bits used for an ADI version tag which can be
95 used together with the shift value for an ADI version tag
96 to encode or extract the ADI version value in a pointer. */
97 unsigned long nbits;
98
99 /* The maximum ADI version tag value supported. */
100 int max_version;
101
102 /* ADI version tag file. */
103 int tag_fd = 0;
104
105 /* ADI availability check has been done. */
106 bool checked_avail = false;
107
108 /* ADI is available. */
109 bool is_avail = false;
110
111 } adi_stat_t;
112
113 /* Per-process ADI stat info. */
114
115 typedef struct sparc64_adi_info
116 {
117 sparc64_adi_info (pid_t pid_)
118 : pid (pid_)
119 {}
120
121 /* The process identifier. */
122 pid_t pid;
123
124 /* The ADI stat. */
125 adi_stat_t stat = {};
126
127 } sparc64_adi_info;
128
129 static std::forward_list<sparc64_adi_info> adi_proc_list;
130
131
132 /* Get ADI info for process PID, creating one if it doesn't exist. */
133
134 static sparc64_adi_info *
135 get_adi_info_proc (pid_t pid)
136 {
137 auto found = std::find_if (adi_proc_list.begin (), adi_proc_list.end (),
138 [&pid] (const sparc64_adi_info &info)
139 {
140 return info.pid == pid;
141 });
142
143 if (found == adi_proc_list.end ())
144 {
145 adi_proc_list.emplace_front (pid);
146 return &adi_proc_list.front ();
147 }
148 else
149 {
150 return &(*found);
151 }
152 }
153
154 static adi_stat_t
155 get_adi_info (pid_t pid)
156 {
157 sparc64_adi_info *proc;
158
159 proc = get_adi_info_proc (pid);
160 return proc->stat;
161 }
162
163 /* Is called when GDB is no longer debugging process PID. It
164 deletes data structure that keeps track of the ADI stat. */
165
166 void
167 sparc64_forget_process (pid_t pid)
168 {
169 int target_errno;
170
171 for (auto pit = adi_proc_list.before_begin (),
172 it = std::next (pit);
173 it != adi_proc_list.end ();
174 )
175 {
176 if ((*it).pid == pid)
177 {
178 if ((*it).stat.tag_fd > 0)
179 target_fileio_close ((*it).stat.tag_fd, &target_errno);
180 adi_proc_list.erase_after (pit);
181 break;
182 }
183 else
184 pit = it++;
185 }
186
187 }
188
189 static void
190 info_adi_command (const char *args, int from_tty)
191 {
192 printf_unfiltered ("\"adi\" must be followed by \"examine\" "
193 "or \"assign\".\n");
194 help_list (sparc64adilist, "adi ", all_commands, gdb_stdout);
195 }
196
197 /* Read attributes of a maps entry in /proc/[pid]/adi/maps. */
198
199 static void
200 read_maps_entry (const char *line,
201 ULONGEST *addr, ULONGEST *endaddr)
202 {
203 const char *p = line;
204
205 *addr = strtoulst (p, &p, 16);
206 if (*p == '-')
207 p++;
208
209 *endaddr = strtoulst (p, &p, 16);
210 }
211
212 /* Check if ADI is available. */
213
214 static bool
215 adi_available (void)
216 {
217 pid_t pid = inferior_ptid.pid ();
218 sparc64_adi_info *proc = get_adi_info_proc (pid);
219 CORE_ADDR value;
220
221 if (proc->stat.checked_avail)
222 return proc->stat.is_avail;
223
224 proc->stat.checked_avail = true;
225 if (target_auxv_search (current_top_target (), AT_ADI_BLKSZ, &value) <= 0)
226 return false;
227 proc->stat.blksize = value;
228 target_auxv_search (current_top_target (), AT_ADI_NBITS, &value);
229 proc->stat.nbits = value;
230 proc->stat.max_version = (1 << proc->stat.nbits) - 2;
231 proc->stat.is_avail = true;
232
233 return proc->stat.is_avail;
234 }
235
236 /* Normalize a versioned address - a VA with ADI bits (63-60) set. */
237
238 static CORE_ADDR
239 adi_normalize_address (CORE_ADDR addr)
240 {
241 adi_stat_t ast = get_adi_info (inferior_ptid.pid ());
242
243 if (ast.nbits)
244 {
245 /* Clear upper bits. */
246 addr &= ((uint64_t) -1) >> ast.nbits;
247
248 /* Sign extend. */
249 CORE_ADDR signbit = (uint64_t) 1 << (64 - ast.nbits - 1);
250 return (addr ^ signbit) - signbit;
251 }
252 return addr;
253 }
254
255 /* Align a normalized address - a VA with bit 59 sign extended into
256 ADI bits. */
257
258 static CORE_ADDR
259 adi_align_address (CORE_ADDR naddr)
260 {
261 adi_stat_t ast = get_adi_info (inferior_ptid.pid ());
262
263 return (naddr - (naddr % ast.blksize)) / ast.blksize;
264 }
265
266 /* Convert a byte count to count at a ratio of 1:adi_blksz. */
267
268 static int
269 adi_convert_byte_count (CORE_ADDR naddr, int nbytes, CORE_ADDR locl)
270 {
271 adi_stat_t ast = get_adi_info (inferior_ptid.pid ());
272
273 return ((naddr + nbytes + ast.blksize - 1) / ast.blksize) - locl;
274 }
275
276 /* The /proc/[pid]/adi/tags file, which allows gdb to get/set ADI
277 version in a target process, maps linearly to the address space
278 of the target process at a ratio of 1:adi_blksz.
279
280 A read (or write) at offset K in the file returns (or modifies)
281 the ADI version tag stored in the cacheline containing address
282 K * adi_blksz, encoded as 1 version tag per byte. The allowed
283 version tag values are between 0 and adi_stat.max_version. */
284
285 static int
286 adi_tag_fd (void)
287 {
288 pid_t pid = inferior_ptid.pid ();
289 sparc64_adi_info *proc = get_adi_info_proc (pid);
290
291 if (proc->stat.tag_fd != 0)
292 return proc->stat.tag_fd;
293
294 char cl_name[MAX_PROC_NAME_SIZE];
295 snprintf (cl_name, sizeof(cl_name), "/proc/%ld/adi/tags", (long) pid);
296 int target_errno;
297 proc->stat.tag_fd = target_fileio_open (NULL, cl_name, O_RDWR|O_EXCL,
298 0, &target_errno);
299 return proc->stat.tag_fd;
300 }
301
302 /* Check if an address set is ADI enabled, using /proc/[pid]/adi/maps
303 which was exported by the kernel and contains the currently ADI
304 mapped memory regions and their access permissions. */
305
306 static bool
307 adi_is_addr_mapped (CORE_ADDR vaddr, size_t cnt)
308 {
309 char filename[MAX_PROC_NAME_SIZE];
310 size_t i = 0;
311
312 pid_t pid = inferior_ptid.pid ();
313 snprintf (filename, sizeof filename, "/proc/%ld/adi/maps", (long) pid);
314 gdb::unique_xmalloc_ptr<char> data
315 = target_fileio_read_stralloc (NULL, filename);
316 if (data)
317 {
318 adi_stat_t adi_stat = get_adi_info (pid);
319 char *saveptr;
320 for (char *line = strtok_r (data.get (), "\n", &saveptr);
321 line;
322 line = strtok_r (NULL, "\n", &saveptr))
323 {
324 ULONGEST addr, endaddr;
325
326 read_maps_entry (line, &addr, &endaddr);
327
328 while (((vaddr + i) * adi_stat.blksize) >= addr
329 && ((vaddr + i) * adi_stat.blksize) < endaddr)
330 {
331 if (++i == cnt)
332 return true;
333 }
334 }
335 }
336 else
337 warning (_("unable to open /proc file '%s'"), filename);
338
339 return false;
340 }
341
342 /* Read ADI version tag value for memory locations starting at "VADDR"
343 for "SIZE" number of bytes. */
344
345 static int
346 adi_read_versions (CORE_ADDR vaddr, size_t size, gdb_byte *tags)
347 {
348 int fd = adi_tag_fd ();
349 if (fd == -1)
350 return -1;
351
352 if (!adi_is_addr_mapped (vaddr, size))
353 {
354 adi_stat_t ast = get_adi_info (inferior_ptid.pid ());
355 error(_("Address at %s is not in ADI maps"),
356 paddress (target_gdbarch (), vaddr * ast.blksize));
357 }
358
359 int target_errno;
360 return target_fileio_pread (fd, tags, size, vaddr, &target_errno);
361 }
362
363 /* Write ADI version tag for memory locations starting at "VADDR" for
364 "SIZE" number of bytes to "TAGS". */
365
366 static int
367 adi_write_versions (CORE_ADDR vaddr, size_t size, unsigned char *tags)
368 {
369 int fd = adi_tag_fd ();
370 if (fd == -1)
371 return -1;
372
373 if (!adi_is_addr_mapped (vaddr, size))
374 {
375 adi_stat_t ast = get_adi_info (inferior_ptid.pid ());
376 error(_("Address at %s is not in ADI maps"),
377 paddress (target_gdbarch (), vaddr * ast.blksize));
378 }
379
380 int target_errno;
381 return target_fileio_pwrite (fd, tags, size, vaddr, &target_errno);
382 }
383
384 /* Print ADI version tag value in "TAGS" for memory locations starting
385 at "VADDR" with number of "CNT". */
386
387 static void
388 adi_print_versions (CORE_ADDR vaddr, size_t cnt, gdb_byte *tags)
389 {
390 int v_idx = 0;
391 const int maxelts = 8; /* # of elements per line */
392
393 adi_stat_t adi_stat = get_adi_info (inferior_ptid.pid ());
394
395 while (cnt > 0)
396 {
397 QUIT;
398 printf_filtered ("%s:\t",
399 paddress (target_gdbarch (), vaddr * adi_stat.blksize));
400 for (int i = maxelts; i > 0 && cnt > 0; i--, cnt--)
401 {
402 if (tags[v_idx] == 0xff) /* no version tag */
403 printf_filtered ("-");
404 else
405 printf_filtered ("%1X", tags[v_idx]);
406 if (cnt > 1)
407 printf_filtered (" ");
408 ++v_idx;
409 }
410 printf_filtered ("\n");
411 vaddr += maxelts;
412 }
413 }
414
415 static void
416 do_examine (CORE_ADDR start, int bcnt)
417 {
418 CORE_ADDR vaddr = adi_normalize_address (start);
419
420 CORE_ADDR vstart = adi_align_address (vaddr);
421 int cnt = adi_convert_byte_count (vaddr, bcnt, vstart);
422 gdb::def_vector<gdb_byte> buf (cnt);
423 int read_cnt = adi_read_versions (vstart, cnt, buf.data ());
424 if (read_cnt == -1)
425 error (_("No ADI information"));
426 else if (read_cnt < cnt)
427 error(_("No ADI information at %s"), paddress (target_gdbarch (), vaddr));
428
429 adi_print_versions (vstart, cnt, buf.data ());
430 }
431
432 static void
433 do_assign (CORE_ADDR start, size_t bcnt, int version)
434 {
435 CORE_ADDR vaddr = adi_normalize_address (start);
436
437 CORE_ADDR vstart = adi_align_address (vaddr);
438 int cnt = adi_convert_byte_count (vaddr, bcnt, vstart);
439 std::vector<unsigned char> buf (cnt, version);
440 int set_cnt = adi_write_versions (vstart, cnt, buf.data ());
441
442 if (set_cnt == -1)
443 error (_("No ADI information"));
444 else if (set_cnt < cnt)
445 error(_("No ADI information at %s"), paddress (target_gdbarch (), vaddr));
446
447 }
448
449 /* ADI examine version tag command.
450
451 Command syntax:
452
453 adi (examine|x)[/COUNT] [ADDR] */
454
455 static void
456 adi_examine_command (const char *args, int from_tty)
457 {
458 /* make sure program is active and adi is available */
459 if (!target_has_execution)
460 error (_("ADI command requires a live process/thread"));
461
462 if (!adi_available ())
463 error (_("No ADI information"));
464
465 int cnt = 1;
466 const char *p = args;
467 if (p && *p == '/')
468 {
469 p++;
470 cnt = get_number (&p);
471 }
472
473 CORE_ADDR next_address = 0;
474 if (p != 0 && *p != 0)
475 next_address = parse_and_eval_address (p);
476 if (!cnt || !next_address)
477 error (_("Usage: adi examine|x[/COUNT] [ADDR]"));
478
479 do_examine (next_address, cnt);
480 }
481
482 /* ADI assign version tag command.
483
484 Command syntax:
485
486 adi (assign|a)[/COUNT] ADDR = VERSION */
487
488 static void
489 adi_assign_command (const char *args, int from_tty)
490 {
491 static const char *adi_usage
492 = N_("Usage: adi assign|a[/COUNT] ADDR = VERSION");
493
494 /* make sure program is active and adi is available */
495 if (!target_has_execution)
496 error (_("ADI command requires a live process/thread"));
497
498 if (!adi_available ())
499 error (_("No ADI information"));
500
501 const char *exp = args;
502 if (exp == 0)
503 error_no_arg (_(adi_usage));
504
505 char *q = (char *) strchr (exp, '=');
506 if (q)
507 *q++ = 0;
508 else
509 error ("%s", _(adi_usage));
510
511 size_t cnt = 1;
512 const char *p = args;
513 if (exp && *exp == '/')
514 {
515 p = exp + 1;
516 cnt = get_number (&p);
517 }
518
519 CORE_ADDR next_address = 0;
520 if (p != 0 && *p != 0)
521 next_address = parse_and_eval_address (p);
522 else
523 error ("%s", _(adi_usage));
524
525 int version = 0;
526 if (q != NULL) /* parse version tag */
527 {
528 adi_stat_t ast = get_adi_info (inferior_ptid.pid ());
529 version = parse_and_eval_long (q);
530 if (version < 0 || version > ast.max_version)
531 error (_("Invalid ADI version tag %d"), version);
532 }
533
534 do_assign (next_address, cnt, version);
535 }
536
537 void _initialize_sparc64_adi_tdep ();
538 void
539 _initialize_sparc64_adi_tdep ()
540 {
541
542 add_prefix_cmd ("adi", class_support, info_adi_command,
543 _("ADI version related commands."),
544 &sparc64adilist, "adi ", 0, &cmdlist);
545 add_cmd ("examine", class_support, adi_examine_command,
546 _("Examine ADI versions."), &sparc64adilist);
547 add_alias_cmd ("x", "examine", no_class, 1, &sparc64adilist);
548 add_cmd ("assign", class_support, adi_assign_command,
549 _("Assign ADI versions."), &sparc64adilist);
550
551 }
552 \f
553
554 /* The functions on this page are intended to be used to classify
555 function arguments. */
556
557 /* Check whether TYPE is "Integral or Pointer". */
558
559 static int
560 sparc64_integral_or_pointer_p (const struct type *type)
561 {
562 switch (TYPE_CODE (type))
563 {
564 case TYPE_CODE_INT:
565 case TYPE_CODE_BOOL:
566 case TYPE_CODE_CHAR:
567 case TYPE_CODE_ENUM:
568 case TYPE_CODE_RANGE:
569 {
570 int len = TYPE_LENGTH (type);
571 gdb_assert (len == 1 || len == 2 || len == 4 || len == 8);
572 }
573 return 1;
574 case TYPE_CODE_PTR:
575 case TYPE_CODE_REF:
576 case TYPE_CODE_RVALUE_REF:
577 {
578 int len = TYPE_LENGTH (type);
579 gdb_assert (len == 8);
580 }
581 return 1;
582 default:
583 break;
584 }
585
586 return 0;
587 }
588
589 /* Check whether TYPE is "Floating". */
590
591 static int
592 sparc64_floating_p (const struct type *type)
593 {
594 switch (TYPE_CODE (type))
595 {
596 case TYPE_CODE_FLT:
597 {
598 int len = TYPE_LENGTH (type);
599 gdb_assert (len == 4 || len == 8 || len == 16);
600 }
601 return 1;
602 default:
603 break;
604 }
605
606 return 0;
607 }
608
609 /* Check whether TYPE is "Complex Floating". */
610
611 static int
612 sparc64_complex_floating_p (const struct type *type)
613 {
614 switch (TYPE_CODE (type))
615 {
616 case TYPE_CODE_COMPLEX:
617 {
618 int len = TYPE_LENGTH (type);
619 gdb_assert (len == 8 || len == 16 || len == 32);
620 }
621 return 1;
622 default:
623 break;
624 }
625
626 return 0;
627 }
628
629 /* Check whether TYPE is "Structure or Union".
630
631 In terms of Ada subprogram calls, arrays are treated the same as
632 struct and union types. So this function also returns non-zero
633 for array types. */
634
635 static int
636 sparc64_structure_or_union_p (const struct type *type)
637 {
638 switch (TYPE_CODE (type))
639 {
640 case TYPE_CODE_STRUCT:
641 case TYPE_CODE_UNION:
642 case TYPE_CODE_ARRAY:
643 return 1;
644 default:
645 break;
646 }
647
648 return 0;
649 }
650 \f
651
652 /* Construct types for ISA-specific registers. */
653
654 static struct type *
655 sparc64_pstate_type (struct gdbarch *gdbarch)
656 {
657 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
658
659 if (!tdep->sparc64_pstate_type)
660 {
661 struct type *type;
662
663 type = arch_flags_type (gdbarch, "builtin_type_sparc64_pstate", 64);
664 append_flags_type_flag (type, 0, "AG");
665 append_flags_type_flag (type, 1, "IE");
666 append_flags_type_flag (type, 2, "PRIV");
667 append_flags_type_flag (type, 3, "AM");
668 append_flags_type_flag (type, 4, "PEF");
669 append_flags_type_flag (type, 5, "RED");
670 append_flags_type_flag (type, 8, "TLE");
671 append_flags_type_flag (type, 9, "CLE");
672 append_flags_type_flag (type, 10, "PID0");
673 append_flags_type_flag (type, 11, "PID1");
674
675 tdep->sparc64_pstate_type = type;
676 }
677
678 return tdep->sparc64_pstate_type;
679 }
680
681 static struct type *
682 sparc64_ccr_type (struct gdbarch *gdbarch)
683 {
684 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
685
686 if (tdep->sparc64_ccr_type == NULL)
687 {
688 struct type *type;
689
690 type = arch_flags_type (gdbarch, "builtin_type_sparc64_ccr", 64);
691 append_flags_type_flag (type, 0, "icc.c");
692 append_flags_type_flag (type, 1, "icc.v");
693 append_flags_type_flag (type, 2, "icc.z");
694 append_flags_type_flag (type, 3, "icc.n");
695 append_flags_type_flag (type, 4, "xcc.c");
696 append_flags_type_flag (type, 5, "xcc.v");
697 append_flags_type_flag (type, 6, "xcc.z");
698 append_flags_type_flag (type, 7, "xcc.n");
699
700 tdep->sparc64_ccr_type = type;
701 }
702
703 return tdep->sparc64_ccr_type;
704 }
705
706 static struct type *
707 sparc64_fsr_type (struct gdbarch *gdbarch)
708 {
709 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
710
711 if (!tdep->sparc64_fsr_type)
712 {
713 struct type *type;
714
715 type = arch_flags_type (gdbarch, "builtin_type_sparc64_fsr", 64);
716 append_flags_type_flag (type, 0, "NXC");
717 append_flags_type_flag (type, 1, "DZC");
718 append_flags_type_flag (type, 2, "UFC");
719 append_flags_type_flag (type, 3, "OFC");
720 append_flags_type_flag (type, 4, "NVC");
721 append_flags_type_flag (type, 5, "NXA");
722 append_flags_type_flag (type, 6, "DZA");
723 append_flags_type_flag (type, 7, "UFA");
724 append_flags_type_flag (type, 8, "OFA");
725 append_flags_type_flag (type, 9, "NVA");
726 append_flags_type_flag (type, 22, "NS");
727 append_flags_type_flag (type, 23, "NXM");
728 append_flags_type_flag (type, 24, "DZM");
729 append_flags_type_flag (type, 25, "UFM");
730 append_flags_type_flag (type, 26, "OFM");
731 append_flags_type_flag (type, 27, "NVM");
732
733 tdep->sparc64_fsr_type = type;
734 }
735
736 return tdep->sparc64_fsr_type;
737 }
738
739 static struct type *
740 sparc64_fprs_type (struct gdbarch *gdbarch)
741 {
742 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
743
744 if (!tdep->sparc64_fprs_type)
745 {
746 struct type *type;
747
748 type = arch_flags_type (gdbarch, "builtin_type_sparc64_fprs", 64);
749 append_flags_type_flag (type, 0, "DL");
750 append_flags_type_flag (type, 1, "DU");
751 append_flags_type_flag (type, 2, "FEF");
752
753 tdep->sparc64_fprs_type = type;
754 }
755
756 return tdep->sparc64_fprs_type;
757 }
758
759
760 /* Register information. */
761 #define SPARC64_FPU_REGISTERS \
762 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
763 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
764 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
765 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
766 "f32", "f34", "f36", "f38", "f40", "f42", "f44", "f46", \
767 "f48", "f50", "f52", "f54", "f56", "f58", "f60", "f62"
768 #define SPARC64_CP0_REGISTERS \
769 "pc", "npc", \
770 /* FIXME: Give "state" a name until we start using register groups. */ \
771 "state", \
772 "fsr", \
773 "fprs", \
774 "y"
775
776 static const char *sparc64_fpu_register_names[] = { SPARC64_FPU_REGISTERS };
777 static const char *sparc64_cp0_register_names[] = { SPARC64_CP0_REGISTERS };
778
779 static const char *sparc64_register_names[] =
780 {
781 SPARC_CORE_REGISTERS,
782 SPARC64_FPU_REGISTERS,
783 SPARC64_CP0_REGISTERS
784 };
785
786 /* Total number of registers. */
787 #define SPARC64_NUM_REGS ARRAY_SIZE (sparc64_register_names)
788
789 /* We provide the aliases %d0..%d62 and %q0..%q60 for the floating
790 registers as "psuedo" registers. */
791
792 static const char *sparc64_pseudo_register_names[] =
793 {
794 "cwp", "pstate", "asi", "ccr",
795
796 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
797 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30",
798 "d32", "d34", "d36", "d38", "d40", "d42", "d44", "d46",
799 "d48", "d50", "d52", "d54", "d56", "d58", "d60", "d62",
800
801 "q0", "q4", "q8", "q12", "q16", "q20", "q24", "q28",
802 "q32", "q36", "q40", "q44", "q48", "q52", "q56", "q60",
803 };
804
805 /* Total number of pseudo registers. */
806 #define SPARC64_NUM_PSEUDO_REGS ARRAY_SIZE (sparc64_pseudo_register_names)
807
808 /* Return the name of pseudo register REGNUM. */
809
810 static const char *
811 sparc64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
812 {
813 regnum -= gdbarch_num_regs (gdbarch);
814
815 if (regnum < SPARC64_NUM_PSEUDO_REGS)
816 return sparc64_pseudo_register_names[regnum];
817
818 internal_error (__FILE__, __LINE__,
819 _("sparc64_pseudo_register_name: bad register number %d"),
820 regnum);
821 }
822
823 /* Return the name of register REGNUM. */
824
825 static const char *
826 sparc64_register_name (struct gdbarch *gdbarch, int regnum)
827 {
828 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
829 return tdesc_register_name (gdbarch, regnum);
830
831 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
832 return sparc64_register_names[regnum];
833
834 return sparc64_pseudo_register_name (gdbarch, regnum);
835 }
836
837 /* Return the GDB type object for the "standard" data type of data in
838 pseudo register REGNUM. */
839
840 static struct type *
841 sparc64_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
842 {
843 regnum -= gdbarch_num_regs (gdbarch);
844
845 if (regnum == SPARC64_CWP_REGNUM)
846 return builtin_type (gdbarch)->builtin_int64;
847 if (regnum == SPARC64_PSTATE_REGNUM)
848 return sparc64_pstate_type (gdbarch);
849 if (regnum == SPARC64_ASI_REGNUM)
850 return builtin_type (gdbarch)->builtin_int64;
851 if (regnum == SPARC64_CCR_REGNUM)
852 return sparc64_ccr_type (gdbarch);
853 if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D62_REGNUM)
854 return builtin_type (gdbarch)->builtin_double;
855 if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q60_REGNUM)
856 return builtin_type (gdbarch)->builtin_long_double;
857
858 internal_error (__FILE__, __LINE__,
859 _("sparc64_pseudo_register_type: bad register number %d"),
860 regnum);
861 }
862
863 /* Return the GDB type object for the "standard" data type of data in
864 register REGNUM. */
865
866 static struct type *
867 sparc64_register_type (struct gdbarch *gdbarch, int regnum)
868 {
869 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
870 return tdesc_register_type (gdbarch, regnum);
871
872 /* Raw registers. */
873 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
874 return builtin_type (gdbarch)->builtin_data_ptr;
875 if (regnum >= SPARC_G0_REGNUM && regnum <= SPARC_I7_REGNUM)
876 return builtin_type (gdbarch)->builtin_int64;
877 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
878 return builtin_type (gdbarch)->builtin_float;
879 if (regnum >= SPARC64_F32_REGNUM && regnum <= SPARC64_F62_REGNUM)
880 return builtin_type (gdbarch)->builtin_double;
881 if (regnum == SPARC64_PC_REGNUM || regnum == SPARC64_NPC_REGNUM)
882 return builtin_type (gdbarch)->builtin_func_ptr;
883 /* This raw register contains the contents of %cwp, %pstate, %asi
884 and %ccr as laid out in a %tstate register. */
885 if (regnum == SPARC64_STATE_REGNUM)
886 return builtin_type (gdbarch)->builtin_int64;
887 if (regnum == SPARC64_FSR_REGNUM)
888 return sparc64_fsr_type (gdbarch);
889 if (regnum == SPARC64_FPRS_REGNUM)
890 return sparc64_fprs_type (gdbarch);
891 /* "Although Y is a 64-bit register, its high-order 32 bits are
892 reserved and always read as 0." */
893 if (regnum == SPARC64_Y_REGNUM)
894 return builtin_type (gdbarch)->builtin_int64;
895
896 /* Pseudo registers. */
897 if (regnum >= gdbarch_num_regs (gdbarch))
898 return sparc64_pseudo_register_type (gdbarch, regnum);
899
900 internal_error (__FILE__, __LINE__, _("invalid regnum"));
901 }
902
903 static enum register_status
904 sparc64_pseudo_register_read (struct gdbarch *gdbarch,
905 readable_regcache *regcache,
906 int regnum, gdb_byte *buf)
907 {
908 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
909 enum register_status status;
910
911 regnum -= gdbarch_num_regs (gdbarch);
912
913 if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D30_REGNUM)
914 {
915 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC64_D0_REGNUM);
916 status = regcache->raw_read (regnum, buf);
917 if (status == REG_VALID)
918 status = regcache->raw_read (regnum + 1, buf + 4);
919 return status;
920 }
921 else if (regnum >= SPARC64_D32_REGNUM && regnum <= SPARC64_D62_REGNUM)
922 {
923 regnum = SPARC64_F32_REGNUM + (regnum - SPARC64_D32_REGNUM);
924 return regcache->raw_read (regnum, buf);
925 }
926 else if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q28_REGNUM)
927 {
928 regnum = SPARC_F0_REGNUM + 4 * (regnum - SPARC64_Q0_REGNUM);
929
930 status = regcache->raw_read (regnum, buf);
931 if (status == REG_VALID)
932 status = regcache->raw_read (regnum + 1, buf + 4);
933 if (status == REG_VALID)
934 status = regcache->raw_read (regnum + 2, buf + 8);
935 if (status == REG_VALID)
936 status = regcache->raw_read (regnum + 3, buf + 12);
937
938 return status;
939 }
940 else if (regnum >= SPARC64_Q32_REGNUM && regnum <= SPARC64_Q60_REGNUM)
941 {
942 regnum = SPARC64_F32_REGNUM + 2 * (regnum - SPARC64_Q32_REGNUM);
943
944 status = regcache->raw_read (regnum, buf);
945 if (status == REG_VALID)
946 status = regcache->raw_read (regnum + 1, buf + 8);
947
948 return status;
949 }
950 else if (regnum == SPARC64_CWP_REGNUM
951 || regnum == SPARC64_PSTATE_REGNUM
952 || regnum == SPARC64_ASI_REGNUM
953 || regnum == SPARC64_CCR_REGNUM)
954 {
955 ULONGEST state;
956
957 status = regcache->raw_read (SPARC64_STATE_REGNUM, &state);
958 if (status != REG_VALID)
959 return status;
960
961 switch (regnum)
962 {
963 case SPARC64_CWP_REGNUM:
964 state = (state >> 0) & ((1 << 5) - 1);
965 break;
966 case SPARC64_PSTATE_REGNUM:
967 state = (state >> 8) & ((1 << 12) - 1);
968 break;
969 case SPARC64_ASI_REGNUM:
970 state = (state >> 24) & ((1 << 8) - 1);
971 break;
972 case SPARC64_CCR_REGNUM:
973 state = (state >> 32) & ((1 << 8) - 1);
974 break;
975 }
976 store_unsigned_integer (buf, 8, byte_order, state);
977 }
978
979 return REG_VALID;
980 }
981
982 static void
983 sparc64_pseudo_register_write (struct gdbarch *gdbarch,
984 struct regcache *regcache,
985 int regnum, const gdb_byte *buf)
986 {
987 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
988
989 regnum -= gdbarch_num_regs (gdbarch);
990
991 if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D30_REGNUM)
992 {
993 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC64_D0_REGNUM);
994 regcache->raw_write (regnum, buf);
995 regcache->raw_write (regnum + 1, buf + 4);
996 }
997 else if (regnum >= SPARC64_D32_REGNUM && regnum <= SPARC64_D62_REGNUM)
998 {
999 regnum = SPARC64_F32_REGNUM + (regnum - SPARC64_D32_REGNUM);
1000 regcache->raw_write (regnum, buf);
1001 }
1002 else if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q28_REGNUM)
1003 {
1004 regnum = SPARC_F0_REGNUM + 4 * (regnum - SPARC64_Q0_REGNUM);
1005 regcache->raw_write (regnum, buf);
1006 regcache->raw_write (regnum + 1, buf + 4);
1007 regcache->raw_write (regnum + 2, buf + 8);
1008 regcache->raw_write (regnum + 3, buf + 12);
1009 }
1010 else if (regnum >= SPARC64_Q32_REGNUM && regnum <= SPARC64_Q60_REGNUM)
1011 {
1012 regnum = SPARC64_F32_REGNUM + 2 * (regnum - SPARC64_Q32_REGNUM);
1013 regcache->raw_write (regnum, buf);
1014 regcache->raw_write (regnum + 1, buf + 8);
1015 }
1016 else if (regnum == SPARC64_CWP_REGNUM
1017 || regnum == SPARC64_PSTATE_REGNUM
1018 || regnum == SPARC64_ASI_REGNUM
1019 || regnum == SPARC64_CCR_REGNUM)
1020 {
1021 ULONGEST state, bits;
1022
1023 regcache_raw_read_unsigned (regcache, SPARC64_STATE_REGNUM, &state);
1024 bits = extract_unsigned_integer (buf, 8, byte_order);
1025 switch (regnum)
1026 {
1027 case SPARC64_CWP_REGNUM:
1028 state |= ((bits & ((1 << 5) - 1)) << 0);
1029 break;
1030 case SPARC64_PSTATE_REGNUM:
1031 state |= ((bits & ((1 << 12) - 1)) << 8);
1032 break;
1033 case SPARC64_ASI_REGNUM:
1034 state |= ((bits & ((1 << 8) - 1)) << 24);
1035 break;
1036 case SPARC64_CCR_REGNUM:
1037 state |= ((bits & ((1 << 8) - 1)) << 32);
1038 break;
1039 }
1040 regcache_raw_write_unsigned (regcache, SPARC64_STATE_REGNUM, state);
1041 }
1042 }
1043 \f
1044
1045 /* Return PC of first real instruction of the function starting at
1046 START_PC. */
1047
1048 static CORE_ADDR
1049 sparc64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1050 {
1051 struct symtab_and_line sal;
1052 CORE_ADDR func_start, func_end;
1053 struct sparc_frame_cache cache;
1054
1055 /* This is the preferred method, find the end of the prologue by
1056 using the debugging information. */
1057 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
1058 {
1059 sal = find_pc_line (func_start, 0);
1060
1061 if (sal.end < func_end
1062 && start_pc <= sal.end)
1063 return sal.end;
1064 }
1065
1066 return sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffULL,
1067 &cache);
1068 }
1069
1070 /* Normal frames. */
1071
1072 static struct sparc_frame_cache *
1073 sparc64_frame_cache (struct frame_info *this_frame, void **this_cache)
1074 {
1075 return sparc_frame_cache (this_frame, this_cache);
1076 }
1077
1078 static void
1079 sparc64_frame_this_id (struct frame_info *this_frame, void **this_cache,
1080 struct frame_id *this_id)
1081 {
1082 struct sparc_frame_cache *cache =
1083 sparc64_frame_cache (this_frame, this_cache);
1084
1085 /* This marks the outermost frame. */
1086 if (cache->base == 0)
1087 return;
1088
1089 (*this_id) = frame_id_build (cache->base, cache->pc);
1090 }
1091
1092 static struct value *
1093 sparc64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1094 int regnum)
1095 {
1096 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1097 struct sparc_frame_cache *cache =
1098 sparc64_frame_cache (this_frame, this_cache);
1099
1100 if (regnum == SPARC64_PC_REGNUM || regnum == SPARC64_NPC_REGNUM)
1101 {
1102 CORE_ADDR pc = (regnum == SPARC64_NPC_REGNUM) ? 4 : 0;
1103
1104 regnum =
1105 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
1106 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
1107 return frame_unwind_got_constant (this_frame, regnum, pc);
1108 }
1109
1110 /* Handle StackGhost. */
1111 {
1112 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1113
1114 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
1115 {
1116 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 8;
1117 ULONGEST i7;
1118
1119 /* Read the value in from memory. */
1120 i7 = get_frame_memory_unsigned (this_frame, addr, 8);
1121 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
1122 }
1123 }
1124
1125 /* The previous frame's `local' and `in' registers may have been saved
1126 in the register save area. */
1127 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1128 && (cache->saved_regs_mask & (1 << (regnum - SPARC_L0_REGNUM))))
1129 {
1130 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 8;
1131
1132 return frame_unwind_got_memory (this_frame, regnum, addr);
1133 }
1134
1135 /* The previous frame's `out' registers may be accessible as the current
1136 frame's `in' registers. */
1137 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM
1138 && (cache->copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM))))
1139 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
1140
1141 return frame_unwind_got_register (this_frame, regnum, regnum);
1142 }
1143
1144 static const struct frame_unwind sparc64_frame_unwind =
1145 {
1146 NORMAL_FRAME,
1147 default_frame_unwind_stop_reason,
1148 sparc64_frame_this_id,
1149 sparc64_frame_prev_register,
1150 NULL,
1151 default_frame_sniffer
1152 };
1153 \f
1154
1155 static CORE_ADDR
1156 sparc64_frame_base_address (struct frame_info *this_frame, void **this_cache)
1157 {
1158 struct sparc_frame_cache *cache =
1159 sparc64_frame_cache (this_frame, this_cache);
1160
1161 return cache->base;
1162 }
1163
1164 static const struct frame_base sparc64_frame_base =
1165 {
1166 &sparc64_frame_unwind,
1167 sparc64_frame_base_address,
1168 sparc64_frame_base_address,
1169 sparc64_frame_base_address
1170 };
1171 \f
1172 /* Check whether TYPE must be 16-byte aligned. */
1173
1174 static int
1175 sparc64_16_byte_align_p (struct type *type)
1176 {
1177 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1178 {
1179 struct type *t = check_typedef (TYPE_TARGET_TYPE (type));
1180
1181 if (sparc64_floating_p (t))
1182 return 1;
1183 }
1184 if (sparc64_floating_p (type) && TYPE_LENGTH (type) == 16)
1185 return 1;
1186
1187 if (sparc64_structure_or_union_p (type))
1188 {
1189 int i;
1190
1191 for (i = 0; i < TYPE_NFIELDS (type); i++)
1192 {
1193 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
1194
1195 if (sparc64_16_byte_align_p (subtype))
1196 return 1;
1197 }
1198 }
1199
1200 return 0;
1201 }
1202
1203 /* Store floating fields of element ELEMENT of an "parameter array"
1204 that has type TYPE and is stored at BITPOS in VALBUF in the
1205 appropriate registers of REGCACHE. This function can be called
1206 recursively and therefore handles floating types in addition to
1207 structures. */
1208
1209 static void
1210 sparc64_store_floating_fields (struct regcache *regcache, struct type *type,
1211 const gdb_byte *valbuf, int element, int bitpos)
1212 {
1213 struct gdbarch *gdbarch = regcache->arch ();
1214 int len = TYPE_LENGTH (type);
1215
1216 gdb_assert (element < 16);
1217
1218 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1219 {
1220 gdb_byte buf[8];
1221 int regnum = SPARC_F0_REGNUM + element * 2 + bitpos / 32;
1222
1223 valbuf += bitpos / 8;
1224 if (len < 8)
1225 {
1226 memset (buf, 0, 8 - len);
1227 memcpy (buf + 8 - len, valbuf, len);
1228 valbuf = buf;
1229 len = 8;
1230 }
1231 for (int n = 0; n < (len + 3) / 4; n++)
1232 regcache->cooked_write (regnum + n, valbuf + n * 4);
1233 }
1234 else if (sparc64_floating_p (type)
1235 || (sparc64_complex_floating_p (type) && len <= 16))
1236 {
1237 int regnum;
1238
1239 if (len == 16)
1240 {
1241 gdb_assert (bitpos == 0);
1242 gdb_assert ((element % 2) == 0);
1243
1244 regnum = gdbarch_num_regs (gdbarch) + SPARC64_Q0_REGNUM + element / 2;
1245 regcache->cooked_write (regnum, valbuf);
1246 }
1247 else if (len == 8)
1248 {
1249 gdb_assert (bitpos == 0 || bitpos == 64);
1250
1251 regnum = gdbarch_num_regs (gdbarch) + SPARC64_D0_REGNUM
1252 + element + bitpos / 64;
1253 regcache->cooked_write (regnum, valbuf + (bitpos / 8));
1254 }
1255 else
1256 {
1257 gdb_assert (len == 4);
1258 gdb_assert (bitpos % 32 == 0 && bitpos >= 0 && bitpos < 128);
1259
1260 regnum = SPARC_F0_REGNUM + element * 2 + bitpos / 32;
1261 regcache->cooked_write (regnum, valbuf + (bitpos / 8));
1262 }
1263 }
1264 else if (sparc64_structure_or_union_p (type))
1265 {
1266 int i;
1267
1268 for (i = 0; i < TYPE_NFIELDS (type); i++)
1269 {
1270 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
1271 int subpos = bitpos + TYPE_FIELD_BITPOS (type, i);
1272
1273 sparc64_store_floating_fields (regcache, subtype, valbuf,
1274 element, subpos);
1275 }
1276
1277 /* GCC has an interesting bug. If TYPE is a structure that has
1278 a single `float' member, GCC doesn't treat it as a structure
1279 at all, but rather as an ordinary `float' argument. This
1280 argument will be stored in %f1, as required by the psABI.
1281 However, as a member of a structure the psABI requires it to
1282 be stored in %f0. This bug is present in GCC 3.3.2, but
1283 probably in older releases to. To appease GCC, if a
1284 structure has only a single `float' member, we store its
1285 value in %f1 too (we already have stored in %f0). */
1286 if (TYPE_NFIELDS (type) == 1)
1287 {
1288 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, 0));
1289
1290 if (sparc64_floating_p (subtype) && TYPE_LENGTH (subtype) == 4)
1291 regcache->cooked_write (SPARC_F1_REGNUM, valbuf);
1292 }
1293 }
1294 }
1295
1296 /* Fetch floating fields from a variable of type TYPE from the
1297 appropriate registers for BITPOS in REGCACHE and store it at BITPOS
1298 in VALBUF. This function can be called recursively and therefore
1299 handles floating types in addition to structures. */
1300
1301 static void
1302 sparc64_extract_floating_fields (struct regcache *regcache, struct type *type,
1303 gdb_byte *valbuf, int bitpos)
1304 {
1305 struct gdbarch *gdbarch = regcache->arch ();
1306
1307 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1308 {
1309 int len = TYPE_LENGTH (type);
1310 int regnum = SPARC_F0_REGNUM + bitpos / 32;
1311
1312 valbuf += bitpos / 8;
1313 if (len < 4)
1314 {
1315 gdb_byte buf[4];
1316 regcache->cooked_read (regnum, buf);
1317 memcpy (valbuf, buf + 4 - len, len);
1318 }
1319 else
1320 for (int i = 0; i < (len + 3) / 4; i++)
1321 regcache->cooked_read (regnum + i, valbuf + i * 4);
1322 }
1323 else if (sparc64_floating_p (type))
1324 {
1325 int len = TYPE_LENGTH (type);
1326 int regnum;
1327
1328 if (len == 16)
1329 {
1330 gdb_assert (bitpos == 0 || bitpos == 128);
1331
1332 regnum = gdbarch_num_regs (gdbarch) + SPARC64_Q0_REGNUM
1333 + bitpos / 128;
1334 regcache->cooked_read (regnum, valbuf + (bitpos / 8));
1335 }
1336 else if (len == 8)
1337 {
1338 gdb_assert (bitpos % 64 == 0 && bitpos >= 0 && bitpos < 256);
1339
1340 regnum = gdbarch_num_regs (gdbarch) + SPARC64_D0_REGNUM + bitpos / 64;
1341 regcache->cooked_read (regnum, valbuf + (bitpos / 8));
1342 }
1343 else
1344 {
1345 gdb_assert (len == 4);
1346 gdb_assert (bitpos % 32 == 0 && bitpos >= 0 && bitpos < 256);
1347
1348 regnum = SPARC_F0_REGNUM + bitpos / 32;
1349 regcache->cooked_read (regnum, valbuf + (bitpos / 8));
1350 }
1351 }
1352 else if (sparc64_structure_or_union_p (type))
1353 {
1354 int i;
1355
1356 for (i = 0; i < TYPE_NFIELDS (type); i++)
1357 {
1358 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
1359 int subpos = bitpos + TYPE_FIELD_BITPOS (type, i);
1360
1361 sparc64_extract_floating_fields (regcache, subtype, valbuf, subpos);
1362 }
1363 }
1364 }
1365
1366 /* Store the NARGS arguments ARGS and STRUCT_ADDR (if STRUCT_RETURN is
1367 non-zero) in REGCACHE and on the stack (starting from address SP). */
1368
1369 static CORE_ADDR
1370 sparc64_store_arguments (struct regcache *regcache, int nargs,
1371 struct value **args, CORE_ADDR sp,
1372 function_call_return_method return_method,
1373 CORE_ADDR struct_addr)
1374 {
1375 struct gdbarch *gdbarch = regcache->arch ();
1376 /* Number of extended words in the "parameter array". */
1377 int num_elements = 0;
1378 int element = 0;
1379 int i;
1380
1381 /* Take BIAS into account. */
1382 sp += BIAS;
1383
1384 /* First we calculate the number of extended words in the "parameter
1385 array". While doing so we also convert some of the arguments. */
1386
1387 if (return_method == return_method_struct)
1388 num_elements++;
1389
1390 for (i = 0; i < nargs; i++)
1391 {
1392 struct type *type = value_type (args[i]);
1393 int len = TYPE_LENGTH (type);
1394
1395 if (sparc64_structure_or_union_p (type)
1396 || (sparc64_complex_floating_p (type) && len == 32))
1397 {
1398 /* Structure or Union arguments. */
1399 if (len <= 16)
1400 {
1401 if (num_elements % 2 && sparc64_16_byte_align_p (type))
1402 num_elements++;
1403 num_elements += ((len + 7) / 8);
1404 }
1405 else
1406 {
1407 /* The psABI says that "Structures or unions larger than
1408 sixteen bytes are copied by the caller and passed
1409 indirectly; the caller will pass the address of a
1410 correctly aligned structure value. This sixty-four
1411 bit address will occupy one word in the parameter
1412 array, and may be promoted to an %o register like any
1413 other pointer value." Allocate memory for these
1414 values on the stack. */
1415 sp -= len;
1416
1417 /* Use 16-byte alignment for these values. That's
1418 always correct, and wasting a few bytes shouldn't be
1419 a problem. */
1420 sp &= ~0xf;
1421
1422 write_memory (sp, value_contents (args[i]), len);
1423 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
1424 num_elements++;
1425 }
1426 }
1427 else if (sparc64_floating_p (type) || sparc64_complex_floating_p (type))
1428 {
1429 /* Floating arguments. */
1430 if (len == 16)
1431 {
1432 /* The psABI says that "Each quad-precision parameter
1433 value will be assigned to two extended words in the
1434 parameter array. */
1435 num_elements += 2;
1436
1437 /* The psABI says that "Long doubles must be
1438 quad-aligned, and thus a hole might be introduced
1439 into the parameter array to force alignment." Skip
1440 an element if necessary. */
1441 if ((num_elements % 2) && sparc64_16_byte_align_p (type))
1442 num_elements++;
1443 }
1444 else
1445 num_elements++;
1446 }
1447 else
1448 {
1449 /* Integral and pointer arguments. */
1450 gdb_assert (sparc64_integral_or_pointer_p (type));
1451
1452 /* The psABI says that "Each argument value of integral type
1453 smaller than an extended word will be widened by the
1454 caller to an extended word according to the signed-ness
1455 of the argument type." */
1456 if (len < 8)
1457 args[i] = value_cast (builtin_type (gdbarch)->builtin_int64,
1458 args[i]);
1459 num_elements++;
1460 }
1461 }
1462
1463 /* Allocate the "parameter array". */
1464 sp -= num_elements * 8;
1465
1466 /* The psABI says that "Every stack frame must be 16-byte aligned." */
1467 sp &= ~0xf;
1468
1469 /* Now we store the arguments in to the "parameter array". Some
1470 Integer or Pointer arguments and Structure or Union arguments
1471 will be passed in %o registers. Some Floating arguments and
1472 floating members of structures are passed in floating-point
1473 registers. However, for functions with variable arguments,
1474 floating arguments are stored in an %0 register, and for
1475 functions without a prototype floating arguments are stored in
1476 both a floating-point and an %o registers, or a floating-point
1477 register and memory. To simplify the logic here we always pass
1478 arguments in memory, an %o register, and a floating-point
1479 register if appropriate. This should be no problem since the
1480 contents of any unused memory or registers in the "parameter
1481 array" are undefined. */
1482
1483 if (return_method == return_method_struct)
1484 {
1485 regcache_cooked_write_unsigned (regcache, SPARC_O0_REGNUM, struct_addr);
1486 element++;
1487 }
1488
1489 for (i = 0; i < nargs; i++)
1490 {
1491 const gdb_byte *valbuf = value_contents (args[i]);
1492 struct type *type = value_type (args[i]);
1493 int len = TYPE_LENGTH (type);
1494 int regnum = -1;
1495 gdb_byte buf[16];
1496
1497 if (sparc64_structure_or_union_p (type)
1498 || (sparc64_complex_floating_p (type) && len == 32))
1499 {
1500 /* Structure, Union or long double Complex arguments. */
1501 gdb_assert (len <= 16);
1502 memset (buf, 0, sizeof (buf));
1503 memcpy (buf, valbuf, len);
1504 valbuf = buf;
1505
1506 if (element % 2 && sparc64_16_byte_align_p (type))
1507 element++;
1508
1509 if (element < 6)
1510 {
1511 regnum = SPARC_O0_REGNUM + element;
1512 if (len > 8 && element < 5)
1513 regcache->cooked_write (regnum + 1, valbuf + 8);
1514 }
1515
1516 if (element < 16)
1517 sparc64_store_floating_fields (regcache, type, valbuf, element, 0);
1518 }
1519 else if (sparc64_complex_floating_p (type))
1520 {
1521 /* Float Complex or double Complex arguments. */
1522 if (element < 16)
1523 {
1524 regnum = gdbarch_num_regs (gdbarch) + SPARC64_D0_REGNUM + element;
1525
1526 if (len == 16)
1527 {
1528 if (regnum < gdbarch_num_regs (gdbarch) + SPARC64_D30_REGNUM)
1529 regcache->cooked_write (regnum + 1, valbuf + 8);
1530 if (regnum < gdbarch_num_regs (gdbarch) + SPARC64_D10_REGNUM)
1531 regcache->cooked_write (SPARC_O0_REGNUM + element + 1,
1532 valbuf + 8);
1533 }
1534 }
1535 }
1536 else if (sparc64_floating_p (type))
1537 {
1538 /* Floating arguments. */
1539 if (len == 16)
1540 {
1541 if (element % 2)
1542 element++;
1543 if (element < 16)
1544 regnum = gdbarch_num_regs (gdbarch) + SPARC64_Q0_REGNUM
1545 + element / 2;
1546 }
1547 else if (len == 8)
1548 {
1549 if (element < 16)
1550 regnum = gdbarch_num_regs (gdbarch) + SPARC64_D0_REGNUM
1551 + element;
1552 }
1553 else if (len == 4)
1554 {
1555 /* The psABI says "Each single-precision parameter value
1556 will be assigned to one extended word in the
1557 parameter array, and right-justified within that
1558 word; the left half (even float register) is
1559 undefined." Even though the psABI says that "the
1560 left half is undefined", set it to zero here. */
1561 memset (buf, 0, 4);
1562 memcpy (buf + 4, valbuf, 4);
1563 valbuf = buf;
1564 len = 8;
1565 if (element < 16)
1566 regnum = gdbarch_num_regs (gdbarch) + SPARC64_D0_REGNUM
1567 + element;
1568 }
1569 }
1570 else
1571 {
1572 /* Integral and pointer arguments. */
1573 gdb_assert (len == 8);
1574 if (element < 6)
1575 regnum = SPARC_O0_REGNUM + element;
1576 }
1577
1578 if (regnum != -1)
1579 {
1580 regcache->cooked_write (regnum, valbuf);
1581
1582 /* If we're storing the value in a floating-point register,
1583 also store it in the corresponding %0 register(s). */
1584 if (regnum >= gdbarch_num_regs (gdbarch))
1585 {
1586 regnum -= gdbarch_num_regs (gdbarch);
1587
1588 if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D10_REGNUM)
1589 {
1590 gdb_assert (element < 6);
1591 regnum = SPARC_O0_REGNUM + element;
1592 regcache->cooked_write (regnum, valbuf);
1593 }
1594 else if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q8_REGNUM)
1595 {
1596 gdb_assert (element < 5);
1597 regnum = SPARC_O0_REGNUM + element;
1598 regcache->cooked_write (regnum, valbuf);
1599 regcache->cooked_write (regnum + 1, valbuf + 8);
1600 }
1601 }
1602 }
1603
1604 /* Always store the argument in memory. */
1605 write_memory (sp + element * 8, valbuf, len);
1606 element += ((len + 7) / 8);
1607 }
1608
1609 gdb_assert (element == num_elements);
1610
1611 /* Take BIAS into account. */
1612 sp -= BIAS;
1613 return sp;
1614 }
1615
1616 static CORE_ADDR
1617 sparc64_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1618 {
1619 /* The ABI requires 16-byte alignment. */
1620 return address & ~0xf;
1621 }
1622
1623 static CORE_ADDR
1624 sparc64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1625 struct regcache *regcache, CORE_ADDR bp_addr,
1626 int nargs, struct value **args, CORE_ADDR sp,
1627 function_call_return_method return_method,
1628 CORE_ADDR struct_addr)
1629 {
1630 /* Set return address. */
1631 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, bp_addr - 8);
1632
1633 /* Set up function arguments. */
1634 sp = sparc64_store_arguments (regcache, nargs, args, sp, return_method,
1635 struct_addr);
1636
1637 /* Allocate the register save area. */
1638 sp -= 16 * 8;
1639
1640 /* Stack should be 16-byte aligned at this point. */
1641 gdb_assert ((sp + BIAS) % 16 == 0);
1642
1643 /* Finally, update the stack pointer. */
1644 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
1645
1646 return sp + BIAS;
1647 }
1648 \f
1649
1650 /* Extract from an array REGBUF containing the (raw) register state, a
1651 function return value of TYPE, and copy that into VALBUF. */
1652
1653 static void
1654 sparc64_extract_return_value (struct type *type, struct regcache *regcache,
1655 gdb_byte *valbuf)
1656 {
1657 int len = TYPE_LENGTH (type);
1658 gdb_byte buf[32];
1659 int i;
1660
1661 if (sparc64_structure_or_union_p (type))
1662 {
1663 /* Structure or Union return values. */
1664 gdb_assert (len <= 32);
1665
1666 for (i = 0; i < ((len + 7) / 8); i++)
1667 regcache->cooked_read (SPARC_O0_REGNUM + i, buf + i * 8);
1668 if (TYPE_CODE (type) != TYPE_CODE_UNION)
1669 sparc64_extract_floating_fields (regcache, type, buf, 0);
1670 memcpy (valbuf, buf, len);
1671 }
1672 else if (sparc64_floating_p (type) || sparc64_complex_floating_p (type))
1673 {
1674 /* Floating return values. */
1675 for (i = 0; i < len / 4; i++)
1676 regcache->cooked_read (SPARC_F0_REGNUM + i, buf + i * 4);
1677 memcpy (valbuf, buf, len);
1678 }
1679 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1680 {
1681 /* Small arrays are returned the same way as small structures. */
1682 gdb_assert (len <= 32);
1683
1684 for (i = 0; i < ((len + 7) / 8); i++)
1685 regcache->cooked_read (SPARC_O0_REGNUM + i, buf + i * 8);
1686 memcpy (valbuf, buf, len);
1687 }
1688 else
1689 {
1690 /* Integral and pointer return values. */
1691 gdb_assert (sparc64_integral_or_pointer_p (type));
1692
1693 /* Just stripping off any unused bytes should preserve the
1694 signed-ness just fine. */
1695 regcache->cooked_read (SPARC_O0_REGNUM, buf);
1696 memcpy (valbuf, buf + 8 - len, len);
1697 }
1698 }
1699
1700 /* Write into the appropriate registers a function return value stored
1701 in VALBUF of type TYPE. */
1702
1703 static void
1704 sparc64_store_return_value (struct type *type, struct regcache *regcache,
1705 const gdb_byte *valbuf)
1706 {
1707 int len = TYPE_LENGTH (type);
1708 gdb_byte buf[16];
1709 int i;
1710
1711 if (sparc64_structure_or_union_p (type))
1712 {
1713 /* Structure or Union return values. */
1714 gdb_assert (len <= 32);
1715
1716 /* Simplify matters by storing the complete value (including
1717 floating members) into %o0 and %o1. Floating members are
1718 also store in the appropriate floating-point registers. */
1719 memset (buf, 0, sizeof (buf));
1720 memcpy (buf, valbuf, len);
1721 for (i = 0; i < ((len + 7) / 8); i++)
1722 regcache->cooked_write (SPARC_O0_REGNUM + i, buf + i * 8);
1723 if (TYPE_CODE (type) != TYPE_CODE_UNION)
1724 sparc64_store_floating_fields (regcache, type, buf, 0, 0);
1725 }
1726 else if (sparc64_floating_p (type) || sparc64_complex_floating_p (type))
1727 {
1728 /* Floating return values. */
1729 memcpy (buf, valbuf, len);
1730 for (i = 0; i < len / 4; i++)
1731 regcache->cooked_write (SPARC_F0_REGNUM + i, buf + i * 4);
1732 }
1733 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1734 {
1735 /* Small arrays are returned the same way as small structures. */
1736 gdb_assert (len <= 32);
1737
1738 memset (buf, 0, sizeof (buf));
1739 memcpy (buf, valbuf, len);
1740 for (i = 0; i < ((len + 7) / 8); i++)
1741 regcache->cooked_write (SPARC_O0_REGNUM + i, buf + i * 8);
1742 }
1743 else
1744 {
1745 /* Integral and pointer return values. */
1746 gdb_assert (sparc64_integral_or_pointer_p (type));
1747
1748 /* ??? Do we need to do any sign-extension here? */
1749 memset (buf, 0, 8);
1750 memcpy (buf + 8 - len, valbuf, len);
1751 regcache->cooked_write (SPARC_O0_REGNUM, buf);
1752 }
1753 }
1754
1755 static enum return_value_convention
1756 sparc64_return_value (struct gdbarch *gdbarch, struct value *function,
1757 struct type *type, struct regcache *regcache,
1758 gdb_byte *readbuf, const gdb_byte *writebuf)
1759 {
1760 if (TYPE_LENGTH (type) > 32)
1761 return RETURN_VALUE_STRUCT_CONVENTION;
1762
1763 if (readbuf)
1764 sparc64_extract_return_value (type, regcache, readbuf);
1765 if (writebuf)
1766 sparc64_store_return_value (type, regcache, writebuf);
1767
1768 return RETURN_VALUE_REGISTER_CONVENTION;
1769 }
1770 \f
1771
1772 static void
1773 sparc64_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1774 struct dwarf2_frame_state_reg *reg,
1775 struct frame_info *this_frame)
1776 {
1777 switch (regnum)
1778 {
1779 case SPARC_G0_REGNUM:
1780 /* Since %g0 is always zero, there is no point in saving it, and
1781 people will be inclined omit it from the CFI. Make sure we
1782 don't warn about that. */
1783 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1784 break;
1785 case SPARC_SP_REGNUM:
1786 reg->how = DWARF2_FRAME_REG_CFA;
1787 break;
1788 case SPARC64_PC_REGNUM:
1789 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1790 reg->loc.offset = 8;
1791 break;
1792 case SPARC64_NPC_REGNUM:
1793 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1794 reg->loc.offset = 12;
1795 break;
1796 }
1797 }
1798
1799 /* sparc64_addr_bits_remove - remove useless address bits */
1800
1801 static CORE_ADDR
1802 sparc64_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
1803 {
1804 return adi_normalize_address (addr);
1805 }
1806
1807 void
1808 sparc64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1809 {
1810 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1811
1812 tdep->pc_regnum = SPARC64_PC_REGNUM;
1813 tdep->npc_regnum = SPARC64_NPC_REGNUM;
1814 tdep->fpu_register_names = sparc64_fpu_register_names;
1815 tdep->fpu_registers_num = ARRAY_SIZE (sparc64_fpu_register_names);
1816 tdep->cp0_register_names = sparc64_cp0_register_names;
1817 tdep->cp0_registers_num = ARRAY_SIZE (sparc64_cp0_register_names);
1818
1819 /* This is what all the fuss is about. */
1820 set_gdbarch_long_bit (gdbarch, 64);
1821 set_gdbarch_long_long_bit (gdbarch, 64);
1822 set_gdbarch_ptr_bit (gdbarch, 64);
1823
1824 set_gdbarch_wchar_bit (gdbarch, 16);
1825 set_gdbarch_wchar_signed (gdbarch, 0);
1826
1827 set_gdbarch_num_regs (gdbarch, SPARC64_NUM_REGS);
1828 set_gdbarch_register_name (gdbarch, sparc64_register_name);
1829 set_gdbarch_register_type (gdbarch, sparc64_register_type);
1830 set_gdbarch_num_pseudo_regs (gdbarch, SPARC64_NUM_PSEUDO_REGS);
1831 set_tdesc_pseudo_register_name (gdbarch, sparc64_pseudo_register_name);
1832 set_tdesc_pseudo_register_type (gdbarch, sparc64_pseudo_register_type);
1833 set_gdbarch_pseudo_register_read (gdbarch, sparc64_pseudo_register_read);
1834 set_gdbarch_pseudo_register_write (gdbarch, sparc64_pseudo_register_write);
1835
1836 /* Register numbers of various important registers. */
1837 set_gdbarch_pc_regnum (gdbarch, SPARC64_PC_REGNUM); /* %pc */
1838
1839 /* Call dummy code. */
1840 set_gdbarch_frame_align (gdbarch, sparc64_frame_align);
1841 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1842 set_gdbarch_push_dummy_code (gdbarch, NULL);
1843 set_gdbarch_push_dummy_call (gdbarch, sparc64_push_dummy_call);
1844
1845 set_gdbarch_return_value (gdbarch, sparc64_return_value);
1846 set_gdbarch_stabs_argument_has_addr
1847 (gdbarch, default_stabs_argument_has_addr);
1848
1849 set_gdbarch_skip_prologue (gdbarch, sparc64_skip_prologue);
1850 set_gdbarch_stack_frame_destroyed_p (gdbarch, sparc_stack_frame_destroyed_p);
1851
1852 /* Hook in the DWARF CFI frame unwinder. */
1853 dwarf2_frame_set_init_reg (gdbarch, sparc64_dwarf2_frame_init_reg);
1854 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1855 StackGhost issues have been resolved. */
1856
1857 frame_unwind_append_unwinder (gdbarch, &sparc64_frame_unwind);
1858 frame_base_set_default (gdbarch, &sparc64_frame_base);
1859
1860 set_gdbarch_addr_bits_remove (gdbarch, sparc64_addr_bits_remove);
1861 }
1862 \f
1863
1864 /* Helper functions for dealing with register sets. */
1865
1866 #define TSTATE_CWP 0x000000000000001fULL
1867 #define TSTATE_ICC 0x0000000f00000000ULL
1868 #define TSTATE_XCC 0x000000f000000000ULL
1869
1870 #define PSR_S 0x00000080
1871 #ifndef PSR_ICC
1872 #define PSR_ICC 0x00f00000
1873 #endif
1874 #define PSR_VERS 0x0f000000
1875 #ifndef PSR_IMPL
1876 #define PSR_IMPL 0xf0000000
1877 #endif
1878 #define PSR_V8PLUS 0xff000000
1879 #define PSR_XCC 0x000f0000
1880
1881 void
1882 sparc64_supply_gregset (const struct sparc_gregmap *gregmap,
1883 struct regcache *regcache,
1884 int regnum, const void *gregs)
1885 {
1886 struct gdbarch *gdbarch = regcache->arch ();
1887 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1888 int sparc32 = (gdbarch_ptr_bit (gdbarch) == 32);
1889 const gdb_byte *regs = (const gdb_byte *) gregs;
1890 gdb_byte zero[8] = { 0 };
1891 int i;
1892
1893 if (sparc32)
1894 {
1895 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1896 {
1897 int offset = gregmap->r_tstate_offset;
1898 ULONGEST tstate, psr;
1899 gdb_byte buf[4];
1900
1901 tstate = extract_unsigned_integer (regs + offset, 8, byte_order);
1902 psr = ((tstate & TSTATE_CWP) | PSR_S | ((tstate & TSTATE_ICC) >> 12)
1903 | ((tstate & TSTATE_XCC) >> 20) | PSR_V8PLUS);
1904 store_unsigned_integer (buf, 4, byte_order, psr);
1905 regcache->raw_supply (SPARC32_PSR_REGNUM, buf);
1906 }
1907
1908 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1909 regcache->raw_supply (SPARC32_PC_REGNUM,
1910 regs + gregmap->r_pc_offset + 4);
1911
1912 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1913 regcache->raw_supply (SPARC32_NPC_REGNUM,
1914 regs + gregmap->r_npc_offset + 4);
1915
1916 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1917 {
1918 int offset = gregmap->r_y_offset + 8 - gregmap->r_y_size;
1919 regcache->raw_supply (SPARC32_Y_REGNUM, regs + offset);
1920 }
1921 }
1922 else
1923 {
1924 if (regnum == SPARC64_STATE_REGNUM || regnum == -1)
1925 regcache->raw_supply (SPARC64_STATE_REGNUM,
1926 regs + gregmap->r_tstate_offset);
1927
1928 if (regnum == SPARC64_PC_REGNUM || regnum == -1)
1929 regcache->raw_supply (SPARC64_PC_REGNUM,
1930 regs + gregmap->r_pc_offset);
1931
1932 if (regnum == SPARC64_NPC_REGNUM || regnum == -1)
1933 regcache->raw_supply (SPARC64_NPC_REGNUM,
1934 regs + gregmap->r_npc_offset);
1935
1936 if (regnum == SPARC64_Y_REGNUM || regnum == -1)
1937 {
1938 gdb_byte buf[8];
1939
1940 memset (buf, 0, 8);
1941 memcpy (buf + 8 - gregmap->r_y_size,
1942 regs + gregmap->r_y_offset, gregmap->r_y_size);
1943 regcache->raw_supply (SPARC64_Y_REGNUM, buf);
1944 }
1945
1946 if ((regnum == SPARC64_FPRS_REGNUM || regnum == -1)
1947 && gregmap->r_fprs_offset != -1)
1948 regcache->raw_supply (SPARC64_FPRS_REGNUM,
1949 regs + gregmap->r_fprs_offset);
1950 }
1951
1952 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1953 regcache->raw_supply (SPARC_G0_REGNUM, &zero);
1954
1955 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1956 {
1957 int offset = gregmap->r_g1_offset;
1958
1959 if (sparc32)
1960 offset += 4;
1961
1962 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1963 {
1964 if (regnum == i || regnum == -1)
1965 regcache->raw_supply (i, regs + offset);
1966 offset += 8;
1967 }
1968 }
1969
1970 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1971 {
1972 /* Not all of the register set variants include Locals and
1973 Inputs. For those that don't, we read them off the stack. */
1974 if (gregmap->r_l0_offset == -1)
1975 {
1976 ULONGEST sp;
1977
1978 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1979 sparc_supply_rwindow (regcache, sp, regnum);
1980 }
1981 else
1982 {
1983 int offset = gregmap->r_l0_offset;
1984
1985 if (sparc32)
1986 offset += 4;
1987
1988 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1989 {
1990 if (regnum == i || regnum == -1)
1991 regcache->raw_supply (i, regs + offset);
1992 offset += 8;
1993 }
1994 }
1995 }
1996 }
1997
1998 void
1999 sparc64_collect_gregset (const struct sparc_gregmap *gregmap,
2000 const struct regcache *regcache,
2001 int regnum, void *gregs)
2002 {
2003 struct gdbarch *gdbarch = regcache->arch ();
2004 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2005 int sparc32 = (gdbarch_ptr_bit (gdbarch) == 32);
2006 gdb_byte *regs = (gdb_byte *) gregs;
2007 int i;
2008
2009 if (sparc32)
2010 {
2011 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
2012 {
2013 int offset = gregmap->r_tstate_offset;
2014 ULONGEST tstate, psr;
2015 gdb_byte buf[8];
2016
2017 tstate = extract_unsigned_integer (regs + offset, 8, byte_order);
2018 regcache->raw_collect (SPARC32_PSR_REGNUM, buf);
2019 psr = extract_unsigned_integer (buf, 4, byte_order);
2020 tstate |= (psr & PSR_ICC) << 12;
2021 if ((psr & (PSR_VERS | PSR_IMPL)) == PSR_V8PLUS)
2022 tstate |= (psr & PSR_XCC) << 20;
2023 store_unsigned_integer (buf, 8, byte_order, tstate);
2024 memcpy (regs + offset, buf, 8);
2025 }
2026
2027 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
2028 regcache->raw_collect (SPARC32_PC_REGNUM,
2029 regs + gregmap->r_pc_offset + 4);
2030
2031 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
2032 regcache->raw_collect (SPARC32_NPC_REGNUM,
2033 regs + gregmap->r_npc_offset + 4);
2034
2035 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
2036 {
2037 int offset = gregmap->r_y_offset + 8 - gregmap->r_y_size;
2038 regcache->raw_collect (SPARC32_Y_REGNUM, regs + offset);
2039 }
2040 }
2041 else
2042 {
2043 if (regnum == SPARC64_STATE_REGNUM || regnum == -1)
2044 regcache->raw_collect (SPARC64_STATE_REGNUM,
2045 regs + gregmap->r_tstate_offset);
2046
2047 if (regnum == SPARC64_PC_REGNUM || regnum == -1)
2048 regcache->raw_collect (SPARC64_PC_REGNUM,
2049 regs + gregmap->r_pc_offset);
2050
2051 if (regnum == SPARC64_NPC_REGNUM || regnum == -1)
2052 regcache->raw_collect (SPARC64_NPC_REGNUM,
2053 regs + gregmap->r_npc_offset);
2054
2055 if (regnum == SPARC64_Y_REGNUM || regnum == -1)
2056 {
2057 gdb_byte buf[8];
2058
2059 regcache->raw_collect (SPARC64_Y_REGNUM, buf);
2060 memcpy (regs + gregmap->r_y_offset,
2061 buf + 8 - gregmap->r_y_size, gregmap->r_y_size);
2062 }
2063
2064 if ((regnum == SPARC64_FPRS_REGNUM || regnum == -1)
2065 && gregmap->r_fprs_offset != -1)
2066 regcache->raw_collect (SPARC64_FPRS_REGNUM,
2067 regs + gregmap->r_fprs_offset);
2068
2069 }
2070
2071 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
2072 {
2073 int offset = gregmap->r_g1_offset;
2074
2075 if (sparc32)
2076 offset += 4;
2077
2078 /* %g0 is always zero. */
2079 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
2080 {
2081 if (regnum == i || regnum == -1)
2082 regcache->raw_collect (i, regs + offset);
2083 offset += 8;
2084 }
2085 }
2086
2087 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
2088 {
2089 /* Not all of the register set variants include Locals and
2090 Inputs. For those that don't, we read them off the stack. */
2091 if (gregmap->r_l0_offset != -1)
2092 {
2093 int offset = gregmap->r_l0_offset;
2094
2095 if (sparc32)
2096 offset += 4;
2097
2098 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2099 {
2100 if (regnum == i || regnum == -1)
2101 regcache->raw_collect (i, regs + offset);
2102 offset += 8;
2103 }
2104 }
2105 }
2106 }
2107
2108 void
2109 sparc64_supply_fpregset (const struct sparc_fpregmap *fpregmap,
2110 struct regcache *regcache,
2111 int regnum, const void *fpregs)
2112 {
2113 int sparc32 = (gdbarch_ptr_bit (regcache->arch ()) == 32);
2114 const gdb_byte *regs = (const gdb_byte *) fpregs;
2115 int i;
2116
2117 for (i = 0; i < 32; i++)
2118 {
2119 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
2120 regcache->raw_supply (SPARC_F0_REGNUM + i,
2121 regs + fpregmap->r_f0_offset + (i * 4));
2122 }
2123
2124 if (sparc32)
2125 {
2126 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
2127 regcache->raw_supply (SPARC32_FSR_REGNUM,
2128 regs + fpregmap->r_fsr_offset);
2129 }
2130 else
2131 {
2132 for (i = 0; i < 16; i++)
2133 {
2134 if (regnum == (SPARC64_F32_REGNUM + i) || regnum == -1)
2135 regcache->raw_supply
2136 (SPARC64_F32_REGNUM + i,
2137 regs + fpregmap->r_f0_offset + (32 * 4) + (i * 8));
2138 }
2139
2140 if (regnum == SPARC64_FSR_REGNUM || regnum == -1)
2141 regcache->raw_supply (SPARC64_FSR_REGNUM,
2142 regs + fpregmap->r_fsr_offset);
2143 }
2144 }
2145
2146 void
2147 sparc64_collect_fpregset (const struct sparc_fpregmap *fpregmap,
2148 const struct regcache *regcache,
2149 int regnum, void *fpregs)
2150 {
2151 int sparc32 = (gdbarch_ptr_bit (regcache->arch ()) == 32);
2152 gdb_byte *regs = (gdb_byte *) fpregs;
2153 int i;
2154
2155 for (i = 0; i < 32; i++)
2156 {
2157 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
2158 regcache->raw_collect (SPARC_F0_REGNUM + i,
2159 regs + fpregmap->r_f0_offset + (i * 4));
2160 }
2161
2162 if (sparc32)
2163 {
2164 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
2165 regcache->raw_collect (SPARC32_FSR_REGNUM,
2166 regs + fpregmap->r_fsr_offset);
2167 }
2168 else
2169 {
2170 for (i = 0; i < 16; i++)
2171 {
2172 if (regnum == (SPARC64_F32_REGNUM + i) || regnum == -1)
2173 regcache->raw_collect (SPARC64_F32_REGNUM + i,
2174 (regs + fpregmap->r_f0_offset
2175 + (32 * 4) + (i * 8)));
2176 }
2177
2178 if (regnum == SPARC64_FSR_REGNUM || regnum == -1)
2179 regcache->raw_collect (SPARC64_FSR_REGNUM,
2180 regs + fpregmap->r_fsr_offset);
2181 }
2182 }
2183
2184 const struct sparc_fpregmap sparc64_bsd_fpregmap =
2185 {
2186 0 * 8, /* %f0 */
2187 32 * 8, /* %fsr */
2188 };
This page took 0.11524 seconds and 5 git commands to generate.