gdb/
[deliverable/binutils-gdb.git] / gdb / sparc64-tdep.c
1 /* Target-dependent code for UltraSPARC.
2
3 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "arch-utils.h"
23 #include "dwarf2-frame.h"
24 #include "floatformat.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "inferior.h"
31 #include "symtab.h"
32 #include "objfiles.h"
33 #include "osabi.h"
34 #include "regcache.h"
35 #include "target.h"
36 #include "value.h"
37
38 #include "gdb_assert.h"
39 #include "gdb_string.h"
40
41 #include "sparc64-tdep.h"
42
43 /* This file implements the SPARC 64-bit ABI as defined by the
44 section "Low-Level System Information" of the SPARC Compliance
45 Definition (SCD) 2.4.1, which is the 64-bit System V psABI for
46 SPARC. */
47
48 /* Please use the sparc32_-prefix for 32-bit specific code, the
49 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
50 code can handle both. */
51 \f
52 /* The functions on this page are intended to be used to classify
53 function arguments. */
54
55 /* Check whether TYPE is "Integral or Pointer". */
56
57 static int
58 sparc64_integral_or_pointer_p (const struct type *type)
59 {
60 switch (TYPE_CODE (type))
61 {
62 case TYPE_CODE_INT:
63 case TYPE_CODE_BOOL:
64 case TYPE_CODE_CHAR:
65 case TYPE_CODE_ENUM:
66 case TYPE_CODE_RANGE:
67 {
68 int len = TYPE_LENGTH (type);
69 gdb_assert (len == 1 || len == 2 || len == 4 || len == 8);
70 }
71 return 1;
72 case TYPE_CODE_PTR:
73 case TYPE_CODE_REF:
74 {
75 int len = TYPE_LENGTH (type);
76 gdb_assert (len == 8);
77 }
78 return 1;
79 default:
80 break;
81 }
82
83 return 0;
84 }
85
86 /* Check whether TYPE is "Floating". */
87
88 static int
89 sparc64_floating_p (const struct type *type)
90 {
91 switch (TYPE_CODE (type))
92 {
93 case TYPE_CODE_FLT:
94 {
95 int len = TYPE_LENGTH (type);
96 gdb_assert (len == 4 || len == 8 || len == 16);
97 }
98 return 1;
99 default:
100 break;
101 }
102
103 return 0;
104 }
105
106 /* Check whether TYPE is "Structure or Union".
107
108 In terms of Ada subprogram calls, arrays are treated the same as
109 struct and union types. So this function also returns non-zero
110 for array types. */
111
112 static int
113 sparc64_structure_or_union_p (const struct type *type)
114 {
115 switch (TYPE_CODE (type))
116 {
117 case TYPE_CODE_STRUCT:
118 case TYPE_CODE_UNION:
119 case TYPE_CODE_ARRAY:
120 return 1;
121 default:
122 break;
123 }
124
125 return 0;
126 }
127 \f
128
129 /* Construct types for ISA-specific registers. */
130
131 static struct type *
132 sparc64_pstate_type (struct gdbarch *gdbarch)
133 {
134 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
135
136 if (!tdep->sparc64_pstate_type)
137 {
138 struct type *type;
139
140 type = arch_flags_type (gdbarch, "builtin_type_sparc64_pstate", 8);
141 append_flags_type_flag (type, 0, "AG");
142 append_flags_type_flag (type, 1, "IE");
143 append_flags_type_flag (type, 2, "PRIV");
144 append_flags_type_flag (type, 3, "AM");
145 append_flags_type_flag (type, 4, "PEF");
146 append_flags_type_flag (type, 5, "RED");
147 append_flags_type_flag (type, 8, "TLE");
148 append_flags_type_flag (type, 9, "CLE");
149 append_flags_type_flag (type, 10, "PID0");
150 append_flags_type_flag (type, 11, "PID1");
151
152 tdep->sparc64_pstate_type = type;
153 }
154
155 return tdep->sparc64_pstate_type;
156 }
157
158 static struct type *
159 sparc64_fsr_type (struct gdbarch *gdbarch)
160 {
161 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
162
163 if (!tdep->sparc64_fsr_type)
164 {
165 struct type *type;
166
167 type = arch_flags_type (gdbarch, "builtin_type_sparc64_fsr", 8);
168 append_flags_type_flag (type, 0, "NXA");
169 append_flags_type_flag (type, 1, "DZA");
170 append_flags_type_flag (type, 2, "UFA");
171 append_flags_type_flag (type, 3, "OFA");
172 append_flags_type_flag (type, 4, "NVA");
173 append_flags_type_flag (type, 5, "NXC");
174 append_flags_type_flag (type, 6, "DZC");
175 append_flags_type_flag (type, 7, "UFC");
176 append_flags_type_flag (type, 8, "OFC");
177 append_flags_type_flag (type, 9, "NVC");
178 append_flags_type_flag (type, 22, "NS");
179 append_flags_type_flag (type, 23, "NXM");
180 append_flags_type_flag (type, 24, "DZM");
181 append_flags_type_flag (type, 25, "UFM");
182 append_flags_type_flag (type, 26, "OFM");
183 append_flags_type_flag (type, 27, "NVM");
184
185 tdep->sparc64_fsr_type = type;
186 }
187
188 return tdep->sparc64_fsr_type;
189 }
190
191 static struct type *
192 sparc64_fprs_type (struct gdbarch *gdbarch)
193 {
194 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
195
196 if (!tdep->sparc64_fprs_type)
197 {
198 struct type *type;
199
200 type = arch_flags_type (gdbarch, "builtin_type_sparc64_fprs", 8);
201 append_flags_type_flag (type, 0, "DL");
202 append_flags_type_flag (type, 1, "DU");
203 append_flags_type_flag (type, 2, "FEF");
204
205 tdep->sparc64_fprs_type = type;
206 }
207
208 return tdep->sparc64_fprs_type;
209 }
210
211
212 /* Register information. */
213
214 static const char *sparc64_register_names[] =
215 {
216 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
217 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
218 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
219 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
220
221 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
222 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
223 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
224 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
225 "f32", "f34", "f36", "f38", "f40", "f42", "f44", "f46",
226 "f48", "f50", "f52", "f54", "f56", "f58", "f60", "f62",
227
228 "pc", "npc",
229
230 /* FIXME: Give "state" a name until we start using register groups. */
231 "state",
232 "fsr",
233 "fprs",
234 "y",
235 };
236
237 /* Total number of registers. */
238 #define SPARC64_NUM_REGS ARRAY_SIZE (sparc64_register_names)
239
240 /* We provide the aliases %d0..%d62 and %q0..%q60 for the floating
241 registers as "psuedo" registers. */
242
243 static const char *sparc64_pseudo_register_names[] =
244 {
245 "cwp", "pstate", "asi", "ccr",
246
247 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
248 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30",
249 "d32", "d34", "d36", "d38", "d40", "d42", "d44", "d46",
250 "d48", "d50", "d52", "d54", "d56", "d58", "d60", "d62",
251
252 "q0", "q4", "q8", "q12", "q16", "q20", "q24", "q28",
253 "q32", "q36", "q40", "q44", "q48", "q52", "q56", "q60",
254 };
255
256 /* Total number of pseudo registers. */
257 #define SPARC64_NUM_PSEUDO_REGS ARRAY_SIZE (sparc64_pseudo_register_names)
258
259 /* Return the name of register REGNUM. */
260
261 static const char *
262 sparc64_register_name (struct gdbarch *gdbarch, int regnum)
263 {
264 if (regnum >= 0 && regnum < SPARC64_NUM_REGS)
265 return sparc64_register_names[regnum];
266
267 if (regnum >= SPARC64_NUM_REGS
268 && regnum < SPARC64_NUM_REGS + SPARC64_NUM_PSEUDO_REGS)
269 return sparc64_pseudo_register_names[regnum - SPARC64_NUM_REGS];
270
271 return NULL;
272 }
273
274 /* Return the GDB type object for the "standard" data type of data in
275 register REGNUM. */
276
277 static struct type *
278 sparc64_register_type (struct gdbarch *gdbarch, int regnum)
279 {
280 /* Raw registers. */
281
282 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
283 return builtin_type (gdbarch)->builtin_data_ptr;
284 if (regnum >= SPARC_G0_REGNUM && regnum <= SPARC_I7_REGNUM)
285 return builtin_type (gdbarch)->builtin_int64;
286 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
287 return builtin_type (gdbarch)->builtin_float;
288 if (regnum >= SPARC64_F32_REGNUM && regnum <= SPARC64_F62_REGNUM)
289 return builtin_type (gdbarch)->builtin_double;
290 if (regnum == SPARC64_PC_REGNUM || regnum == SPARC64_NPC_REGNUM)
291 return builtin_type (gdbarch)->builtin_func_ptr;
292 /* This raw register contains the contents of %cwp, %pstate, %asi
293 and %ccr as laid out in a %tstate register. */
294 if (regnum == SPARC64_STATE_REGNUM)
295 return builtin_type (gdbarch)->builtin_int64;
296 if (regnum == SPARC64_FSR_REGNUM)
297 return sparc64_fsr_type (gdbarch);
298 if (regnum == SPARC64_FPRS_REGNUM)
299 return sparc64_fprs_type (gdbarch);
300 /* "Although Y is a 64-bit register, its high-order 32 bits are
301 reserved and always read as 0." */
302 if (regnum == SPARC64_Y_REGNUM)
303 return builtin_type (gdbarch)->builtin_int64;
304
305 /* Pseudo registers. */
306
307 if (regnum == SPARC64_CWP_REGNUM)
308 return builtin_type (gdbarch)->builtin_int64;
309 if (regnum == SPARC64_PSTATE_REGNUM)
310 return sparc64_pstate_type (gdbarch);
311 if (regnum == SPARC64_ASI_REGNUM)
312 return builtin_type (gdbarch)->builtin_int64;
313 if (regnum == SPARC64_CCR_REGNUM)
314 return builtin_type (gdbarch)->builtin_int64;
315 if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D62_REGNUM)
316 return builtin_type (gdbarch)->builtin_double;
317 if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q60_REGNUM)
318 return builtin_type (gdbarch)->builtin_long_double;
319
320 internal_error (__FILE__, __LINE__, _("invalid regnum"));
321 }
322
323 static enum register_status
324 sparc64_pseudo_register_read (struct gdbarch *gdbarch,
325 struct regcache *regcache,
326 int regnum, gdb_byte *buf)
327 {
328 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
329 enum register_status status;
330
331 gdb_assert (regnum >= SPARC64_NUM_REGS);
332
333 if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D30_REGNUM)
334 {
335 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC64_D0_REGNUM);
336 status = regcache_raw_read (regcache, regnum, buf);
337 if (status == REG_VALID)
338 status = regcache_raw_read (regcache, regnum + 1, buf + 4);
339 return status;
340 }
341 else if (regnum >= SPARC64_D32_REGNUM && regnum <= SPARC64_D62_REGNUM)
342 {
343 regnum = SPARC64_F32_REGNUM + (regnum - SPARC64_D32_REGNUM);
344 return regcache_raw_read (regcache, regnum, buf);
345 }
346 else if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q28_REGNUM)
347 {
348 regnum = SPARC_F0_REGNUM + 4 * (regnum - SPARC64_Q0_REGNUM);
349
350 status = regcache_raw_read (regcache, regnum, buf);
351 if (status == REG_VALID)
352 status = regcache_raw_read (regcache, regnum + 1, buf + 4);
353 if (status == REG_VALID)
354 status = regcache_raw_read (regcache, regnum + 2, buf + 8);
355 if (status == REG_VALID)
356 status = regcache_raw_read (regcache, regnum + 3, buf + 12);
357
358 return status;
359 }
360 else if (regnum >= SPARC64_Q32_REGNUM && regnum <= SPARC64_Q60_REGNUM)
361 {
362 regnum = SPARC64_F32_REGNUM + 2 * (regnum - SPARC64_Q32_REGNUM);
363
364 status = regcache_raw_read (regcache, regnum, buf);
365 if (status == REG_VALID)
366 status = regcache_raw_read (regcache, regnum + 1, buf + 8);
367
368 return status;
369 }
370 else if (regnum == SPARC64_CWP_REGNUM
371 || regnum == SPARC64_PSTATE_REGNUM
372 || regnum == SPARC64_ASI_REGNUM
373 || regnum == SPARC64_CCR_REGNUM)
374 {
375 ULONGEST state;
376
377 status = regcache_raw_read_unsigned (regcache, SPARC64_STATE_REGNUM, &state);
378 if (status != REG_VALID)
379 return status;
380
381 switch (regnum)
382 {
383 case SPARC64_CWP_REGNUM:
384 state = (state >> 0) & ((1 << 5) - 1);
385 break;
386 case SPARC64_PSTATE_REGNUM:
387 state = (state >> 8) & ((1 << 12) - 1);
388 break;
389 case SPARC64_ASI_REGNUM:
390 state = (state >> 24) & ((1 << 8) - 1);
391 break;
392 case SPARC64_CCR_REGNUM:
393 state = (state >> 32) & ((1 << 8) - 1);
394 break;
395 }
396 store_unsigned_integer (buf, 8, byte_order, state);
397 }
398
399 return REG_VALID;
400 }
401
402 static void
403 sparc64_pseudo_register_write (struct gdbarch *gdbarch,
404 struct regcache *regcache,
405 int regnum, const gdb_byte *buf)
406 {
407 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
408 gdb_assert (regnum >= SPARC64_NUM_REGS);
409
410 if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D30_REGNUM)
411 {
412 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC64_D0_REGNUM);
413 regcache_raw_write (regcache, regnum, buf);
414 regcache_raw_write (regcache, regnum + 1, buf + 4);
415 }
416 else if (regnum >= SPARC64_D32_REGNUM && regnum <= SPARC64_D62_REGNUM)
417 {
418 regnum = SPARC64_F32_REGNUM + (regnum - SPARC64_D32_REGNUM);
419 regcache_raw_write (regcache, regnum, buf);
420 }
421 else if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q28_REGNUM)
422 {
423 regnum = SPARC_F0_REGNUM + 4 * (regnum - SPARC64_Q0_REGNUM);
424 regcache_raw_write (regcache, regnum, buf);
425 regcache_raw_write (regcache, regnum + 1, buf + 4);
426 regcache_raw_write (regcache, regnum + 2, buf + 8);
427 regcache_raw_write (regcache, regnum + 3, buf + 12);
428 }
429 else if (regnum >= SPARC64_Q32_REGNUM && regnum <= SPARC64_Q60_REGNUM)
430 {
431 regnum = SPARC64_F32_REGNUM + 2 * (regnum - SPARC64_Q32_REGNUM);
432 regcache_raw_write (regcache, regnum, buf);
433 regcache_raw_write (regcache, regnum + 1, buf + 8);
434 }
435 else if (regnum == SPARC64_CWP_REGNUM
436 || regnum == SPARC64_PSTATE_REGNUM
437 || regnum == SPARC64_ASI_REGNUM
438 || regnum == SPARC64_CCR_REGNUM)
439 {
440 ULONGEST state, bits;
441
442 regcache_raw_read_unsigned (regcache, SPARC64_STATE_REGNUM, &state);
443 bits = extract_unsigned_integer (buf, 8, byte_order);
444 switch (regnum)
445 {
446 case SPARC64_CWP_REGNUM:
447 state |= ((bits & ((1 << 5) - 1)) << 0);
448 break;
449 case SPARC64_PSTATE_REGNUM:
450 state |= ((bits & ((1 << 12) - 1)) << 8);
451 break;
452 case SPARC64_ASI_REGNUM:
453 state |= ((bits & ((1 << 8) - 1)) << 24);
454 break;
455 case SPARC64_CCR_REGNUM:
456 state |= ((bits & ((1 << 8) - 1)) << 32);
457 break;
458 }
459 regcache_raw_write_unsigned (regcache, SPARC64_STATE_REGNUM, state);
460 }
461 }
462 \f
463
464 /* Return PC of first real instruction of the function starting at
465 START_PC. */
466
467 static CORE_ADDR
468 sparc64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
469 {
470 struct symtab_and_line sal;
471 CORE_ADDR func_start, func_end;
472 struct sparc_frame_cache cache;
473
474 /* This is the preferred method, find the end of the prologue by
475 using the debugging information. */
476 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
477 {
478 sal = find_pc_line (func_start, 0);
479
480 if (sal.end < func_end
481 && start_pc <= sal.end)
482 return sal.end;
483 }
484
485 return sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffULL,
486 &cache);
487 }
488
489 /* Normal frames. */
490
491 static struct sparc_frame_cache *
492 sparc64_frame_cache (struct frame_info *this_frame, void **this_cache)
493 {
494 return sparc_frame_cache (this_frame, this_cache);
495 }
496
497 static void
498 sparc64_frame_this_id (struct frame_info *this_frame, void **this_cache,
499 struct frame_id *this_id)
500 {
501 struct sparc_frame_cache *cache =
502 sparc64_frame_cache (this_frame, this_cache);
503
504 /* This marks the outermost frame. */
505 if (cache->base == 0)
506 return;
507
508 (*this_id) = frame_id_build (cache->base, cache->pc);
509 }
510
511 static struct value *
512 sparc64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
513 int regnum)
514 {
515 struct gdbarch *gdbarch = get_frame_arch (this_frame);
516 struct sparc_frame_cache *cache =
517 sparc64_frame_cache (this_frame, this_cache);
518
519 if (regnum == SPARC64_PC_REGNUM || regnum == SPARC64_NPC_REGNUM)
520 {
521 CORE_ADDR pc = (regnum == SPARC64_NPC_REGNUM) ? 4 : 0;
522
523 regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
524 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
525 return frame_unwind_got_constant (this_frame, regnum, pc);
526 }
527
528 /* Handle StackGhost. */
529 {
530 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
531
532 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
533 {
534 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 8;
535 ULONGEST i7;
536
537 /* Read the value in from memory. */
538 i7 = get_frame_memory_unsigned (this_frame, addr, 8);
539 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
540 }
541 }
542
543 /* The previous frame's `local' and `in' registers have been saved
544 in the register save area. */
545 if (!cache->frameless_p
546 && regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM)
547 {
548 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 8;
549
550 return frame_unwind_got_memory (this_frame, regnum, addr);
551 }
552
553 /* The previous frame's `out' registers are accessable as the
554 current frame's `in' registers. */
555 if (!cache->frameless_p
556 && regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM)
557 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
558
559 return frame_unwind_got_register (this_frame, regnum, regnum);
560 }
561
562 static const struct frame_unwind sparc64_frame_unwind =
563 {
564 NORMAL_FRAME,
565 default_frame_unwind_stop_reason,
566 sparc64_frame_this_id,
567 sparc64_frame_prev_register,
568 NULL,
569 default_frame_sniffer
570 };
571 \f
572
573 static CORE_ADDR
574 sparc64_frame_base_address (struct frame_info *this_frame, void **this_cache)
575 {
576 struct sparc_frame_cache *cache =
577 sparc64_frame_cache (this_frame, this_cache);
578
579 return cache->base;
580 }
581
582 static const struct frame_base sparc64_frame_base =
583 {
584 &sparc64_frame_unwind,
585 sparc64_frame_base_address,
586 sparc64_frame_base_address,
587 sparc64_frame_base_address
588 };
589 \f
590 /* Check whether TYPE must be 16-byte aligned. */
591
592 static int
593 sparc64_16_byte_align_p (struct type *type)
594 {
595 if (sparc64_floating_p (type) && TYPE_LENGTH (type) == 16)
596 return 1;
597
598 if (sparc64_structure_or_union_p (type))
599 {
600 int i;
601
602 for (i = 0; i < TYPE_NFIELDS (type); i++)
603 {
604 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
605
606 if (sparc64_16_byte_align_p (subtype))
607 return 1;
608 }
609 }
610
611 return 0;
612 }
613
614 /* Store floating fields of element ELEMENT of an "parameter array"
615 that has type TYPE and is stored at BITPOS in VALBUF in the
616 apropriate registers of REGCACHE. This function can be called
617 recursively and therefore handles floating types in addition to
618 structures. */
619
620 static void
621 sparc64_store_floating_fields (struct regcache *regcache, struct type *type,
622 const gdb_byte *valbuf, int element, int bitpos)
623 {
624 gdb_assert (element < 16);
625
626 if (sparc64_floating_p (type))
627 {
628 int len = TYPE_LENGTH (type);
629 int regnum;
630
631 if (len == 16)
632 {
633 gdb_assert (bitpos == 0);
634 gdb_assert ((element % 2) == 0);
635
636 regnum = SPARC64_Q0_REGNUM + element / 2;
637 regcache_cooked_write (regcache, regnum, valbuf);
638 }
639 else if (len == 8)
640 {
641 gdb_assert (bitpos == 0 || bitpos == 64);
642
643 regnum = SPARC64_D0_REGNUM + element + bitpos / 64;
644 regcache_cooked_write (regcache, regnum, valbuf + (bitpos / 8));
645 }
646 else
647 {
648 gdb_assert (len == 4);
649 gdb_assert (bitpos % 32 == 0 && bitpos >= 0 && bitpos < 128);
650
651 regnum = SPARC_F0_REGNUM + element * 2 + bitpos / 32;
652 regcache_cooked_write (regcache, regnum, valbuf + (bitpos / 8));
653 }
654 }
655 else if (sparc64_structure_or_union_p (type))
656 {
657 int i;
658
659 for (i = 0; i < TYPE_NFIELDS (type); i++)
660 {
661 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
662 int subpos = bitpos + TYPE_FIELD_BITPOS (type, i);
663
664 sparc64_store_floating_fields (regcache, subtype, valbuf,
665 element, subpos);
666 }
667
668 /* GCC has an interesting bug. If TYPE is a structure that has
669 a single `float' member, GCC doesn't treat it as a structure
670 at all, but rather as an ordinary `float' argument. This
671 argument will be stored in %f1, as required by the psABI.
672 However, as a member of a structure the psABI requires it to
673 be stored in %f0. This bug is present in GCC 3.3.2, but
674 probably in older releases to. To appease GCC, if a
675 structure has only a single `float' member, we store its
676 value in %f1 too (we already have stored in %f0). */
677 if (TYPE_NFIELDS (type) == 1)
678 {
679 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, 0));
680
681 if (sparc64_floating_p (subtype) && TYPE_LENGTH (subtype) == 4)
682 regcache_cooked_write (regcache, SPARC_F1_REGNUM, valbuf);
683 }
684 }
685 }
686
687 /* Fetch floating fields from a variable of type TYPE from the
688 appropriate registers for BITPOS in REGCACHE and store it at BITPOS
689 in VALBUF. This function can be called recursively and therefore
690 handles floating types in addition to structures. */
691
692 static void
693 sparc64_extract_floating_fields (struct regcache *regcache, struct type *type,
694 gdb_byte *valbuf, int bitpos)
695 {
696 if (sparc64_floating_p (type))
697 {
698 int len = TYPE_LENGTH (type);
699 int regnum;
700
701 if (len == 16)
702 {
703 gdb_assert (bitpos == 0 || bitpos == 128);
704
705 regnum = SPARC64_Q0_REGNUM + bitpos / 128;
706 regcache_cooked_read (regcache, regnum, valbuf + (bitpos / 8));
707 }
708 else if (len == 8)
709 {
710 gdb_assert (bitpos % 64 == 0 && bitpos >= 0 && bitpos < 256);
711
712 regnum = SPARC64_D0_REGNUM + bitpos / 64;
713 regcache_cooked_read (regcache, regnum, valbuf + (bitpos / 8));
714 }
715 else
716 {
717 gdb_assert (len == 4);
718 gdb_assert (bitpos % 32 == 0 && bitpos >= 0 && bitpos < 256);
719
720 regnum = SPARC_F0_REGNUM + bitpos / 32;
721 regcache_cooked_read (regcache, regnum, valbuf + (bitpos / 8));
722 }
723 }
724 else if (sparc64_structure_or_union_p (type))
725 {
726 int i;
727
728 for (i = 0; i < TYPE_NFIELDS (type); i++)
729 {
730 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
731 int subpos = bitpos + TYPE_FIELD_BITPOS (type, i);
732
733 sparc64_extract_floating_fields (regcache, subtype, valbuf, subpos);
734 }
735 }
736 }
737
738 /* Store the NARGS arguments ARGS and STRUCT_ADDR (if STRUCT_RETURN is
739 non-zero) in REGCACHE and on the stack (starting from address SP). */
740
741 static CORE_ADDR
742 sparc64_store_arguments (struct regcache *regcache, int nargs,
743 struct value **args, CORE_ADDR sp,
744 int struct_return, CORE_ADDR struct_addr)
745 {
746 struct gdbarch *gdbarch = get_regcache_arch (regcache);
747 /* Number of extended words in the "parameter array". */
748 int num_elements = 0;
749 int element = 0;
750 int i;
751
752 /* Take BIAS into account. */
753 sp += BIAS;
754
755 /* First we calculate the number of extended words in the "parameter
756 array". While doing so we also convert some of the arguments. */
757
758 if (struct_return)
759 num_elements++;
760
761 for (i = 0; i < nargs; i++)
762 {
763 struct type *type = value_type (args[i]);
764 int len = TYPE_LENGTH (type);
765
766 if (sparc64_structure_or_union_p (type))
767 {
768 /* Structure or Union arguments. */
769 if (len <= 16)
770 {
771 if (num_elements % 2 && sparc64_16_byte_align_p (type))
772 num_elements++;
773 num_elements += ((len + 7) / 8);
774 }
775 else
776 {
777 /* The psABI says that "Structures or unions larger than
778 sixteen bytes are copied by the caller and passed
779 indirectly; the caller will pass the address of a
780 correctly aligned structure value. This sixty-four
781 bit address will occupy one word in the parameter
782 array, and may be promoted to an %o register like any
783 other pointer value." Allocate memory for these
784 values on the stack. */
785 sp -= len;
786
787 /* Use 16-byte alignment for these values. That's
788 always correct, and wasting a few bytes shouldn't be
789 a problem. */
790 sp &= ~0xf;
791
792 write_memory (sp, value_contents (args[i]), len);
793 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
794 num_elements++;
795 }
796 }
797 else if (sparc64_floating_p (type))
798 {
799 /* Floating arguments. */
800
801 if (len == 16)
802 {
803 /* The psABI says that "Each quad-precision parameter
804 value will be assigned to two extended words in the
805 parameter array. */
806 num_elements += 2;
807
808 /* The psABI says that "Long doubles must be
809 quad-aligned, and thus a hole might be introduced
810 into the parameter array to force alignment." Skip
811 an element if necessary. */
812 if (num_elements % 2)
813 num_elements++;
814 }
815 else
816 num_elements++;
817 }
818 else
819 {
820 /* Integral and pointer arguments. */
821 gdb_assert (sparc64_integral_or_pointer_p (type));
822
823 /* The psABI says that "Each argument value of integral type
824 smaller than an extended word will be widened by the
825 caller to an extended word according to the signed-ness
826 of the argument type." */
827 if (len < 8)
828 args[i] = value_cast (builtin_type (gdbarch)->builtin_int64,
829 args[i]);
830 num_elements++;
831 }
832 }
833
834 /* Allocate the "parameter array". */
835 sp -= num_elements * 8;
836
837 /* The psABI says that "Every stack frame must be 16-byte aligned." */
838 sp &= ~0xf;
839
840 /* Now we store the arguments in to the "paramater array". Some
841 Integer or Pointer arguments and Structure or Union arguments
842 will be passed in %o registers. Some Floating arguments and
843 floating members of structures are passed in floating-point
844 registers. However, for functions with variable arguments,
845 floating arguments are stored in an %0 register, and for
846 functions without a prototype floating arguments are stored in
847 both a floating-point and an %o registers, or a floating-point
848 register and memory. To simplify the logic here we always pass
849 arguments in memory, an %o register, and a floating-point
850 register if appropriate. This should be no problem since the
851 contents of any unused memory or registers in the "parameter
852 array" are undefined. */
853
854 if (struct_return)
855 {
856 regcache_cooked_write_unsigned (regcache, SPARC_O0_REGNUM, struct_addr);
857 element++;
858 }
859
860 for (i = 0; i < nargs; i++)
861 {
862 const gdb_byte *valbuf = value_contents (args[i]);
863 struct type *type = value_type (args[i]);
864 int len = TYPE_LENGTH (type);
865 int regnum = -1;
866 gdb_byte buf[16];
867
868 if (sparc64_structure_or_union_p (type))
869 {
870 /* Structure or Union arguments. */
871 gdb_assert (len <= 16);
872 memset (buf, 0, sizeof (buf));
873 valbuf = memcpy (buf, valbuf, len);
874
875 if (element % 2 && sparc64_16_byte_align_p (type))
876 element++;
877
878 if (element < 6)
879 {
880 regnum = SPARC_O0_REGNUM + element;
881 if (len > 8 && element < 5)
882 regcache_cooked_write (regcache, regnum + 1, valbuf + 8);
883 }
884
885 if (element < 16)
886 sparc64_store_floating_fields (regcache, type, valbuf, element, 0);
887 }
888 else if (sparc64_floating_p (type))
889 {
890 /* Floating arguments. */
891 if (len == 16)
892 {
893 if (element % 2)
894 element++;
895 if (element < 16)
896 regnum = SPARC64_Q0_REGNUM + element / 2;
897 }
898 else if (len == 8)
899 {
900 if (element < 16)
901 regnum = SPARC64_D0_REGNUM + element;
902 }
903 else
904 {
905 /* The psABI says "Each single-precision parameter value
906 will be assigned to one extended word in the
907 parameter array, and right-justified within that
908 word; the left half (even floatregister) is
909 undefined." Even though the psABI says that "the
910 left half is undefined", set it to zero here. */
911 memset (buf, 0, 4);
912 memcpy (buf + 4, valbuf, 4);
913 valbuf = buf;
914 len = 8;
915 if (element < 16)
916 regnum = SPARC64_D0_REGNUM + element;
917 }
918 }
919 else
920 {
921 /* Integral and pointer arguments. */
922 gdb_assert (len == 8);
923 if (element < 6)
924 regnum = SPARC_O0_REGNUM + element;
925 }
926
927 if (regnum != -1)
928 {
929 regcache_cooked_write (regcache, regnum, valbuf);
930
931 /* If we're storing the value in a floating-point register,
932 also store it in the corresponding %0 register(s). */
933 if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D10_REGNUM)
934 {
935 gdb_assert (element < 6);
936 regnum = SPARC_O0_REGNUM + element;
937 regcache_cooked_write (regcache, regnum, valbuf);
938 }
939 else if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q8_REGNUM)
940 {
941 gdb_assert (element < 6);
942 regnum = SPARC_O0_REGNUM + element;
943 regcache_cooked_write (regcache, regnum, valbuf);
944 regcache_cooked_write (regcache, regnum + 1, valbuf + 8);
945 }
946 }
947
948 /* Always store the argument in memory. */
949 write_memory (sp + element * 8, valbuf, len);
950 element += ((len + 7) / 8);
951 }
952
953 gdb_assert (element == num_elements);
954
955 /* Take BIAS into account. */
956 sp -= BIAS;
957 return sp;
958 }
959
960 static CORE_ADDR
961 sparc64_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
962 {
963 /* The ABI requires 16-byte alignment. */
964 return address & ~0xf;
965 }
966
967 static CORE_ADDR
968 sparc64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
969 struct regcache *regcache, CORE_ADDR bp_addr,
970 int nargs, struct value **args, CORE_ADDR sp,
971 int struct_return, CORE_ADDR struct_addr)
972 {
973 /* Set return address. */
974 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, bp_addr - 8);
975
976 /* Set up function arguments. */
977 sp = sparc64_store_arguments (regcache, nargs, args, sp,
978 struct_return, struct_addr);
979
980 /* Allocate the register save area. */
981 sp -= 16 * 8;
982
983 /* Stack should be 16-byte aligned at this point. */
984 gdb_assert ((sp + BIAS) % 16 == 0);
985
986 /* Finally, update the stack pointer. */
987 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
988
989 return sp + BIAS;
990 }
991 \f
992
993 /* Extract from an array REGBUF containing the (raw) register state, a
994 function return value of TYPE, and copy that into VALBUF. */
995
996 static void
997 sparc64_extract_return_value (struct type *type, struct regcache *regcache,
998 gdb_byte *valbuf)
999 {
1000 int len = TYPE_LENGTH (type);
1001 gdb_byte buf[32];
1002 int i;
1003
1004 if (sparc64_structure_or_union_p (type))
1005 {
1006 /* Structure or Union return values. */
1007 gdb_assert (len <= 32);
1008
1009 for (i = 0; i < ((len + 7) / 8); i++)
1010 regcache_cooked_read (regcache, SPARC_O0_REGNUM + i, buf + i * 8);
1011 if (TYPE_CODE (type) != TYPE_CODE_UNION)
1012 sparc64_extract_floating_fields (regcache, type, buf, 0);
1013 memcpy (valbuf, buf, len);
1014 }
1015 else if (sparc64_floating_p (type))
1016 {
1017 /* Floating return values. */
1018 for (i = 0; i < len / 4; i++)
1019 regcache_cooked_read (regcache, SPARC_F0_REGNUM + i, buf + i * 4);
1020 memcpy (valbuf, buf, len);
1021 }
1022 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1023 {
1024 /* Small arrays are returned the same way as small structures. */
1025 gdb_assert (len <= 32);
1026
1027 for (i = 0; i < ((len + 7) / 8); i++)
1028 regcache_cooked_read (regcache, SPARC_O0_REGNUM + i, buf + i * 8);
1029 memcpy (valbuf, buf, len);
1030 }
1031 else
1032 {
1033 /* Integral and pointer return values. */
1034 gdb_assert (sparc64_integral_or_pointer_p (type));
1035
1036 /* Just stripping off any unused bytes should preserve the
1037 signed-ness just fine. */
1038 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1039 memcpy (valbuf, buf + 8 - len, len);
1040 }
1041 }
1042
1043 /* Write into the appropriate registers a function return value stored
1044 in VALBUF of type TYPE. */
1045
1046 static void
1047 sparc64_store_return_value (struct type *type, struct regcache *regcache,
1048 const gdb_byte *valbuf)
1049 {
1050 int len = TYPE_LENGTH (type);
1051 gdb_byte buf[16];
1052 int i;
1053
1054 if (sparc64_structure_or_union_p (type))
1055 {
1056 /* Structure or Union return values. */
1057 gdb_assert (len <= 32);
1058
1059 /* Simplify matters by storing the complete value (including
1060 floating members) into %o0 and %o1. Floating members are
1061 also store in the appropriate floating-point registers. */
1062 memset (buf, 0, sizeof (buf));
1063 memcpy (buf, valbuf, len);
1064 for (i = 0; i < ((len + 7) / 8); i++)
1065 regcache_cooked_write (regcache, SPARC_O0_REGNUM + i, buf + i * 8);
1066 if (TYPE_CODE (type) != TYPE_CODE_UNION)
1067 sparc64_store_floating_fields (regcache, type, buf, 0, 0);
1068 }
1069 else if (sparc64_floating_p (type))
1070 {
1071 /* Floating return values. */
1072 memcpy (buf, valbuf, len);
1073 for (i = 0; i < len / 4; i++)
1074 regcache_cooked_write (regcache, SPARC_F0_REGNUM + i, buf + i * 4);
1075 }
1076 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1077 {
1078 /* Small arrays are returned the same way as small structures. */
1079 gdb_assert (len <= 32);
1080
1081 memset (buf, 0, sizeof (buf));
1082 memcpy (buf, valbuf, len);
1083 for (i = 0; i < ((len + 7) / 8); i++)
1084 regcache_cooked_write (regcache, SPARC_O0_REGNUM + i, buf + i * 8);
1085 }
1086 else
1087 {
1088 /* Integral and pointer return values. */
1089 gdb_assert (sparc64_integral_or_pointer_p (type));
1090
1091 /* ??? Do we need to do any sign-extension here? */
1092 memset (buf, 0, 8);
1093 memcpy (buf + 8 - len, valbuf, len);
1094 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
1095 }
1096 }
1097
1098 static enum return_value_convention
1099 sparc64_return_value (struct gdbarch *gdbarch, struct type *func_type,
1100 struct type *type, struct regcache *regcache,
1101 gdb_byte *readbuf, const gdb_byte *writebuf)
1102 {
1103 if (TYPE_LENGTH (type) > 32)
1104 return RETURN_VALUE_STRUCT_CONVENTION;
1105
1106 if (readbuf)
1107 sparc64_extract_return_value (type, regcache, readbuf);
1108 if (writebuf)
1109 sparc64_store_return_value (type, regcache, writebuf);
1110
1111 return RETURN_VALUE_REGISTER_CONVENTION;
1112 }
1113 \f
1114
1115 static void
1116 sparc64_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1117 struct dwarf2_frame_state_reg *reg,
1118 struct frame_info *this_frame)
1119 {
1120 switch (regnum)
1121 {
1122 case SPARC_G0_REGNUM:
1123 /* Since %g0 is always zero, there is no point in saving it, and
1124 people will be inclined omit it from the CFI. Make sure we
1125 don't warn about that. */
1126 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1127 break;
1128 case SPARC_SP_REGNUM:
1129 reg->how = DWARF2_FRAME_REG_CFA;
1130 break;
1131 case SPARC64_PC_REGNUM:
1132 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1133 reg->loc.offset = 8;
1134 break;
1135 case SPARC64_NPC_REGNUM:
1136 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1137 reg->loc.offset = 12;
1138 break;
1139 }
1140 }
1141
1142 void
1143 sparc64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1144 {
1145 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1146
1147 tdep->pc_regnum = SPARC64_PC_REGNUM;
1148 tdep->npc_regnum = SPARC64_NPC_REGNUM;
1149
1150 /* This is what all the fuss is about. */
1151 set_gdbarch_long_bit (gdbarch, 64);
1152 set_gdbarch_long_long_bit (gdbarch, 64);
1153 set_gdbarch_ptr_bit (gdbarch, 64);
1154
1155 set_gdbarch_num_regs (gdbarch, SPARC64_NUM_REGS);
1156 set_gdbarch_register_name (gdbarch, sparc64_register_name);
1157 set_gdbarch_register_type (gdbarch, sparc64_register_type);
1158 set_gdbarch_num_pseudo_regs (gdbarch, SPARC64_NUM_PSEUDO_REGS);
1159 set_gdbarch_pseudo_register_read (gdbarch, sparc64_pseudo_register_read);
1160 set_gdbarch_pseudo_register_write (gdbarch, sparc64_pseudo_register_write);
1161
1162 /* Register numbers of various important registers. */
1163 set_gdbarch_pc_regnum (gdbarch, SPARC64_PC_REGNUM); /* %pc */
1164
1165 /* Call dummy code. */
1166 set_gdbarch_frame_align (gdbarch, sparc64_frame_align);
1167 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1168 set_gdbarch_push_dummy_code (gdbarch, NULL);
1169 set_gdbarch_push_dummy_call (gdbarch, sparc64_push_dummy_call);
1170
1171 set_gdbarch_return_value (gdbarch, sparc64_return_value);
1172 set_gdbarch_stabs_argument_has_addr
1173 (gdbarch, default_stabs_argument_has_addr);
1174
1175 set_gdbarch_skip_prologue (gdbarch, sparc64_skip_prologue);
1176
1177 /* Hook in the DWARF CFI frame unwinder. */
1178 dwarf2_frame_set_init_reg (gdbarch, sparc64_dwarf2_frame_init_reg);
1179 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1180 StackGhost issues have been resolved. */
1181
1182 frame_unwind_append_unwinder (gdbarch, &sparc64_frame_unwind);
1183 frame_base_set_default (gdbarch, &sparc64_frame_base);
1184 }
1185 \f
1186
1187 /* Helper functions for dealing with register sets. */
1188
1189 #define TSTATE_CWP 0x000000000000001fULL
1190 #define TSTATE_ICC 0x0000000f00000000ULL
1191 #define TSTATE_XCC 0x000000f000000000ULL
1192
1193 #define PSR_S 0x00000080
1194 #define PSR_ICC 0x00f00000
1195 #define PSR_VERS 0x0f000000
1196 #define PSR_IMPL 0xf0000000
1197 #define PSR_V8PLUS 0xff000000
1198 #define PSR_XCC 0x000f0000
1199
1200 void
1201 sparc64_supply_gregset (const struct sparc_gregset *gregset,
1202 struct regcache *regcache,
1203 int regnum, const void *gregs)
1204 {
1205 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1206 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1207 int sparc32 = (gdbarch_ptr_bit (gdbarch) == 32);
1208 const gdb_byte *regs = gregs;
1209 int i;
1210
1211 if (sparc32)
1212 {
1213 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1214 {
1215 int offset = gregset->r_tstate_offset;
1216 ULONGEST tstate, psr;
1217 gdb_byte buf[4];
1218
1219 tstate = extract_unsigned_integer (regs + offset, 8, byte_order);
1220 psr = ((tstate & TSTATE_CWP) | PSR_S | ((tstate & TSTATE_ICC) >> 12)
1221 | ((tstate & TSTATE_XCC) >> 20) | PSR_V8PLUS);
1222 store_unsigned_integer (buf, 4, byte_order, psr);
1223 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM, buf);
1224 }
1225
1226 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1227 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1228 regs + gregset->r_pc_offset + 4);
1229
1230 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1231 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1232 regs + gregset->r_npc_offset + 4);
1233
1234 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1235 {
1236 int offset = gregset->r_y_offset + 8 - gregset->r_y_size;
1237 regcache_raw_supply (regcache, SPARC32_Y_REGNUM, regs + offset);
1238 }
1239 }
1240 else
1241 {
1242 if (regnum == SPARC64_STATE_REGNUM || regnum == -1)
1243 regcache_raw_supply (regcache, SPARC64_STATE_REGNUM,
1244 regs + gregset->r_tstate_offset);
1245
1246 if (regnum == SPARC64_PC_REGNUM || regnum == -1)
1247 regcache_raw_supply (regcache, SPARC64_PC_REGNUM,
1248 regs + gregset->r_pc_offset);
1249
1250 if (regnum == SPARC64_NPC_REGNUM || regnum == -1)
1251 regcache_raw_supply (regcache, SPARC64_NPC_REGNUM,
1252 regs + gregset->r_npc_offset);
1253
1254 if (regnum == SPARC64_Y_REGNUM || regnum == -1)
1255 {
1256 gdb_byte buf[8];
1257
1258 memset (buf, 0, 8);
1259 memcpy (buf + 8 - gregset->r_y_size,
1260 regs + gregset->r_y_offset, gregset->r_y_size);
1261 regcache_raw_supply (regcache, SPARC64_Y_REGNUM, buf);
1262 }
1263
1264 if ((regnum == SPARC64_FPRS_REGNUM || regnum == -1)
1265 && gregset->r_fprs_offset != -1)
1266 regcache_raw_supply (regcache, SPARC64_FPRS_REGNUM,
1267 regs + gregset->r_fprs_offset);
1268 }
1269
1270 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1271 regcache_raw_supply (regcache, SPARC_G0_REGNUM, NULL);
1272
1273 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1274 {
1275 int offset = gregset->r_g1_offset;
1276
1277 if (sparc32)
1278 offset += 4;
1279
1280 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1281 {
1282 if (regnum == i || regnum == -1)
1283 regcache_raw_supply (regcache, i, regs + offset);
1284 offset += 8;
1285 }
1286 }
1287
1288 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1289 {
1290 /* Not all of the register set variants include Locals and
1291 Inputs. For those that don't, we read them off the stack. */
1292 if (gregset->r_l0_offset == -1)
1293 {
1294 ULONGEST sp;
1295
1296 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1297 sparc_supply_rwindow (regcache, sp, regnum);
1298 }
1299 else
1300 {
1301 int offset = gregset->r_l0_offset;
1302
1303 if (sparc32)
1304 offset += 4;
1305
1306 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1307 {
1308 if (regnum == i || regnum == -1)
1309 regcache_raw_supply (regcache, i, regs + offset);
1310 offset += 8;
1311 }
1312 }
1313 }
1314 }
1315
1316 void
1317 sparc64_collect_gregset (const struct sparc_gregset *gregset,
1318 const struct regcache *regcache,
1319 int regnum, void *gregs)
1320 {
1321 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1322 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1323 int sparc32 = (gdbarch_ptr_bit (gdbarch) == 32);
1324 gdb_byte *regs = gregs;
1325 int i;
1326
1327 if (sparc32)
1328 {
1329 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1330 {
1331 int offset = gregset->r_tstate_offset;
1332 ULONGEST tstate, psr;
1333 gdb_byte buf[8];
1334
1335 tstate = extract_unsigned_integer (regs + offset, 8, byte_order);
1336 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM, buf);
1337 psr = extract_unsigned_integer (buf, 4, byte_order);
1338 tstate |= (psr & PSR_ICC) << 12;
1339 if ((psr & (PSR_VERS | PSR_IMPL)) == PSR_V8PLUS)
1340 tstate |= (psr & PSR_XCC) << 20;
1341 store_unsigned_integer (buf, 8, byte_order, tstate);
1342 memcpy (regs + offset, buf, 8);
1343 }
1344
1345 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1346 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1347 regs + gregset->r_pc_offset + 4);
1348
1349 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1350 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1351 regs + gregset->r_npc_offset + 4);
1352
1353 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1354 {
1355 int offset = gregset->r_y_offset + 8 - gregset->r_y_size;
1356 regcache_raw_collect (regcache, SPARC32_Y_REGNUM, regs + offset);
1357 }
1358 }
1359 else
1360 {
1361 if (regnum == SPARC64_STATE_REGNUM || regnum == -1)
1362 regcache_raw_collect (regcache, SPARC64_STATE_REGNUM,
1363 regs + gregset->r_tstate_offset);
1364
1365 if (regnum == SPARC64_PC_REGNUM || regnum == -1)
1366 regcache_raw_collect (regcache, SPARC64_PC_REGNUM,
1367 regs + gregset->r_pc_offset);
1368
1369 if (regnum == SPARC64_NPC_REGNUM || regnum == -1)
1370 regcache_raw_collect (regcache, SPARC64_NPC_REGNUM,
1371 regs + gregset->r_npc_offset);
1372
1373 if (regnum == SPARC64_Y_REGNUM || regnum == -1)
1374 {
1375 gdb_byte buf[8];
1376
1377 regcache_raw_collect (regcache, SPARC64_Y_REGNUM, buf);
1378 memcpy (regs + gregset->r_y_offset,
1379 buf + 8 - gregset->r_y_size, gregset->r_y_size);
1380 }
1381
1382 if ((regnum == SPARC64_FPRS_REGNUM || regnum == -1)
1383 && gregset->r_fprs_offset != -1)
1384 regcache_raw_collect (regcache, SPARC64_FPRS_REGNUM,
1385 regs + gregset->r_fprs_offset);
1386
1387 }
1388
1389 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1390 {
1391 int offset = gregset->r_g1_offset;
1392
1393 if (sparc32)
1394 offset += 4;
1395
1396 /* %g0 is always zero. */
1397 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1398 {
1399 if (regnum == i || regnum == -1)
1400 regcache_raw_collect (regcache, i, regs + offset);
1401 offset += 8;
1402 }
1403 }
1404
1405 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1406 {
1407 /* Not all of the register set variants include Locals and
1408 Inputs. For those that don't, we read them off the stack. */
1409 if (gregset->r_l0_offset != -1)
1410 {
1411 int offset = gregset->r_l0_offset;
1412
1413 if (sparc32)
1414 offset += 4;
1415
1416 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1417 {
1418 if (regnum == i || regnum == -1)
1419 regcache_raw_collect (regcache, i, regs + offset);
1420 offset += 8;
1421 }
1422 }
1423 }
1424 }
1425
1426 void
1427 sparc64_supply_fpregset (struct regcache *regcache,
1428 int regnum, const void *fpregs)
1429 {
1430 int sparc32 = (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 32);
1431 const gdb_byte *regs = fpregs;
1432 int i;
1433
1434 for (i = 0; i < 32; i++)
1435 {
1436 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1437 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1438 }
1439
1440 if (sparc32)
1441 {
1442 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1443 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM,
1444 regs + (32 * 4) + (16 * 8) + 4);
1445 }
1446 else
1447 {
1448 for (i = 0; i < 16; i++)
1449 {
1450 if (regnum == (SPARC64_F32_REGNUM + i) || regnum == -1)
1451 regcache_raw_supply (regcache, SPARC64_F32_REGNUM + i,
1452 regs + (32 * 4) + (i * 8));
1453 }
1454
1455 if (regnum == SPARC64_FSR_REGNUM || regnum == -1)
1456 regcache_raw_supply (regcache, SPARC64_FSR_REGNUM,
1457 regs + (32 * 4) + (16 * 8));
1458 }
1459 }
1460
1461 void
1462 sparc64_collect_fpregset (const struct regcache *regcache,
1463 int regnum, void *fpregs)
1464 {
1465 int sparc32 = (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 32);
1466 gdb_byte *regs = fpregs;
1467 int i;
1468
1469 for (i = 0; i < 32; i++)
1470 {
1471 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1472 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1473 }
1474
1475 if (sparc32)
1476 {
1477 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1478 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM,
1479 regs + (32 * 4) + (16 * 8) + 4);
1480 }
1481 else
1482 {
1483 for (i = 0; i < 16; i++)
1484 {
1485 if (regnum == (SPARC64_F32_REGNUM + i) || regnum == -1)
1486 regcache_raw_collect (regcache, SPARC64_F32_REGNUM + i,
1487 regs + (32 * 4) + (i * 8));
1488 }
1489
1490 if (regnum == SPARC64_FSR_REGNUM || regnum == -1)
1491 regcache_raw_collect (regcache, SPARC64_FSR_REGNUM,
1492 regs + (32 * 4) + (16 * 8));
1493 }
1494 }
1495
This page took 0.096207 seconds and 5 git commands to generate.