clean up some target delegation cases
[deliverable/binutils-gdb.git] / gdb / spu-multiarch.c
1 /* Cell SPU GNU/Linux multi-architecture debugging support.
2 Copyright (C) 2009-2014 Free Software Foundation, Inc.
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdbcore.h"
23 #include "gdbcmd.h"
24 #include <string.h>
25 #include "gdb_assert.h"
26 #include "arch-utils.h"
27 #include "observer.h"
28 #include "inferior.h"
29 #include "regcache.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "solib.h"
33 #include "solist.h"
34
35 #include "ppc-tdep.h"
36 #include "ppc-linux-tdep.h"
37 #include "spu-tdep.h"
38
39 /* This module's target vector. */
40 static struct target_ops spu_ops;
41
42 /* Number of SPE objects loaded into the current inferior. */
43 static int spu_nr_solib;
44
45 /* Stand-alone SPE executable? */
46 #define spu_standalone_p() \
47 (symfile_objfile && symfile_objfile->obfd \
48 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu)
49
50 /* PPU side system calls. */
51 #define INSTR_SC 0x44000002
52 #define NR_spu_run 0x0116
53
54 /* If the PPU thread is currently stopped on a spu_run system call,
55 return to FD and ADDR the file handle and NPC parameter address
56 used with the system call. Return non-zero if successful. */
57 static int
58 parse_spufs_run (ptid_t ptid, int *fd, CORE_ADDR *addr)
59 {
60 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
61 struct gdbarch_tdep *tdep;
62 struct regcache *regcache;
63 gdb_byte buf[4];
64 ULONGEST regval;
65
66 /* If we're not on PPU, there's nothing to detect. */
67 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_powerpc)
68 return 0;
69
70 /* Get PPU-side registers. */
71 regcache = get_thread_arch_regcache (ptid, target_gdbarch ());
72 tdep = gdbarch_tdep (target_gdbarch ());
73
74 /* Fetch instruction preceding current NIP. */
75 if (target_read_memory (regcache_read_pc (regcache) - 4, buf, 4) != 0)
76 return 0;
77 /* It should be a "sc" instruction. */
78 if (extract_unsigned_integer (buf, 4, byte_order) != INSTR_SC)
79 return 0;
80 /* System call number should be NR_spu_run. */
81 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum, &regval);
82 if (regval != NR_spu_run)
83 return 0;
84
85 /* Register 3 contains fd, register 4 the NPC param pointer. */
86 regcache_cooked_read_unsigned (regcache, PPC_ORIG_R3_REGNUM, &regval);
87 *fd = (int) regval;
88 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 4, &regval);
89 *addr = (CORE_ADDR) regval;
90 return 1;
91 }
92
93 /* Find gdbarch for SPU context SPUFS_FD. */
94 static struct gdbarch *
95 spu_gdbarch (int spufs_fd)
96 {
97 struct gdbarch_info info;
98 gdbarch_info_init (&info);
99 info.bfd_arch_info = bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu);
100 info.byte_order = BFD_ENDIAN_BIG;
101 info.osabi = GDB_OSABI_LINUX;
102 info.tdep_info = (void *) &spufs_fd;
103 return gdbarch_find_by_info (info);
104 }
105
106 /* Override the to_thread_architecture routine. */
107 static struct gdbarch *
108 spu_thread_architecture (struct target_ops *ops, ptid_t ptid)
109 {
110 int spufs_fd;
111 CORE_ADDR spufs_addr;
112
113 if (parse_spufs_run (ptid, &spufs_fd, &spufs_addr))
114 return spu_gdbarch (spufs_fd);
115
116 return target_gdbarch ();
117 }
118
119 /* Override the to_region_ok_for_hw_watchpoint routine. */
120 static int
121 spu_region_ok_for_hw_watchpoint (struct target_ops *self,
122 CORE_ADDR addr, int len)
123 {
124 struct target_ops *ops_beneath = find_target_beneath (&spu_ops);
125
126 /* We cannot watch SPU local store. */
127 if (SPUADDR_SPU (addr) != -1)
128 return 0;
129
130 return ops_beneath->to_region_ok_for_hw_watchpoint (ops_beneath, addr, len);
131 }
132
133 /* Override the to_fetch_registers routine. */
134 static void
135 spu_fetch_registers (struct target_ops *ops,
136 struct regcache *regcache, int regno)
137 {
138 struct gdbarch *gdbarch = get_regcache_arch (regcache);
139 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
140 struct target_ops *ops_beneath = find_target_beneath (ops);
141 int spufs_fd;
142 CORE_ADDR spufs_addr;
143
144 /* This version applies only if we're currently in spu_run. */
145 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
146 {
147 ops_beneath->to_fetch_registers (ops_beneath, regcache, regno);
148 return;
149 }
150
151 /* We must be stopped on a spu_run system call. */
152 if (!parse_spufs_run (inferior_ptid, &spufs_fd, &spufs_addr))
153 return;
154
155 /* The ID register holds the spufs file handle. */
156 if (regno == -1 || regno == SPU_ID_REGNUM)
157 {
158 gdb_byte buf[4];
159 store_unsigned_integer (buf, 4, byte_order, spufs_fd);
160 regcache_raw_supply (regcache, SPU_ID_REGNUM, buf);
161 }
162
163 /* The NPC register is found in PPC memory at SPUFS_ADDR. */
164 if (regno == -1 || regno == SPU_PC_REGNUM)
165 {
166 gdb_byte buf[4];
167
168 if (target_read (ops_beneath, TARGET_OBJECT_MEMORY, NULL,
169 buf, spufs_addr, sizeof buf) == sizeof buf)
170 regcache_raw_supply (regcache, SPU_PC_REGNUM, buf);
171 }
172
173 /* The GPRs are found in the "regs" spufs file. */
174 if (regno == -1 || (regno >= 0 && regno < SPU_NUM_GPRS))
175 {
176 gdb_byte buf[16 * SPU_NUM_GPRS];
177 char annex[32];
178 int i;
179
180 xsnprintf (annex, sizeof annex, "%d/regs", spufs_fd);
181 if (target_read (ops_beneath, TARGET_OBJECT_SPU, annex,
182 buf, 0, sizeof buf) == sizeof buf)
183 for (i = 0; i < SPU_NUM_GPRS; i++)
184 regcache_raw_supply (regcache, i, buf + i*16);
185 }
186 }
187
188 /* Override the to_store_registers routine. */
189 static void
190 spu_store_registers (struct target_ops *ops,
191 struct regcache *regcache, int regno)
192 {
193 struct gdbarch *gdbarch = get_regcache_arch (regcache);
194 struct target_ops *ops_beneath = find_target_beneath (ops);
195 int spufs_fd;
196 CORE_ADDR spufs_addr;
197
198 /* This version applies only if we're currently in spu_run. */
199 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
200 {
201 ops_beneath->to_store_registers (ops_beneath, regcache, regno);
202 return;
203 }
204
205 /* We must be stopped on a spu_run system call. */
206 if (!parse_spufs_run (inferior_ptid, &spufs_fd, &spufs_addr))
207 return;
208
209 /* The NPC register is found in PPC memory at SPUFS_ADDR. */
210 if (regno == -1 || regno == SPU_PC_REGNUM)
211 {
212 gdb_byte buf[4];
213 regcache_raw_collect (regcache, SPU_PC_REGNUM, buf);
214
215 target_write (ops_beneath, TARGET_OBJECT_MEMORY, NULL,
216 buf, spufs_addr, sizeof buf);
217 }
218
219 /* The GPRs are found in the "regs" spufs file. */
220 if (regno == -1 || (regno >= 0 && regno < SPU_NUM_GPRS))
221 {
222 gdb_byte buf[16 * SPU_NUM_GPRS];
223 char annex[32];
224 int i;
225
226 for (i = 0; i < SPU_NUM_GPRS; i++)
227 regcache_raw_collect (regcache, i, buf + i*16);
228
229 xsnprintf (annex, sizeof annex, "%d/regs", spufs_fd);
230 target_write (ops_beneath, TARGET_OBJECT_SPU, annex,
231 buf, 0, sizeof buf);
232 }
233 }
234
235 /* Override the to_xfer_partial routine. */
236 static enum target_xfer_status
237 spu_xfer_partial (struct target_ops *ops, enum target_object object,
238 const char *annex, gdb_byte *readbuf,
239 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
240 ULONGEST *xfered_len)
241 {
242 struct target_ops *ops_beneath = find_target_beneath (ops);
243
244 /* Use the "mem" spufs file to access SPU local store. */
245 if (object == TARGET_OBJECT_MEMORY)
246 {
247 int fd = SPUADDR_SPU (offset);
248 CORE_ADDR addr = SPUADDR_ADDR (offset);
249 char mem_annex[32], lslr_annex[32];
250 gdb_byte buf[32];
251 ULONGEST lslr;
252 enum target_xfer_status ret;
253
254 if (fd >= 0)
255 {
256 xsnprintf (mem_annex, sizeof mem_annex, "%d/mem", fd);
257 ret = ops_beneath->to_xfer_partial (ops_beneath, TARGET_OBJECT_SPU,
258 mem_annex, readbuf, writebuf,
259 addr, len, xfered_len);
260 if (ret == TARGET_XFER_OK)
261 return ret;
262
263 /* SPU local store access wraps the address around at the
264 local store limit. We emulate this here. To avoid needing
265 an extra access to retrieve the LSLR, we only do that after
266 trying the original address first, and getting end-of-file. */
267 xsnprintf (lslr_annex, sizeof lslr_annex, "%d/lslr", fd);
268 memset (buf, 0, sizeof buf);
269 if (ops_beneath->to_xfer_partial (ops_beneath, TARGET_OBJECT_SPU,
270 lslr_annex, buf, NULL,
271 0, sizeof buf, xfered_len)
272 != TARGET_XFER_OK)
273 return ret;
274
275 lslr = strtoulst ((char *) buf, NULL, 16);
276 return ops_beneath->to_xfer_partial (ops_beneath, TARGET_OBJECT_SPU,
277 mem_annex, readbuf, writebuf,
278 addr & lslr, len, xfered_len);
279 }
280 }
281
282 return ops_beneath->to_xfer_partial (ops_beneath, object, annex,
283 readbuf, writebuf, offset, len, xfered_len);
284 }
285
286 /* Override the to_search_memory routine. */
287 static int
288 spu_search_memory (struct target_ops* ops,
289 CORE_ADDR start_addr, ULONGEST search_space_len,
290 const gdb_byte *pattern, ULONGEST pattern_len,
291 CORE_ADDR *found_addrp)
292 {
293 struct target_ops *ops_beneath = find_target_beneath (ops);
294
295 /* For SPU local store, always fall back to the simple method. */
296 if (SPUADDR_SPU (start_addr) >= 0)
297 return simple_search_memory (ops,
298 start_addr, search_space_len,
299 pattern, pattern_len, found_addrp);
300
301 return ops_beneath->to_search_memory (ops_beneath,
302 start_addr, search_space_len,
303 pattern, pattern_len, found_addrp);
304 }
305
306
307 /* Push and pop the SPU multi-architecture support target. */
308
309 static void
310 spu_multiarch_activate (void)
311 {
312 /* If GDB was configured without SPU architecture support,
313 we cannot install SPU multi-architecture support either. */
314 if (spu_gdbarch (-1) == NULL)
315 return;
316
317 push_target (&spu_ops);
318
319 /* Make sure the thread architecture is re-evaluated. */
320 registers_changed ();
321 }
322
323 static void
324 spu_multiarch_deactivate (void)
325 {
326 unpush_target (&spu_ops);
327
328 /* Make sure the thread architecture is re-evaluated. */
329 registers_changed ();
330 }
331
332 static void
333 spu_multiarch_inferior_created (struct target_ops *ops, int from_tty)
334 {
335 if (spu_standalone_p ())
336 spu_multiarch_activate ();
337 }
338
339 static void
340 spu_multiarch_solib_loaded (struct so_list *so)
341 {
342 if (!spu_standalone_p ())
343 if (so->abfd && bfd_get_arch (so->abfd) == bfd_arch_spu)
344 if (spu_nr_solib++ == 0)
345 spu_multiarch_activate ();
346 }
347
348 static void
349 spu_multiarch_solib_unloaded (struct so_list *so)
350 {
351 if (!spu_standalone_p ())
352 if (so->abfd && bfd_get_arch (so->abfd) == bfd_arch_spu)
353 if (--spu_nr_solib == 0)
354 spu_multiarch_deactivate ();
355 }
356
357 static void
358 spu_mourn_inferior (struct target_ops *ops)
359 {
360 struct target_ops *ops_beneath = find_target_beneath (ops);
361
362 ops_beneath->to_mourn_inferior (ops_beneath);
363 spu_multiarch_deactivate ();
364 }
365
366
367 /* Initialize the SPU multi-architecture support target. */
368
369 static void
370 init_spu_ops (void)
371 {
372 spu_ops.to_shortname = "spu";
373 spu_ops.to_longname = "SPU multi-architecture support.";
374 spu_ops.to_doc = "SPU multi-architecture support.";
375 spu_ops.to_mourn_inferior = spu_mourn_inferior;
376 spu_ops.to_fetch_registers = spu_fetch_registers;
377 spu_ops.to_store_registers = spu_store_registers;
378 spu_ops.to_xfer_partial = spu_xfer_partial;
379 spu_ops.to_search_memory = spu_search_memory;
380 spu_ops.to_region_ok_for_hw_watchpoint = spu_region_ok_for_hw_watchpoint;
381 spu_ops.to_thread_architecture = spu_thread_architecture;
382 spu_ops.to_stratum = arch_stratum;
383 spu_ops.to_magic = OPS_MAGIC;
384 }
385
386 /* -Wmissing-prototypes */
387 extern initialize_file_ftype _initialize_spu_multiarch;
388
389 void
390 _initialize_spu_multiarch (void)
391 {
392 /* Install ourselves on the target stack. */
393 init_spu_ops ();
394 complete_target_initialization (&spu_ops);
395
396 /* Install observers to watch for SPU objects. */
397 observer_attach_inferior_created (spu_multiarch_inferior_created);
398 observer_attach_solib_loaded (spu_multiarch_solib_loaded);
399 observer_attach_solib_unloaded (spu_multiarch_solib_unloaded);
400 }
401
This page took 0.03879 seconds and 4 git commands to generate.