windows-nat: Don't change current_event.dwThreadId in handle_output_debug_string()
[deliverable/binutils-gdb.git] / gdb / spu-tdep.c
1 /* SPU target-dependent code for GDB, the GNU debugger.
2 Copyright (C) 2006-2015 Free Software Foundation, Inc.
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdbtypes.h"
25 #include "gdbcmd.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "trad-frame.h"
31 #include "symtab.h"
32 #include "symfile.h"
33 #include "value.h"
34 #include "inferior.h"
35 #include "dis-asm.h"
36 #include "objfiles.h"
37 #include "language.h"
38 #include "regcache.h"
39 #include "reggroups.h"
40 #include "floatformat.h"
41 #include "block.h"
42 #include "observer.h"
43 #include "infcall.h"
44 #include "dwarf2.h"
45 #include "dwarf2-frame.h"
46 #include "ax.h"
47 #include "spu-tdep.h"
48
49
50 /* The list of available "set spu " and "show spu " commands. */
51 static struct cmd_list_element *setspucmdlist = NULL;
52 static struct cmd_list_element *showspucmdlist = NULL;
53
54 /* Whether to stop for new SPE contexts. */
55 static int spu_stop_on_load_p = 0;
56 /* Whether to automatically flush the SW-managed cache. */
57 static int spu_auto_flush_cache_p = 1;
58
59
60 /* The tdep structure. */
61 struct gdbarch_tdep
62 {
63 /* The spufs ID identifying our address space. */
64 int id;
65
66 /* SPU-specific vector type. */
67 struct type *spu_builtin_type_vec128;
68 };
69
70
71 /* SPU-specific vector type. */
72 static struct type *
73 spu_builtin_type_vec128 (struct gdbarch *gdbarch)
74 {
75 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
76
77 if (!tdep->spu_builtin_type_vec128)
78 {
79 const struct builtin_type *bt = builtin_type (gdbarch);
80 struct type *t;
81
82 t = arch_composite_type (gdbarch,
83 "__spu_builtin_type_vec128", TYPE_CODE_UNION);
84 append_composite_type_field (t, "uint128", bt->builtin_int128);
85 append_composite_type_field (t, "v2_int64",
86 init_vector_type (bt->builtin_int64, 2));
87 append_composite_type_field (t, "v4_int32",
88 init_vector_type (bt->builtin_int32, 4));
89 append_composite_type_field (t, "v8_int16",
90 init_vector_type (bt->builtin_int16, 8));
91 append_composite_type_field (t, "v16_int8",
92 init_vector_type (bt->builtin_int8, 16));
93 append_composite_type_field (t, "v2_double",
94 init_vector_type (bt->builtin_double, 2));
95 append_composite_type_field (t, "v4_float",
96 init_vector_type (bt->builtin_float, 4));
97
98 TYPE_VECTOR (t) = 1;
99 TYPE_NAME (t) = "spu_builtin_type_vec128";
100
101 tdep->spu_builtin_type_vec128 = t;
102 }
103
104 return tdep->spu_builtin_type_vec128;
105 }
106
107
108 /* The list of available "info spu " commands. */
109 static struct cmd_list_element *infospucmdlist = NULL;
110
111 /* Registers. */
112
113 static const char *
114 spu_register_name (struct gdbarch *gdbarch, int reg_nr)
115 {
116 static char *register_names[] =
117 {
118 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
119 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
120 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
121 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
122 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
123 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
124 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
125 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
126 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
127 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
128 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
129 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
130 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
131 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
132 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
133 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
134 "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
135 };
136
137 if (reg_nr < 0)
138 return NULL;
139 if (reg_nr >= sizeof register_names / sizeof *register_names)
140 return NULL;
141
142 return register_names[reg_nr];
143 }
144
145 static struct type *
146 spu_register_type (struct gdbarch *gdbarch, int reg_nr)
147 {
148 if (reg_nr < SPU_NUM_GPRS)
149 return spu_builtin_type_vec128 (gdbarch);
150
151 switch (reg_nr)
152 {
153 case SPU_ID_REGNUM:
154 return builtin_type (gdbarch)->builtin_uint32;
155
156 case SPU_PC_REGNUM:
157 return builtin_type (gdbarch)->builtin_func_ptr;
158
159 case SPU_SP_REGNUM:
160 return builtin_type (gdbarch)->builtin_data_ptr;
161
162 case SPU_FPSCR_REGNUM:
163 return builtin_type (gdbarch)->builtin_uint128;
164
165 case SPU_SRR0_REGNUM:
166 return builtin_type (gdbarch)->builtin_uint32;
167
168 case SPU_LSLR_REGNUM:
169 return builtin_type (gdbarch)->builtin_uint32;
170
171 case SPU_DECR_REGNUM:
172 return builtin_type (gdbarch)->builtin_uint32;
173
174 case SPU_DECR_STATUS_REGNUM:
175 return builtin_type (gdbarch)->builtin_uint32;
176
177 default:
178 internal_error (__FILE__, __LINE__, _("invalid regnum"));
179 }
180 }
181
182 /* Pseudo registers for preferred slots - stack pointer. */
183
184 static enum register_status
185 spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
186 gdb_byte *buf)
187 {
188 struct gdbarch *gdbarch = get_regcache_arch (regcache);
189 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
190 enum register_status status;
191 gdb_byte reg[32];
192 char annex[32];
193 ULONGEST id;
194 ULONGEST ul;
195
196 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
197 if (status != REG_VALID)
198 return status;
199 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
200 memset (reg, 0, sizeof reg);
201 target_read (&current_target, TARGET_OBJECT_SPU, annex,
202 reg, 0, sizeof reg);
203
204 ul = strtoulst ((char *) reg, NULL, 16);
205 store_unsigned_integer (buf, 4, byte_order, ul);
206 return REG_VALID;
207 }
208
209 static enum register_status
210 spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
211 int regnum, gdb_byte *buf)
212 {
213 gdb_byte reg[16];
214 char annex[32];
215 ULONGEST id;
216 enum register_status status;
217
218 switch (regnum)
219 {
220 case SPU_SP_REGNUM:
221 status = regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
222 if (status != REG_VALID)
223 return status;
224 memcpy (buf, reg, 4);
225 return status;
226
227 case SPU_FPSCR_REGNUM:
228 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
229 if (status != REG_VALID)
230 return status;
231 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
232 target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
233 return status;
234
235 case SPU_SRR0_REGNUM:
236 return spu_pseudo_register_read_spu (regcache, "srr0", buf);
237
238 case SPU_LSLR_REGNUM:
239 return spu_pseudo_register_read_spu (regcache, "lslr", buf);
240
241 case SPU_DECR_REGNUM:
242 return spu_pseudo_register_read_spu (regcache, "decr", buf);
243
244 case SPU_DECR_STATUS_REGNUM:
245 return spu_pseudo_register_read_spu (regcache, "decr_status", buf);
246
247 default:
248 internal_error (__FILE__, __LINE__, _("invalid regnum"));
249 }
250 }
251
252 static void
253 spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
254 const gdb_byte *buf)
255 {
256 struct gdbarch *gdbarch = get_regcache_arch (regcache);
257 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
258 char reg[32];
259 char annex[32];
260 ULONGEST id;
261
262 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
263 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
264 xsnprintf (reg, sizeof reg, "0x%s",
265 phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4));
266 target_write (&current_target, TARGET_OBJECT_SPU, annex,
267 (gdb_byte *) reg, 0, strlen (reg));
268 }
269
270 static void
271 spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
272 int regnum, const gdb_byte *buf)
273 {
274 gdb_byte reg[16];
275 char annex[32];
276 ULONGEST id;
277
278 switch (regnum)
279 {
280 case SPU_SP_REGNUM:
281 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
282 memcpy (reg, buf, 4);
283 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
284 break;
285
286 case SPU_FPSCR_REGNUM:
287 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
288 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
289 target_write (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
290 break;
291
292 case SPU_SRR0_REGNUM:
293 spu_pseudo_register_write_spu (regcache, "srr0", buf);
294 break;
295
296 case SPU_LSLR_REGNUM:
297 spu_pseudo_register_write_spu (regcache, "lslr", buf);
298 break;
299
300 case SPU_DECR_REGNUM:
301 spu_pseudo_register_write_spu (regcache, "decr", buf);
302 break;
303
304 case SPU_DECR_STATUS_REGNUM:
305 spu_pseudo_register_write_spu (regcache, "decr_status", buf);
306 break;
307
308 default:
309 internal_error (__FILE__, __LINE__, _("invalid regnum"));
310 }
311 }
312
313 static int
314 spu_ax_pseudo_register_collect (struct gdbarch *gdbarch,
315 struct agent_expr *ax, int regnum)
316 {
317 switch (regnum)
318 {
319 case SPU_SP_REGNUM:
320 ax_reg_mask (ax, SPU_RAW_SP_REGNUM);
321 return 0;
322
323 case SPU_FPSCR_REGNUM:
324 case SPU_SRR0_REGNUM:
325 case SPU_LSLR_REGNUM:
326 case SPU_DECR_REGNUM:
327 case SPU_DECR_STATUS_REGNUM:
328 return -1;
329
330 default:
331 internal_error (__FILE__, __LINE__, _("invalid regnum"));
332 }
333 }
334
335 static int
336 spu_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
337 struct agent_expr *ax, int regnum)
338 {
339 switch (regnum)
340 {
341 case SPU_SP_REGNUM:
342 ax_reg (ax, SPU_RAW_SP_REGNUM);
343 return 0;
344
345 case SPU_FPSCR_REGNUM:
346 case SPU_SRR0_REGNUM:
347 case SPU_LSLR_REGNUM:
348 case SPU_DECR_REGNUM:
349 case SPU_DECR_STATUS_REGNUM:
350 return -1;
351
352 default:
353 internal_error (__FILE__, __LINE__, _("invalid regnum"));
354 }
355 }
356
357
358 /* Value conversion -- access scalar values at the preferred slot. */
359
360 static struct value *
361 spu_value_from_register (struct gdbarch *gdbarch, struct type *type,
362 int regnum, struct frame_id frame_id)
363 {
364 struct value *value = default_value_from_register (gdbarch, type,
365 regnum, frame_id);
366 int len = TYPE_LENGTH (type);
367
368 if (regnum < SPU_NUM_GPRS && len < 16)
369 {
370 int preferred_slot = len < 4 ? 4 - len : 0;
371 set_value_offset (value, preferred_slot);
372 }
373
374 return value;
375 }
376
377 /* Register groups. */
378
379 static int
380 spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
381 struct reggroup *group)
382 {
383 /* Registers displayed via 'info regs'. */
384 if (group == general_reggroup)
385 return 1;
386
387 /* Registers displayed via 'info float'. */
388 if (group == float_reggroup)
389 return 0;
390
391 /* Registers that need to be saved/restored in order to
392 push or pop frames. */
393 if (group == save_reggroup || group == restore_reggroup)
394 return 1;
395
396 return default_register_reggroup_p (gdbarch, regnum, group);
397 }
398
399 /* DWARF-2 register numbers. */
400
401 static int
402 spu_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
403 {
404 /* Use cooked instead of raw SP. */
405 return (reg == SPU_RAW_SP_REGNUM)? SPU_SP_REGNUM : reg;
406 }
407
408
409 /* Address handling. */
410
411 static int
412 spu_gdbarch_id (struct gdbarch *gdbarch)
413 {
414 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
415 int id = tdep->id;
416
417 /* The objfile architecture of a standalone SPU executable does not
418 provide an SPU ID. Retrieve it from the objfile's relocated
419 address range in this special case. */
420 if (id == -1
421 && symfile_objfile && symfile_objfile->obfd
422 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu
423 && symfile_objfile->sections != symfile_objfile->sections_end)
424 id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections));
425
426 return id;
427 }
428
429 static int
430 spu_address_class_type_flags (int byte_size, int dwarf2_addr_class)
431 {
432 if (dwarf2_addr_class == 1)
433 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
434 else
435 return 0;
436 }
437
438 static const char *
439 spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
440 {
441 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
442 return "__ea";
443 else
444 return NULL;
445 }
446
447 static int
448 spu_address_class_name_to_type_flags (struct gdbarch *gdbarch,
449 const char *name, int *type_flags_ptr)
450 {
451 if (strcmp (name, "__ea") == 0)
452 {
453 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
454 return 1;
455 }
456 else
457 return 0;
458 }
459
460 static void
461 spu_address_to_pointer (struct gdbarch *gdbarch,
462 struct type *type, gdb_byte *buf, CORE_ADDR addr)
463 {
464 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
465 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
466 SPUADDR_ADDR (addr));
467 }
468
469 static CORE_ADDR
470 spu_pointer_to_address (struct gdbarch *gdbarch,
471 struct type *type, const gdb_byte *buf)
472 {
473 int id = spu_gdbarch_id (gdbarch);
474 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
475 ULONGEST addr
476 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
477
478 /* Do not convert __ea pointers. */
479 if (TYPE_ADDRESS_CLASS_1 (type))
480 return addr;
481
482 return addr? SPUADDR (id, addr) : 0;
483 }
484
485 static CORE_ADDR
486 spu_integer_to_address (struct gdbarch *gdbarch,
487 struct type *type, const gdb_byte *buf)
488 {
489 int id = spu_gdbarch_id (gdbarch);
490 ULONGEST addr = unpack_long (type, buf);
491
492 return SPUADDR (id, addr);
493 }
494
495
496 /* Decoding SPU instructions. */
497
498 enum
499 {
500 op_lqd = 0x34,
501 op_lqx = 0x3c4,
502 op_lqa = 0x61,
503 op_lqr = 0x67,
504 op_stqd = 0x24,
505 op_stqx = 0x144,
506 op_stqa = 0x41,
507 op_stqr = 0x47,
508
509 op_il = 0x081,
510 op_ila = 0x21,
511 op_a = 0x0c0,
512 op_ai = 0x1c,
513
514 op_selb = 0x8,
515
516 op_br = 0x64,
517 op_bra = 0x60,
518 op_brsl = 0x66,
519 op_brasl = 0x62,
520 op_brnz = 0x42,
521 op_brz = 0x40,
522 op_brhnz = 0x46,
523 op_brhz = 0x44,
524 op_bi = 0x1a8,
525 op_bisl = 0x1a9,
526 op_biz = 0x128,
527 op_binz = 0x129,
528 op_bihz = 0x12a,
529 op_bihnz = 0x12b,
530 };
531
532 static int
533 is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
534 {
535 if ((insn >> 21) == op)
536 {
537 *rt = insn & 127;
538 *ra = (insn >> 7) & 127;
539 *rb = (insn >> 14) & 127;
540 return 1;
541 }
542
543 return 0;
544 }
545
546 static int
547 is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
548 {
549 if ((insn >> 28) == op)
550 {
551 *rt = (insn >> 21) & 127;
552 *ra = (insn >> 7) & 127;
553 *rb = (insn >> 14) & 127;
554 *rc = insn & 127;
555 return 1;
556 }
557
558 return 0;
559 }
560
561 static int
562 is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
563 {
564 if ((insn >> 21) == op)
565 {
566 *rt = insn & 127;
567 *ra = (insn >> 7) & 127;
568 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
569 return 1;
570 }
571
572 return 0;
573 }
574
575 static int
576 is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
577 {
578 if ((insn >> 24) == op)
579 {
580 *rt = insn & 127;
581 *ra = (insn >> 7) & 127;
582 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
583 return 1;
584 }
585
586 return 0;
587 }
588
589 static int
590 is_ri16 (unsigned int insn, int op, int *rt, int *i16)
591 {
592 if ((insn >> 23) == op)
593 {
594 *rt = insn & 127;
595 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
596 return 1;
597 }
598
599 return 0;
600 }
601
602 static int
603 is_ri18 (unsigned int insn, int op, int *rt, int *i18)
604 {
605 if ((insn >> 25) == op)
606 {
607 *rt = insn & 127;
608 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
609 return 1;
610 }
611
612 return 0;
613 }
614
615 static int
616 is_branch (unsigned int insn, int *offset, int *reg)
617 {
618 int rt, i7, i16;
619
620 if (is_ri16 (insn, op_br, &rt, &i16)
621 || is_ri16 (insn, op_brsl, &rt, &i16)
622 || is_ri16 (insn, op_brnz, &rt, &i16)
623 || is_ri16 (insn, op_brz, &rt, &i16)
624 || is_ri16 (insn, op_brhnz, &rt, &i16)
625 || is_ri16 (insn, op_brhz, &rt, &i16))
626 {
627 *reg = SPU_PC_REGNUM;
628 *offset = i16 << 2;
629 return 1;
630 }
631
632 if (is_ri16 (insn, op_bra, &rt, &i16)
633 || is_ri16 (insn, op_brasl, &rt, &i16))
634 {
635 *reg = -1;
636 *offset = i16 << 2;
637 return 1;
638 }
639
640 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
641 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
642 || is_ri7 (insn, op_biz, &rt, reg, &i7)
643 || is_ri7 (insn, op_binz, &rt, reg, &i7)
644 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
645 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
646 {
647 *offset = 0;
648 return 1;
649 }
650
651 return 0;
652 }
653
654
655 /* Prolog parsing. */
656
657 struct spu_prologue_data
658 {
659 /* Stack frame size. -1 if analysis was unsuccessful. */
660 int size;
661
662 /* How to find the CFA. The CFA is equal to SP at function entry. */
663 int cfa_reg;
664 int cfa_offset;
665
666 /* Offset relative to CFA where a register is saved. -1 if invalid. */
667 int reg_offset[SPU_NUM_GPRS];
668 };
669
670 static CORE_ADDR
671 spu_analyze_prologue (struct gdbarch *gdbarch,
672 CORE_ADDR start_pc, CORE_ADDR end_pc,
673 struct spu_prologue_data *data)
674 {
675 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
676 int found_sp = 0;
677 int found_fp = 0;
678 int found_lr = 0;
679 int found_bc = 0;
680 int reg_immed[SPU_NUM_GPRS];
681 gdb_byte buf[16];
682 CORE_ADDR prolog_pc = start_pc;
683 CORE_ADDR pc;
684 int i;
685
686
687 /* Initialize DATA to default values. */
688 data->size = -1;
689
690 data->cfa_reg = SPU_RAW_SP_REGNUM;
691 data->cfa_offset = 0;
692
693 for (i = 0; i < SPU_NUM_GPRS; i++)
694 data->reg_offset[i] = -1;
695
696 /* Set up REG_IMMED array. This is non-zero for a register if we know its
697 preferred slot currently holds this immediate value. */
698 for (i = 0; i < SPU_NUM_GPRS; i++)
699 reg_immed[i] = 0;
700
701 /* Scan instructions until the first branch.
702
703 The following instructions are important prolog components:
704
705 - The first instruction to set up the stack pointer.
706 - The first instruction to set up the frame pointer.
707 - The first instruction to save the link register.
708 - The first instruction to save the backchain.
709
710 We return the instruction after the latest of these four,
711 or the incoming PC if none is found. The first instruction
712 to set up the stack pointer also defines the frame size.
713
714 Note that instructions saving incoming arguments to their stack
715 slots are not counted as important, because they are hard to
716 identify with certainty. This should not matter much, because
717 arguments are relevant only in code compiled with debug data,
718 and in such code the GDB core will advance until the first source
719 line anyway, using SAL data.
720
721 For purposes of stack unwinding, we analyze the following types
722 of instructions in addition:
723
724 - Any instruction adding to the current frame pointer.
725 - Any instruction loading an immediate constant into a register.
726 - Any instruction storing a register onto the stack.
727
728 These are used to compute the CFA and REG_OFFSET output. */
729
730 for (pc = start_pc; pc < end_pc; pc += 4)
731 {
732 unsigned int insn;
733 int rt, ra, rb, rc, immed;
734
735 if (target_read_memory (pc, buf, 4))
736 break;
737 insn = extract_unsigned_integer (buf, 4, byte_order);
738
739 /* AI is the typical instruction to set up a stack frame.
740 It is also used to initialize the frame pointer. */
741 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
742 {
743 if (rt == data->cfa_reg && ra == data->cfa_reg)
744 data->cfa_offset -= immed;
745
746 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
747 && !found_sp)
748 {
749 found_sp = 1;
750 prolog_pc = pc + 4;
751
752 data->size = -immed;
753 }
754 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
755 && !found_fp)
756 {
757 found_fp = 1;
758 prolog_pc = pc + 4;
759
760 data->cfa_reg = SPU_FP_REGNUM;
761 data->cfa_offset -= immed;
762 }
763 }
764
765 /* A is used to set up stack frames of size >= 512 bytes.
766 If we have tracked the contents of the addend register,
767 we can handle this as well. */
768 else if (is_rr (insn, op_a, &rt, &ra, &rb))
769 {
770 if (rt == data->cfa_reg && ra == data->cfa_reg)
771 {
772 if (reg_immed[rb] != 0)
773 data->cfa_offset -= reg_immed[rb];
774 else
775 data->cfa_reg = -1; /* We don't know the CFA any more. */
776 }
777
778 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
779 && !found_sp)
780 {
781 found_sp = 1;
782 prolog_pc = pc + 4;
783
784 if (reg_immed[rb] != 0)
785 data->size = -reg_immed[rb];
786 }
787 }
788
789 /* We need to track IL and ILA used to load immediate constants
790 in case they are later used as input to an A instruction. */
791 else if (is_ri16 (insn, op_il, &rt, &immed))
792 {
793 reg_immed[rt] = immed;
794
795 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
796 found_sp = 1;
797 }
798
799 else if (is_ri18 (insn, op_ila, &rt, &immed))
800 {
801 reg_immed[rt] = immed & 0x3ffff;
802
803 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
804 found_sp = 1;
805 }
806
807 /* STQD is used to save registers to the stack. */
808 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
809 {
810 if (ra == data->cfa_reg)
811 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
812
813 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
814 && !found_lr)
815 {
816 found_lr = 1;
817 prolog_pc = pc + 4;
818 }
819
820 if (ra == SPU_RAW_SP_REGNUM
821 && (found_sp? immed == 0 : rt == SPU_RAW_SP_REGNUM)
822 && !found_bc)
823 {
824 found_bc = 1;
825 prolog_pc = pc + 4;
826 }
827 }
828
829 /* _start uses SELB to set up the stack pointer. */
830 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
831 {
832 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
833 found_sp = 1;
834 }
835
836 /* We terminate if we find a branch. */
837 else if (is_branch (insn, &immed, &ra))
838 break;
839 }
840
841
842 /* If we successfully parsed until here, and didn't find any instruction
843 modifying SP, we assume we have a frameless function. */
844 if (!found_sp)
845 data->size = 0;
846
847 /* Return cooked instead of raw SP. */
848 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
849 data->cfa_reg = SPU_SP_REGNUM;
850
851 return prolog_pc;
852 }
853
854 /* Return the first instruction after the prologue starting at PC. */
855 static CORE_ADDR
856 spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
857 {
858 struct spu_prologue_data data;
859 return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
860 }
861
862 /* Return the frame pointer in use at address PC. */
863 static void
864 spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
865 int *reg, LONGEST *offset)
866 {
867 struct spu_prologue_data data;
868 spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
869
870 if (data.size != -1 && data.cfa_reg != -1)
871 {
872 /* The 'frame pointer' address is CFA minus frame size. */
873 *reg = data.cfa_reg;
874 *offset = data.cfa_offset - data.size;
875 }
876 else
877 {
878 /* ??? We don't really know ... */
879 *reg = SPU_SP_REGNUM;
880 *offset = 0;
881 }
882 }
883
884 /* Return true if we are in the function's epilogue, i.e. after the
885 instruction that destroyed the function's stack frame.
886
887 1) scan forward from the point of execution:
888 a) If you find an instruction that modifies the stack pointer
889 or transfers control (except a return), execution is not in
890 an epilogue, return.
891 b) Stop scanning if you find a return instruction or reach the
892 end of the function or reach the hard limit for the size of
893 an epilogue.
894 2) scan backward from the point of execution:
895 a) If you find an instruction that modifies the stack pointer,
896 execution *is* in an epilogue, return.
897 b) Stop scanning if you reach an instruction that transfers
898 control or the beginning of the function or reach the hard
899 limit for the size of an epilogue. */
900
901 static int
902 spu_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
903 {
904 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
905 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
906 bfd_byte buf[4];
907 unsigned int insn;
908 int rt, ra, rb, immed;
909
910 /* Find the search limits based on function boundaries and hard limit.
911 We assume the epilogue can be up to 64 instructions long. */
912
913 const int spu_max_epilogue_size = 64 * 4;
914
915 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
916 return 0;
917
918 if (pc - func_start < spu_max_epilogue_size)
919 epilogue_start = func_start;
920 else
921 epilogue_start = pc - spu_max_epilogue_size;
922
923 if (func_end - pc < spu_max_epilogue_size)
924 epilogue_end = func_end;
925 else
926 epilogue_end = pc + spu_max_epilogue_size;
927
928 /* Scan forward until next 'bi $0'. */
929
930 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
931 {
932 if (target_read_memory (scan_pc, buf, 4))
933 return 0;
934 insn = extract_unsigned_integer (buf, 4, byte_order);
935
936 if (is_branch (insn, &immed, &ra))
937 {
938 if (immed == 0 && ra == SPU_LR_REGNUM)
939 break;
940
941 return 0;
942 }
943
944 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
945 || is_rr (insn, op_a, &rt, &ra, &rb)
946 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
947 {
948 if (rt == SPU_RAW_SP_REGNUM)
949 return 0;
950 }
951 }
952
953 if (scan_pc >= epilogue_end)
954 return 0;
955
956 /* Scan backward until adjustment to stack pointer (R1). */
957
958 for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
959 {
960 if (target_read_memory (scan_pc, buf, 4))
961 return 0;
962 insn = extract_unsigned_integer (buf, 4, byte_order);
963
964 if (is_branch (insn, &immed, &ra))
965 return 0;
966
967 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
968 || is_rr (insn, op_a, &rt, &ra, &rb)
969 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
970 {
971 if (rt == SPU_RAW_SP_REGNUM)
972 return 1;
973 }
974 }
975
976 return 0;
977 }
978
979
980 /* Normal stack frames. */
981
982 struct spu_unwind_cache
983 {
984 CORE_ADDR func;
985 CORE_ADDR frame_base;
986 CORE_ADDR local_base;
987
988 struct trad_frame_saved_reg *saved_regs;
989 };
990
991 static struct spu_unwind_cache *
992 spu_frame_unwind_cache (struct frame_info *this_frame,
993 void **this_prologue_cache)
994 {
995 struct gdbarch *gdbarch = get_frame_arch (this_frame);
996 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
997 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
998 struct spu_unwind_cache *info;
999 struct spu_prologue_data data;
1000 CORE_ADDR id = tdep->id;
1001 gdb_byte buf[16];
1002
1003 if (*this_prologue_cache)
1004 return *this_prologue_cache;
1005
1006 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
1007 *this_prologue_cache = info;
1008 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1009 info->frame_base = 0;
1010 info->local_base = 0;
1011
1012 /* Find the start of the current function, and analyze its prologue. */
1013 info->func = get_frame_func (this_frame);
1014 if (info->func == 0)
1015 {
1016 /* Fall back to using the current PC as frame ID. */
1017 info->func = get_frame_pc (this_frame);
1018 data.size = -1;
1019 }
1020 else
1021 spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame),
1022 &data);
1023
1024 /* If successful, use prologue analysis data. */
1025 if (data.size != -1 && data.cfa_reg != -1)
1026 {
1027 CORE_ADDR cfa;
1028 int i;
1029
1030 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
1031 get_frame_register (this_frame, data.cfa_reg, buf);
1032 cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset;
1033 cfa = SPUADDR (id, cfa);
1034
1035 /* Call-saved register slots. */
1036 for (i = 0; i < SPU_NUM_GPRS; i++)
1037 if (i == SPU_LR_REGNUM
1038 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
1039 if (data.reg_offset[i] != -1)
1040 info->saved_regs[i].addr = cfa - data.reg_offset[i];
1041
1042 /* Frame bases. */
1043 info->frame_base = cfa;
1044 info->local_base = cfa - data.size;
1045 }
1046
1047 /* Otherwise, fall back to reading the backchain link. */
1048 else
1049 {
1050 CORE_ADDR reg;
1051 LONGEST backchain;
1052 ULONGEST lslr;
1053 int status;
1054
1055 /* Get local store limit. */
1056 lslr = get_frame_register_unsigned (this_frame, SPU_LSLR_REGNUM);
1057 if (!lslr)
1058 lslr = (ULONGEST) -1;
1059
1060 /* Get the backchain. */
1061 reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1062 status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order,
1063 &backchain);
1064
1065 /* A zero backchain terminates the frame chain. Also, sanity
1066 check against the local store size limit. */
1067 if (status && backchain > 0 && backchain <= lslr)
1068 {
1069 /* Assume the link register is saved into its slot. */
1070 if (backchain + 16 <= lslr)
1071 info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id,
1072 backchain + 16);
1073
1074 /* Frame bases. */
1075 info->frame_base = SPUADDR (id, backchain);
1076 info->local_base = SPUADDR (id, reg);
1077 }
1078 }
1079
1080 /* If we didn't find a frame, we cannot determine SP / return address. */
1081 if (info->frame_base == 0)
1082 return info;
1083
1084 /* The previous SP is equal to the CFA. */
1085 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM,
1086 SPUADDR_ADDR (info->frame_base));
1087
1088 /* Read full contents of the unwound link register in order to
1089 be able to determine the return address. */
1090 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
1091 target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
1092 else
1093 get_frame_register (this_frame, SPU_LR_REGNUM, buf);
1094
1095 /* Normally, the return address is contained in the slot 0 of the
1096 link register, and slots 1-3 are zero. For an overlay return,
1097 slot 0 contains the address of the overlay manager return stub,
1098 slot 1 contains the partition number of the overlay section to
1099 be returned to, and slot 2 contains the return address within
1100 that section. Return the latter address in that case. */
1101 if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0)
1102 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1103 extract_unsigned_integer (buf + 8, 4, byte_order));
1104 else
1105 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1106 extract_unsigned_integer (buf, 4, byte_order));
1107
1108 return info;
1109 }
1110
1111 static void
1112 spu_frame_this_id (struct frame_info *this_frame,
1113 void **this_prologue_cache, struct frame_id *this_id)
1114 {
1115 struct spu_unwind_cache *info =
1116 spu_frame_unwind_cache (this_frame, this_prologue_cache);
1117
1118 if (info->frame_base == 0)
1119 return;
1120
1121 *this_id = frame_id_build (info->frame_base, info->func);
1122 }
1123
1124 static struct value *
1125 spu_frame_prev_register (struct frame_info *this_frame,
1126 void **this_prologue_cache, int regnum)
1127 {
1128 struct spu_unwind_cache *info
1129 = spu_frame_unwind_cache (this_frame, this_prologue_cache);
1130
1131 /* Special-case the stack pointer. */
1132 if (regnum == SPU_RAW_SP_REGNUM)
1133 regnum = SPU_SP_REGNUM;
1134
1135 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1136 }
1137
1138 static const struct frame_unwind spu_frame_unwind = {
1139 NORMAL_FRAME,
1140 default_frame_unwind_stop_reason,
1141 spu_frame_this_id,
1142 spu_frame_prev_register,
1143 NULL,
1144 default_frame_sniffer
1145 };
1146
1147 static CORE_ADDR
1148 spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
1149 {
1150 struct spu_unwind_cache *info
1151 = spu_frame_unwind_cache (this_frame, this_cache);
1152 return info->local_base;
1153 }
1154
1155 static const struct frame_base spu_frame_base = {
1156 &spu_frame_unwind,
1157 spu_frame_base_address,
1158 spu_frame_base_address,
1159 spu_frame_base_address
1160 };
1161
1162 static CORE_ADDR
1163 spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1164 {
1165 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1166 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
1167 /* Mask off interrupt enable bit. */
1168 return SPUADDR (tdep->id, pc & -4);
1169 }
1170
1171 static CORE_ADDR
1172 spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1173 {
1174 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1175 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
1176 return SPUADDR (tdep->id, sp);
1177 }
1178
1179 static CORE_ADDR
1180 spu_read_pc (struct regcache *regcache)
1181 {
1182 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1183 ULONGEST pc;
1184 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
1185 /* Mask off interrupt enable bit. */
1186 return SPUADDR (tdep->id, pc & -4);
1187 }
1188
1189 static void
1190 spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
1191 {
1192 /* Keep interrupt enabled state unchanged. */
1193 ULONGEST old_pc;
1194
1195 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
1196 regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
1197 (SPUADDR_ADDR (pc) & -4) | (old_pc & 3));
1198 }
1199
1200
1201 /* Cell/B.E. cross-architecture unwinder support. */
1202
1203 struct spu2ppu_cache
1204 {
1205 struct frame_id frame_id;
1206 struct regcache *regcache;
1207 };
1208
1209 static struct gdbarch *
1210 spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache)
1211 {
1212 struct spu2ppu_cache *cache = *this_cache;
1213 return get_regcache_arch (cache->regcache);
1214 }
1215
1216 static void
1217 spu2ppu_this_id (struct frame_info *this_frame,
1218 void **this_cache, struct frame_id *this_id)
1219 {
1220 struct spu2ppu_cache *cache = *this_cache;
1221 *this_id = cache->frame_id;
1222 }
1223
1224 static struct value *
1225 spu2ppu_prev_register (struct frame_info *this_frame,
1226 void **this_cache, int regnum)
1227 {
1228 struct spu2ppu_cache *cache = *this_cache;
1229 struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
1230 gdb_byte *buf;
1231
1232 buf = alloca (register_size (gdbarch, regnum));
1233 regcache_cooked_read (cache->regcache, regnum, buf);
1234 return frame_unwind_got_bytes (this_frame, regnum, buf);
1235 }
1236
1237 static int
1238 spu2ppu_sniffer (const struct frame_unwind *self,
1239 struct frame_info *this_frame, void **this_prologue_cache)
1240 {
1241 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1242 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1243 CORE_ADDR base, func, backchain;
1244 gdb_byte buf[4];
1245
1246 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_spu)
1247 return 0;
1248
1249 base = get_frame_sp (this_frame);
1250 func = get_frame_pc (this_frame);
1251 if (target_read_memory (base, buf, 4))
1252 return 0;
1253 backchain = extract_unsigned_integer (buf, 4, byte_order);
1254
1255 if (!backchain)
1256 {
1257 struct frame_info *fi;
1258
1259 struct spu2ppu_cache *cache
1260 = FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache);
1261
1262 cache->frame_id = frame_id_build (base + 16, func);
1263
1264 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1265 if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu)
1266 break;
1267
1268 if (fi)
1269 {
1270 cache->regcache = frame_save_as_regcache (fi);
1271 *this_prologue_cache = cache;
1272 return 1;
1273 }
1274 else
1275 {
1276 struct regcache *regcache;
1277 regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
1278 cache->regcache = regcache_dup (regcache);
1279 *this_prologue_cache = cache;
1280 return 1;
1281 }
1282 }
1283
1284 return 0;
1285 }
1286
1287 static void
1288 spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache)
1289 {
1290 struct spu2ppu_cache *cache = this_cache;
1291 regcache_xfree (cache->regcache);
1292 }
1293
1294 static const struct frame_unwind spu2ppu_unwind = {
1295 ARCH_FRAME,
1296 default_frame_unwind_stop_reason,
1297 spu2ppu_this_id,
1298 spu2ppu_prev_register,
1299 NULL,
1300 spu2ppu_sniffer,
1301 spu2ppu_dealloc_cache,
1302 spu2ppu_prev_arch,
1303 };
1304
1305
1306 /* Function calling convention. */
1307
1308 static CORE_ADDR
1309 spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1310 {
1311 return sp & ~15;
1312 }
1313
1314 static CORE_ADDR
1315 spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
1316 struct value **args, int nargs, struct type *value_type,
1317 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
1318 struct regcache *regcache)
1319 {
1320 /* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
1321 sp = (sp - 4) & ~15;
1322 /* Store the address of that breakpoint */
1323 *bp_addr = sp;
1324 /* The call starts at the callee's entry point. */
1325 *real_pc = funaddr;
1326
1327 return sp;
1328 }
1329
1330 static int
1331 spu_scalar_value_p (struct type *type)
1332 {
1333 switch (TYPE_CODE (type))
1334 {
1335 case TYPE_CODE_INT:
1336 case TYPE_CODE_ENUM:
1337 case TYPE_CODE_RANGE:
1338 case TYPE_CODE_CHAR:
1339 case TYPE_CODE_BOOL:
1340 case TYPE_CODE_PTR:
1341 case TYPE_CODE_REF:
1342 return TYPE_LENGTH (type) <= 16;
1343
1344 default:
1345 return 0;
1346 }
1347 }
1348
1349 static void
1350 spu_value_to_regcache (struct regcache *regcache, int regnum,
1351 struct type *type, const gdb_byte *in)
1352 {
1353 int len = TYPE_LENGTH (type);
1354
1355 if (spu_scalar_value_p (type))
1356 {
1357 int preferred_slot = len < 4 ? 4 - len : 0;
1358 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
1359 }
1360 else
1361 {
1362 while (len >= 16)
1363 {
1364 regcache_cooked_write (regcache, regnum++, in);
1365 in += 16;
1366 len -= 16;
1367 }
1368
1369 if (len > 0)
1370 regcache_cooked_write_part (regcache, regnum, 0, len, in);
1371 }
1372 }
1373
1374 static void
1375 spu_regcache_to_value (struct regcache *regcache, int regnum,
1376 struct type *type, gdb_byte *out)
1377 {
1378 int len = TYPE_LENGTH (type);
1379
1380 if (spu_scalar_value_p (type))
1381 {
1382 int preferred_slot = len < 4 ? 4 - len : 0;
1383 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
1384 }
1385 else
1386 {
1387 while (len >= 16)
1388 {
1389 regcache_cooked_read (regcache, regnum++, out);
1390 out += 16;
1391 len -= 16;
1392 }
1393
1394 if (len > 0)
1395 regcache_cooked_read_part (regcache, regnum, 0, len, out);
1396 }
1397 }
1398
1399 static CORE_ADDR
1400 spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1401 struct regcache *regcache, CORE_ADDR bp_addr,
1402 int nargs, struct value **args, CORE_ADDR sp,
1403 int struct_return, CORE_ADDR struct_addr)
1404 {
1405 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1406 CORE_ADDR sp_delta;
1407 int i;
1408 int regnum = SPU_ARG1_REGNUM;
1409 int stack_arg = -1;
1410 gdb_byte buf[16];
1411
1412 /* Set the return address. */
1413 memset (buf, 0, sizeof buf);
1414 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr));
1415 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
1416
1417 /* If STRUCT_RETURN is true, then the struct return address (in
1418 STRUCT_ADDR) will consume the first argument-passing register.
1419 Both adjust the register count and store that value. */
1420 if (struct_return)
1421 {
1422 memset (buf, 0, sizeof buf);
1423 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr));
1424 regcache_cooked_write (regcache, regnum++, buf);
1425 }
1426
1427 /* Fill in argument registers. */
1428 for (i = 0; i < nargs; i++)
1429 {
1430 struct value *arg = args[i];
1431 struct type *type = check_typedef (value_type (arg));
1432 const gdb_byte *contents = value_contents (arg);
1433 int n_regs = align_up (TYPE_LENGTH (type), 16) / 16;
1434
1435 /* If the argument doesn't wholly fit into registers, it and
1436 all subsequent arguments go to the stack. */
1437 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
1438 {
1439 stack_arg = i;
1440 break;
1441 }
1442
1443 spu_value_to_regcache (regcache, regnum, type, contents);
1444 regnum += n_regs;
1445 }
1446
1447 /* Overflow arguments go to the stack. */
1448 if (stack_arg != -1)
1449 {
1450 CORE_ADDR ap;
1451
1452 /* Allocate all required stack size. */
1453 for (i = stack_arg; i < nargs; i++)
1454 {
1455 struct type *type = check_typedef (value_type (args[i]));
1456 sp -= align_up (TYPE_LENGTH (type), 16);
1457 }
1458
1459 /* Fill in stack arguments. */
1460 ap = sp;
1461 for (i = stack_arg; i < nargs; i++)
1462 {
1463 struct value *arg = args[i];
1464 struct type *type = check_typedef (value_type (arg));
1465 int len = TYPE_LENGTH (type);
1466 int preferred_slot;
1467
1468 if (spu_scalar_value_p (type))
1469 preferred_slot = len < 4 ? 4 - len : 0;
1470 else
1471 preferred_slot = 0;
1472
1473 target_write_memory (ap + preferred_slot, value_contents (arg), len);
1474 ap += align_up (TYPE_LENGTH (type), 16);
1475 }
1476 }
1477
1478 /* Allocate stack frame header. */
1479 sp -= 32;
1480
1481 /* Store stack back chain. */
1482 regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
1483 target_write_memory (sp, buf, 16);
1484
1485 /* Finally, update all slots of the SP register. */
1486 sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order);
1487 for (i = 0; i < 4; i++)
1488 {
1489 CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order);
1490 store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta);
1491 }
1492 regcache_cooked_write (regcache, SPU_RAW_SP_REGNUM, buf);
1493
1494 return sp;
1495 }
1496
1497 static struct frame_id
1498 spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1499 {
1500 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1501 CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
1502 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1503 return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4));
1504 }
1505
1506 /* Function return value access. */
1507
1508 static enum return_value_convention
1509 spu_return_value (struct gdbarch *gdbarch, struct value *function,
1510 struct type *type, struct regcache *regcache,
1511 gdb_byte *out, const gdb_byte *in)
1512 {
1513 struct type *func_type = function ? value_type (function) : NULL;
1514 enum return_value_convention rvc;
1515 int opencl_vector = 0;
1516
1517 if (func_type)
1518 {
1519 func_type = check_typedef (func_type);
1520
1521 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
1522 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
1523
1524 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
1525 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GDB_IBM_OpenCL
1526 && TYPE_CODE (type) == TYPE_CODE_ARRAY
1527 && TYPE_VECTOR (type))
1528 opencl_vector = 1;
1529 }
1530
1531 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
1532 rvc = RETURN_VALUE_REGISTER_CONVENTION;
1533 else
1534 rvc = RETURN_VALUE_STRUCT_CONVENTION;
1535
1536 if (in)
1537 {
1538 switch (rvc)
1539 {
1540 case RETURN_VALUE_REGISTER_CONVENTION:
1541 if (opencl_vector && TYPE_LENGTH (type) == 2)
1542 regcache_cooked_write_part (regcache, SPU_ARG1_REGNUM, 2, 2, in);
1543 else
1544 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
1545 break;
1546
1547 case RETURN_VALUE_STRUCT_CONVENTION:
1548 error (_("Cannot set function return value."));
1549 break;
1550 }
1551 }
1552 else if (out)
1553 {
1554 switch (rvc)
1555 {
1556 case RETURN_VALUE_REGISTER_CONVENTION:
1557 if (opencl_vector && TYPE_LENGTH (type) == 2)
1558 regcache_cooked_read_part (regcache, SPU_ARG1_REGNUM, 2, 2, out);
1559 else
1560 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
1561 break;
1562
1563 case RETURN_VALUE_STRUCT_CONVENTION:
1564 error (_("Function return value unknown."));
1565 break;
1566 }
1567 }
1568
1569 return rvc;
1570 }
1571
1572
1573 /* Breakpoints. */
1574
1575 static const gdb_byte *
1576 spu_breakpoint_from_pc (struct gdbarch *gdbarch,
1577 CORE_ADDR * pcptr, int *lenptr)
1578 {
1579 static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
1580
1581 *lenptr = sizeof breakpoint;
1582 return breakpoint;
1583 }
1584
1585 static int
1586 spu_memory_remove_breakpoint (struct gdbarch *gdbarch,
1587 struct bp_target_info *bp_tgt)
1588 {
1589 /* We work around a problem in combined Cell/B.E. debugging here. Consider
1590 that in a combined application, we have some breakpoints inserted in SPU
1591 code, and now the application forks (on the PPU side). GDB common code
1592 will assume that the fork system call copied all breakpoints into the new
1593 process' address space, and that all those copies now need to be removed
1594 (see breakpoint.c:detach_breakpoints).
1595
1596 While this is certainly true for PPU side breakpoints, it is not true
1597 for SPU side breakpoints. fork will clone the SPU context file
1598 descriptors, so that all the existing SPU contexts are in accessible
1599 in the new process. However, the contents of the SPU contexts themselves
1600 are *not* cloned. Therefore the effect of detach_breakpoints is to
1601 remove SPU breakpoints from the *original* SPU context's local store
1602 -- this is not the correct behaviour.
1603
1604 The workaround is to check whether the PID we are asked to remove this
1605 breakpoint from (i.e. ptid_get_pid (inferior_ptid)) is different from the
1606 PID of the current inferior (i.e. current_inferior ()->pid). This is only
1607 true in the context of detach_breakpoints. If so, we simply do nothing.
1608 [ Note that for the fork child process, it does not matter if breakpoints
1609 remain inserted, because those SPU contexts are not runnable anyway --
1610 the Linux kernel allows only the original process to invoke spu_run. */
1611
1612 if (ptid_get_pid (inferior_ptid) != current_inferior ()->pid)
1613 return 0;
1614
1615 return default_memory_remove_breakpoint (gdbarch, bp_tgt);
1616 }
1617
1618
1619 /* Software single-stepping support. */
1620
1621 static int
1622 spu_software_single_step (struct frame_info *frame)
1623 {
1624 struct gdbarch *gdbarch = get_frame_arch (frame);
1625 struct address_space *aspace = get_frame_address_space (frame);
1626 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1627 CORE_ADDR pc, next_pc;
1628 unsigned int insn;
1629 int offset, reg;
1630 gdb_byte buf[4];
1631 ULONGEST lslr;
1632
1633 pc = get_frame_pc (frame);
1634
1635 if (target_read_memory (pc, buf, 4))
1636 return 1;
1637 insn = extract_unsigned_integer (buf, 4, byte_order);
1638
1639 /* Get local store limit. */
1640 lslr = get_frame_register_unsigned (frame, SPU_LSLR_REGNUM);
1641 if (!lslr)
1642 lslr = (ULONGEST) -1;
1643
1644 /* Next sequential instruction is at PC + 4, except if the current
1645 instruction is a PPE-assisted call, in which case it is at PC + 8.
1646 Wrap around LS limit to be on the safe side. */
1647 if ((insn & 0xffffff00) == 0x00002100)
1648 next_pc = (SPUADDR_ADDR (pc) + 8) & lslr;
1649 else
1650 next_pc = (SPUADDR_ADDR (pc) + 4) & lslr;
1651
1652 insert_single_step_breakpoint (gdbarch,
1653 aspace, SPUADDR (SPUADDR_SPU (pc), next_pc));
1654
1655 if (is_branch (insn, &offset, &reg))
1656 {
1657 CORE_ADDR target = offset;
1658
1659 if (reg == SPU_PC_REGNUM)
1660 target += SPUADDR_ADDR (pc);
1661 else if (reg != -1)
1662 {
1663 int optim, unavail;
1664
1665 if (get_frame_register_bytes (frame, reg, 0, 4, buf,
1666 &optim, &unavail))
1667 target += extract_unsigned_integer (buf, 4, byte_order) & -4;
1668 else
1669 {
1670 if (optim)
1671 throw_error (OPTIMIZED_OUT_ERROR,
1672 _("Could not determine address of "
1673 "single-step breakpoint."));
1674 if (unavail)
1675 throw_error (NOT_AVAILABLE_ERROR,
1676 _("Could not determine address of "
1677 "single-step breakpoint."));
1678 }
1679 }
1680
1681 target = target & lslr;
1682 if (target != next_pc)
1683 insert_single_step_breakpoint (gdbarch, aspace,
1684 SPUADDR (SPUADDR_SPU (pc), target));
1685 }
1686
1687 return 1;
1688 }
1689
1690
1691 /* Longjmp support. */
1692
1693 static int
1694 spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1695 {
1696 struct gdbarch *gdbarch = get_frame_arch (frame);
1697 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1698 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1699 gdb_byte buf[4];
1700 CORE_ADDR jb_addr;
1701 int optim, unavail;
1702
1703 /* Jump buffer is pointed to by the argument register $r3. */
1704 if (!get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf,
1705 &optim, &unavail))
1706 return 0;
1707
1708 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
1709 if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4))
1710 return 0;
1711
1712 *pc = extract_unsigned_integer (buf, 4, byte_order);
1713 *pc = SPUADDR (tdep->id, *pc);
1714 return 1;
1715 }
1716
1717
1718 /* Disassembler. */
1719
1720 struct spu_dis_asm_data
1721 {
1722 struct gdbarch *gdbarch;
1723 int id;
1724 };
1725
1726 static void
1727 spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
1728 {
1729 struct spu_dis_asm_data *data = info->application_data;
1730 print_address (data->gdbarch, SPUADDR (data->id, addr), info->stream);
1731 }
1732
1733 static int
1734 gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info)
1735 {
1736 /* The opcodes disassembler does 18-bit address arithmetic. Make
1737 sure the SPU ID encoded in the high bits is added back when we
1738 call print_address. */
1739 struct disassemble_info spu_info = *info;
1740 struct spu_dis_asm_data data;
1741 data.gdbarch = info->application_data;
1742 data.id = SPUADDR_SPU (memaddr);
1743
1744 spu_info.application_data = &data;
1745 spu_info.print_address_func = spu_dis_asm_print_address;
1746 return print_insn_spu (memaddr, &spu_info);
1747 }
1748
1749
1750 /* Target overlays for the SPU overlay manager.
1751
1752 See the documentation of simple_overlay_update for how the
1753 interface is supposed to work.
1754
1755 Data structures used by the overlay manager:
1756
1757 struct ovly_table
1758 {
1759 u32 vma;
1760 u32 size;
1761 u32 pos;
1762 u32 buf;
1763 } _ovly_table[]; -- one entry per overlay section
1764
1765 struct ovly_buf_table
1766 {
1767 u32 mapped;
1768 } _ovly_buf_table[]; -- one entry per overlay buffer
1769
1770 _ovly_table should never change.
1771
1772 Both tables are aligned to a 16-byte boundary, the symbols
1773 _ovly_table and _ovly_buf_table are of type STT_OBJECT and their
1774 size set to the size of the respective array. buf in _ovly_table is
1775 an index into _ovly_buf_table.
1776
1777 mapped is an index into _ovly_table. Both the mapped and buf indices start
1778 from one to reference the first entry in their respective tables. */
1779
1780 /* Using the per-objfile private data mechanism, we store for each
1781 objfile an array of "struct spu_overlay_table" structures, one
1782 for each obj_section of the objfile. This structure holds two
1783 fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
1784 is *not* an overlay section. If it is non-zero, it represents
1785 a target address. The overlay section is mapped iff the target
1786 integer at this location equals MAPPED_VAL. */
1787
1788 static const struct objfile_data *spu_overlay_data;
1789
1790 struct spu_overlay_table
1791 {
1792 CORE_ADDR mapped_ptr;
1793 CORE_ADDR mapped_val;
1794 };
1795
1796 /* Retrieve the overlay table for OBJFILE. If not already cached, read
1797 the _ovly_table data structure from the target and initialize the
1798 spu_overlay_table data structure from it. */
1799 static struct spu_overlay_table *
1800 spu_get_overlay_table (struct objfile *objfile)
1801 {
1802 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)?
1803 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1804 struct bound_minimal_symbol ovly_table_msym, ovly_buf_table_msym;
1805 CORE_ADDR ovly_table_base, ovly_buf_table_base;
1806 unsigned ovly_table_size, ovly_buf_table_size;
1807 struct spu_overlay_table *tbl;
1808 struct obj_section *osect;
1809 gdb_byte *ovly_table;
1810 int i;
1811
1812 tbl = objfile_data (objfile, spu_overlay_data);
1813 if (tbl)
1814 return tbl;
1815
1816 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
1817 if (!ovly_table_msym.minsym)
1818 return NULL;
1819
1820 ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table",
1821 NULL, objfile);
1822 if (!ovly_buf_table_msym.minsym)
1823 return NULL;
1824
1825 ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
1826 ovly_table_size = MSYMBOL_SIZE (ovly_table_msym.minsym);
1827
1828 ovly_buf_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
1829 ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym.minsym);
1830
1831 ovly_table = xmalloc (ovly_table_size);
1832 read_memory (ovly_table_base, ovly_table, ovly_table_size);
1833
1834 tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
1835 objfile->sections_end - objfile->sections,
1836 struct spu_overlay_table);
1837
1838 for (i = 0; i < ovly_table_size / 16; i++)
1839 {
1840 CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0,
1841 4, byte_order);
1842 CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4,
1843 4, byte_order);
1844 CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8,
1845 4, byte_order);
1846 CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12,
1847 4, byte_order);
1848
1849 if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
1850 continue;
1851
1852 ALL_OBJFILE_OSECTIONS (objfile, osect)
1853 if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
1854 && pos == osect->the_bfd_section->filepos)
1855 {
1856 int ndx = osect - objfile->sections;
1857 tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
1858 tbl[ndx].mapped_val = i + 1;
1859 break;
1860 }
1861 }
1862
1863 xfree (ovly_table);
1864 set_objfile_data (objfile, spu_overlay_data, tbl);
1865 return tbl;
1866 }
1867
1868 /* Read _ovly_buf_table entry from the target to dermine whether
1869 OSECT is currently mapped, and update the mapped state. */
1870 static void
1871 spu_overlay_update_osect (struct obj_section *osect)
1872 {
1873 enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)?
1874 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1875 struct spu_overlay_table *ovly_table;
1876 CORE_ADDR id, val;
1877
1878 ovly_table = spu_get_overlay_table (osect->objfile);
1879 if (!ovly_table)
1880 return;
1881
1882 ovly_table += osect - osect->objfile->sections;
1883 if (ovly_table->mapped_ptr == 0)
1884 return;
1885
1886 id = SPUADDR_SPU (obj_section_addr (osect));
1887 val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr),
1888 4, byte_order);
1889 osect->ovly_mapped = (val == ovly_table->mapped_val);
1890 }
1891
1892 /* If OSECT is NULL, then update all sections' mapped state.
1893 If OSECT is non-NULL, then update only OSECT's mapped state. */
1894 static void
1895 spu_overlay_update (struct obj_section *osect)
1896 {
1897 /* Just one section. */
1898 if (osect)
1899 spu_overlay_update_osect (osect);
1900
1901 /* All sections. */
1902 else
1903 {
1904 struct objfile *objfile;
1905
1906 ALL_OBJSECTIONS (objfile, osect)
1907 if (section_is_overlay (osect))
1908 spu_overlay_update_osect (osect);
1909 }
1910 }
1911
1912 /* Whenever a new objfile is loaded, read the target's _ovly_table.
1913 If there is one, go through all sections and make sure for non-
1914 overlay sections LMA equals VMA, while for overlay sections LMA
1915 is larger than SPU_OVERLAY_LMA. */
1916 static void
1917 spu_overlay_new_objfile (struct objfile *objfile)
1918 {
1919 struct spu_overlay_table *ovly_table;
1920 struct obj_section *osect;
1921
1922 /* If we've already touched this file, do nothing. */
1923 if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
1924 return;
1925
1926 /* Consider only SPU objfiles. */
1927 if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1928 return;
1929
1930 /* Check if this objfile has overlays. */
1931 ovly_table = spu_get_overlay_table (objfile);
1932 if (!ovly_table)
1933 return;
1934
1935 /* Now go and fiddle with all the LMAs. */
1936 ALL_OBJFILE_OSECTIONS (objfile, osect)
1937 {
1938 bfd *obfd = objfile->obfd;
1939 asection *bsect = osect->the_bfd_section;
1940 int ndx = osect - objfile->sections;
1941
1942 if (ovly_table[ndx].mapped_ptr == 0)
1943 bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
1944 else
1945 bfd_section_lma (obfd, bsect) = SPU_OVERLAY_LMA + bsect->filepos;
1946 }
1947 }
1948
1949
1950 /* Insert temporary breakpoint on "main" function of newly loaded
1951 SPE context OBJFILE. */
1952 static void
1953 spu_catch_start (struct objfile *objfile)
1954 {
1955 struct bound_minimal_symbol minsym;
1956 struct compunit_symtab *cust;
1957 CORE_ADDR pc;
1958 char buf[32];
1959
1960 /* Do this only if requested by "set spu stop-on-load on". */
1961 if (!spu_stop_on_load_p)
1962 return;
1963
1964 /* Consider only SPU objfiles. */
1965 if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1966 return;
1967
1968 /* The main objfile is handled differently. */
1969 if (objfile == symfile_objfile)
1970 return;
1971
1972 /* There can be multiple symbols named "main". Search for the
1973 "main" in *this* objfile. */
1974 minsym = lookup_minimal_symbol ("main", NULL, objfile);
1975 if (!minsym.minsym)
1976 return;
1977
1978 /* If we have debugging information, try to use it -- this
1979 will allow us to properly skip the prologue. */
1980 pc = BMSYMBOL_VALUE_ADDRESS (minsym);
1981 cust
1982 = find_pc_sect_compunit_symtab (pc, MSYMBOL_OBJ_SECTION (minsym.objfile,
1983 minsym.minsym));
1984 if (cust != NULL)
1985 {
1986 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
1987 struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1988 struct symbol *sym;
1989 struct symtab_and_line sal;
1990
1991 sym = block_lookup_symbol (block, "main", VAR_DOMAIN);
1992 if (sym)
1993 {
1994 fixup_symbol_section (sym, objfile);
1995 sal = find_function_start_sal (sym, 1);
1996 pc = sal.pc;
1997 }
1998 }
1999
2000 /* Use a numerical address for the set_breakpoint command to avoid having
2001 the breakpoint re-set incorrectly. */
2002 xsnprintf (buf, sizeof buf, "*%s", core_addr_to_string (pc));
2003 create_breakpoint (get_objfile_arch (objfile), buf /* arg */,
2004 NULL /* cond_string */, -1 /* thread */,
2005 NULL /* extra_string */,
2006 0 /* parse_condition_and_thread */, 1 /* tempflag */,
2007 bp_breakpoint /* type_wanted */,
2008 0 /* ignore_count */,
2009 AUTO_BOOLEAN_FALSE /* pending_break_support */,
2010 &bkpt_breakpoint_ops /* ops */, 0 /* from_tty */,
2011 1 /* enabled */, 0 /* internal */, 0);
2012 }
2013
2014
2015 /* Look up OBJFILE loaded into FRAME's SPU context. */
2016 static struct objfile *
2017 spu_objfile_from_frame (struct frame_info *frame)
2018 {
2019 struct gdbarch *gdbarch = get_frame_arch (frame);
2020 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2021 struct objfile *obj;
2022
2023 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2024 return NULL;
2025
2026 ALL_OBJFILES (obj)
2027 {
2028 if (obj->sections != obj->sections_end
2029 && SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id)
2030 return obj;
2031 }
2032
2033 return NULL;
2034 }
2035
2036 /* Flush cache for ea pointer access if available. */
2037 static void
2038 flush_ea_cache (void)
2039 {
2040 struct bound_minimal_symbol msymbol;
2041 struct objfile *obj;
2042
2043 if (!has_stack_frames ())
2044 return;
2045
2046 obj = spu_objfile_from_frame (get_current_frame ());
2047 if (obj == NULL)
2048 return;
2049
2050 /* Lookup inferior function __cache_flush. */
2051 msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj);
2052 if (msymbol.minsym != NULL)
2053 {
2054 struct type *type;
2055 CORE_ADDR addr;
2056
2057 type = objfile_type (obj)->builtin_void;
2058 type = lookup_function_type (type);
2059 type = lookup_pointer_type (type);
2060 addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2061
2062 call_function_by_hand (value_from_pointer (type, addr), 0, NULL);
2063 }
2064 }
2065
2066 /* This handler is called when the inferior has stopped. If it is stopped in
2067 SPU architecture then flush the ea cache if used. */
2068 static void
2069 spu_attach_normal_stop (struct bpstats *bs, int print_frame)
2070 {
2071 if (!spu_auto_flush_cache_p)
2072 return;
2073
2074 /* Temporarily reset spu_auto_flush_cache_p to avoid recursively
2075 re-entering this function when __cache_flush stops. */
2076 spu_auto_flush_cache_p = 0;
2077 flush_ea_cache ();
2078 spu_auto_flush_cache_p = 1;
2079 }
2080
2081
2082 /* "info spu" commands. */
2083
2084 static void
2085 info_spu_event_command (char *args, int from_tty)
2086 {
2087 struct frame_info *frame = get_selected_frame (NULL);
2088 ULONGEST event_status = 0;
2089 ULONGEST event_mask = 0;
2090 struct cleanup *chain;
2091 gdb_byte buf[100];
2092 char annex[32];
2093 LONGEST len;
2094 int id;
2095
2096 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2097 error (_("\"info spu\" is only supported on the SPU architecture."));
2098
2099 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2100
2101 xsnprintf (annex, sizeof annex, "%d/event_status", id);
2102 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2103 buf, 0, (sizeof (buf) - 1));
2104 if (len <= 0)
2105 error (_("Could not read event_status."));
2106 buf[len] = '\0';
2107 event_status = strtoulst ((char *) buf, NULL, 16);
2108
2109 xsnprintf (annex, sizeof annex, "%d/event_mask", id);
2110 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2111 buf, 0, (sizeof (buf) - 1));
2112 if (len <= 0)
2113 error (_("Could not read event_mask."));
2114 buf[len] = '\0';
2115 event_mask = strtoulst ((char *) buf, NULL, 16);
2116
2117 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoEvent");
2118
2119 if (ui_out_is_mi_like_p (current_uiout))
2120 {
2121 ui_out_field_fmt (current_uiout, "event_status",
2122 "0x%s", phex_nz (event_status, 4));
2123 ui_out_field_fmt (current_uiout, "event_mask",
2124 "0x%s", phex_nz (event_mask, 4));
2125 }
2126 else
2127 {
2128 printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
2129 printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4));
2130 }
2131
2132 do_cleanups (chain);
2133 }
2134
2135 static void
2136 info_spu_signal_command (char *args, int from_tty)
2137 {
2138 struct frame_info *frame = get_selected_frame (NULL);
2139 struct gdbarch *gdbarch = get_frame_arch (frame);
2140 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2141 ULONGEST signal1 = 0;
2142 ULONGEST signal1_type = 0;
2143 int signal1_pending = 0;
2144 ULONGEST signal2 = 0;
2145 ULONGEST signal2_type = 0;
2146 int signal2_pending = 0;
2147 struct cleanup *chain;
2148 char annex[32];
2149 gdb_byte buf[100];
2150 LONGEST len;
2151 int id;
2152
2153 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2154 error (_("\"info spu\" is only supported on the SPU architecture."));
2155
2156 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2157
2158 xsnprintf (annex, sizeof annex, "%d/signal1", id);
2159 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2160 if (len < 0)
2161 error (_("Could not read signal1."));
2162 else if (len == 4)
2163 {
2164 signal1 = extract_unsigned_integer (buf, 4, byte_order);
2165 signal1_pending = 1;
2166 }
2167
2168 xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
2169 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2170 buf, 0, (sizeof (buf) - 1));
2171 if (len <= 0)
2172 error (_("Could not read signal1_type."));
2173 buf[len] = '\0';
2174 signal1_type = strtoulst ((char *) buf, NULL, 16);
2175
2176 xsnprintf (annex, sizeof annex, "%d/signal2", id);
2177 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2178 if (len < 0)
2179 error (_("Could not read signal2."));
2180 else if (len == 4)
2181 {
2182 signal2 = extract_unsigned_integer (buf, 4, byte_order);
2183 signal2_pending = 1;
2184 }
2185
2186 xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
2187 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2188 buf, 0, (sizeof (buf) - 1));
2189 if (len <= 0)
2190 error (_("Could not read signal2_type."));
2191 buf[len] = '\0';
2192 signal2_type = strtoulst ((char *) buf, NULL, 16);
2193
2194 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoSignal");
2195
2196 if (ui_out_is_mi_like_p (current_uiout))
2197 {
2198 ui_out_field_int (current_uiout, "signal1_pending", signal1_pending);
2199 ui_out_field_fmt (current_uiout, "signal1", "0x%s", phex_nz (signal1, 4));
2200 ui_out_field_int (current_uiout, "signal1_type", signal1_type);
2201 ui_out_field_int (current_uiout, "signal2_pending", signal2_pending);
2202 ui_out_field_fmt (current_uiout, "signal2", "0x%s", phex_nz (signal2, 4));
2203 ui_out_field_int (current_uiout, "signal2_type", signal2_type);
2204 }
2205 else
2206 {
2207 if (signal1_pending)
2208 printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
2209 else
2210 printf_filtered (_("Signal 1 not pending "));
2211
2212 if (signal1_type)
2213 printf_filtered (_("(Type Or)\n"));
2214 else
2215 printf_filtered (_("(Type Overwrite)\n"));
2216
2217 if (signal2_pending)
2218 printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
2219 else
2220 printf_filtered (_("Signal 2 not pending "));
2221
2222 if (signal2_type)
2223 printf_filtered (_("(Type Or)\n"));
2224 else
2225 printf_filtered (_("(Type Overwrite)\n"));
2226 }
2227
2228 do_cleanups (chain);
2229 }
2230
2231 static void
2232 info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order,
2233 const char *field, const char *msg)
2234 {
2235 struct cleanup *chain;
2236 int i;
2237
2238 if (nr <= 0)
2239 return;
2240
2241 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 1, nr, "mbox");
2242
2243 ui_out_table_header (current_uiout, 32, ui_left, field, msg);
2244 ui_out_table_body (current_uiout);
2245
2246 for (i = 0; i < nr; i++)
2247 {
2248 struct cleanup *val_chain;
2249 ULONGEST val;
2250 val_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "mbox");
2251 val = extract_unsigned_integer (buf + 4*i, 4, byte_order);
2252 ui_out_field_fmt (current_uiout, field, "0x%s", phex (val, 4));
2253 do_cleanups (val_chain);
2254
2255 if (!ui_out_is_mi_like_p (current_uiout))
2256 printf_filtered ("\n");
2257 }
2258
2259 do_cleanups (chain);
2260 }
2261
2262 static void
2263 info_spu_mailbox_command (char *args, int from_tty)
2264 {
2265 struct frame_info *frame = get_selected_frame (NULL);
2266 struct gdbarch *gdbarch = get_frame_arch (frame);
2267 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2268 struct cleanup *chain;
2269 char annex[32];
2270 gdb_byte buf[1024];
2271 LONGEST len;
2272 int id;
2273
2274 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2275 error (_("\"info spu\" is only supported on the SPU architecture."));
2276
2277 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2278
2279 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoMailbox");
2280
2281 xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
2282 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2283 buf, 0, sizeof buf);
2284 if (len < 0)
2285 error (_("Could not read mbox_info."));
2286
2287 info_spu_mailbox_list (buf, len / 4, byte_order,
2288 "mbox", "SPU Outbound Mailbox");
2289
2290 xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
2291 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2292 buf, 0, sizeof buf);
2293 if (len < 0)
2294 error (_("Could not read ibox_info."));
2295
2296 info_spu_mailbox_list (buf, len / 4, byte_order,
2297 "ibox", "SPU Outbound Interrupt Mailbox");
2298
2299 xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
2300 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2301 buf, 0, sizeof buf);
2302 if (len < 0)
2303 error (_("Could not read wbox_info."));
2304
2305 info_spu_mailbox_list (buf, len / 4, byte_order,
2306 "wbox", "SPU Inbound Mailbox");
2307
2308 do_cleanups (chain);
2309 }
2310
2311 static ULONGEST
2312 spu_mfc_get_bitfield (ULONGEST word, int first, int last)
2313 {
2314 ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
2315 return (word >> (63 - last)) & mask;
2316 }
2317
2318 static void
2319 info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order)
2320 {
2321 static char *spu_mfc_opcode[256] =
2322 {
2323 /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2324 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2325 /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2326 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2327 /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
2328 "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
2329 /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
2330 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2331 /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
2332 "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
2333 /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2334 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2335 /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2336 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2337 /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2338 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2339 /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
2340 NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
2341 /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2342 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2343 /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
2344 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2345 /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
2346 "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2347 /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2348 "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
2349 /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2350 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2351 /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2352 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2353 /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2354 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2355 };
2356
2357 int *seq = alloca (nr * sizeof (int));
2358 int done = 0;
2359 struct cleanup *chain;
2360 int i, j;
2361
2362
2363 /* Determine sequence in which to display (valid) entries. */
2364 for (i = 0; i < nr; i++)
2365 {
2366 /* Search for the first valid entry all of whose
2367 dependencies are met. */
2368 for (j = 0; j < nr; j++)
2369 {
2370 ULONGEST mfc_cq_dw3;
2371 ULONGEST dependencies;
2372
2373 if (done & (1 << (nr - 1 - j)))
2374 continue;
2375
2376 mfc_cq_dw3
2377 = extract_unsigned_integer (buf + 32*j + 24,8, byte_order);
2378 if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
2379 continue;
2380
2381 dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
2382 if ((dependencies & done) != dependencies)
2383 continue;
2384
2385 seq[i] = j;
2386 done |= 1 << (nr - 1 - j);
2387 break;
2388 }
2389
2390 if (j == nr)
2391 break;
2392 }
2393
2394 nr = i;
2395
2396
2397 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 10, nr,
2398 "dma_cmd");
2399
2400 ui_out_table_header (current_uiout, 7, ui_left, "opcode", "Opcode");
2401 ui_out_table_header (current_uiout, 3, ui_left, "tag", "Tag");
2402 ui_out_table_header (current_uiout, 3, ui_left, "tid", "TId");
2403 ui_out_table_header (current_uiout, 3, ui_left, "rid", "RId");
2404 ui_out_table_header (current_uiout, 18, ui_left, "ea", "EA");
2405 ui_out_table_header (current_uiout, 7, ui_left, "lsa", "LSA");
2406 ui_out_table_header (current_uiout, 7, ui_left, "size", "Size");
2407 ui_out_table_header (current_uiout, 7, ui_left, "lstaddr", "LstAddr");
2408 ui_out_table_header (current_uiout, 7, ui_left, "lstsize", "LstSize");
2409 ui_out_table_header (current_uiout, 1, ui_left, "error_p", "E");
2410
2411 ui_out_table_body (current_uiout);
2412
2413 for (i = 0; i < nr; i++)
2414 {
2415 struct cleanup *cmd_chain;
2416 ULONGEST mfc_cq_dw0;
2417 ULONGEST mfc_cq_dw1;
2418 ULONGEST mfc_cq_dw2;
2419 int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
2420 int list_lsa, list_size, mfc_lsa, mfc_size;
2421 ULONGEST mfc_ea;
2422 int list_valid_p, noop_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
2423
2424 /* Decode contents of MFC Command Queue Context Save/Restore Registers.
2425 See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
2426
2427 mfc_cq_dw0
2428 = extract_unsigned_integer (buf + 32*seq[i], 8, byte_order);
2429 mfc_cq_dw1
2430 = extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order);
2431 mfc_cq_dw2
2432 = extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order);
2433
2434 list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
2435 list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
2436 mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
2437 mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
2438 list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
2439 rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
2440 tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
2441
2442 mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
2443 | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
2444
2445 mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
2446 mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
2447 noop_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 37, 37);
2448 qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
2449 ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
2450 cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
2451
2452 cmd_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "cmd");
2453
2454 if (spu_mfc_opcode[mfc_cmd_opcode])
2455 ui_out_field_string (current_uiout, "opcode", spu_mfc_opcode[mfc_cmd_opcode]);
2456 else
2457 ui_out_field_int (current_uiout, "opcode", mfc_cmd_opcode);
2458
2459 ui_out_field_int (current_uiout, "tag", mfc_cmd_tag);
2460 ui_out_field_int (current_uiout, "tid", tclass_id);
2461 ui_out_field_int (current_uiout, "rid", rclass_id);
2462
2463 if (ea_valid_p)
2464 ui_out_field_fmt (current_uiout, "ea", "0x%s", phex (mfc_ea, 8));
2465 else
2466 ui_out_field_skip (current_uiout, "ea");
2467
2468 ui_out_field_fmt (current_uiout, "lsa", "0x%05x", mfc_lsa << 4);
2469 if (qw_valid_p)
2470 ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size << 4);
2471 else
2472 ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size);
2473
2474 if (list_valid_p)
2475 {
2476 ui_out_field_fmt (current_uiout, "lstaddr", "0x%05x", list_lsa << 3);
2477 ui_out_field_fmt (current_uiout, "lstsize", "0x%05x", list_size << 3);
2478 }
2479 else
2480 {
2481 ui_out_field_skip (current_uiout, "lstaddr");
2482 ui_out_field_skip (current_uiout, "lstsize");
2483 }
2484
2485 if (cmd_error_p)
2486 ui_out_field_string (current_uiout, "error_p", "*");
2487 else
2488 ui_out_field_skip (current_uiout, "error_p");
2489
2490 do_cleanups (cmd_chain);
2491
2492 if (!ui_out_is_mi_like_p (current_uiout))
2493 printf_filtered ("\n");
2494 }
2495
2496 do_cleanups (chain);
2497 }
2498
2499 static void
2500 info_spu_dma_command (char *args, int from_tty)
2501 {
2502 struct frame_info *frame = get_selected_frame (NULL);
2503 struct gdbarch *gdbarch = get_frame_arch (frame);
2504 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2505 ULONGEST dma_info_type;
2506 ULONGEST dma_info_mask;
2507 ULONGEST dma_info_status;
2508 ULONGEST dma_info_stall_and_notify;
2509 ULONGEST dma_info_atomic_command_status;
2510 struct cleanup *chain;
2511 char annex[32];
2512 gdb_byte buf[1024];
2513 LONGEST len;
2514 int id;
2515
2516 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2517 error (_("\"info spu\" is only supported on the SPU architecture."));
2518
2519 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2520
2521 xsnprintf (annex, sizeof annex, "%d/dma_info", id);
2522 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2523 buf, 0, 40 + 16 * 32);
2524 if (len <= 0)
2525 error (_("Could not read dma_info."));
2526
2527 dma_info_type
2528 = extract_unsigned_integer (buf, 8, byte_order);
2529 dma_info_mask
2530 = extract_unsigned_integer (buf + 8, 8, byte_order);
2531 dma_info_status
2532 = extract_unsigned_integer (buf + 16, 8, byte_order);
2533 dma_info_stall_and_notify
2534 = extract_unsigned_integer (buf + 24, 8, byte_order);
2535 dma_info_atomic_command_status
2536 = extract_unsigned_integer (buf + 32, 8, byte_order);
2537
2538 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoDMA");
2539
2540 if (ui_out_is_mi_like_p (current_uiout))
2541 {
2542 ui_out_field_fmt (current_uiout, "dma_info_type", "0x%s",
2543 phex_nz (dma_info_type, 4));
2544 ui_out_field_fmt (current_uiout, "dma_info_mask", "0x%s",
2545 phex_nz (dma_info_mask, 4));
2546 ui_out_field_fmt (current_uiout, "dma_info_status", "0x%s",
2547 phex_nz (dma_info_status, 4));
2548 ui_out_field_fmt (current_uiout, "dma_info_stall_and_notify", "0x%s",
2549 phex_nz (dma_info_stall_and_notify, 4));
2550 ui_out_field_fmt (current_uiout, "dma_info_atomic_command_status", "0x%s",
2551 phex_nz (dma_info_atomic_command_status, 4));
2552 }
2553 else
2554 {
2555 const char *query_msg = _("no query pending");
2556
2557 if (dma_info_type & 4)
2558 switch (dma_info_type & 3)
2559 {
2560 case 1: query_msg = _("'any' query pending"); break;
2561 case 2: query_msg = _("'all' query pending"); break;
2562 default: query_msg = _("undefined query type"); break;
2563 }
2564
2565 printf_filtered (_("Tag-Group Status 0x%s\n"),
2566 phex (dma_info_status, 4));
2567 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2568 phex (dma_info_mask, 4), query_msg);
2569 printf_filtered (_("Stall-and-Notify 0x%s\n"),
2570 phex (dma_info_stall_and_notify, 4));
2571 printf_filtered (_("Atomic Cmd Status 0x%s\n"),
2572 phex (dma_info_atomic_command_status, 4));
2573 printf_filtered ("\n");
2574 }
2575
2576 info_spu_dma_cmdlist (buf + 40, 16, byte_order);
2577 do_cleanups (chain);
2578 }
2579
2580 static void
2581 info_spu_proxydma_command (char *args, int from_tty)
2582 {
2583 struct frame_info *frame = get_selected_frame (NULL);
2584 struct gdbarch *gdbarch = get_frame_arch (frame);
2585 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2586 ULONGEST dma_info_type;
2587 ULONGEST dma_info_mask;
2588 ULONGEST dma_info_status;
2589 struct cleanup *chain;
2590 char annex[32];
2591 gdb_byte buf[1024];
2592 LONGEST len;
2593 int id;
2594
2595 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2596 error (_("\"info spu\" is only supported on the SPU architecture."));
2597
2598 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2599
2600 xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
2601 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2602 buf, 0, 24 + 8 * 32);
2603 if (len <= 0)
2604 error (_("Could not read proxydma_info."));
2605
2606 dma_info_type = extract_unsigned_integer (buf, 8, byte_order);
2607 dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order);
2608 dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order);
2609
2610 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout,
2611 "SPUInfoProxyDMA");
2612
2613 if (ui_out_is_mi_like_p (current_uiout))
2614 {
2615 ui_out_field_fmt (current_uiout, "proxydma_info_type", "0x%s",
2616 phex_nz (dma_info_type, 4));
2617 ui_out_field_fmt (current_uiout, "proxydma_info_mask", "0x%s",
2618 phex_nz (dma_info_mask, 4));
2619 ui_out_field_fmt (current_uiout, "proxydma_info_status", "0x%s",
2620 phex_nz (dma_info_status, 4));
2621 }
2622 else
2623 {
2624 const char *query_msg;
2625
2626 switch (dma_info_type & 3)
2627 {
2628 case 0: query_msg = _("no query pending"); break;
2629 case 1: query_msg = _("'any' query pending"); break;
2630 case 2: query_msg = _("'all' query pending"); break;
2631 default: query_msg = _("undefined query type"); break;
2632 }
2633
2634 printf_filtered (_("Tag-Group Status 0x%s\n"),
2635 phex (dma_info_status, 4));
2636 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2637 phex (dma_info_mask, 4), query_msg);
2638 printf_filtered ("\n");
2639 }
2640
2641 info_spu_dma_cmdlist (buf + 24, 8, byte_order);
2642 do_cleanups (chain);
2643 }
2644
2645 static void
2646 info_spu_command (char *args, int from_tty)
2647 {
2648 printf_unfiltered (_("\"info spu\" must be followed by "
2649 "the name of an SPU facility.\n"));
2650 help_list (infospucmdlist, "info spu ", all_commands, gdb_stdout);
2651 }
2652
2653
2654 /* Root of all "set spu "/"show spu " commands. */
2655
2656 static void
2657 show_spu_command (char *args, int from_tty)
2658 {
2659 help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout);
2660 }
2661
2662 static void
2663 set_spu_command (char *args, int from_tty)
2664 {
2665 help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout);
2666 }
2667
2668 static void
2669 show_spu_stop_on_load (struct ui_file *file, int from_tty,
2670 struct cmd_list_element *c, const char *value)
2671 {
2672 fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"),
2673 value);
2674 }
2675
2676 static void
2677 show_spu_auto_flush_cache (struct ui_file *file, int from_tty,
2678 struct cmd_list_element *c, const char *value)
2679 {
2680 fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"),
2681 value);
2682 }
2683
2684
2685 /* Set up gdbarch struct. */
2686
2687 static struct gdbarch *
2688 spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2689 {
2690 struct gdbarch *gdbarch;
2691 struct gdbarch_tdep *tdep;
2692 int id = -1;
2693
2694 /* Which spufs ID was requested as address space? */
2695 if (info.tdep_info)
2696 id = *(int *)info.tdep_info;
2697 /* For objfile architectures of SPU solibs, decode the ID from the name.
2698 This assumes the filename convention employed by solib-spu.c. */
2699 else if (info.abfd)
2700 {
2701 const char *name = strrchr (info.abfd->filename, '@');
2702 if (name)
2703 sscanf (name, "@0x%*x <%d>", &id);
2704 }
2705
2706 /* Find a candidate among extant architectures. */
2707 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2708 arches != NULL;
2709 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2710 {
2711 tdep = gdbarch_tdep (arches->gdbarch);
2712 if (tdep && tdep->id == id)
2713 return arches->gdbarch;
2714 }
2715
2716 /* None found, so create a new architecture. */
2717 tdep = XCNEW (struct gdbarch_tdep);
2718 tdep->id = id;
2719 gdbarch = gdbarch_alloc (&info, tdep);
2720
2721 /* Disassembler. */
2722 set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu);
2723
2724 /* Registers. */
2725 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
2726 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
2727 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
2728 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
2729 set_gdbarch_read_pc (gdbarch, spu_read_pc);
2730 set_gdbarch_write_pc (gdbarch, spu_write_pc);
2731 set_gdbarch_register_name (gdbarch, spu_register_name);
2732 set_gdbarch_register_type (gdbarch, spu_register_type);
2733 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
2734 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
2735 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
2736 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
2737 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, spu_dwarf_reg_to_regnum);
2738 set_gdbarch_ax_pseudo_register_collect
2739 (gdbarch, spu_ax_pseudo_register_collect);
2740 set_gdbarch_ax_pseudo_register_push_stack
2741 (gdbarch, spu_ax_pseudo_register_push_stack);
2742
2743 /* Data types. */
2744 set_gdbarch_char_signed (gdbarch, 0);
2745 set_gdbarch_ptr_bit (gdbarch, 32);
2746 set_gdbarch_addr_bit (gdbarch, 32);
2747 set_gdbarch_short_bit (gdbarch, 16);
2748 set_gdbarch_int_bit (gdbarch, 32);
2749 set_gdbarch_long_bit (gdbarch, 32);
2750 set_gdbarch_long_long_bit (gdbarch, 64);
2751 set_gdbarch_float_bit (gdbarch, 32);
2752 set_gdbarch_double_bit (gdbarch, 64);
2753 set_gdbarch_long_double_bit (gdbarch, 64);
2754 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2755 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2756 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
2757
2758 /* Address handling. */
2759 set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer);
2760 set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
2761 set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
2762 set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags);
2763 set_gdbarch_address_class_type_flags_to_name
2764 (gdbarch, spu_address_class_type_flags_to_name);
2765 set_gdbarch_address_class_name_to_type_flags
2766 (gdbarch, spu_address_class_name_to_type_flags);
2767
2768
2769 /* Inferior function calls. */
2770 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2771 set_gdbarch_frame_align (gdbarch, spu_frame_align);
2772 set_gdbarch_frame_red_zone_size (gdbarch, 2000);
2773 set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
2774 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
2775 set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
2776 set_gdbarch_return_value (gdbarch, spu_return_value);
2777
2778 /* Frame handling. */
2779 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2780 dwarf2_append_unwinders (gdbarch);
2781 frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
2782 frame_base_set_default (gdbarch, &spu_frame_base);
2783 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
2784 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
2785 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
2786 set_gdbarch_frame_args_skip (gdbarch, 0);
2787 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
2788 set_gdbarch_in_function_epilogue_p (gdbarch, spu_in_function_epilogue_p);
2789
2790 /* Cell/B.E. cross-architecture unwinder support. */
2791 frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind);
2792
2793 /* Breakpoints. */
2794 set_gdbarch_decr_pc_after_break (gdbarch, 4);
2795 set_gdbarch_breakpoint_from_pc (gdbarch, spu_breakpoint_from_pc);
2796 set_gdbarch_memory_remove_breakpoint (gdbarch, spu_memory_remove_breakpoint);
2797 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
2798 set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
2799
2800 /* Overlays. */
2801 set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
2802
2803 return gdbarch;
2804 }
2805
2806 /* Provide a prototype to silence -Wmissing-prototypes. */
2807 extern initialize_file_ftype _initialize_spu_tdep;
2808
2809 void
2810 _initialize_spu_tdep (void)
2811 {
2812 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
2813
2814 /* Add ourselves to objfile event chain. */
2815 observer_attach_new_objfile (spu_overlay_new_objfile);
2816 spu_overlay_data = register_objfile_data ();
2817
2818 /* Install spu stop-on-load handler. */
2819 observer_attach_new_objfile (spu_catch_start);
2820
2821 /* Add ourselves to normal_stop event chain. */
2822 observer_attach_normal_stop (spu_attach_normal_stop);
2823
2824 /* Add root prefix command for all "set spu"/"show spu" commands. */
2825 add_prefix_cmd ("spu", no_class, set_spu_command,
2826 _("Various SPU specific commands."),
2827 &setspucmdlist, "set spu ", 0, &setlist);
2828 add_prefix_cmd ("spu", no_class, show_spu_command,
2829 _("Various SPU specific commands."),
2830 &showspucmdlist, "show spu ", 0, &showlist);
2831
2832 /* Toggle whether or not to add a temporary breakpoint at the "main"
2833 function of new SPE contexts. */
2834 add_setshow_boolean_cmd ("stop-on-load", class_support,
2835 &spu_stop_on_load_p, _("\
2836 Set whether to stop for new SPE threads."),
2837 _("\
2838 Show whether to stop for new SPE threads."),
2839 _("\
2840 Use \"on\" to give control to the user when a new SPE thread\n\
2841 enters its \"main\" function.\n\
2842 Use \"off\" to disable stopping for new SPE threads."),
2843 NULL,
2844 show_spu_stop_on_load,
2845 &setspucmdlist, &showspucmdlist);
2846
2847 /* Toggle whether or not to automatically flush the software-managed
2848 cache whenever SPE execution stops. */
2849 add_setshow_boolean_cmd ("auto-flush-cache", class_support,
2850 &spu_auto_flush_cache_p, _("\
2851 Set whether to automatically flush the software-managed cache."),
2852 _("\
2853 Show whether to automatically flush the software-managed cache."),
2854 _("\
2855 Use \"on\" to automatically flush the software-managed cache\n\
2856 whenever SPE execution stops.\n\
2857 Use \"off\" to never automatically flush the software-managed cache."),
2858 NULL,
2859 show_spu_auto_flush_cache,
2860 &setspucmdlist, &showspucmdlist);
2861
2862 /* Add root prefix command for all "info spu" commands. */
2863 add_prefix_cmd ("spu", class_info, info_spu_command,
2864 _("Various SPU specific commands."),
2865 &infospucmdlist, "info spu ", 0, &infolist);
2866
2867 /* Add various "info spu" commands. */
2868 add_cmd ("event", class_info, info_spu_event_command,
2869 _("Display SPU event facility status.\n"),
2870 &infospucmdlist);
2871 add_cmd ("signal", class_info, info_spu_signal_command,
2872 _("Display SPU signal notification facility status.\n"),
2873 &infospucmdlist);
2874 add_cmd ("mailbox", class_info, info_spu_mailbox_command,
2875 _("Display SPU mailbox facility status.\n"),
2876 &infospucmdlist);
2877 add_cmd ("dma", class_info, info_spu_dma_command,
2878 _("Display MFC DMA status.\n"),
2879 &infospucmdlist);
2880 add_cmd ("proxydma", class_info, info_spu_proxydma_command,
2881 _("Display MFC Proxy-DMA status.\n"),
2882 &infospucmdlist);
2883 }
This page took 0.096071 seconds and 4 git commands to generate.