2004-02-07 Elena Zannoni <ezannoni@redhat.com>
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
4 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
5 Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 /* Support routines for reading and decoding debugging information in
25 the "stabs" format. This format is used with many systems that use
26 the a.out object file format, as well as some systems that use
27 COFF or ELF where the stabs data is placed in a special section.
28 Avoid placing any object file format specific code in this file. */
29
30 #include "defs.h"
31 #include "gdb_string.h"
32 #include "bfd.h"
33 #include "gdb_obstack.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "expression.h"
37 #include "symfile.h"
38 #include "objfiles.h"
39 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
40 #include "libaout.h"
41 #include "aout/aout64.h"
42 #include "gdb-stabs.h"
43 #include "buildsym.h"
44 #include "complaints.h"
45 #include "demangle.h"
46 #include "language.h"
47 #include "doublest.h"
48 #include "cp-abi.h"
49 #include "cp-support.h"
50
51 #include <ctype.h>
52
53 /* Ask stabsread.h to define the vars it normally declares `extern'. */
54 #define EXTERN
55 /**/
56 #include "stabsread.h" /* Our own declarations */
57 #undef EXTERN
58
59 extern void _initialize_stabsread (void);
60
61 /* The routines that read and process a complete stabs for a C struct or
62 C++ class pass lists of data member fields and lists of member function
63 fields in an instance of a field_info structure, as defined below.
64 This is part of some reorganization of low level C++ support and is
65 expected to eventually go away... (FIXME) */
66
67 struct field_info
68 {
69 struct nextfield
70 {
71 struct nextfield *next;
72
73 /* This is the raw visibility from the stab. It is not checked
74 for being one of the visibilities we recognize, so code which
75 examines this field better be able to deal. */
76 int visibility;
77
78 struct field field;
79 }
80 *list;
81 struct next_fnfieldlist
82 {
83 struct next_fnfieldlist *next;
84 struct fn_fieldlist fn_fieldlist;
85 }
86 *fnlist;
87 };
88
89 static void
90 read_one_struct_field (struct field_info *, char **, char *,
91 struct type *, struct objfile *);
92
93 static struct type *dbx_alloc_type (int[2], struct objfile *);
94
95 static long read_huge_number (char **, int, int *);
96
97 static struct type *error_type (char **, struct objfile *);
98
99 static void
100 patch_block_stabs (struct pending *, struct pending_stabs *,
101 struct objfile *);
102
103 static void fix_common_block (struct symbol *, int);
104
105 static int read_type_number (char **, int *);
106
107 static struct type *read_type (char **, struct objfile *);
108
109 static struct type *read_range_type (char **, int[2], struct objfile *);
110
111 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
112
113 static struct type *read_sun_floating_type (char **, int[2],
114 struct objfile *);
115
116 static struct type *read_enum_type (char **, struct type *, struct objfile *);
117
118 static struct type *rs6000_builtin_type (int);
119
120 static int
121 read_member_functions (struct field_info *, char **, struct type *,
122 struct objfile *);
123
124 static int
125 read_struct_fields (struct field_info *, char **, struct type *,
126 struct objfile *);
127
128 static int
129 read_baseclasses (struct field_info *, char **, struct type *,
130 struct objfile *);
131
132 static int
133 read_tilde_fields (struct field_info *, char **, struct type *,
134 struct objfile *);
135
136 static int attach_fn_fields_to_type (struct field_info *, struct type *);
137
138 static int attach_fields_to_type (struct field_info *, struct type *,
139 struct objfile *);
140
141 static struct type *read_struct_type (char **, struct type *,
142 enum type_code,
143 struct objfile *);
144
145 static struct type *read_array_type (char **, struct type *,
146 struct objfile *);
147
148 static struct field *read_args (char **, int, struct objfile *, int *, int *);
149
150 static void add_undefined_type (struct type *);
151
152 static int
153 read_cpp_abbrev (struct field_info *, char **, struct type *,
154 struct objfile *);
155
156 static char *find_name_end (char *name);
157
158 static int process_reference (char **string);
159
160 void stabsread_clear_cache (void);
161
162 static const char vptr_name[] = "_vptr$";
163 static const char vb_name[] = "_vb$";
164
165 /* Define this as 1 if a pcc declaration of a char or short argument
166 gives the correct address. Otherwise assume pcc gives the
167 address of the corresponding int, which is not the same on a
168 big-endian machine. */
169
170 #if !defined (BELIEVE_PCC_PROMOTION)
171 #define BELIEVE_PCC_PROMOTION 0
172 #endif
173
174 static void
175 invalid_cpp_abbrev_complaint (const char *arg1)
176 {
177 complaint (&symfile_complaints, "invalid C++ abbreviation `%s'", arg1);
178 }
179
180 static void
181 reg_value_complaint (int arg1, int arg2, const char *arg3)
182 {
183 complaint (&symfile_complaints,
184 "register number %d too large (max %d) in symbol %s", arg1, arg2,
185 arg3);
186 }
187
188 static void
189 stabs_general_complaint (const char *arg1)
190 {
191 complaint (&symfile_complaints, "%s", arg1);
192 }
193
194 /* Make a list of forward references which haven't been defined. */
195
196 static struct type **undef_types;
197 static int undef_types_allocated;
198 static int undef_types_length;
199 static struct symbol *current_symbol = NULL;
200
201 /* Check for and handle cretinous stabs symbol name continuation! */
202 #define STABS_CONTINUE(pp,objfile) \
203 do { \
204 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
205 *(pp) = next_symbol_text (objfile); \
206 } while (0)
207 \f
208
209 /* Look up a dbx type-number pair. Return the address of the slot
210 where the type for that number-pair is stored.
211 The number-pair is in TYPENUMS.
212
213 This can be used for finding the type associated with that pair
214 or for associating a new type with the pair. */
215
216 static struct type **
217 dbx_lookup_type (int typenums[2])
218 {
219 int filenum = typenums[0];
220 int index = typenums[1];
221 unsigned old_len;
222 int real_filenum;
223 struct header_file *f;
224 int f_orig_length;
225
226 if (filenum == -1) /* -1,-1 is for temporary types. */
227 return 0;
228
229 if (filenum < 0 || filenum >= n_this_object_header_files)
230 {
231 complaint (&symfile_complaints,
232 "Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
233 filenum, index, symnum);
234 goto error_return;
235 }
236
237 if (filenum == 0)
238 {
239 if (index < 0)
240 {
241 /* Caller wants address of address of type. We think
242 that negative (rs6k builtin) types will never appear as
243 "lvalues", (nor should they), so we stuff the real type
244 pointer into a temp, and return its address. If referenced,
245 this will do the right thing. */
246 static struct type *temp_type;
247
248 temp_type = rs6000_builtin_type (index);
249 return &temp_type;
250 }
251
252 /* Type is defined outside of header files.
253 Find it in this object file's type vector. */
254 if (index >= type_vector_length)
255 {
256 old_len = type_vector_length;
257 if (old_len == 0)
258 {
259 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
260 type_vector = (struct type **)
261 xmalloc (type_vector_length * sizeof (struct type *));
262 }
263 while (index >= type_vector_length)
264 {
265 type_vector_length *= 2;
266 }
267 type_vector = (struct type **)
268 xrealloc ((char *) type_vector,
269 (type_vector_length * sizeof (struct type *)));
270 memset (&type_vector[old_len], 0,
271 (type_vector_length - old_len) * sizeof (struct type *));
272 }
273 return (&type_vector[index]);
274 }
275 else
276 {
277 real_filenum = this_object_header_files[filenum];
278
279 if (real_filenum >= N_HEADER_FILES (current_objfile))
280 {
281 struct type *temp_type;
282 struct type **temp_type_p;
283
284 warning ("GDB internal error: bad real_filenum");
285
286 error_return:
287 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
288 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
289 *temp_type_p = temp_type;
290 return temp_type_p;
291 }
292
293 f = HEADER_FILES (current_objfile) + real_filenum;
294
295 f_orig_length = f->length;
296 if (index >= f_orig_length)
297 {
298 while (index >= f->length)
299 {
300 f->length *= 2;
301 }
302 f->vector = (struct type **)
303 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
304 memset (&f->vector[f_orig_length], 0,
305 (f->length - f_orig_length) * sizeof (struct type *));
306 }
307 return (&f->vector[index]);
308 }
309 }
310
311 /* Make sure there is a type allocated for type numbers TYPENUMS
312 and return the type object.
313 This can create an empty (zeroed) type object.
314 TYPENUMS may be (-1, -1) to return a new type object that is not
315 put into the type vector, and so may not be referred to by number. */
316
317 static struct type *
318 dbx_alloc_type (int typenums[2], struct objfile *objfile)
319 {
320 struct type **type_addr;
321
322 if (typenums[0] == -1)
323 {
324 return (alloc_type (objfile));
325 }
326
327 type_addr = dbx_lookup_type (typenums);
328
329 /* If we are referring to a type not known at all yet,
330 allocate an empty type for it.
331 We will fill it in later if we find out how. */
332 if (*type_addr == 0)
333 {
334 *type_addr = alloc_type (objfile);
335 }
336
337 return (*type_addr);
338 }
339
340 /* for all the stabs in a given stab vector, build appropriate types
341 and fix their symbols in given symbol vector. */
342
343 static void
344 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
345 struct objfile *objfile)
346 {
347 int ii;
348 char *name;
349 char *pp;
350 struct symbol *sym;
351
352 if (stabs)
353 {
354
355 /* for all the stab entries, find their corresponding symbols and
356 patch their types! */
357
358 for (ii = 0; ii < stabs->count; ++ii)
359 {
360 name = stabs->stab[ii];
361 pp = (char *) strchr (name, ':');
362 while (pp[1] == ':')
363 {
364 pp += 2;
365 pp = (char *) strchr (pp, ':');
366 }
367 sym = find_symbol_in_list (symbols, name, pp - name);
368 if (!sym)
369 {
370 /* FIXME-maybe: it would be nice if we noticed whether
371 the variable was defined *anywhere*, not just whether
372 it is defined in this compilation unit. But neither
373 xlc or GCC seem to need such a definition, and until
374 we do psymtabs (so that the minimal symbols from all
375 compilation units are available now), I'm not sure
376 how to get the information. */
377
378 /* On xcoff, if a global is defined and never referenced,
379 ld will remove it from the executable. There is then
380 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
381 sym = (struct symbol *)
382 obstack_alloc (&objfile->objfile_obstack,
383 sizeof (struct symbol));
384
385 memset (sym, 0, sizeof (struct symbol));
386 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
387 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
388 DEPRECATED_SYMBOL_NAME (sym) =
389 obsavestring (name, pp - name, &objfile->objfile_obstack);
390 pp += 2;
391 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
392 {
393 /* I don't think the linker does this with functions,
394 so as far as I know this is never executed.
395 But it doesn't hurt to check. */
396 SYMBOL_TYPE (sym) =
397 lookup_function_type (read_type (&pp, objfile));
398 }
399 else
400 {
401 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
402 }
403 add_symbol_to_list (sym, &global_symbols);
404 }
405 else
406 {
407 pp += 2;
408 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
409 {
410 SYMBOL_TYPE (sym) =
411 lookup_function_type (read_type (&pp, objfile));
412 }
413 else
414 {
415 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
416 }
417 }
418 }
419 }
420 }
421 \f
422
423 /* Read a number by which a type is referred to in dbx data,
424 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
425 Just a single number N is equivalent to (0,N).
426 Return the two numbers by storing them in the vector TYPENUMS.
427 TYPENUMS will then be used as an argument to dbx_lookup_type.
428
429 Returns 0 for success, -1 for error. */
430
431 static int
432 read_type_number (char **pp, int *typenums)
433 {
434 int nbits;
435 if (**pp == '(')
436 {
437 (*pp)++;
438 typenums[0] = read_huge_number (pp, ',', &nbits);
439 if (nbits != 0)
440 return -1;
441 typenums[1] = read_huge_number (pp, ')', &nbits);
442 if (nbits != 0)
443 return -1;
444 }
445 else
446 {
447 typenums[0] = 0;
448 typenums[1] = read_huge_number (pp, 0, &nbits);
449 if (nbits != 0)
450 return -1;
451 }
452 return 0;
453 }
454 \f
455
456 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
457 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
458 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
459 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
460
461 /* Structure for storing pointers to reference definitions for fast lookup
462 during "process_later". */
463
464 struct ref_map
465 {
466 char *stabs;
467 CORE_ADDR value;
468 struct symbol *sym;
469 };
470
471 #define MAX_CHUNK_REFS 100
472 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
473 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
474
475 static struct ref_map *ref_map;
476
477 /* Ptr to free cell in chunk's linked list. */
478 static int ref_count = 0;
479
480 /* Number of chunks malloced. */
481 static int ref_chunk = 0;
482
483 /* This file maintains a cache of stabs aliases found in the symbol
484 table. If the symbol table changes, this cache must be cleared
485 or we are left holding onto data in invalid obstacks. */
486 void
487 stabsread_clear_cache (void)
488 {
489 ref_count = 0;
490 ref_chunk = 0;
491 }
492
493 /* Create array of pointers mapping refids to symbols and stab strings.
494 Add pointers to reference definition symbols and/or their values as we
495 find them, using their reference numbers as our index.
496 These will be used later when we resolve references. */
497 void
498 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
499 {
500 if (ref_count == 0)
501 ref_chunk = 0;
502 if (refnum >= ref_count)
503 ref_count = refnum + 1;
504 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
505 {
506 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
507 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
508 ref_map = (struct ref_map *)
509 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
510 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0, new_chunks * REF_CHUNK_SIZE);
511 ref_chunk += new_chunks;
512 }
513 ref_map[refnum].stabs = stabs;
514 ref_map[refnum].sym = sym;
515 ref_map[refnum].value = value;
516 }
517
518 /* Return defined sym for the reference REFNUM. */
519 struct symbol *
520 ref_search (int refnum)
521 {
522 if (refnum < 0 || refnum > ref_count)
523 return 0;
524 return ref_map[refnum].sym;
525 }
526
527 /* Parse a reference id in STRING and return the resulting
528 reference number. Move STRING beyond the reference id. */
529
530 static int
531 process_reference (char **string)
532 {
533 char *p;
534 int refnum = 0;
535
536 if (**string != '#')
537 return 0;
538
539 /* Advance beyond the initial '#'. */
540 p = *string + 1;
541
542 /* Read number as reference id. */
543 while (*p && isdigit (*p))
544 {
545 refnum = refnum * 10 + *p - '0';
546 p++;
547 }
548 *string = p;
549 return refnum;
550 }
551
552 /* If STRING defines a reference, store away a pointer to the reference
553 definition for later use. Return the reference number. */
554
555 int
556 symbol_reference_defined (char **string)
557 {
558 char *p = *string;
559 int refnum = 0;
560
561 refnum = process_reference (&p);
562
563 /* Defining symbols end in '=' */
564 if (*p == '=')
565 {
566 /* Symbol is being defined here. */
567 *string = p + 1;
568 return refnum;
569 }
570 else
571 {
572 /* Must be a reference. Either the symbol has already been defined,
573 or this is a forward reference to it. */
574 *string = p;
575 return -1;
576 }
577 }
578
579 struct symbol *
580 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
581 struct objfile *objfile)
582 {
583 struct symbol *sym;
584 char *p = (char *) find_name_end (string);
585 int deftype;
586 int synonym = 0;
587 int i;
588
589 /* We would like to eliminate nameless symbols, but keep their types.
590 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
591 to type 2, but, should not create a symbol to address that type. Since
592 the symbol will be nameless, there is no way any user can refer to it. */
593
594 int nameless;
595
596 /* Ignore syms with empty names. */
597 if (string[0] == 0)
598 return 0;
599
600 /* Ignore old-style symbols from cc -go */
601 if (p == 0)
602 return 0;
603
604 while (p[1] == ':')
605 {
606 p += 2;
607 p = strchr (p, ':');
608 }
609
610 /* If a nameless stab entry, all we need is the type, not the symbol.
611 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
612 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
613
614 current_symbol = sym = (struct symbol *)
615 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
616 memset (sym, 0, sizeof (struct symbol));
617
618 switch (type & N_TYPE)
619 {
620 case N_TEXT:
621 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
622 break;
623 case N_DATA:
624 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
625 break;
626 case N_BSS:
627 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
628 break;
629 }
630
631 if (processing_gcc_compilation)
632 {
633 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
634 number of bytes occupied by a type or object, which we ignore. */
635 SYMBOL_LINE (sym) = desc;
636 }
637 else
638 {
639 SYMBOL_LINE (sym) = 0; /* unknown */
640 }
641
642 if (is_cplus_marker (string[0]))
643 {
644 /* Special GNU C++ names. */
645 switch (string[1])
646 {
647 case 't':
648 DEPRECATED_SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
649 &objfile->objfile_obstack);
650 break;
651
652 case 'v': /* $vtbl_ptr_type */
653 /* Was: DEPRECATED_SYMBOL_NAME (sym) = "vptr"; */
654 goto normal;
655
656 case 'e':
657 DEPRECATED_SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
658 &objfile->objfile_obstack);
659 break;
660
661 case '_':
662 /* This was an anonymous type that was never fixed up. */
663 goto normal;
664
665 #ifdef STATIC_TRANSFORM_NAME
666 case 'X':
667 /* SunPRO (3.0 at least) static variable encoding. */
668 goto normal;
669 #endif
670
671 default:
672 complaint (&symfile_complaints, "Unknown C++ symbol name `%s'",
673 string);
674 goto normal; /* Do *something* with it */
675 }
676 }
677 else
678 {
679 normal:
680 SYMBOL_LANGUAGE (sym) = current_subfile->language;
681 SYMBOL_SET_NAMES (sym, string, p - string, objfile);
682 }
683 p++;
684
685 /* Determine the type of name being defined. */
686 #if 0
687 /* Getting GDB to correctly skip the symbol on an undefined symbol
688 descriptor and not ever dump core is a very dodgy proposition if
689 we do things this way. I say the acorn RISC machine can just
690 fix their compiler. */
691 /* The Acorn RISC machine's compiler can put out locals that don't
692 start with "234=" or "(3,4)=", so assume anything other than the
693 deftypes we know how to handle is a local. */
694 if (!strchr ("cfFGpPrStTvVXCR", *p))
695 #else
696 if (isdigit (*p) || *p == '(' || *p == '-')
697 #endif
698 deftype = 'l';
699 else
700 deftype = *p++;
701
702 switch (deftype)
703 {
704 case 'c':
705 /* c is a special case, not followed by a type-number.
706 SYMBOL:c=iVALUE for an integer constant symbol.
707 SYMBOL:c=rVALUE for a floating constant symbol.
708 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
709 e.g. "b:c=e6,0" for "const b = blob1"
710 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
711 if (*p != '=')
712 {
713 SYMBOL_CLASS (sym) = LOC_CONST;
714 SYMBOL_TYPE (sym) = error_type (&p, objfile);
715 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
716 add_symbol_to_list (sym, &file_symbols);
717 return sym;
718 }
719 ++p;
720 switch (*p++)
721 {
722 case 'r':
723 {
724 double d = atof (p);
725 char *dbl_valu;
726
727 /* FIXME-if-picky-about-floating-accuracy: Should be using
728 target arithmetic to get the value. real.c in GCC
729 probably has the necessary code. */
730
731 /* FIXME: lookup_fundamental_type is a hack. We should be
732 creating a type especially for the type of float constants.
733 Problem is, what type should it be?
734
735 Also, what should the name of this type be? Should we
736 be using 'S' constants (see stabs.texinfo) instead? */
737
738 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
739 FT_DBL_PREC_FLOAT);
740 dbl_valu = (char *)
741 obstack_alloc (&objfile->objfile_obstack,
742 TYPE_LENGTH (SYMBOL_TYPE (sym)));
743 store_typed_floating (dbl_valu, SYMBOL_TYPE (sym), d);
744 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
745 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
746 }
747 break;
748 case 'i':
749 {
750 /* Defining integer constants this way is kind of silly,
751 since 'e' constants allows the compiler to give not
752 only the value, but the type as well. C has at least
753 int, long, unsigned int, and long long as constant
754 types; other languages probably should have at least
755 unsigned as well as signed constants. */
756
757 /* We just need one int constant type for all objfiles.
758 It doesn't depend on languages or anything (arguably its
759 name should be a language-specific name for a type of
760 that size, but I'm inclined to say that if the compiler
761 wants a nice name for the type, it can use 'e'). */
762 static struct type *int_const_type;
763
764 /* Yes, this is as long as a *host* int. That is because we
765 use atoi. */
766 if (int_const_type == NULL)
767 int_const_type =
768 init_type (TYPE_CODE_INT,
769 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
770 "integer constant",
771 (struct objfile *) NULL);
772 SYMBOL_TYPE (sym) = int_const_type;
773 SYMBOL_VALUE (sym) = atoi (p);
774 SYMBOL_CLASS (sym) = LOC_CONST;
775 }
776 break;
777 case 'e':
778 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
779 can be represented as integral.
780 e.g. "b:c=e6,0" for "const b = blob1"
781 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
782 {
783 SYMBOL_CLASS (sym) = LOC_CONST;
784 SYMBOL_TYPE (sym) = read_type (&p, objfile);
785
786 if (*p != ',')
787 {
788 SYMBOL_TYPE (sym) = error_type (&p, objfile);
789 break;
790 }
791 ++p;
792
793 /* If the value is too big to fit in an int (perhaps because
794 it is unsigned), or something like that, we silently get
795 a bogus value. The type and everything else about it is
796 correct. Ideally, we should be using whatever we have
797 available for parsing unsigned and long long values,
798 however. */
799 SYMBOL_VALUE (sym) = atoi (p);
800 }
801 break;
802 default:
803 {
804 SYMBOL_CLASS (sym) = LOC_CONST;
805 SYMBOL_TYPE (sym) = error_type (&p, objfile);
806 }
807 }
808 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
809 add_symbol_to_list (sym, &file_symbols);
810 return sym;
811
812 case 'C':
813 /* The name of a caught exception. */
814 SYMBOL_TYPE (sym) = read_type (&p, objfile);
815 SYMBOL_CLASS (sym) = LOC_LABEL;
816 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
817 SYMBOL_VALUE_ADDRESS (sym) = valu;
818 add_symbol_to_list (sym, &local_symbols);
819 break;
820
821 case 'f':
822 /* A static function definition. */
823 SYMBOL_TYPE (sym) = read_type (&p, objfile);
824 SYMBOL_CLASS (sym) = LOC_BLOCK;
825 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
826 add_symbol_to_list (sym, &file_symbols);
827 /* fall into process_function_types. */
828
829 process_function_types:
830 /* Function result types are described as the result type in stabs.
831 We need to convert this to the function-returning-type-X type
832 in GDB. E.g. "int" is converted to "function returning int". */
833 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
834 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
835
836 /* All functions in C++ have prototypes. Stabs does not offer an
837 explicit way to identify prototyped or unprototyped functions,
838 but both GCC and Sun CC emit stabs for the "call-as" type rather
839 than the "declared-as" type for unprototyped functions, so
840 we treat all functions as if they were prototyped. This is used
841 primarily for promotion when calling the function from GDB. */
842 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
843
844 /* fall into process_prototype_types */
845
846 process_prototype_types:
847 /* Sun acc puts declared types of arguments here. */
848 if (*p == ';')
849 {
850 struct type *ftype = SYMBOL_TYPE (sym);
851 int nsemi = 0;
852 int nparams = 0;
853 char *p1 = p;
854
855 /* Obtain a worst case guess for the number of arguments
856 by counting the semicolons. */
857 while (*p1)
858 {
859 if (*p1++ == ';')
860 nsemi++;
861 }
862
863 /* Allocate parameter information fields and fill them in. */
864 TYPE_FIELDS (ftype) = (struct field *)
865 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
866 while (*p++ == ';')
867 {
868 struct type *ptype;
869
870 /* A type number of zero indicates the start of varargs.
871 FIXME: GDB currently ignores vararg functions. */
872 if (p[0] == '0' && p[1] == '\0')
873 break;
874 ptype = read_type (&p, objfile);
875
876 /* The Sun compilers mark integer arguments, which should
877 be promoted to the width of the calling conventions, with
878 a type which references itself. This type is turned into
879 a TYPE_CODE_VOID type by read_type, and we have to turn
880 it back into builtin_type_int here.
881 FIXME: Do we need a new builtin_type_promoted_int_arg ? */
882 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
883 ptype = builtin_type_int;
884 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
885 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
886 }
887 TYPE_NFIELDS (ftype) = nparams;
888 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
889 }
890 break;
891
892 case 'F':
893 /* A global function definition. */
894 SYMBOL_TYPE (sym) = read_type (&p, objfile);
895 SYMBOL_CLASS (sym) = LOC_BLOCK;
896 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
897 add_symbol_to_list (sym, &global_symbols);
898 goto process_function_types;
899
900 case 'G':
901 /* For a class G (global) symbol, it appears that the
902 value is not correct. It is necessary to search for the
903 corresponding linker definition to find the value.
904 These definitions appear at the end of the namelist. */
905 SYMBOL_TYPE (sym) = read_type (&p, objfile);
906 SYMBOL_CLASS (sym) = LOC_STATIC;
907 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
908 /* Don't add symbol references to global_sym_chain.
909 Symbol references don't have valid names and wont't match up with
910 minimal symbols when the global_sym_chain is relocated.
911 We'll fixup symbol references when we fixup the defining symbol. */
912 if (DEPRECATED_SYMBOL_NAME (sym) && DEPRECATED_SYMBOL_NAME (sym)[0] != '#')
913 {
914 i = hashname (DEPRECATED_SYMBOL_NAME (sym));
915 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
916 global_sym_chain[i] = sym;
917 }
918 add_symbol_to_list (sym, &global_symbols);
919 break;
920
921 /* This case is faked by a conditional above,
922 when there is no code letter in the dbx data.
923 Dbx data never actually contains 'l'. */
924 case 's':
925 case 'l':
926 SYMBOL_TYPE (sym) = read_type (&p, objfile);
927 SYMBOL_CLASS (sym) = LOC_LOCAL;
928 SYMBOL_VALUE (sym) = valu;
929 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
930 add_symbol_to_list (sym, &local_symbols);
931 break;
932
933 case 'p':
934 if (*p == 'F')
935 /* pF is a two-letter code that means a function parameter in Fortran.
936 The type-number specifies the type of the return value.
937 Translate it into a pointer-to-function type. */
938 {
939 p++;
940 SYMBOL_TYPE (sym)
941 = lookup_pointer_type
942 (lookup_function_type (read_type (&p, objfile)));
943 }
944 else
945 SYMBOL_TYPE (sym) = read_type (&p, objfile);
946
947 SYMBOL_CLASS (sym) = LOC_ARG;
948 SYMBOL_VALUE (sym) = valu;
949 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
950 add_symbol_to_list (sym, &local_symbols);
951
952 if (TARGET_BYTE_ORDER != BFD_ENDIAN_BIG)
953 {
954 /* On little-endian machines, this crud is never necessary,
955 and, if the extra bytes contain garbage, is harmful. */
956 break;
957 }
958
959 /* If it's gcc-compiled, if it says `short', believe it. */
960 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
961 break;
962
963 if (!BELIEVE_PCC_PROMOTION)
964 {
965 /* This is the signed type which arguments get promoted to. */
966 static struct type *pcc_promotion_type;
967 /* This is the unsigned type which arguments get promoted to. */
968 static struct type *pcc_unsigned_promotion_type;
969
970 /* Call it "int" because this is mainly C lossage. */
971 if (pcc_promotion_type == NULL)
972 pcc_promotion_type =
973 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
974 0, "int", NULL);
975
976 if (pcc_unsigned_promotion_type == NULL)
977 pcc_unsigned_promotion_type =
978 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
979 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
980
981 if (BELIEVE_PCC_PROMOTION_TYPE)
982 {
983 /* This is defined on machines (e.g. sparc) where we
984 should believe the type of a PCC 'short' argument,
985 but shouldn't believe the address (the address is the
986 address of the corresponding int).
987
988 My guess is that this correction, as opposed to
989 changing the parameter to an 'int' (as done below,
990 for PCC on most machines), is the right thing to do
991 on all machines, but I don't want to risk breaking
992 something that already works. On most PCC machines,
993 the sparc problem doesn't come up because the calling
994 function has to zero the top bytes (not knowing
995 whether the called function wants an int or a short),
996 so there is little practical difference between an
997 int and a short (except perhaps what happens when the
998 GDB user types "print short_arg = 0x10000;").
999
1000 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the
1001 compiler actually produces the correct address (we
1002 don't need to fix it up). I made this code adapt so
1003 that it will offset the symbol if it was pointing at
1004 an int-aligned location and not otherwise. This way
1005 you can use the same gdb for 4.0.x and 4.1 systems.
1006
1007 If the parameter is shorter than an int, and is
1008 integral (e.g. char, short, or unsigned equivalent),
1009 and is claimed to be passed on an integer boundary,
1010 don't believe it! Offset the parameter's address to
1011 the tail-end of that integer. */
1012
1013 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
1014 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
1015 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
1016 {
1017 SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
1018 - TYPE_LENGTH (SYMBOL_TYPE (sym));
1019 }
1020 break;
1021 }
1022 else
1023 {
1024 /* If PCC says a parameter is a short or a char,
1025 it is really an int. */
1026 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
1027 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1028 {
1029 SYMBOL_TYPE (sym) =
1030 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1031 ? pcc_unsigned_promotion_type
1032 : pcc_promotion_type;
1033 }
1034 break;
1035 }
1036 }
1037
1038 case 'P':
1039 /* acc seems to use P to declare the prototypes of functions that
1040 are referenced by this file. gdb is not prepared to deal
1041 with this extra information. FIXME, it ought to. */
1042 if (type == N_FUN)
1043 {
1044 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1045 goto process_prototype_types;
1046 }
1047 /*FALLTHROUGH */
1048
1049 case 'R':
1050 /* Parameter which is in a register. */
1051 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1052 SYMBOL_CLASS (sym) = LOC_REGPARM;
1053 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1054 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1055 {
1056 reg_value_complaint (SYMBOL_VALUE (sym),
1057 NUM_REGS + NUM_PSEUDO_REGS,
1058 SYMBOL_PRINT_NAME (sym));
1059 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1060 }
1061 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1062 add_symbol_to_list (sym, &local_symbols);
1063 break;
1064
1065 case 'r':
1066 /* Register variable (either global or local). */
1067 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1068 SYMBOL_CLASS (sym) = LOC_REGISTER;
1069 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1070 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1071 {
1072 reg_value_complaint (SYMBOL_VALUE (sym),
1073 NUM_REGS + NUM_PSEUDO_REGS,
1074 SYMBOL_PRINT_NAME (sym));
1075 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1076 }
1077 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1078 if (within_function)
1079 {
1080 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1081 the same name to represent an argument passed in a
1082 register. GCC uses 'P' for the same case. So if we find
1083 such a symbol pair we combine it into one 'P' symbol.
1084 For Sun cc we need to do this regardless of
1085 stabs_argument_has_addr, because the compiler puts out
1086 the 'p' symbol even if it never saves the argument onto
1087 the stack.
1088
1089 On most machines, we want to preserve both symbols, so
1090 that we can still get information about what is going on
1091 with the stack (VAX for computing args_printed, using
1092 stack slots instead of saved registers in backtraces,
1093 etc.).
1094
1095 Note that this code illegally combines
1096 main(argc) struct foo argc; { register struct foo argc; }
1097 but this case is considered pathological and causes a warning
1098 from a decent compiler. */
1099
1100 if (local_symbols
1101 && local_symbols->nsyms > 0
1102 && gdbarch_stabs_argument_has_addr (current_gdbarch,
1103 SYMBOL_TYPE (sym)))
1104 {
1105 struct symbol *prev_sym;
1106 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1107 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1108 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1109 && strcmp (DEPRECATED_SYMBOL_NAME (prev_sym),
1110 DEPRECATED_SYMBOL_NAME (sym)) == 0)
1111 {
1112 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
1113 /* Use the type from the LOC_REGISTER; that is the type
1114 that is actually in that register. */
1115 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1116 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1117 sym = prev_sym;
1118 break;
1119 }
1120 }
1121 add_symbol_to_list (sym, &local_symbols);
1122 }
1123 else
1124 add_symbol_to_list (sym, &file_symbols);
1125 break;
1126
1127 case 'S':
1128 /* Static symbol at top level of file */
1129 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1130 SYMBOL_CLASS (sym) = LOC_STATIC;
1131 SYMBOL_VALUE_ADDRESS (sym) = valu;
1132 #ifdef STATIC_TRANSFORM_NAME
1133 if (IS_STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym)))
1134 {
1135 struct minimal_symbol *msym;
1136 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, objfile);
1137 if (msym != NULL)
1138 {
1139 DEPRECATED_SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym));
1140 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1141 }
1142 }
1143 #endif
1144 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1145 add_symbol_to_list (sym, &file_symbols);
1146 break;
1147
1148 case 't':
1149 /* Typedef */
1150 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1151
1152 /* For a nameless type, we don't want a create a symbol, thus we
1153 did not use `sym'. Return without further processing. */
1154 if (nameless)
1155 return NULL;
1156
1157 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1158 SYMBOL_VALUE (sym) = valu;
1159 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1160 /* C++ vagaries: we may have a type which is derived from
1161 a base type which did not have its name defined when the
1162 derived class was output. We fill in the derived class's
1163 base part member's name here in that case. */
1164 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1165 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1166 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1167 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1168 {
1169 int j;
1170 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1171 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1172 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1173 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1174 }
1175
1176 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1177 {
1178 /* gcc-2.6 or later (when using -fvtable-thunks)
1179 emits a unique named type for a vtable entry.
1180 Some gdb code depends on that specific name. */
1181 extern const char vtbl_ptr_name[];
1182
1183 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1184 && strcmp (DEPRECATED_SYMBOL_NAME (sym), vtbl_ptr_name))
1185 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1186 {
1187 /* If we are giving a name to a type such as "pointer to
1188 foo" or "function returning foo", we better not set
1189 the TYPE_NAME. If the program contains "typedef char
1190 *caddr_t;", we don't want all variables of type char
1191 * to print as caddr_t. This is not just a
1192 consequence of GDB's type management; PCC and GCC (at
1193 least through version 2.4) both output variables of
1194 either type char * or caddr_t with the type number
1195 defined in the 't' symbol for caddr_t. If a future
1196 compiler cleans this up it GDB is not ready for it
1197 yet, but if it becomes ready we somehow need to
1198 disable this check (without breaking the PCC/GCC2.4
1199 case).
1200
1201 Sigh.
1202
1203 Fortunately, this check seems not to be necessary
1204 for anything except pointers or functions. */
1205 /* ezannoni: 2000-10-26. This seems to apply for
1206 versions of gcc older than 2.8. This was the original
1207 problem: with the following code gdb would tell that
1208 the type for name1 is caddr_t, and func is char()
1209 typedef char *caddr_t;
1210 char *name2;
1211 struct x
1212 {
1213 char *name1;
1214 } xx;
1215 char *func()
1216 {
1217 }
1218 main () {}
1219 */
1220
1221 /* Pascal accepts names for pointer types. */
1222 if (current_subfile->language == language_pascal)
1223 {
1224 TYPE_NAME (SYMBOL_TYPE (sym)) = DEPRECATED_SYMBOL_NAME (sym);
1225 }
1226 }
1227 else
1228 TYPE_NAME (SYMBOL_TYPE (sym)) = DEPRECATED_SYMBOL_NAME (sym);
1229 }
1230
1231 add_symbol_to_list (sym, &file_symbols);
1232 break;
1233
1234 case 'T':
1235 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1236 by 't' which means we are typedef'ing it as well. */
1237 synonym = *p == 't';
1238
1239 if (synonym)
1240 p++;
1241
1242 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1243
1244 /* For a nameless type, we don't want a create a symbol, thus we
1245 did not use `sym'. Return without further processing. */
1246 if (nameless)
1247 return NULL;
1248
1249 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1250 SYMBOL_VALUE (sym) = valu;
1251 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1252 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1253 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1254 = obconcat (&objfile->objfile_obstack, "", "", DEPRECATED_SYMBOL_NAME (sym));
1255 add_symbol_to_list (sym, &file_symbols);
1256
1257 if (synonym)
1258 {
1259 /* Clone the sym and then modify it. */
1260 struct symbol *typedef_sym = (struct symbol *)
1261 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1262 *typedef_sym = *sym;
1263 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1264 SYMBOL_VALUE (typedef_sym) = valu;
1265 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1266 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1267 TYPE_NAME (SYMBOL_TYPE (sym))
1268 = obconcat (&objfile->objfile_obstack, "", "", DEPRECATED_SYMBOL_NAME (sym));
1269 add_symbol_to_list (typedef_sym, &file_symbols);
1270 }
1271 break;
1272
1273 case 'V':
1274 /* Static symbol of local scope */
1275 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1276 SYMBOL_CLASS (sym) = LOC_STATIC;
1277 SYMBOL_VALUE_ADDRESS (sym) = valu;
1278 #ifdef STATIC_TRANSFORM_NAME
1279 if (IS_STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym)))
1280 {
1281 struct minimal_symbol *msym;
1282 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, objfile);
1283 if (msym != NULL)
1284 {
1285 DEPRECATED_SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym));
1286 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1287 }
1288 }
1289 #endif
1290 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1291 add_symbol_to_list (sym, &local_symbols);
1292 break;
1293
1294 case 'v':
1295 /* Reference parameter */
1296 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1297 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1298 SYMBOL_VALUE (sym) = valu;
1299 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1300 add_symbol_to_list (sym, &local_symbols);
1301 break;
1302
1303 case 'a':
1304 /* Reference parameter which is in a register. */
1305 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1306 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1307 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1308 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1309 {
1310 reg_value_complaint (SYMBOL_VALUE (sym),
1311 NUM_REGS + NUM_PSEUDO_REGS,
1312 SYMBOL_PRINT_NAME (sym));
1313 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1314 }
1315 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1316 add_symbol_to_list (sym, &local_symbols);
1317 break;
1318
1319 case 'X':
1320 /* This is used by Sun FORTRAN for "function result value".
1321 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1322 that Pascal uses it too, but when I tried it Pascal used
1323 "x:3" (local symbol) instead. */
1324 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1325 SYMBOL_CLASS (sym) = LOC_LOCAL;
1326 SYMBOL_VALUE (sym) = valu;
1327 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1328 add_symbol_to_list (sym, &local_symbols);
1329 break;
1330
1331 default:
1332 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1333 SYMBOL_CLASS (sym) = LOC_CONST;
1334 SYMBOL_VALUE (sym) = 0;
1335 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1336 add_symbol_to_list (sym, &file_symbols);
1337 break;
1338 }
1339
1340 /* Some systems pass variables of certain types by reference instead
1341 of by value, i.e. they will pass the address of a structure (in a
1342 register or on the stack) instead of the structure itself. */
1343
1344 if (gdbarch_stabs_argument_has_addr (current_gdbarch, SYMBOL_TYPE (sym))
1345 && (SYMBOL_CLASS (sym) == LOC_REGPARM || SYMBOL_CLASS (sym) == LOC_ARG))
1346 {
1347 /* We have to convert LOC_REGPARM to LOC_REGPARM_ADDR (for
1348 variables passed in a register). */
1349 if (SYMBOL_CLASS (sym) == LOC_REGPARM)
1350 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1351 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1352 and subsequent arguments on SPARC, for example). */
1353 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1354 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1355 }
1356
1357 return sym;
1358 }
1359
1360 /* Skip rest of this symbol and return an error type.
1361
1362 General notes on error recovery: error_type always skips to the
1363 end of the symbol (modulo cretinous dbx symbol name continuation).
1364 Thus code like this:
1365
1366 if (*(*pp)++ != ';')
1367 return error_type (pp, objfile);
1368
1369 is wrong because if *pp starts out pointing at '\0' (typically as the
1370 result of an earlier error), it will be incremented to point to the
1371 start of the next symbol, which might produce strange results, at least
1372 if you run off the end of the string table. Instead use
1373
1374 if (**pp != ';')
1375 return error_type (pp, objfile);
1376 ++*pp;
1377
1378 or
1379
1380 if (**pp != ';')
1381 foo = error_type (pp, objfile);
1382 else
1383 ++*pp;
1384
1385 And in case it isn't obvious, the point of all this hair is so the compiler
1386 can define new types and new syntaxes, and old versions of the
1387 debugger will be able to read the new symbol tables. */
1388
1389 static struct type *
1390 error_type (char **pp, struct objfile *objfile)
1391 {
1392 complaint (&symfile_complaints, "couldn't parse type; debugger out of date?");
1393 while (1)
1394 {
1395 /* Skip to end of symbol. */
1396 while (**pp != '\0')
1397 {
1398 (*pp)++;
1399 }
1400
1401 /* Check for and handle cretinous dbx symbol name continuation! */
1402 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1403 {
1404 *pp = next_symbol_text (objfile);
1405 }
1406 else
1407 {
1408 break;
1409 }
1410 }
1411 return (builtin_type_error);
1412 }
1413 \f
1414
1415 /* Read type information or a type definition; return the type. Even
1416 though this routine accepts either type information or a type
1417 definition, the distinction is relevant--some parts of stabsread.c
1418 assume that type information starts with a digit, '-', or '(' in
1419 deciding whether to call read_type. */
1420
1421 static struct type *
1422 read_type (char **pp, struct objfile *objfile)
1423 {
1424 struct type *type = 0;
1425 struct type *type1;
1426 int typenums[2];
1427 char type_descriptor;
1428
1429 /* Size in bits of type if specified by a type attribute, or -1 if
1430 there is no size attribute. */
1431 int type_size = -1;
1432
1433 /* Used to distinguish string and bitstring from char-array and set. */
1434 int is_string = 0;
1435
1436 /* Used to distinguish vector from array. */
1437 int is_vector = 0;
1438
1439 /* Read type number if present. The type number may be omitted.
1440 for instance in a two-dimensional array declared with type
1441 "ar1;1;10;ar1;1;10;4". */
1442 if ((**pp >= '0' && **pp <= '9')
1443 || **pp == '('
1444 || **pp == '-')
1445 {
1446 if (read_type_number (pp, typenums) != 0)
1447 return error_type (pp, objfile);
1448
1449 /* Type is not being defined here. Either it already exists,
1450 or this is a forward reference to it. dbx_alloc_type handles
1451 both cases. */
1452 if (**pp != '=')
1453 return dbx_alloc_type (typenums, objfile);
1454
1455 /* Type is being defined here. */
1456 /* Skip the '='.
1457 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1458 (*pp) += 2;
1459 }
1460 else
1461 {
1462 /* 'typenums=' not present, type is anonymous. Read and return
1463 the definition, but don't put it in the type vector. */
1464 typenums[0] = typenums[1] = -1;
1465 (*pp)++;
1466 }
1467
1468 again:
1469 type_descriptor = (*pp)[-1];
1470 switch (type_descriptor)
1471 {
1472 case 'x':
1473 {
1474 enum type_code code;
1475
1476 /* Used to index through file_symbols. */
1477 struct pending *ppt;
1478 int i;
1479
1480 /* Name including "struct", etc. */
1481 char *type_name;
1482
1483 {
1484 char *from, *to, *p, *q1, *q2;
1485
1486 /* Set the type code according to the following letter. */
1487 switch ((*pp)[0])
1488 {
1489 case 's':
1490 code = TYPE_CODE_STRUCT;
1491 break;
1492 case 'u':
1493 code = TYPE_CODE_UNION;
1494 break;
1495 case 'e':
1496 code = TYPE_CODE_ENUM;
1497 break;
1498 default:
1499 {
1500 /* Complain and keep going, so compilers can invent new
1501 cross-reference types. */
1502 complaint (&symfile_complaints,
1503 "Unrecognized cross-reference type `%c'", (*pp)[0]);
1504 code = TYPE_CODE_STRUCT;
1505 break;
1506 }
1507 }
1508
1509 q1 = strchr (*pp, '<');
1510 p = strchr (*pp, ':');
1511 if (p == NULL)
1512 return error_type (pp, objfile);
1513 if (q1 && p > q1 && p[1] == ':')
1514 {
1515 int nesting_level = 0;
1516 for (q2 = q1; *q2; q2++)
1517 {
1518 if (*q2 == '<')
1519 nesting_level++;
1520 else if (*q2 == '>')
1521 nesting_level--;
1522 else if (*q2 == ':' && nesting_level == 0)
1523 break;
1524 }
1525 p = q2;
1526 if (*p != ':')
1527 return error_type (pp, objfile);
1528 }
1529 to = type_name =
1530 (char *) obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1531
1532 /* Copy the name. */
1533 from = *pp + 1;
1534 while (from < p)
1535 *to++ = *from++;
1536 *to = '\0';
1537
1538 /* Set the pointer ahead of the name which we just read, and
1539 the colon. */
1540 *pp = from + 1;
1541 }
1542
1543 /* If this type has already been declared, then reuse the same
1544 type, rather than allocating a new one. This saves some
1545 memory. */
1546
1547 for (ppt = file_symbols; ppt; ppt = ppt->next)
1548 for (i = 0; i < ppt->nsyms; i++)
1549 {
1550 struct symbol *sym = ppt->symbol[i];
1551
1552 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1553 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1554 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1555 && strcmp (DEPRECATED_SYMBOL_NAME (sym), type_name) == 0)
1556 {
1557 obstack_free (&objfile->objfile_obstack, type_name);
1558 type = SYMBOL_TYPE (sym);
1559 if (typenums[0] != -1)
1560 *dbx_lookup_type (typenums) = type;
1561 return type;
1562 }
1563 }
1564
1565 /* Didn't find the type to which this refers, so we must
1566 be dealing with a forward reference. Allocate a type
1567 structure for it, and keep track of it so we can
1568 fill in the rest of the fields when we get the full
1569 type. */
1570 type = dbx_alloc_type (typenums, objfile);
1571 TYPE_CODE (type) = code;
1572 TYPE_TAG_NAME (type) = type_name;
1573 INIT_CPLUS_SPECIFIC (type);
1574 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1575
1576 add_undefined_type (type);
1577 return type;
1578 }
1579
1580 case '-': /* RS/6000 built-in type */
1581 case '0':
1582 case '1':
1583 case '2':
1584 case '3':
1585 case '4':
1586 case '5':
1587 case '6':
1588 case '7':
1589 case '8':
1590 case '9':
1591 case '(':
1592 (*pp)--;
1593
1594 /* We deal with something like t(1,2)=(3,4)=... which
1595 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1596
1597 /* Allocate and enter the typedef type first.
1598 This handles recursive types. */
1599 type = dbx_alloc_type (typenums, objfile);
1600 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1601 {
1602 struct type *xtype = read_type (pp, objfile);
1603 if (type == xtype)
1604 {
1605 /* It's being defined as itself. That means it is "void". */
1606 TYPE_CODE (type) = TYPE_CODE_VOID;
1607 TYPE_LENGTH (type) = 1;
1608 }
1609 else if (type_size >= 0 || is_string)
1610 {
1611 /* This is the absolute wrong way to construct types. Every
1612 other debug format has found a way around this problem and
1613 the related problems with unnecessarily stubbed types;
1614 someone motivated should attempt to clean up the issue
1615 here as well. Once a type pointed to has been created it
1616 should not be modified.
1617
1618 Well, it's not *absolutely* wrong. Constructing recursive
1619 types (trees, linked lists) necessarily entails modifying
1620 types after creating them. Constructing any loop structure
1621 entails side effects. The Dwarf 2 reader does handle this
1622 more gracefully (it never constructs more than once
1623 instance of a type object, so it doesn't have to copy type
1624 objects wholesale), but it still mutates type objects after
1625 other folks have references to them.
1626
1627 Keep in mind that this circularity/mutation issue shows up
1628 at the source language level, too: C's "incomplete types",
1629 for example. So the proper cleanup, I think, would be to
1630 limit GDB's type smashing to match exactly those required
1631 by the source language. So GDB could have a
1632 "complete_this_type" function, but never create unnecessary
1633 copies of a type otherwise. */
1634 replace_type (type, xtype);
1635 TYPE_NAME (type) = NULL;
1636 TYPE_TAG_NAME (type) = NULL;
1637 }
1638 else
1639 {
1640 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
1641 TYPE_TARGET_TYPE (type) = xtype;
1642 }
1643 }
1644 break;
1645
1646 /* In the following types, we must be sure to overwrite any existing
1647 type that the typenums refer to, rather than allocating a new one
1648 and making the typenums point to the new one. This is because there
1649 may already be pointers to the existing type (if it had been
1650 forward-referenced), and we must change it to a pointer, function,
1651 reference, or whatever, *in-place*. */
1652
1653 case '*': /* Pointer to another type */
1654 type1 = read_type (pp, objfile);
1655 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1656 break;
1657
1658 case '&': /* Reference to another type */
1659 type1 = read_type (pp, objfile);
1660 type = make_reference_type (type1, dbx_lookup_type (typenums));
1661 break;
1662
1663 case 'f': /* Function returning another type */
1664 type1 = read_type (pp, objfile);
1665 type = make_function_type (type1, dbx_lookup_type (typenums));
1666 break;
1667
1668 case 'g': /* Prototyped function. (Sun) */
1669 {
1670 /* Unresolved questions:
1671
1672 - According to Sun's ``STABS Interface Manual'', for 'f'
1673 and 'F' symbol descriptors, a `0' in the argument type list
1674 indicates a varargs function. But it doesn't say how 'g'
1675 type descriptors represent that info. Someone with access
1676 to Sun's toolchain should try it out.
1677
1678 - According to the comment in define_symbol (search for
1679 `process_prototype_types:'), Sun emits integer arguments as
1680 types which ref themselves --- like `void' types. Do we
1681 have to deal with that here, too? Again, someone with
1682 access to Sun's toolchain should try it out and let us
1683 know. */
1684
1685 const char *type_start = (*pp) - 1;
1686 struct type *return_type = read_type (pp, objfile);
1687 struct type *func_type
1688 = make_function_type (return_type, dbx_lookup_type (typenums));
1689 struct type_list {
1690 struct type *type;
1691 struct type_list *next;
1692 } *arg_types = 0;
1693 int num_args = 0;
1694
1695 while (**pp && **pp != '#')
1696 {
1697 struct type *arg_type = read_type (pp, objfile);
1698 struct type_list *new = alloca (sizeof (*new));
1699 new->type = arg_type;
1700 new->next = arg_types;
1701 arg_types = new;
1702 num_args++;
1703 }
1704 if (**pp == '#')
1705 ++*pp;
1706 else
1707 {
1708 complaint (&symfile_complaints,
1709 "Prototyped function type didn't end arguments with `#':\n%s",
1710 type_start);
1711 }
1712
1713 /* If there is just one argument whose type is `void', then
1714 that's just an empty argument list. */
1715 if (arg_types
1716 && ! arg_types->next
1717 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1718 num_args = 0;
1719
1720 TYPE_FIELDS (func_type)
1721 = (struct field *) TYPE_ALLOC (func_type,
1722 num_args * sizeof (struct field));
1723 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1724 {
1725 int i;
1726 struct type_list *t;
1727
1728 /* We stuck each argument type onto the front of the list
1729 when we read it, so the list is reversed. Build the
1730 fields array right-to-left. */
1731 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1732 TYPE_FIELD_TYPE (func_type, i) = t->type;
1733 }
1734 TYPE_NFIELDS (func_type) = num_args;
1735 TYPE_FLAGS (func_type) |= TYPE_FLAG_PROTOTYPED;
1736
1737 type = func_type;
1738 break;
1739 }
1740
1741 case 'k': /* Const qualifier on some type (Sun) */
1742 type = read_type (pp, objfile);
1743 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1744 dbx_lookup_type (typenums));
1745 break;
1746
1747 case 'B': /* Volatile qual on some type (Sun) */
1748 type = read_type (pp, objfile);
1749 type = make_cv_type (TYPE_CONST (type), 1, type,
1750 dbx_lookup_type (typenums));
1751 break;
1752
1753 case '@':
1754 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1755 { /* Member (class & variable) type */
1756 /* FIXME -- we should be doing smash_to_XXX types here. */
1757
1758 struct type *domain = read_type (pp, objfile);
1759 struct type *memtype;
1760
1761 if (**pp != ',')
1762 /* Invalid member type data format. */
1763 return error_type (pp, objfile);
1764 ++*pp;
1765
1766 memtype = read_type (pp, objfile);
1767 type = dbx_alloc_type (typenums, objfile);
1768 smash_to_member_type (type, domain, memtype);
1769 }
1770 else
1771 /* type attribute */
1772 {
1773 char *attr = *pp;
1774 /* Skip to the semicolon. */
1775 while (**pp != ';' && **pp != '\0')
1776 ++(*pp);
1777 if (**pp == '\0')
1778 return error_type (pp, objfile);
1779 else
1780 ++ * pp; /* Skip the semicolon. */
1781
1782 switch (*attr)
1783 {
1784 case 's': /* Size attribute */
1785 type_size = atoi (attr + 1);
1786 if (type_size <= 0)
1787 type_size = -1;
1788 break;
1789
1790 case 'S': /* String attribute */
1791 /* FIXME: check to see if following type is array? */
1792 is_string = 1;
1793 break;
1794
1795 case 'V': /* Vector attribute */
1796 /* FIXME: check to see if following type is array? */
1797 is_vector = 1;
1798 break;
1799
1800 default:
1801 /* Ignore unrecognized type attributes, so future compilers
1802 can invent new ones. */
1803 break;
1804 }
1805 ++*pp;
1806 goto again;
1807 }
1808 break;
1809
1810 case '#': /* Method (class & fn) type */
1811 if ((*pp)[0] == '#')
1812 {
1813 /* We'll get the parameter types from the name. */
1814 struct type *return_type;
1815
1816 (*pp)++;
1817 return_type = read_type (pp, objfile);
1818 if (*(*pp)++ != ';')
1819 complaint (&symfile_complaints,
1820 "invalid (minimal) member type data format at symtab pos %d.",
1821 symnum);
1822 type = allocate_stub_method (return_type);
1823 if (typenums[0] != -1)
1824 *dbx_lookup_type (typenums) = type;
1825 }
1826 else
1827 {
1828 struct type *domain = read_type (pp, objfile);
1829 struct type *return_type;
1830 struct field *args;
1831 int nargs, varargs;
1832
1833 if (**pp != ',')
1834 /* Invalid member type data format. */
1835 return error_type (pp, objfile);
1836 else
1837 ++(*pp);
1838
1839 return_type = read_type (pp, objfile);
1840 args = read_args (pp, ';', objfile, &nargs, &varargs);
1841 type = dbx_alloc_type (typenums, objfile);
1842 smash_to_method_type (type, domain, return_type, args,
1843 nargs, varargs);
1844 }
1845 break;
1846
1847 case 'r': /* Range type */
1848 type = read_range_type (pp, typenums, objfile);
1849 if (typenums[0] != -1)
1850 *dbx_lookup_type (typenums) = type;
1851 break;
1852
1853 case 'b':
1854 {
1855 /* Sun ACC builtin int type */
1856 type = read_sun_builtin_type (pp, typenums, objfile);
1857 if (typenums[0] != -1)
1858 *dbx_lookup_type (typenums) = type;
1859 }
1860 break;
1861
1862 case 'R': /* Sun ACC builtin float type */
1863 type = read_sun_floating_type (pp, typenums, objfile);
1864 if (typenums[0] != -1)
1865 *dbx_lookup_type (typenums) = type;
1866 break;
1867
1868 case 'e': /* Enumeration type */
1869 type = dbx_alloc_type (typenums, objfile);
1870 type = read_enum_type (pp, type, objfile);
1871 if (typenums[0] != -1)
1872 *dbx_lookup_type (typenums) = type;
1873 break;
1874
1875 case 's': /* Struct type */
1876 case 'u': /* Union type */
1877 {
1878 enum type_code type_code = TYPE_CODE_UNDEF;
1879 type = dbx_alloc_type (typenums, objfile);
1880 switch (type_descriptor)
1881 {
1882 case 's':
1883 type_code = TYPE_CODE_STRUCT;
1884 break;
1885 case 'u':
1886 type_code = TYPE_CODE_UNION;
1887 break;
1888 }
1889 type = read_struct_type (pp, type, type_code, objfile);
1890 break;
1891 }
1892
1893 case 'a': /* Array type */
1894 if (**pp != 'r')
1895 return error_type (pp, objfile);
1896 ++*pp;
1897
1898 type = dbx_alloc_type (typenums, objfile);
1899 type = read_array_type (pp, type, objfile);
1900 if (is_string)
1901 TYPE_CODE (type) = TYPE_CODE_STRING;
1902 if (is_vector)
1903 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
1904 break;
1905
1906 case 'S': /* Set or bitstring type */
1907 type1 = read_type (pp, objfile);
1908 type = create_set_type ((struct type *) NULL, type1);
1909 if (is_string)
1910 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1911 if (typenums[0] != -1)
1912 *dbx_lookup_type (typenums) = type;
1913 break;
1914
1915 default:
1916 --*pp; /* Go back to the symbol in error */
1917 /* Particularly important if it was \0! */
1918 return error_type (pp, objfile);
1919 }
1920
1921 if (type == 0)
1922 {
1923 warning ("GDB internal error, type is NULL in stabsread.c\n");
1924 return error_type (pp, objfile);
1925 }
1926
1927 /* Size specified in a type attribute overrides any other size. */
1928 if (type_size != -1)
1929 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1930
1931 return type;
1932 }
1933 \f
1934 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1935 Return the proper type node for a given builtin type number. */
1936
1937 static struct type *
1938 rs6000_builtin_type (int typenum)
1939 {
1940 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1941 #define NUMBER_RECOGNIZED 34
1942 /* This includes an empty slot for type number -0. */
1943 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1944 struct type *rettype = NULL;
1945
1946 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1947 {
1948 complaint (&symfile_complaints, "Unknown builtin type %d", typenum);
1949 return builtin_type_error;
1950 }
1951 if (negative_types[-typenum] != NULL)
1952 return negative_types[-typenum];
1953
1954 #if TARGET_CHAR_BIT != 8
1955 #error This code wrong for TARGET_CHAR_BIT not 8
1956 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1957 that if that ever becomes not true, the correct fix will be to
1958 make the size in the struct type to be in bits, not in units of
1959 TARGET_CHAR_BIT. */
1960 #endif
1961
1962 switch (-typenum)
1963 {
1964 case 1:
1965 /* The size of this and all the other types are fixed, defined
1966 by the debugging format. If there is a type called "int" which
1967 is other than 32 bits, then it should use a new negative type
1968 number (or avoid negative type numbers for that case).
1969 See stabs.texinfo. */
1970 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1971 break;
1972 case 2:
1973 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1974 break;
1975 case 3:
1976 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1977 break;
1978 case 4:
1979 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
1980 break;
1981 case 5:
1982 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
1983 "unsigned char", NULL);
1984 break;
1985 case 6:
1986 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
1987 break;
1988 case 7:
1989 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
1990 "unsigned short", NULL);
1991 break;
1992 case 8:
1993 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1994 "unsigned int", NULL);
1995 break;
1996 case 9:
1997 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1998 "unsigned", NULL);
1999 case 10:
2000 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2001 "unsigned long", NULL);
2002 break;
2003 case 11:
2004 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
2005 break;
2006 case 12:
2007 /* IEEE single precision (32 bit). */
2008 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
2009 break;
2010 case 13:
2011 /* IEEE double precision (64 bit). */
2012 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
2013 break;
2014 case 14:
2015 /* This is an IEEE double on the RS/6000, and different machines with
2016 different sizes for "long double" should use different negative
2017 type numbers. See stabs.texinfo. */
2018 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
2019 break;
2020 case 15:
2021 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
2022 break;
2023 case 16:
2024 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2025 "boolean", NULL);
2026 break;
2027 case 17:
2028 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
2029 break;
2030 case 18:
2031 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
2032 break;
2033 case 19:
2034 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
2035 break;
2036 case 20:
2037 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2038 "character", NULL);
2039 break;
2040 case 21:
2041 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2042 "logical*1", NULL);
2043 break;
2044 case 22:
2045 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2046 "logical*2", NULL);
2047 break;
2048 case 23:
2049 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2050 "logical*4", NULL);
2051 break;
2052 case 24:
2053 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2054 "logical", NULL);
2055 break;
2056 case 25:
2057 /* Complex type consisting of two IEEE single precision values. */
2058 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", NULL);
2059 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2060 NULL);
2061 break;
2062 case 26:
2063 /* Complex type consisting of two IEEE double precision values. */
2064 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2065 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2066 NULL);
2067 break;
2068 case 27:
2069 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
2070 break;
2071 case 28:
2072 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
2073 break;
2074 case 29:
2075 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
2076 break;
2077 case 30:
2078 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
2079 break;
2080 case 31:
2081 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", NULL);
2082 break;
2083 case 32:
2084 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2085 "unsigned long long", NULL);
2086 break;
2087 case 33:
2088 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2089 "logical*8", NULL);
2090 break;
2091 case 34:
2092 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", NULL);
2093 break;
2094 }
2095 negative_types[-typenum] = rettype;
2096 return rettype;
2097 }
2098 \f
2099 /* This page contains subroutines of read_type. */
2100
2101 /* Replace *OLD_NAME with the method name portion of PHYSNAME. */
2102
2103 static void
2104 update_method_name_from_physname (char **old_name, char *physname)
2105 {
2106 char *method_name;
2107
2108 method_name = method_name_from_physname (physname);
2109
2110 if (method_name == NULL)
2111 {
2112 complaint (&symfile_complaints,
2113 "Method has bad physname %s\n", physname);
2114 return;
2115 }
2116
2117 if (strcmp (*old_name, method_name) != 0)
2118 {
2119 xfree (*old_name);
2120 *old_name = method_name;
2121 }
2122 else
2123 xfree (method_name);
2124 }
2125
2126 /* Read member function stabs info for C++ classes. The form of each member
2127 function data is:
2128
2129 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2130
2131 An example with two member functions is:
2132
2133 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2134
2135 For the case of overloaded operators, the format is op$::*.funcs, where
2136 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2137 name (such as `+=') and `.' marks the end of the operator name.
2138
2139 Returns 1 for success, 0 for failure. */
2140
2141 static int
2142 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2143 struct objfile *objfile)
2144 {
2145 int nfn_fields = 0;
2146 int length = 0;
2147 /* Total number of member functions defined in this class. If the class
2148 defines two `f' functions, and one `g' function, then this will have
2149 the value 3. */
2150 int total_length = 0;
2151 int i;
2152 struct next_fnfield
2153 {
2154 struct next_fnfield *next;
2155 struct fn_field fn_field;
2156 }
2157 *sublist;
2158 struct type *look_ahead_type;
2159 struct next_fnfieldlist *new_fnlist;
2160 struct next_fnfield *new_sublist;
2161 char *main_fn_name;
2162 char *p;
2163
2164 /* Process each list until we find something that is not a member function
2165 or find the end of the functions. */
2166
2167 while (**pp != ';')
2168 {
2169 /* We should be positioned at the start of the function name.
2170 Scan forward to find the first ':' and if it is not the
2171 first of a "::" delimiter, then this is not a member function. */
2172 p = *pp;
2173 while (*p != ':')
2174 {
2175 p++;
2176 }
2177 if (p[1] != ':')
2178 {
2179 break;
2180 }
2181
2182 sublist = NULL;
2183 look_ahead_type = NULL;
2184 length = 0;
2185
2186 new_fnlist = (struct next_fnfieldlist *)
2187 xmalloc (sizeof (struct next_fnfieldlist));
2188 make_cleanup (xfree, new_fnlist);
2189 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2190
2191 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2192 {
2193 /* This is a completely wierd case. In order to stuff in the
2194 names that might contain colons (the usual name delimiter),
2195 Mike Tiemann defined a different name format which is
2196 signalled if the identifier is "op$". In that case, the
2197 format is "op$::XXXX." where XXXX is the name. This is
2198 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2199 /* This lets the user type "break operator+".
2200 We could just put in "+" as the name, but that wouldn't
2201 work for "*". */
2202 static char opname[32] = "op$";
2203 char *o = opname + 3;
2204
2205 /* Skip past '::'. */
2206 *pp = p + 2;
2207
2208 STABS_CONTINUE (pp, objfile);
2209 p = *pp;
2210 while (*p != '.')
2211 {
2212 *o++ = *p++;
2213 }
2214 main_fn_name = savestring (opname, o - opname);
2215 /* Skip past '.' */
2216 *pp = p + 1;
2217 }
2218 else
2219 {
2220 main_fn_name = savestring (*pp, p - *pp);
2221 /* Skip past '::'. */
2222 *pp = p + 2;
2223 }
2224 new_fnlist->fn_fieldlist.name = main_fn_name;
2225
2226 do
2227 {
2228 new_sublist =
2229 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2230 make_cleanup (xfree, new_sublist);
2231 memset (new_sublist, 0, sizeof (struct next_fnfield));
2232
2233 /* Check for and handle cretinous dbx symbol name continuation! */
2234 if (look_ahead_type == NULL)
2235 {
2236 /* Normal case. */
2237 STABS_CONTINUE (pp, objfile);
2238
2239 new_sublist->fn_field.type = read_type (pp, objfile);
2240 if (**pp != ':')
2241 {
2242 /* Invalid symtab info for member function. */
2243 return 0;
2244 }
2245 }
2246 else
2247 {
2248 /* g++ version 1 kludge */
2249 new_sublist->fn_field.type = look_ahead_type;
2250 look_ahead_type = NULL;
2251 }
2252
2253 (*pp)++;
2254 p = *pp;
2255 while (*p != ';')
2256 {
2257 p++;
2258 }
2259
2260 /* If this is just a stub, then we don't have the real name here. */
2261
2262 if (TYPE_STUB (new_sublist->fn_field.type))
2263 {
2264 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2265 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2266 new_sublist->fn_field.is_stub = 1;
2267 }
2268 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2269 *pp = p + 1;
2270
2271 /* Set this member function's visibility fields. */
2272 switch (*(*pp)++)
2273 {
2274 case VISIBILITY_PRIVATE:
2275 new_sublist->fn_field.is_private = 1;
2276 break;
2277 case VISIBILITY_PROTECTED:
2278 new_sublist->fn_field.is_protected = 1;
2279 break;
2280 }
2281
2282 STABS_CONTINUE (pp, objfile);
2283 switch (**pp)
2284 {
2285 case 'A': /* Normal functions. */
2286 new_sublist->fn_field.is_const = 0;
2287 new_sublist->fn_field.is_volatile = 0;
2288 (*pp)++;
2289 break;
2290 case 'B': /* `const' member functions. */
2291 new_sublist->fn_field.is_const = 1;
2292 new_sublist->fn_field.is_volatile = 0;
2293 (*pp)++;
2294 break;
2295 case 'C': /* `volatile' member function. */
2296 new_sublist->fn_field.is_const = 0;
2297 new_sublist->fn_field.is_volatile = 1;
2298 (*pp)++;
2299 break;
2300 case 'D': /* `const volatile' member function. */
2301 new_sublist->fn_field.is_const = 1;
2302 new_sublist->fn_field.is_volatile = 1;
2303 (*pp)++;
2304 break;
2305 case '*': /* File compiled with g++ version 1 -- no info */
2306 case '?':
2307 case '.':
2308 break;
2309 default:
2310 complaint (&symfile_complaints,
2311 "const/volatile indicator missing, got '%c'", **pp);
2312 break;
2313 }
2314
2315 switch (*(*pp)++)
2316 {
2317 case '*':
2318 {
2319 int nbits;
2320 /* virtual member function, followed by index.
2321 The sign bit is set to distinguish pointers-to-methods
2322 from virtual function indicies. Since the array is
2323 in words, the quantity must be shifted left by 1
2324 on 16 bit machine, and by 2 on 32 bit machine, forcing
2325 the sign bit out, and usable as a valid index into
2326 the array. Remove the sign bit here. */
2327 new_sublist->fn_field.voffset =
2328 (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
2329 if (nbits != 0)
2330 return 0;
2331
2332 STABS_CONTINUE (pp, objfile);
2333 if (**pp == ';' || **pp == '\0')
2334 {
2335 /* Must be g++ version 1. */
2336 new_sublist->fn_field.fcontext = 0;
2337 }
2338 else
2339 {
2340 /* Figure out from whence this virtual function came.
2341 It may belong to virtual function table of
2342 one of its baseclasses. */
2343 look_ahead_type = read_type (pp, objfile);
2344 if (**pp == ':')
2345 {
2346 /* g++ version 1 overloaded methods. */
2347 }
2348 else
2349 {
2350 new_sublist->fn_field.fcontext = look_ahead_type;
2351 if (**pp != ';')
2352 {
2353 return 0;
2354 }
2355 else
2356 {
2357 ++*pp;
2358 }
2359 look_ahead_type = NULL;
2360 }
2361 }
2362 break;
2363 }
2364 case '?':
2365 /* static member function. */
2366 {
2367 int slen = strlen (main_fn_name);
2368
2369 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2370
2371 /* For static member functions, we can't tell if they
2372 are stubbed, as they are put out as functions, and not as
2373 methods.
2374 GCC v2 emits the fully mangled name if
2375 dbxout.c:flag_minimal_debug is not set, so we have to
2376 detect a fully mangled physname here and set is_stub
2377 accordingly. Fully mangled physnames in v2 start with
2378 the member function name, followed by two underscores.
2379 GCC v3 currently always emits stubbed member functions,
2380 but with fully mangled physnames, which start with _Z. */
2381 if (!(strncmp (new_sublist->fn_field.physname,
2382 main_fn_name, slen) == 0
2383 && new_sublist->fn_field.physname[slen] == '_'
2384 && new_sublist->fn_field.physname[slen + 1] == '_'))
2385 {
2386 new_sublist->fn_field.is_stub = 1;
2387 }
2388 break;
2389 }
2390
2391 default:
2392 /* error */
2393 complaint (&symfile_complaints,
2394 "member function type missing, got '%c'", (*pp)[-1]);
2395 /* Fall through into normal member function. */
2396
2397 case '.':
2398 /* normal member function. */
2399 new_sublist->fn_field.voffset = 0;
2400 new_sublist->fn_field.fcontext = 0;
2401 break;
2402 }
2403
2404 new_sublist->next = sublist;
2405 sublist = new_sublist;
2406 length++;
2407 STABS_CONTINUE (pp, objfile);
2408 }
2409 while (**pp != ';' && **pp != '\0');
2410
2411 (*pp)++;
2412 STABS_CONTINUE (pp, objfile);
2413
2414 /* Skip GCC 3.X member functions which are duplicates of the callable
2415 constructor/destructor. */
2416 if (strcmp (main_fn_name, "__base_ctor") == 0
2417 || strcmp (main_fn_name, "__base_dtor") == 0
2418 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2419 {
2420 xfree (main_fn_name);
2421 }
2422 else
2423 {
2424 int has_stub = 0;
2425 int has_destructor = 0, has_other = 0;
2426 int is_v3 = 0;
2427 struct next_fnfield *tmp_sublist;
2428
2429 /* Various versions of GCC emit various mostly-useless
2430 strings in the name field for special member functions.
2431
2432 For stub methods, we need to defer correcting the name
2433 until we are ready to unstub the method, because the current
2434 name string is used by gdb_mangle_name. The only stub methods
2435 of concern here are GNU v2 operators; other methods have their
2436 names correct (see caveat below).
2437
2438 For non-stub methods, in GNU v3, we have a complete physname.
2439 Therefore we can safely correct the name now. This primarily
2440 affects constructors and destructors, whose name will be
2441 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2442 operators will also have incorrect names; for instance,
2443 "operator int" will be named "operator i" (i.e. the type is
2444 mangled).
2445
2446 For non-stub methods in GNU v2, we have no easy way to
2447 know if we have a complete physname or not. For most
2448 methods the result depends on the platform (if CPLUS_MARKER
2449 can be `$' or `.', it will use minimal debug information, or
2450 otherwise the full physname will be included).
2451
2452 Rather than dealing with this, we take a different approach.
2453 For v3 mangled names, we can use the full physname; for v2,
2454 we use cplus_demangle_opname (which is actually v2 specific),
2455 because the only interesting names are all operators - once again
2456 barring the caveat below. Skip this process if any method in the
2457 group is a stub, to prevent our fouling up the workings of
2458 gdb_mangle_name.
2459
2460 The caveat: GCC 2.95.x (and earlier?) put constructors and
2461 destructors in the same method group. We need to split this
2462 into two groups, because they should have different names.
2463 So for each method group we check whether it contains both
2464 routines whose physname appears to be a destructor (the physnames
2465 for and destructors are always provided, due to quirks in v2
2466 mangling) and routines whose physname does not appear to be a
2467 destructor. If so then we break up the list into two halves.
2468 Even if the constructors and destructors aren't in the same group
2469 the destructor will still lack the leading tilde, so that also
2470 needs to be fixed.
2471
2472 So, to summarize what we expect and handle here:
2473
2474 Given Given Real Real Action
2475 method name physname physname method name
2476
2477 __opi [none] __opi__3Foo operator int opname
2478 [now or later]
2479 Foo _._3Foo _._3Foo ~Foo separate and
2480 rename
2481 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2482 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2483 */
2484
2485 tmp_sublist = sublist;
2486 while (tmp_sublist != NULL)
2487 {
2488 if (tmp_sublist->fn_field.is_stub)
2489 has_stub = 1;
2490 if (tmp_sublist->fn_field.physname[0] == '_'
2491 && tmp_sublist->fn_field.physname[1] == 'Z')
2492 is_v3 = 1;
2493
2494 if (is_destructor_name (tmp_sublist->fn_field.physname))
2495 has_destructor++;
2496 else
2497 has_other++;
2498
2499 tmp_sublist = tmp_sublist->next;
2500 }
2501
2502 if (has_destructor && has_other)
2503 {
2504 struct next_fnfieldlist *destr_fnlist;
2505 struct next_fnfield *last_sublist;
2506
2507 /* Create a new fn_fieldlist for the destructors. */
2508
2509 destr_fnlist = (struct next_fnfieldlist *)
2510 xmalloc (sizeof (struct next_fnfieldlist));
2511 make_cleanup (xfree, destr_fnlist);
2512 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2513 destr_fnlist->fn_fieldlist.name
2514 = obconcat (&objfile->objfile_obstack, "", "~",
2515 new_fnlist->fn_fieldlist.name);
2516
2517 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2518 obstack_alloc (&objfile->objfile_obstack,
2519 sizeof (struct fn_field) * has_destructor);
2520 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2521 sizeof (struct fn_field) * has_destructor);
2522 tmp_sublist = sublist;
2523 last_sublist = NULL;
2524 i = 0;
2525 while (tmp_sublist != NULL)
2526 {
2527 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2528 {
2529 tmp_sublist = tmp_sublist->next;
2530 continue;
2531 }
2532
2533 destr_fnlist->fn_fieldlist.fn_fields[i++]
2534 = tmp_sublist->fn_field;
2535 if (last_sublist)
2536 last_sublist->next = tmp_sublist->next;
2537 else
2538 sublist = tmp_sublist->next;
2539 last_sublist = tmp_sublist;
2540 tmp_sublist = tmp_sublist->next;
2541 }
2542
2543 destr_fnlist->fn_fieldlist.length = has_destructor;
2544 destr_fnlist->next = fip->fnlist;
2545 fip->fnlist = destr_fnlist;
2546 nfn_fields++;
2547 total_length += has_destructor;
2548 length -= has_destructor;
2549 }
2550 else if (is_v3)
2551 {
2552 /* v3 mangling prevents the use of abbreviated physnames,
2553 so we can do this here. There are stubbed methods in v3
2554 only:
2555 - in -gstabs instead of -gstabs+
2556 - or for static methods, which are output as a function type
2557 instead of a method type. */
2558
2559 update_method_name_from_physname (&new_fnlist->fn_fieldlist.name,
2560 sublist->fn_field.physname);
2561 }
2562 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2563 {
2564 new_fnlist->fn_fieldlist.name = concat ("~", main_fn_name, NULL);
2565 xfree (main_fn_name);
2566 }
2567 else if (!has_stub)
2568 {
2569 char dem_opname[256];
2570 int ret;
2571 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2572 dem_opname, DMGL_ANSI);
2573 if (!ret)
2574 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2575 dem_opname, 0);
2576 if (ret)
2577 new_fnlist->fn_fieldlist.name
2578 = obsavestring (dem_opname, strlen (dem_opname),
2579 &objfile->objfile_obstack);
2580 }
2581
2582 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2583 obstack_alloc (&objfile->objfile_obstack,
2584 sizeof (struct fn_field) * length);
2585 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2586 sizeof (struct fn_field) * length);
2587 for (i = length; (i--, sublist); sublist = sublist->next)
2588 {
2589 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2590 }
2591
2592 new_fnlist->fn_fieldlist.length = length;
2593 new_fnlist->next = fip->fnlist;
2594 fip->fnlist = new_fnlist;
2595 nfn_fields++;
2596 total_length += length;
2597 }
2598 }
2599
2600 if (nfn_fields)
2601 {
2602 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2603 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2604 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2605 memset (TYPE_FN_FIELDLISTS (type), 0,
2606 sizeof (struct fn_fieldlist) * nfn_fields);
2607 TYPE_NFN_FIELDS (type) = nfn_fields;
2608 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2609 }
2610
2611 return 1;
2612 }
2613
2614 /* Special GNU C++ name.
2615
2616 Returns 1 for success, 0 for failure. "failure" means that we can't
2617 keep parsing and it's time for error_type(). */
2618
2619 static int
2620 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2621 struct objfile *objfile)
2622 {
2623 char *p;
2624 char *name;
2625 char cpp_abbrev;
2626 struct type *context;
2627
2628 p = *pp;
2629 if (*++p == 'v')
2630 {
2631 name = NULL;
2632 cpp_abbrev = *++p;
2633
2634 *pp = p + 1;
2635
2636 /* At this point, *pp points to something like "22:23=*22...",
2637 where the type number before the ':' is the "context" and
2638 everything after is a regular type definition. Lookup the
2639 type, find it's name, and construct the field name. */
2640
2641 context = read_type (pp, objfile);
2642
2643 switch (cpp_abbrev)
2644 {
2645 case 'f': /* $vf -- a virtual function table pointer */
2646 name = type_name_no_tag (context);
2647 if (name == NULL)
2648 {
2649 name = "";
2650 }
2651 fip->list->field.name =
2652 obconcat (&objfile->objfile_obstack, vptr_name, name, "");
2653 break;
2654
2655 case 'b': /* $vb -- a virtual bsomethingorother */
2656 name = type_name_no_tag (context);
2657 if (name == NULL)
2658 {
2659 complaint (&symfile_complaints,
2660 "C++ abbreviated type name unknown at symtab pos %d",
2661 symnum);
2662 name = "FOO";
2663 }
2664 fip->list->field.name =
2665 obconcat (&objfile->objfile_obstack, vb_name, name, "");
2666 break;
2667
2668 default:
2669 invalid_cpp_abbrev_complaint (*pp);
2670 fip->list->field.name =
2671 obconcat (&objfile->objfile_obstack,
2672 "INVALID_CPLUSPLUS_ABBREV", "", "");
2673 break;
2674 }
2675
2676 /* At this point, *pp points to the ':'. Skip it and read the
2677 field type. */
2678
2679 p = ++(*pp);
2680 if (p[-1] != ':')
2681 {
2682 invalid_cpp_abbrev_complaint (*pp);
2683 return 0;
2684 }
2685 fip->list->field.type = read_type (pp, objfile);
2686 if (**pp == ',')
2687 (*pp)++; /* Skip the comma. */
2688 else
2689 return 0;
2690
2691 {
2692 int nbits;
2693 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits);
2694 if (nbits != 0)
2695 return 0;
2696 }
2697 /* This field is unpacked. */
2698 FIELD_BITSIZE (fip->list->field) = 0;
2699 fip->list->visibility = VISIBILITY_PRIVATE;
2700 }
2701 else
2702 {
2703 invalid_cpp_abbrev_complaint (*pp);
2704 /* We have no idea what syntax an unrecognized abbrev would have, so
2705 better return 0. If we returned 1, we would need to at least advance
2706 *pp to avoid an infinite loop. */
2707 return 0;
2708 }
2709 return 1;
2710 }
2711
2712 static void
2713 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2714 struct type *type, struct objfile *objfile)
2715 {
2716 fip->list->field.name =
2717 obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
2718 *pp = p + 1;
2719
2720 /* This means we have a visibility for a field coming. */
2721 if (**pp == '/')
2722 {
2723 (*pp)++;
2724 fip->list->visibility = *(*pp)++;
2725 }
2726 else
2727 {
2728 /* normal dbx-style format, no explicit visibility */
2729 fip->list->visibility = VISIBILITY_PUBLIC;
2730 }
2731
2732 fip->list->field.type = read_type (pp, objfile);
2733 if (**pp == ':')
2734 {
2735 p = ++(*pp);
2736 #if 0
2737 /* Possible future hook for nested types. */
2738 if (**pp == '!')
2739 {
2740 fip->list->field.bitpos = (long) -2; /* nested type */
2741 p = ++(*pp);
2742 }
2743 else
2744 ...;
2745 #endif
2746 while (*p != ';')
2747 {
2748 p++;
2749 }
2750 /* Static class member. */
2751 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2752 *pp = p + 1;
2753 return;
2754 }
2755 else if (**pp != ',')
2756 {
2757 /* Bad structure-type format. */
2758 stabs_general_complaint ("bad structure-type format");
2759 return;
2760 }
2761
2762 (*pp)++; /* Skip the comma. */
2763
2764 {
2765 int nbits;
2766 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits);
2767 if (nbits != 0)
2768 {
2769 stabs_general_complaint ("bad structure-type format");
2770 return;
2771 }
2772 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits);
2773 if (nbits != 0)
2774 {
2775 stabs_general_complaint ("bad structure-type format");
2776 return;
2777 }
2778 }
2779
2780 if (FIELD_BITPOS (fip->list->field) == 0
2781 && FIELD_BITSIZE (fip->list->field) == 0)
2782 {
2783 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2784 it is a field which has been optimized out. The correct stab for
2785 this case is to use VISIBILITY_IGNORE, but that is a recent
2786 invention. (2) It is a 0-size array. For example
2787 union { int num; char str[0]; } foo. Printing "<no value>" for
2788 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2789 will continue to work, and a 0-size array as a whole doesn't
2790 have any contents to print.
2791
2792 I suspect this probably could also happen with gcc -gstabs (not
2793 -gstabs+) for static fields, and perhaps other C++ extensions.
2794 Hopefully few people use -gstabs with gdb, since it is intended
2795 for dbx compatibility. */
2796
2797 /* Ignore this field. */
2798 fip->list->visibility = VISIBILITY_IGNORE;
2799 }
2800 else
2801 {
2802 /* Detect an unpacked field and mark it as such.
2803 dbx gives a bit size for all fields.
2804 Note that forward refs cannot be packed,
2805 and treat enums as if they had the width of ints. */
2806
2807 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2808
2809 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2810 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2811 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2812 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2813 {
2814 FIELD_BITSIZE (fip->list->field) = 0;
2815 }
2816 if ((FIELD_BITSIZE (fip->list->field)
2817 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2818 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2819 && FIELD_BITSIZE (fip->list->field) == TARGET_INT_BIT)
2820 )
2821 &&
2822 FIELD_BITPOS (fip->list->field) % 8 == 0)
2823 {
2824 FIELD_BITSIZE (fip->list->field) = 0;
2825 }
2826 }
2827 }
2828
2829
2830 /* Read struct or class data fields. They have the form:
2831
2832 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2833
2834 At the end, we see a semicolon instead of a field.
2835
2836 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2837 a static field.
2838
2839 The optional VISIBILITY is one of:
2840
2841 '/0' (VISIBILITY_PRIVATE)
2842 '/1' (VISIBILITY_PROTECTED)
2843 '/2' (VISIBILITY_PUBLIC)
2844 '/9' (VISIBILITY_IGNORE)
2845
2846 or nothing, for C style fields with public visibility.
2847
2848 Returns 1 for success, 0 for failure. */
2849
2850 static int
2851 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2852 struct objfile *objfile)
2853 {
2854 char *p;
2855 struct nextfield *new;
2856
2857 /* We better set p right now, in case there are no fields at all... */
2858
2859 p = *pp;
2860
2861 /* Read each data member type until we find the terminating ';' at the end of
2862 the data member list, or break for some other reason such as finding the
2863 start of the member function list. */
2864 /* Stab string for structure/union does not end with two ';' in
2865 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2866
2867 while (**pp != ';' && **pp != '\0')
2868 {
2869 STABS_CONTINUE (pp, objfile);
2870 /* Get space to record the next field's data. */
2871 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2872 make_cleanup (xfree, new);
2873 memset (new, 0, sizeof (struct nextfield));
2874 new->next = fip->list;
2875 fip->list = new;
2876
2877 /* Get the field name. */
2878 p = *pp;
2879
2880 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2881 unless the CPLUS_MARKER is followed by an underscore, in
2882 which case it is just the name of an anonymous type, which we
2883 should handle like any other type name. */
2884
2885 if (is_cplus_marker (p[0]) && p[1] != '_')
2886 {
2887 if (!read_cpp_abbrev (fip, pp, type, objfile))
2888 return 0;
2889 continue;
2890 }
2891
2892 /* Look for the ':' that separates the field name from the field
2893 values. Data members are delimited by a single ':', while member
2894 functions are delimited by a pair of ':'s. When we hit the member
2895 functions (if any), terminate scan loop and return. */
2896
2897 while (*p != ':' && *p != '\0')
2898 {
2899 p++;
2900 }
2901 if (*p == '\0')
2902 return 0;
2903
2904 /* Check to see if we have hit the member functions yet. */
2905 if (p[1] == ':')
2906 {
2907 break;
2908 }
2909 read_one_struct_field (fip, pp, p, type, objfile);
2910 }
2911 if (p[0] == ':' && p[1] == ':')
2912 {
2913 /* (the deleted) chill the list of fields: the last entry (at
2914 the head) is a partially constructed entry which we now
2915 scrub. */
2916 fip->list = fip->list->next;
2917 }
2918 return 1;
2919 }
2920 /* *INDENT-OFF* */
2921 /* The stabs for C++ derived classes contain baseclass information which
2922 is marked by a '!' character after the total size. This function is
2923 called when we encounter the baseclass marker, and slurps up all the
2924 baseclass information.
2925
2926 Immediately following the '!' marker is the number of base classes that
2927 the class is derived from, followed by information for each base class.
2928 For each base class, there are two visibility specifiers, a bit offset
2929 to the base class information within the derived class, a reference to
2930 the type for the base class, and a terminating semicolon.
2931
2932 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2933 ^^ ^ ^ ^ ^ ^ ^
2934 Baseclass information marker __________________|| | | | | | |
2935 Number of baseclasses __________________________| | | | | | |
2936 Visibility specifiers (2) ________________________| | | | | |
2937 Offset in bits from start of class _________________| | | | |
2938 Type number for base class ___________________________| | | |
2939 Visibility specifiers (2) _______________________________| | |
2940 Offset in bits from start of class ________________________| |
2941 Type number of base class ____________________________________|
2942
2943 Return 1 for success, 0 for (error-type-inducing) failure. */
2944 /* *INDENT-ON* */
2945
2946
2947
2948 static int
2949 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
2950 struct objfile *objfile)
2951 {
2952 int i;
2953 struct nextfield *new;
2954
2955 if (**pp != '!')
2956 {
2957 return 1;
2958 }
2959 else
2960 {
2961 /* Skip the '!' baseclass information marker. */
2962 (*pp)++;
2963 }
2964
2965 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2966 {
2967 int nbits;
2968 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
2969 if (nbits != 0)
2970 return 0;
2971 }
2972
2973 #if 0
2974 /* Some stupid compilers have trouble with the following, so break
2975 it up into simpler expressions. */
2976 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2977 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
2978 #else
2979 {
2980 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
2981 char *pointer;
2982
2983 pointer = (char *) TYPE_ALLOC (type, num_bytes);
2984 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
2985 }
2986 #endif /* 0 */
2987
2988 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
2989
2990 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
2991 {
2992 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2993 make_cleanup (xfree, new);
2994 memset (new, 0, sizeof (struct nextfield));
2995 new->next = fip->list;
2996 fip->list = new;
2997 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
2998
2999 STABS_CONTINUE (pp, objfile);
3000 switch (**pp)
3001 {
3002 case '0':
3003 /* Nothing to do. */
3004 break;
3005 case '1':
3006 SET_TYPE_FIELD_VIRTUAL (type, i);
3007 break;
3008 default:
3009 /* Unknown character. Complain and treat it as non-virtual. */
3010 {
3011 complaint (&symfile_complaints,
3012 "Unknown virtual character `%c' for baseclass", **pp);
3013 }
3014 }
3015 ++(*pp);
3016
3017 new->visibility = *(*pp)++;
3018 switch (new->visibility)
3019 {
3020 case VISIBILITY_PRIVATE:
3021 case VISIBILITY_PROTECTED:
3022 case VISIBILITY_PUBLIC:
3023 break;
3024 default:
3025 /* Bad visibility format. Complain and treat it as
3026 public. */
3027 {
3028 complaint (&symfile_complaints,
3029 "Unknown visibility `%c' for baseclass",
3030 new->visibility);
3031 new->visibility = VISIBILITY_PUBLIC;
3032 }
3033 }
3034
3035 {
3036 int nbits;
3037
3038 /* The remaining value is the bit offset of the portion of the object
3039 corresponding to this baseclass. Always zero in the absence of
3040 multiple inheritance. */
3041
3042 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits);
3043 if (nbits != 0)
3044 return 0;
3045 }
3046
3047 /* The last piece of baseclass information is the type of the
3048 base class. Read it, and remember it's type name as this
3049 field's name. */
3050
3051 new->field.type = read_type (pp, objfile);
3052 new->field.name = type_name_no_tag (new->field.type);
3053
3054 /* skip trailing ';' and bump count of number of fields seen */
3055 if (**pp == ';')
3056 (*pp)++;
3057 else
3058 return 0;
3059 }
3060 return 1;
3061 }
3062
3063 /* The tail end of stabs for C++ classes that contain a virtual function
3064 pointer contains a tilde, a %, and a type number.
3065 The type number refers to the base class (possibly this class itself) which
3066 contains the vtable pointer for the current class.
3067
3068 This function is called when we have parsed all the method declarations,
3069 so we can look for the vptr base class info. */
3070
3071 static int
3072 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3073 struct objfile *objfile)
3074 {
3075 char *p;
3076
3077 STABS_CONTINUE (pp, objfile);
3078
3079 /* If we are positioned at a ';', then skip it. */
3080 if (**pp == ';')
3081 {
3082 (*pp)++;
3083 }
3084
3085 if (**pp == '~')
3086 {
3087 (*pp)++;
3088
3089 if (**pp == '=' || **pp == '+' || **pp == '-')
3090 {
3091 /* Obsolete flags that used to indicate the presence
3092 of constructors and/or destructors. */
3093 (*pp)++;
3094 }
3095
3096 /* Read either a '%' or the final ';'. */
3097 if (*(*pp)++ == '%')
3098 {
3099 /* The next number is the type number of the base class
3100 (possibly our own class) which supplies the vtable for
3101 this class. Parse it out, and search that class to find
3102 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3103 and TYPE_VPTR_FIELDNO. */
3104
3105 struct type *t;
3106 int i;
3107
3108 t = read_type (pp, objfile);
3109 p = (*pp)++;
3110 while (*p != '\0' && *p != ';')
3111 {
3112 p++;
3113 }
3114 if (*p == '\0')
3115 {
3116 /* Premature end of symbol. */
3117 return 0;
3118 }
3119
3120 TYPE_VPTR_BASETYPE (type) = t;
3121 if (type == t) /* Our own class provides vtbl ptr */
3122 {
3123 for (i = TYPE_NFIELDS (t) - 1;
3124 i >= TYPE_N_BASECLASSES (t);
3125 --i)
3126 {
3127 char *name = TYPE_FIELD_NAME (t, i);
3128 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3129 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3130 {
3131 TYPE_VPTR_FIELDNO (type) = i;
3132 goto gotit;
3133 }
3134 }
3135 /* Virtual function table field not found. */
3136 complaint (&symfile_complaints,
3137 "virtual function table pointer not found when defining class `%s'",
3138 TYPE_NAME (type));
3139 return 0;
3140 }
3141 else
3142 {
3143 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3144 }
3145
3146 gotit:
3147 *pp = p + 1;
3148 }
3149 }
3150 return 1;
3151 }
3152
3153 static int
3154 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3155 {
3156 int n;
3157
3158 for (n = TYPE_NFN_FIELDS (type);
3159 fip->fnlist != NULL;
3160 fip->fnlist = fip->fnlist->next)
3161 {
3162 --n; /* Circumvent Sun3 compiler bug */
3163 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3164 }
3165 return 1;
3166 }
3167
3168 /* Create the vector of fields, and record how big it is.
3169 We need this info to record proper virtual function table information
3170 for this class's virtual functions. */
3171
3172 static int
3173 attach_fields_to_type (struct field_info *fip, struct type *type,
3174 struct objfile *objfile)
3175 {
3176 int nfields = 0;
3177 int non_public_fields = 0;
3178 struct nextfield *scan;
3179
3180 /* Count up the number of fields that we have, as well as taking note of
3181 whether or not there are any non-public fields, which requires us to
3182 allocate and build the private_field_bits and protected_field_bits
3183 bitfields. */
3184
3185 for (scan = fip->list; scan != NULL; scan = scan->next)
3186 {
3187 nfields++;
3188 if (scan->visibility != VISIBILITY_PUBLIC)
3189 {
3190 non_public_fields++;
3191 }
3192 }
3193
3194 /* Now we know how many fields there are, and whether or not there are any
3195 non-public fields. Record the field count, allocate space for the
3196 array of fields, and create blank visibility bitfields if necessary. */
3197
3198 TYPE_NFIELDS (type) = nfields;
3199 TYPE_FIELDS (type) = (struct field *)
3200 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3201 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3202
3203 if (non_public_fields)
3204 {
3205 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3206
3207 TYPE_FIELD_PRIVATE_BITS (type) =
3208 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3209 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3210
3211 TYPE_FIELD_PROTECTED_BITS (type) =
3212 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3213 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3214
3215 TYPE_FIELD_IGNORE_BITS (type) =
3216 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3217 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3218 }
3219
3220 /* Copy the saved-up fields into the field vector. Start from the head
3221 of the list, adding to the tail of the field array, so that they end
3222 up in the same order in the array in which they were added to the list. */
3223
3224 while (nfields-- > 0)
3225 {
3226 TYPE_FIELD (type, nfields) = fip->list->field;
3227 switch (fip->list->visibility)
3228 {
3229 case VISIBILITY_PRIVATE:
3230 SET_TYPE_FIELD_PRIVATE (type, nfields);
3231 break;
3232
3233 case VISIBILITY_PROTECTED:
3234 SET_TYPE_FIELD_PROTECTED (type, nfields);
3235 break;
3236
3237 case VISIBILITY_IGNORE:
3238 SET_TYPE_FIELD_IGNORE (type, nfields);
3239 break;
3240
3241 case VISIBILITY_PUBLIC:
3242 break;
3243
3244 default:
3245 /* Unknown visibility. Complain and treat it as public. */
3246 {
3247 complaint (&symfile_complaints, "Unknown visibility `%c' for field",
3248 fip->list->visibility);
3249 }
3250 break;
3251 }
3252 fip->list = fip->list->next;
3253 }
3254 return 1;
3255 }
3256
3257
3258 /* Complain that the compiler has emitted more than one definition for the
3259 structure type TYPE. */
3260 static void
3261 complain_about_struct_wipeout (struct type *type)
3262 {
3263 char *name = "";
3264 char *kind = "";
3265
3266 if (TYPE_TAG_NAME (type))
3267 {
3268 name = TYPE_TAG_NAME (type);
3269 switch (TYPE_CODE (type))
3270 {
3271 case TYPE_CODE_STRUCT: kind = "struct "; break;
3272 case TYPE_CODE_UNION: kind = "union "; break;
3273 case TYPE_CODE_ENUM: kind = "enum "; break;
3274 default: kind = "";
3275 }
3276 }
3277 else if (TYPE_NAME (type))
3278 {
3279 name = TYPE_NAME (type);
3280 kind = "";
3281 }
3282 else
3283 {
3284 name = "<unknown>";
3285 kind = "";
3286 }
3287
3288 complaint (&symfile_complaints,
3289 "struct/union type gets multiply defined: %s%s", kind, name);
3290 }
3291
3292
3293 /* Read the description of a structure (or union type) and return an object
3294 describing the type.
3295
3296 PP points to a character pointer that points to the next unconsumed token
3297 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3298 *PP will point to "4a:1,0,32;;".
3299
3300 TYPE points to an incomplete type that needs to be filled in.
3301
3302 OBJFILE points to the current objfile from which the stabs information is
3303 being read. (Note that it is redundant in that TYPE also contains a pointer
3304 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3305 */
3306
3307 static struct type *
3308 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3309 struct objfile *objfile)
3310 {
3311 struct cleanup *back_to;
3312 struct field_info fi;
3313
3314 fi.list = NULL;
3315 fi.fnlist = NULL;
3316
3317 /* When describing struct/union/class types in stabs, G++ always drops
3318 all qualifications from the name. So if you've got:
3319 struct A { ... struct B { ... }; ... };
3320 then G++ will emit stabs for `struct A::B' that call it simply
3321 `struct B'. Obviously, if you've got a real top-level definition for
3322 `struct B', or other nested definitions, this is going to cause
3323 problems.
3324
3325 Obviously, GDB can't fix this by itself, but it can at least avoid
3326 scribbling on existing structure type objects when new definitions
3327 appear. */
3328 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3329 || TYPE_STUB (type)))
3330 {
3331 complain_about_struct_wipeout (type);
3332
3333 /* It's probably best to return the type unchanged. */
3334 return type;
3335 }
3336
3337 back_to = make_cleanup (null_cleanup, 0);
3338
3339 INIT_CPLUS_SPECIFIC (type);
3340 TYPE_CODE (type) = type_code;
3341 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3342
3343 /* First comes the total size in bytes. */
3344
3345 {
3346 int nbits;
3347 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
3348 if (nbits != 0)
3349 return error_type (pp, objfile);
3350 }
3351
3352 /* Now read the baseclasses, if any, read the regular C struct or C++
3353 class member fields, attach the fields to the type, read the C++
3354 member functions, attach them to the type, and then read any tilde
3355 field (baseclass specifier for the class holding the main vtable). */
3356
3357 if (!read_baseclasses (&fi, pp, type, objfile)
3358 || !read_struct_fields (&fi, pp, type, objfile)
3359 || !attach_fields_to_type (&fi, type, objfile)
3360 || !read_member_functions (&fi, pp, type, objfile)
3361 || !attach_fn_fields_to_type (&fi, type)
3362 || !read_tilde_fields (&fi, pp, type, objfile))
3363 {
3364 type = error_type (pp, objfile);
3365 }
3366
3367 do_cleanups (back_to);
3368 return (type);
3369 }
3370
3371 /* Read a definition of an array type,
3372 and create and return a suitable type object.
3373 Also creates a range type which represents the bounds of that
3374 array. */
3375
3376 static struct type *
3377 read_array_type (char **pp, struct type *type,
3378 struct objfile *objfile)
3379 {
3380 struct type *index_type, *element_type, *range_type;
3381 int lower, upper;
3382 int adjustable = 0;
3383 int nbits;
3384
3385 /* Format of an array type:
3386 "ar<index type>;lower;upper;<array_contents_type>".
3387 OS9000: "arlower,upper;<array_contents_type>".
3388
3389 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3390 for these, produce a type like float[][]. */
3391
3392 {
3393 index_type = read_type (pp, objfile);
3394 if (**pp != ';')
3395 /* Improper format of array type decl. */
3396 return error_type (pp, objfile);
3397 ++*pp;
3398 }
3399
3400 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3401 {
3402 (*pp)++;
3403 adjustable = 1;
3404 }
3405 lower = read_huge_number (pp, ';', &nbits);
3406
3407 if (nbits != 0)
3408 return error_type (pp, objfile);
3409
3410 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3411 {
3412 (*pp)++;
3413 adjustable = 1;
3414 }
3415 upper = read_huge_number (pp, ';', &nbits);
3416 if (nbits != 0)
3417 return error_type (pp, objfile);
3418
3419 element_type = read_type (pp, objfile);
3420
3421 if (adjustable)
3422 {
3423 lower = 0;
3424 upper = -1;
3425 }
3426
3427 range_type =
3428 create_range_type ((struct type *) NULL, index_type, lower, upper);
3429 type = create_array_type (type, element_type, range_type);
3430
3431 return type;
3432 }
3433
3434
3435 /* Read a definition of an enumeration type,
3436 and create and return a suitable type object.
3437 Also defines the symbols that represent the values of the type. */
3438
3439 static struct type *
3440 read_enum_type (char **pp, struct type *type,
3441 struct objfile *objfile)
3442 {
3443 char *p;
3444 char *name;
3445 long n;
3446 struct symbol *sym;
3447 int nsyms = 0;
3448 struct pending **symlist;
3449 struct pending *osyms, *syms;
3450 int o_nsyms;
3451 int nbits;
3452 int unsigned_enum = 1;
3453
3454 #if 0
3455 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3456 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3457 to do? For now, force all enum values to file scope. */
3458 if (within_function)
3459 symlist = &local_symbols;
3460 else
3461 #endif
3462 symlist = &file_symbols;
3463 osyms = *symlist;
3464 o_nsyms = osyms ? osyms->nsyms : 0;
3465
3466 /* The aix4 compiler emits an extra field before the enum members;
3467 my guess is it's a type of some sort. Just ignore it. */
3468 if (**pp == '-')
3469 {
3470 /* Skip over the type. */
3471 while (**pp != ':')
3472 (*pp)++;
3473
3474 /* Skip over the colon. */
3475 (*pp)++;
3476 }
3477
3478 /* Read the value-names and their values.
3479 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3480 A semicolon or comma instead of a NAME means the end. */
3481 while (**pp && **pp != ';' && **pp != ',')
3482 {
3483 STABS_CONTINUE (pp, objfile);
3484 p = *pp;
3485 while (*p != ':')
3486 p++;
3487 name = obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
3488 *pp = p + 1;
3489 n = read_huge_number (pp, ',', &nbits);
3490 if (nbits != 0)
3491 return error_type (pp, objfile);
3492
3493 sym = (struct symbol *)
3494 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3495 memset (sym, 0, sizeof (struct symbol));
3496 DEPRECATED_SYMBOL_NAME (sym) = name;
3497 SYMBOL_LANGUAGE (sym) = current_subfile->language;
3498 SYMBOL_CLASS (sym) = LOC_CONST;
3499 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3500 SYMBOL_VALUE (sym) = n;
3501 if (n < 0)
3502 unsigned_enum = 0;
3503 add_symbol_to_list (sym, symlist);
3504 nsyms++;
3505 }
3506
3507 if (**pp == ';')
3508 (*pp)++; /* Skip the semicolon. */
3509
3510 /* Now fill in the fields of the type-structure. */
3511
3512 TYPE_LENGTH (type) = TARGET_INT_BIT / HOST_CHAR_BIT;
3513 TYPE_CODE (type) = TYPE_CODE_ENUM;
3514 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3515 if (unsigned_enum)
3516 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
3517 TYPE_NFIELDS (type) = nsyms;
3518 TYPE_FIELDS (type) = (struct field *)
3519 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3520 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3521
3522 /* Find the symbols for the values and put them into the type.
3523 The symbols can be found in the symlist that we put them on
3524 to cause them to be defined. osyms contains the old value
3525 of that symlist; everything up to there was defined by us. */
3526 /* Note that we preserve the order of the enum constants, so
3527 that in something like "enum {FOO, LAST_THING=FOO}" we print
3528 FOO, not LAST_THING. */
3529
3530 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3531 {
3532 int last = syms == osyms ? o_nsyms : 0;
3533 int j = syms->nsyms;
3534 for (; --j >= last; --n)
3535 {
3536 struct symbol *xsym = syms->symbol[j];
3537 SYMBOL_TYPE (xsym) = type;
3538 TYPE_FIELD_NAME (type, n) = DEPRECATED_SYMBOL_NAME (xsym);
3539 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3540 TYPE_FIELD_BITSIZE (type, n) = 0;
3541 }
3542 if (syms == osyms)
3543 break;
3544 }
3545
3546 return type;
3547 }
3548
3549 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3550 typedefs in every file (for int, long, etc):
3551
3552 type = b <signed> <width> <format type>; <offset>; <nbits>
3553 signed = u or s.
3554 optional format type = c or b for char or boolean.
3555 offset = offset from high order bit to start bit of type.
3556 width is # bytes in object of this type, nbits is # bits in type.
3557
3558 The width/offset stuff appears to be for small objects stored in
3559 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3560 FIXME. */
3561
3562 static struct type *
3563 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3564 {
3565 int type_bits;
3566 int nbits;
3567 int signed_type;
3568 enum type_code code = TYPE_CODE_INT;
3569
3570 switch (**pp)
3571 {
3572 case 's':
3573 signed_type = 1;
3574 break;
3575 case 'u':
3576 signed_type = 0;
3577 break;
3578 default:
3579 return error_type (pp, objfile);
3580 }
3581 (*pp)++;
3582
3583 /* For some odd reason, all forms of char put a c here. This is strange
3584 because no other type has this honor. We can safely ignore this because
3585 we actually determine 'char'acterness by the number of bits specified in
3586 the descriptor.
3587 Boolean forms, e.g Fortran logical*X, put a b here. */
3588
3589 if (**pp == 'c')
3590 (*pp)++;
3591 else if (**pp == 'b')
3592 {
3593 code = TYPE_CODE_BOOL;
3594 (*pp)++;
3595 }
3596
3597 /* The first number appears to be the number of bytes occupied
3598 by this type, except that unsigned short is 4 instead of 2.
3599 Since this information is redundant with the third number,
3600 we will ignore it. */
3601 read_huge_number (pp, ';', &nbits);
3602 if (nbits != 0)
3603 return error_type (pp, objfile);
3604
3605 /* The second number is always 0, so ignore it too. */
3606 read_huge_number (pp, ';', &nbits);
3607 if (nbits != 0)
3608 return error_type (pp, objfile);
3609
3610 /* The third number is the number of bits for this type. */
3611 type_bits = read_huge_number (pp, 0, &nbits);
3612 if (nbits != 0)
3613 return error_type (pp, objfile);
3614 /* The type *should* end with a semicolon. If it are embedded
3615 in a larger type the semicolon may be the only way to know where
3616 the type ends. If this type is at the end of the stabstring we
3617 can deal with the omitted semicolon (but we don't have to like
3618 it). Don't bother to complain(), Sun's compiler omits the semicolon
3619 for "void". */
3620 if (**pp == ';')
3621 ++(*pp);
3622
3623 if (type_bits == 0)
3624 return init_type (TYPE_CODE_VOID, 1,
3625 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3626 objfile);
3627 else
3628 return init_type (code,
3629 type_bits / TARGET_CHAR_BIT,
3630 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3631 objfile);
3632 }
3633
3634 static struct type *
3635 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3636 {
3637 int nbits;
3638 int details;
3639 int nbytes;
3640 struct type *rettype;
3641
3642 /* The first number has more details about the type, for example
3643 FN_COMPLEX. */
3644 details = read_huge_number (pp, ';', &nbits);
3645 if (nbits != 0)
3646 return error_type (pp, objfile);
3647
3648 /* The second number is the number of bytes occupied by this type */
3649 nbytes = read_huge_number (pp, ';', &nbits);
3650 if (nbits != 0)
3651 return error_type (pp, objfile);
3652
3653 if (details == NF_COMPLEX || details == NF_COMPLEX16
3654 || details == NF_COMPLEX32)
3655 {
3656 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3657 TYPE_TARGET_TYPE (rettype)
3658 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3659 return rettype;
3660 }
3661
3662 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3663 }
3664
3665 /* Read a number from the string pointed to by *PP.
3666 The value of *PP is advanced over the number.
3667 If END is nonzero, the character that ends the
3668 number must match END, or an error happens;
3669 and that character is skipped if it does match.
3670 If END is zero, *PP is left pointing to that character.
3671
3672 If the number fits in a long, set *BITS to 0 and return the value.
3673 If not, set *BITS to be the number of bits in the number and return 0.
3674
3675 If encounter garbage, set *BITS to -1 and return 0. */
3676
3677 static long
3678 read_huge_number (char **pp, int end, int *bits)
3679 {
3680 char *p = *pp;
3681 int sign = 1;
3682 long n = 0;
3683 int radix = 10;
3684 char overflow = 0;
3685 int nbits = 0;
3686 int c;
3687 long upper_limit;
3688
3689 if (*p == '-')
3690 {
3691 sign = -1;
3692 p++;
3693 }
3694
3695 /* Leading zero means octal. GCC uses this to output values larger
3696 than an int (because that would be hard in decimal). */
3697 if (*p == '0')
3698 {
3699 radix = 8;
3700 p++;
3701 }
3702
3703 upper_limit = LONG_MAX / radix;
3704
3705 while ((c = *p++) >= '0' && c < ('0' + radix))
3706 {
3707 if (n <= upper_limit)
3708 {
3709 n *= radix;
3710 n += c - '0'; /* FIXME this overflows anyway */
3711 }
3712 else
3713 overflow = 1;
3714
3715 /* This depends on large values being output in octal, which is
3716 what GCC does. */
3717 if (radix == 8)
3718 {
3719 if (nbits == 0)
3720 {
3721 if (c == '0')
3722 /* Ignore leading zeroes. */
3723 ;
3724 else if (c == '1')
3725 nbits = 1;
3726 else if (c == '2' || c == '3')
3727 nbits = 2;
3728 else
3729 nbits = 3;
3730 }
3731 else
3732 nbits += 3;
3733 }
3734 }
3735 if (end)
3736 {
3737 if (c && c != end)
3738 {
3739 if (bits != NULL)
3740 *bits = -1;
3741 return 0;
3742 }
3743 }
3744 else
3745 --p;
3746
3747 *pp = p;
3748 if (overflow)
3749 {
3750 if (nbits == 0)
3751 {
3752 /* Large decimal constants are an error (because it is hard to
3753 count how many bits are in them). */
3754 if (bits != NULL)
3755 *bits = -1;
3756 return 0;
3757 }
3758
3759 /* -0x7f is the same as 0x80. So deal with it by adding one to
3760 the number of bits. */
3761 if (sign == -1)
3762 ++nbits;
3763 if (bits)
3764 *bits = nbits;
3765 }
3766 else
3767 {
3768 if (bits)
3769 *bits = 0;
3770 return n * sign;
3771 }
3772 /* It's *BITS which has the interesting information. */
3773 return 0;
3774 }
3775
3776 static struct type *
3777 read_range_type (char **pp, int typenums[2], struct objfile *objfile)
3778 {
3779 char *orig_pp = *pp;
3780 int rangenums[2];
3781 long n2, n3;
3782 int n2bits, n3bits;
3783 int self_subrange;
3784 struct type *result_type;
3785 struct type *index_type = NULL;
3786
3787 /* First comes a type we are a subrange of.
3788 In C it is usually 0, 1 or the type being defined. */
3789 if (read_type_number (pp, rangenums) != 0)
3790 return error_type (pp, objfile);
3791 self_subrange = (rangenums[0] == typenums[0] &&
3792 rangenums[1] == typenums[1]);
3793
3794 if (**pp == '=')
3795 {
3796 *pp = orig_pp;
3797 index_type = read_type (pp, objfile);
3798 }
3799
3800 /* A semicolon should now follow; skip it. */
3801 if (**pp == ';')
3802 (*pp)++;
3803
3804 /* The remaining two operands are usually lower and upper bounds
3805 of the range. But in some special cases they mean something else. */
3806 n2 = read_huge_number (pp, ';', &n2bits);
3807 n3 = read_huge_number (pp, ';', &n3bits);
3808
3809 if (n2bits == -1 || n3bits == -1)
3810 return error_type (pp, objfile);
3811
3812 if (index_type)
3813 goto handle_true_range;
3814
3815 /* If limits are huge, must be large integral type. */
3816 if (n2bits != 0 || n3bits != 0)
3817 {
3818 char got_signed = 0;
3819 char got_unsigned = 0;
3820 /* Number of bits in the type. */
3821 int nbits = 0;
3822
3823 /* Range from 0 to <large number> is an unsigned large integral type. */
3824 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3825 {
3826 got_unsigned = 1;
3827 nbits = n3bits;
3828 }
3829 /* Range from <large number> to <large number>-1 is a large signed
3830 integral type. Take care of the case where <large number> doesn't
3831 fit in a long but <large number>-1 does. */
3832 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3833 || (n2bits != 0 && n3bits == 0
3834 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3835 && n3 == LONG_MAX))
3836 {
3837 got_signed = 1;
3838 nbits = n2bits;
3839 }
3840
3841 if (got_signed || got_unsigned)
3842 {
3843 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3844 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3845 objfile);
3846 }
3847 else
3848 return error_type (pp, objfile);
3849 }
3850
3851 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3852 if (self_subrange && n2 == 0 && n3 == 0)
3853 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
3854
3855 /* If n3 is zero and n2 is positive, we want a floating type, and n2
3856 is the width in bytes.
3857
3858 Fortran programs appear to use this for complex types also. To
3859 distinguish between floats and complex, g77 (and others?) seem
3860 to use self-subranges for the complexes, and subranges of int for
3861 the floats.
3862
3863 Also note that for complexes, g77 sets n2 to the size of one of
3864 the member floats, not the whole complex beast. My guess is that
3865 this was to work well with pre-COMPLEX versions of gdb. */
3866
3867 if (n3 == 0 && n2 > 0)
3868 {
3869 struct type *float_type
3870 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3871
3872 if (self_subrange)
3873 {
3874 struct type *complex_type =
3875 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
3876 TYPE_TARGET_TYPE (complex_type) = float_type;
3877 return complex_type;
3878 }
3879 else
3880 return float_type;
3881 }
3882
3883 /* If the upper bound is -1, it must really be an unsigned int. */
3884
3885 else if (n2 == 0 && n3 == -1)
3886 {
3887 /* It is unsigned int or unsigned long. */
3888 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
3889 compatibility hack. */
3890 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3891 TYPE_FLAG_UNSIGNED, NULL, objfile);
3892 }
3893
3894 /* Special case: char is defined (Who knows why) as a subrange of
3895 itself with range 0-127. */
3896 else if (self_subrange && n2 == 0 && n3 == 127)
3897 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
3898
3899 /* We used to do this only for subrange of self or subrange of int. */
3900 else if (n2 == 0)
3901 {
3902 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3903 "unsigned long", and we already checked for that,
3904 so don't need to test for it here. */
3905
3906 if (n3 < 0)
3907 /* n3 actually gives the size. */
3908 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
3909 NULL, objfile);
3910
3911 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
3912 unsigned n-byte integer. But do require n to be a power of
3913 two; we don't want 3- and 5-byte integers flying around. */
3914 {
3915 int bytes;
3916 unsigned long bits;
3917
3918 bits = n3;
3919 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
3920 bits >>= 8;
3921 if (bits == 0
3922 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
3923 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
3924 objfile);
3925 }
3926 }
3927 /* I think this is for Convex "long long". Since I don't know whether
3928 Convex sets self_subrange, I also accept that particular size regardless
3929 of self_subrange. */
3930 else if (n3 == 0 && n2 < 0
3931 && (self_subrange
3932 || n2 == -TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
3933 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
3934 else if (n2 == -n3 - 1)
3935 {
3936 if (n3 == 0x7f)
3937 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3938 if (n3 == 0x7fff)
3939 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
3940 if (n3 == 0x7fffffff)
3941 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
3942 }
3943
3944 /* We have a real range type on our hands. Allocate space and
3945 return a real pointer. */
3946 handle_true_range:
3947
3948 if (self_subrange)
3949 index_type = builtin_type_int;
3950 else
3951 index_type = *dbx_lookup_type (rangenums);
3952 if (index_type == NULL)
3953 {
3954 /* Does this actually ever happen? Is that why we are worrying
3955 about dealing with it rather than just calling error_type? */
3956
3957 static struct type *range_type_index;
3958
3959 complaint (&symfile_complaints,
3960 "base type %d of range type is not defined", rangenums[1]);
3961 if (range_type_index == NULL)
3962 range_type_index =
3963 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3964 0, "range type index type", NULL);
3965 index_type = range_type_index;
3966 }
3967
3968 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
3969 return (result_type);
3970 }
3971
3972 /* Read in an argument list. This is a list of types, separated by commas
3973 and terminated with END. Return the list of types read in, or (struct type
3974 **)-1 if there is an error. */
3975
3976 static struct field *
3977 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
3978 int *varargsp)
3979 {
3980 /* FIXME! Remove this arbitrary limit! */
3981 struct type *types[1024]; /* allow for fns of 1023 parameters */
3982 int n = 0, i;
3983 struct field *rval;
3984
3985 while (**pp != end)
3986 {
3987 if (**pp != ',')
3988 /* Invalid argument list: no ','. */
3989 return (struct field *) -1;
3990 (*pp)++;
3991 STABS_CONTINUE (pp, objfile);
3992 types[n++] = read_type (pp, objfile);
3993 }
3994 (*pp)++; /* get past `end' (the ':' character) */
3995
3996 if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
3997 *varargsp = 1;
3998 else
3999 {
4000 n--;
4001 *varargsp = 0;
4002 }
4003
4004 rval = (struct field *) xmalloc (n * sizeof (struct field));
4005 memset (rval, 0, n * sizeof (struct field));
4006 for (i = 0; i < n; i++)
4007 rval[i].type = types[i];
4008 *nargsp = n;
4009 return rval;
4010 }
4011 \f
4012 /* Common block handling. */
4013
4014 /* List of symbols declared since the last BCOMM. This list is a tail
4015 of local_symbols. When ECOMM is seen, the symbols on the list
4016 are noted so their proper addresses can be filled in later,
4017 using the common block base address gotten from the assembler
4018 stabs. */
4019
4020 static struct pending *common_block;
4021 static int common_block_i;
4022
4023 /* Name of the current common block. We get it from the BCOMM instead of the
4024 ECOMM to match IBM documentation (even though IBM puts the name both places
4025 like everyone else). */
4026 static char *common_block_name;
4027
4028 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4029 to remain after this function returns. */
4030
4031 void
4032 common_block_start (char *name, struct objfile *objfile)
4033 {
4034 if (common_block_name != NULL)
4035 {
4036 complaint (&symfile_complaints,
4037 "Invalid symbol data: common block within common block");
4038 }
4039 common_block = local_symbols;
4040 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4041 common_block_name = obsavestring (name, strlen (name),
4042 &objfile->objfile_obstack);
4043 }
4044
4045 /* Process a N_ECOMM symbol. */
4046
4047 void
4048 common_block_end (struct objfile *objfile)
4049 {
4050 /* Symbols declared since the BCOMM are to have the common block
4051 start address added in when we know it. common_block and
4052 common_block_i point to the first symbol after the BCOMM in
4053 the local_symbols list; copy the list and hang it off the
4054 symbol for the common block name for later fixup. */
4055 int i;
4056 struct symbol *sym;
4057 struct pending *new = 0;
4058 struct pending *next;
4059 int j;
4060
4061 if (common_block_name == NULL)
4062 {
4063 complaint (&symfile_complaints, "ECOMM symbol unmatched by BCOMM");
4064 return;
4065 }
4066
4067 sym = (struct symbol *)
4068 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
4069 memset (sym, 0, sizeof (struct symbol));
4070 /* Note: common_block_name already saved on objfile_obstack */
4071 DEPRECATED_SYMBOL_NAME (sym) = common_block_name;
4072 SYMBOL_CLASS (sym) = LOC_BLOCK;
4073
4074 /* Now we copy all the symbols which have been defined since the BCOMM. */
4075
4076 /* Copy all the struct pendings before common_block. */
4077 for (next = local_symbols;
4078 next != NULL && next != common_block;
4079 next = next->next)
4080 {
4081 for (j = 0; j < next->nsyms; j++)
4082 add_symbol_to_list (next->symbol[j], &new);
4083 }
4084
4085 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4086 NULL, it means copy all the local symbols (which we already did
4087 above). */
4088
4089 if (common_block != NULL)
4090 for (j = common_block_i; j < common_block->nsyms; j++)
4091 add_symbol_to_list (common_block->symbol[j], &new);
4092
4093 SYMBOL_TYPE (sym) = (struct type *) new;
4094
4095 /* Should we be putting local_symbols back to what it was?
4096 Does it matter? */
4097
4098 i = hashname (DEPRECATED_SYMBOL_NAME (sym));
4099 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4100 global_sym_chain[i] = sym;
4101 common_block_name = NULL;
4102 }
4103
4104 /* Add a common block's start address to the offset of each symbol
4105 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4106 the common block name). */
4107
4108 static void
4109 fix_common_block (struct symbol *sym, int valu)
4110 {
4111 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4112 for (; next; next = next->next)
4113 {
4114 int j;
4115 for (j = next->nsyms - 1; j >= 0; j--)
4116 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4117 }
4118 }
4119 \f
4120
4121
4122 /* What about types defined as forward references inside of a small lexical
4123 scope? */
4124 /* Add a type to the list of undefined types to be checked through
4125 once this file has been read in. */
4126
4127 static void
4128 add_undefined_type (struct type *type)
4129 {
4130 if (undef_types_length == undef_types_allocated)
4131 {
4132 undef_types_allocated *= 2;
4133 undef_types = (struct type **)
4134 xrealloc ((char *) undef_types,
4135 undef_types_allocated * sizeof (struct type *));
4136 }
4137 undef_types[undef_types_length++] = type;
4138 }
4139
4140 /* Go through each undefined type, see if it's still undefined, and fix it
4141 up if possible. We have two kinds of undefined types:
4142
4143 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4144 Fix: update array length using the element bounds
4145 and the target type's length.
4146 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4147 yet defined at the time a pointer to it was made.
4148 Fix: Do a full lookup on the struct/union tag. */
4149 void
4150 cleanup_undefined_types (void)
4151 {
4152 struct type **type;
4153
4154 for (type = undef_types; type < undef_types + undef_types_length; type++)
4155 {
4156 switch (TYPE_CODE (*type))
4157 {
4158
4159 case TYPE_CODE_STRUCT:
4160 case TYPE_CODE_UNION:
4161 case TYPE_CODE_ENUM:
4162 {
4163 /* Check if it has been defined since. Need to do this here
4164 as well as in check_typedef to deal with the (legitimate in
4165 C though not C++) case of several types with the same name
4166 in different source files. */
4167 if (TYPE_STUB (*type))
4168 {
4169 struct pending *ppt;
4170 int i;
4171 /* Name of the type, without "struct" or "union" */
4172 char *typename = TYPE_TAG_NAME (*type);
4173
4174 if (typename == NULL)
4175 {
4176 complaint (&symfile_complaints, "need a type name");
4177 break;
4178 }
4179 for (ppt = file_symbols; ppt; ppt = ppt->next)
4180 {
4181 for (i = 0; i < ppt->nsyms; i++)
4182 {
4183 struct symbol *sym = ppt->symbol[i];
4184
4185 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4186 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4187 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4188 TYPE_CODE (*type))
4189 && strcmp (DEPRECATED_SYMBOL_NAME (sym), typename) == 0)
4190 replace_type (*type, SYMBOL_TYPE (sym));
4191 }
4192 }
4193 }
4194 }
4195 break;
4196
4197 default:
4198 {
4199 complaint (&symfile_complaints,
4200 "GDB internal error. cleanup_undefined_types with bad type %d.",
4201 TYPE_CODE (*type));
4202 }
4203 break;
4204 }
4205 }
4206
4207 undef_types_length = 0;
4208 }
4209
4210 /* Scan through all of the global symbols defined in the object file,
4211 assigning values to the debugging symbols that need to be assigned
4212 to. Get these symbols from the minimal symbol table. */
4213
4214 void
4215 scan_file_globals (struct objfile *objfile)
4216 {
4217 int hash;
4218 struct minimal_symbol *msymbol;
4219 struct symbol *sym, *prev;
4220 struct objfile *resolve_objfile;
4221
4222 /* SVR4 based linkers copy referenced global symbols from shared
4223 libraries to the main executable.
4224 If we are scanning the symbols for a shared library, try to resolve
4225 them from the minimal symbols of the main executable first. */
4226
4227 if (symfile_objfile && objfile != symfile_objfile)
4228 resolve_objfile = symfile_objfile;
4229 else
4230 resolve_objfile = objfile;
4231
4232 while (1)
4233 {
4234 /* Avoid expensive loop through all minimal symbols if there are
4235 no unresolved symbols. */
4236 for (hash = 0; hash < HASHSIZE; hash++)
4237 {
4238 if (global_sym_chain[hash])
4239 break;
4240 }
4241 if (hash >= HASHSIZE)
4242 return;
4243
4244 for (msymbol = resolve_objfile->msymbols;
4245 msymbol && DEPRECATED_SYMBOL_NAME (msymbol) != NULL;
4246 msymbol++)
4247 {
4248 QUIT;
4249
4250 /* Skip static symbols. */
4251 switch (MSYMBOL_TYPE (msymbol))
4252 {
4253 case mst_file_text:
4254 case mst_file_data:
4255 case mst_file_bss:
4256 continue;
4257 default:
4258 break;
4259 }
4260
4261 prev = NULL;
4262
4263 /* Get the hash index and check all the symbols
4264 under that hash index. */
4265
4266 hash = hashname (DEPRECATED_SYMBOL_NAME (msymbol));
4267
4268 for (sym = global_sym_chain[hash]; sym;)
4269 {
4270 if (DEPRECATED_SYMBOL_NAME (msymbol)[0] == DEPRECATED_SYMBOL_NAME (sym)[0] &&
4271 strcmp (DEPRECATED_SYMBOL_NAME (msymbol) + 1, DEPRECATED_SYMBOL_NAME (sym) + 1) == 0)
4272 {
4273 /* Splice this symbol out of the hash chain and
4274 assign the value we have to it. */
4275 if (prev)
4276 {
4277 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4278 }
4279 else
4280 {
4281 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4282 }
4283
4284 /* Check to see whether we need to fix up a common block. */
4285 /* Note: this code might be executed several times for
4286 the same symbol if there are multiple references. */
4287 if (sym)
4288 {
4289 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4290 {
4291 fix_common_block (sym,
4292 SYMBOL_VALUE_ADDRESS (msymbol));
4293 }
4294 else
4295 {
4296 SYMBOL_VALUE_ADDRESS (sym)
4297 = SYMBOL_VALUE_ADDRESS (msymbol);
4298 }
4299 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4300 }
4301
4302 if (prev)
4303 {
4304 sym = SYMBOL_VALUE_CHAIN (prev);
4305 }
4306 else
4307 {
4308 sym = global_sym_chain[hash];
4309 }
4310 }
4311 else
4312 {
4313 prev = sym;
4314 sym = SYMBOL_VALUE_CHAIN (sym);
4315 }
4316 }
4317 }
4318 if (resolve_objfile == objfile)
4319 break;
4320 resolve_objfile = objfile;
4321 }
4322
4323 /* Change the storage class of any remaining unresolved globals to
4324 LOC_UNRESOLVED and remove them from the chain. */
4325 for (hash = 0; hash < HASHSIZE; hash++)
4326 {
4327 sym = global_sym_chain[hash];
4328 while (sym)
4329 {
4330 prev = sym;
4331 sym = SYMBOL_VALUE_CHAIN (sym);
4332
4333 /* Change the symbol address from the misleading chain value
4334 to address zero. */
4335 SYMBOL_VALUE_ADDRESS (prev) = 0;
4336
4337 /* Complain about unresolved common block symbols. */
4338 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4339 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
4340 else
4341 complaint (&symfile_complaints,
4342 "%s: common block `%s' from global_sym_chain unresolved",
4343 objfile->name, DEPRECATED_SYMBOL_NAME (prev));
4344 }
4345 }
4346 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4347 }
4348
4349 /* Initialize anything that needs initializing when starting to read
4350 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4351 to a psymtab. */
4352
4353 void
4354 stabsread_init (void)
4355 {
4356 }
4357
4358 /* Initialize anything that needs initializing when a completely new
4359 symbol file is specified (not just adding some symbols from another
4360 file, e.g. a shared library). */
4361
4362 void
4363 stabsread_new_init (void)
4364 {
4365 /* Empty the hash table of global syms looking for values. */
4366 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4367 }
4368
4369 /* Initialize anything that needs initializing at the same time as
4370 start_symtab() is called. */
4371
4372 void
4373 start_stabs (void)
4374 {
4375 global_stabs = NULL; /* AIX COFF */
4376 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4377 n_this_object_header_files = 1;
4378 type_vector_length = 0;
4379 type_vector = (struct type **) 0;
4380
4381 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4382 common_block_name = NULL;
4383 }
4384
4385 /* Call after end_symtab() */
4386
4387 void
4388 end_stabs (void)
4389 {
4390 if (type_vector)
4391 {
4392 xfree (type_vector);
4393 }
4394 type_vector = 0;
4395 type_vector_length = 0;
4396 previous_stab_code = 0;
4397 }
4398
4399 void
4400 finish_global_stabs (struct objfile *objfile)
4401 {
4402 if (global_stabs)
4403 {
4404 patch_block_stabs (global_symbols, global_stabs, objfile);
4405 xfree (global_stabs);
4406 global_stabs = NULL;
4407 }
4408 }
4409
4410 /* Find the end of the name, delimited by a ':', but don't match
4411 ObjC symbols which look like -[Foo bar::]:bla. */
4412 static char *
4413 find_name_end (char *name)
4414 {
4415 char *s = name;
4416 if (s[0] == '-' || *s == '+')
4417 {
4418 /* Must be an ObjC method symbol. */
4419 if (s[1] != '[')
4420 {
4421 error ("invalid symbol name \"%s\"", name);
4422 }
4423 s = strchr (s, ']');
4424 if (s == NULL)
4425 {
4426 error ("invalid symbol name \"%s\"", name);
4427 }
4428 return strchr (s, ':');
4429 }
4430 else
4431 {
4432 return strchr (s, ':');
4433 }
4434 }
4435
4436 /* Initializer for this module */
4437
4438 void
4439 _initialize_stabsread (void)
4440 {
4441 undef_types_allocated = 20;
4442 undef_types_length = 0;
4443 undef_types = (struct type **)
4444 xmalloc (undef_types_allocated * sizeof (struct type *));
4445 }
This page took 0.142348 seconds and 4 git commands to generate.