0fde12080fe344b4b000dae84f5cc5dd53d105e4
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
25 this file. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "gdb_obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "expression.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym-legacy.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "language.h"
44 #include "target-float.h"
45 #include "c-lang.h"
46 #include "cp-abi.h"
47 #include "cp-support.h"
48 #include <ctype.h>
49
50 #include "stabsread.h"
51
52 /* See stabsread.h for these globals. */
53 unsigned int symnum;
54 const char *(*next_symbol_text_func) (struct objfile *);
55 unsigned char processing_gcc_compilation;
56 int within_function;
57 struct symbol *global_sym_chain[HASHSIZE];
58 struct pending_stabs *global_stabs;
59 int previous_stab_code;
60 int *this_object_header_files;
61 int n_this_object_header_files;
62 int n_allocated_this_object_header_files;
63
64 struct nextfield
65 {
66 struct nextfield *next;
67
68 /* This is the raw visibility from the stab. It is not checked
69 for being one of the visibilities we recognize, so code which
70 examines this field better be able to deal. */
71 int visibility;
72
73 struct field field;
74 };
75
76 struct next_fnfieldlist
77 {
78 struct next_fnfieldlist *next;
79 struct fn_fieldlist fn_fieldlist;
80 };
81
82 /* The routines that read and process a complete stabs for a C struct or
83 C++ class pass lists of data member fields and lists of member function
84 fields in an instance of a field_info structure, as defined below.
85 This is part of some reorganization of low level C++ support and is
86 expected to eventually go away... (FIXME) */
87
88 struct stab_field_info
89 {
90 struct nextfield *list = nullptr;
91 struct next_fnfieldlist *fnlist = nullptr;
92
93 auto_obstack obstack;
94 };
95
96 static void
97 read_one_struct_field (struct stab_field_info *, const char **, const char *,
98 struct type *, struct objfile *);
99
100 static struct type *dbx_alloc_type (int[2], struct objfile *);
101
102 static long read_huge_number (const char **, int, int *, int);
103
104 static struct type *error_type (const char **, struct objfile *);
105
106 static void
107 patch_block_stabs (struct pending *, struct pending_stabs *,
108 struct objfile *);
109
110 static void fix_common_block (struct symbol *, CORE_ADDR);
111
112 static int read_type_number (const char **, int *);
113
114 static struct type *read_type (const char **, struct objfile *);
115
116 static struct type *read_range_type (const char **, int[2],
117 int, struct objfile *);
118
119 static struct type *read_sun_builtin_type (const char **,
120 int[2], struct objfile *);
121
122 static struct type *read_sun_floating_type (const char **, int[2],
123 struct objfile *);
124
125 static struct type *read_enum_type (const char **, struct type *, struct objfile *);
126
127 static struct type *rs6000_builtin_type (int, struct objfile *);
128
129 static int
130 read_member_functions (struct stab_field_info *, const char **, struct type *,
131 struct objfile *);
132
133 static int
134 read_struct_fields (struct stab_field_info *, const char **, struct type *,
135 struct objfile *);
136
137 static int
138 read_baseclasses (struct stab_field_info *, const char **, struct type *,
139 struct objfile *);
140
141 static int
142 read_tilde_fields (struct stab_field_info *, const char **, struct type *,
143 struct objfile *);
144
145 static int attach_fn_fields_to_type (struct stab_field_info *, struct type *);
146
147 static int attach_fields_to_type (struct stab_field_info *, struct type *,
148 struct objfile *);
149
150 static struct type *read_struct_type (const char **, struct type *,
151 enum type_code,
152 struct objfile *);
153
154 static struct type *read_array_type (const char **, struct type *,
155 struct objfile *);
156
157 static struct field *read_args (const char **, int, struct objfile *,
158 int *, int *);
159
160 static void add_undefined_type (struct type *, int[2]);
161
162 static int
163 read_cpp_abbrev (struct stab_field_info *, const char **, struct type *,
164 struct objfile *);
165
166 static const char *find_name_end (const char *name);
167
168 static int process_reference (const char **string);
169
170 void stabsread_clear_cache (void);
171
172 static const char vptr_name[] = "_vptr$";
173 static const char vb_name[] = "_vb$";
174
175 static void
176 invalid_cpp_abbrev_complaint (const char *arg1)
177 {
178 complaint (_("invalid C++ abbreviation `%s'"), arg1);
179 }
180
181 static void
182 reg_value_complaint (int regnum, int num_regs, const char *sym)
183 {
184 complaint (_("bad register number %d (max %d) in symbol %s"),
185 regnum, num_regs - 1, sym);
186 }
187
188 static void
189 stabs_general_complaint (const char *arg1)
190 {
191 complaint ("%s", arg1);
192 }
193
194 /* Make a list of forward references which haven't been defined. */
195
196 static struct type **undef_types;
197 static int undef_types_allocated;
198 static int undef_types_length;
199 static struct symbol *current_symbol = NULL;
200
201 /* Make a list of nameless types that are undefined.
202 This happens when another type is referenced by its number
203 before this type is actually defined. For instance "t(0,1)=k(0,2)"
204 and type (0,2) is defined only later. */
205
206 struct nat
207 {
208 int typenums[2];
209 struct type *type;
210 };
211 static struct nat *noname_undefs;
212 static int noname_undefs_allocated;
213 static int noname_undefs_length;
214
215 /* Check for and handle cretinous stabs symbol name continuation! */
216 #define STABS_CONTINUE(pp,objfile) \
217 do { \
218 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
219 *(pp) = next_symbol_text (objfile); \
220 } while (0)
221
222 /* Vector of types defined so far, indexed by their type numbers.
223 (In newer sun systems, dbx uses a pair of numbers in parens,
224 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
225 Then these numbers must be translated through the type_translations
226 hash table to get the index into the type vector.) */
227
228 static struct type **type_vector;
229
230 /* Number of elements allocated for type_vector currently. */
231
232 static int type_vector_length;
233
234 /* Initial size of type vector. Is realloc'd larger if needed, and
235 realloc'd down to the size actually used, when completed. */
236
237 #define INITIAL_TYPE_VECTOR_LENGTH 160
238 \f
239
240 /* Look up a dbx type-number pair. Return the address of the slot
241 where the type for that number-pair is stored.
242 The number-pair is in TYPENUMS.
243
244 This can be used for finding the type associated with that pair
245 or for associating a new type with the pair. */
246
247 static struct type **
248 dbx_lookup_type (int typenums[2], struct objfile *objfile)
249 {
250 int filenum = typenums[0];
251 int index = typenums[1];
252 unsigned old_len;
253 int real_filenum;
254 struct header_file *f;
255 int f_orig_length;
256
257 if (filenum == -1) /* -1,-1 is for temporary types. */
258 return 0;
259
260 if (filenum < 0 || filenum >= n_this_object_header_files)
261 {
262 complaint (_("Invalid symbol data: type number "
263 "(%d,%d) out of range at symtab pos %d."),
264 filenum, index, symnum);
265 goto error_return;
266 }
267
268 if (filenum == 0)
269 {
270 if (index < 0)
271 {
272 /* Caller wants address of address of type. We think
273 that negative (rs6k builtin) types will never appear as
274 "lvalues", (nor should they), so we stuff the real type
275 pointer into a temp, and return its address. If referenced,
276 this will do the right thing. */
277 static struct type *temp_type;
278
279 temp_type = rs6000_builtin_type (index, objfile);
280 return &temp_type;
281 }
282
283 /* Type is defined outside of header files.
284 Find it in this object file's type vector. */
285 if (index >= type_vector_length)
286 {
287 old_len = type_vector_length;
288 if (old_len == 0)
289 {
290 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
291 type_vector = XNEWVEC (struct type *, type_vector_length);
292 }
293 while (index >= type_vector_length)
294 {
295 type_vector_length *= 2;
296 }
297 type_vector = (struct type **)
298 xrealloc ((char *) type_vector,
299 (type_vector_length * sizeof (struct type *)));
300 memset (&type_vector[old_len], 0,
301 (type_vector_length - old_len) * sizeof (struct type *));
302 }
303 return (&type_vector[index]);
304 }
305 else
306 {
307 real_filenum = this_object_header_files[filenum];
308
309 if (real_filenum >= N_HEADER_FILES (objfile))
310 {
311 static struct type *temp_type;
312
313 warning (_("GDB internal error: bad real_filenum"));
314
315 error_return:
316 temp_type = objfile_type (objfile)->builtin_error;
317 return &temp_type;
318 }
319
320 f = HEADER_FILES (objfile) + real_filenum;
321
322 f_orig_length = f->length;
323 if (index >= f_orig_length)
324 {
325 while (index >= f->length)
326 {
327 f->length *= 2;
328 }
329 f->vector = (struct type **)
330 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
331 memset (&f->vector[f_orig_length], 0,
332 (f->length - f_orig_length) * sizeof (struct type *));
333 }
334 return (&f->vector[index]);
335 }
336 }
337
338 /* Make sure there is a type allocated for type numbers TYPENUMS
339 and return the type object.
340 This can create an empty (zeroed) type object.
341 TYPENUMS may be (-1, -1) to return a new type object that is not
342 put into the type vector, and so may not be referred to by number. */
343
344 static struct type *
345 dbx_alloc_type (int typenums[2], struct objfile *objfile)
346 {
347 struct type **type_addr;
348
349 if (typenums[0] == -1)
350 {
351 return (alloc_type (objfile));
352 }
353
354 type_addr = dbx_lookup_type (typenums, objfile);
355
356 /* If we are referring to a type not known at all yet,
357 allocate an empty type for it.
358 We will fill it in later if we find out how. */
359 if (*type_addr == 0)
360 {
361 *type_addr = alloc_type (objfile);
362 }
363
364 return (*type_addr);
365 }
366
367 /* Allocate a floating-point type of size BITS. */
368
369 static struct type *
370 dbx_init_float_type (struct objfile *objfile, int bits)
371 {
372 struct gdbarch *gdbarch = get_objfile_arch (objfile);
373 const struct floatformat **format;
374 struct type *type;
375
376 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
377 if (format)
378 type = init_float_type (objfile, bits, NULL, format);
379 else
380 type = init_type (objfile, TYPE_CODE_ERROR, bits, NULL);
381
382 return type;
383 }
384
385 /* for all the stabs in a given stab vector, build appropriate types
386 and fix their symbols in given symbol vector. */
387
388 static void
389 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
390 struct objfile *objfile)
391 {
392 int ii;
393 char *name;
394 const char *pp;
395 struct symbol *sym;
396
397 if (stabs)
398 {
399 /* for all the stab entries, find their corresponding symbols and
400 patch their types! */
401
402 for (ii = 0; ii < stabs->count; ++ii)
403 {
404 name = stabs->stab[ii];
405 pp = (char *) strchr (name, ':');
406 gdb_assert (pp); /* Must find a ':' or game's over. */
407 while (pp[1] == ':')
408 {
409 pp += 2;
410 pp = (char *) strchr (pp, ':');
411 }
412 sym = find_symbol_in_list (symbols, name, pp - name);
413 if (!sym)
414 {
415 /* FIXME-maybe: it would be nice if we noticed whether
416 the variable was defined *anywhere*, not just whether
417 it is defined in this compilation unit. But neither
418 xlc or GCC seem to need such a definition, and until
419 we do psymtabs (so that the minimal symbols from all
420 compilation units are available now), I'm not sure
421 how to get the information. */
422
423 /* On xcoff, if a global is defined and never referenced,
424 ld will remove it from the executable. There is then
425 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
426 sym = allocate_symbol (objfile);
427 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
428 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
429 SYMBOL_SET_LINKAGE_NAME
430 (sym, obstack_strndup (&objfile->objfile_obstack,
431 name, pp - name));
432 pp += 2;
433 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
434 {
435 /* I don't think the linker does this with functions,
436 so as far as I know this is never executed.
437 But it doesn't hurt to check. */
438 SYMBOL_TYPE (sym) =
439 lookup_function_type (read_type (&pp, objfile));
440 }
441 else
442 {
443 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
444 }
445 add_symbol_to_list (sym, get_global_symbols ());
446 }
447 else
448 {
449 pp += 2;
450 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
451 {
452 SYMBOL_TYPE (sym) =
453 lookup_function_type (read_type (&pp, objfile));
454 }
455 else
456 {
457 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
458 }
459 }
460 }
461 }
462 }
463 \f
464
465 /* Read a number by which a type is referred to in dbx data,
466 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
467 Just a single number N is equivalent to (0,N).
468 Return the two numbers by storing them in the vector TYPENUMS.
469 TYPENUMS will then be used as an argument to dbx_lookup_type.
470
471 Returns 0 for success, -1 for error. */
472
473 static int
474 read_type_number (const char **pp, int *typenums)
475 {
476 int nbits;
477
478 if (**pp == '(')
479 {
480 (*pp)++;
481 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
482 if (nbits != 0)
483 return -1;
484 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
485 if (nbits != 0)
486 return -1;
487 }
488 else
489 {
490 typenums[0] = 0;
491 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
492 if (nbits != 0)
493 return -1;
494 }
495 return 0;
496 }
497 \f
498
499 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
500 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
501 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
502 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
503
504 /* Structure for storing pointers to reference definitions for fast lookup
505 during "process_later". */
506
507 struct ref_map
508 {
509 const char *stabs;
510 CORE_ADDR value;
511 struct symbol *sym;
512 };
513
514 #define MAX_CHUNK_REFS 100
515 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
516 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
517
518 static struct ref_map *ref_map;
519
520 /* Ptr to free cell in chunk's linked list. */
521 static int ref_count = 0;
522
523 /* Number of chunks malloced. */
524 static int ref_chunk = 0;
525
526 /* This file maintains a cache of stabs aliases found in the symbol
527 table. If the symbol table changes, this cache must be cleared
528 or we are left holding onto data in invalid obstacks. */
529 void
530 stabsread_clear_cache (void)
531 {
532 ref_count = 0;
533 ref_chunk = 0;
534 }
535
536 /* Create array of pointers mapping refids to symbols and stab strings.
537 Add pointers to reference definition symbols and/or their values as we
538 find them, using their reference numbers as our index.
539 These will be used later when we resolve references. */
540 void
541 ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
542 {
543 if (ref_count == 0)
544 ref_chunk = 0;
545 if (refnum >= ref_count)
546 ref_count = refnum + 1;
547 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
548 {
549 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
550 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
551
552 ref_map = (struct ref_map *)
553 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
554 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
555 new_chunks * REF_CHUNK_SIZE);
556 ref_chunk += new_chunks;
557 }
558 ref_map[refnum].stabs = stabs;
559 ref_map[refnum].sym = sym;
560 ref_map[refnum].value = value;
561 }
562
563 /* Return defined sym for the reference REFNUM. */
564 struct symbol *
565 ref_search (int refnum)
566 {
567 if (refnum < 0 || refnum > ref_count)
568 return 0;
569 return ref_map[refnum].sym;
570 }
571
572 /* Parse a reference id in STRING and return the resulting
573 reference number. Move STRING beyond the reference id. */
574
575 static int
576 process_reference (const char **string)
577 {
578 const char *p;
579 int refnum = 0;
580
581 if (**string != '#')
582 return 0;
583
584 /* Advance beyond the initial '#'. */
585 p = *string + 1;
586
587 /* Read number as reference id. */
588 while (*p && isdigit (*p))
589 {
590 refnum = refnum * 10 + *p - '0';
591 p++;
592 }
593 *string = p;
594 return refnum;
595 }
596
597 /* If STRING defines a reference, store away a pointer to the reference
598 definition for later use. Return the reference number. */
599
600 int
601 symbol_reference_defined (const char **string)
602 {
603 const char *p = *string;
604 int refnum = 0;
605
606 refnum = process_reference (&p);
607
608 /* Defining symbols end in '='. */
609 if (*p == '=')
610 {
611 /* Symbol is being defined here. */
612 *string = p + 1;
613 return refnum;
614 }
615 else
616 {
617 /* Must be a reference. Either the symbol has already been defined,
618 or this is a forward reference to it. */
619 *string = p;
620 return -1;
621 }
622 }
623
624 static int
625 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
626 {
627 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
628
629 if (regno < 0 || regno >= gdbarch_num_cooked_regs (gdbarch))
630 {
631 reg_value_complaint (regno, gdbarch_num_cooked_regs (gdbarch),
632 SYMBOL_PRINT_NAME (sym));
633
634 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
635 }
636
637 return regno;
638 }
639
640 static const struct symbol_register_ops stab_register_funcs = {
641 stab_reg_to_regnum
642 };
643
644 /* The "aclass" indices for computed symbols. */
645
646 static int stab_register_index;
647 static int stab_regparm_index;
648
649 struct symbol *
650 define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
651 struct objfile *objfile)
652 {
653 struct gdbarch *gdbarch = get_objfile_arch (objfile);
654 struct symbol *sym;
655 const char *p = find_name_end (string);
656 int deftype;
657 int synonym = 0;
658 int i;
659
660 /* We would like to eliminate nameless symbols, but keep their types.
661 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
662 to type 2, but, should not create a symbol to address that type. Since
663 the symbol will be nameless, there is no way any user can refer to it. */
664
665 int nameless;
666
667 /* Ignore syms with empty names. */
668 if (string[0] == 0)
669 return 0;
670
671 /* Ignore old-style symbols from cc -go. */
672 if (p == 0)
673 return 0;
674
675 while (p[1] == ':')
676 {
677 p += 2;
678 p = strchr (p, ':');
679 if (p == NULL)
680 {
681 complaint (
682 _("Bad stabs string '%s'"), string);
683 return NULL;
684 }
685 }
686
687 /* If a nameless stab entry, all we need is the type, not the symbol.
688 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
689 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
690
691 current_symbol = sym = allocate_symbol (objfile);
692
693 if (processing_gcc_compilation)
694 {
695 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
696 number of bytes occupied by a type or object, which we ignore. */
697 SYMBOL_LINE (sym) = desc;
698 }
699 else
700 {
701 SYMBOL_LINE (sym) = 0; /* unknown */
702 }
703
704 SYMBOL_SET_LANGUAGE (sym, get_current_subfile ()->language,
705 &objfile->objfile_obstack);
706
707 if (is_cplus_marker (string[0]))
708 {
709 /* Special GNU C++ names. */
710 switch (string[1])
711 {
712 case 't':
713 SYMBOL_SET_LINKAGE_NAME (sym, "this");
714 break;
715
716 case 'v': /* $vtbl_ptr_type */
717 goto normal;
718
719 case 'e':
720 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
721 break;
722
723 case '_':
724 /* This was an anonymous type that was never fixed up. */
725 goto normal;
726
727 case 'X':
728 /* SunPRO (3.0 at least) static variable encoding. */
729 if (gdbarch_static_transform_name_p (gdbarch))
730 goto normal;
731 /* fall through */
732
733 default:
734 complaint (_("Unknown C++ symbol name `%s'"),
735 string);
736 goto normal; /* Do *something* with it. */
737 }
738 }
739 else
740 {
741 normal:
742 std::string new_name;
743
744 if (SYMBOL_LANGUAGE (sym) == language_cplus)
745 {
746 char *name = (char *) alloca (p - string + 1);
747
748 memcpy (name, string, p - string);
749 name[p - string] = '\0';
750 new_name = cp_canonicalize_string (name);
751 }
752 if (!new_name.empty ())
753 {
754 SYMBOL_SET_NAMES (sym,
755 new_name,
756 1, objfile);
757 }
758 else
759 SYMBOL_SET_NAMES (sym, gdb::string_view (string, p - string), true,
760 objfile);
761
762 if (SYMBOL_LANGUAGE (sym) == language_cplus)
763 cp_scan_for_anonymous_namespaces (get_buildsym_compunit (), sym,
764 objfile);
765
766 }
767 p++;
768
769 /* Determine the type of name being defined. */
770 #if 0
771 /* Getting GDB to correctly skip the symbol on an undefined symbol
772 descriptor and not ever dump core is a very dodgy proposition if
773 we do things this way. I say the acorn RISC machine can just
774 fix their compiler. */
775 /* The Acorn RISC machine's compiler can put out locals that don't
776 start with "234=" or "(3,4)=", so assume anything other than the
777 deftypes we know how to handle is a local. */
778 if (!strchr ("cfFGpPrStTvVXCR", *p))
779 #else
780 if (isdigit (*p) || *p == '(' || *p == '-')
781 #endif
782 deftype = 'l';
783 else
784 deftype = *p++;
785
786 switch (deftype)
787 {
788 case 'c':
789 /* c is a special case, not followed by a type-number.
790 SYMBOL:c=iVALUE for an integer constant symbol.
791 SYMBOL:c=rVALUE for a floating constant symbol.
792 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
793 e.g. "b:c=e6,0" for "const b = blob1"
794 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
795 if (*p != '=')
796 {
797 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
798 SYMBOL_TYPE (sym) = error_type (&p, objfile);
799 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
800 add_symbol_to_list (sym, get_file_symbols ());
801 return sym;
802 }
803 ++p;
804 switch (*p++)
805 {
806 case 'r':
807 {
808 gdb_byte *dbl_valu;
809 struct type *dbl_type;
810
811 dbl_type = objfile_type (objfile)->builtin_double;
812 dbl_valu
813 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
814 TYPE_LENGTH (dbl_type));
815
816 target_float_from_string (dbl_valu, dbl_type, std::string (p));
817
818 SYMBOL_TYPE (sym) = dbl_type;
819 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
820 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
821 }
822 break;
823 case 'i':
824 {
825 /* Defining integer constants this way is kind of silly,
826 since 'e' constants allows the compiler to give not
827 only the value, but the type as well. C has at least
828 int, long, unsigned int, and long long as constant
829 types; other languages probably should have at least
830 unsigned as well as signed constants. */
831
832 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
833 SYMBOL_VALUE (sym) = atoi (p);
834 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
835 }
836 break;
837
838 case 'c':
839 {
840 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
841 SYMBOL_VALUE (sym) = atoi (p);
842 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
843 }
844 break;
845
846 case 's':
847 {
848 struct type *range_type;
849 int ind = 0;
850 char quote = *p++;
851 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
852 gdb_byte *string_value;
853
854 if (quote != '\'' && quote != '"')
855 {
856 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
857 SYMBOL_TYPE (sym) = error_type (&p, objfile);
858 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
859 add_symbol_to_list (sym, get_file_symbols ());
860 return sym;
861 }
862
863 /* Find matching quote, rejecting escaped quotes. */
864 while (*p && *p != quote)
865 {
866 if (*p == '\\' && p[1] == quote)
867 {
868 string_local[ind] = (gdb_byte) quote;
869 ind++;
870 p += 2;
871 }
872 else if (*p)
873 {
874 string_local[ind] = (gdb_byte) (*p);
875 ind++;
876 p++;
877 }
878 }
879 if (*p != quote)
880 {
881 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
882 SYMBOL_TYPE (sym) = error_type (&p, objfile);
883 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
884 add_symbol_to_list (sym, get_file_symbols ());
885 return sym;
886 }
887
888 /* NULL terminate the string. */
889 string_local[ind] = 0;
890 range_type
891 = create_static_range_type (NULL,
892 objfile_type (objfile)->builtin_int,
893 0, ind);
894 SYMBOL_TYPE (sym) = create_array_type (NULL,
895 objfile_type (objfile)->builtin_char,
896 range_type);
897 string_value
898 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
899 memcpy (string_value, string_local, ind + 1);
900 p++;
901
902 SYMBOL_VALUE_BYTES (sym) = string_value;
903 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
904 }
905 break;
906
907 case 'e':
908 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
909 can be represented as integral.
910 e.g. "b:c=e6,0" for "const b = blob1"
911 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
912 {
913 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
914 SYMBOL_TYPE (sym) = read_type (&p, objfile);
915
916 if (*p != ',')
917 {
918 SYMBOL_TYPE (sym) = error_type (&p, objfile);
919 break;
920 }
921 ++p;
922
923 /* If the value is too big to fit in an int (perhaps because
924 it is unsigned), or something like that, we silently get
925 a bogus value. The type and everything else about it is
926 correct. Ideally, we should be using whatever we have
927 available for parsing unsigned and long long values,
928 however. */
929 SYMBOL_VALUE (sym) = atoi (p);
930 }
931 break;
932 default:
933 {
934 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
935 SYMBOL_TYPE (sym) = error_type (&p, objfile);
936 }
937 }
938 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
939 add_symbol_to_list (sym, get_file_symbols ());
940 return sym;
941
942 case 'C':
943 /* The name of a caught exception. */
944 SYMBOL_TYPE (sym) = read_type (&p, objfile);
945 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
946 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
947 SET_SYMBOL_VALUE_ADDRESS (sym, valu);
948 add_symbol_to_list (sym, get_local_symbols ());
949 break;
950
951 case 'f':
952 /* A static function definition. */
953 SYMBOL_TYPE (sym) = read_type (&p, objfile);
954 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
955 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
956 add_symbol_to_list (sym, get_file_symbols ());
957 /* fall into process_function_types. */
958
959 process_function_types:
960 /* Function result types are described as the result type in stabs.
961 We need to convert this to the function-returning-type-X type
962 in GDB. E.g. "int" is converted to "function returning int". */
963 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
964 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
965
966 /* All functions in C++ have prototypes. Stabs does not offer an
967 explicit way to identify prototyped or unprototyped functions,
968 but both GCC and Sun CC emit stabs for the "call-as" type rather
969 than the "declared-as" type for unprototyped functions, so
970 we treat all functions as if they were prototyped. This is used
971 primarily for promotion when calling the function from GDB. */
972 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
973
974 /* fall into process_prototype_types. */
975
976 process_prototype_types:
977 /* Sun acc puts declared types of arguments here. */
978 if (*p == ';')
979 {
980 struct type *ftype = SYMBOL_TYPE (sym);
981 int nsemi = 0;
982 int nparams = 0;
983 const char *p1 = p;
984
985 /* Obtain a worst case guess for the number of arguments
986 by counting the semicolons. */
987 while (*p1)
988 {
989 if (*p1++ == ';')
990 nsemi++;
991 }
992
993 /* Allocate parameter information fields and fill them in. */
994 TYPE_FIELDS (ftype) = (struct field *)
995 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
996 while (*p++ == ';')
997 {
998 struct type *ptype;
999
1000 /* A type number of zero indicates the start of varargs.
1001 FIXME: GDB currently ignores vararg functions. */
1002 if (p[0] == '0' && p[1] == '\0')
1003 break;
1004 ptype = read_type (&p, objfile);
1005
1006 /* The Sun compilers mark integer arguments, which should
1007 be promoted to the width of the calling conventions, with
1008 a type which references itself. This type is turned into
1009 a TYPE_CODE_VOID type by read_type, and we have to turn
1010 it back into builtin_int here.
1011 FIXME: Do we need a new builtin_promoted_int_arg ? */
1012 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
1013 ptype = objfile_type (objfile)->builtin_int;
1014 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1015 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1016 }
1017 TYPE_NFIELDS (ftype) = nparams;
1018 TYPE_PROTOTYPED (ftype) = 1;
1019 }
1020 break;
1021
1022 case 'F':
1023 /* A global function definition. */
1024 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1025 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1026 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1027 add_symbol_to_list (sym, get_global_symbols ());
1028 goto process_function_types;
1029
1030 case 'G':
1031 /* For a class G (global) symbol, it appears that the
1032 value is not correct. It is necessary to search for the
1033 corresponding linker definition to find the value.
1034 These definitions appear at the end of the namelist. */
1035 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1036 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1037 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1038 /* Don't add symbol references to global_sym_chain.
1039 Symbol references don't have valid names and wont't match up with
1040 minimal symbols when the global_sym_chain is relocated.
1041 We'll fixup symbol references when we fixup the defining symbol. */
1042 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1043 {
1044 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1045 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1046 global_sym_chain[i] = sym;
1047 }
1048 add_symbol_to_list (sym, get_global_symbols ());
1049 break;
1050
1051 /* This case is faked by a conditional above,
1052 when there is no code letter in the dbx data.
1053 Dbx data never actually contains 'l'. */
1054 case 's':
1055 case 'l':
1056 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1057 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1058 SYMBOL_VALUE (sym) = valu;
1059 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1060 add_symbol_to_list (sym, get_local_symbols ());
1061 break;
1062
1063 case 'p':
1064 if (*p == 'F')
1065 /* pF is a two-letter code that means a function parameter in Fortran.
1066 The type-number specifies the type of the return value.
1067 Translate it into a pointer-to-function type. */
1068 {
1069 p++;
1070 SYMBOL_TYPE (sym)
1071 = lookup_pointer_type
1072 (lookup_function_type (read_type (&p, objfile)));
1073 }
1074 else
1075 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1076
1077 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1078 SYMBOL_VALUE (sym) = valu;
1079 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1080 SYMBOL_IS_ARGUMENT (sym) = 1;
1081 add_symbol_to_list (sym, get_local_symbols ());
1082
1083 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1084 {
1085 /* On little-endian machines, this crud is never necessary,
1086 and, if the extra bytes contain garbage, is harmful. */
1087 break;
1088 }
1089
1090 /* If it's gcc-compiled, if it says `short', believe it. */
1091 if (processing_gcc_compilation
1092 || gdbarch_believe_pcc_promotion (gdbarch))
1093 break;
1094
1095 if (!gdbarch_believe_pcc_promotion (gdbarch))
1096 {
1097 /* If PCC says a parameter is a short or a char, it is
1098 really an int. */
1099 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1100 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1101 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1102 {
1103 SYMBOL_TYPE (sym) =
1104 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1105 ? objfile_type (objfile)->builtin_unsigned_int
1106 : objfile_type (objfile)->builtin_int;
1107 }
1108 break;
1109 }
1110 /* Fall through. */
1111
1112 case 'P':
1113 /* acc seems to use P to declare the prototypes of functions that
1114 are referenced by this file. gdb is not prepared to deal
1115 with this extra information. FIXME, it ought to. */
1116 if (type == N_FUN)
1117 {
1118 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1119 goto process_prototype_types;
1120 }
1121 /*FALLTHROUGH */
1122
1123 case 'R':
1124 /* Parameter which is in a register. */
1125 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1126 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1127 SYMBOL_IS_ARGUMENT (sym) = 1;
1128 SYMBOL_VALUE (sym) = valu;
1129 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1130 add_symbol_to_list (sym, get_local_symbols ());
1131 break;
1132
1133 case 'r':
1134 /* Register variable (either global or local). */
1135 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1136 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1137 SYMBOL_VALUE (sym) = valu;
1138 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1139 if (within_function)
1140 {
1141 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1142 the same name to represent an argument passed in a
1143 register. GCC uses 'P' for the same case. So if we find
1144 such a symbol pair we combine it into one 'P' symbol.
1145 For Sun cc we need to do this regardless of
1146 stabs_argument_has_addr, because the compiler puts out
1147 the 'p' symbol even if it never saves the argument onto
1148 the stack.
1149
1150 On most machines, we want to preserve both symbols, so
1151 that we can still get information about what is going on
1152 with the stack (VAX for computing args_printed, using
1153 stack slots instead of saved registers in backtraces,
1154 etc.).
1155
1156 Note that this code illegally combines
1157 main(argc) struct foo argc; { register struct foo argc; }
1158 but this case is considered pathological and causes a warning
1159 from a decent compiler. */
1160
1161 struct pending *local_symbols = *get_local_symbols ();
1162 if (local_symbols
1163 && local_symbols->nsyms > 0
1164 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1165 {
1166 struct symbol *prev_sym;
1167
1168 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1169 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1170 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1171 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1172 SYMBOL_LINKAGE_NAME (sym)) == 0)
1173 {
1174 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1175 /* Use the type from the LOC_REGISTER; that is the type
1176 that is actually in that register. */
1177 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1178 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1179 sym = prev_sym;
1180 break;
1181 }
1182 }
1183 add_symbol_to_list (sym, get_local_symbols ());
1184 }
1185 else
1186 add_symbol_to_list (sym, get_file_symbols ());
1187 break;
1188
1189 case 'S':
1190 /* Static symbol at top level of file. */
1191 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1192 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1193 SET_SYMBOL_VALUE_ADDRESS (sym, valu);
1194 if (gdbarch_static_transform_name_p (gdbarch)
1195 && gdbarch_static_transform_name (gdbarch,
1196 SYMBOL_LINKAGE_NAME (sym))
1197 != SYMBOL_LINKAGE_NAME (sym))
1198 {
1199 struct bound_minimal_symbol msym;
1200
1201 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1202 NULL, objfile);
1203 if (msym.minsym != NULL)
1204 {
1205 const char *new_name = gdbarch_static_transform_name
1206 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1207
1208 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1209 SET_SYMBOL_VALUE_ADDRESS (sym,
1210 BMSYMBOL_VALUE_ADDRESS (msym));
1211 }
1212 }
1213 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1214 add_symbol_to_list (sym, get_file_symbols ());
1215 break;
1216
1217 case 't':
1218 /* In Ada, there is no distinction between typedef and non-typedef;
1219 any type declaration implicitly has the equivalent of a typedef,
1220 and thus 't' is in fact equivalent to 'Tt'.
1221
1222 Therefore, for Ada units, we check the character immediately
1223 before the 't', and if we do not find a 'T', then make sure to
1224 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1225 will be stored in the VAR_DOMAIN). If the symbol was indeed
1226 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1227 elsewhere, so we don't need to take care of that.
1228
1229 This is important to do, because of forward references:
1230 The cleanup of undefined types stored in undef_types only uses
1231 STRUCT_DOMAIN symbols to perform the replacement. */
1232 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1233
1234 /* Typedef */
1235 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1236
1237 /* For a nameless type, we don't want a create a symbol, thus we
1238 did not use `sym'. Return without further processing. */
1239 if (nameless)
1240 return NULL;
1241
1242 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1243 SYMBOL_VALUE (sym) = valu;
1244 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1245 /* C++ vagaries: we may have a type which is derived from
1246 a base type which did not have its name defined when the
1247 derived class was output. We fill in the derived class's
1248 base part member's name here in that case. */
1249 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1250 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1251 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1252 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1253 {
1254 int j;
1255
1256 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1257 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1258 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1259 TYPE_NAME (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1260 }
1261
1262 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1263 {
1264 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1265 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1266 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1267 {
1268 /* If we are giving a name to a type such as "pointer to
1269 foo" or "function returning foo", we better not set
1270 the TYPE_NAME. If the program contains "typedef char
1271 *caddr_t;", we don't want all variables of type char
1272 * to print as caddr_t. This is not just a
1273 consequence of GDB's type management; PCC and GCC (at
1274 least through version 2.4) both output variables of
1275 either type char * or caddr_t with the type number
1276 defined in the 't' symbol for caddr_t. If a future
1277 compiler cleans this up it GDB is not ready for it
1278 yet, but if it becomes ready we somehow need to
1279 disable this check (without breaking the PCC/GCC2.4
1280 case).
1281
1282 Sigh.
1283
1284 Fortunately, this check seems not to be necessary
1285 for anything except pointers or functions. */
1286 /* ezannoni: 2000-10-26. This seems to apply for
1287 versions of gcc older than 2.8. This was the original
1288 problem: with the following code gdb would tell that
1289 the type for name1 is caddr_t, and func is char().
1290
1291 typedef char *caddr_t;
1292 char *name2;
1293 struct x
1294 {
1295 char *name1;
1296 } xx;
1297 char *func()
1298 {
1299 }
1300 main () {}
1301 */
1302
1303 /* Pascal accepts names for pointer types. */
1304 if (get_current_subfile ()->language == language_pascal)
1305 {
1306 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1307 }
1308 }
1309 else
1310 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1311 }
1312
1313 add_symbol_to_list (sym, get_file_symbols ());
1314
1315 if (synonym)
1316 {
1317 /* Create the STRUCT_DOMAIN clone. */
1318 struct symbol *struct_sym = allocate_symbol (objfile);
1319
1320 *struct_sym = *sym;
1321 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1322 SYMBOL_VALUE (struct_sym) = valu;
1323 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1324 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1325 TYPE_NAME (SYMBOL_TYPE (sym))
1326 = obconcat (&objfile->objfile_obstack,
1327 SYMBOL_LINKAGE_NAME (sym),
1328 (char *) NULL);
1329 add_symbol_to_list (struct_sym, get_file_symbols ());
1330 }
1331
1332 break;
1333
1334 case 'T':
1335 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1336 by 't' which means we are typedef'ing it as well. */
1337 synonym = *p == 't';
1338
1339 if (synonym)
1340 p++;
1341
1342 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1343
1344 /* For a nameless type, we don't want a create a symbol, thus we
1345 did not use `sym'. Return without further processing. */
1346 if (nameless)
1347 return NULL;
1348
1349 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1350 SYMBOL_VALUE (sym) = valu;
1351 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1352 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1353 TYPE_NAME (SYMBOL_TYPE (sym))
1354 = obconcat (&objfile->objfile_obstack,
1355 SYMBOL_LINKAGE_NAME (sym),
1356 (char *) NULL);
1357 add_symbol_to_list (sym, get_file_symbols ());
1358
1359 if (synonym)
1360 {
1361 /* Clone the sym and then modify it. */
1362 struct symbol *typedef_sym = allocate_symbol (objfile);
1363
1364 *typedef_sym = *sym;
1365 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1366 SYMBOL_VALUE (typedef_sym) = valu;
1367 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1368 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1369 TYPE_NAME (SYMBOL_TYPE (sym))
1370 = obconcat (&objfile->objfile_obstack,
1371 SYMBOL_LINKAGE_NAME (sym),
1372 (char *) NULL);
1373 add_symbol_to_list (typedef_sym, get_file_symbols ());
1374 }
1375 break;
1376
1377 case 'V':
1378 /* Static symbol of local scope. */
1379 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1380 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1381 SET_SYMBOL_VALUE_ADDRESS (sym, valu);
1382 if (gdbarch_static_transform_name_p (gdbarch)
1383 && gdbarch_static_transform_name (gdbarch,
1384 SYMBOL_LINKAGE_NAME (sym))
1385 != SYMBOL_LINKAGE_NAME (sym))
1386 {
1387 struct bound_minimal_symbol msym;
1388
1389 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1390 NULL, objfile);
1391 if (msym.minsym != NULL)
1392 {
1393 const char *new_name = gdbarch_static_transform_name
1394 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1395
1396 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1397 SET_SYMBOL_VALUE_ADDRESS (sym, BMSYMBOL_VALUE_ADDRESS (msym));
1398 }
1399 }
1400 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1401 add_symbol_to_list (sym, get_local_symbols ());
1402 break;
1403
1404 case 'v':
1405 /* Reference parameter */
1406 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1407 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1408 SYMBOL_IS_ARGUMENT (sym) = 1;
1409 SYMBOL_VALUE (sym) = valu;
1410 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1411 add_symbol_to_list (sym, get_local_symbols ());
1412 break;
1413
1414 case 'a':
1415 /* Reference parameter which is in a register. */
1416 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1417 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1418 SYMBOL_IS_ARGUMENT (sym) = 1;
1419 SYMBOL_VALUE (sym) = valu;
1420 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1421 add_symbol_to_list (sym, get_local_symbols ());
1422 break;
1423
1424 case 'X':
1425 /* This is used by Sun FORTRAN for "function result value".
1426 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1427 that Pascal uses it too, but when I tried it Pascal used
1428 "x:3" (local symbol) instead. */
1429 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1430 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1431 SYMBOL_VALUE (sym) = valu;
1432 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1433 add_symbol_to_list (sym, get_local_symbols ());
1434 break;
1435
1436 default:
1437 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1438 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1439 SYMBOL_VALUE (sym) = 0;
1440 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1441 add_symbol_to_list (sym, get_file_symbols ());
1442 break;
1443 }
1444
1445 /* Some systems pass variables of certain types by reference instead
1446 of by value, i.e. they will pass the address of a structure (in a
1447 register or on the stack) instead of the structure itself. */
1448
1449 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1450 && SYMBOL_IS_ARGUMENT (sym))
1451 {
1452 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1453 variables passed in a register). */
1454 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1455 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1456 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1457 and subsequent arguments on SPARC, for example). */
1458 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1459 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1460 }
1461
1462 return sym;
1463 }
1464
1465 /* Skip rest of this symbol and return an error type.
1466
1467 General notes on error recovery: error_type always skips to the
1468 end of the symbol (modulo cretinous dbx symbol name continuation).
1469 Thus code like this:
1470
1471 if (*(*pp)++ != ';')
1472 return error_type (pp, objfile);
1473
1474 is wrong because if *pp starts out pointing at '\0' (typically as the
1475 result of an earlier error), it will be incremented to point to the
1476 start of the next symbol, which might produce strange results, at least
1477 if you run off the end of the string table. Instead use
1478
1479 if (**pp != ';')
1480 return error_type (pp, objfile);
1481 ++*pp;
1482
1483 or
1484
1485 if (**pp != ';')
1486 foo = error_type (pp, objfile);
1487 else
1488 ++*pp;
1489
1490 And in case it isn't obvious, the point of all this hair is so the compiler
1491 can define new types and new syntaxes, and old versions of the
1492 debugger will be able to read the new symbol tables. */
1493
1494 static struct type *
1495 error_type (const char **pp, struct objfile *objfile)
1496 {
1497 complaint (_("couldn't parse type; debugger out of date?"));
1498 while (1)
1499 {
1500 /* Skip to end of symbol. */
1501 while (**pp != '\0')
1502 {
1503 (*pp)++;
1504 }
1505
1506 /* Check for and handle cretinous dbx symbol name continuation! */
1507 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1508 {
1509 *pp = next_symbol_text (objfile);
1510 }
1511 else
1512 {
1513 break;
1514 }
1515 }
1516 return objfile_type (objfile)->builtin_error;
1517 }
1518 \f
1519
1520 /* Read type information or a type definition; return the type. Even
1521 though this routine accepts either type information or a type
1522 definition, the distinction is relevant--some parts of stabsread.c
1523 assume that type information starts with a digit, '-', or '(' in
1524 deciding whether to call read_type. */
1525
1526 static struct type *
1527 read_type (const char **pp, struct objfile *objfile)
1528 {
1529 struct type *type = 0;
1530 struct type *type1;
1531 int typenums[2];
1532 char type_descriptor;
1533
1534 /* Size in bits of type if specified by a type attribute, or -1 if
1535 there is no size attribute. */
1536 int type_size = -1;
1537
1538 /* Used to distinguish string and bitstring from char-array and set. */
1539 int is_string = 0;
1540
1541 /* Used to distinguish vector from array. */
1542 int is_vector = 0;
1543
1544 /* Read type number if present. The type number may be omitted.
1545 for instance in a two-dimensional array declared with type
1546 "ar1;1;10;ar1;1;10;4". */
1547 if ((**pp >= '0' && **pp <= '9')
1548 || **pp == '('
1549 || **pp == '-')
1550 {
1551 if (read_type_number (pp, typenums) != 0)
1552 return error_type (pp, objfile);
1553
1554 if (**pp != '=')
1555 {
1556 /* Type is not being defined here. Either it already
1557 exists, or this is a forward reference to it.
1558 dbx_alloc_type handles both cases. */
1559 type = dbx_alloc_type (typenums, objfile);
1560
1561 /* If this is a forward reference, arrange to complain if it
1562 doesn't get patched up by the time we're done
1563 reading. */
1564 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1565 add_undefined_type (type, typenums);
1566
1567 return type;
1568 }
1569
1570 /* Type is being defined here. */
1571 /* Skip the '='.
1572 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1573 (*pp) += 2;
1574 }
1575 else
1576 {
1577 /* 'typenums=' not present, type is anonymous. Read and return
1578 the definition, but don't put it in the type vector. */
1579 typenums[0] = typenums[1] = -1;
1580 (*pp)++;
1581 }
1582
1583 again:
1584 type_descriptor = (*pp)[-1];
1585 switch (type_descriptor)
1586 {
1587 case 'x':
1588 {
1589 enum type_code code;
1590
1591 /* Used to index through file_symbols. */
1592 struct pending *ppt;
1593 int i;
1594
1595 /* Name including "struct", etc. */
1596 char *type_name;
1597
1598 {
1599 const char *from, *p, *q1, *q2;
1600
1601 /* Set the type code according to the following letter. */
1602 switch ((*pp)[0])
1603 {
1604 case 's':
1605 code = TYPE_CODE_STRUCT;
1606 break;
1607 case 'u':
1608 code = TYPE_CODE_UNION;
1609 break;
1610 case 'e':
1611 code = TYPE_CODE_ENUM;
1612 break;
1613 default:
1614 {
1615 /* Complain and keep going, so compilers can invent new
1616 cross-reference types. */
1617 complaint (_("Unrecognized cross-reference type `%c'"),
1618 (*pp)[0]);
1619 code = TYPE_CODE_STRUCT;
1620 break;
1621 }
1622 }
1623
1624 q1 = strchr (*pp, '<');
1625 p = strchr (*pp, ':');
1626 if (p == NULL)
1627 return error_type (pp, objfile);
1628 if (q1 && p > q1 && p[1] == ':')
1629 {
1630 int nesting_level = 0;
1631
1632 for (q2 = q1; *q2; q2++)
1633 {
1634 if (*q2 == '<')
1635 nesting_level++;
1636 else if (*q2 == '>')
1637 nesting_level--;
1638 else if (*q2 == ':' && nesting_level == 0)
1639 break;
1640 }
1641 p = q2;
1642 if (*p != ':')
1643 return error_type (pp, objfile);
1644 }
1645 type_name = NULL;
1646 if (get_current_subfile ()->language == language_cplus)
1647 {
1648 char *name = (char *) alloca (p - *pp + 1);
1649
1650 memcpy (name, *pp, p - *pp);
1651 name[p - *pp] = '\0';
1652
1653 std::string new_name = cp_canonicalize_string (name);
1654 if (!new_name.empty ())
1655 type_name = obstack_strdup (&objfile->objfile_obstack,
1656 new_name);
1657 }
1658 if (type_name == NULL)
1659 {
1660 char *to = type_name = (char *)
1661 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1662
1663 /* Copy the name. */
1664 from = *pp + 1;
1665 while (from < p)
1666 *to++ = *from++;
1667 *to = '\0';
1668 }
1669
1670 /* Set the pointer ahead of the name which we just read, and
1671 the colon. */
1672 *pp = p + 1;
1673 }
1674
1675 /* If this type has already been declared, then reuse the same
1676 type, rather than allocating a new one. This saves some
1677 memory. */
1678
1679 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
1680 for (i = 0; i < ppt->nsyms; i++)
1681 {
1682 struct symbol *sym = ppt->symbol[i];
1683
1684 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1685 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1686 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1687 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1688 {
1689 obstack_free (&objfile->objfile_obstack, type_name);
1690 type = SYMBOL_TYPE (sym);
1691 if (typenums[0] != -1)
1692 *dbx_lookup_type (typenums, objfile) = type;
1693 return type;
1694 }
1695 }
1696
1697 /* Didn't find the type to which this refers, so we must
1698 be dealing with a forward reference. Allocate a type
1699 structure for it, and keep track of it so we can
1700 fill in the rest of the fields when we get the full
1701 type. */
1702 type = dbx_alloc_type (typenums, objfile);
1703 TYPE_CODE (type) = code;
1704 TYPE_NAME (type) = type_name;
1705 INIT_CPLUS_SPECIFIC (type);
1706 TYPE_STUB (type) = 1;
1707
1708 add_undefined_type (type, typenums);
1709 return type;
1710 }
1711
1712 case '-': /* RS/6000 built-in type */
1713 case '0':
1714 case '1':
1715 case '2':
1716 case '3':
1717 case '4':
1718 case '5':
1719 case '6':
1720 case '7':
1721 case '8':
1722 case '9':
1723 case '(':
1724 (*pp)--;
1725
1726 /* We deal with something like t(1,2)=(3,4)=... which
1727 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1728
1729 /* Allocate and enter the typedef type first.
1730 This handles recursive types. */
1731 type = dbx_alloc_type (typenums, objfile);
1732 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1733 {
1734 struct type *xtype = read_type (pp, objfile);
1735
1736 if (type == xtype)
1737 {
1738 /* It's being defined as itself. That means it is "void". */
1739 TYPE_CODE (type) = TYPE_CODE_VOID;
1740 TYPE_LENGTH (type) = 1;
1741 }
1742 else if (type_size >= 0 || is_string)
1743 {
1744 /* This is the absolute wrong way to construct types. Every
1745 other debug format has found a way around this problem and
1746 the related problems with unnecessarily stubbed types;
1747 someone motivated should attempt to clean up the issue
1748 here as well. Once a type pointed to has been created it
1749 should not be modified.
1750
1751 Well, it's not *absolutely* wrong. Constructing recursive
1752 types (trees, linked lists) necessarily entails modifying
1753 types after creating them. Constructing any loop structure
1754 entails side effects. The Dwarf 2 reader does handle this
1755 more gracefully (it never constructs more than once
1756 instance of a type object, so it doesn't have to copy type
1757 objects wholesale), but it still mutates type objects after
1758 other folks have references to them.
1759
1760 Keep in mind that this circularity/mutation issue shows up
1761 at the source language level, too: C's "incomplete types",
1762 for example. So the proper cleanup, I think, would be to
1763 limit GDB's type smashing to match exactly those required
1764 by the source language. So GDB could have a
1765 "complete_this_type" function, but never create unnecessary
1766 copies of a type otherwise. */
1767 replace_type (type, xtype);
1768 TYPE_NAME (type) = NULL;
1769 }
1770 else
1771 {
1772 TYPE_TARGET_STUB (type) = 1;
1773 TYPE_TARGET_TYPE (type) = xtype;
1774 }
1775 }
1776 break;
1777
1778 /* In the following types, we must be sure to overwrite any existing
1779 type that the typenums refer to, rather than allocating a new one
1780 and making the typenums point to the new one. This is because there
1781 may already be pointers to the existing type (if it had been
1782 forward-referenced), and we must change it to a pointer, function,
1783 reference, or whatever, *in-place*. */
1784
1785 case '*': /* Pointer to another type */
1786 type1 = read_type (pp, objfile);
1787 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1788 break;
1789
1790 case '&': /* Reference to another type */
1791 type1 = read_type (pp, objfile);
1792 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
1793 TYPE_CODE_REF);
1794 break;
1795
1796 case 'f': /* Function returning another type */
1797 type1 = read_type (pp, objfile);
1798 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1799 break;
1800
1801 case 'g': /* Prototyped function. (Sun) */
1802 {
1803 /* Unresolved questions:
1804
1805 - According to Sun's ``STABS Interface Manual'', for 'f'
1806 and 'F' symbol descriptors, a `0' in the argument type list
1807 indicates a varargs function. But it doesn't say how 'g'
1808 type descriptors represent that info. Someone with access
1809 to Sun's toolchain should try it out.
1810
1811 - According to the comment in define_symbol (search for
1812 `process_prototype_types:'), Sun emits integer arguments as
1813 types which ref themselves --- like `void' types. Do we
1814 have to deal with that here, too? Again, someone with
1815 access to Sun's toolchain should try it out and let us
1816 know. */
1817
1818 const char *type_start = (*pp) - 1;
1819 struct type *return_type = read_type (pp, objfile);
1820 struct type *func_type
1821 = make_function_type (return_type,
1822 dbx_lookup_type (typenums, objfile));
1823 struct type_list {
1824 struct type *type;
1825 struct type_list *next;
1826 } *arg_types = 0;
1827 int num_args = 0;
1828
1829 while (**pp && **pp != '#')
1830 {
1831 struct type *arg_type = read_type (pp, objfile);
1832 struct type_list *newobj = XALLOCA (struct type_list);
1833 newobj->type = arg_type;
1834 newobj->next = arg_types;
1835 arg_types = newobj;
1836 num_args++;
1837 }
1838 if (**pp == '#')
1839 ++*pp;
1840 else
1841 {
1842 complaint (_("Prototyped function type didn't "
1843 "end arguments with `#':\n%s"),
1844 type_start);
1845 }
1846
1847 /* If there is just one argument whose type is `void', then
1848 that's just an empty argument list. */
1849 if (arg_types
1850 && ! arg_types->next
1851 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1852 num_args = 0;
1853
1854 TYPE_FIELDS (func_type)
1855 = (struct field *) TYPE_ALLOC (func_type,
1856 num_args * sizeof (struct field));
1857 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1858 {
1859 int i;
1860 struct type_list *t;
1861
1862 /* We stuck each argument type onto the front of the list
1863 when we read it, so the list is reversed. Build the
1864 fields array right-to-left. */
1865 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1866 TYPE_FIELD_TYPE (func_type, i) = t->type;
1867 }
1868 TYPE_NFIELDS (func_type) = num_args;
1869 TYPE_PROTOTYPED (func_type) = 1;
1870
1871 type = func_type;
1872 break;
1873 }
1874
1875 case 'k': /* Const qualifier on some type (Sun) */
1876 type = read_type (pp, objfile);
1877 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1878 dbx_lookup_type (typenums, objfile));
1879 break;
1880
1881 case 'B': /* Volatile qual on some type (Sun) */
1882 type = read_type (pp, objfile);
1883 type = make_cv_type (TYPE_CONST (type), 1, type,
1884 dbx_lookup_type (typenums, objfile));
1885 break;
1886
1887 case '@':
1888 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1889 { /* Member (class & variable) type */
1890 /* FIXME -- we should be doing smash_to_XXX types here. */
1891
1892 struct type *domain = read_type (pp, objfile);
1893 struct type *memtype;
1894
1895 if (**pp != ',')
1896 /* Invalid member type data format. */
1897 return error_type (pp, objfile);
1898 ++*pp;
1899
1900 memtype = read_type (pp, objfile);
1901 type = dbx_alloc_type (typenums, objfile);
1902 smash_to_memberptr_type (type, domain, memtype);
1903 }
1904 else
1905 /* type attribute */
1906 {
1907 const char *attr = *pp;
1908
1909 /* Skip to the semicolon. */
1910 while (**pp != ';' && **pp != '\0')
1911 ++(*pp);
1912 if (**pp == '\0')
1913 return error_type (pp, objfile);
1914 else
1915 ++ * pp; /* Skip the semicolon. */
1916
1917 switch (*attr)
1918 {
1919 case 's': /* Size attribute */
1920 type_size = atoi (attr + 1);
1921 if (type_size <= 0)
1922 type_size = -1;
1923 break;
1924
1925 case 'S': /* String attribute */
1926 /* FIXME: check to see if following type is array? */
1927 is_string = 1;
1928 break;
1929
1930 case 'V': /* Vector attribute */
1931 /* FIXME: check to see if following type is array? */
1932 is_vector = 1;
1933 break;
1934
1935 default:
1936 /* Ignore unrecognized type attributes, so future compilers
1937 can invent new ones. */
1938 break;
1939 }
1940 ++*pp;
1941 goto again;
1942 }
1943 break;
1944
1945 case '#': /* Method (class & fn) type */
1946 if ((*pp)[0] == '#')
1947 {
1948 /* We'll get the parameter types from the name. */
1949 struct type *return_type;
1950
1951 (*pp)++;
1952 return_type = read_type (pp, objfile);
1953 if (*(*pp)++ != ';')
1954 complaint (_("invalid (minimal) member type "
1955 "data format at symtab pos %d."),
1956 symnum);
1957 type = allocate_stub_method (return_type);
1958 if (typenums[0] != -1)
1959 *dbx_lookup_type (typenums, objfile) = type;
1960 }
1961 else
1962 {
1963 struct type *domain = read_type (pp, objfile);
1964 struct type *return_type;
1965 struct field *args;
1966 int nargs, varargs;
1967
1968 if (**pp != ',')
1969 /* Invalid member type data format. */
1970 return error_type (pp, objfile);
1971 else
1972 ++(*pp);
1973
1974 return_type = read_type (pp, objfile);
1975 args = read_args (pp, ';', objfile, &nargs, &varargs);
1976 if (args == NULL)
1977 return error_type (pp, objfile);
1978 type = dbx_alloc_type (typenums, objfile);
1979 smash_to_method_type (type, domain, return_type, args,
1980 nargs, varargs);
1981 }
1982 break;
1983
1984 case 'r': /* Range type */
1985 type = read_range_type (pp, typenums, type_size, objfile);
1986 if (typenums[0] != -1)
1987 *dbx_lookup_type (typenums, objfile) = type;
1988 break;
1989
1990 case 'b':
1991 {
1992 /* Sun ACC builtin int type */
1993 type = read_sun_builtin_type (pp, typenums, objfile);
1994 if (typenums[0] != -1)
1995 *dbx_lookup_type (typenums, objfile) = type;
1996 }
1997 break;
1998
1999 case 'R': /* Sun ACC builtin float type */
2000 type = read_sun_floating_type (pp, typenums, objfile);
2001 if (typenums[0] != -1)
2002 *dbx_lookup_type (typenums, objfile) = type;
2003 break;
2004
2005 case 'e': /* Enumeration type */
2006 type = dbx_alloc_type (typenums, objfile);
2007 type = read_enum_type (pp, type, objfile);
2008 if (typenums[0] != -1)
2009 *dbx_lookup_type (typenums, objfile) = type;
2010 break;
2011
2012 case 's': /* Struct type */
2013 case 'u': /* Union type */
2014 {
2015 enum type_code type_code = TYPE_CODE_UNDEF;
2016 type = dbx_alloc_type (typenums, objfile);
2017 switch (type_descriptor)
2018 {
2019 case 's':
2020 type_code = TYPE_CODE_STRUCT;
2021 break;
2022 case 'u':
2023 type_code = TYPE_CODE_UNION;
2024 break;
2025 }
2026 type = read_struct_type (pp, type, type_code, objfile);
2027 break;
2028 }
2029
2030 case 'a': /* Array type */
2031 if (**pp != 'r')
2032 return error_type (pp, objfile);
2033 ++*pp;
2034
2035 type = dbx_alloc_type (typenums, objfile);
2036 type = read_array_type (pp, type, objfile);
2037 if (is_string)
2038 TYPE_CODE (type) = TYPE_CODE_STRING;
2039 if (is_vector)
2040 make_vector_type (type);
2041 break;
2042
2043 case 'S': /* Set type */
2044 type1 = read_type (pp, objfile);
2045 type = create_set_type (NULL, type1);
2046 if (typenums[0] != -1)
2047 *dbx_lookup_type (typenums, objfile) = type;
2048 break;
2049
2050 default:
2051 --*pp; /* Go back to the symbol in error. */
2052 /* Particularly important if it was \0! */
2053 return error_type (pp, objfile);
2054 }
2055
2056 if (type == 0)
2057 {
2058 warning (_("GDB internal error, type is NULL in stabsread.c."));
2059 return error_type (pp, objfile);
2060 }
2061
2062 /* Size specified in a type attribute overrides any other size. */
2063 if (type_size != -1)
2064 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2065
2066 return type;
2067 }
2068 \f
2069 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2070 Return the proper type node for a given builtin type number. */
2071
2072 static const struct objfile_key<struct type *,
2073 gdb::noop_deleter<struct type *>>
2074 rs6000_builtin_type_data;
2075
2076 static struct type *
2077 rs6000_builtin_type (int typenum, struct objfile *objfile)
2078 {
2079 struct type **negative_types = rs6000_builtin_type_data.get (objfile);
2080
2081 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2082 #define NUMBER_RECOGNIZED 34
2083 struct type *rettype = NULL;
2084
2085 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2086 {
2087 complaint (_("Unknown builtin type %d"), typenum);
2088 return objfile_type (objfile)->builtin_error;
2089 }
2090
2091 if (!negative_types)
2092 {
2093 /* This includes an empty slot for type number -0. */
2094 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2095 NUMBER_RECOGNIZED + 1, struct type *);
2096 rs6000_builtin_type_data.set (objfile, negative_types);
2097 }
2098
2099 if (negative_types[-typenum] != NULL)
2100 return negative_types[-typenum];
2101
2102 #if TARGET_CHAR_BIT != 8
2103 #error This code wrong for TARGET_CHAR_BIT not 8
2104 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2105 that if that ever becomes not true, the correct fix will be to
2106 make the size in the struct type to be in bits, not in units of
2107 TARGET_CHAR_BIT. */
2108 #endif
2109
2110 switch (-typenum)
2111 {
2112 case 1:
2113 /* The size of this and all the other types are fixed, defined
2114 by the debugging format. If there is a type called "int" which
2115 is other than 32 bits, then it should use a new negative type
2116 number (or avoid negative type numbers for that case).
2117 See stabs.texinfo. */
2118 rettype = init_integer_type (objfile, 32, 0, "int");
2119 break;
2120 case 2:
2121 rettype = init_integer_type (objfile, 8, 0, "char");
2122 TYPE_NOSIGN (rettype) = 1;
2123 break;
2124 case 3:
2125 rettype = init_integer_type (objfile, 16, 0, "short");
2126 break;
2127 case 4:
2128 rettype = init_integer_type (objfile, 32, 0, "long");
2129 break;
2130 case 5:
2131 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2132 break;
2133 case 6:
2134 rettype = init_integer_type (objfile, 8, 0, "signed char");
2135 break;
2136 case 7:
2137 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2138 break;
2139 case 8:
2140 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2141 break;
2142 case 9:
2143 rettype = init_integer_type (objfile, 32, 1, "unsigned");
2144 break;
2145 case 10:
2146 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2147 break;
2148 case 11:
2149 rettype = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
2150 break;
2151 case 12:
2152 /* IEEE single precision (32 bit). */
2153 rettype = init_float_type (objfile, 32, "float",
2154 floatformats_ieee_single);
2155 break;
2156 case 13:
2157 /* IEEE double precision (64 bit). */
2158 rettype = init_float_type (objfile, 64, "double",
2159 floatformats_ieee_double);
2160 break;
2161 case 14:
2162 /* This is an IEEE double on the RS/6000, and different machines with
2163 different sizes for "long double" should use different negative
2164 type numbers. See stabs.texinfo. */
2165 rettype = init_float_type (objfile, 64, "long double",
2166 floatformats_ieee_double);
2167 break;
2168 case 15:
2169 rettype = init_integer_type (objfile, 32, 0, "integer");
2170 break;
2171 case 16:
2172 rettype = init_boolean_type (objfile, 32, 1, "boolean");
2173 break;
2174 case 17:
2175 rettype = init_float_type (objfile, 32, "short real",
2176 floatformats_ieee_single);
2177 break;
2178 case 18:
2179 rettype = init_float_type (objfile, 64, "real",
2180 floatformats_ieee_double);
2181 break;
2182 case 19:
2183 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2184 break;
2185 case 20:
2186 rettype = init_character_type (objfile, 8, 1, "character");
2187 break;
2188 case 21:
2189 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2190 break;
2191 case 22:
2192 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2193 break;
2194 case 23:
2195 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2196 break;
2197 case 24:
2198 rettype = init_boolean_type (objfile, 32, 1, "logical");
2199 break;
2200 case 25:
2201 /* Complex type consisting of two IEEE single precision values. */
2202 rettype = init_complex_type (objfile, "complex",
2203 rs6000_builtin_type (12, objfile));
2204 break;
2205 case 26:
2206 /* Complex type consisting of two IEEE double precision values. */
2207 rettype = init_complex_type (objfile, "double complex",
2208 rs6000_builtin_type (13, objfile));
2209 break;
2210 case 27:
2211 rettype = init_integer_type (objfile, 8, 0, "integer*1");
2212 break;
2213 case 28:
2214 rettype = init_integer_type (objfile, 16, 0, "integer*2");
2215 break;
2216 case 29:
2217 rettype = init_integer_type (objfile, 32, 0, "integer*4");
2218 break;
2219 case 30:
2220 rettype = init_character_type (objfile, 16, 0, "wchar");
2221 break;
2222 case 31:
2223 rettype = init_integer_type (objfile, 64, 0, "long long");
2224 break;
2225 case 32:
2226 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2227 break;
2228 case 33:
2229 rettype = init_integer_type (objfile, 64, 1, "logical*8");
2230 break;
2231 case 34:
2232 rettype = init_integer_type (objfile, 64, 0, "integer*8");
2233 break;
2234 }
2235 negative_types[-typenum] = rettype;
2236 return rettype;
2237 }
2238 \f
2239 /* This page contains subroutines of read_type. */
2240
2241 /* Wrapper around method_name_from_physname to flag a complaint
2242 if there is an error. */
2243
2244 static char *
2245 stabs_method_name_from_physname (const char *physname)
2246 {
2247 char *method_name;
2248
2249 method_name = method_name_from_physname (physname);
2250
2251 if (method_name == NULL)
2252 {
2253 complaint (_("Method has bad physname %s\n"), physname);
2254 return NULL;
2255 }
2256
2257 return method_name;
2258 }
2259
2260 /* Read member function stabs info for C++ classes. The form of each member
2261 function data is:
2262
2263 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2264
2265 An example with two member functions is:
2266
2267 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2268
2269 For the case of overloaded operators, the format is op$::*.funcs, where
2270 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2271 name (such as `+=') and `.' marks the end of the operator name.
2272
2273 Returns 1 for success, 0 for failure. */
2274
2275 static int
2276 read_member_functions (struct stab_field_info *fip, const char **pp,
2277 struct type *type, struct objfile *objfile)
2278 {
2279 int nfn_fields = 0;
2280 int length = 0;
2281 int i;
2282 struct next_fnfield
2283 {
2284 struct next_fnfield *next;
2285 struct fn_field fn_field;
2286 }
2287 *sublist;
2288 struct type *look_ahead_type;
2289 struct next_fnfieldlist *new_fnlist;
2290 struct next_fnfield *new_sublist;
2291 char *main_fn_name;
2292 const char *p;
2293
2294 /* Process each list until we find something that is not a member function
2295 or find the end of the functions. */
2296
2297 while (**pp != ';')
2298 {
2299 /* We should be positioned at the start of the function name.
2300 Scan forward to find the first ':' and if it is not the
2301 first of a "::" delimiter, then this is not a member function. */
2302 p = *pp;
2303 while (*p != ':')
2304 {
2305 p++;
2306 }
2307 if (p[1] != ':')
2308 {
2309 break;
2310 }
2311
2312 sublist = NULL;
2313 look_ahead_type = NULL;
2314 length = 0;
2315
2316 new_fnlist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfieldlist);
2317
2318 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2319 {
2320 /* This is a completely wierd case. In order to stuff in the
2321 names that might contain colons (the usual name delimiter),
2322 Mike Tiemann defined a different name format which is
2323 signalled if the identifier is "op$". In that case, the
2324 format is "op$::XXXX." where XXXX is the name. This is
2325 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2326 /* This lets the user type "break operator+".
2327 We could just put in "+" as the name, but that wouldn't
2328 work for "*". */
2329 static char opname[32] = "op$";
2330 char *o = opname + 3;
2331
2332 /* Skip past '::'. */
2333 *pp = p + 2;
2334
2335 STABS_CONTINUE (pp, objfile);
2336 p = *pp;
2337 while (*p != '.')
2338 {
2339 *o++ = *p++;
2340 }
2341 main_fn_name = savestring (opname, o - opname);
2342 /* Skip past '.' */
2343 *pp = p + 1;
2344 }
2345 else
2346 {
2347 main_fn_name = savestring (*pp, p - *pp);
2348 /* Skip past '::'. */
2349 *pp = p + 2;
2350 }
2351 new_fnlist->fn_fieldlist.name = main_fn_name;
2352
2353 do
2354 {
2355 new_sublist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfield);
2356
2357 /* Check for and handle cretinous dbx symbol name continuation! */
2358 if (look_ahead_type == NULL)
2359 {
2360 /* Normal case. */
2361 STABS_CONTINUE (pp, objfile);
2362
2363 new_sublist->fn_field.type = read_type (pp, objfile);
2364 if (**pp != ':')
2365 {
2366 /* Invalid symtab info for member function. */
2367 return 0;
2368 }
2369 }
2370 else
2371 {
2372 /* g++ version 1 kludge */
2373 new_sublist->fn_field.type = look_ahead_type;
2374 look_ahead_type = NULL;
2375 }
2376
2377 (*pp)++;
2378 p = *pp;
2379 while (*p != ';')
2380 {
2381 p++;
2382 }
2383
2384 /* These are methods, not functions. */
2385 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2386 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2387 else
2388 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2389 == TYPE_CODE_METHOD);
2390
2391 /* If this is just a stub, then we don't have the real name here. */
2392 if (TYPE_STUB (new_sublist->fn_field.type))
2393 {
2394 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2395 set_type_self_type (new_sublist->fn_field.type, type);
2396 new_sublist->fn_field.is_stub = 1;
2397 }
2398
2399 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2400 *pp = p + 1;
2401
2402 /* Set this member function's visibility fields. */
2403 switch (*(*pp)++)
2404 {
2405 case VISIBILITY_PRIVATE:
2406 new_sublist->fn_field.is_private = 1;
2407 break;
2408 case VISIBILITY_PROTECTED:
2409 new_sublist->fn_field.is_protected = 1;
2410 break;
2411 }
2412
2413 STABS_CONTINUE (pp, objfile);
2414 switch (**pp)
2415 {
2416 case 'A': /* Normal functions. */
2417 new_sublist->fn_field.is_const = 0;
2418 new_sublist->fn_field.is_volatile = 0;
2419 (*pp)++;
2420 break;
2421 case 'B': /* `const' member functions. */
2422 new_sublist->fn_field.is_const = 1;
2423 new_sublist->fn_field.is_volatile = 0;
2424 (*pp)++;
2425 break;
2426 case 'C': /* `volatile' member function. */
2427 new_sublist->fn_field.is_const = 0;
2428 new_sublist->fn_field.is_volatile = 1;
2429 (*pp)++;
2430 break;
2431 case 'D': /* `const volatile' member function. */
2432 new_sublist->fn_field.is_const = 1;
2433 new_sublist->fn_field.is_volatile = 1;
2434 (*pp)++;
2435 break;
2436 case '*': /* File compiled with g++ version 1 --
2437 no info. */
2438 case '?':
2439 case '.':
2440 break;
2441 default:
2442 complaint (_("const/volatile indicator missing, got '%c'"),
2443 **pp);
2444 break;
2445 }
2446
2447 switch (*(*pp)++)
2448 {
2449 case '*':
2450 {
2451 int nbits;
2452 /* virtual member function, followed by index.
2453 The sign bit is set to distinguish pointers-to-methods
2454 from virtual function indicies. Since the array is
2455 in words, the quantity must be shifted left by 1
2456 on 16 bit machine, and by 2 on 32 bit machine, forcing
2457 the sign bit out, and usable as a valid index into
2458 the array. Remove the sign bit here. */
2459 new_sublist->fn_field.voffset =
2460 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2461 if (nbits != 0)
2462 return 0;
2463
2464 STABS_CONTINUE (pp, objfile);
2465 if (**pp == ';' || **pp == '\0')
2466 {
2467 /* Must be g++ version 1. */
2468 new_sublist->fn_field.fcontext = 0;
2469 }
2470 else
2471 {
2472 /* Figure out from whence this virtual function came.
2473 It may belong to virtual function table of
2474 one of its baseclasses. */
2475 look_ahead_type = read_type (pp, objfile);
2476 if (**pp == ':')
2477 {
2478 /* g++ version 1 overloaded methods. */
2479 }
2480 else
2481 {
2482 new_sublist->fn_field.fcontext = look_ahead_type;
2483 if (**pp != ';')
2484 {
2485 return 0;
2486 }
2487 else
2488 {
2489 ++*pp;
2490 }
2491 look_ahead_type = NULL;
2492 }
2493 }
2494 break;
2495 }
2496 case '?':
2497 /* static member function. */
2498 {
2499 int slen = strlen (main_fn_name);
2500
2501 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2502
2503 /* For static member functions, we can't tell if they
2504 are stubbed, as they are put out as functions, and not as
2505 methods.
2506 GCC v2 emits the fully mangled name if
2507 dbxout.c:flag_minimal_debug is not set, so we have to
2508 detect a fully mangled physname here and set is_stub
2509 accordingly. Fully mangled physnames in v2 start with
2510 the member function name, followed by two underscores.
2511 GCC v3 currently always emits stubbed member functions,
2512 but with fully mangled physnames, which start with _Z. */
2513 if (!(strncmp (new_sublist->fn_field.physname,
2514 main_fn_name, slen) == 0
2515 && new_sublist->fn_field.physname[slen] == '_'
2516 && new_sublist->fn_field.physname[slen + 1] == '_'))
2517 {
2518 new_sublist->fn_field.is_stub = 1;
2519 }
2520 break;
2521 }
2522
2523 default:
2524 /* error */
2525 complaint (_("member function type missing, got '%c'"),
2526 (*pp)[-1]);
2527 /* Normal member function. */
2528 /* Fall through. */
2529
2530 case '.':
2531 /* normal member function. */
2532 new_sublist->fn_field.voffset = 0;
2533 new_sublist->fn_field.fcontext = 0;
2534 break;
2535 }
2536
2537 new_sublist->next = sublist;
2538 sublist = new_sublist;
2539 length++;
2540 STABS_CONTINUE (pp, objfile);
2541 }
2542 while (**pp != ';' && **pp != '\0');
2543
2544 (*pp)++;
2545 STABS_CONTINUE (pp, objfile);
2546
2547 /* Skip GCC 3.X member functions which are duplicates of the callable
2548 constructor/destructor. */
2549 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2550 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2551 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2552 {
2553 xfree (main_fn_name);
2554 }
2555 else
2556 {
2557 int has_destructor = 0, has_other = 0;
2558 int is_v3 = 0;
2559 struct next_fnfield *tmp_sublist;
2560
2561 /* Various versions of GCC emit various mostly-useless
2562 strings in the name field for special member functions.
2563
2564 For stub methods, we need to defer correcting the name
2565 until we are ready to unstub the method, because the current
2566 name string is used by gdb_mangle_name. The only stub methods
2567 of concern here are GNU v2 operators; other methods have their
2568 names correct (see caveat below).
2569
2570 For non-stub methods, in GNU v3, we have a complete physname.
2571 Therefore we can safely correct the name now. This primarily
2572 affects constructors and destructors, whose name will be
2573 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2574 operators will also have incorrect names; for instance,
2575 "operator int" will be named "operator i" (i.e. the type is
2576 mangled).
2577
2578 For non-stub methods in GNU v2, we have no easy way to
2579 know if we have a complete physname or not. For most
2580 methods the result depends on the platform (if CPLUS_MARKER
2581 can be `$' or `.', it will use minimal debug information, or
2582 otherwise the full physname will be included).
2583
2584 Rather than dealing with this, we take a different approach.
2585 For v3 mangled names, we can use the full physname; for v2,
2586 we use cplus_demangle_opname (which is actually v2 specific),
2587 because the only interesting names are all operators - once again
2588 barring the caveat below. Skip this process if any method in the
2589 group is a stub, to prevent our fouling up the workings of
2590 gdb_mangle_name.
2591
2592 The caveat: GCC 2.95.x (and earlier?) put constructors and
2593 destructors in the same method group. We need to split this
2594 into two groups, because they should have different names.
2595 So for each method group we check whether it contains both
2596 routines whose physname appears to be a destructor (the physnames
2597 for and destructors are always provided, due to quirks in v2
2598 mangling) and routines whose physname does not appear to be a
2599 destructor. If so then we break up the list into two halves.
2600 Even if the constructors and destructors aren't in the same group
2601 the destructor will still lack the leading tilde, so that also
2602 needs to be fixed.
2603
2604 So, to summarize what we expect and handle here:
2605
2606 Given Given Real Real Action
2607 method name physname physname method name
2608
2609 __opi [none] __opi__3Foo operator int opname
2610 [now or later]
2611 Foo _._3Foo _._3Foo ~Foo separate and
2612 rename
2613 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2614 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2615 */
2616
2617 tmp_sublist = sublist;
2618 while (tmp_sublist != NULL)
2619 {
2620 if (tmp_sublist->fn_field.physname[0] == '_'
2621 && tmp_sublist->fn_field.physname[1] == 'Z')
2622 is_v3 = 1;
2623
2624 if (is_destructor_name (tmp_sublist->fn_field.physname))
2625 has_destructor++;
2626 else
2627 has_other++;
2628
2629 tmp_sublist = tmp_sublist->next;
2630 }
2631
2632 if (has_destructor && has_other)
2633 {
2634 struct next_fnfieldlist *destr_fnlist;
2635 struct next_fnfield *last_sublist;
2636
2637 /* Create a new fn_fieldlist for the destructors. */
2638
2639 destr_fnlist = OBSTACK_ZALLOC (&fip->obstack,
2640 struct next_fnfieldlist);
2641
2642 destr_fnlist->fn_fieldlist.name
2643 = obconcat (&objfile->objfile_obstack, "~",
2644 new_fnlist->fn_fieldlist.name, (char *) NULL);
2645
2646 destr_fnlist->fn_fieldlist.fn_fields =
2647 XOBNEWVEC (&objfile->objfile_obstack,
2648 struct fn_field, has_destructor);
2649 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2650 sizeof (struct fn_field) * has_destructor);
2651 tmp_sublist = sublist;
2652 last_sublist = NULL;
2653 i = 0;
2654 while (tmp_sublist != NULL)
2655 {
2656 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2657 {
2658 tmp_sublist = tmp_sublist->next;
2659 continue;
2660 }
2661
2662 destr_fnlist->fn_fieldlist.fn_fields[i++]
2663 = tmp_sublist->fn_field;
2664 if (last_sublist)
2665 last_sublist->next = tmp_sublist->next;
2666 else
2667 sublist = tmp_sublist->next;
2668 last_sublist = tmp_sublist;
2669 tmp_sublist = tmp_sublist->next;
2670 }
2671
2672 destr_fnlist->fn_fieldlist.length = has_destructor;
2673 destr_fnlist->next = fip->fnlist;
2674 fip->fnlist = destr_fnlist;
2675 nfn_fields++;
2676 length -= has_destructor;
2677 }
2678 else if (is_v3)
2679 {
2680 /* v3 mangling prevents the use of abbreviated physnames,
2681 so we can do this here. There are stubbed methods in v3
2682 only:
2683 - in -gstabs instead of -gstabs+
2684 - or for static methods, which are output as a function type
2685 instead of a method type. */
2686 char *new_method_name =
2687 stabs_method_name_from_physname (sublist->fn_field.physname);
2688
2689 if (new_method_name != NULL
2690 && strcmp (new_method_name,
2691 new_fnlist->fn_fieldlist.name) != 0)
2692 {
2693 new_fnlist->fn_fieldlist.name = new_method_name;
2694 xfree (main_fn_name);
2695 }
2696 else
2697 xfree (new_method_name);
2698 }
2699 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2700 {
2701 new_fnlist->fn_fieldlist.name =
2702 obconcat (&objfile->objfile_obstack,
2703 "~", main_fn_name, (char *)NULL);
2704 xfree (main_fn_name);
2705 }
2706
2707 new_fnlist->fn_fieldlist.fn_fields
2708 = OBSTACK_CALLOC (&objfile->objfile_obstack, length, fn_field);
2709 for (i = length; (i--, sublist); sublist = sublist->next)
2710 {
2711 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2712 }
2713
2714 new_fnlist->fn_fieldlist.length = length;
2715 new_fnlist->next = fip->fnlist;
2716 fip->fnlist = new_fnlist;
2717 nfn_fields++;
2718 }
2719 }
2720
2721 if (nfn_fields)
2722 {
2723 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2724 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2725 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2726 memset (TYPE_FN_FIELDLISTS (type), 0,
2727 sizeof (struct fn_fieldlist) * nfn_fields);
2728 TYPE_NFN_FIELDS (type) = nfn_fields;
2729 }
2730
2731 return 1;
2732 }
2733
2734 /* Special GNU C++ name.
2735
2736 Returns 1 for success, 0 for failure. "failure" means that we can't
2737 keep parsing and it's time for error_type(). */
2738
2739 static int
2740 read_cpp_abbrev (struct stab_field_info *fip, const char **pp,
2741 struct type *type, struct objfile *objfile)
2742 {
2743 const char *p;
2744 const char *name;
2745 char cpp_abbrev;
2746 struct type *context;
2747
2748 p = *pp;
2749 if (*++p == 'v')
2750 {
2751 name = NULL;
2752 cpp_abbrev = *++p;
2753
2754 *pp = p + 1;
2755
2756 /* At this point, *pp points to something like "22:23=*22...",
2757 where the type number before the ':' is the "context" and
2758 everything after is a regular type definition. Lookup the
2759 type, find it's name, and construct the field name. */
2760
2761 context = read_type (pp, objfile);
2762
2763 switch (cpp_abbrev)
2764 {
2765 case 'f': /* $vf -- a virtual function table pointer */
2766 name = TYPE_NAME (context);
2767 if (name == NULL)
2768 {
2769 name = "";
2770 }
2771 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2772 vptr_name, name, (char *) NULL);
2773 break;
2774
2775 case 'b': /* $vb -- a virtual bsomethingorother */
2776 name = TYPE_NAME (context);
2777 if (name == NULL)
2778 {
2779 complaint (_("C++ abbreviated type name "
2780 "unknown at symtab pos %d"),
2781 symnum);
2782 name = "FOO";
2783 }
2784 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2785 name, (char *) NULL);
2786 break;
2787
2788 default:
2789 invalid_cpp_abbrev_complaint (*pp);
2790 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2791 "INVALID_CPLUSPLUS_ABBREV",
2792 (char *) NULL);
2793 break;
2794 }
2795
2796 /* At this point, *pp points to the ':'. Skip it and read the
2797 field type. */
2798
2799 p = ++(*pp);
2800 if (p[-1] != ':')
2801 {
2802 invalid_cpp_abbrev_complaint (*pp);
2803 return 0;
2804 }
2805 fip->list->field.type = read_type (pp, objfile);
2806 if (**pp == ',')
2807 (*pp)++; /* Skip the comma. */
2808 else
2809 return 0;
2810
2811 {
2812 int nbits;
2813
2814 SET_FIELD_BITPOS (fip->list->field,
2815 read_huge_number (pp, ';', &nbits, 0));
2816 if (nbits != 0)
2817 return 0;
2818 }
2819 /* This field is unpacked. */
2820 FIELD_BITSIZE (fip->list->field) = 0;
2821 fip->list->visibility = VISIBILITY_PRIVATE;
2822 }
2823 else
2824 {
2825 invalid_cpp_abbrev_complaint (*pp);
2826 /* We have no idea what syntax an unrecognized abbrev would have, so
2827 better return 0. If we returned 1, we would need to at least advance
2828 *pp to avoid an infinite loop. */
2829 return 0;
2830 }
2831 return 1;
2832 }
2833
2834 static void
2835 read_one_struct_field (struct stab_field_info *fip, const char **pp,
2836 const char *p, struct type *type,
2837 struct objfile *objfile)
2838 {
2839 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2840
2841 fip->list->field.name
2842 = obstack_strndup (&objfile->objfile_obstack, *pp, p - *pp);
2843 *pp = p + 1;
2844
2845 /* This means we have a visibility for a field coming. */
2846 if (**pp == '/')
2847 {
2848 (*pp)++;
2849 fip->list->visibility = *(*pp)++;
2850 }
2851 else
2852 {
2853 /* normal dbx-style format, no explicit visibility */
2854 fip->list->visibility = VISIBILITY_PUBLIC;
2855 }
2856
2857 fip->list->field.type = read_type (pp, objfile);
2858 if (**pp == ':')
2859 {
2860 p = ++(*pp);
2861 #if 0
2862 /* Possible future hook for nested types. */
2863 if (**pp == '!')
2864 {
2865 fip->list->field.bitpos = (long) -2; /* nested type */
2866 p = ++(*pp);
2867 }
2868 else
2869 ...;
2870 #endif
2871 while (*p != ';')
2872 {
2873 p++;
2874 }
2875 /* Static class member. */
2876 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2877 *pp = p + 1;
2878 return;
2879 }
2880 else if (**pp != ',')
2881 {
2882 /* Bad structure-type format. */
2883 stabs_general_complaint ("bad structure-type format");
2884 return;
2885 }
2886
2887 (*pp)++; /* Skip the comma. */
2888
2889 {
2890 int nbits;
2891
2892 SET_FIELD_BITPOS (fip->list->field,
2893 read_huge_number (pp, ',', &nbits, 0));
2894 if (nbits != 0)
2895 {
2896 stabs_general_complaint ("bad structure-type format");
2897 return;
2898 }
2899 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2900 if (nbits != 0)
2901 {
2902 stabs_general_complaint ("bad structure-type format");
2903 return;
2904 }
2905 }
2906
2907 if (FIELD_BITPOS (fip->list->field) == 0
2908 && FIELD_BITSIZE (fip->list->field) == 0)
2909 {
2910 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2911 it is a field which has been optimized out. The correct stab for
2912 this case is to use VISIBILITY_IGNORE, but that is a recent
2913 invention. (2) It is a 0-size array. For example
2914 union { int num; char str[0]; } foo. Printing _("<no value>" for
2915 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2916 will continue to work, and a 0-size array as a whole doesn't
2917 have any contents to print.
2918
2919 I suspect this probably could also happen with gcc -gstabs (not
2920 -gstabs+) for static fields, and perhaps other C++ extensions.
2921 Hopefully few people use -gstabs with gdb, since it is intended
2922 for dbx compatibility. */
2923
2924 /* Ignore this field. */
2925 fip->list->visibility = VISIBILITY_IGNORE;
2926 }
2927 else
2928 {
2929 /* Detect an unpacked field and mark it as such.
2930 dbx gives a bit size for all fields.
2931 Note that forward refs cannot be packed,
2932 and treat enums as if they had the width of ints. */
2933
2934 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2935
2936 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2937 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2938 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2939 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2940 {
2941 FIELD_BITSIZE (fip->list->field) = 0;
2942 }
2943 if ((FIELD_BITSIZE (fip->list->field)
2944 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2945 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2946 && FIELD_BITSIZE (fip->list->field)
2947 == gdbarch_int_bit (gdbarch))
2948 )
2949 &&
2950 FIELD_BITPOS (fip->list->field) % 8 == 0)
2951 {
2952 FIELD_BITSIZE (fip->list->field) = 0;
2953 }
2954 }
2955 }
2956
2957
2958 /* Read struct or class data fields. They have the form:
2959
2960 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2961
2962 At the end, we see a semicolon instead of a field.
2963
2964 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2965 a static field.
2966
2967 The optional VISIBILITY is one of:
2968
2969 '/0' (VISIBILITY_PRIVATE)
2970 '/1' (VISIBILITY_PROTECTED)
2971 '/2' (VISIBILITY_PUBLIC)
2972 '/9' (VISIBILITY_IGNORE)
2973
2974 or nothing, for C style fields with public visibility.
2975
2976 Returns 1 for success, 0 for failure. */
2977
2978 static int
2979 read_struct_fields (struct stab_field_info *fip, const char **pp,
2980 struct type *type, struct objfile *objfile)
2981 {
2982 const char *p;
2983 struct nextfield *newobj;
2984
2985 /* We better set p right now, in case there are no fields at all... */
2986
2987 p = *pp;
2988
2989 /* Read each data member type until we find the terminating ';' at the end of
2990 the data member list, or break for some other reason such as finding the
2991 start of the member function list. */
2992 /* Stab string for structure/union does not end with two ';' in
2993 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2994
2995 while (**pp != ';' && **pp != '\0')
2996 {
2997 STABS_CONTINUE (pp, objfile);
2998 /* Get space to record the next field's data. */
2999 newobj = OBSTACK_ZALLOC (&fip->obstack, struct nextfield);
3000
3001 newobj->next = fip->list;
3002 fip->list = newobj;
3003
3004 /* Get the field name. */
3005 p = *pp;
3006
3007 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3008 unless the CPLUS_MARKER is followed by an underscore, in
3009 which case it is just the name of an anonymous type, which we
3010 should handle like any other type name. */
3011
3012 if (is_cplus_marker (p[0]) && p[1] != '_')
3013 {
3014 if (!read_cpp_abbrev (fip, pp, type, objfile))
3015 return 0;
3016 continue;
3017 }
3018
3019 /* Look for the ':' that separates the field name from the field
3020 values. Data members are delimited by a single ':', while member
3021 functions are delimited by a pair of ':'s. When we hit the member
3022 functions (if any), terminate scan loop and return. */
3023
3024 while (*p != ':' && *p != '\0')
3025 {
3026 p++;
3027 }
3028 if (*p == '\0')
3029 return 0;
3030
3031 /* Check to see if we have hit the member functions yet. */
3032 if (p[1] == ':')
3033 {
3034 break;
3035 }
3036 read_one_struct_field (fip, pp, p, type, objfile);
3037 }
3038 if (p[0] == ':' && p[1] == ':')
3039 {
3040 /* (the deleted) chill the list of fields: the last entry (at
3041 the head) is a partially constructed entry which we now
3042 scrub. */
3043 fip->list = fip->list->next;
3044 }
3045 return 1;
3046 }
3047 /* *INDENT-OFF* */
3048 /* The stabs for C++ derived classes contain baseclass information which
3049 is marked by a '!' character after the total size. This function is
3050 called when we encounter the baseclass marker, and slurps up all the
3051 baseclass information.
3052
3053 Immediately following the '!' marker is the number of base classes that
3054 the class is derived from, followed by information for each base class.
3055 For each base class, there are two visibility specifiers, a bit offset
3056 to the base class information within the derived class, a reference to
3057 the type for the base class, and a terminating semicolon.
3058
3059 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3060 ^^ ^ ^ ^ ^ ^ ^
3061 Baseclass information marker __________________|| | | | | | |
3062 Number of baseclasses __________________________| | | | | | |
3063 Visibility specifiers (2) ________________________| | | | | |
3064 Offset in bits from start of class _________________| | | | |
3065 Type number for base class ___________________________| | | |
3066 Visibility specifiers (2) _______________________________| | |
3067 Offset in bits from start of class ________________________| |
3068 Type number of base class ____________________________________|
3069
3070 Return 1 for success, 0 for (error-type-inducing) failure. */
3071 /* *INDENT-ON* */
3072
3073
3074
3075 static int
3076 read_baseclasses (struct stab_field_info *fip, const char **pp,
3077 struct type *type, struct objfile *objfile)
3078 {
3079 int i;
3080 struct nextfield *newobj;
3081
3082 if (**pp != '!')
3083 {
3084 return 1;
3085 }
3086 else
3087 {
3088 /* Skip the '!' baseclass information marker. */
3089 (*pp)++;
3090 }
3091
3092 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3093 {
3094 int nbits;
3095
3096 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3097 if (nbits != 0)
3098 return 0;
3099 }
3100
3101 #if 0
3102 /* Some stupid compilers have trouble with the following, so break
3103 it up into simpler expressions. */
3104 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3105 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3106 #else
3107 {
3108 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3109 char *pointer;
3110
3111 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3112 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3113 }
3114 #endif /* 0 */
3115
3116 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3117
3118 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3119 {
3120 newobj = OBSTACK_ZALLOC (&fip->obstack, struct nextfield);
3121
3122 newobj->next = fip->list;
3123 fip->list = newobj;
3124 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3125 field! */
3126
3127 STABS_CONTINUE (pp, objfile);
3128 switch (**pp)
3129 {
3130 case '0':
3131 /* Nothing to do. */
3132 break;
3133 case '1':
3134 SET_TYPE_FIELD_VIRTUAL (type, i);
3135 break;
3136 default:
3137 /* Unknown character. Complain and treat it as non-virtual. */
3138 {
3139 complaint (_("Unknown virtual character `%c' for baseclass"),
3140 **pp);
3141 }
3142 }
3143 ++(*pp);
3144
3145 newobj->visibility = *(*pp)++;
3146 switch (newobj->visibility)
3147 {
3148 case VISIBILITY_PRIVATE:
3149 case VISIBILITY_PROTECTED:
3150 case VISIBILITY_PUBLIC:
3151 break;
3152 default:
3153 /* Bad visibility format. Complain and treat it as
3154 public. */
3155 {
3156 complaint (_("Unknown visibility `%c' for baseclass"),
3157 newobj->visibility);
3158 newobj->visibility = VISIBILITY_PUBLIC;
3159 }
3160 }
3161
3162 {
3163 int nbits;
3164
3165 /* The remaining value is the bit offset of the portion of the object
3166 corresponding to this baseclass. Always zero in the absence of
3167 multiple inheritance. */
3168
3169 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
3170 if (nbits != 0)
3171 return 0;
3172 }
3173
3174 /* The last piece of baseclass information is the type of the
3175 base class. Read it, and remember it's type name as this
3176 field's name. */
3177
3178 newobj->field.type = read_type (pp, objfile);
3179 newobj->field.name = TYPE_NAME (newobj->field.type);
3180
3181 /* Skip trailing ';' and bump count of number of fields seen. */
3182 if (**pp == ';')
3183 (*pp)++;
3184 else
3185 return 0;
3186 }
3187 return 1;
3188 }
3189
3190 /* The tail end of stabs for C++ classes that contain a virtual function
3191 pointer contains a tilde, a %, and a type number.
3192 The type number refers to the base class (possibly this class itself) which
3193 contains the vtable pointer for the current class.
3194
3195 This function is called when we have parsed all the method declarations,
3196 so we can look for the vptr base class info. */
3197
3198 static int
3199 read_tilde_fields (struct stab_field_info *fip, const char **pp,
3200 struct type *type, struct objfile *objfile)
3201 {
3202 const char *p;
3203
3204 STABS_CONTINUE (pp, objfile);
3205
3206 /* If we are positioned at a ';', then skip it. */
3207 if (**pp == ';')
3208 {
3209 (*pp)++;
3210 }
3211
3212 if (**pp == '~')
3213 {
3214 (*pp)++;
3215
3216 if (**pp == '=' || **pp == '+' || **pp == '-')
3217 {
3218 /* Obsolete flags that used to indicate the presence
3219 of constructors and/or destructors. */
3220 (*pp)++;
3221 }
3222
3223 /* Read either a '%' or the final ';'. */
3224 if (*(*pp)++ == '%')
3225 {
3226 /* The next number is the type number of the base class
3227 (possibly our own class) which supplies the vtable for
3228 this class. Parse it out, and search that class to find
3229 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3230 and TYPE_VPTR_FIELDNO. */
3231
3232 struct type *t;
3233 int i;
3234
3235 t = read_type (pp, objfile);
3236 p = (*pp)++;
3237 while (*p != '\0' && *p != ';')
3238 {
3239 p++;
3240 }
3241 if (*p == '\0')
3242 {
3243 /* Premature end of symbol. */
3244 return 0;
3245 }
3246
3247 set_type_vptr_basetype (type, t);
3248 if (type == t) /* Our own class provides vtbl ptr. */
3249 {
3250 for (i = TYPE_NFIELDS (t) - 1;
3251 i >= TYPE_N_BASECLASSES (t);
3252 --i)
3253 {
3254 const char *name = TYPE_FIELD_NAME (t, i);
3255
3256 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3257 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3258 {
3259 set_type_vptr_fieldno (type, i);
3260 goto gotit;
3261 }
3262 }
3263 /* Virtual function table field not found. */
3264 complaint (_("virtual function table pointer "
3265 "not found when defining class `%s'"),
3266 TYPE_NAME (type));
3267 return 0;
3268 }
3269 else
3270 {
3271 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3272 }
3273
3274 gotit:
3275 *pp = p + 1;
3276 }
3277 }
3278 return 1;
3279 }
3280
3281 static int
3282 attach_fn_fields_to_type (struct stab_field_info *fip, struct type *type)
3283 {
3284 int n;
3285
3286 for (n = TYPE_NFN_FIELDS (type);
3287 fip->fnlist != NULL;
3288 fip->fnlist = fip->fnlist->next)
3289 {
3290 --n; /* Circumvent Sun3 compiler bug. */
3291 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3292 }
3293 return 1;
3294 }
3295
3296 /* Create the vector of fields, and record how big it is.
3297 We need this info to record proper virtual function table information
3298 for this class's virtual functions. */
3299
3300 static int
3301 attach_fields_to_type (struct stab_field_info *fip, struct type *type,
3302 struct objfile *objfile)
3303 {
3304 int nfields = 0;
3305 int non_public_fields = 0;
3306 struct nextfield *scan;
3307
3308 /* Count up the number of fields that we have, as well as taking note of
3309 whether or not there are any non-public fields, which requires us to
3310 allocate and build the private_field_bits and protected_field_bits
3311 bitfields. */
3312
3313 for (scan = fip->list; scan != NULL; scan = scan->next)
3314 {
3315 nfields++;
3316 if (scan->visibility != VISIBILITY_PUBLIC)
3317 {
3318 non_public_fields++;
3319 }
3320 }
3321
3322 /* Now we know how many fields there are, and whether or not there are any
3323 non-public fields. Record the field count, allocate space for the
3324 array of fields, and create blank visibility bitfields if necessary. */
3325
3326 TYPE_NFIELDS (type) = nfields;
3327 TYPE_FIELDS (type) = (struct field *)
3328 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3329 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3330
3331 if (non_public_fields)
3332 {
3333 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3334
3335 TYPE_FIELD_PRIVATE_BITS (type) =
3336 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3337 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3338
3339 TYPE_FIELD_PROTECTED_BITS (type) =
3340 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3341 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3342
3343 TYPE_FIELD_IGNORE_BITS (type) =
3344 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3345 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3346 }
3347
3348 /* Copy the saved-up fields into the field vector. Start from the
3349 head of the list, adding to the tail of the field array, so that
3350 they end up in the same order in the array in which they were
3351 added to the list. */
3352
3353 while (nfields-- > 0)
3354 {
3355 TYPE_FIELD (type, nfields) = fip->list->field;
3356 switch (fip->list->visibility)
3357 {
3358 case VISIBILITY_PRIVATE:
3359 SET_TYPE_FIELD_PRIVATE (type, nfields);
3360 break;
3361
3362 case VISIBILITY_PROTECTED:
3363 SET_TYPE_FIELD_PROTECTED (type, nfields);
3364 break;
3365
3366 case VISIBILITY_IGNORE:
3367 SET_TYPE_FIELD_IGNORE (type, nfields);
3368 break;
3369
3370 case VISIBILITY_PUBLIC:
3371 break;
3372
3373 default:
3374 /* Unknown visibility. Complain and treat it as public. */
3375 {
3376 complaint (_("Unknown visibility `%c' for field"),
3377 fip->list->visibility);
3378 }
3379 break;
3380 }
3381 fip->list = fip->list->next;
3382 }
3383 return 1;
3384 }
3385
3386
3387 /* Complain that the compiler has emitted more than one definition for the
3388 structure type TYPE. */
3389 static void
3390 complain_about_struct_wipeout (struct type *type)
3391 {
3392 const char *name = "";
3393 const char *kind = "";
3394
3395 if (TYPE_NAME (type))
3396 {
3397 name = TYPE_NAME (type);
3398 switch (TYPE_CODE (type))
3399 {
3400 case TYPE_CODE_STRUCT: kind = "struct "; break;
3401 case TYPE_CODE_UNION: kind = "union "; break;
3402 case TYPE_CODE_ENUM: kind = "enum "; break;
3403 default: kind = "";
3404 }
3405 }
3406 else
3407 {
3408 name = "<unknown>";
3409 kind = "";
3410 }
3411
3412 complaint (_("struct/union type gets multiply defined: %s%s"), kind, name);
3413 }
3414
3415 /* Set the length for all variants of a same main_type, which are
3416 connected in the closed chain.
3417
3418 This is something that needs to be done when a type is defined *after*
3419 some cross references to this type have already been read. Consider
3420 for instance the following scenario where we have the following two
3421 stabs entries:
3422
3423 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3424 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3425
3426 A stubbed version of type dummy is created while processing the first
3427 stabs entry. The length of that type is initially set to zero, since
3428 it is unknown at this point. Also, a "constant" variation of type
3429 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3430 the stabs line).
3431
3432 The second stabs entry allows us to replace the stubbed definition
3433 with the real definition. However, we still need to adjust the length
3434 of the "constant" variation of that type, as its length was left
3435 untouched during the main type replacement... */
3436
3437 static void
3438 set_length_in_type_chain (struct type *type)
3439 {
3440 struct type *ntype = TYPE_CHAIN (type);
3441
3442 while (ntype != type)
3443 {
3444 if (TYPE_LENGTH(ntype) == 0)
3445 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3446 else
3447 complain_about_struct_wipeout (ntype);
3448 ntype = TYPE_CHAIN (ntype);
3449 }
3450 }
3451
3452 /* Read the description of a structure (or union type) and return an object
3453 describing the type.
3454
3455 PP points to a character pointer that points to the next unconsumed token
3456 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3457 *PP will point to "4a:1,0,32;;".
3458
3459 TYPE points to an incomplete type that needs to be filled in.
3460
3461 OBJFILE points to the current objfile from which the stabs information is
3462 being read. (Note that it is redundant in that TYPE also contains a pointer
3463 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3464 */
3465
3466 static struct type *
3467 read_struct_type (const char **pp, struct type *type, enum type_code type_code,
3468 struct objfile *objfile)
3469 {
3470 struct stab_field_info fi;
3471
3472 /* When describing struct/union/class types in stabs, G++ always drops
3473 all qualifications from the name. So if you've got:
3474 struct A { ... struct B { ... }; ... };
3475 then G++ will emit stabs for `struct A::B' that call it simply
3476 `struct B'. Obviously, if you've got a real top-level definition for
3477 `struct B', or other nested definitions, this is going to cause
3478 problems.
3479
3480 Obviously, GDB can't fix this by itself, but it can at least avoid
3481 scribbling on existing structure type objects when new definitions
3482 appear. */
3483 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3484 || TYPE_STUB (type)))
3485 {
3486 complain_about_struct_wipeout (type);
3487
3488 /* It's probably best to return the type unchanged. */
3489 return type;
3490 }
3491
3492 INIT_CPLUS_SPECIFIC (type);
3493 TYPE_CODE (type) = type_code;
3494 TYPE_STUB (type) = 0;
3495
3496 /* First comes the total size in bytes. */
3497
3498 {
3499 int nbits;
3500
3501 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3502 if (nbits != 0)
3503 return error_type (pp, objfile);
3504 set_length_in_type_chain (type);
3505 }
3506
3507 /* Now read the baseclasses, if any, read the regular C struct or C++
3508 class member fields, attach the fields to the type, read the C++
3509 member functions, attach them to the type, and then read any tilde
3510 field (baseclass specifier for the class holding the main vtable). */
3511
3512 if (!read_baseclasses (&fi, pp, type, objfile)
3513 || !read_struct_fields (&fi, pp, type, objfile)
3514 || !attach_fields_to_type (&fi, type, objfile)
3515 || !read_member_functions (&fi, pp, type, objfile)
3516 || !attach_fn_fields_to_type (&fi, type)
3517 || !read_tilde_fields (&fi, pp, type, objfile))
3518 {
3519 type = error_type (pp, objfile);
3520 }
3521
3522 return (type);
3523 }
3524
3525 /* Read a definition of an array type,
3526 and create and return a suitable type object.
3527 Also creates a range type which represents the bounds of that
3528 array. */
3529
3530 static struct type *
3531 read_array_type (const char **pp, struct type *type,
3532 struct objfile *objfile)
3533 {
3534 struct type *index_type, *element_type, *range_type;
3535 int lower, upper;
3536 int adjustable = 0;
3537 int nbits;
3538
3539 /* Format of an array type:
3540 "ar<index type>;lower;upper;<array_contents_type>".
3541 OS9000: "arlower,upper;<array_contents_type>".
3542
3543 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3544 for these, produce a type like float[][]. */
3545
3546 {
3547 index_type = read_type (pp, objfile);
3548 if (**pp != ';')
3549 /* Improper format of array type decl. */
3550 return error_type (pp, objfile);
3551 ++*pp;
3552 }
3553
3554 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3555 {
3556 (*pp)++;
3557 adjustable = 1;
3558 }
3559 lower = read_huge_number (pp, ';', &nbits, 0);
3560
3561 if (nbits != 0)
3562 return error_type (pp, objfile);
3563
3564 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3565 {
3566 (*pp)++;
3567 adjustable = 1;
3568 }
3569 upper = read_huge_number (pp, ';', &nbits, 0);
3570 if (nbits != 0)
3571 return error_type (pp, objfile);
3572
3573 element_type = read_type (pp, objfile);
3574
3575 if (adjustable)
3576 {
3577 lower = 0;
3578 upper = -1;
3579 }
3580
3581 range_type =
3582 create_static_range_type (NULL, index_type, lower, upper);
3583 type = create_array_type (type, element_type, range_type);
3584
3585 return type;
3586 }
3587
3588
3589 /* Read a definition of an enumeration type,
3590 and create and return a suitable type object.
3591 Also defines the symbols that represent the values of the type. */
3592
3593 static struct type *
3594 read_enum_type (const char **pp, struct type *type,
3595 struct objfile *objfile)
3596 {
3597 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3598 const char *p;
3599 char *name;
3600 long n;
3601 struct symbol *sym;
3602 int nsyms = 0;
3603 struct pending **symlist;
3604 struct pending *osyms, *syms;
3605 int o_nsyms;
3606 int nbits;
3607 int unsigned_enum = 1;
3608
3609 #if 0
3610 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3611 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3612 to do? For now, force all enum values to file scope. */
3613 if (within_function)
3614 symlist = get_local_symbols ();
3615 else
3616 #endif
3617 symlist = get_file_symbols ();
3618 osyms = *symlist;
3619 o_nsyms = osyms ? osyms->nsyms : 0;
3620
3621 /* The aix4 compiler emits an extra field before the enum members;
3622 my guess is it's a type of some sort. Just ignore it. */
3623 if (**pp == '-')
3624 {
3625 /* Skip over the type. */
3626 while (**pp != ':')
3627 (*pp)++;
3628
3629 /* Skip over the colon. */
3630 (*pp)++;
3631 }
3632
3633 /* Read the value-names and their values.
3634 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3635 A semicolon or comma instead of a NAME means the end. */
3636 while (**pp && **pp != ';' && **pp != ',')
3637 {
3638 STABS_CONTINUE (pp, objfile);
3639 p = *pp;
3640 while (*p != ':')
3641 p++;
3642 name = obstack_strndup (&objfile->objfile_obstack, *pp, p - *pp);
3643 *pp = p + 1;
3644 n = read_huge_number (pp, ',', &nbits, 0);
3645 if (nbits != 0)
3646 return error_type (pp, objfile);
3647
3648 sym = allocate_symbol (objfile);
3649 SYMBOL_SET_LINKAGE_NAME (sym, name);
3650 SYMBOL_SET_LANGUAGE (sym, get_current_subfile ()->language,
3651 &objfile->objfile_obstack);
3652 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3653 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3654 SYMBOL_VALUE (sym) = n;
3655 if (n < 0)
3656 unsigned_enum = 0;
3657 add_symbol_to_list (sym, symlist);
3658 nsyms++;
3659 }
3660
3661 if (**pp == ';')
3662 (*pp)++; /* Skip the semicolon. */
3663
3664 /* Now fill in the fields of the type-structure. */
3665
3666 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3667 set_length_in_type_chain (type);
3668 TYPE_CODE (type) = TYPE_CODE_ENUM;
3669 TYPE_STUB (type) = 0;
3670 if (unsigned_enum)
3671 TYPE_UNSIGNED (type) = 1;
3672 TYPE_NFIELDS (type) = nsyms;
3673 TYPE_FIELDS (type) = (struct field *)
3674 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3675 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3676
3677 /* Find the symbols for the values and put them into the type.
3678 The symbols can be found in the symlist that we put them on
3679 to cause them to be defined. osyms contains the old value
3680 of that symlist; everything up to there was defined by us. */
3681 /* Note that we preserve the order of the enum constants, so
3682 that in something like "enum {FOO, LAST_THING=FOO}" we print
3683 FOO, not LAST_THING. */
3684
3685 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3686 {
3687 int last = syms == osyms ? o_nsyms : 0;
3688 int j = syms->nsyms;
3689
3690 for (; --j >= last; --n)
3691 {
3692 struct symbol *xsym = syms->symbol[j];
3693
3694 SYMBOL_TYPE (xsym) = type;
3695 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3696 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3697 TYPE_FIELD_BITSIZE (type, n) = 0;
3698 }
3699 if (syms == osyms)
3700 break;
3701 }
3702
3703 return type;
3704 }
3705
3706 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3707 typedefs in every file (for int, long, etc):
3708
3709 type = b <signed> <width> <format type>; <offset>; <nbits>
3710 signed = u or s.
3711 optional format type = c or b for char or boolean.
3712 offset = offset from high order bit to start bit of type.
3713 width is # bytes in object of this type, nbits is # bits in type.
3714
3715 The width/offset stuff appears to be for small objects stored in
3716 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3717 FIXME. */
3718
3719 static struct type *
3720 read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
3721 {
3722 int type_bits;
3723 int nbits;
3724 int unsigned_type;
3725 int boolean_type = 0;
3726
3727 switch (**pp)
3728 {
3729 case 's':
3730 unsigned_type = 0;
3731 break;
3732 case 'u':
3733 unsigned_type = 1;
3734 break;
3735 default:
3736 return error_type (pp, objfile);
3737 }
3738 (*pp)++;
3739
3740 /* For some odd reason, all forms of char put a c here. This is strange
3741 because no other type has this honor. We can safely ignore this because
3742 we actually determine 'char'acterness by the number of bits specified in
3743 the descriptor.
3744 Boolean forms, e.g Fortran logical*X, put a b here. */
3745
3746 if (**pp == 'c')
3747 (*pp)++;
3748 else if (**pp == 'b')
3749 {
3750 boolean_type = 1;
3751 (*pp)++;
3752 }
3753
3754 /* The first number appears to be the number of bytes occupied
3755 by this type, except that unsigned short is 4 instead of 2.
3756 Since this information is redundant with the third number,
3757 we will ignore it. */
3758 read_huge_number (pp, ';', &nbits, 0);
3759 if (nbits != 0)
3760 return error_type (pp, objfile);
3761
3762 /* The second number is always 0, so ignore it too. */
3763 read_huge_number (pp, ';', &nbits, 0);
3764 if (nbits != 0)
3765 return error_type (pp, objfile);
3766
3767 /* The third number is the number of bits for this type. */
3768 type_bits = read_huge_number (pp, 0, &nbits, 0);
3769 if (nbits != 0)
3770 return error_type (pp, objfile);
3771 /* The type *should* end with a semicolon. If it are embedded
3772 in a larger type the semicolon may be the only way to know where
3773 the type ends. If this type is at the end of the stabstring we
3774 can deal with the omitted semicolon (but we don't have to like
3775 it). Don't bother to complain(), Sun's compiler omits the semicolon
3776 for "void". */
3777 if (**pp == ';')
3778 ++(*pp);
3779
3780 if (type_bits == 0)
3781 {
3782 struct type *type = init_type (objfile, TYPE_CODE_VOID,
3783 TARGET_CHAR_BIT, NULL);
3784 if (unsigned_type)
3785 TYPE_UNSIGNED (type) = 1;
3786 return type;
3787 }
3788
3789 if (boolean_type)
3790 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3791 else
3792 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3793 }
3794
3795 static struct type *
3796 read_sun_floating_type (const char **pp, int typenums[2],
3797 struct objfile *objfile)
3798 {
3799 int nbits;
3800 int details;
3801 int nbytes;
3802 struct type *rettype;
3803
3804 /* The first number has more details about the type, for example
3805 FN_COMPLEX. */
3806 details = read_huge_number (pp, ';', &nbits, 0);
3807 if (nbits != 0)
3808 return error_type (pp, objfile);
3809
3810 /* The second number is the number of bytes occupied by this type. */
3811 nbytes = read_huge_number (pp, ';', &nbits, 0);
3812 if (nbits != 0)
3813 return error_type (pp, objfile);
3814
3815 nbits = nbytes * TARGET_CHAR_BIT;
3816
3817 if (details == NF_COMPLEX || details == NF_COMPLEX16
3818 || details == NF_COMPLEX32)
3819 {
3820 rettype = dbx_init_float_type (objfile, nbits / 2);
3821 return init_complex_type (objfile, NULL, rettype);
3822 }
3823
3824 return dbx_init_float_type (objfile, nbits);
3825 }
3826
3827 /* Read a number from the string pointed to by *PP.
3828 The value of *PP is advanced over the number.
3829 If END is nonzero, the character that ends the
3830 number must match END, or an error happens;
3831 and that character is skipped if it does match.
3832 If END is zero, *PP is left pointing to that character.
3833
3834 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3835 the number is represented in an octal representation, assume that
3836 it is represented in a 2's complement representation with a size of
3837 TWOS_COMPLEMENT_BITS.
3838
3839 If the number fits in a long, set *BITS to 0 and return the value.
3840 If not, set *BITS to be the number of bits in the number and return 0.
3841
3842 If encounter garbage, set *BITS to -1 and return 0. */
3843
3844 static long
3845 read_huge_number (const char **pp, int end, int *bits,
3846 int twos_complement_bits)
3847 {
3848 const char *p = *pp;
3849 int sign = 1;
3850 int sign_bit = 0;
3851 long n = 0;
3852 int radix = 10;
3853 char overflow = 0;
3854 int nbits = 0;
3855 int c;
3856 long upper_limit;
3857 int twos_complement_representation = 0;
3858
3859 if (*p == '-')
3860 {
3861 sign = -1;
3862 p++;
3863 }
3864
3865 /* Leading zero means octal. GCC uses this to output values larger
3866 than an int (because that would be hard in decimal). */
3867 if (*p == '0')
3868 {
3869 radix = 8;
3870 p++;
3871 }
3872
3873 /* Skip extra zeros. */
3874 while (*p == '0')
3875 p++;
3876
3877 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3878 {
3879 /* Octal, possibly signed. Check if we have enough chars for a
3880 negative number. */
3881
3882 size_t len;
3883 const char *p1 = p;
3884
3885 while ((c = *p1) >= '0' && c < '8')
3886 p1++;
3887
3888 len = p1 - p;
3889 if (len > twos_complement_bits / 3
3890 || (twos_complement_bits % 3 == 0
3891 && len == twos_complement_bits / 3))
3892 {
3893 /* Ok, we have enough characters for a signed value, check
3894 for signedness by testing if the sign bit is set. */
3895 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3896 c = *p - '0';
3897 if (c & (1 << sign_bit))
3898 {
3899 /* Definitely signed. */
3900 twos_complement_representation = 1;
3901 sign = -1;
3902 }
3903 }
3904 }
3905
3906 upper_limit = LONG_MAX / radix;
3907
3908 while ((c = *p++) >= '0' && c < ('0' + radix))
3909 {
3910 if (n <= upper_limit)
3911 {
3912 if (twos_complement_representation)
3913 {
3914 /* Octal, signed, twos complement representation. In
3915 this case, n is the corresponding absolute value. */
3916 if (n == 0)
3917 {
3918 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3919
3920 n = -sn;
3921 }
3922 else
3923 {
3924 n *= radix;
3925 n -= c - '0';
3926 }
3927 }
3928 else
3929 {
3930 /* unsigned representation */
3931 n *= radix;
3932 n += c - '0'; /* FIXME this overflows anyway. */
3933 }
3934 }
3935 else
3936 overflow = 1;
3937
3938 /* This depends on large values being output in octal, which is
3939 what GCC does. */
3940 if (radix == 8)
3941 {
3942 if (nbits == 0)
3943 {
3944 if (c == '0')
3945 /* Ignore leading zeroes. */
3946 ;
3947 else if (c == '1')
3948 nbits = 1;
3949 else if (c == '2' || c == '3')
3950 nbits = 2;
3951 else
3952 nbits = 3;
3953 }
3954 else
3955 nbits += 3;
3956 }
3957 }
3958 if (end)
3959 {
3960 if (c && c != end)
3961 {
3962 if (bits != NULL)
3963 *bits = -1;
3964 return 0;
3965 }
3966 }
3967 else
3968 --p;
3969
3970 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3971 {
3972 /* We were supposed to parse a number with maximum
3973 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3974 if (bits != NULL)
3975 *bits = -1;
3976 return 0;
3977 }
3978
3979 *pp = p;
3980 if (overflow)
3981 {
3982 if (nbits == 0)
3983 {
3984 /* Large decimal constants are an error (because it is hard to
3985 count how many bits are in them). */
3986 if (bits != NULL)
3987 *bits = -1;
3988 return 0;
3989 }
3990
3991 /* -0x7f is the same as 0x80. So deal with it by adding one to
3992 the number of bits. Two's complement represention octals
3993 can't have a '-' in front. */
3994 if (sign == -1 && !twos_complement_representation)
3995 ++nbits;
3996 if (bits)
3997 *bits = nbits;
3998 }
3999 else
4000 {
4001 if (bits)
4002 *bits = 0;
4003 return n * sign;
4004 }
4005 /* It's *BITS which has the interesting information. */
4006 return 0;
4007 }
4008
4009 static struct type *
4010 read_range_type (const char **pp, int typenums[2], int type_size,
4011 struct objfile *objfile)
4012 {
4013 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4014 const char *orig_pp = *pp;
4015 int rangenums[2];
4016 long n2, n3;
4017 int n2bits, n3bits;
4018 int self_subrange;
4019 struct type *result_type;
4020 struct type *index_type = NULL;
4021
4022 /* First comes a type we are a subrange of.
4023 In C it is usually 0, 1 or the type being defined. */
4024 if (read_type_number (pp, rangenums) != 0)
4025 return error_type (pp, objfile);
4026 self_subrange = (rangenums[0] == typenums[0] &&
4027 rangenums[1] == typenums[1]);
4028
4029 if (**pp == '=')
4030 {
4031 *pp = orig_pp;
4032 index_type = read_type (pp, objfile);
4033 }
4034
4035 /* A semicolon should now follow; skip it. */
4036 if (**pp == ';')
4037 (*pp)++;
4038
4039 /* The remaining two operands are usually lower and upper bounds
4040 of the range. But in some special cases they mean something else. */
4041 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4042 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4043
4044 if (n2bits == -1 || n3bits == -1)
4045 return error_type (pp, objfile);
4046
4047 if (index_type)
4048 goto handle_true_range;
4049
4050 /* If limits are huge, must be large integral type. */
4051 if (n2bits != 0 || n3bits != 0)
4052 {
4053 char got_signed = 0;
4054 char got_unsigned = 0;
4055 /* Number of bits in the type. */
4056 int nbits = 0;
4057
4058 /* If a type size attribute has been specified, the bounds of
4059 the range should fit in this size. If the lower bounds needs
4060 more bits than the upper bound, then the type is signed. */
4061 if (n2bits <= type_size && n3bits <= type_size)
4062 {
4063 if (n2bits == type_size && n2bits > n3bits)
4064 got_signed = 1;
4065 else
4066 got_unsigned = 1;
4067 nbits = type_size;
4068 }
4069 /* Range from 0 to <large number> is an unsigned large integral type. */
4070 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4071 {
4072 got_unsigned = 1;
4073 nbits = n3bits;
4074 }
4075 /* Range from <large number> to <large number>-1 is a large signed
4076 integral type. Take care of the case where <large number> doesn't
4077 fit in a long but <large number>-1 does. */
4078 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4079 || (n2bits != 0 && n3bits == 0
4080 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4081 && n3 == LONG_MAX))
4082 {
4083 got_signed = 1;
4084 nbits = n2bits;
4085 }
4086
4087 if (got_signed || got_unsigned)
4088 return init_integer_type (objfile, nbits, got_unsigned, NULL);
4089 else
4090 return error_type (pp, objfile);
4091 }
4092
4093 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4094 if (self_subrange && n2 == 0 && n3 == 0)
4095 return init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
4096
4097 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4098 is the width in bytes.
4099
4100 Fortran programs appear to use this for complex types also. To
4101 distinguish between floats and complex, g77 (and others?) seem
4102 to use self-subranges for the complexes, and subranges of int for
4103 the floats.
4104
4105 Also note that for complexes, g77 sets n2 to the size of one of
4106 the member floats, not the whole complex beast. My guess is that
4107 this was to work well with pre-COMPLEX versions of gdb. */
4108
4109 if (n3 == 0 && n2 > 0)
4110 {
4111 struct type *float_type
4112 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
4113
4114 if (self_subrange)
4115 return init_complex_type (objfile, NULL, float_type);
4116 else
4117 return float_type;
4118 }
4119
4120 /* If the upper bound is -1, it must really be an unsigned integral. */
4121
4122 else if (n2 == 0 && n3 == -1)
4123 {
4124 int bits = type_size;
4125
4126 if (bits <= 0)
4127 {
4128 /* We don't know its size. It is unsigned int or unsigned
4129 long. GCC 2.3.3 uses this for long long too, but that is
4130 just a GDB 3.5 compatibility hack. */
4131 bits = gdbarch_int_bit (gdbarch);
4132 }
4133
4134 return init_integer_type (objfile, bits, 1, NULL);
4135 }
4136
4137 /* Special case: char is defined (Who knows why) as a subrange of
4138 itself with range 0-127. */
4139 else if (self_subrange && n2 == 0 && n3 == 127)
4140 {
4141 struct type *type = init_integer_type (objfile, TARGET_CHAR_BIT,
4142 0, NULL);
4143 TYPE_NOSIGN (type) = 1;
4144 return type;
4145 }
4146 /* We used to do this only for subrange of self or subrange of int. */
4147 else if (n2 == 0)
4148 {
4149 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4150 "unsigned long", and we already checked for that,
4151 so don't need to test for it here. */
4152
4153 if (n3 < 0)
4154 /* n3 actually gives the size. */
4155 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4156
4157 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4158 unsigned n-byte integer. But do require n to be a power of
4159 two; we don't want 3- and 5-byte integers flying around. */
4160 {
4161 int bytes;
4162 unsigned long bits;
4163
4164 bits = n3;
4165 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4166 bits >>= 8;
4167 if (bits == 0
4168 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4169 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4170 }
4171 }
4172 /* I think this is for Convex "long long". Since I don't know whether
4173 Convex sets self_subrange, I also accept that particular size regardless
4174 of self_subrange. */
4175 else if (n3 == 0 && n2 < 0
4176 && (self_subrange
4177 || n2 == -gdbarch_long_long_bit
4178 (gdbarch) / TARGET_CHAR_BIT))
4179 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4180 else if (n2 == -n3 - 1)
4181 {
4182 if (n3 == 0x7f)
4183 return init_integer_type (objfile, 8, 0, NULL);
4184 if (n3 == 0x7fff)
4185 return init_integer_type (objfile, 16, 0, NULL);
4186 if (n3 == 0x7fffffff)
4187 return init_integer_type (objfile, 32, 0, NULL);
4188 }
4189
4190 /* We have a real range type on our hands. Allocate space and
4191 return a real pointer. */
4192 handle_true_range:
4193
4194 if (self_subrange)
4195 index_type = objfile_type (objfile)->builtin_int;
4196 else
4197 index_type = *dbx_lookup_type (rangenums, objfile);
4198 if (index_type == NULL)
4199 {
4200 /* Does this actually ever happen? Is that why we are worrying
4201 about dealing with it rather than just calling error_type? */
4202
4203 complaint (_("base type %d of range type is not defined"), rangenums[1]);
4204
4205 index_type = objfile_type (objfile)->builtin_int;
4206 }
4207
4208 result_type
4209 = create_static_range_type (NULL, index_type, n2, n3);
4210 return (result_type);
4211 }
4212
4213 /* Read in an argument list. This is a list of types, separated by commas
4214 and terminated with END. Return the list of types read in, or NULL
4215 if there is an error. */
4216
4217 static struct field *
4218 read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
4219 int *varargsp)
4220 {
4221 /* FIXME! Remove this arbitrary limit! */
4222 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4223 int n = 0, i;
4224 struct field *rval;
4225
4226 while (**pp != end)
4227 {
4228 if (**pp != ',')
4229 /* Invalid argument list: no ','. */
4230 return NULL;
4231 (*pp)++;
4232 STABS_CONTINUE (pp, objfile);
4233 types[n++] = read_type (pp, objfile);
4234 }
4235 (*pp)++; /* get past `end' (the ':' character). */
4236
4237 if (n == 0)
4238 {
4239 /* We should read at least the THIS parameter here. Some broken stabs
4240 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4241 have been present ";-16,(0,43)" reference instead. This way the
4242 excessive ";" marker prematurely stops the parameters parsing. */
4243
4244 complaint (_("Invalid (empty) method arguments"));
4245 *varargsp = 0;
4246 }
4247 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4248 *varargsp = 1;
4249 else
4250 {
4251 n--;
4252 *varargsp = 0;
4253 }
4254
4255 rval = XCNEWVEC (struct field, n);
4256 for (i = 0; i < n; i++)
4257 rval[i].type = types[i];
4258 *nargsp = n;
4259 return rval;
4260 }
4261 \f
4262 /* Common block handling. */
4263
4264 /* List of symbols declared since the last BCOMM. This list is a tail
4265 of local_symbols. When ECOMM is seen, the symbols on the list
4266 are noted so their proper addresses can be filled in later,
4267 using the common block base address gotten from the assembler
4268 stabs. */
4269
4270 static struct pending *common_block;
4271 static int common_block_i;
4272
4273 /* Name of the current common block. We get it from the BCOMM instead of the
4274 ECOMM to match IBM documentation (even though IBM puts the name both places
4275 like everyone else). */
4276 static char *common_block_name;
4277
4278 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4279 to remain after this function returns. */
4280
4281 void
4282 common_block_start (const char *name, struct objfile *objfile)
4283 {
4284 if (common_block_name != NULL)
4285 {
4286 complaint (_("Invalid symbol data: common block within common block"));
4287 }
4288 common_block = *get_local_symbols ();
4289 common_block_i = common_block ? common_block->nsyms : 0;
4290 common_block_name = obstack_strdup (&objfile->objfile_obstack, name);
4291 }
4292
4293 /* Process a N_ECOMM symbol. */
4294
4295 void
4296 common_block_end (struct objfile *objfile)
4297 {
4298 /* Symbols declared since the BCOMM are to have the common block
4299 start address added in when we know it. common_block and
4300 common_block_i point to the first symbol after the BCOMM in
4301 the local_symbols list; copy the list and hang it off the
4302 symbol for the common block name for later fixup. */
4303 int i;
4304 struct symbol *sym;
4305 struct pending *newobj = 0;
4306 struct pending *next;
4307 int j;
4308
4309 if (common_block_name == NULL)
4310 {
4311 complaint (_("ECOMM symbol unmatched by BCOMM"));
4312 return;
4313 }
4314
4315 sym = allocate_symbol (objfile);
4316 /* Note: common_block_name already saved on objfile_obstack. */
4317 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4318 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4319
4320 /* Now we copy all the symbols which have been defined since the BCOMM. */
4321
4322 /* Copy all the struct pendings before common_block. */
4323 for (next = *get_local_symbols ();
4324 next != NULL && next != common_block;
4325 next = next->next)
4326 {
4327 for (j = 0; j < next->nsyms; j++)
4328 add_symbol_to_list (next->symbol[j], &newobj);
4329 }
4330
4331 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4332 NULL, it means copy all the local symbols (which we already did
4333 above). */
4334
4335 if (common_block != NULL)
4336 for (j = common_block_i; j < common_block->nsyms; j++)
4337 add_symbol_to_list (common_block->symbol[j], &newobj);
4338
4339 SYMBOL_TYPE (sym) = (struct type *) newobj;
4340
4341 /* Should we be putting local_symbols back to what it was?
4342 Does it matter? */
4343
4344 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4345 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4346 global_sym_chain[i] = sym;
4347 common_block_name = NULL;
4348 }
4349
4350 /* Add a common block's start address to the offset of each symbol
4351 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4352 the common block name). */
4353
4354 static void
4355 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4356 {
4357 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4358
4359 for (; next; next = next->next)
4360 {
4361 int j;
4362
4363 for (j = next->nsyms - 1; j >= 0; j--)
4364 SET_SYMBOL_VALUE_ADDRESS (next->symbol[j],
4365 SYMBOL_VALUE_ADDRESS (next->symbol[j])
4366 + valu);
4367 }
4368 }
4369 \f
4370
4371
4372 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4373 See add_undefined_type for more details. */
4374
4375 static void
4376 add_undefined_type_noname (struct type *type, int typenums[2])
4377 {
4378 struct nat nat;
4379
4380 nat.typenums[0] = typenums [0];
4381 nat.typenums[1] = typenums [1];
4382 nat.type = type;
4383
4384 if (noname_undefs_length == noname_undefs_allocated)
4385 {
4386 noname_undefs_allocated *= 2;
4387 noname_undefs = (struct nat *)
4388 xrealloc ((char *) noname_undefs,
4389 noname_undefs_allocated * sizeof (struct nat));
4390 }
4391 noname_undefs[noname_undefs_length++] = nat;
4392 }
4393
4394 /* Add TYPE to the UNDEF_TYPES vector.
4395 See add_undefined_type for more details. */
4396
4397 static void
4398 add_undefined_type_1 (struct type *type)
4399 {
4400 if (undef_types_length == undef_types_allocated)
4401 {
4402 undef_types_allocated *= 2;
4403 undef_types = (struct type **)
4404 xrealloc ((char *) undef_types,
4405 undef_types_allocated * sizeof (struct type *));
4406 }
4407 undef_types[undef_types_length++] = type;
4408 }
4409
4410 /* What about types defined as forward references inside of a small lexical
4411 scope? */
4412 /* Add a type to the list of undefined types to be checked through
4413 once this file has been read in.
4414
4415 In practice, we actually maintain two such lists: The first list
4416 (UNDEF_TYPES) is used for types whose name has been provided, and
4417 concerns forward references (eg 'xs' or 'xu' forward references);
4418 the second list (NONAME_UNDEFS) is used for types whose name is
4419 unknown at creation time, because they were referenced through
4420 their type number before the actual type was declared.
4421 This function actually adds the given type to the proper list. */
4422
4423 static void
4424 add_undefined_type (struct type *type, int typenums[2])
4425 {
4426 if (TYPE_NAME (type) == NULL)
4427 add_undefined_type_noname (type, typenums);
4428 else
4429 add_undefined_type_1 (type);
4430 }
4431
4432 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4433
4434 static void
4435 cleanup_undefined_types_noname (struct objfile *objfile)
4436 {
4437 int i;
4438
4439 for (i = 0; i < noname_undefs_length; i++)
4440 {
4441 struct nat nat = noname_undefs[i];
4442 struct type **type;
4443
4444 type = dbx_lookup_type (nat.typenums, objfile);
4445 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4446 {
4447 /* The instance flags of the undefined type are still unset,
4448 and needs to be copied over from the reference type.
4449 Since replace_type expects them to be identical, we need
4450 to set these flags manually before hand. */
4451 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4452 replace_type (nat.type, *type);
4453 }
4454 }
4455
4456 noname_undefs_length = 0;
4457 }
4458
4459 /* Go through each undefined type, see if it's still undefined, and fix it
4460 up if possible. We have two kinds of undefined types:
4461
4462 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4463 Fix: update array length using the element bounds
4464 and the target type's length.
4465 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4466 yet defined at the time a pointer to it was made.
4467 Fix: Do a full lookup on the struct/union tag. */
4468
4469 static void
4470 cleanup_undefined_types_1 (void)
4471 {
4472 struct type **type;
4473
4474 /* Iterate over every undefined type, and look for a symbol whose type
4475 matches our undefined type. The symbol matches if:
4476 1. It is a typedef in the STRUCT domain;
4477 2. It has the same name, and same type code;
4478 3. The instance flags are identical.
4479
4480 It is important to check the instance flags, because we have seen
4481 examples where the debug info contained definitions such as:
4482
4483 "foo_t:t30=B31=xefoo_t:"
4484
4485 In this case, we have created an undefined type named "foo_t" whose
4486 instance flags is null (when processing "xefoo_t"), and then created
4487 another type with the same name, but with different instance flags
4488 ('B' means volatile). I think that the definition above is wrong,
4489 since the same type cannot be volatile and non-volatile at the same
4490 time, but we need to be able to cope with it when it happens. The
4491 approach taken here is to treat these two types as different. */
4492
4493 for (type = undef_types; type < undef_types + undef_types_length; type++)
4494 {
4495 switch (TYPE_CODE (*type))
4496 {
4497
4498 case TYPE_CODE_STRUCT:
4499 case TYPE_CODE_UNION:
4500 case TYPE_CODE_ENUM:
4501 {
4502 /* Check if it has been defined since. Need to do this here
4503 as well as in check_typedef to deal with the (legitimate in
4504 C though not C++) case of several types with the same name
4505 in different source files. */
4506 if (TYPE_STUB (*type))
4507 {
4508 struct pending *ppt;
4509 int i;
4510 /* Name of the type, without "struct" or "union". */
4511 const char *type_name = TYPE_NAME (*type);
4512
4513 if (type_name == NULL)
4514 {
4515 complaint (_("need a type name"));
4516 break;
4517 }
4518 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
4519 {
4520 for (i = 0; i < ppt->nsyms; i++)
4521 {
4522 struct symbol *sym = ppt->symbol[i];
4523
4524 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4525 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4526 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4527 TYPE_CODE (*type))
4528 && (TYPE_INSTANCE_FLAGS (*type) ==
4529 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4530 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4531 type_name) == 0)
4532 replace_type (*type, SYMBOL_TYPE (sym));
4533 }
4534 }
4535 }
4536 }
4537 break;
4538
4539 default:
4540 {
4541 complaint (_("forward-referenced types left unresolved, "
4542 "type code %d."),
4543 TYPE_CODE (*type));
4544 }
4545 break;
4546 }
4547 }
4548
4549 undef_types_length = 0;
4550 }
4551
4552 /* Try to fix all the undefined types we encountered while processing
4553 this unit. */
4554
4555 void
4556 cleanup_undefined_stabs_types (struct objfile *objfile)
4557 {
4558 cleanup_undefined_types_1 ();
4559 cleanup_undefined_types_noname (objfile);
4560 }
4561
4562 /* See stabsread.h. */
4563
4564 void
4565 scan_file_globals (struct objfile *objfile)
4566 {
4567 int hash;
4568 struct symbol *sym, *prev;
4569 struct objfile *resolve_objfile;
4570
4571 /* SVR4 based linkers copy referenced global symbols from shared
4572 libraries to the main executable.
4573 If we are scanning the symbols for a shared library, try to resolve
4574 them from the minimal symbols of the main executable first. */
4575
4576 if (symfile_objfile && objfile != symfile_objfile)
4577 resolve_objfile = symfile_objfile;
4578 else
4579 resolve_objfile = objfile;
4580
4581 while (1)
4582 {
4583 /* Avoid expensive loop through all minimal symbols if there are
4584 no unresolved symbols. */
4585 for (hash = 0; hash < HASHSIZE; hash++)
4586 {
4587 if (global_sym_chain[hash])
4588 break;
4589 }
4590 if (hash >= HASHSIZE)
4591 return;
4592
4593 for (minimal_symbol *msymbol : resolve_objfile->msymbols ())
4594 {
4595 QUIT;
4596
4597 /* Skip static symbols. */
4598 switch (MSYMBOL_TYPE (msymbol))
4599 {
4600 case mst_file_text:
4601 case mst_file_data:
4602 case mst_file_bss:
4603 continue;
4604 default:
4605 break;
4606 }
4607
4608 prev = NULL;
4609
4610 /* Get the hash index and check all the symbols
4611 under that hash index. */
4612
4613 hash = hashname (msymbol->linkage_name ());
4614
4615 for (sym = global_sym_chain[hash]; sym;)
4616 {
4617 if (strcmp (msymbol->linkage_name (),
4618 SYMBOL_LINKAGE_NAME (sym)) == 0)
4619 {
4620 /* Splice this symbol out of the hash chain and
4621 assign the value we have to it. */
4622 if (prev)
4623 {
4624 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4625 }
4626 else
4627 {
4628 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4629 }
4630
4631 /* Check to see whether we need to fix up a common block. */
4632 /* Note: this code might be executed several times for
4633 the same symbol if there are multiple references. */
4634 if (sym)
4635 {
4636 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4637 {
4638 fix_common_block (sym,
4639 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4640 msymbol));
4641 }
4642 else
4643 {
4644 SET_SYMBOL_VALUE_ADDRESS
4645 (sym, MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4646 msymbol));
4647 }
4648 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4649 }
4650
4651 if (prev)
4652 {
4653 sym = SYMBOL_VALUE_CHAIN (prev);
4654 }
4655 else
4656 {
4657 sym = global_sym_chain[hash];
4658 }
4659 }
4660 else
4661 {
4662 prev = sym;
4663 sym = SYMBOL_VALUE_CHAIN (sym);
4664 }
4665 }
4666 }
4667 if (resolve_objfile == objfile)
4668 break;
4669 resolve_objfile = objfile;
4670 }
4671
4672 /* Change the storage class of any remaining unresolved globals to
4673 LOC_UNRESOLVED and remove them from the chain. */
4674 for (hash = 0; hash < HASHSIZE; hash++)
4675 {
4676 sym = global_sym_chain[hash];
4677 while (sym)
4678 {
4679 prev = sym;
4680 sym = SYMBOL_VALUE_CHAIN (sym);
4681
4682 /* Change the symbol address from the misleading chain value
4683 to address zero. */
4684 SET_SYMBOL_VALUE_ADDRESS (prev, 0);
4685
4686 /* Complain about unresolved common block symbols. */
4687 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4688 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4689 else
4690 complaint (_("%s: common block `%s' from "
4691 "global_sym_chain unresolved"),
4692 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
4693 }
4694 }
4695 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4696 }
4697
4698 /* Initialize anything that needs initializing when starting to read
4699 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4700 to a psymtab. */
4701
4702 void
4703 stabsread_init (void)
4704 {
4705 }
4706
4707 /* Initialize anything that needs initializing when a completely new
4708 symbol file is specified (not just adding some symbols from another
4709 file, e.g. a shared library). */
4710
4711 void
4712 stabsread_new_init (void)
4713 {
4714 /* Empty the hash table of global syms looking for values. */
4715 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4716 }
4717
4718 /* Initialize anything that needs initializing at the same time as
4719 start_symtab() is called. */
4720
4721 void
4722 start_stabs (void)
4723 {
4724 global_stabs = NULL; /* AIX COFF */
4725 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4726 n_this_object_header_files = 1;
4727 type_vector_length = 0;
4728 type_vector = (struct type **) 0;
4729 within_function = 0;
4730
4731 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4732 common_block_name = NULL;
4733 }
4734
4735 /* Call after end_symtab(). */
4736
4737 void
4738 end_stabs (void)
4739 {
4740 if (type_vector)
4741 {
4742 xfree (type_vector);
4743 }
4744 type_vector = 0;
4745 type_vector_length = 0;
4746 previous_stab_code = 0;
4747 }
4748
4749 void
4750 finish_global_stabs (struct objfile *objfile)
4751 {
4752 if (global_stabs)
4753 {
4754 patch_block_stabs (*get_global_symbols (), global_stabs, objfile);
4755 xfree (global_stabs);
4756 global_stabs = NULL;
4757 }
4758 }
4759
4760 /* Find the end of the name, delimited by a ':', but don't match
4761 ObjC symbols which look like -[Foo bar::]:bla. */
4762 static const char *
4763 find_name_end (const char *name)
4764 {
4765 const char *s = name;
4766
4767 if (s[0] == '-' || *s == '+')
4768 {
4769 /* Must be an ObjC method symbol. */
4770 if (s[1] != '[')
4771 {
4772 error (_("invalid symbol name \"%s\""), name);
4773 }
4774 s = strchr (s, ']');
4775 if (s == NULL)
4776 {
4777 error (_("invalid symbol name \"%s\""), name);
4778 }
4779 return strchr (s, ':');
4780 }
4781 else
4782 {
4783 return strchr (s, ':');
4784 }
4785 }
4786
4787 /* See stabsread.h. */
4788
4789 int
4790 hashname (const char *name)
4791 {
4792 return hash (name, strlen (name)) % HASHSIZE;
4793 }
4794
4795 /* Initializer for this module. */
4796
4797 void
4798 _initialize_stabsread (void)
4799 {
4800 undef_types_allocated = 20;
4801 undef_types_length = 0;
4802 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4803
4804 noname_undefs_allocated = 20;
4805 noname_undefs_length = 0;
4806 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4807
4808 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4809 &stab_register_funcs);
4810 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4811 &stab_register_funcs);
4812 }
This page took 0.146356 seconds and 3 git commands to generate.