Remove TYPE_TAG_NAME
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
25 this file. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "gdb_obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "expression.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "language.h"
44 #include "target-float.h"
45 #include "cp-abi.h"
46 #include "cp-support.h"
47 #include <ctype.h>
48
49 /* Ask stabsread.h to define the vars it normally declares `extern'. */
50 #define EXTERN
51 /**/
52 #include "stabsread.h" /* Our own declarations */
53 #undef EXTERN
54
55 struct nextfield
56 {
57 struct nextfield *next;
58
59 /* This is the raw visibility from the stab. It is not checked
60 for being one of the visibilities we recognize, so code which
61 examines this field better be able to deal. */
62 int visibility;
63
64 struct field field;
65 };
66
67 struct next_fnfieldlist
68 {
69 struct next_fnfieldlist *next;
70 struct fn_fieldlist fn_fieldlist;
71 };
72
73 /* The routines that read and process a complete stabs for a C struct or
74 C++ class pass lists of data member fields and lists of member function
75 fields in an instance of a field_info structure, as defined below.
76 This is part of some reorganization of low level C++ support and is
77 expected to eventually go away... (FIXME) */
78
79 struct field_info
80 {
81 struct nextfield *list;
82 struct next_fnfieldlist *fnlist;
83 };
84
85 static void
86 read_one_struct_field (struct field_info *, const char **, const char *,
87 struct type *, struct objfile *);
88
89 static struct type *dbx_alloc_type (int[2], struct objfile *);
90
91 static long read_huge_number (const char **, int, int *, int);
92
93 static struct type *error_type (const char **, struct objfile *);
94
95 static void
96 patch_block_stabs (struct pending *, struct pending_stabs *,
97 struct objfile *);
98
99 static void fix_common_block (struct symbol *, CORE_ADDR);
100
101 static int read_type_number (const char **, int *);
102
103 static struct type *read_type (const char **, struct objfile *);
104
105 static struct type *read_range_type (const char **, int[2],
106 int, struct objfile *);
107
108 static struct type *read_sun_builtin_type (const char **,
109 int[2], struct objfile *);
110
111 static struct type *read_sun_floating_type (const char **, int[2],
112 struct objfile *);
113
114 static struct type *read_enum_type (const char **, struct type *, struct objfile *);
115
116 static struct type *rs6000_builtin_type (int, struct objfile *);
117
118 static int
119 read_member_functions (struct field_info *, const char **, struct type *,
120 struct objfile *);
121
122 static int
123 read_struct_fields (struct field_info *, const char **, struct type *,
124 struct objfile *);
125
126 static int
127 read_baseclasses (struct field_info *, const char **, struct type *,
128 struct objfile *);
129
130 static int
131 read_tilde_fields (struct field_info *, const char **, struct type *,
132 struct objfile *);
133
134 static int attach_fn_fields_to_type (struct field_info *, struct type *);
135
136 static int attach_fields_to_type (struct field_info *, struct type *,
137 struct objfile *);
138
139 static struct type *read_struct_type (const char **, struct type *,
140 enum type_code,
141 struct objfile *);
142
143 static struct type *read_array_type (const char **, struct type *,
144 struct objfile *);
145
146 static struct field *read_args (const char **, int, struct objfile *,
147 int *, int *);
148
149 static void add_undefined_type (struct type *, int[2]);
150
151 static int
152 read_cpp_abbrev (struct field_info *, const char **, struct type *,
153 struct objfile *);
154
155 static const char *find_name_end (const char *name);
156
157 static int process_reference (const char **string);
158
159 void stabsread_clear_cache (void);
160
161 static const char vptr_name[] = "_vptr$";
162 static const char vb_name[] = "_vb$";
163
164 static void
165 invalid_cpp_abbrev_complaint (const char *arg1)
166 {
167 complaint (_("invalid C++ abbreviation `%s'"), arg1);
168 }
169
170 static void
171 reg_value_complaint (int regnum, int num_regs, const char *sym)
172 {
173 complaint (_("bad register number %d (max %d) in symbol %s"),
174 regnum, num_regs - 1, sym);
175 }
176
177 static void
178 stabs_general_complaint (const char *arg1)
179 {
180 complaint ("%s", arg1);
181 }
182
183 /* Make a list of forward references which haven't been defined. */
184
185 static struct type **undef_types;
186 static int undef_types_allocated;
187 static int undef_types_length;
188 static struct symbol *current_symbol = NULL;
189
190 /* Make a list of nameless types that are undefined.
191 This happens when another type is referenced by its number
192 before this type is actually defined. For instance "t(0,1)=k(0,2)"
193 and type (0,2) is defined only later. */
194
195 struct nat
196 {
197 int typenums[2];
198 struct type *type;
199 };
200 static struct nat *noname_undefs;
201 static int noname_undefs_allocated;
202 static int noname_undefs_length;
203
204 /* Check for and handle cretinous stabs symbol name continuation! */
205 #define STABS_CONTINUE(pp,objfile) \
206 do { \
207 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
208 *(pp) = next_symbol_text (objfile); \
209 } while (0)
210
211 /* Vector of types defined so far, indexed by their type numbers.
212 (In newer sun systems, dbx uses a pair of numbers in parens,
213 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
214 Then these numbers must be translated through the type_translations
215 hash table to get the index into the type vector.) */
216
217 static struct type **type_vector;
218
219 /* Number of elements allocated for type_vector currently. */
220
221 static int type_vector_length;
222
223 /* Initial size of type vector. Is realloc'd larger if needed, and
224 realloc'd down to the size actually used, when completed. */
225
226 #define INITIAL_TYPE_VECTOR_LENGTH 160
227 \f
228
229 /* Look up a dbx type-number pair. Return the address of the slot
230 where the type for that number-pair is stored.
231 The number-pair is in TYPENUMS.
232
233 This can be used for finding the type associated with that pair
234 or for associating a new type with the pair. */
235
236 static struct type **
237 dbx_lookup_type (int typenums[2], struct objfile *objfile)
238 {
239 int filenum = typenums[0];
240 int index = typenums[1];
241 unsigned old_len;
242 int real_filenum;
243 struct header_file *f;
244 int f_orig_length;
245
246 if (filenum == -1) /* -1,-1 is for temporary types. */
247 return 0;
248
249 if (filenum < 0 || filenum >= n_this_object_header_files)
250 {
251 complaint (_("Invalid symbol data: type number "
252 "(%d,%d) out of range at symtab pos %d."),
253 filenum, index, symnum);
254 goto error_return;
255 }
256
257 if (filenum == 0)
258 {
259 if (index < 0)
260 {
261 /* Caller wants address of address of type. We think
262 that negative (rs6k builtin) types will never appear as
263 "lvalues", (nor should they), so we stuff the real type
264 pointer into a temp, and return its address. If referenced,
265 this will do the right thing. */
266 static struct type *temp_type;
267
268 temp_type = rs6000_builtin_type (index, objfile);
269 return &temp_type;
270 }
271
272 /* Type is defined outside of header files.
273 Find it in this object file's type vector. */
274 if (index >= type_vector_length)
275 {
276 old_len = type_vector_length;
277 if (old_len == 0)
278 {
279 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
280 type_vector = XNEWVEC (struct type *, type_vector_length);
281 }
282 while (index >= type_vector_length)
283 {
284 type_vector_length *= 2;
285 }
286 type_vector = (struct type **)
287 xrealloc ((char *) type_vector,
288 (type_vector_length * sizeof (struct type *)));
289 memset (&type_vector[old_len], 0,
290 (type_vector_length - old_len) * sizeof (struct type *));
291 }
292 return (&type_vector[index]);
293 }
294 else
295 {
296 real_filenum = this_object_header_files[filenum];
297
298 if (real_filenum >= N_HEADER_FILES (objfile))
299 {
300 static struct type *temp_type;
301
302 warning (_("GDB internal error: bad real_filenum"));
303
304 error_return:
305 temp_type = objfile_type (objfile)->builtin_error;
306 return &temp_type;
307 }
308
309 f = HEADER_FILES (objfile) + real_filenum;
310
311 f_orig_length = f->length;
312 if (index >= f_orig_length)
313 {
314 while (index >= f->length)
315 {
316 f->length *= 2;
317 }
318 f->vector = (struct type **)
319 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
320 memset (&f->vector[f_orig_length], 0,
321 (f->length - f_orig_length) * sizeof (struct type *));
322 }
323 return (&f->vector[index]);
324 }
325 }
326
327 /* Make sure there is a type allocated for type numbers TYPENUMS
328 and return the type object.
329 This can create an empty (zeroed) type object.
330 TYPENUMS may be (-1, -1) to return a new type object that is not
331 put into the type vector, and so may not be referred to by number. */
332
333 static struct type *
334 dbx_alloc_type (int typenums[2], struct objfile *objfile)
335 {
336 struct type **type_addr;
337
338 if (typenums[0] == -1)
339 {
340 return (alloc_type (objfile));
341 }
342
343 type_addr = dbx_lookup_type (typenums, objfile);
344
345 /* If we are referring to a type not known at all yet,
346 allocate an empty type for it.
347 We will fill it in later if we find out how. */
348 if (*type_addr == 0)
349 {
350 *type_addr = alloc_type (objfile);
351 }
352
353 return (*type_addr);
354 }
355
356 /* Allocate a floating-point type of size BITS. */
357
358 static struct type *
359 dbx_init_float_type (struct objfile *objfile, int bits)
360 {
361 struct gdbarch *gdbarch = get_objfile_arch (objfile);
362 const struct floatformat **format;
363 struct type *type;
364
365 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
366 if (format)
367 type = init_float_type (objfile, bits, NULL, format);
368 else
369 type = init_type (objfile, TYPE_CODE_ERROR, bits, NULL);
370
371 return type;
372 }
373
374 /* for all the stabs in a given stab vector, build appropriate types
375 and fix their symbols in given symbol vector. */
376
377 static void
378 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
379 struct objfile *objfile)
380 {
381 int ii;
382 char *name;
383 const char *pp;
384 struct symbol *sym;
385
386 if (stabs)
387 {
388 /* for all the stab entries, find their corresponding symbols and
389 patch their types! */
390
391 for (ii = 0; ii < stabs->count; ++ii)
392 {
393 name = stabs->stab[ii];
394 pp = (char *) strchr (name, ':');
395 gdb_assert (pp); /* Must find a ':' or game's over. */
396 while (pp[1] == ':')
397 {
398 pp += 2;
399 pp = (char *) strchr (pp, ':');
400 }
401 sym = find_symbol_in_list (symbols, name, pp - name);
402 if (!sym)
403 {
404 /* FIXME-maybe: it would be nice if we noticed whether
405 the variable was defined *anywhere*, not just whether
406 it is defined in this compilation unit. But neither
407 xlc or GCC seem to need such a definition, and until
408 we do psymtabs (so that the minimal symbols from all
409 compilation units are available now), I'm not sure
410 how to get the information. */
411
412 /* On xcoff, if a global is defined and never referenced,
413 ld will remove it from the executable. There is then
414 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
415 sym = allocate_symbol (objfile);
416 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
417 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
418 SYMBOL_SET_LINKAGE_NAME
419 (sym, (char *) obstack_copy0 (&objfile->objfile_obstack,
420 name, pp - name));
421 pp += 2;
422 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
423 {
424 /* I don't think the linker does this with functions,
425 so as far as I know this is never executed.
426 But it doesn't hurt to check. */
427 SYMBOL_TYPE (sym) =
428 lookup_function_type (read_type (&pp, objfile));
429 }
430 else
431 {
432 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
433 }
434 add_symbol_to_list (sym, &global_symbols);
435 }
436 else
437 {
438 pp += 2;
439 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
440 {
441 SYMBOL_TYPE (sym) =
442 lookup_function_type (read_type (&pp, objfile));
443 }
444 else
445 {
446 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
447 }
448 }
449 }
450 }
451 }
452 \f
453
454 /* Read a number by which a type is referred to in dbx data,
455 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
456 Just a single number N is equivalent to (0,N).
457 Return the two numbers by storing them in the vector TYPENUMS.
458 TYPENUMS will then be used as an argument to dbx_lookup_type.
459
460 Returns 0 for success, -1 for error. */
461
462 static int
463 read_type_number (const char **pp, int *typenums)
464 {
465 int nbits;
466
467 if (**pp == '(')
468 {
469 (*pp)++;
470 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
471 if (nbits != 0)
472 return -1;
473 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
474 if (nbits != 0)
475 return -1;
476 }
477 else
478 {
479 typenums[0] = 0;
480 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
481 if (nbits != 0)
482 return -1;
483 }
484 return 0;
485 }
486 \f
487
488 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
489 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
490 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
491 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
492
493 /* Structure for storing pointers to reference definitions for fast lookup
494 during "process_later". */
495
496 struct ref_map
497 {
498 const char *stabs;
499 CORE_ADDR value;
500 struct symbol *sym;
501 };
502
503 #define MAX_CHUNK_REFS 100
504 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
505 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
506
507 static struct ref_map *ref_map;
508
509 /* Ptr to free cell in chunk's linked list. */
510 static int ref_count = 0;
511
512 /* Number of chunks malloced. */
513 static int ref_chunk = 0;
514
515 /* This file maintains a cache of stabs aliases found in the symbol
516 table. If the symbol table changes, this cache must be cleared
517 or we are left holding onto data in invalid obstacks. */
518 void
519 stabsread_clear_cache (void)
520 {
521 ref_count = 0;
522 ref_chunk = 0;
523 }
524
525 /* Create array of pointers mapping refids to symbols and stab strings.
526 Add pointers to reference definition symbols and/or their values as we
527 find them, using their reference numbers as our index.
528 These will be used later when we resolve references. */
529 void
530 ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
531 {
532 if (ref_count == 0)
533 ref_chunk = 0;
534 if (refnum >= ref_count)
535 ref_count = refnum + 1;
536 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
537 {
538 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
539 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
540
541 ref_map = (struct ref_map *)
542 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
543 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
544 new_chunks * REF_CHUNK_SIZE);
545 ref_chunk += new_chunks;
546 }
547 ref_map[refnum].stabs = stabs;
548 ref_map[refnum].sym = sym;
549 ref_map[refnum].value = value;
550 }
551
552 /* Return defined sym for the reference REFNUM. */
553 struct symbol *
554 ref_search (int refnum)
555 {
556 if (refnum < 0 || refnum > ref_count)
557 return 0;
558 return ref_map[refnum].sym;
559 }
560
561 /* Parse a reference id in STRING and return the resulting
562 reference number. Move STRING beyond the reference id. */
563
564 static int
565 process_reference (const char **string)
566 {
567 const char *p;
568 int refnum = 0;
569
570 if (**string != '#')
571 return 0;
572
573 /* Advance beyond the initial '#'. */
574 p = *string + 1;
575
576 /* Read number as reference id. */
577 while (*p && isdigit (*p))
578 {
579 refnum = refnum * 10 + *p - '0';
580 p++;
581 }
582 *string = p;
583 return refnum;
584 }
585
586 /* If STRING defines a reference, store away a pointer to the reference
587 definition for later use. Return the reference number. */
588
589 int
590 symbol_reference_defined (const char **string)
591 {
592 const char *p = *string;
593 int refnum = 0;
594
595 refnum = process_reference (&p);
596
597 /* Defining symbols end in '='. */
598 if (*p == '=')
599 {
600 /* Symbol is being defined here. */
601 *string = p + 1;
602 return refnum;
603 }
604 else
605 {
606 /* Must be a reference. Either the symbol has already been defined,
607 or this is a forward reference to it. */
608 *string = p;
609 return -1;
610 }
611 }
612
613 static int
614 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
615 {
616 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
617
618 if (regno < 0
619 || regno >= (gdbarch_num_regs (gdbarch)
620 + gdbarch_num_pseudo_regs (gdbarch)))
621 {
622 reg_value_complaint (regno,
623 gdbarch_num_regs (gdbarch)
624 + gdbarch_num_pseudo_regs (gdbarch),
625 SYMBOL_PRINT_NAME (sym));
626
627 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
628 }
629
630 return regno;
631 }
632
633 static const struct symbol_register_ops stab_register_funcs = {
634 stab_reg_to_regnum
635 };
636
637 /* The "aclass" indices for computed symbols. */
638
639 static int stab_register_index;
640 static int stab_regparm_index;
641
642 struct symbol *
643 define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
644 struct objfile *objfile)
645 {
646 struct gdbarch *gdbarch = get_objfile_arch (objfile);
647 struct symbol *sym;
648 const char *p = find_name_end (string);
649 int deftype;
650 int synonym = 0;
651 int i;
652
653 /* We would like to eliminate nameless symbols, but keep their types.
654 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
655 to type 2, but, should not create a symbol to address that type. Since
656 the symbol will be nameless, there is no way any user can refer to it. */
657
658 int nameless;
659
660 /* Ignore syms with empty names. */
661 if (string[0] == 0)
662 return 0;
663
664 /* Ignore old-style symbols from cc -go. */
665 if (p == 0)
666 return 0;
667
668 while (p[1] == ':')
669 {
670 p += 2;
671 p = strchr (p, ':');
672 if (p == NULL)
673 {
674 complaint (
675 _("Bad stabs string '%s'"), string);
676 return NULL;
677 }
678 }
679
680 /* If a nameless stab entry, all we need is the type, not the symbol.
681 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
682 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
683
684 current_symbol = sym = allocate_symbol (objfile);
685
686 if (processing_gcc_compilation)
687 {
688 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
689 number of bytes occupied by a type or object, which we ignore. */
690 SYMBOL_LINE (sym) = desc;
691 }
692 else
693 {
694 SYMBOL_LINE (sym) = 0; /* unknown */
695 }
696
697 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
698 &objfile->objfile_obstack);
699
700 if (is_cplus_marker (string[0]))
701 {
702 /* Special GNU C++ names. */
703 switch (string[1])
704 {
705 case 't':
706 SYMBOL_SET_LINKAGE_NAME (sym, "this");
707 break;
708
709 case 'v': /* $vtbl_ptr_type */
710 goto normal;
711
712 case 'e':
713 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
714 break;
715
716 case '_':
717 /* This was an anonymous type that was never fixed up. */
718 goto normal;
719
720 case 'X':
721 /* SunPRO (3.0 at least) static variable encoding. */
722 if (gdbarch_static_transform_name_p (gdbarch))
723 goto normal;
724 /* fall through */
725
726 default:
727 complaint (_("Unknown C++ symbol name `%s'"),
728 string);
729 goto normal; /* Do *something* with it. */
730 }
731 }
732 else
733 {
734 normal:
735 std::string new_name;
736
737 if (SYMBOL_LANGUAGE (sym) == language_cplus)
738 {
739 char *name = (char *) alloca (p - string + 1);
740
741 memcpy (name, string, p - string);
742 name[p - string] = '\0';
743 new_name = cp_canonicalize_string (name);
744 }
745 if (!new_name.empty ())
746 {
747 SYMBOL_SET_NAMES (sym,
748 new_name.c_str (), new_name.length (),
749 1, objfile);
750 }
751 else
752 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
753
754 if (SYMBOL_LANGUAGE (sym) == language_cplus)
755 cp_scan_for_anonymous_namespaces (sym, objfile);
756
757 }
758 p++;
759
760 /* Determine the type of name being defined. */
761 #if 0
762 /* Getting GDB to correctly skip the symbol on an undefined symbol
763 descriptor and not ever dump core is a very dodgy proposition if
764 we do things this way. I say the acorn RISC machine can just
765 fix their compiler. */
766 /* The Acorn RISC machine's compiler can put out locals that don't
767 start with "234=" or "(3,4)=", so assume anything other than the
768 deftypes we know how to handle is a local. */
769 if (!strchr ("cfFGpPrStTvVXCR", *p))
770 #else
771 if (isdigit (*p) || *p == '(' || *p == '-')
772 #endif
773 deftype = 'l';
774 else
775 deftype = *p++;
776
777 switch (deftype)
778 {
779 case 'c':
780 /* c is a special case, not followed by a type-number.
781 SYMBOL:c=iVALUE for an integer constant symbol.
782 SYMBOL:c=rVALUE for a floating constant symbol.
783 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
784 e.g. "b:c=e6,0" for "const b = blob1"
785 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
786 if (*p != '=')
787 {
788 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
789 SYMBOL_TYPE (sym) = error_type (&p, objfile);
790 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
791 add_symbol_to_list (sym, &file_symbols);
792 return sym;
793 }
794 ++p;
795 switch (*p++)
796 {
797 case 'r':
798 {
799 gdb_byte *dbl_valu;
800 struct type *dbl_type;
801
802 dbl_type = objfile_type (objfile)->builtin_double;
803 dbl_valu
804 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
805 TYPE_LENGTH (dbl_type));
806
807 target_float_from_string (dbl_valu, dbl_type, std::string (p));
808
809 SYMBOL_TYPE (sym) = dbl_type;
810 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
811 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
812 }
813 break;
814 case 'i':
815 {
816 /* Defining integer constants this way is kind of silly,
817 since 'e' constants allows the compiler to give not
818 only the value, but the type as well. C has at least
819 int, long, unsigned int, and long long as constant
820 types; other languages probably should have at least
821 unsigned as well as signed constants. */
822
823 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
824 SYMBOL_VALUE (sym) = atoi (p);
825 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
826 }
827 break;
828
829 case 'c':
830 {
831 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
832 SYMBOL_VALUE (sym) = atoi (p);
833 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
834 }
835 break;
836
837 case 's':
838 {
839 struct type *range_type;
840 int ind = 0;
841 char quote = *p++;
842 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
843 gdb_byte *string_value;
844
845 if (quote != '\'' && quote != '"')
846 {
847 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
848 SYMBOL_TYPE (sym) = error_type (&p, objfile);
849 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
850 add_symbol_to_list (sym, &file_symbols);
851 return sym;
852 }
853
854 /* Find matching quote, rejecting escaped quotes. */
855 while (*p && *p != quote)
856 {
857 if (*p == '\\' && p[1] == quote)
858 {
859 string_local[ind] = (gdb_byte) quote;
860 ind++;
861 p += 2;
862 }
863 else if (*p)
864 {
865 string_local[ind] = (gdb_byte) (*p);
866 ind++;
867 p++;
868 }
869 }
870 if (*p != quote)
871 {
872 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
873 SYMBOL_TYPE (sym) = error_type (&p, objfile);
874 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
875 add_symbol_to_list (sym, &file_symbols);
876 return sym;
877 }
878
879 /* NULL terminate the string. */
880 string_local[ind] = 0;
881 range_type
882 = create_static_range_type (NULL,
883 objfile_type (objfile)->builtin_int,
884 0, ind);
885 SYMBOL_TYPE (sym) = create_array_type (NULL,
886 objfile_type (objfile)->builtin_char,
887 range_type);
888 string_value
889 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
890 memcpy (string_value, string_local, ind + 1);
891 p++;
892
893 SYMBOL_VALUE_BYTES (sym) = string_value;
894 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
895 }
896 break;
897
898 case 'e':
899 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
900 can be represented as integral.
901 e.g. "b:c=e6,0" for "const b = blob1"
902 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
903 {
904 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
905 SYMBOL_TYPE (sym) = read_type (&p, objfile);
906
907 if (*p != ',')
908 {
909 SYMBOL_TYPE (sym) = error_type (&p, objfile);
910 break;
911 }
912 ++p;
913
914 /* If the value is too big to fit in an int (perhaps because
915 it is unsigned), or something like that, we silently get
916 a bogus value. The type and everything else about it is
917 correct. Ideally, we should be using whatever we have
918 available for parsing unsigned and long long values,
919 however. */
920 SYMBOL_VALUE (sym) = atoi (p);
921 }
922 break;
923 default:
924 {
925 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
926 SYMBOL_TYPE (sym) = error_type (&p, objfile);
927 }
928 }
929 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
930 add_symbol_to_list (sym, &file_symbols);
931 return sym;
932
933 case 'C':
934 /* The name of a caught exception. */
935 SYMBOL_TYPE (sym) = read_type (&p, objfile);
936 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
937 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
938 SYMBOL_VALUE_ADDRESS (sym) = valu;
939 add_symbol_to_list (sym, &local_symbols);
940 break;
941
942 case 'f':
943 /* A static function definition. */
944 SYMBOL_TYPE (sym) = read_type (&p, objfile);
945 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
946 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
947 add_symbol_to_list (sym, &file_symbols);
948 /* fall into process_function_types. */
949
950 process_function_types:
951 /* Function result types are described as the result type in stabs.
952 We need to convert this to the function-returning-type-X type
953 in GDB. E.g. "int" is converted to "function returning int". */
954 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
955 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
956
957 /* All functions in C++ have prototypes. Stabs does not offer an
958 explicit way to identify prototyped or unprototyped functions,
959 but both GCC and Sun CC emit stabs for the "call-as" type rather
960 than the "declared-as" type for unprototyped functions, so
961 we treat all functions as if they were prototyped. This is used
962 primarily for promotion when calling the function from GDB. */
963 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
964
965 /* fall into process_prototype_types. */
966
967 process_prototype_types:
968 /* Sun acc puts declared types of arguments here. */
969 if (*p == ';')
970 {
971 struct type *ftype = SYMBOL_TYPE (sym);
972 int nsemi = 0;
973 int nparams = 0;
974 const char *p1 = p;
975
976 /* Obtain a worst case guess for the number of arguments
977 by counting the semicolons. */
978 while (*p1)
979 {
980 if (*p1++ == ';')
981 nsemi++;
982 }
983
984 /* Allocate parameter information fields and fill them in. */
985 TYPE_FIELDS (ftype) = (struct field *)
986 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
987 while (*p++ == ';')
988 {
989 struct type *ptype;
990
991 /* A type number of zero indicates the start of varargs.
992 FIXME: GDB currently ignores vararg functions. */
993 if (p[0] == '0' && p[1] == '\0')
994 break;
995 ptype = read_type (&p, objfile);
996
997 /* The Sun compilers mark integer arguments, which should
998 be promoted to the width of the calling conventions, with
999 a type which references itself. This type is turned into
1000 a TYPE_CODE_VOID type by read_type, and we have to turn
1001 it back into builtin_int here.
1002 FIXME: Do we need a new builtin_promoted_int_arg ? */
1003 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
1004 ptype = objfile_type (objfile)->builtin_int;
1005 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1006 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1007 }
1008 TYPE_NFIELDS (ftype) = nparams;
1009 TYPE_PROTOTYPED (ftype) = 1;
1010 }
1011 break;
1012
1013 case 'F':
1014 /* A global function definition. */
1015 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1016 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1017 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1018 add_symbol_to_list (sym, &global_symbols);
1019 goto process_function_types;
1020
1021 case 'G':
1022 /* For a class G (global) symbol, it appears that the
1023 value is not correct. It is necessary to search for the
1024 corresponding linker definition to find the value.
1025 These definitions appear at the end of the namelist. */
1026 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1027 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1028 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1029 /* Don't add symbol references to global_sym_chain.
1030 Symbol references don't have valid names and wont't match up with
1031 minimal symbols when the global_sym_chain is relocated.
1032 We'll fixup symbol references when we fixup the defining symbol. */
1033 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1034 {
1035 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1036 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1037 global_sym_chain[i] = sym;
1038 }
1039 add_symbol_to_list (sym, &global_symbols);
1040 break;
1041
1042 /* This case is faked by a conditional above,
1043 when there is no code letter in the dbx data.
1044 Dbx data never actually contains 'l'. */
1045 case 's':
1046 case 'l':
1047 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1048 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1049 SYMBOL_VALUE (sym) = valu;
1050 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1051 add_symbol_to_list (sym, &local_symbols);
1052 break;
1053
1054 case 'p':
1055 if (*p == 'F')
1056 /* pF is a two-letter code that means a function parameter in Fortran.
1057 The type-number specifies the type of the return value.
1058 Translate it into a pointer-to-function type. */
1059 {
1060 p++;
1061 SYMBOL_TYPE (sym)
1062 = lookup_pointer_type
1063 (lookup_function_type (read_type (&p, objfile)));
1064 }
1065 else
1066 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1067
1068 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1069 SYMBOL_VALUE (sym) = valu;
1070 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1071 SYMBOL_IS_ARGUMENT (sym) = 1;
1072 add_symbol_to_list (sym, &local_symbols);
1073
1074 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1075 {
1076 /* On little-endian machines, this crud is never necessary,
1077 and, if the extra bytes contain garbage, is harmful. */
1078 break;
1079 }
1080
1081 /* If it's gcc-compiled, if it says `short', believe it. */
1082 if (processing_gcc_compilation
1083 || gdbarch_believe_pcc_promotion (gdbarch))
1084 break;
1085
1086 if (!gdbarch_believe_pcc_promotion (gdbarch))
1087 {
1088 /* If PCC says a parameter is a short or a char, it is
1089 really an int. */
1090 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1091 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1092 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1093 {
1094 SYMBOL_TYPE (sym) =
1095 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1096 ? objfile_type (objfile)->builtin_unsigned_int
1097 : objfile_type (objfile)->builtin_int;
1098 }
1099 break;
1100 }
1101 /* Fall through. */
1102
1103 case 'P':
1104 /* acc seems to use P to declare the prototypes of functions that
1105 are referenced by this file. gdb is not prepared to deal
1106 with this extra information. FIXME, it ought to. */
1107 if (type == N_FUN)
1108 {
1109 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1110 goto process_prototype_types;
1111 }
1112 /*FALLTHROUGH */
1113
1114 case 'R':
1115 /* Parameter which is in a register. */
1116 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1117 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1118 SYMBOL_IS_ARGUMENT (sym) = 1;
1119 SYMBOL_VALUE (sym) = valu;
1120 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1121 add_symbol_to_list (sym, &local_symbols);
1122 break;
1123
1124 case 'r':
1125 /* Register variable (either global or local). */
1126 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1127 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1128 SYMBOL_VALUE (sym) = valu;
1129 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1130 if (within_function)
1131 {
1132 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1133 the same name to represent an argument passed in a
1134 register. GCC uses 'P' for the same case. So if we find
1135 such a symbol pair we combine it into one 'P' symbol.
1136 For Sun cc we need to do this regardless of
1137 stabs_argument_has_addr, because the compiler puts out
1138 the 'p' symbol even if it never saves the argument onto
1139 the stack.
1140
1141 On most machines, we want to preserve both symbols, so
1142 that we can still get information about what is going on
1143 with the stack (VAX for computing args_printed, using
1144 stack slots instead of saved registers in backtraces,
1145 etc.).
1146
1147 Note that this code illegally combines
1148 main(argc) struct foo argc; { register struct foo argc; }
1149 but this case is considered pathological and causes a warning
1150 from a decent compiler. */
1151
1152 if (local_symbols
1153 && local_symbols->nsyms > 0
1154 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1155 {
1156 struct symbol *prev_sym;
1157
1158 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1159 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1160 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1161 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1162 SYMBOL_LINKAGE_NAME (sym)) == 0)
1163 {
1164 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1165 /* Use the type from the LOC_REGISTER; that is the type
1166 that is actually in that register. */
1167 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1168 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1169 sym = prev_sym;
1170 break;
1171 }
1172 }
1173 add_symbol_to_list (sym, &local_symbols);
1174 }
1175 else
1176 add_symbol_to_list (sym, &file_symbols);
1177 break;
1178
1179 case 'S':
1180 /* Static symbol at top level of file. */
1181 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1182 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1183 SYMBOL_VALUE_ADDRESS (sym) = valu;
1184 if (gdbarch_static_transform_name_p (gdbarch)
1185 && gdbarch_static_transform_name (gdbarch,
1186 SYMBOL_LINKAGE_NAME (sym))
1187 != SYMBOL_LINKAGE_NAME (sym))
1188 {
1189 struct bound_minimal_symbol msym;
1190
1191 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1192 NULL, objfile);
1193 if (msym.minsym != NULL)
1194 {
1195 const char *new_name = gdbarch_static_transform_name
1196 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1197
1198 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1199 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1200 }
1201 }
1202 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1203 add_symbol_to_list (sym, &file_symbols);
1204 break;
1205
1206 case 't':
1207 /* In Ada, there is no distinction between typedef and non-typedef;
1208 any type declaration implicitly has the equivalent of a typedef,
1209 and thus 't' is in fact equivalent to 'Tt'.
1210
1211 Therefore, for Ada units, we check the character immediately
1212 before the 't', and if we do not find a 'T', then make sure to
1213 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1214 will be stored in the VAR_DOMAIN). If the symbol was indeed
1215 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1216 elsewhere, so we don't need to take care of that.
1217
1218 This is important to do, because of forward references:
1219 The cleanup of undefined types stored in undef_types only uses
1220 STRUCT_DOMAIN symbols to perform the replacement. */
1221 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1222
1223 /* Typedef */
1224 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1225
1226 /* For a nameless type, we don't want a create a symbol, thus we
1227 did not use `sym'. Return without further processing. */
1228 if (nameless)
1229 return NULL;
1230
1231 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1232 SYMBOL_VALUE (sym) = valu;
1233 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1234 /* C++ vagaries: we may have a type which is derived from
1235 a base type which did not have its name defined when the
1236 derived class was output. We fill in the derived class's
1237 base part member's name here in that case. */
1238 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1239 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1240 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1241 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1242 {
1243 int j;
1244
1245 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1246 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1247 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1248 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1249 }
1250
1251 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1252 {
1253 /* gcc-2.6 or later (when using -fvtable-thunks)
1254 emits a unique named type for a vtable entry.
1255 Some gdb code depends on that specific name. */
1256 extern const char vtbl_ptr_name[];
1257
1258 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1259 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1260 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1261 {
1262 /* If we are giving a name to a type such as "pointer to
1263 foo" or "function returning foo", we better not set
1264 the TYPE_NAME. If the program contains "typedef char
1265 *caddr_t;", we don't want all variables of type char
1266 * to print as caddr_t. This is not just a
1267 consequence of GDB's type management; PCC and GCC (at
1268 least through version 2.4) both output variables of
1269 either type char * or caddr_t with the type number
1270 defined in the 't' symbol for caddr_t. If a future
1271 compiler cleans this up it GDB is not ready for it
1272 yet, but if it becomes ready we somehow need to
1273 disable this check (without breaking the PCC/GCC2.4
1274 case).
1275
1276 Sigh.
1277
1278 Fortunately, this check seems not to be necessary
1279 for anything except pointers or functions. */
1280 /* ezannoni: 2000-10-26. This seems to apply for
1281 versions of gcc older than 2.8. This was the original
1282 problem: with the following code gdb would tell that
1283 the type for name1 is caddr_t, and func is char().
1284
1285 typedef char *caddr_t;
1286 char *name2;
1287 struct x
1288 {
1289 char *name1;
1290 } xx;
1291 char *func()
1292 {
1293 }
1294 main () {}
1295 */
1296
1297 /* Pascal accepts names for pointer types. */
1298 if (current_subfile->language == language_pascal)
1299 {
1300 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1301 }
1302 }
1303 else
1304 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1305 }
1306
1307 add_symbol_to_list (sym, &file_symbols);
1308
1309 if (synonym)
1310 {
1311 /* Create the STRUCT_DOMAIN clone. */
1312 struct symbol *struct_sym = allocate_symbol (objfile);
1313
1314 *struct_sym = *sym;
1315 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1316 SYMBOL_VALUE (struct_sym) = valu;
1317 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1318 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1319 TYPE_NAME (SYMBOL_TYPE (sym))
1320 = obconcat (&objfile->objfile_obstack,
1321 SYMBOL_LINKAGE_NAME (sym),
1322 (char *) NULL);
1323 add_symbol_to_list (struct_sym, &file_symbols);
1324 }
1325
1326 break;
1327
1328 case 'T':
1329 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1330 by 't' which means we are typedef'ing it as well. */
1331 synonym = *p == 't';
1332
1333 if (synonym)
1334 p++;
1335
1336 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1337
1338 /* For a nameless type, we don't want a create a symbol, thus we
1339 did not use `sym'. Return without further processing. */
1340 if (nameless)
1341 return NULL;
1342
1343 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1344 SYMBOL_VALUE (sym) = valu;
1345 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1346 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1347 TYPE_NAME (SYMBOL_TYPE (sym))
1348 = obconcat (&objfile->objfile_obstack,
1349 SYMBOL_LINKAGE_NAME (sym),
1350 (char *) NULL);
1351 add_symbol_to_list (sym, &file_symbols);
1352
1353 if (synonym)
1354 {
1355 /* Clone the sym and then modify it. */
1356 struct symbol *typedef_sym = allocate_symbol (objfile);
1357
1358 *typedef_sym = *sym;
1359 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1360 SYMBOL_VALUE (typedef_sym) = valu;
1361 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1362 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1363 TYPE_NAME (SYMBOL_TYPE (sym))
1364 = obconcat (&objfile->objfile_obstack,
1365 SYMBOL_LINKAGE_NAME (sym),
1366 (char *) NULL);
1367 add_symbol_to_list (typedef_sym, &file_symbols);
1368 }
1369 break;
1370
1371 case 'V':
1372 /* Static symbol of local scope. */
1373 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1374 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1375 SYMBOL_VALUE_ADDRESS (sym) = valu;
1376 if (gdbarch_static_transform_name_p (gdbarch)
1377 && gdbarch_static_transform_name (gdbarch,
1378 SYMBOL_LINKAGE_NAME (sym))
1379 != SYMBOL_LINKAGE_NAME (sym))
1380 {
1381 struct bound_minimal_symbol msym;
1382
1383 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1384 NULL, objfile);
1385 if (msym.minsym != NULL)
1386 {
1387 const char *new_name = gdbarch_static_transform_name
1388 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1389
1390 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1391 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1392 }
1393 }
1394 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1395 add_symbol_to_list (sym, &local_symbols);
1396 break;
1397
1398 case 'v':
1399 /* Reference parameter */
1400 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1401 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1402 SYMBOL_IS_ARGUMENT (sym) = 1;
1403 SYMBOL_VALUE (sym) = valu;
1404 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1405 add_symbol_to_list (sym, &local_symbols);
1406 break;
1407
1408 case 'a':
1409 /* Reference parameter which is in a register. */
1410 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1411 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1412 SYMBOL_IS_ARGUMENT (sym) = 1;
1413 SYMBOL_VALUE (sym) = valu;
1414 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1415 add_symbol_to_list (sym, &local_symbols);
1416 break;
1417
1418 case 'X':
1419 /* This is used by Sun FORTRAN for "function result value".
1420 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1421 that Pascal uses it too, but when I tried it Pascal used
1422 "x:3" (local symbol) instead. */
1423 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1424 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1425 SYMBOL_VALUE (sym) = valu;
1426 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1427 add_symbol_to_list (sym, &local_symbols);
1428 break;
1429
1430 default:
1431 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1432 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1433 SYMBOL_VALUE (sym) = 0;
1434 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1435 add_symbol_to_list (sym, &file_symbols);
1436 break;
1437 }
1438
1439 /* Some systems pass variables of certain types by reference instead
1440 of by value, i.e. they will pass the address of a structure (in a
1441 register or on the stack) instead of the structure itself. */
1442
1443 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1444 && SYMBOL_IS_ARGUMENT (sym))
1445 {
1446 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1447 variables passed in a register). */
1448 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1449 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1450 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1451 and subsequent arguments on SPARC, for example). */
1452 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1453 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1454 }
1455
1456 return sym;
1457 }
1458
1459 /* Skip rest of this symbol and return an error type.
1460
1461 General notes on error recovery: error_type always skips to the
1462 end of the symbol (modulo cretinous dbx symbol name continuation).
1463 Thus code like this:
1464
1465 if (*(*pp)++ != ';')
1466 return error_type (pp, objfile);
1467
1468 is wrong because if *pp starts out pointing at '\0' (typically as the
1469 result of an earlier error), it will be incremented to point to the
1470 start of the next symbol, which might produce strange results, at least
1471 if you run off the end of the string table. Instead use
1472
1473 if (**pp != ';')
1474 return error_type (pp, objfile);
1475 ++*pp;
1476
1477 or
1478
1479 if (**pp != ';')
1480 foo = error_type (pp, objfile);
1481 else
1482 ++*pp;
1483
1484 And in case it isn't obvious, the point of all this hair is so the compiler
1485 can define new types and new syntaxes, and old versions of the
1486 debugger will be able to read the new symbol tables. */
1487
1488 static struct type *
1489 error_type (const char **pp, struct objfile *objfile)
1490 {
1491 complaint (_("couldn't parse type; debugger out of date?"));
1492 while (1)
1493 {
1494 /* Skip to end of symbol. */
1495 while (**pp != '\0')
1496 {
1497 (*pp)++;
1498 }
1499
1500 /* Check for and handle cretinous dbx symbol name continuation! */
1501 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1502 {
1503 *pp = next_symbol_text (objfile);
1504 }
1505 else
1506 {
1507 break;
1508 }
1509 }
1510 return objfile_type (objfile)->builtin_error;
1511 }
1512 \f
1513
1514 /* Read type information or a type definition; return the type. Even
1515 though this routine accepts either type information or a type
1516 definition, the distinction is relevant--some parts of stabsread.c
1517 assume that type information starts with a digit, '-', or '(' in
1518 deciding whether to call read_type. */
1519
1520 static struct type *
1521 read_type (const char **pp, struct objfile *objfile)
1522 {
1523 struct type *type = 0;
1524 struct type *type1;
1525 int typenums[2];
1526 char type_descriptor;
1527
1528 /* Size in bits of type if specified by a type attribute, or -1 if
1529 there is no size attribute. */
1530 int type_size = -1;
1531
1532 /* Used to distinguish string and bitstring from char-array and set. */
1533 int is_string = 0;
1534
1535 /* Used to distinguish vector from array. */
1536 int is_vector = 0;
1537
1538 /* Read type number if present. The type number may be omitted.
1539 for instance in a two-dimensional array declared with type
1540 "ar1;1;10;ar1;1;10;4". */
1541 if ((**pp >= '0' && **pp <= '9')
1542 || **pp == '('
1543 || **pp == '-')
1544 {
1545 if (read_type_number (pp, typenums) != 0)
1546 return error_type (pp, objfile);
1547
1548 if (**pp != '=')
1549 {
1550 /* Type is not being defined here. Either it already
1551 exists, or this is a forward reference to it.
1552 dbx_alloc_type handles both cases. */
1553 type = dbx_alloc_type (typenums, objfile);
1554
1555 /* If this is a forward reference, arrange to complain if it
1556 doesn't get patched up by the time we're done
1557 reading. */
1558 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1559 add_undefined_type (type, typenums);
1560
1561 return type;
1562 }
1563
1564 /* Type is being defined here. */
1565 /* Skip the '='.
1566 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1567 (*pp) += 2;
1568 }
1569 else
1570 {
1571 /* 'typenums=' not present, type is anonymous. Read and return
1572 the definition, but don't put it in the type vector. */
1573 typenums[0] = typenums[1] = -1;
1574 (*pp)++;
1575 }
1576
1577 again:
1578 type_descriptor = (*pp)[-1];
1579 switch (type_descriptor)
1580 {
1581 case 'x':
1582 {
1583 enum type_code code;
1584
1585 /* Used to index through file_symbols. */
1586 struct pending *ppt;
1587 int i;
1588
1589 /* Name including "struct", etc. */
1590 char *type_name;
1591
1592 {
1593 const char *from, *p, *q1, *q2;
1594
1595 /* Set the type code according to the following letter. */
1596 switch ((*pp)[0])
1597 {
1598 case 's':
1599 code = TYPE_CODE_STRUCT;
1600 break;
1601 case 'u':
1602 code = TYPE_CODE_UNION;
1603 break;
1604 case 'e':
1605 code = TYPE_CODE_ENUM;
1606 break;
1607 default:
1608 {
1609 /* Complain and keep going, so compilers can invent new
1610 cross-reference types. */
1611 complaint (_("Unrecognized cross-reference type `%c'"),
1612 (*pp)[0]);
1613 code = TYPE_CODE_STRUCT;
1614 break;
1615 }
1616 }
1617
1618 q1 = strchr (*pp, '<');
1619 p = strchr (*pp, ':');
1620 if (p == NULL)
1621 return error_type (pp, objfile);
1622 if (q1 && p > q1 && p[1] == ':')
1623 {
1624 int nesting_level = 0;
1625
1626 for (q2 = q1; *q2; q2++)
1627 {
1628 if (*q2 == '<')
1629 nesting_level++;
1630 else if (*q2 == '>')
1631 nesting_level--;
1632 else if (*q2 == ':' && nesting_level == 0)
1633 break;
1634 }
1635 p = q2;
1636 if (*p != ':')
1637 return error_type (pp, objfile);
1638 }
1639 type_name = NULL;
1640 if (current_subfile->language == language_cplus)
1641 {
1642 char *name = (char *) alloca (p - *pp + 1);
1643
1644 memcpy (name, *pp, p - *pp);
1645 name[p - *pp] = '\0';
1646
1647 std::string new_name = cp_canonicalize_string (name);
1648 if (!new_name.empty ())
1649 {
1650 type_name
1651 = (char *) obstack_copy0 (&objfile->objfile_obstack,
1652 new_name.c_str (),
1653 new_name.length ());
1654 }
1655 }
1656 if (type_name == NULL)
1657 {
1658 char *to = type_name = (char *)
1659 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1660
1661 /* Copy the name. */
1662 from = *pp + 1;
1663 while (from < p)
1664 *to++ = *from++;
1665 *to = '\0';
1666 }
1667
1668 /* Set the pointer ahead of the name which we just read, and
1669 the colon. */
1670 *pp = p + 1;
1671 }
1672
1673 /* If this type has already been declared, then reuse the same
1674 type, rather than allocating a new one. This saves some
1675 memory. */
1676
1677 for (ppt = file_symbols; ppt; ppt = ppt->next)
1678 for (i = 0; i < ppt->nsyms; i++)
1679 {
1680 struct symbol *sym = ppt->symbol[i];
1681
1682 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1683 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1684 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1685 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1686 {
1687 obstack_free (&objfile->objfile_obstack, type_name);
1688 type = SYMBOL_TYPE (sym);
1689 if (typenums[0] != -1)
1690 *dbx_lookup_type (typenums, objfile) = type;
1691 return type;
1692 }
1693 }
1694
1695 /* Didn't find the type to which this refers, so we must
1696 be dealing with a forward reference. Allocate a type
1697 structure for it, and keep track of it so we can
1698 fill in the rest of the fields when we get the full
1699 type. */
1700 type = dbx_alloc_type (typenums, objfile);
1701 TYPE_CODE (type) = code;
1702 TYPE_NAME (type) = type_name;
1703 INIT_CPLUS_SPECIFIC (type);
1704 TYPE_STUB (type) = 1;
1705
1706 add_undefined_type (type, typenums);
1707 return type;
1708 }
1709
1710 case '-': /* RS/6000 built-in type */
1711 case '0':
1712 case '1':
1713 case '2':
1714 case '3':
1715 case '4':
1716 case '5':
1717 case '6':
1718 case '7':
1719 case '8':
1720 case '9':
1721 case '(':
1722 (*pp)--;
1723
1724 /* We deal with something like t(1,2)=(3,4)=... which
1725 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1726
1727 /* Allocate and enter the typedef type first.
1728 This handles recursive types. */
1729 type = dbx_alloc_type (typenums, objfile);
1730 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1731 {
1732 struct type *xtype = read_type (pp, objfile);
1733
1734 if (type == xtype)
1735 {
1736 /* It's being defined as itself. That means it is "void". */
1737 TYPE_CODE (type) = TYPE_CODE_VOID;
1738 TYPE_LENGTH (type) = 1;
1739 }
1740 else if (type_size >= 0 || is_string)
1741 {
1742 /* This is the absolute wrong way to construct types. Every
1743 other debug format has found a way around this problem and
1744 the related problems with unnecessarily stubbed types;
1745 someone motivated should attempt to clean up the issue
1746 here as well. Once a type pointed to has been created it
1747 should not be modified.
1748
1749 Well, it's not *absolutely* wrong. Constructing recursive
1750 types (trees, linked lists) necessarily entails modifying
1751 types after creating them. Constructing any loop structure
1752 entails side effects. The Dwarf 2 reader does handle this
1753 more gracefully (it never constructs more than once
1754 instance of a type object, so it doesn't have to copy type
1755 objects wholesale), but it still mutates type objects after
1756 other folks have references to them.
1757
1758 Keep in mind that this circularity/mutation issue shows up
1759 at the source language level, too: C's "incomplete types",
1760 for example. So the proper cleanup, I think, would be to
1761 limit GDB's type smashing to match exactly those required
1762 by the source language. So GDB could have a
1763 "complete_this_type" function, but never create unnecessary
1764 copies of a type otherwise. */
1765 replace_type (type, xtype);
1766 TYPE_NAME (type) = NULL;
1767 }
1768 else
1769 {
1770 TYPE_TARGET_STUB (type) = 1;
1771 TYPE_TARGET_TYPE (type) = xtype;
1772 }
1773 }
1774 break;
1775
1776 /* In the following types, we must be sure to overwrite any existing
1777 type that the typenums refer to, rather than allocating a new one
1778 and making the typenums point to the new one. This is because there
1779 may already be pointers to the existing type (if it had been
1780 forward-referenced), and we must change it to a pointer, function,
1781 reference, or whatever, *in-place*. */
1782
1783 case '*': /* Pointer to another type */
1784 type1 = read_type (pp, objfile);
1785 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1786 break;
1787
1788 case '&': /* Reference to another type */
1789 type1 = read_type (pp, objfile);
1790 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
1791 TYPE_CODE_REF);
1792 break;
1793
1794 case 'f': /* Function returning another type */
1795 type1 = read_type (pp, objfile);
1796 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1797 break;
1798
1799 case 'g': /* Prototyped function. (Sun) */
1800 {
1801 /* Unresolved questions:
1802
1803 - According to Sun's ``STABS Interface Manual'', for 'f'
1804 and 'F' symbol descriptors, a `0' in the argument type list
1805 indicates a varargs function. But it doesn't say how 'g'
1806 type descriptors represent that info. Someone with access
1807 to Sun's toolchain should try it out.
1808
1809 - According to the comment in define_symbol (search for
1810 `process_prototype_types:'), Sun emits integer arguments as
1811 types which ref themselves --- like `void' types. Do we
1812 have to deal with that here, too? Again, someone with
1813 access to Sun's toolchain should try it out and let us
1814 know. */
1815
1816 const char *type_start = (*pp) - 1;
1817 struct type *return_type = read_type (pp, objfile);
1818 struct type *func_type
1819 = make_function_type (return_type,
1820 dbx_lookup_type (typenums, objfile));
1821 struct type_list {
1822 struct type *type;
1823 struct type_list *next;
1824 } *arg_types = 0;
1825 int num_args = 0;
1826
1827 while (**pp && **pp != '#')
1828 {
1829 struct type *arg_type = read_type (pp, objfile);
1830 struct type_list *newobj = XALLOCA (struct type_list);
1831 newobj->type = arg_type;
1832 newobj->next = arg_types;
1833 arg_types = newobj;
1834 num_args++;
1835 }
1836 if (**pp == '#')
1837 ++*pp;
1838 else
1839 {
1840 complaint (_("Prototyped function type didn't "
1841 "end arguments with `#':\n%s"),
1842 type_start);
1843 }
1844
1845 /* If there is just one argument whose type is `void', then
1846 that's just an empty argument list. */
1847 if (arg_types
1848 && ! arg_types->next
1849 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1850 num_args = 0;
1851
1852 TYPE_FIELDS (func_type)
1853 = (struct field *) TYPE_ALLOC (func_type,
1854 num_args * sizeof (struct field));
1855 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1856 {
1857 int i;
1858 struct type_list *t;
1859
1860 /* We stuck each argument type onto the front of the list
1861 when we read it, so the list is reversed. Build the
1862 fields array right-to-left. */
1863 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1864 TYPE_FIELD_TYPE (func_type, i) = t->type;
1865 }
1866 TYPE_NFIELDS (func_type) = num_args;
1867 TYPE_PROTOTYPED (func_type) = 1;
1868
1869 type = func_type;
1870 break;
1871 }
1872
1873 case 'k': /* Const qualifier on some type (Sun) */
1874 type = read_type (pp, objfile);
1875 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1876 dbx_lookup_type (typenums, objfile));
1877 break;
1878
1879 case 'B': /* Volatile qual on some type (Sun) */
1880 type = read_type (pp, objfile);
1881 type = make_cv_type (TYPE_CONST (type), 1, type,
1882 dbx_lookup_type (typenums, objfile));
1883 break;
1884
1885 case '@':
1886 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1887 { /* Member (class & variable) type */
1888 /* FIXME -- we should be doing smash_to_XXX types here. */
1889
1890 struct type *domain = read_type (pp, objfile);
1891 struct type *memtype;
1892
1893 if (**pp != ',')
1894 /* Invalid member type data format. */
1895 return error_type (pp, objfile);
1896 ++*pp;
1897
1898 memtype = read_type (pp, objfile);
1899 type = dbx_alloc_type (typenums, objfile);
1900 smash_to_memberptr_type (type, domain, memtype);
1901 }
1902 else
1903 /* type attribute */
1904 {
1905 const char *attr = *pp;
1906
1907 /* Skip to the semicolon. */
1908 while (**pp != ';' && **pp != '\0')
1909 ++(*pp);
1910 if (**pp == '\0')
1911 return error_type (pp, objfile);
1912 else
1913 ++ * pp; /* Skip the semicolon. */
1914
1915 switch (*attr)
1916 {
1917 case 's': /* Size attribute */
1918 type_size = atoi (attr + 1);
1919 if (type_size <= 0)
1920 type_size = -1;
1921 break;
1922
1923 case 'S': /* String attribute */
1924 /* FIXME: check to see if following type is array? */
1925 is_string = 1;
1926 break;
1927
1928 case 'V': /* Vector attribute */
1929 /* FIXME: check to see if following type is array? */
1930 is_vector = 1;
1931 break;
1932
1933 default:
1934 /* Ignore unrecognized type attributes, so future compilers
1935 can invent new ones. */
1936 break;
1937 }
1938 ++*pp;
1939 goto again;
1940 }
1941 break;
1942
1943 case '#': /* Method (class & fn) type */
1944 if ((*pp)[0] == '#')
1945 {
1946 /* We'll get the parameter types from the name. */
1947 struct type *return_type;
1948
1949 (*pp)++;
1950 return_type = read_type (pp, objfile);
1951 if (*(*pp)++ != ';')
1952 complaint (_("invalid (minimal) member type "
1953 "data format at symtab pos %d."),
1954 symnum);
1955 type = allocate_stub_method (return_type);
1956 if (typenums[0] != -1)
1957 *dbx_lookup_type (typenums, objfile) = type;
1958 }
1959 else
1960 {
1961 struct type *domain = read_type (pp, objfile);
1962 struct type *return_type;
1963 struct field *args;
1964 int nargs, varargs;
1965
1966 if (**pp != ',')
1967 /* Invalid member type data format. */
1968 return error_type (pp, objfile);
1969 else
1970 ++(*pp);
1971
1972 return_type = read_type (pp, objfile);
1973 args = read_args (pp, ';', objfile, &nargs, &varargs);
1974 if (args == NULL)
1975 return error_type (pp, objfile);
1976 type = dbx_alloc_type (typenums, objfile);
1977 smash_to_method_type (type, domain, return_type, args,
1978 nargs, varargs);
1979 }
1980 break;
1981
1982 case 'r': /* Range type */
1983 type = read_range_type (pp, typenums, type_size, objfile);
1984 if (typenums[0] != -1)
1985 *dbx_lookup_type (typenums, objfile) = type;
1986 break;
1987
1988 case 'b':
1989 {
1990 /* Sun ACC builtin int type */
1991 type = read_sun_builtin_type (pp, typenums, objfile);
1992 if (typenums[0] != -1)
1993 *dbx_lookup_type (typenums, objfile) = type;
1994 }
1995 break;
1996
1997 case 'R': /* Sun ACC builtin float type */
1998 type = read_sun_floating_type (pp, typenums, objfile);
1999 if (typenums[0] != -1)
2000 *dbx_lookup_type (typenums, objfile) = type;
2001 break;
2002
2003 case 'e': /* Enumeration type */
2004 type = dbx_alloc_type (typenums, objfile);
2005 type = read_enum_type (pp, type, objfile);
2006 if (typenums[0] != -1)
2007 *dbx_lookup_type (typenums, objfile) = type;
2008 break;
2009
2010 case 's': /* Struct type */
2011 case 'u': /* Union type */
2012 {
2013 enum type_code type_code = TYPE_CODE_UNDEF;
2014 type = dbx_alloc_type (typenums, objfile);
2015 switch (type_descriptor)
2016 {
2017 case 's':
2018 type_code = TYPE_CODE_STRUCT;
2019 break;
2020 case 'u':
2021 type_code = TYPE_CODE_UNION;
2022 break;
2023 }
2024 type = read_struct_type (pp, type, type_code, objfile);
2025 break;
2026 }
2027
2028 case 'a': /* Array type */
2029 if (**pp != 'r')
2030 return error_type (pp, objfile);
2031 ++*pp;
2032
2033 type = dbx_alloc_type (typenums, objfile);
2034 type = read_array_type (pp, type, objfile);
2035 if (is_string)
2036 TYPE_CODE (type) = TYPE_CODE_STRING;
2037 if (is_vector)
2038 make_vector_type (type);
2039 break;
2040
2041 case 'S': /* Set type */
2042 type1 = read_type (pp, objfile);
2043 type = create_set_type ((struct type *) NULL, type1);
2044 if (typenums[0] != -1)
2045 *dbx_lookup_type (typenums, objfile) = type;
2046 break;
2047
2048 default:
2049 --*pp; /* Go back to the symbol in error. */
2050 /* Particularly important if it was \0! */
2051 return error_type (pp, objfile);
2052 }
2053
2054 if (type == 0)
2055 {
2056 warning (_("GDB internal error, type is NULL in stabsread.c."));
2057 return error_type (pp, objfile);
2058 }
2059
2060 /* Size specified in a type attribute overrides any other size. */
2061 if (type_size != -1)
2062 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2063
2064 return type;
2065 }
2066 \f
2067 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2068 Return the proper type node for a given builtin type number. */
2069
2070 static const struct objfile_data *rs6000_builtin_type_data;
2071
2072 static struct type *
2073 rs6000_builtin_type (int typenum, struct objfile *objfile)
2074 {
2075 struct type **negative_types
2076 = (struct type **) objfile_data (objfile, rs6000_builtin_type_data);
2077
2078 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2079 #define NUMBER_RECOGNIZED 34
2080 struct type *rettype = NULL;
2081
2082 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2083 {
2084 complaint (_("Unknown builtin type %d"), typenum);
2085 return objfile_type (objfile)->builtin_error;
2086 }
2087
2088 if (!negative_types)
2089 {
2090 /* This includes an empty slot for type number -0. */
2091 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2092 NUMBER_RECOGNIZED + 1, struct type *);
2093 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2094 }
2095
2096 if (negative_types[-typenum] != NULL)
2097 return negative_types[-typenum];
2098
2099 #if TARGET_CHAR_BIT != 8
2100 #error This code wrong for TARGET_CHAR_BIT not 8
2101 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2102 that if that ever becomes not true, the correct fix will be to
2103 make the size in the struct type to be in bits, not in units of
2104 TARGET_CHAR_BIT. */
2105 #endif
2106
2107 switch (-typenum)
2108 {
2109 case 1:
2110 /* The size of this and all the other types are fixed, defined
2111 by the debugging format. If there is a type called "int" which
2112 is other than 32 bits, then it should use a new negative type
2113 number (or avoid negative type numbers for that case).
2114 See stabs.texinfo. */
2115 rettype = init_integer_type (objfile, 32, 0, "int");
2116 break;
2117 case 2:
2118 rettype = init_integer_type (objfile, 8, 0, "char");
2119 TYPE_NOSIGN (rettype) = 1;
2120 break;
2121 case 3:
2122 rettype = init_integer_type (objfile, 16, 0, "short");
2123 break;
2124 case 4:
2125 rettype = init_integer_type (objfile, 32, 0, "long");
2126 break;
2127 case 5:
2128 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2129 break;
2130 case 6:
2131 rettype = init_integer_type (objfile, 8, 0, "signed char");
2132 break;
2133 case 7:
2134 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2135 break;
2136 case 8:
2137 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2138 break;
2139 case 9:
2140 rettype = init_integer_type (objfile, 32, 1, "unsigned");
2141 break;
2142 case 10:
2143 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2144 break;
2145 case 11:
2146 rettype = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
2147 break;
2148 case 12:
2149 /* IEEE single precision (32 bit). */
2150 rettype = init_float_type (objfile, 32, "float",
2151 floatformats_ieee_single);
2152 break;
2153 case 13:
2154 /* IEEE double precision (64 bit). */
2155 rettype = init_float_type (objfile, 64, "double",
2156 floatformats_ieee_double);
2157 break;
2158 case 14:
2159 /* This is an IEEE double on the RS/6000, and different machines with
2160 different sizes for "long double" should use different negative
2161 type numbers. See stabs.texinfo. */
2162 rettype = init_float_type (objfile, 64, "long double",
2163 floatformats_ieee_double);
2164 break;
2165 case 15:
2166 rettype = init_integer_type (objfile, 32, 0, "integer");
2167 break;
2168 case 16:
2169 rettype = init_boolean_type (objfile, 32, 1, "boolean");
2170 break;
2171 case 17:
2172 rettype = init_float_type (objfile, 32, "short real",
2173 floatformats_ieee_single);
2174 break;
2175 case 18:
2176 rettype = init_float_type (objfile, 64, "real",
2177 floatformats_ieee_double);
2178 break;
2179 case 19:
2180 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2181 break;
2182 case 20:
2183 rettype = init_character_type (objfile, 8, 1, "character");
2184 break;
2185 case 21:
2186 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2187 break;
2188 case 22:
2189 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2190 break;
2191 case 23:
2192 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2193 break;
2194 case 24:
2195 rettype = init_boolean_type (objfile, 32, 1, "logical");
2196 break;
2197 case 25:
2198 /* Complex type consisting of two IEEE single precision values. */
2199 rettype = init_complex_type (objfile, "complex",
2200 rs6000_builtin_type (12, objfile));
2201 break;
2202 case 26:
2203 /* Complex type consisting of two IEEE double precision values. */
2204 rettype = init_complex_type (objfile, "double complex",
2205 rs6000_builtin_type (13, objfile));
2206 break;
2207 case 27:
2208 rettype = init_integer_type (objfile, 8, 0, "integer*1");
2209 break;
2210 case 28:
2211 rettype = init_integer_type (objfile, 16, 0, "integer*2");
2212 break;
2213 case 29:
2214 rettype = init_integer_type (objfile, 32, 0, "integer*4");
2215 break;
2216 case 30:
2217 rettype = init_character_type (objfile, 16, 0, "wchar");
2218 break;
2219 case 31:
2220 rettype = init_integer_type (objfile, 64, 0, "long long");
2221 break;
2222 case 32:
2223 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2224 break;
2225 case 33:
2226 rettype = init_integer_type (objfile, 64, 1, "logical*8");
2227 break;
2228 case 34:
2229 rettype = init_integer_type (objfile, 64, 0, "integer*8");
2230 break;
2231 }
2232 negative_types[-typenum] = rettype;
2233 return rettype;
2234 }
2235 \f
2236 /* This page contains subroutines of read_type. */
2237
2238 /* Wrapper around method_name_from_physname to flag a complaint
2239 if there is an error. */
2240
2241 static char *
2242 stabs_method_name_from_physname (const char *physname)
2243 {
2244 char *method_name;
2245
2246 method_name = method_name_from_physname (physname);
2247
2248 if (method_name == NULL)
2249 {
2250 complaint (_("Method has bad physname %s\n"), physname);
2251 return NULL;
2252 }
2253
2254 return method_name;
2255 }
2256
2257 /* Read member function stabs info for C++ classes. The form of each member
2258 function data is:
2259
2260 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2261
2262 An example with two member functions is:
2263
2264 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2265
2266 For the case of overloaded operators, the format is op$::*.funcs, where
2267 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2268 name (such as `+=') and `.' marks the end of the operator name.
2269
2270 Returns 1 for success, 0 for failure. */
2271
2272 static int
2273 read_member_functions (struct field_info *fip, const char **pp,
2274 struct type *type, struct objfile *objfile)
2275 {
2276 int nfn_fields = 0;
2277 int length = 0;
2278 int i;
2279 struct next_fnfield
2280 {
2281 struct next_fnfield *next;
2282 struct fn_field fn_field;
2283 }
2284 *sublist;
2285 struct type *look_ahead_type;
2286 struct next_fnfieldlist *new_fnlist;
2287 struct next_fnfield *new_sublist;
2288 char *main_fn_name;
2289 const char *p;
2290
2291 /* Process each list until we find something that is not a member function
2292 or find the end of the functions. */
2293
2294 while (**pp != ';')
2295 {
2296 /* We should be positioned at the start of the function name.
2297 Scan forward to find the first ':' and if it is not the
2298 first of a "::" delimiter, then this is not a member function. */
2299 p = *pp;
2300 while (*p != ':')
2301 {
2302 p++;
2303 }
2304 if (p[1] != ':')
2305 {
2306 break;
2307 }
2308
2309 sublist = NULL;
2310 look_ahead_type = NULL;
2311 length = 0;
2312
2313 new_fnlist = XCNEW (struct next_fnfieldlist);
2314 make_cleanup (xfree, new_fnlist);
2315
2316 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2317 {
2318 /* This is a completely wierd case. In order to stuff in the
2319 names that might contain colons (the usual name delimiter),
2320 Mike Tiemann defined a different name format which is
2321 signalled if the identifier is "op$". In that case, the
2322 format is "op$::XXXX." where XXXX is the name. This is
2323 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2324 /* This lets the user type "break operator+".
2325 We could just put in "+" as the name, but that wouldn't
2326 work for "*". */
2327 static char opname[32] = "op$";
2328 char *o = opname + 3;
2329
2330 /* Skip past '::'. */
2331 *pp = p + 2;
2332
2333 STABS_CONTINUE (pp, objfile);
2334 p = *pp;
2335 while (*p != '.')
2336 {
2337 *o++ = *p++;
2338 }
2339 main_fn_name = savestring (opname, o - opname);
2340 /* Skip past '.' */
2341 *pp = p + 1;
2342 }
2343 else
2344 {
2345 main_fn_name = savestring (*pp, p - *pp);
2346 /* Skip past '::'. */
2347 *pp = p + 2;
2348 }
2349 new_fnlist->fn_fieldlist.name = main_fn_name;
2350
2351 do
2352 {
2353 new_sublist = XCNEW (struct next_fnfield);
2354 make_cleanup (xfree, new_sublist);
2355
2356 /* Check for and handle cretinous dbx symbol name continuation! */
2357 if (look_ahead_type == NULL)
2358 {
2359 /* Normal case. */
2360 STABS_CONTINUE (pp, objfile);
2361
2362 new_sublist->fn_field.type = read_type (pp, objfile);
2363 if (**pp != ':')
2364 {
2365 /* Invalid symtab info for member function. */
2366 return 0;
2367 }
2368 }
2369 else
2370 {
2371 /* g++ version 1 kludge */
2372 new_sublist->fn_field.type = look_ahead_type;
2373 look_ahead_type = NULL;
2374 }
2375
2376 (*pp)++;
2377 p = *pp;
2378 while (*p != ';')
2379 {
2380 p++;
2381 }
2382
2383 /* These are methods, not functions. */
2384 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2385 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2386 else
2387 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2388 == TYPE_CODE_METHOD);
2389
2390 /* If this is just a stub, then we don't have the real name here. */
2391 if (TYPE_STUB (new_sublist->fn_field.type))
2392 {
2393 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2394 set_type_self_type (new_sublist->fn_field.type, type);
2395 new_sublist->fn_field.is_stub = 1;
2396 }
2397
2398 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2399 *pp = p + 1;
2400
2401 /* Set this member function's visibility fields. */
2402 switch (*(*pp)++)
2403 {
2404 case VISIBILITY_PRIVATE:
2405 new_sublist->fn_field.is_private = 1;
2406 break;
2407 case VISIBILITY_PROTECTED:
2408 new_sublist->fn_field.is_protected = 1;
2409 break;
2410 }
2411
2412 STABS_CONTINUE (pp, objfile);
2413 switch (**pp)
2414 {
2415 case 'A': /* Normal functions. */
2416 new_sublist->fn_field.is_const = 0;
2417 new_sublist->fn_field.is_volatile = 0;
2418 (*pp)++;
2419 break;
2420 case 'B': /* `const' member functions. */
2421 new_sublist->fn_field.is_const = 1;
2422 new_sublist->fn_field.is_volatile = 0;
2423 (*pp)++;
2424 break;
2425 case 'C': /* `volatile' member function. */
2426 new_sublist->fn_field.is_const = 0;
2427 new_sublist->fn_field.is_volatile = 1;
2428 (*pp)++;
2429 break;
2430 case 'D': /* `const volatile' member function. */
2431 new_sublist->fn_field.is_const = 1;
2432 new_sublist->fn_field.is_volatile = 1;
2433 (*pp)++;
2434 break;
2435 case '*': /* File compiled with g++ version 1 --
2436 no info. */
2437 case '?':
2438 case '.':
2439 break;
2440 default:
2441 complaint (_("const/volatile indicator missing, got '%c'"),
2442 **pp);
2443 break;
2444 }
2445
2446 switch (*(*pp)++)
2447 {
2448 case '*':
2449 {
2450 int nbits;
2451 /* virtual member function, followed by index.
2452 The sign bit is set to distinguish pointers-to-methods
2453 from virtual function indicies. Since the array is
2454 in words, the quantity must be shifted left by 1
2455 on 16 bit machine, and by 2 on 32 bit machine, forcing
2456 the sign bit out, and usable as a valid index into
2457 the array. Remove the sign bit here. */
2458 new_sublist->fn_field.voffset =
2459 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2460 if (nbits != 0)
2461 return 0;
2462
2463 STABS_CONTINUE (pp, objfile);
2464 if (**pp == ';' || **pp == '\0')
2465 {
2466 /* Must be g++ version 1. */
2467 new_sublist->fn_field.fcontext = 0;
2468 }
2469 else
2470 {
2471 /* Figure out from whence this virtual function came.
2472 It may belong to virtual function table of
2473 one of its baseclasses. */
2474 look_ahead_type = read_type (pp, objfile);
2475 if (**pp == ':')
2476 {
2477 /* g++ version 1 overloaded methods. */
2478 }
2479 else
2480 {
2481 new_sublist->fn_field.fcontext = look_ahead_type;
2482 if (**pp != ';')
2483 {
2484 return 0;
2485 }
2486 else
2487 {
2488 ++*pp;
2489 }
2490 look_ahead_type = NULL;
2491 }
2492 }
2493 break;
2494 }
2495 case '?':
2496 /* static member function. */
2497 {
2498 int slen = strlen (main_fn_name);
2499
2500 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2501
2502 /* For static member functions, we can't tell if they
2503 are stubbed, as they are put out as functions, and not as
2504 methods.
2505 GCC v2 emits the fully mangled name if
2506 dbxout.c:flag_minimal_debug is not set, so we have to
2507 detect a fully mangled physname here and set is_stub
2508 accordingly. Fully mangled physnames in v2 start with
2509 the member function name, followed by two underscores.
2510 GCC v3 currently always emits stubbed member functions,
2511 but with fully mangled physnames, which start with _Z. */
2512 if (!(strncmp (new_sublist->fn_field.physname,
2513 main_fn_name, slen) == 0
2514 && new_sublist->fn_field.physname[slen] == '_'
2515 && new_sublist->fn_field.physname[slen + 1] == '_'))
2516 {
2517 new_sublist->fn_field.is_stub = 1;
2518 }
2519 break;
2520 }
2521
2522 default:
2523 /* error */
2524 complaint (_("member function type missing, got '%c'"),
2525 (*pp)[-1]);
2526 /* Normal member function. */
2527 /* Fall through. */
2528
2529 case '.':
2530 /* normal member function. */
2531 new_sublist->fn_field.voffset = 0;
2532 new_sublist->fn_field.fcontext = 0;
2533 break;
2534 }
2535
2536 new_sublist->next = sublist;
2537 sublist = new_sublist;
2538 length++;
2539 STABS_CONTINUE (pp, objfile);
2540 }
2541 while (**pp != ';' && **pp != '\0');
2542
2543 (*pp)++;
2544 STABS_CONTINUE (pp, objfile);
2545
2546 /* Skip GCC 3.X member functions which are duplicates of the callable
2547 constructor/destructor. */
2548 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2549 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2550 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2551 {
2552 xfree (main_fn_name);
2553 }
2554 else
2555 {
2556 int has_stub = 0;
2557 int has_destructor = 0, has_other = 0;
2558 int is_v3 = 0;
2559 struct next_fnfield *tmp_sublist;
2560
2561 /* Various versions of GCC emit various mostly-useless
2562 strings in the name field for special member functions.
2563
2564 For stub methods, we need to defer correcting the name
2565 until we are ready to unstub the method, because the current
2566 name string is used by gdb_mangle_name. The only stub methods
2567 of concern here are GNU v2 operators; other methods have their
2568 names correct (see caveat below).
2569
2570 For non-stub methods, in GNU v3, we have a complete physname.
2571 Therefore we can safely correct the name now. This primarily
2572 affects constructors and destructors, whose name will be
2573 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2574 operators will also have incorrect names; for instance,
2575 "operator int" will be named "operator i" (i.e. the type is
2576 mangled).
2577
2578 For non-stub methods in GNU v2, we have no easy way to
2579 know if we have a complete physname or not. For most
2580 methods the result depends on the platform (if CPLUS_MARKER
2581 can be `$' or `.', it will use minimal debug information, or
2582 otherwise the full physname will be included).
2583
2584 Rather than dealing with this, we take a different approach.
2585 For v3 mangled names, we can use the full physname; for v2,
2586 we use cplus_demangle_opname (which is actually v2 specific),
2587 because the only interesting names are all operators - once again
2588 barring the caveat below. Skip this process if any method in the
2589 group is a stub, to prevent our fouling up the workings of
2590 gdb_mangle_name.
2591
2592 The caveat: GCC 2.95.x (and earlier?) put constructors and
2593 destructors in the same method group. We need to split this
2594 into two groups, because they should have different names.
2595 So for each method group we check whether it contains both
2596 routines whose physname appears to be a destructor (the physnames
2597 for and destructors are always provided, due to quirks in v2
2598 mangling) and routines whose physname does not appear to be a
2599 destructor. If so then we break up the list into two halves.
2600 Even if the constructors and destructors aren't in the same group
2601 the destructor will still lack the leading tilde, so that also
2602 needs to be fixed.
2603
2604 So, to summarize what we expect and handle here:
2605
2606 Given Given Real Real Action
2607 method name physname physname method name
2608
2609 __opi [none] __opi__3Foo operator int opname
2610 [now or later]
2611 Foo _._3Foo _._3Foo ~Foo separate and
2612 rename
2613 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2614 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2615 */
2616
2617 tmp_sublist = sublist;
2618 while (tmp_sublist != NULL)
2619 {
2620 if (tmp_sublist->fn_field.is_stub)
2621 has_stub = 1;
2622 if (tmp_sublist->fn_field.physname[0] == '_'
2623 && tmp_sublist->fn_field.physname[1] == 'Z')
2624 is_v3 = 1;
2625
2626 if (is_destructor_name (tmp_sublist->fn_field.physname))
2627 has_destructor++;
2628 else
2629 has_other++;
2630
2631 tmp_sublist = tmp_sublist->next;
2632 }
2633
2634 if (has_destructor && has_other)
2635 {
2636 struct next_fnfieldlist *destr_fnlist;
2637 struct next_fnfield *last_sublist;
2638
2639 /* Create a new fn_fieldlist for the destructors. */
2640
2641 destr_fnlist = XCNEW (struct next_fnfieldlist);
2642 make_cleanup (xfree, destr_fnlist);
2643
2644 destr_fnlist->fn_fieldlist.name
2645 = obconcat (&objfile->objfile_obstack, "~",
2646 new_fnlist->fn_fieldlist.name, (char *) NULL);
2647
2648 destr_fnlist->fn_fieldlist.fn_fields =
2649 XOBNEWVEC (&objfile->objfile_obstack,
2650 struct fn_field, has_destructor);
2651 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2652 sizeof (struct fn_field) * has_destructor);
2653 tmp_sublist = sublist;
2654 last_sublist = NULL;
2655 i = 0;
2656 while (tmp_sublist != NULL)
2657 {
2658 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2659 {
2660 tmp_sublist = tmp_sublist->next;
2661 continue;
2662 }
2663
2664 destr_fnlist->fn_fieldlist.fn_fields[i++]
2665 = tmp_sublist->fn_field;
2666 if (last_sublist)
2667 last_sublist->next = tmp_sublist->next;
2668 else
2669 sublist = tmp_sublist->next;
2670 last_sublist = tmp_sublist;
2671 tmp_sublist = tmp_sublist->next;
2672 }
2673
2674 destr_fnlist->fn_fieldlist.length = has_destructor;
2675 destr_fnlist->next = fip->fnlist;
2676 fip->fnlist = destr_fnlist;
2677 nfn_fields++;
2678 length -= has_destructor;
2679 }
2680 else if (is_v3)
2681 {
2682 /* v3 mangling prevents the use of abbreviated physnames,
2683 so we can do this here. There are stubbed methods in v3
2684 only:
2685 - in -gstabs instead of -gstabs+
2686 - or for static methods, which are output as a function type
2687 instead of a method type. */
2688 char *new_method_name =
2689 stabs_method_name_from_physname (sublist->fn_field.physname);
2690
2691 if (new_method_name != NULL
2692 && strcmp (new_method_name,
2693 new_fnlist->fn_fieldlist.name) != 0)
2694 {
2695 new_fnlist->fn_fieldlist.name = new_method_name;
2696 xfree (main_fn_name);
2697 }
2698 else
2699 xfree (new_method_name);
2700 }
2701 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2702 {
2703 new_fnlist->fn_fieldlist.name =
2704 obconcat (&objfile->objfile_obstack,
2705 "~", main_fn_name, (char *)NULL);
2706 xfree (main_fn_name);
2707 }
2708 else if (!has_stub)
2709 {
2710 char dem_opname[256];
2711 int ret;
2712
2713 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2714 dem_opname, DMGL_ANSI);
2715 if (!ret)
2716 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2717 dem_opname, 0);
2718 if (ret)
2719 new_fnlist->fn_fieldlist.name
2720 = ((const char *)
2721 obstack_copy0 (&objfile->objfile_obstack, dem_opname,
2722 strlen (dem_opname)));
2723 xfree (main_fn_name);
2724 }
2725
2726 new_fnlist->fn_fieldlist.fn_fields
2727 = OBSTACK_CALLOC (&objfile->objfile_obstack, length, fn_field);
2728 for (i = length; (i--, sublist); sublist = sublist->next)
2729 {
2730 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2731 }
2732
2733 new_fnlist->fn_fieldlist.length = length;
2734 new_fnlist->next = fip->fnlist;
2735 fip->fnlist = new_fnlist;
2736 nfn_fields++;
2737 }
2738 }
2739
2740 if (nfn_fields)
2741 {
2742 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2743 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2744 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2745 memset (TYPE_FN_FIELDLISTS (type), 0,
2746 sizeof (struct fn_fieldlist) * nfn_fields);
2747 TYPE_NFN_FIELDS (type) = nfn_fields;
2748 }
2749
2750 return 1;
2751 }
2752
2753 /* Special GNU C++ name.
2754
2755 Returns 1 for success, 0 for failure. "failure" means that we can't
2756 keep parsing and it's time for error_type(). */
2757
2758 static int
2759 read_cpp_abbrev (struct field_info *fip, const char **pp, struct type *type,
2760 struct objfile *objfile)
2761 {
2762 const char *p;
2763 const char *name;
2764 char cpp_abbrev;
2765 struct type *context;
2766
2767 p = *pp;
2768 if (*++p == 'v')
2769 {
2770 name = NULL;
2771 cpp_abbrev = *++p;
2772
2773 *pp = p + 1;
2774
2775 /* At this point, *pp points to something like "22:23=*22...",
2776 where the type number before the ':' is the "context" and
2777 everything after is a regular type definition. Lookup the
2778 type, find it's name, and construct the field name. */
2779
2780 context = read_type (pp, objfile);
2781
2782 switch (cpp_abbrev)
2783 {
2784 case 'f': /* $vf -- a virtual function table pointer */
2785 name = type_name_no_tag (context);
2786 if (name == NULL)
2787 {
2788 name = "";
2789 }
2790 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2791 vptr_name, name, (char *) NULL);
2792 break;
2793
2794 case 'b': /* $vb -- a virtual bsomethingorother */
2795 name = type_name_no_tag (context);
2796 if (name == NULL)
2797 {
2798 complaint (_("C++ abbreviated type name "
2799 "unknown at symtab pos %d"),
2800 symnum);
2801 name = "FOO";
2802 }
2803 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2804 name, (char *) NULL);
2805 break;
2806
2807 default:
2808 invalid_cpp_abbrev_complaint (*pp);
2809 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2810 "INVALID_CPLUSPLUS_ABBREV",
2811 (char *) NULL);
2812 break;
2813 }
2814
2815 /* At this point, *pp points to the ':'. Skip it and read the
2816 field type. */
2817
2818 p = ++(*pp);
2819 if (p[-1] != ':')
2820 {
2821 invalid_cpp_abbrev_complaint (*pp);
2822 return 0;
2823 }
2824 fip->list->field.type = read_type (pp, objfile);
2825 if (**pp == ',')
2826 (*pp)++; /* Skip the comma. */
2827 else
2828 return 0;
2829
2830 {
2831 int nbits;
2832
2833 SET_FIELD_BITPOS (fip->list->field,
2834 read_huge_number (pp, ';', &nbits, 0));
2835 if (nbits != 0)
2836 return 0;
2837 }
2838 /* This field is unpacked. */
2839 FIELD_BITSIZE (fip->list->field) = 0;
2840 fip->list->visibility = VISIBILITY_PRIVATE;
2841 }
2842 else
2843 {
2844 invalid_cpp_abbrev_complaint (*pp);
2845 /* We have no idea what syntax an unrecognized abbrev would have, so
2846 better return 0. If we returned 1, we would need to at least advance
2847 *pp to avoid an infinite loop. */
2848 return 0;
2849 }
2850 return 1;
2851 }
2852
2853 static void
2854 read_one_struct_field (struct field_info *fip, const char **pp, const char *p,
2855 struct type *type, struct objfile *objfile)
2856 {
2857 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2858
2859 fip->list->field.name
2860 = (const char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
2861 *pp = p + 1;
2862
2863 /* This means we have a visibility for a field coming. */
2864 if (**pp == '/')
2865 {
2866 (*pp)++;
2867 fip->list->visibility = *(*pp)++;
2868 }
2869 else
2870 {
2871 /* normal dbx-style format, no explicit visibility */
2872 fip->list->visibility = VISIBILITY_PUBLIC;
2873 }
2874
2875 fip->list->field.type = read_type (pp, objfile);
2876 if (**pp == ':')
2877 {
2878 p = ++(*pp);
2879 #if 0
2880 /* Possible future hook for nested types. */
2881 if (**pp == '!')
2882 {
2883 fip->list->field.bitpos = (long) -2; /* nested type */
2884 p = ++(*pp);
2885 }
2886 else
2887 ...;
2888 #endif
2889 while (*p != ';')
2890 {
2891 p++;
2892 }
2893 /* Static class member. */
2894 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2895 *pp = p + 1;
2896 return;
2897 }
2898 else if (**pp != ',')
2899 {
2900 /* Bad structure-type format. */
2901 stabs_general_complaint ("bad structure-type format");
2902 return;
2903 }
2904
2905 (*pp)++; /* Skip the comma. */
2906
2907 {
2908 int nbits;
2909
2910 SET_FIELD_BITPOS (fip->list->field,
2911 read_huge_number (pp, ',', &nbits, 0));
2912 if (nbits != 0)
2913 {
2914 stabs_general_complaint ("bad structure-type format");
2915 return;
2916 }
2917 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2918 if (nbits != 0)
2919 {
2920 stabs_general_complaint ("bad structure-type format");
2921 return;
2922 }
2923 }
2924
2925 if (FIELD_BITPOS (fip->list->field) == 0
2926 && FIELD_BITSIZE (fip->list->field) == 0)
2927 {
2928 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2929 it is a field which has been optimized out. The correct stab for
2930 this case is to use VISIBILITY_IGNORE, but that is a recent
2931 invention. (2) It is a 0-size array. For example
2932 union { int num; char str[0]; } foo. Printing _("<no value>" for
2933 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2934 will continue to work, and a 0-size array as a whole doesn't
2935 have any contents to print.
2936
2937 I suspect this probably could also happen with gcc -gstabs (not
2938 -gstabs+) for static fields, and perhaps other C++ extensions.
2939 Hopefully few people use -gstabs with gdb, since it is intended
2940 for dbx compatibility. */
2941
2942 /* Ignore this field. */
2943 fip->list->visibility = VISIBILITY_IGNORE;
2944 }
2945 else
2946 {
2947 /* Detect an unpacked field and mark it as such.
2948 dbx gives a bit size for all fields.
2949 Note that forward refs cannot be packed,
2950 and treat enums as if they had the width of ints. */
2951
2952 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2953
2954 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2955 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2956 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2957 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2958 {
2959 FIELD_BITSIZE (fip->list->field) = 0;
2960 }
2961 if ((FIELD_BITSIZE (fip->list->field)
2962 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2963 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2964 && FIELD_BITSIZE (fip->list->field)
2965 == gdbarch_int_bit (gdbarch))
2966 )
2967 &&
2968 FIELD_BITPOS (fip->list->field) % 8 == 0)
2969 {
2970 FIELD_BITSIZE (fip->list->field) = 0;
2971 }
2972 }
2973 }
2974
2975
2976 /* Read struct or class data fields. They have the form:
2977
2978 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2979
2980 At the end, we see a semicolon instead of a field.
2981
2982 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2983 a static field.
2984
2985 The optional VISIBILITY is one of:
2986
2987 '/0' (VISIBILITY_PRIVATE)
2988 '/1' (VISIBILITY_PROTECTED)
2989 '/2' (VISIBILITY_PUBLIC)
2990 '/9' (VISIBILITY_IGNORE)
2991
2992 or nothing, for C style fields with public visibility.
2993
2994 Returns 1 for success, 0 for failure. */
2995
2996 static int
2997 read_struct_fields (struct field_info *fip, const char **pp, struct type *type,
2998 struct objfile *objfile)
2999 {
3000 const char *p;
3001 struct nextfield *newobj;
3002
3003 /* We better set p right now, in case there are no fields at all... */
3004
3005 p = *pp;
3006
3007 /* Read each data member type until we find the terminating ';' at the end of
3008 the data member list, or break for some other reason such as finding the
3009 start of the member function list. */
3010 /* Stab string for structure/union does not end with two ';' in
3011 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3012
3013 while (**pp != ';' && **pp != '\0')
3014 {
3015 STABS_CONTINUE (pp, objfile);
3016 /* Get space to record the next field's data. */
3017 newobj = XCNEW (struct nextfield);
3018 make_cleanup (xfree, newobj);
3019
3020 newobj->next = fip->list;
3021 fip->list = newobj;
3022
3023 /* Get the field name. */
3024 p = *pp;
3025
3026 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3027 unless the CPLUS_MARKER is followed by an underscore, in
3028 which case it is just the name of an anonymous type, which we
3029 should handle like any other type name. */
3030
3031 if (is_cplus_marker (p[0]) && p[1] != '_')
3032 {
3033 if (!read_cpp_abbrev (fip, pp, type, objfile))
3034 return 0;
3035 continue;
3036 }
3037
3038 /* Look for the ':' that separates the field name from the field
3039 values. Data members are delimited by a single ':', while member
3040 functions are delimited by a pair of ':'s. When we hit the member
3041 functions (if any), terminate scan loop and return. */
3042
3043 while (*p != ':' && *p != '\0')
3044 {
3045 p++;
3046 }
3047 if (*p == '\0')
3048 return 0;
3049
3050 /* Check to see if we have hit the member functions yet. */
3051 if (p[1] == ':')
3052 {
3053 break;
3054 }
3055 read_one_struct_field (fip, pp, p, type, objfile);
3056 }
3057 if (p[0] == ':' && p[1] == ':')
3058 {
3059 /* (the deleted) chill the list of fields: the last entry (at
3060 the head) is a partially constructed entry which we now
3061 scrub. */
3062 fip->list = fip->list->next;
3063 }
3064 return 1;
3065 }
3066 /* *INDENT-OFF* */
3067 /* The stabs for C++ derived classes contain baseclass information which
3068 is marked by a '!' character after the total size. This function is
3069 called when we encounter the baseclass marker, and slurps up all the
3070 baseclass information.
3071
3072 Immediately following the '!' marker is the number of base classes that
3073 the class is derived from, followed by information for each base class.
3074 For each base class, there are two visibility specifiers, a bit offset
3075 to the base class information within the derived class, a reference to
3076 the type for the base class, and a terminating semicolon.
3077
3078 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3079 ^^ ^ ^ ^ ^ ^ ^
3080 Baseclass information marker __________________|| | | | | | |
3081 Number of baseclasses __________________________| | | | | | |
3082 Visibility specifiers (2) ________________________| | | | | |
3083 Offset in bits from start of class _________________| | | | |
3084 Type number for base class ___________________________| | | |
3085 Visibility specifiers (2) _______________________________| | |
3086 Offset in bits from start of class ________________________| |
3087 Type number of base class ____________________________________|
3088
3089 Return 1 for success, 0 for (error-type-inducing) failure. */
3090 /* *INDENT-ON* */
3091
3092
3093
3094 static int
3095 read_baseclasses (struct field_info *fip, const char **pp, struct type *type,
3096 struct objfile *objfile)
3097 {
3098 int i;
3099 struct nextfield *newobj;
3100
3101 if (**pp != '!')
3102 {
3103 return 1;
3104 }
3105 else
3106 {
3107 /* Skip the '!' baseclass information marker. */
3108 (*pp)++;
3109 }
3110
3111 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3112 {
3113 int nbits;
3114
3115 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3116 if (nbits != 0)
3117 return 0;
3118 }
3119
3120 #if 0
3121 /* Some stupid compilers have trouble with the following, so break
3122 it up into simpler expressions. */
3123 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3124 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3125 #else
3126 {
3127 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3128 char *pointer;
3129
3130 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3131 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3132 }
3133 #endif /* 0 */
3134
3135 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3136
3137 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3138 {
3139 newobj = XCNEW (struct nextfield);
3140 make_cleanup (xfree, newobj);
3141
3142 newobj->next = fip->list;
3143 fip->list = newobj;
3144 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3145 field! */
3146
3147 STABS_CONTINUE (pp, objfile);
3148 switch (**pp)
3149 {
3150 case '0':
3151 /* Nothing to do. */
3152 break;
3153 case '1':
3154 SET_TYPE_FIELD_VIRTUAL (type, i);
3155 break;
3156 default:
3157 /* Unknown character. Complain and treat it as non-virtual. */
3158 {
3159 complaint (_("Unknown virtual character `%c' for baseclass"),
3160 **pp);
3161 }
3162 }
3163 ++(*pp);
3164
3165 newobj->visibility = *(*pp)++;
3166 switch (newobj->visibility)
3167 {
3168 case VISIBILITY_PRIVATE:
3169 case VISIBILITY_PROTECTED:
3170 case VISIBILITY_PUBLIC:
3171 break;
3172 default:
3173 /* Bad visibility format. Complain and treat it as
3174 public. */
3175 {
3176 complaint (_("Unknown visibility `%c' for baseclass"),
3177 newobj->visibility);
3178 newobj->visibility = VISIBILITY_PUBLIC;
3179 }
3180 }
3181
3182 {
3183 int nbits;
3184
3185 /* The remaining value is the bit offset of the portion of the object
3186 corresponding to this baseclass. Always zero in the absence of
3187 multiple inheritance. */
3188
3189 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
3190 if (nbits != 0)
3191 return 0;
3192 }
3193
3194 /* The last piece of baseclass information is the type of the
3195 base class. Read it, and remember it's type name as this
3196 field's name. */
3197
3198 newobj->field.type = read_type (pp, objfile);
3199 newobj->field.name = type_name_no_tag (newobj->field.type);
3200
3201 /* Skip trailing ';' and bump count of number of fields seen. */
3202 if (**pp == ';')
3203 (*pp)++;
3204 else
3205 return 0;
3206 }
3207 return 1;
3208 }
3209
3210 /* The tail end of stabs for C++ classes that contain a virtual function
3211 pointer contains a tilde, a %, and a type number.
3212 The type number refers to the base class (possibly this class itself) which
3213 contains the vtable pointer for the current class.
3214
3215 This function is called when we have parsed all the method declarations,
3216 so we can look for the vptr base class info. */
3217
3218 static int
3219 read_tilde_fields (struct field_info *fip, const char **pp, struct type *type,
3220 struct objfile *objfile)
3221 {
3222 const char *p;
3223
3224 STABS_CONTINUE (pp, objfile);
3225
3226 /* If we are positioned at a ';', then skip it. */
3227 if (**pp == ';')
3228 {
3229 (*pp)++;
3230 }
3231
3232 if (**pp == '~')
3233 {
3234 (*pp)++;
3235
3236 if (**pp == '=' || **pp == '+' || **pp == '-')
3237 {
3238 /* Obsolete flags that used to indicate the presence
3239 of constructors and/or destructors. */
3240 (*pp)++;
3241 }
3242
3243 /* Read either a '%' or the final ';'. */
3244 if (*(*pp)++ == '%')
3245 {
3246 /* The next number is the type number of the base class
3247 (possibly our own class) which supplies the vtable for
3248 this class. Parse it out, and search that class to find
3249 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3250 and TYPE_VPTR_FIELDNO. */
3251
3252 struct type *t;
3253 int i;
3254
3255 t = read_type (pp, objfile);
3256 p = (*pp)++;
3257 while (*p != '\0' && *p != ';')
3258 {
3259 p++;
3260 }
3261 if (*p == '\0')
3262 {
3263 /* Premature end of symbol. */
3264 return 0;
3265 }
3266
3267 set_type_vptr_basetype (type, t);
3268 if (type == t) /* Our own class provides vtbl ptr. */
3269 {
3270 for (i = TYPE_NFIELDS (t) - 1;
3271 i >= TYPE_N_BASECLASSES (t);
3272 --i)
3273 {
3274 const char *name = TYPE_FIELD_NAME (t, i);
3275
3276 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3277 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3278 {
3279 set_type_vptr_fieldno (type, i);
3280 goto gotit;
3281 }
3282 }
3283 /* Virtual function table field not found. */
3284 complaint (_("virtual function table pointer "
3285 "not found when defining class `%s'"),
3286 TYPE_NAME (type));
3287 return 0;
3288 }
3289 else
3290 {
3291 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3292 }
3293
3294 gotit:
3295 *pp = p + 1;
3296 }
3297 }
3298 return 1;
3299 }
3300
3301 static int
3302 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3303 {
3304 int n;
3305
3306 for (n = TYPE_NFN_FIELDS (type);
3307 fip->fnlist != NULL;
3308 fip->fnlist = fip->fnlist->next)
3309 {
3310 --n; /* Circumvent Sun3 compiler bug. */
3311 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3312 }
3313 return 1;
3314 }
3315
3316 /* Create the vector of fields, and record how big it is.
3317 We need this info to record proper virtual function table information
3318 for this class's virtual functions. */
3319
3320 static int
3321 attach_fields_to_type (struct field_info *fip, struct type *type,
3322 struct objfile *objfile)
3323 {
3324 int nfields = 0;
3325 int non_public_fields = 0;
3326 struct nextfield *scan;
3327
3328 /* Count up the number of fields that we have, as well as taking note of
3329 whether or not there are any non-public fields, which requires us to
3330 allocate and build the private_field_bits and protected_field_bits
3331 bitfields. */
3332
3333 for (scan = fip->list; scan != NULL; scan = scan->next)
3334 {
3335 nfields++;
3336 if (scan->visibility != VISIBILITY_PUBLIC)
3337 {
3338 non_public_fields++;
3339 }
3340 }
3341
3342 /* Now we know how many fields there are, and whether or not there are any
3343 non-public fields. Record the field count, allocate space for the
3344 array of fields, and create blank visibility bitfields if necessary. */
3345
3346 TYPE_NFIELDS (type) = nfields;
3347 TYPE_FIELDS (type) = (struct field *)
3348 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3349 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3350
3351 if (non_public_fields)
3352 {
3353 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3354
3355 TYPE_FIELD_PRIVATE_BITS (type) =
3356 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3357 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3358
3359 TYPE_FIELD_PROTECTED_BITS (type) =
3360 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3361 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3362
3363 TYPE_FIELD_IGNORE_BITS (type) =
3364 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3365 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3366 }
3367
3368 /* Copy the saved-up fields into the field vector. Start from the
3369 head of the list, adding to the tail of the field array, so that
3370 they end up in the same order in the array in which they were
3371 added to the list. */
3372
3373 while (nfields-- > 0)
3374 {
3375 TYPE_FIELD (type, nfields) = fip->list->field;
3376 switch (fip->list->visibility)
3377 {
3378 case VISIBILITY_PRIVATE:
3379 SET_TYPE_FIELD_PRIVATE (type, nfields);
3380 break;
3381
3382 case VISIBILITY_PROTECTED:
3383 SET_TYPE_FIELD_PROTECTED (type, nfields);
3384 break;
3385
3386 case VISIBILITY_IGNORE:
3387 SET_TYPE_FIELD_IGNORE (type, nfields);
3388 break;
3389
3390 case VISIBILITY_PUBLIC:
3391 break;
3392
3393 default:
3394 /* Unknown visibility. Complain and treat it as public. */
3395 {
3396 complaint (_("Unknown visibility `%c' for field"),
3397 fip->list->visibility);
3398 }
3399 break;
3400 }
3401 fip->list = fip->list->next;
3402 }
3403 return 1;
3404 }
3405
3406
3407 /* Complain that the compiler has emitted more than one definition for the
3408 structure type TYPE. */
3409 static void
3410 complain_about_struct_wipeout (struct type *type)
3411 {
3412 const char *name = "";
3413 const char *kind = "";
3414
3415 if (TYPE_NAME (type))
3416 {
3417 name = TYPE_NAME (type);
3418 switch (TYPE_CODE (type))
3419 {
3420 case TYPE_CODE_STRUCT: kind = "struct "; break;
3421 case TYPE_CODE_UNION: kind = "union "; break;
3422 case TYPE_CODE_ENUM: kind = "enum "; break;
3423 default: kind = "";
3424 }
3425 }
3426 else
3427 {
3428 name = "<unknown>";
3429 kind = "";
3430 }
3431
3432 complaint (_("struct/union type gets multiply defined: %s%s"), kind, name);
3433 }
3434
3435 /* Set the length for all variants of a same main_type, which are
3436 connected in the closed chain.
3437
3438 This is something that needs to be done when a type is defined *after*
3439 some cross references to this type have already been read. Consider
3440 for instance the following scenario where we have the following two
3441 stabs entries:
3442
3443 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3444 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3445
3446 A stubbed version of type dummy is created while processing the first
3447 stabs entry. The length of that type is initially set to zero, since
3448 it is unknown at this point. Also, a "constant" variation of type
3449 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3450 the stabs line).
3451
3452 The second stabs entry allows us to replace the stubbed definition
3453 with the real definition. However, we still need to adjust the length
3454 of the "constant" variation of that type, as its length was left
3455 untouched during the main type replacement... */
3456
3457 static void
3458 set_length_in_type_chain (struct type *type)
3459 {
3460 struct type *ntype = TYPE_CHAIN (type);
3461
3462 while (ntype != type)
3463 {
3464 if (TYPE_LENGTH(ntype) == 0)
3465 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3466 else
3467 complain_about_struct_wipeout (ntype);
3468 ntype = TYPE_CHAIN (ntype);
3469 }
3470 }
3471
3472 /* Read the description of a structure (or union type) and return an object
3473 describing the type.
3474
3475 PP points to a character pointer that points to the next unconsumed token
3476 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3477 *PP will point to "4a:1,0,32;;".
3478
3479 TYPE points to an incomplete type that needs to be filled in.
3480
3481 OBJFILE points to the current objfile from which the stabs information is
3482 being read. (Note that it is redundant in that TYPE also contains a pointer
3483 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3484 */
3485
3486 static struct type *
3487 read_struct_type (const char **pp, struct type *type, enum type_code type_code,
3488 struct objfile *objfile)
3489 {
3490 struct cleanup *back_to;
3491 struct field_info fi;
3492
3493 fi.list = NULL;
3494 fi.fnlist = NULL;
3495
3496 /* When describing struct/union/class types in stabs, G++ always drops
3497 all qualifications from the name. So if you've got:
3498 struct A { ... struct B { ... }; ... };
3499 then G++ will emit stabs for `struct A::B' that call it simply
3500 `struct B'. Obviously, if you've got a real top-level definition for
3501 `struct B', or other nested definitions, this is going to cause
3502 problems.
3503
3504 Obviously, GDB can't fix this by itself, but it can at least avoid
3505 scribbling on existing structure type objects when new definitions
3506 appear. */
3507 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3508 || TYPE_STUB (type)))
3509 {
3510 complain_about_struct_wipeout (type);
3511
3512 /* It's probably best to return the type unchanged. */
3513 return type;
3514 }
3515
3516 back_to = make_cleanup (null_cleanup, 0);
3517
3518 INIT_CPLUS_SPECIFIC (type);
3519 TYPE_CODE (type) = type_code;
3520 TYPE_STUB (type) = 0;
3521
3522 /* First comes the total size in bytes. */
3523
3524 {
3525 int nbits;
3526
3527 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3528 if (nbits != 0)
3529 {
3530 do_cleanups (back_to);
3531 return error_type (pp, objfile);
3532 }
3533 set_length_in_type_chain (type);
3534 }
3535
3536 /* Now read the baseclasses, if any, read the regular C struct or C++
3537 class member fields, attach the fields to the type, read the C++
3538 member functions, attach them to the type, and then read any tilde
3539 field (baseclass specifier for the class holding the main vtable). */
3540
3541 if (!read_baseclasses (&fi, pp, type, objfile)
3542 || !read_struct_fields (&fi, pp, type, objfile)
3543 || !attach_fields_to_type (&fi, type, objfile)
3544 || !read_member_functions (&fi, pp, type, objfile)
3545 || !attach_fn_fields_to_type (&fi, type)
3546 || !read_tilde_fields (&fi, pp, type, objfile))
3547 {
3548 type = error_type (pp, objfile);
3549 }
3550
3551 do_cleanups (back_to);
3552 return (type);
3553 }
3554
3555 /* Read a definition of an array type,
3556 and create and return a suitable type object.
3557 Also creates a range type which represents the bounds of that
3558 array. */
3559
3560 static struct type *
3561 read_array_type (const char **pp, struct type *type,
3562 struct objfile *objfile)
3563 {
3564 struct type *index_type, *element_type, *range_type;
3565 int lower, upper;
3566 int adjustable = 0;
3567 int nbits;
3568
3569 /* Format of an array type:
3570 "ar<index type>;lower;upper;<array_contents_type>".
3571 OS9000: "arlower,upper;<array_contents_type>".
3572
3573 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3574 for these, produce a type like float[][]. */
3575
3576 {
3577 index_type = read_type (pp, objfile);
3578 if (**pp != ';')
3579 /* Improper format of array type decl. */
3580 return error_type (pp, objfile);
3581 ++*pp;
3582 }
3583
3584 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3585 {
3586 (*pp)++;
3587 adjustable = 1;
3588 }
3589 lower = read_huge_number (pp, ';', &nbits, 0);
3590
3591 if (nbits != 0)
3592 return error_type (pp, objfile);
3593
3594 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3595 {
3596 (*pp)++;
3597 adjustable = 1;
3598 }
3599 upper = read_huge_number (pp, ';', &nbits, 0);
3600 if (nbits != 0)
3601 return error_type (pp, objfile);
3602
3603 element_type = read_type (pp, objfile);
3604
3605 if (adjustable)
3606 {
3607 lower = 0;
3608 upper = -1;
3609 }
3610
3611 range_type =
3612 create_static_range_type ((struct type *) NULL, index_type, lower, upper);
3613 type = create_array_type (type, element_type, range_type);
3614
3615 return type;
3616 }
3617
3618
3619 /* Read a definition of an enumeration type,
3620 and create and return a suitable type object.
3621 Also defines the symbols that represent the values of the type. */
3622
3623 static struct type *
3624 read_enum_type (const char **pp, struct type *type,
3625 struct objfile *objfile)
3626 {
3627 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3628 const char *p;
3629 char *name;
3630 long n;
3631 struct symbol *sym;
3632 int nsyms = 0;
3633 struct pending **symlist;
3634 struct pending *osyms, *syms;
3635 int o_nsyms;
3636 int nbits;
3637 int unsigned_enum = 1;
3638
3639 #if 0
3640 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3641 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3642 to do? For now, force all enum values to file scope. */
3643 if (within_function)
3644 symlist = &local_symbols;
3645 else
3646 #endif
3647 symlist = &file_symbols;
3648 osyms = *symlist;
3649 o_nsyms = osyms ? osyms->nsyms : 0;
3650
3651 /* The aix4 compiler emits an extra field before the enum members;
3652 my guess is it's a type of some sort. Just ignore it. */
3653 if (**pp == '-')
3654 {
3655 /* Skip over the type. */
3656 while (**pp != ':')
3657 (*pp)++;
3658
3659 /* Skip over the colon. */
3660 (*pp)++;
3661 }
3662
3663 /* Read the value-names and their values.
3664 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3665 A semicolon or comma instead of a NAME means the end. */
3666 while (**pp && **pp != ';' && **pp != ',')
3667 {
3668 STABS_CONTINUE (pp, objfile);
3669 p = *pp;
3670 while (*p != ':')
3671 p++;
3672 name = (char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
3673 *pp = p + 1;
3674 n = read_huge_number (pp, ',', &nbits, 0);
3675 if (nbits != 0)
3676 return error_type (pp, objfile);
3677
3678 sym = allocate_symbol (objfile);
3679 SYMBOL_SET_LINKAGE_NAME (sym, name);
3680 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
3681 &objfile->objfile_obstack);
3682 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3683 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3684 SYMBOL_VALUE (sym) = n;
3685 if (n < 0)
3686 unsigned_enum = 0;
3687 add_symbol_to_list (sym, symlist);
3688 nsyms++;
3689 }
3690
3691 if (**pp == ';')
3692 (*pp)++; /* Skip the semicolon. */
3693
3694 /* Now fill in the fields of the type-structure. */
3695
3696 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3697 set_length_in_type_chain (type);
3698 TYPE_CODE (type) = TYPE_CODE_ENUM;
3699 TYPE_STUB (type) = 0;
3700 if (unsigned_enum)
3701 TYPE_UNSIGNED (type) = 1;
3702 TYPE_NFIELDS (type) = nsyms;
3703 TYPE_FIELDS (type) = (struct field *)
3704 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3705 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3706
3707 /* Find the symbols for the values and put them into the type.
3708 The symbols can be found in the symlist that we put them on
3709 to cause them to be defined. osyms contains the old value
3710 of that symlist; everything up to there was defined by us. */
3711 /* Note that we preserve the order of the enum constants, so
3712 that in something like "enum {FOO, LAST_THING=FOO}" we print
3713 FOO, not LAST_THING. */
3714
3715 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3716 {
3717 int last = syms == osyms ? o_nsyms : 0;
3718 int j = syms->nsyms;
3719
3720 for (; --j >= last; --n)
3721 {
3722 struct symbol *xsym = syms->symbol[j];
3723
3724 SYMBOL_TYPE (xsym) = type;
3725 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3726 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3727 TYPE_FIELD_BITSIZE (type, n) = 0;
3728 }
3729 if (syms == osyms)
3730 break;
3731 }
3732
3733 return type;
3734 }
3735
3736 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3737 typedefs in every file (for int, long, etc):
3738
3739 type = b <signed> <width> <format type>; <offset>; <nbits>
3740 signed = u or s.
3741 optional format type = c or b for char or boolean.
3742 offset = offset from high order bit to start bit of type.
3743 width is # bytes in object of this type, nbits is # bits in type.
3744
3745 The width/offset stuff appears to be for small objects stored in
3746 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3747 FIXME. */
3748
3749 static struct type *
3750 read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
3751 {
3752 int type_bits;
3753 int nbits;
3754 int unsigned_type;
3755 int boolean_type = 0;
3756
3757 switch (**pp)
3758 {
3759 case 's':
3760 unsigned_type = 0;
3761 break;
3762 case 'u':
3763 unsigned_type = 1;
3764 break;
3765 default:
3766 return error_type (pp, objfile);
3767 }
3768 (*pp)++;
3769
3770 /* For some odd reason, all forms of char put a c here. This is strange
3771 because no other type has this honor. We can safely ignore this because
3772 we actually determine 'char'acterness by the number of bits specified in
3773 the descriptor.
3774 Boolean forms, e.g Fortran logical*X, put a b here. */
3775
3776 if (**pp == 'c')
3777 (*pp)++;
3778 else if (**pp == 'b')
3779 {
3780 boolean_type = 1;
3781 (*pp)++;
3782 }
3783
3784 /* The first number appears to be the number of bytes occupied
3785 by this type, except that unsigned short is 4 instead of 2.
3786 Since this information is redundant with the third number,
3787 we will ignore it. */
3788 read_huge_number (pp, ';', &nbits, 0);
3789 if (nbits != 0)
3790 return error_type (pp, objfile);
3791
3792 /* The second number is always 0, so ignore it too. */
3793 read_huge_number (pp, ';', &nbits, 0);
3794 if (nbits != 0)
3795 return error_type (pp, objfile);
3796
3797 /* The third number is the number of bits for this type. */
3798 type_bits = read_huge_number (pp, 0, &nbits, 0);
3799 if (nbits != 0)
3800 return error_type (pp, objfile);
3801 /* The type *should* end with a semicolon. If it are embedded
3802 in a larger type the semicolon may be the only way to know where
3803 the type ends. If this type is at the end of the stabstring we
3804 can deal with the omitted semicolon (but we don't have to like
3805 it). Don't bother to complain(), Sun's compiler omits the semicolon
3806 for "void". */
3807 if (**pp == ';')
3808 ++(*pp);
3809
3810 if (type_bits == 0)
3811 {
3812 struct type *type = init_type (objfile, TYPE_CODE_VOID,
3813 TARGET_CHAR_BIT, NULL);
3814 if (unsigned_type)
3815 TYPE_UNSIGNED (type) = 1;
3816 return type;
3817 }
3818
3819 if (boolean_type)
3820 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3821 else
3822 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3823 }
3824
3825 static struct type *
3826 read_sun_floating_type (const char **pp, int typenums[2],
3827 struct objfile *objfile)
3828 {
3829 int nbits;
3830 int details;
3831 int nbytes;
3832 struct type *rettype;
3833
3834 /* The first number has more details about the type, for example
3835 FN_COMPLEX. */
3836 details = read_huge_number (pp, ';', &nbits, 0);
3837 if (nbits != 0)
3838 return error_type (pp, objfile);
3839
3840 /* The second number is the number of bytes occupied by this type. */
3841 nbytes = read_huge_number (pp, ';', &nbits, 0);
3842 if (nbits != 0)
3843 return error_type (pp, objfile);
3844
3845 nbits = nbytes * TARGET_CHAR_BIT;
3846
3847 if (details == NF_COMPLEX || details == NF_COMPLEX16
3848 || details == NF_COMPLEX32)
3849 {
3850 rettype = dbx_init_float_type (objfile, nbits / 2);
3851 return init_complex_type (objfile, NULL, rettype);
3852 }
3853
3854 return dbx_init_float_type (objfile, nbits);
3855 }
3856
3857 /* Read a number from the string pointed to by *PP.
3858 The value of *PP is advanced over the number.
3859 If END is nonzero, the character that ends the
3860 number must match END, or an error happens;
3861 and that character is skipped if it does match.
3862 If END is zero, *PP is left pointing to that character.
3863
3864 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3865 the number is represented in an octal representation, assume that
3866 it is represented in a 2's complement representation with a size of
3867 TWOS_COMPLEMENT_BITS.
3868
3869 If the number fits in a long, set *BITS to 0 and return the value.
3870 If not, set *BITS to be the number of bits in the number and return 0.
3871
3872 If encounter garbage, set *BITS to -1 and return 0. */
3873
3874 static long
3875 read_huge_number (const char **pp, int end, int *bits,
3876 int twos_complement_bits)
3877 {
3878 const char *p = *pp;
3879 int sign = 1;
3880 int sign_bit = 0;
3881 long n = 0;
3882 int radix = 10;
3883 char overflow = 0;
3884 int nbits = 0;
3885 int c;
3886 long upper_limit;
3887 int twos_complement_representation = 0;
3888
3889 if (*p == '-')
3890 {
3891 sign = -1;
3892 p++;
3893 }
3894
3895 /* Leading zero means octal. GCC uses this to output values larger
3896 than an int (because that would be hard in decimal). */
3897 if (*p == '0')
3898 {
3899 radix = 8;
3900 p++;
3901 }
3902
3903 /* Skip extra zeros. */
3904 while (*p == '0')
3905 p++;
3906
3907 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3908 {
3909 /* Octal, possibly signed. Check if we have enough chars for a
3910 negative number. */
3911
3912 size_t len;
3913 const char *p1 = p;
3914
3915 while ((c = *p1) >= '0' && c < '8')
3916 p1++;
3917
3918 len = p1 - p;
3919 if (len > twos_complement_bits / 3
3920 || (twos_complement_bits % 3 == 0
3921 && len == twos_complement_bits / 3))
3922 {
3923 /* Ok, we have enough characters for a signed value, check
3924 for signness by testing if the sign bit is set. */
3925 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3926 c = *p - '0';
3927 if (c & (1 << sign_bit))
3928 {
3929 /* Definitely signed. */
3930 twos_complement_representation = 1;
3931 sign = -1;
3932 }
3933 }
3934 }
3935
3936 upper_limit = LONG_MAX / radix;
3937
3938 while ((c = *p++) >= '0' && c < ('0' + radix))
3939 {
3940 if (n <= upper_limit)
3941 {
3942 if (twos_complement_representation)
3943 {
3944 /* Octal, signed, twos complement representation. In
3945 this case, n is the corresponding absolute value. */
3946 if (n == 0)
3947 {
3948 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3949
3950 n = -sn;
3951 }
3952 else
3953 {
3954 n *= radix;
3955 n -= c - '0';
3956 }
3957 }
3958 else
3959 {
3960 /* unsigned representation */
3961 n *= radix;
3962 n += c - '0'; /* FIXME this overflows anyway. */
3963 }
3964 }
3965 else
3966 overflow = 1;
3967
3968 /* This depends on large values being output in octal, which is
3969 what GCC does. */
3970 if (radix == 8)
3971 {
3972 if (nbits == 0)
3973 {
3974 if (c == '0')
3975 /* Ignore leading zeroes. */
3976 ;
3977 else if (c == '1')
3978 nbits = 1;
3979 else if (c == '2' || c == '3')
3980 nbits = 2;
3981 else
3982 nbits = 3;
3983 }
3984 else
3985 nbits += 3;
3986 }
3987 }
3988 if (end)
3989 {
3990 if (c && c != end)
3991 {
3992 if (bits != NULL)
3993 *bits = -1;
3994 return 0;
3995 }
3996 }
3997 else
3998 --p;
3999
4000 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
4001 {
4002 /* We were supposed to parse a number with maximum
4003 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4004 if (bits != NULL)
4005 *bits = -1;
4006 return 0;
4007 }
4008
4009 *pp = p;
4010 if (overflow)
4011 {
4012 if (nbits == 0)
4013 {
4014 /* Large decimal constants are an error (because it is hard to
4015 count how many bits are in them). */
4016 if (bits != NULL)
4017 *bits = -1;
4018 return 0;
4019 }
4020
4021 /* -0x7f is the same as 0x80. So deal with it by adding one to
4022 the number of bits. Two's complement represention octals
4023 can't have a '-' in front. */
4024 if (sign == -1 && !twos_complement_representation)
4025 ++nbits;
4026 if (bits)
4027 *bits = nbits;
4028 }
4029 else
4030 {
4031 if (bits)
4032 *bits = 0;
4033 return n * sign;
4034 }
4035 /* It's *BITS which has the interesting information. */
4036 return 0;
4037 }
4038
4039 static struct type *
4040 read_range_type (const char **pp, int typenums[2], int type_size,
4041 struct objfile *objfile)
4042 {
4043 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4044 const char *orig_pp = *pp;
4045 int rangenums[2];
4046 long n2, n3;
4047 int n2bits, n3bits;
4048 int self_subrange;
4049 struct type *result_type;
4050 struct type *index_type = NULL;
4051
4052 /* First comes a type we are a subrange of.
4053 In C it is usually 0, 1 or the type being defined. */
4054 if (read_type_number (pp, rangenums) != 0)
4055 return error_type (pp, objfile);
4056 self_subrange = (rangenums[0] == typenums[0] &&
4057 rangenums[1] == typenums[1]);
4058
4059 if (**pp == '=')
4060 {
4061 *pp = orig_pp;
4062 index_type = read_type (pp, objfile);
4063 }
4064
4065 /* A semicolon should now follow; skip it. */
4066 if (**pp == ';')
4067 (*pp)++;
4068
4069 /* The remaining two operands are usually lower and upper bounds
4070 of the range. But in some special cases they mean something else. */
4071 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4072 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4073
4074 if (n2bits == -1 || n3bits == -1)
4075 return error_type (pp, objfile);
4076
4077 if (index_type)
4078 goto handle_true_range;
4079
4080 /* If limits are huge, must be large integral type. */
4081 if (n2bits != 0 || n3bits != 0)
4082 {
4083 char got_signed = 0;
4084 char got_unsigned = 0;
4085 /* Number of bits in the type. */
4086 int nbits = 0;
4087
4088 /* If a type size attribute has been specified, the bounds of
4089 the range should fit in this size. If the lower bounds needs
4090 more bits than the upper bound, then the type is signed. */
4091 if (n2bits <= type_size && n3bits <= type_size)
4092 {
4093 if (n2bits == type_size && n2bits > n3bits)
4094 got_signed = 1;
4095 else
4096 got_unsigned = 1;
4097 nbits = type_size;
4098 }
4099 /* Range from 0 to <large number> is an unsigned large integral type. */
4100 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4101 {
4102 got_unsigned = 1;
4103 nbits = n3bits;
4104 }
4105 /* Range from <large number> to <large number>-1 is a large signed
4106 integral type. Take care of the case where <large number> doesn't
4107 fit in a long but <large number>-1 does. */
4108 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4109 || (n2bits != 0 && n3bits == 0
4110 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4111 && n3 == LONG_MAX))
4112 {
4113 got_signed = 1;
4114 nbits = n2bits;
4115 }
4116
4117 if (got_signed || got_unsigned)
4118 return init_integer_type (objfile, nbits, got_unsigned, NULL);
4119 else
4120 return error_type (pp, objfile);
4121 }
4122
4123 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4124 if (self_subrange && n2 == 0 && n3 == 0)
4125 return init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
4126
4127 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4128 is the width in bytes.
4129
4130 Fortran programs appear to use this for complex types also. To
4131 distinguish between floats and complex, g77 (and others?) seem
4132 to use self-subranges for the complexes, and subranges of int for
4133 the floats.
4134
4135 Also note that for complexes, g77 sets n2 to the size of one of
4136 the member floats, not the whole complex beast. My guess is that
4137 this was to work well with pre-COMPLEX versions of gdb. */
4138
4139 if (n3 == 0 && n2 > 0)
4140 {
4141 struct type *float_type
4142 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
4143
4144 if (self_subrange)
4145 return init_complex_type (objfile, NULL, float_type);
4146 else
4147 return float_type;
4148 }
4149
4150 /* If the upper bound is -1, it must really be an unsigned integral. */
4151
4152 else if (n2 == 0 && n3 == -1)
4153 {
4154 int bits = type_size;
4155
4156 if (bits <= 0)
4157 {
4158 /* We don't know its size. It is unsigned int or unsigned
4159 long. GCC 2.3.3 uses this for long long too, but that is
4160 just a GDB 3.5 compatibility hack. */
4161 bits = gdbarch_int_bit (gdbarch);
4162 }
4163
4164 return init_integer_type (objfile, bits, 1, NULL);
4165 }
4166
4167 /* Special case: char is defined (Who knows why) as a subrange of
4168 itself with range 0-127. */
4169 else if (self_subrange && n2 == 0 && n3 == 127)
4170 {
4171 struct type *type = init_integer_type (objfile, TARGET_CHAR_BIT,
4172 0, NULL);
4173 TYPE_NOSIGN (type) = 1;
4174 return type;
4175 }
4176 /* We used to do this only for subrange of self or subrange of int. */
4177 else if (n2 == 0)
4178 {
4179 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4180 "unsigned long", and we already checked for that,
4181 so don't need to test for it here. */
4182
4183 if (n3 < 0)
4184 /* n3 actually gives the size. */
4185 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4186
4187 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4188 unsigned n-byte integer. But do require n to be a power of
4189 two; we don't want 3- and 5-byte integers flying around. */
4190 {
4191 int bytes;
4192 unsigned long bits;
4193
4194 bits = n3;
4195 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4196 bits >>= 8;
4197 if (bits == 0
4198 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4199 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4200 }
4201 }
4202 /* I think this is for Convex "long long". Since I don't know whether
4203 Convex sets self_subrange, I also accept that particular size regardless
4204 of self_subrange. */
4205 else if (n3 == 0 && n2 < 0
4206 && (self_subrange
4207 || n2 == -gdbarch_long_long_bit
4208 (gdbarch) / TARGET_CHAR_BIT))
4209 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4210 else if (n2 == -n3 - 1)
4211 {
4212 if (n3 == 0x7f)
4213 return init_integer_type (objfile, 8, 0, NULL);
4214 if (n3 == 0x7fff)
4215 return init_integer_type (objfile, 16, 0, NULL);
4216 if (n3 == 0x7fffffff)
4217 return init_integer_type (objfile, 32, 0, NULL);
4218 }
4219
4220 /* We have a real range type on our hands. Allocate space and
4221 return a real pointer. */
4222 handle_true_range:
4223
4224 if (self_subrange)
4225 index_type = objfile_type (objfile)->builtin_int;
4226 else
4227 index_type = *dbx_lookup_type (rangenums, objfile);
4228 if (index_type == NULL)
4229 {
4230 /* Does this actually ever happen? Is that why we are worrying
4231 about dealing with it rather than just calling error_type? */
4232
4233 complaint (_("base type %d of range type is not defined"), rangenums[1]);
4234
4235 index_type = objfile_type (objfile)->builtin_int;
4236 }
4237
4238 result_type
4239 = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
4240 return (result_type);
4241 }
4242
4243 /* Read in an argument list. This is a list of types, separated by commas
4244 and terminated with END. Return the list of types read in, or NULL
4245 if there is an error. */
4246
4247 static struct field *
4248 read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
4249 int *varargsp)
4250 {
4251 /* FIXME! Remove this arbitrary limit! */
4252 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4253 int n = 0, i;
4254 struct field *rval;
4255
4256 while (**pp != end)
4257 {
4258 if (**pp != ',')
4259 /* Invalid argument list: no ','. */
4260 return NULL;
4261 (*pp)++;
4262 STABS_CONTINUE (pp, objfile);
4263 types[n++] = read_type (pp, objfile);
4264 }
4265 (*pp)++; /* get past `end' (the ':' character). */
4266
4267 if (n == 0)
4268 {
4269 /* We should read at least the THIS parameter here. Some broken stabs
4270 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4271 have been present ";-16,(0,43)" reference instead. This way the
4272 excessive ";" marker prematurely stops the parameters parsing. */
4273
4274 complaint (_("Invalid (empty) method arguments"));
4275 *varargsp = 0;
4276 }
4277 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4278 *varargsp = 1;
4279 else
4280 {
4281 n--;
4282 *varargsp = 0;
4283 }
4284
4285 rval = XCNEWVEC (struct field, n);
4286 for (i = 0; i < n; i++)
4287 rval[i].type = types[i];
4288 *nargsp = n;
4289 return rval;
4290 }
4291 \f
4292 /* Common block handling. */
4293
4294 /* List of symbols declared since the last BCOMM. This list is a tail
4295 of local_symbols. When ECOMM is seen, the symbols on the list
4296 are noted so their proper addresses can be filled in later,
4297 using the common block base address gotten from the assembler
4298 stabs. */
4299
4300 static struct pending *common_block;
4301 static int common_block_i;
4302
4303 /* Name of the current common block. We get it from the BCOMM instead of the
4304 ECOMM to match IBM documentation (even though IBM puts the name both places
4305 like everyone else). */
4306 static char *common_block_name;
4307
4308 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4309 to remain after this function returns. */
4310
4311 void
4312 common_block_start (const char *name, struct objfile *objfile)
4313 {
4314 if (common_block_name != NULL)
4315 {
4316 complaint (_("Invalid symbol data: common block within common block"));
4317 }
4318 common_block = local_symbols;
4319 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4320 common_block_name = (char *) obstack_copy0 (&objfile->objfile_obstack, name,
4321 strlen (name));
4322 }
4323
4324 /* Process a N_ECOMM symbol. */
4325
4326 void
4327 common_block_end (struct objfile *objfile)
4328 {
4329 /* Symbols declared since the BCOMM are to have the common block
4330 start address added in when we know it. common_block and
4331 common_block_i point to the first symbol after the BCOMM in
4332 the local_symbols list; copy the list and hang it off the
4333 symbol for the common block name for later fixup. */
4334 int i;
4335 struct symbol *sym;
4336 struct pending *newobj = 0;
4337 struct pending *next;
4338 int j;
4339
4340 if (common_block_name == NULL)
4341 {
4342 complaint (_("ECOMM symbol unmatched by BCOMM"));
4343 return;
4344 }
4345
4346 sym = allocate_symbol (objfile);
4347 /* Note: common_block_name already saved on objfile_obstack. */
4348 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4349 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4350
4351 /* Now we copy all the symbols which have been defined since the BCOMM. */
4352
4353 /* Copy all the struct pendings before common_block. */
4354 for (next = local_symbols;
4355 next != NULL && next != common_block;
4356 next = next->next)
4357 {
4358 for (j = 0; j < next->nsyms; j++)
4359 add_symbol_to_list (next->symbol[j], &newobj);
4360 }
4361
4362 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4363 NULL, it means copy all the local symbols (which we already did
4364 above). */
4365
4366 if (common_block != NULL)
4367 for (j = common_block_i; j < common_block->nsyms; j++)
4368 add_symbol_to_list (common_block->symbol[j], &newobj);
4369
4370 SYMBOL_TYPE (sym) = (struct type *) newobj;
4371
4372 /* Should we be putting local_symbols back to what it was?
4373 Does it matter? */
4374
4375 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4376 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4377 global_sym_chain[i] = sym;
4378 common_block_name = NULL;
4379 }
4380
4381 /* Add a common block's start address to the offset of each symbol
4382 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4383 the common block name). */
4384
4385 static void
4386 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4387 {
4388 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4389
4390 for (; next; next = next->next)
4391 {
4392 int j;
4393
4394 for (j = next->nsyms - 1; j >= 0; j--)
4395 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4396 }
4397 }
4398 \f
4399
4400
4401 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4402 See add_undefined_type for more details. */
4403
4404 static void
4405 add_undefined_type_noname (struct type *type, int typenums[2])
4406 {
4407 struct nat nat;
4408
4409 nat.typenums[0] = typenums [0];
4410 nat.typenums[1] = typenums [1];
4411 nat.type = type;
4412
4413 if (noname_undefs_length == noname_undefs_allocated)
4414 {
4415 noname_undefs_allocated *= 2;
4416 noname_undefs = (struct nat *)
4417 xrealloc ((char *) noname_undefs,
4418 noname_undefs_allocated * sizeof (struct nat));
4419 }
4420 noname_undefs[noname_undefs_length++] = nat;
4421 }
4422
4423 /* Add TYPE to the UNDEF_TYPES vector.
4424 See add_undefined_type for more details. */
4425
4426 static void
4427 add_undefined_type_1 (struct type *type)
4428 {
4429 if (undef_types_length == undef_types_allocated)
4430 {
4431 undef_types_allocated *= 2;
4432 undef_types = (struct type **)
4433 xrealloc ((char *) undef_types,
4434 undef_types_allocated * sizeof (struct type *));
4435 }
4436 undef_types[undef_types_length++] = type;
4437 }
4438
4439 /* What about types defined as forward references inside of a small lexical
4440 scope? */
4441 /* Add a type to the list of undefined types to be checked through
4442 once this file has been read in.
4443
4444 In practice, we actually maintain two such lists: The first list
4445 (UNDEF_TYPES) is used for types whose name has been provided, and
4446 concerns forward references (eg 'xs' or 'xu' forward references);
4447 the second list (NONAME_UNDEFS) is used for types whose name is
4448 unknown at creation time, because they were referenced through
4449 their type number before the actual type was declared.
4450 This function actually adds the given type to the proper list. */
4451
4452 static void
4453 add_undefined_type (struct type *type, int typenums[2])
4454 {
4455 if (TYPE_NAME (type) == NULL)
4456 add_undefined_type_noname (type, typenums);
4457 else
4458 add_undefined_type_1 (type);
4459 }
4460
4461 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4462
4463 static void
4464 cleanup_undefined_types_noname (struct objfile *objfile)
4465 {
4466 int i;
4467
4468 for (i = 0; i < noname_undefs_length; i++)
4469 {
4470 struct nat nat = noname_undefs[i];
4471 struct type **type;
4472
4473 type = dbx_lookup_type (nat.typenums, objfile);
4474 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4475 {
4476 /* The instance flags of the undefined type are still unset,
4477 and needs to be copied over from the reference type.
4478 Since replace_type expects them to be identical, we need
4479 to set these flags manually before hand. */
4480 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4481 replace_type (nat.type, *type);
4482 }
4483 }
4484
4485 noname_undefs_length = 0;
4486 }
4487
4488 /* Go through each undefined type, see if it's still undefined, and fix it
4489 up if possible. We have two kinds of undefined types:
4490
4491 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4492 Fix: update array length using the element bounds
4493 and the target type's length.
4494 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4495 yet defined at the time a pointer to it was made.
4496 Fix: Do a full lookup on the struct/union tag. */
4497
4498 static void
4499 cleanup_undefined_types_1 (void)
4500 {
4501 struct type **type;
4502
4503 /* Iterate over every undefined type, and look for a symbol whose type
4504 matches our undefined type. The symbol matches if:
4505 1. It is a typedef in the STRUCT domain;
4506 2. It has the same name, and same type code;
4507 3. The instance flags are identical.
4508
4509 It is important to check the instance flags, because we have seen
4510 examples where the debug info contained definitions such as:
4511
4512 "foo_t:t30=B31=xefoo_t:"
4513
4514 In this case, we have created an undefined type named "foo_t" whose
4515 instance flags is null (when processing "xefoo_t"), and then created
4516 another type with the same name, but with different instance flags
4517 ('B' means volatile). I think that the definition above is wrong,
4518 since the same type cannot be volatile and non-volatile at the same
4519 time, but we need to be able to cope with it when it happens. The
4520 approach taken here is to treat these two types as different. */
4521
4522 for (type = undef_types; type < undef_types + undef_types_length; type++)
4523 {
4524 switch (TYPE_CODE (*type))
4525 {
4526
4527 case TYPE_CODE_STRUCT:
4528 case TYPE_CODE_UNION:
4529 case TYPE_CODE_ENUM:
4530 {
4531 /* Check if it has been defined since. Need to do this here
4532 as well as in check_typedef to deal with the (legitimate in
4533 C though not C++) case of several types with the same name
4534 in different source files. */
4535 if (TYPE_STUB (*type))
4536 {
4537 struct pending *ppt;
4538 int i;
4539 /* Name of the type, without "struct" or "union". */
4540 const char *type_name = TYPE_NAME (*type);
4541
4542 if (type_name == NULL)
4543 {
4544 complaint (_("need a type name"));
4545 break;
4546 }
4547 for (ppt = file_symbols; ppt; ppt = ppt->next)
4548 {
4549 for (i = 0; i < ppt->nsyms; i++)
4550 {
4551 struct symbol *sym = ppt->symbol[i];
4552
4553 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4554 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4555 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4556 TYPE_CODE (*type))
4557 && (TYPE_INSTANCE_FLAGS (*type) ==
4558 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4559 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4560 type_name) == 0)
4561 replace_type (*type, SYMBOL_TYPE (sym));
4562 }
4563 }
4564 }
4565 }
4566 break;
4567
4568 default:
4569 {
4570 complaint (_("forward-referenced types left unresolved, "
4571 "type code %d."),
4572 TYPE_CODE (*type));
4573 }
4574 break;
4575 }
4576 }
4577
4578 undef_types_length = 0;
4579 }
4580
4581 /* Try to fix all the undefined types we ecountered while processing
4582 this unit. */
4583
4584 void
4585 cleanup_undefined_stabs_types (struct objfile *objfile)
4586 {
4587 cleanup_undefined_types_1 ();
4588 cleanup_undefined_types_noname (objfile);
4589 }
4590
4591 /* Scan through all of the global symbols defined in the object file,
4592 assigning values to the debugging symbols that need to be assigned
4593 to. Get these symbols from the minimal symbol table. */
4594
4595 void
4596 scan_file_globals (struct objfile *objfile)
4597 {
4598 int hash;
4599 struct minimal_symbol *msymbol;
4600 struct symbol *sym, *prev;
4601 struct objfile *resolve_objfile;
4602
4603 /* SVR4 based linkers copy referenced global symbols from shared
4604 libraries to the main executable.
4605 If we are scanning the symbols for a shared library, try to resolve
4606 them from the minimal symbols of the main executable first. */
4607
4608 if (symfile_objfile && objfile != symfile_objfile)
4609 resolve_objfile = symfile_objfile;
4610 else
4611 resolve_objfile = objfile;
4612
4613 while (1)
4614 {
4615 /* Avoid expensive loop through all minimal symbols if there are
4616 no unresolved symbols. */
4617 for (hash = 0; hash < HASHSIZE; hash++)
4618 {
4619 if (global_sym_chain[hash])
4620 break;
4621 }
4622 if (hash >= HASHSIZE)
4623 return;
4624
4625 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4626 {
4627 QUIT;
4628
4629 /* Skip static symbols. */
4630 switch (MSYMBOL_TYPE (msymbol))
4631 {
4632 case mst_file_text:
4633 case mst_file_data:
4634 case mst_file_bss:
4635 continue;
4636 default:
4637 break;
4638 }
4639
4640 prev = NULL;
4641
4642 /* Get the hash index and check all the symbols
4643 under that hash index. */
4644
4645 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
4646
4647 for (sym = global_sym_chain[hash]; sym;)
4648 {
4649 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
4650 SYMBOL_LINKAGE_NAME (sym)) == 0)
4651 {
4652 /* Splice this symbol out of the hash chain and
4653 assign the value we have to it. */
4654 if (prev)
4655 {
4656 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4657 }
4658 else
4659 {
4660 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4661 }
4662
4663 /* Check to see whether we need to fix up a common block. */
4664 /* Note: this code might be executed several times for
4665 the same symbol if there are multiple references. */
4666 if (sym)
4667 {
4668 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4669 {
4670 fix_common_block (sym,
4671 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4672 msymbol));
4673 }
4674 else
4675 {
4676 SYMBOL_VALUE_ADDRESS (sym)
4677 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
4678 }
4679 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4680 }
4681
4682 if (prev)
4683 {
4684 sym = SYMBOL_VALUE_CHAIN (prev);
4685 }
4686 else
4687 {
4688 sym = global_sym_chain[hash];
4689 }
4690 }
4691 else
4692 {
4693 prev = sym;
4694 sym = SYMBOL_VALUE_CHAIN (sym);
4695 }
4696 }
4697 }
4698 if (resolve_objfile == objfile)
4699 break;
4700 resolve_objfile = objfile;
4701 }
4702
4703 /* Change the storage class of any remaining unresolved globals to
4704 LOC_UNRESOLVED and remove them from the chain. */
4705 for (hash = 0; hash < HASHSIZE; hash++)
4706 {
4707 sym = global_sym_chain[hash];
4708 while (sym)
4709 {
4710 prev = sym;
4711 sym = SYMBOL_VALUE_CHAIN (sym);
4712
4713 /* Change the symbol address from the misleading chain value
4714 to address zero. */
4715 SYMBOL_VALUE_ADDRESS (prev) = 0;
4716
4717 /* Complain about unresolved common block symbols. */
4718 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4719 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4720 else
4721 complaint (_("%s: common block `%s' from "
4722 "global_sym_chain unresolved"),
4723 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
4724 }
4725 }
4726 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4727 }
4728
4729 /* Initialize anything that needs initializing when starting to read
4730 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4731 to a psymtab. */
4732
4733 void
4734 stabsread_init (void)
4735 {
4736 }
4737
4738 /* Initialize anything that needs initializing when a completely new
4739 symbol file is specified (not just adding some symbols from another
4740 file, e.g. a shared library). */
4741
4742 void
4743 stabsread_new_init (void)
4744 {
4745 /* Empty the hash table of global syms looking for values. */
4746 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4747 }
4748
4749 /* Initialize anything that needs initializing at the same time as
4750 start_symtab() is called. */
4751
4752 void
4753 start_stabs (void)
4754 {
4755 global_stabs = NULL; /* AIX COFF */
4756 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4757 n_this_object_header_files = 1;
4758 type_vector_length = 0;
4759 type_vector = (struct type **) 0;
4760
4761 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4762 common_block_name = NULL;
4763 }
4764
4765 /* Call after end_symtab(). */
4766
4767 void
4768 end_stabs (void)
4769 {
4770 if (type_vector)
4771 {
4772 xfree (type_vector);
4773 }
4774 type_vector = 0;
4775 type_vector_length = 0;
4776 previous_stab_code = 0;
4777 }
4778
4779 void
4780 finish_global_stabs (struct objfile *objfile)
4781 {
4782 if (global_stabs)
4783 {
4784 patch_block_stabs (global_symbols, global_stabs, objfile);
4785 xfree (global_stabs);
4786 global_stabs = NULL;
4787 }
4788 }
4789
4790 /* Find the end of the name, delimited by a ':', but don't match
4791 ObjC symbols which look like -[Foo bar::]:bla. */
4792 static const char *
4793 find_name_end (const char *name)
4794 {
4795 const char *s = name;
4796
4797 if (s[0] == '-' || *s == '+')
4798 {
4799 /* Must be an ObjC method symbol. */
4800 if (s[1] != '[')
4801 {
4802 error (_("invalid symbol name \"%s\""), name);
4803 }
4804 s = strchr (s, ']');
4805 if (s == NULL)
4806 {
4807 error (_("invalid symbol name \"%s\""), name);
4808 }
4809 return strchr (s, ':');
4810 }
4811 else
4812 {
4813 return strchr (s, ':');
4814 }
4815 }
4816
4817 /* Initializer for this module. */
4818
4819 void
4820 _initialize_stabsread (void)
4821 {
4822 rs6000_builtin_type_data = register_objfile_data ();
4823
4824 undef_types_allocated = 20;
4825 undef_types_length = 0;
4826 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4827
4828 noname_undefs_allocated = 20;
4829 noname_undefs_length = 0;
4830 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4831
4832 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4833 &stab_register_funcs);
4834 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4835 &stab_register_funcs);
4836 }
This page took 0.147212 seconds and 4 git commands to generate.