Replace SYMBOL_*_NAME accessors with member functions
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
25 this file. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "gdb_obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "expression.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym-legacy.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "language.h"
44 #include "target-float.h"
45 #include "c-lang.h"
46 #include "cp-abi.h"
47 #include "cp-support.h"
48 #include <ctype.h>
49
50 #include "stabsread.h"
51
52 /* See stabsread.h for these globals. */
53 unsigned int symnum;
54 const char *(*next_symbol_text_func) (struct objfile *);
55 unsigned char processing_gcc_compilation;
56 int within_function;
57 struct symbol *global_sym_chain[HASHSIZE];
58 struct pending_stabs *global_stabs;
59 int previous_stab_code;
60 int *this_object_header_files;
61 int n_this_object_header_files;
62 int n_allocated_this_object_header_files;
63
64 struct nextfield
65 {
66 struct nextfield *next;
67
68 /* This is the raw visibility from the stab. It is not checked
69 for being one of the visibilities we recognize, so code which
70 examines this field better be able to deal. */
71 int visibility;
72
73 struct field field;
74 };
75
76 struct next_fnfieldlist
77 {
78 struct next_fnfieldlist *next;
79 struct fn_fieldlist fn_fieldlist;
80 };
81
82 /* The routines that read and process a complete stabs for a C struct or
83 C++ class pass lists of data member fields and lists of member function
84 fields in an instance of a field_info structure, as defined below.
85 This is part of some reorganization of low level C++ support and is
86 expected to eventually go away... (FIXME) */
87
88 struct stab_field_info
89 {
90 struct nextfield *list = nullptr;
91 struct next_fnfieldlist *fnlist = nullptr;
92
93 auto_obstack obstack;
94 };
95
96 static void
97 read_one_struct_field (struct stab_field_info *, const char **, const char *,
98 struct type *, struct objfile *);
99
100 static struct type *dbx_alloc_type (int[2], struct objfile *);
101
102 static long read_huge_number (const char **, int, int *, int);
103
104 static struct type *error_type (const char **, struct objfile *);
105
106 static void
107 patch_block_stabs (struct pending *, struct pending_stabs *,
108 struct objfile *);
109
110 static void fix_common_block (struct symbol *, CORE_ADDR);
111
112 static int read_type_number (const char **, int *);
113
114 static struct type *read_type (const char **, struct objfile *);
115
116 static struct type *read_range_type (const char **, int[2],
117 int, struct objfile *);
118
119 static struct type *read_sun_builtin_type (const char **,
120 int[2], struct objfile *);
121
122 static struct type *read_sun_floating_type (const char **, int[2],
123 struct objfile *);
124
125 static struct type *read_enum_type (const char **, struct type *, struct objfile *);
126
127 static struct type *rs6000_builtin_type (int, struct objfile *);
128
129 static int
130 read_member_functions (struct stab_field_info *, const char **, struct type *,
131 struct objfile *);
132
133 static int
134 read_struct_fields (struct stab_field_info *, const char **, struct type *,
135 struct objfile *);
136
137 static int
138 read_baseclasses (struct stab_field_info *, const char **, struct type *,
139 struct objfile *);
140
141 static int
142 read_tilde_fields (struct stab_field_info *, const char **, struct type *,
143 struct objfile *);
144
145 static int attach_fn_fields_to_type (struct stab_field_info *, struct type *);
146
147 static int attach_fields_to_type (struct stab_field_info *, struct type *,
148 struct objfile *);
149
150 static struct type *read_struct_type (const char **, struct type *,
151 enum type_code,
152 struct objfile *);
153
154 static struct type *read_array_type (const char **, struct type *,
155 struct objfile *);
156
157 static struct field *read_args (const char **, int, struct objfile *,
158 int *, int *);
159
160 static void add_undefined_type (struct type *, int[2]);
161
162 static int
163 read_cpp_abbrev (struct stab_field_info *, const char **, struct type *,
164 struct objfile *);
165
166 static const char *find_name_end (const char *name);
167
168 static int process_reference (const char **string);
169
170 void stabsread_clear_cache (void);
171
172 static const char vptr_name[] = "_vptr$";
173 static const char vb_name[] = "_vb$";
174
175 static void
176 invalid_cpp_abbrev_complaint (const char *arg1)
177 {
178 complaint (_("invalid C++ abbreviation `%s'"), arg1);
179 }
180
181 static void
182 reg_value_complaint (int regnum, int num_regs, const char *sym)
183 {
184 complaint (_("bad register number %d (max %d) in symbol %s"),
185 regnum, num_regs - 1, sym);
186 }
187
188 static void
189 stabs_general_complaint (const char *arg1)
190 {
191 complaint ("%s", arg1);
192 }
193
194 /* Make a list of forward references which haven't been defined. */
195
196 static struct type **undef_types;
197 static int undef_types_allocated;
198 static int undef_types_length;
199 static struct symbol *current_symbol = NULL;
200
201 /* Make a list of nameless types that are undefined.
202 This happens when another type is referenced by its number
203 before this type is actually defined. For instance "t(0,1)=k(0,2)"
204 and type (0,2) is defined only later. */
205
206 struct nat
207 {
208 int typenums[2];
209 struct type *type;
210 };
211 static struct nat *noname_undefs;
212 static int noname_undefs_allocated;
213 static int noname_undefs_length;
214
215 /* Check for and handle cretinous stabs symbol name continuation! */
216 #define STABS_CONTINUE(pp,objfile) \
217 do { \
218 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
219 *(pp) = next_symbol_text (objfile); \
220 } while (0)
221
222 /* Vector of types defined so far, indexed by their type numbers.
223 (In newer sun systems, dbx uses a pair of numbers in parens,
224 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
225 Then these numbers must be translated through the type_translations
226 hash table to get the index into the type vector.) */
227
228 static struct type **type_vector;
229
230 /* Number of elements allocated for type_vector currently. */
231
232 static int type_vector_length;
233
234 /* Initial size of type vector. Is realloc'd larger if needed, and
235 realloc'd down to the size actually used, when completed. */
236
237 #define INITIAL_TYPE_VECTOR_LENGTH 160
238 \f
239
240 /* Look up a dbx type-number pair. Return the address of the slot
241 where the type for that number-pair is stored.
242 The number-pair is in TYPENUMS.
243
244 This can be used for finding the type associated with that pair
245 or for associating a new type with the pair. */
246
247 static struct type **
248 dbx_lookup_type (int typenums[2], struct objfile *objfile)
249 {
250 int filenum = typenums[0];
251 int index = typenums[1];
252 unsigned old_len;
253 int real_filenum;
254 struct header_file *f;
255 int f_orig_length;
256
257 if (filenum == -1) /* -1,-1 is for temporary types. */
258 return 0;
259
260 if (filenum < 0 || filenum >= n_this_object_header_files)
261 {
262 complaint (_("Invalid symbol data: type number "
263 "(%d,%d) out of range at symtab pos %d."),
264 filenum, index, symnum);
265 goto error_return;
266 }
267
268 if (filenum == 0)
269 {
270 if (index < 0)
271 {
272 /* Caller wants address of address of type. We think
273 that negative (rs6k builtin) types will never appear as
274 "lvalues", (nor should they), so we stuff the real type
275 pointer into a temp, and return its address. If referenced,
276 this will do the right thing. */
277 static struct type *temp_type;
278
279 temp_type = rs6000_builtin_type (index, objfile);
280 return &temp_type;
281 }
282
283 /* Type is defined outside of header files.
284 Find it in this object file's type vector. */
285 if (index >= type_vector_length)
286 {
287 old_len = type_vector_length;
288 if (old_len == 0)
289 {
290 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
291 type_vector = XNEWVEC (struct type *, type_vector_length);
292 }
293 while (index >= type_vector_length)
294 {
295 type_vector_length *= 2;
296 }
297 type_vector = (struct type **)
298 xrealloc ((char *) type_vector,
299 (type_vector_length * sizeof (struct type *)));
300 memset (&type_vector[old_len], 0,
301 (type_vector_length - old_len) * sizeof (struct type *));
302 }
303 return (&type_vector[index]);
304 }
305 else
306 {
307 real_filenum = this_object_header_files[filenum];
308
309 if (real_filenum >= N_HEADER_FILES (objfile))
310 {
311 static struct type *temp_type;
312
313 warning (_("GDB internal error: bad real_filenum"));
314
315 error_return:
316 temp_type = objfile_type (objfile)->builtin_error;
317 return &temp_type;
318 }
319
320 f = HEADER_FILES (objfile) + real_filenum;
321
322 f_orig_length = f->length;
323 if (index >= f_orig_length)
324 {
325 while (index >= f->length)
326 {
327 f->length *= 2;
328 }
329 f->vector = (struct type **)
330 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
331 memset (&f->vector[f_orig_length], 0,
332 (f->length - f_orig_length) * sizeof (struct type *));
333 }
334 return (&f->vector[index]);
335 }
336 }
337
338 /* Make sure there is a type allocated for type numbers TYPENUMS
339 and return the type object.
340 This can create an empty (zeroed) type object.
341 TYPENUMS may be (-1, -1) to return a new type object that is not
342 put into the type vector, and so may not be referred to by number. */
343
344 static struct type *
345 dbx_alloc_type (int typenums[2], struct objfile *objfile)
346 {
347 struct type **type_addr;
348
349 if (typenums[0] == -1)
350 {
351 return (alloc_type (objfile));
352 }
353
354 type_addr = dbx_lookup_type (typenums, objfile);
355
356 /* If we are referring to a type not known at all yet,
357 allocate an empty type for it.
358 We will fill it in later if we find out how. */
359 if (*type_addr == 0)
360 {
361 *type_addr = alloc_type (objfile);
362 }
363
364 return (*type_addr);
365 }
366
367 /* Allocate a floating-point type of size BITS. */
368
369 static struct type *
370 dbx_init_float_type (struct objfile *objfile, int bits)
371 {
372 struct gdbarch *gdbarch = get_objfile_arch (objfile);
373 const struct floatformat **format;
374 struct type *type;
375
376 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
377 if (format)
378 type = init_float_type (objfile, bits, NULL, format);
379 else
380 type = init_type (objfile, TYPE_CODE_ERROR, bits, NULL);
381
382 return type;
383 }
384
385 /* for all the stabs in a given stab vector, build appropriate types
386 and fix their symbols in given symbol vector. */
387
388 static void
389 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
390 struct objfile *objfile)
391 {
392 int ii;
393 char *name;
394 const char *pp;
395 struct symbol *sym;
396
397 if (stabs)
398 {
399 /* for all the stab entries, find their corresponding symbols and
400 patch their types! */
401
402 for (ii = 0; ii < stabs->count; ++ii)
403 {
404 name = stabs->stab[ii];
405 pp = (char *) strchr (name, ':');
406 gdb_assert (pp); /* Must find a ':' or game's over. */
407 while (pp[1] == ':')
408 {
409 pp += 2;
410 pp = (char *) strchr (pp, ':');
411 }
412 sym = find_symbol_in_list (symbols, name, pp - name);
413 if (!sym)
414 {
415 /* FIXME-maybe: it would be nice if we noticed whether
416 the variable was defined *anywhere*, not just whether
417 it is defined in this compilation unit. But neither
418 xlc or GCC seem to need such a definition, and until
419 we do psymtabs (so that the minimal symbols from all
420 compilation units are available now), I'm not sure
421 how to get the information. */
422
423 /* On xcoff, if a global is defined and never referenced,
424 ld will remove it from the executable. There is then
425 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
426 sym = allocate_symbol (objfile);
427 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
428 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
429 SYMBOL_SET_LINKAGE_NAME
430 (sym, obstack_strndup (&objfile->objfile_obstack,
431 name, pp - name));
432 pp += 2;
433 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
434 {
435 /* I don't think the linker does this with functions,
436 so as far as I know this is never executed.
437 But it doesn't hurt to check. */
438 SYMBOL_TYPE (sym) =
439 lookup_function_type (read_type (&pp, objfile));
440 }
441 else
442 {
443 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
444 }
445 add_symbol_to_list (sym, get_global_symbols ());
446 }
447 else
448 {
449 pp += 2;
450 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
451 {
452 SYMBOL_TYPE (sym) =
453 lookup_function_type (read_type (&pp, objfile));
454 }
455 else
456 {
457 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
458 }
459 }
460 }
461 }
462 }
463 \f
464
465 /* Read a number by which a type is referred to in dbx data,
466 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
467 Just a single number N is equivalent to (0,N).
468 Return the two numbers by storing them in the vector TYPENUMS.
469 TYPENUMS will then be used as an argument to dbx_lookup_type.
470
471 Returns 0 for success, -1 for error. */
472
473 static int
474 read_type_number (const char **pp, int *typenums)
475 {
476 int nbits;
477
478 if (**pp == '(')
479 {
480 (*pp)++;
481 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
482 if (nbits != 0)
483 return -1;
484 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
485 if (nbits != 0)
486 return -1;
487 }
488 else
489 {
490 typenums[0] = 0;
491 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
492 if (nbits != 0)
493 return -1;
494 }
495 return 0;
496 }
497 \f
498
499 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
500 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
501 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
502 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
503
504 /* Structure for storing pointers to reference definitions for fast lookup
505 during "process_later". */
506
507 struct ref_map
508 {
509 const char *stabs;
510 CORE_ADDR value;
511 struct symbol *sym;
512 };
513
514 #define MAX_CHUNK_REFS 100
515 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
516 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
517
518 static struct ref_map *ref_map;
519
520 /* Ptr to free cell in chunk's linked list. */
521 static int ref_count = 0;
522
523 /* Number of chunks malloced. */
524 static int ref_chunk = 0;
525
526 /* This file maintains a cache of stabs aliases found in the symbol
527 table. If the symbol table changes, this cache must be cleared
528 or we are left holding onto data in invalid obstacks. */
529 void
530 stabsread_clear_cache (void)
531 {
532 ref_count = 0;
533 ref_chunk = 0;
534 }
535
536 /* Create array of pointers mapping refids to symbols and stab strings.
537 Add pointers to reference definition symbols and/or their values as we
538 find them, using their reference numbers as our index.
539 These will be used later when we resolve references. */
540 void
541 ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
542 {
543 if (ref_count == 0)
544 ref_chunk = 0;
545 if (refnum >= ref_count)
546 ref_count = refnum + 1;
547 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
548 {
549 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
550 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
551
552 ref_map = (struct ref_map *)
553 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
554 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
555 new_chunks * REF_CHUNK_SIZE);
556 ref_chunk += new_chunks;
557 }
558 ref_map[refnum].stabs = stabs;
559 ref_map[refnum].sym = sym;
560 ref_map[refnum].value = value;
561 }
562
563 /* Return defined sym for the reference REFNUM. */
564 struct symbol *
565 ref_search (int refnum)
566 {
567 if (refnum < 0 || refnum > ref_count)
568 return 0;
569 return ref_map[refnum].sym;
570 }
571
572 /* Parse a reference id in STRING and return the resulting
573 reference number. Move STRING beyond the reference id. */
574
575 static int
576 process_reference (const char **string)
577 {
578 const char *p;
579 int refnum = 0;
580
581 if (**string != '#')
582 return 0;
583
584 /* Advance beyond the initial '#'. */
585 p = *string + 1;
586
587 /* Read number as reference id. */
588 while (*p && isdigit (*p))
589 {
590 refnum = refnum * 10 + *p - '0';
591 p++;
592 }
593 *string = p;
594 return refnum;
595 }
596
597 /* If STRING defines a reference, store away a pointer to the reference
598 definition for later use. Return the reference number. */
599
600 int
601 symbol_reference_defined (const char **string)
602 {
603 const char *p = *string;
604 int refnum = 0;
605
606 refnum = process_reference (&p);
607
608 /* Defining symbols end in '='. */
609 if (*p == '=')
610 {
611 /* Symbol is being defined here. */
612 *string = p + 1;
613 return refnum;
614 }
615 else
616 {
617 /* Must be a reference. Either the symbol has already been defined,
618 or this is a forward reference to it. */
619 *string = p;
620 return -1;
621 }
622 }
623
624 static int
625 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
626 {
627 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
628
629 if (regno < 0 || regno >= gdbarch_num_cooked_regs (gdbarch))
630 {
631 reg_value_complaint (regno, gdbarch_num_cooked_regs (gdbarch),
632 sym->print_name ());
633
634 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
635 }
636
637 return regno;
638 }
639
640 static const struct symbol_register_ops stab_register_funcs = {
641 stab_reg_to_regnum
642 };
643
644 /* The "aclass" indices for computed symbols. */
645
646 static int stab_register_index;
647 static int stab_regparm_index;
648
649 struct symbol *
650 define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
651 struct objfile *objfile)
652 {
653 struct gdbarch *gdbarch = get_objfile_arch (objfile);
654 struct symbol *sym;
655 const char *p = find_name_end (string);
656 int deftype;
657 int synonym = 0;
658 int i;
659
660 /* We would like to eliminate nameless symbols, but keep their types.
661 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
662 to type 2, but, should not create a symbol to address that type. Since
663 the symbol will be nameless, there is no way any user can refer to it. */
664
665 int nameless;
666
667 /* Ignore syms with empty names. */
668 if (string[0] == 0)
669 return 0;
670
671 /* Ignore old-style symbols from cc -go. */
672 if (p == 0)
673 return 0;
674
675 while (p[1] == ':')
676 {
677 p += 2;
678 p = strchr (p, ':');
679 if (p == NULL)
680 {
681 complaint (
682 _("Bad stabs string '%s'"), string);
683 return NULL;
684 }
685 }
686
687 /* If a nameless stab entry, all we need is the type, not the symbol.
688 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
689 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
690
691 current_symbol = sym = allocate_symbol (objfile);
692
693 if (processing_gcc_compilation)
694 {
695 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
696 number of bytes occupied by a type or object, which we ignore. */
697 SYMBOL_LINE (sym) = desc;
698 }
699 else
700 {
701 SYMBOL_LINE (sym) = 0; /* unknown */
702 }
703
704 SYMBOL_SET_LANGUAGE (sym, get_current_subfile ()->language,
705 &objfile->objfile_obstack);
706
707 if (is_cplus_marker (string[0]))
708 {
709 /* Special GNU C++ names. */
710 switch (string[1])
711 {
712 case 't':
713 SYMBOL_SET_LINKAGE_NAME (sym, "this");
714 break;
715
716 case 'v': /* $vtbl_ptr_type */
717 goto normal;
718
719 case 'e':
720 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
721 break;
722
723 case '_':
724 /* This was an anonymous type that was never fixed up. */
725 goto normal;
726
727 case 'X':
728 /* SunPRO (3.0 at least) static variable encoding. */
729 if (gdbarch_static_transform_name_p (gdbarch))
730 goto normal;
731 /* fall through */
732
733 default:
734 complaint (_("Unknown C++ symbol name `%s'"),
735 string);
736 goto normal; /* Do *something* with it. */
737 }
738 }
739 else
740 {
741 normal:
742 std::string new_name;
743
744 if (SYMBOL_LANGUAGE (sym) == language_cplus)
745 {
746 char *name = (char *) alloca (p - string + 1);
747
748 memcpy (name, string, p - string);
749 name[p - string] = '\0';
750 new_name = cp_canonicalize_string (name);
751 }
752 if (!new_name.empty ())
753 {
754 SYMBOL_SET_NAMES (sym,
755 new_name,
756 1, objfile);
757 }
758 else
759 SYMBOL_SET_NAMES (sym, gdb::string_view (string, p - string), true,
760 objfile);
761
762 if (SYMBOL_LANGUAGE (sym) == language_cplus)
763 cp_scan_for_anonymous_namespaces (get_buildsym_compunit (), sym,
764 objfile);
765
766 }
767 p++;
768
769 /* Determine the type of name being defined. */
770 #if 0
771 /* Getting GDB to correctly skip the symbol on an undefined symbol
772 descriptor and not ever dump core is a very dodgy proposition if
773 we do things this way. I say the acorn RISC machine can just
774 fix their compiler. */
775 /* The Acorn RISC machine's compiler can put out locals that don't
776 start with "234=" or "(3,4)=", so assume anything other than the
777 deftypes we know how to handle is a local. */
778 if (!strchr ("cfFGpPrStTvVXCR", *p))
779 #else
780 if (isdigit (*p) || *p == '(' || *p == '-')
781 #endif
782 deftype = 'l';
783 else
784 deftype = *p++;
785
786 switch (deftype)
787 {
788 case 'c':
789 /* c is a special case, not followed by a type-number.
790 SYMBOL:c=iVALUE for an integer constant symbol.
791 SYMBOL:c=rVALUE for a floating constant symbol.
792 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
793 e.g. "b:c=e6,0" for "const b = blob1"
794 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
795 if (*p != '=')
796 {
797 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
798 SYMBOL_TYPE (sym) = error_type (&p, objfile);
799 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
800 add_symbol_to_list (sym, get_file_symbols ());
801 return sym;
802 }
803 ++p;
804 switch (*p++)
805 {
806 case 'r':
807 {
808 gdb_byte *dbl_valu;
809 struct type *dbl_type;
810
811 dbl_type = objfile_type (objfile)->builtin_double;
812 dbl_valu
813 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
814 TYPE_LENGTH (dbl_type));
815
816 target_float_from_string (dbl_valu, dbl_type, std::string (p));
817
818 SYMBOL_TYPE (sym) = dbl_type;
819 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
820 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
821 }
822 break;
823 case 'i':
824 {
825 /* Defining integer constants this way is kind of silly,
826 since 'e' constants allows the compiler to give not
827 only the value, but the type as well. C has at least
828 int, long, unsigned int, and long long as constant
829 types; other languages probably should have at least
830 unsigned as well as signed constants. */
831
832 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
833 SYMBOL_VALUE (sym) = atoi (p);
834 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
835 }
836 break;
837
838 case 'c':
839 {
840 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
841 SYMBOL_VALUE (sym) = atoi (p);
842 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
843 }
844 break;
845
846 case 's':
847 {
848 struct type *range_type;
849 int ind = 0;
850 char quote = *p++;
851 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
852 gdb_byte *string_value;
853
854 if (quote != '\'' && quote != '"')
855 {
856 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
857 SYMBOL_TYPE (sym) = error_type (&p, objfile);
858 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
859 add_symbol_to_list (sym, get_file_symbols ());
860 return sym;
861 }
862
863 /* Find matching quote, rejecting escaped quotes. */
864 while (*p && *p != quote)
865 {
866 if (*p == '\\' && p[1] == quote)
867 {
868 string_local[ind] = (gdb_byte) quote;
869 ind++;
870 p += 2;
871 }
872 else if (*p)
873 {
874 string_local[ind] = (gdb_byte) (*p);
875 ind++;
876 p++;
877 }
878 }
879 if (*p != quote)
880 {
881 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
882 SYMBOL_TYPE (sym) = error_type (&p, objfile);
883 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
884 add_symbol_to_list (sym, get_file_symbols ());
885 return sym;
886 }
887
888 /* NULL terminate the string. */
889 string_local[ind] = 0;
890 range_type
891 = create_static_range_type (NULL,
892 objfile_type (objfile)->builtin_int,
893 0, ind);
894 SYMBOL_TYPE (sym) = create_array_type (NULL,
895 objfile_type (objfile)->builtin_char,
896 range_type);
897 string_value
898 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
899 memcpy (string_value, string_local, ind + 1);
900 p++;
901
902 SYMBOL_VALUE_BYTES (sym) = string_value;
903 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
904 }
905 break;
906
907 case 'e':
908 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
909 can be represented as integral.
910 e.g. "b:c=e6,0" for "const b = blob1"
911 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
912 {
913 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
914 SYMBOL_TYPE (sym) = read_type (&p, objfile);
915
916 if (*p != ',')
917 {
918 SYMBOL_TYPE (sym) = error_type (&p, objfile);
919 break;
920 }
921 ++p;
922
923 /* If the value is too big to fit in an int (perhaps because
924 it is unsigned), or something like that, we silently get
925 a bogus value. The type and everything else about it is
926 correct. Ideally, we should be using whatever we have
927 available for parsing unsigned and long long values,
928 however. */
929 SYMBOL_VALUE (sym) = atoi (p);
930 }
931 break;
932 default:
933 {
934 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
935 SYMBOL_TYPE (sym) = error_type (&p, objfile);
936 }
937 }
938 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
939 add_symbol_to_list (sym, get_file_symbols ());
940 return sym;
941
942 case 'C':
943 /* The name of a caught exception. */
944 SYMBOL_TYPE (sym) = read_type (&p, objfile);
945 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
946 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
947 SET_SYMBOL_VALUE_ADDRESS (sym, valu);
948 add_symbol_to_list (sym, get_local_symbols ());
949 break;
950
951 case 'f':
952 /* A static function definition. */
953 SYMBOL_TYPE (sym) = read_type (&p, objfile);
954 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
955 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
956 add_symbol_to_list (sym, get_file_symbols ());
957 /* fall into process_function_types. */
958
959 process_function_types:
960 /* Function result types are described as the result type in stabs.
961 We need to convert this to the function-returning-type-X type
962 in GDB. E.g. "int" is converted to "function returning int". */
963 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
964 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
965
966 /* All functions in C++ have prototypes. Stabs does not offer an
967 explicit way to identify prototyped or unprototyped functions,
968 but both GCC and Sun CC emit stabs for the "call-as" type rather
969 than the "declared-as" type for unprototyped functions, so
970 we treat all functions as if they were prototyped. This is used
971 primarily for promotion when calling the function from GDB. */
972 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
973
974 /* fall into process_prototype_types. */
975
976 process_prototype_types:
977 /* Sun acc puts declared types of arguments here. */
978 if (*p == ';')
979 {
980 struct type *ftype = SYMBOL_TYPE (sym);
981 int nsemi = 0;
982 int nparams = 0;
983 const char *p1 = p;
984
985 /* Obtain a worst case guess for the number of arguments
986 by counting the semicolons. */
987 while (*p1)
988 {
989 if (*p1++ == ';')
990 nsemi++;
991 }
992
993 /* Allocate parameter information fields and fill them in. */
994 TYPE_FIELDS (ftype) = (struct field *)
995 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
996 while (*p++ == ';')
997 {
998 struct type *ptype;
999
1000 /* A type number of zero indicates the start of varargs.
1001 FIXME: GDB currently ignores vararg functions. */
1002 if (p[0] == '0' && p[1] == '\0')
1003 break;
1004 ptype = read_type (&p, objfile);
1005
1006 /* The Sun compilers mark integer arguments, which should
1007 be promoted to the width of the calling conventions, with
1008 a type which references itself. This type is turned into
1009 a TYPE_CODE_VOID type by read_type, and we have to turn
1010 it back into builtin_int here.
1011 FIXME: Do we need a new builtin_promoted_int_arg ? */
1012 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
1013 ptype = objfile_type (objfile)->builtin_int;
1014 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1015 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1016 }
1017 TYPE_NFIELDS (ftype) = nparams;
1018 TYPE_PROTOTYPED (ftype) = 1;
1019 }
1020 break;
1021
1022 case 'F':
1023 /* A global function definition. */
1024 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1025 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1026 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1027 add_symbol_to_list (sym, get_global_symbols ());
1028 goto process_function_types;
1029
1030 case 'G':
1031 /* For a class G (global) symbol, it appears that the
1032 value is not correct. It is necessary to search for the
1033 corresponding linker definition to find the value.
1034 These definitions appear at the end of the namelist. */
1035 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1036 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1037 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1038 /* Don't add symbol references to global_sym_chain.
1039 Symbol references don't have valid names and wont't match up with
1040 minimal symbols when the global_sym_chain is relocated.
1041 We'll fixup symbol references when we fixup the defining symbol. */
1042 if (sym->linkage_name () && sym->linkage_name ()[0] != '#')
1043 {
1044 i = hashname (sym->linkage_name ());
1045 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1046 global_sym_chain[i] = sym;
1047 }
1048 add_symbol_to_list (sym, get_global_symbols ());
1049 break;
1050
1051 /* This case is faked by a conditional above,
1052 when there is no code letter in the dbx data.
1053 Dbx data never actually contains 'l'. */
1054 case 's':
1055 case 'l':
1056 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1057 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1058 SYMBOL_VALUE (sym) = valu;
1059 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1060 add_symbol_to_list (sym, get_local_symbols ());
1061 break;
1062
1063 case 'p':
1064 if (*p == 'F')
1065 /* pF is a two-letter code that means a function parameter in Fortran.
1066 The type-number specifies the type of the return value.
1067 Translate it into a pointer-to-function type. */
1068 {
1069 p++;
1070 SYMBOL_TYPE (sym)
1071 = lookup_pointer_type
1072 (lookup_function_type (read_type (&p, objfile)));
1073 }
1074 else
1075 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1076
1077 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1078 SYMBOL_VALUE (sym) = valu;
1079 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1080 SYMBOL_IS_ARGUMENT (sym) = 1;
1081 add_symbol_to_list (sym, get_local_symbols ());
1082
1083 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1084 {
1085 /* On little-endian machines, this crud is never necessary,
1086 and, if the extra bytes contain garbage, is harmful. */
1087 break;
1088 }
1089
1090 /* If it's gcc-compiled, if it says `short', believe it. */
1091 if (processing_gcc_compilation
1092 || gdbarch_believe_pcc_promotion (gdbarch))
1093 break;
1094
1095 if (!gdbarch_believe_pcc_promotion (gdbarch))
1096 {
1097 /* If PCC says a parameter is a short or a char, it is
1098 really an int. */
1099 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1100 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1101 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1102 {
1103 SYMBOL_TYPE (sym) =
1104 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1105 ? objfile_type (objfile)->builtin_unsigned_int
1106 : objfile_type (objfile)->builtin_int;
1107 }
1108 break;
1109 }
1110 /* Fall through. */
1111
1112 case 'P':
1113 /* acc seems to use P to declare the prototypes of functions that
1114 are referenced by this file. gdb is not prepared to deal
1115 with this extra information. FIXME, it ought to. */
1116 if (type == N_FUN)
1117 {
1118 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1119 goto process_prototype_types;
1120 }
1121 /*FALLTHROUGH */
1122
1123 case 'R':
1124 /* Parameter which is in a register. */
1125 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1126 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1127 SYMBOL_IS_ARGUMENT (sym) = 1;
1128 SYMBOL_VALUE (sym) = valu;
1129 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1130 add_symbol_to_list (sym, get_local_symbols ());
1131 break;
1132
1133 case 'r':
1134 /* Register variable (either global or local). */
1135 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1136 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1137 SYMBOL_VALUE (sym) = valu;
1138 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1139 if (within_function)
1140 {
1141 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1142 the same name to represent an argument passed in a
1143 register. GCC uses 'P' for the same case. So if we find
1144 such a symbol pair we combine it into one 'P' symbol.
1145 For Sun cc we need to do this regardless of stabs_argument_has_addr, because the compiler puts out
1146 the 'p' symbol even if it never saves the argument onto
1147 the stack.
1148
1149 On most machines, we want to preserve both symbols, so
1150 that we can still get information about what is going on
1151 with the stack (VAX for computing args_printed, using
1152 stack slots instead of saved registers in backtraces,
1153 etc.).
1154
1155 Note that this code illegally combines
1156 main(argc) struct foo argc; { register struct foo argc; }
1157 but this case is considered pathological and causes a warning
1158 from a decent compiler. */
1159
1160 struct pending *local_symbols = *get_local_symbols ();
1161 if (local_symbols
1162 && local_symbols->nsyms > 0
1163 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1164 {
1165 struct symbol *prev_sym;
1166
1167 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1168 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1169 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1170 && strcmp (prev_sym->linkage_name (),
1171 sym->linkage_name ()) == 0)
1172 {
1173 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1174 /* Use the type from the LOC_REGISTER; that is the type
1175 that is actually in that register. */
1176 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1177 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1178 sym = prev_sym;
1179 break;
1180 }
1181 }
1182 add_symbol_to_list (sym, get_local_symbols ());
1183 }
1184 else
1185 add_symbol_to_list (sym, get_file_symbols ());
1186 break;
1187
1188 case 'S':
1189 /* Static symbol at top level of file. */
1190 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1191 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1192 SET_SYMBOL_VALUE_ADDRESS (sym, valu);
1193 if (gdbarch_static_transform_name_p (gdbarch)
1194 && gdbarch_static_transform_name (gdbarch, sym->linkage_name ())
1195 != sym->linkage_name ())
1196 {
1197 struct bound_minimal_symbol msym;
1198
1199 msym = lookup_minimal_symbol (sym->linkage_name (), NULL, objfile);
1200 if (msym.minsym != NULL)
1201 {
1202 const char *new_name = gdbarch_static_transform_name
1203 (gdbarch, sym->linkage_name ());
1204
1205 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1206 SET_SYMBOL_VALUE_ADDRESS (sym,
1207 BMSYMBOL_VALUE_ADDRESS (msym));
1208 }
1209 }
1210 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1211 add_symbol_to_list (sym, get_file_symbols ());
1212 break;
1213
1214 case 't':
1215 /* In Ada, there is no distinction between typedef and non-typedef;
1216 any type declaration implicitly has the equivalent of a typedef,
1217 and thus 't' is in fact equivalent to 'Tt'.
1218
1219 Therefore, for Ada units, we check the character immediately
1220 before the 't', and if we do not find a 'T', then make sure to
1221 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1222 will be stored in the VAR_DOMAIN). If the symbol was indeed
1223 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1224 elsewhere, so we don't need to take care of that.
1225
1226 This is important to do, because of forward references:
1227 The cleanup of undefined types stored in undef_types only uses
1228 STRUCT_DOMAIN symbols to perform the replacement. */
1229 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1230
1231 /* Typedef */
1232 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1233
1234 /* For a nameless type, we don't want a create a symbol, thus we
1235 did not use `sym'. Return without further processing. */
1236 if (nameless)
1237 return NULL;
1238
1239 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1240 SYMBOL_VALUE (sym) = valu;
1241 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1242 /* C++ vagaries: we may have a type which is derived from
1243 a base type which did not have its name defined when the
1244 derived class was output. We fill in the derived class's
1245 base part member's name here in that case. */
1246 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1247 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1248 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1249 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1250 {
1251 int j;
1252
1253 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1254 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1255 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1256 TYPE_NAME (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1257 }
1258
1259 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1260 {
1261 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1262 && strcmp (sym->linkage_name (), vtbl_ptr_name))
1263 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1264 {
1265 /* If we are giving a name to a type such as "pointer to
1266 foo" or "function returning foo", we better not set
1267 the TYPE_NAME. If the program contains "typedef char
1268 *caddr_t;", we don't want all variables of type char
1269 * to print as caddr_t. This is not just a
1270 consequence of GDB's type management; PCC and GCC (at
1271 least through version 2.4) both output variables of
1272 either type char * or caddr_t with the type number
1273 defined in the 't' symbol for caddr_t. If a future
1274 compiler cleans this up it GDB is not ready for it
1275 yet, but if it becomes ready we somehow need to
1276 disable this check (without breaking the PCC/GCC2.4
1277 case).
1278
1279 Sigh.
1280
1281 Fortunately, this check seems not to be necessary
1282 for anything except pointers or functions. */
1283 /* ezannoni: 2000-10-26. This seems to apply for
1284 versions of gcc older than 2.8. This was the original
1285 problem: with the following code gdb would tell that
1286 the type for name1 is caddr_t, and func is char().
1287
1288 typedef char *caddr_t;
1289 char *name2;
1290 struct x
1291 {
1292 char *name1;
1293 } xx;
1294 char *func()
1295 {
1296 }
1297 main () {}
1298 */
1299
1300 /* Pascal accepts names for pointer types. */
1301 if (get_current_subfile ()->language == language_pascal)
1302 {
1303 TYPE_NAME (SYMBOL_TYPE (sym)) = sym->linkage_name ();
1304 }
1305 }
1306 else
1307 TYPE_NAME (SYMBOL_TYPE (sym)) = sym->linkage_name ();
1308 }
1309
1310 add_symbol_to_list (sym, get_file_symbols ());
1311
1312 if (synonym)
1313 {
1314 /* Create the STRUCT_DOMAIN clone. */
1315 struct symbol *struct_sym = allocate_symbol (objfile);
1316
1317 *struct_sym = *sym;
1318 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1319 SYMBOL_VALUE (struct_sym) = valu;
1320 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1321 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1322 TYPE_NAME (SYMBOL_TYPE (sym))
1323 = obconcat (&objfile->objfile_obstack, sym->linkage_name (),
1324 (char *) NULL);
1325 add_symbol_to_list (struct_sym, get_file_symbols ());
1326 }
1327
1328 break;
1329
1330 case 'T':
1331 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1332 by 't' which means we are typedef'ing it as well. */
1333 synonym = *p == 't';
1334
1335 if (synonym)
1336 p++;
1337
1338 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1339
1340 /* For a nameless type, we don't want a create a symbol, thus we
1341 did not use `sym'. Return without further processing. */
1342 if (nameless)
1343 return NULL;
1344
1345 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1346 SYMBOL_VALUE (sym) = valu;
1347 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1348 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1349 TYPE_NAME (SYMBOL_TYPE (sym))
1350 = obconcat (&objfile->objfile_obstack, sym->linkage_name (),
1351 (char *) NULL);
1352 add_symbol_to_list (sym, get_file_symbols ());
1353
1354 if (synonym)
1355 {
1356 /* Clone the sym and then modify it. */
1357 struct symbol *typedef_sym = allocate_symbol (objfile);
1358
1359 *typedef_sym = *sym;
1360 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1361 SYMBOL_VALUE (typedef_sym) = valu;
1362 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1363 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1364 TYPE_NAME (SYMBOL_TYPE (sym))
1365 = obconcat (&objfile->objfile_obstack, sym->linkage_name (),
1366 (char *) NULL);
1367 add_symbol_to_list (typedef_sym, get_file_symbols ());
1368 }
1369 break;
1370
1371 case 'V':
1372 /* Static symbol of local scope. */
1373 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1374 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1375 SET_SYMBOL_VALUE_ADDRESS (sym, valu);
1376 if (gdbarch_static_transform_name_p (gdbarch)
1377 && gdbarch_static_transform_name (gdbarch, sym->linkage_name ())
1378 != sym->linkage_name ())
1379 {
1380 struct bound_minimal_symbol msym;
1381
1382 msym = lookup_minimal_symbol (sym->linkage_name (), NULL, objfile);
1383 if (msym.minsym != NULL)
1384 {
1385 const char *new_name = gdbarch_static_transform_name
1386 (gdbarch, sym->linkage_name ());
1387
1388 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1389 SET_SYMBOL_VALUE_ADDRESS (sym, BMSYMBOL_VALUE_ADDRESS (msym));
1390 }
1391 }
1392 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1393 add_symbol_to_list (sym, get_local_symbols ());
1394 break;
1395
1396 case 'v':
1397 /* Reference parameter */
1398 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1399 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1400 SYMBOL_IS_ARGUMENT (sym) = 1;
1401 SYMBOL_VALUE (sym) = valu;
1402 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1403 add_symbol_to_list (sym, get_local_symbols ());
1404 break;
1405
1406 case 'a':
1407 /* Reference parameter which is in a register. */
1408 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1409 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1410 SYMBOL_IS_ARGUMENT (sym) = 1;
1411 SYMBOL_VALUE (sym) = valu;
1412 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1413 add_symbol_to_list (sym, get_local_symbols ());
1414 break;
1415
1416 case 'X':
1417 /* This is used by Sun FORTRAN for "function result value".
1418 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1419 that Pascal uses it too, but when I tried it Pascal used
1420 "x:3" (local symbol) instead. */
1421 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1422 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1423 SYMBOL_VALUE (sym) = valu;
1424 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1425 add_symbol_to_list (sym, get_local_symbols ());
1426 break;
1427
1428 default:
1429 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1430 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1431 SYMBOL_VALUE (sym) = 0;
1432 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1433 add_symbol_to_list (sym, get_file_symbols ());
1434 break;
1435 }
1436
1437 /* Some systems pass variables of certain types by reference instead
1438 of by value, i.e. they will pass the address of a structure (in a
1439 register or on the stack) instead of the structure itself. */
1440
1441 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1442 && SYMBOL_IS_ARGUMENT (sym))
1443 {
1444 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1445 variables passed in a register). */
1446 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1447 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1448 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1449 and subsequent arguments on SPARC, for example). */
1450 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1451 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1452 }
1453
1454 return sym;
1455 }
1456
1457 /* Skip rest of this symbol and return an error type.
1458
1459 General notes on error recovery: error_type always skips to the
1460 end of the symbol (modulo cretinous dbx symbol name continuation).
1461 Thus code like this:
1462
1463 if (*(*pp)++ != ';')
1464 return error_type (pp, objfile);
1465
1466 is wrong because if *pp starts out pointing at '\0' (typically as the
1467 result of an earlier error), it will be incremented to point to the
1468 start of the next symbol, which might produce strange results, at least
1469 if you run off the end of the string table. Instead use
1470
1471 if (**pp != ';')
1472 return error_type (pp, objfile);
1473 ++*pp;
1474
1475 or
1476
1477 if (**pp != ';')
1478 foo = error_type (pp, objfile);
1479 else
1480 ++*pp;
1481
1482 And in case it isn't obvious, the point of all this hair is so the compiler
1483 can define new types and new syntaxes, and old versions of the
1484 debugger will be able to read the new symbol tables. */
1485
1486 static struct type *
1487 error_type (const char **pp, struct objfile *objfile)
1488 {
1489 complaint (_("couldn't parse type; debugger out of date?"));
1490 while (1)
1491 {
1492 /* Skip to end of symbol. */
1493 while (**pp != '\0')
1494 {
1495 (*pp)++;
1496 }
1497
1498 /* Check for and handle cretinous dbx symbol name continuation! */
1499 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1500 {
1501 *pp = next_symbol_text (objfile);
1502 }
1503 else
1504 {
1505 break;
1506 }
1507 }
1508 return objfile_type (objfile)->builtin_error;
1509 }
1510 \f
1511
1512 /* Read type information or a type definition; return the type. Even
1513 though this routine accepts either type information or a type
1514 definition, the distinction is relevant--some parts of stabsread.c
1515 assume that type information starts with a digit, '-', or '(' in
1516 deciding whether to call read_type. */
1517
1518 static struct type *
1519 read_type (const char **pp, struct objfile *objfile)
1520 {
1521 struct type *type = 0;
1522 struct type *type1;
1523 int typenums[2];
1524 char type_descriptor;
1525
1526 /* Size in bits of type if specified by a type attribute, or -1 if
1527 there is no size attribute. */
1528 int type_size = -1;
1529
1530 /* Used to distinguish string and bitstring from char-array and set. */
1531 int is_string = 0;
1532
1533 /* Used to distinguish vector from array. */
1534 int is_vector = 0;
1535
1536 /* Read type number if present. The type number may be omitted.
1537 for instance in a two-dimensional array declared with type
1538 "ar1;1;10;ar1;1;10;4". */
1539 if ((**pp >= '0' && **pp <= '9')
1540 || **pp == '('
1541 || **pp == '-')
1542 {
1543 if (read_type_number (pp, typenums) != 0)
1544 return error_type (pp, objfile);
1545
1546 if (**pp != '=')
1547 {
1548 /* Type is not being defined here. Either it already
1549 exists, or this is a forward reference to it.
1550 dbx_alloc_type handles both cases. */
1551 type = dbx_alloc_type (typenums, objfile);
1552
1553 /* If this is a forward reference, arrange to complain if it
1554 doesn't get patched up by the time we're done
1555 reading. */
1556 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1557 add_undefined_type (type, typenums);
1558
1559 return type;
1560 }
1561
1562 /* Type is being defined here. */
1563 /* Skip the '='.
1564 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1565 (*pp) += 2;
1566 }
1567 else
1568 {
1569 /* 'typenums=' not present, type is anonymous. Read and return
1570 the definition, but don't put it in the type vector. */
1571 typenums[0] = typenums[1] = -1;
1572 (*pp)++;
1573 }
1574
1575 again:
1576 type_descriptor = (*pp)[-1];
1577 switch (type_descriptor)
1578 {
1579 case 'x':
1580 {
1581 enum type_code code;
1582
1583 /* Used to index through file_symbols. */
1584 struct pending *ppt;
1585 int i;
1586
1587 /* Name including "struct", etc. */
1588 char *type_name;
1589
1590 {
1591 const char *from, *p, *q1, *q2;
1592
1593 /* Set the type code according to the following letter. */
1594 switch ((*pp)[0])
1595 {
1596 case 's':
1597 code = TYPE_CODE_STRUCT;
1598 break;
1599 case 'u':
1600 code = TYPE_CODE_UNION;
1601 break;
1602 case 'e':
1603 code = TYPE_CODE_ENUM;
1604 break;
1605 default:
1606 {
1607 /* Complain and keep going, so compilers can invent new
1608 cross-reference types. */
1609 complaint (_("Unrecognized cross-reference type `%c'"),
1610 (*pp)[0]);
1611 code = TYPE_CODE_STRUCT;
1612 break;
1613 }
1614 }
1615
1616 q1 = strchr (*pp, '<');
1617 p = strchr (*pp, ':');
1618 if (p == NULL)
1619 return error_type (pp, objfile);
1620 if (q1 && p > q1 && p[1] == ':')
1621 {
1622 int nesting_level = 0;
1623
1624 for (q2 = q1; *q2; q2++)
1625 {
1626 if (*q2 == '<')
1627 nesting_level++;
1628 else if (*q2 == '>')
1629 nesting_level--;
1630 else if (*q2 == ':' && nesting_level == 0)
1631 break;
1632 }
1633 p = q2;
1634 if (*p != ':')
1635 return error_type (pp, objfile);
1636 }
1637 type_name = NULL;
1638 if (get_current_subfile ()->language == language_cplus)
1639 {
1640 char *name = (char *) alloca (p - *pp + 1);
1641
1642 memcpy (name, *pp, p - *pp);
1643 name[p - *pp] = '\0';
1644
1645 std::string new_name = cp_canonicalize_string (name);
1646 if (!new_name.empty ())
1647 type_name = obstack_strdup (&objfile->objfile_obstack,
1648 new_name);
1649 }
1650 if (type_name == NULL)
1651 {
1652 char *to = type_name = (char *)
1653 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1654
1655 /* Copy the name. */
1656 from = *pp + 1;
1657 while (from < p)
1658 *to++ = *from++;
1659 *to = '\0';
1660 }
1661
1662 /* Set the pointer ahead of the name which we just read, and
1663 the colon. */
1664 *pp = p + 1;
1665 }
1666
1667 /* If this type has already been declared, then reuse the same
1668 type, rather than allocating a new one. This saves some
1669 memory. */
1670
1671 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
1672 for (i = 0; i < ppt->nsyms; i++)
1673 {
1674 struct symbol *sym = ppt->symbol[i];
1675
1676 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1677 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1678 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1679 && strcmp (sym->linkage_name (), type_name) == 0)
1680 {
1681 obstack_free (&objfile->objfile_obstack, type_name);
1682 type = SYMBOL_TYPE (sym);
1683 if (typenums[0] != -1)
1684 *dbx_lookup_type (typenums, objfile) = type;
1685 return type;
1686 }
1687 }
1688
1689 /* Didn't find the type to which this refers, so we must
1690 be dealing with a forward reference. Allocate a type
1691 structure for it, and keep track of it so we can
1692 fill in the rest of the fields when we get the full
1693 type. */
1694 type = dbx_alloc_type (typenums, objfile);
1695 TYPE_CODE (type) = code;
1696 TYPE_NAME (type) = type_name;
1697 INIT_CPLUS_SPECIFIC (type);
1698 TYPE_STUB (type) = 1;
1699
1700 add_undefined_type (type, typenums);
1701 return type;
1702 }
1703
1704 case '-': /* RS/6000 built-in type */
1705 case '0':
1706 case '1':
1707 case '2':
1708 case '3':
1709 case '4':
1710 case '5':
1711 case '6':
1712 case '7':
1713 case '8':
1714 case '9':
1715 case '(':
1716 (*pp)--;
1717
1718 /* We deal with something like t(1,2)=(3,4)=... which
1719 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1720
1721 /* Allocate and enter the typedef type first.
1722 This handles recursive types. */
1723 type = dbx_alloc_type (typenums, objfile);
1724 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1725 {
1726 struct type *xtype = read_type (pp, objfile);
1727
1728 if (type == xtype)
1729 {
1730 /* It's being defined as itself. That means it is "void". */
1731 TYPE_CODE (type) = TYPE_CODE_VOID;
1732 TYPE_LENGTH (type) = 1;
1733 }
1734 else if (type_size >= 0 || is_string)
1735 {
1736 /* This is the absolute wrong way to construct types. Every
1737 other debug format has found a way around this problem and
1738 the related problems with unnecessarily stubbed types;
1739 someone motivated should attempt to clean up the issue
1740 here as well. Once a type pointed to has been created it
1741 should not be modified.
1742
1743 Well, it's not *absolutely* wrong. Constructing recursive
1744 types (trees, linked lists) necessarily entails modifying
1745 types after creating them. Constructing any loop structure
1746 entails side effects. The Dwarf 2 reader does handle this
1747 more gracefully (it never constructs more than once
1748 instance of a type object, so it doesn't have to copy type
1749 objects wholesale), but it still mutates type objects after
1750 other folks have references to them.
1751
1752 Keep in mind that this circularity/mutation issue shows up
1753 at the source language level, too: C's "incomplete types",
1754 for example. So the proper cleanup, I think, would be to
1755 limit GDB's type smashing to match exactly those required
1756 by the source language. So GDB could have a
1757 "complete_this_type" function, but never create unnecessary
1758 copies of a type otherwise. */
1759 replace_type (type, xtype);
1760 TYPE_NAME (type) = NULL;
1761 }
1762 else
1763 {
1764 TYPE_TARGET_STUB (type) = 1;
1765 TYPE_TARGET_TYPE (type) = xtype;
1766 }
1767 }
1768 break;
1769
1770 /* In the following types, we must be sure to overwrite any existing
1771 type that the typenums refer to, rather than allocating a new one
1772 and making the typenums point to the new one. This is because there
1773 may already be pointers to the existing type (if it had been
1774 forward-referenced), and we must change it to a pointer, function,
1775 reference, or whatever, *in-place*. */
1776
1777 case '*': /* Pointer to another type */
1778 type1 = read_type (pp, objfile);
1779 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1780 break;
1781
1782 case '&': /* Reference to another type */
1783 type1 = read_type (pp, objfile);
1784 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
1785 TYPE_CODE_REF);
1786 break;
1787
1788 case 'f': /* Function returning another type */
1789 type1 = read_type (pp, objfile);
1790 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1791 break;
1792
1793 case 'g': /* Prototyped function. (Sun) */
1794 {
1795 /* Unresolved questions:
1796
1797 - According to Sun's ``STABS Interface Manual'', for 'f'
1798 and 'F' symbol descriptors, a `0' in the argument type list
1799 indicates a varargs function. But it doesn't say how 'g'
1800 type descriptors represent that info. Someone with access
1801 to Sun's toolchain should try it out.
1802
1803 - According to the comment in define_symbol (search for
1804 `process_prototype_types:'), Sun emits integer arguments as
1805 types which ref themselves --- like `void' types. Do we
1806 have to deal with that here, too? Again, someone with
1807 access to Sun's toolchain should try it out and let us
1808 know. */
1809
1810 const char *type_start = (*pp) - 1;
1811 struct type *return_type = read_type (pp, objfile);
1812 struct type *func_type
1813 = make_function_type (return_type,
1814 dbx_lookup_type (typenums, objfile));
1815 struct type_list {
1816 struct type *type;
1817 struct type_list *next;
1818 } *arg_types = 0;
1819 int num_args = 0;
1820
1821 while (**pp && **pp != '#')
1822 {
1823 struct type *arg_type = read_type (pp, objfile);
1824 struct type_list *newobj = XALLOCA (struct type_list);
1825 newobj->type = arg_type;
1826 newobj->next = arg_types;
1827 arg_types = newobj;
1828 num_args++;
1829 }
1830 if (**pp == '#')
1831 ++*pp;
1832 else
1833 {
1834 complaint (_("Prototyped function type didn't "
1835 "end arguments with `#':\n%s"),
1836 type_start);
1837 }
1838
1839 /* If there is just one argument whose type is `void', then
1840 that's just an empty argument list. */
1841 if (arg_types
1842 && ! arg_types->next
1843 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1844 num_args = 0;
1845
1846 TYPE_FIELDS (func_type)
1847 = (struct field *) TYPE_ALLOC (func_type,
1848 num_args * sizeof (struct field));
1849 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1850 {
1851 int i;
1852 struct type_list *t;
1853
1854 /* We stuck each argument type onto the front of the list
1855 when we read it, so the list is reversed. Build the
1856 fields array right-to-left. */
1857 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1858 TYPE_FIELD_TYPE (func_type, i) = t->type;
1859 }
1860 TYPE_NFIELDS (func_type) = num_args;
1861 TYPE_PROTOTYPED (func_type) = 1;
1862
1863 type = func_type;
1864 break;
1865 }
1866
1867 case 'k': /* Const qualifier on some type (Sun) */
1868 type = read_type (pp, objfile);
1869 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1870 dbx_lookup_type (typenums, objfile));
1871 break;
1872
1873 case 'B': /* Volatile qual on some type (Sun) */
1874 type = read_type (pp, objfile);
1875 type = make_cv_type (TYPE_CONST (type), 1, type,
1876 dbx_lookup_type (typenums, objfile));
1877 break;
1878
1879 case '@':
1880 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1881 { /* Member (class & variable) type */
1882 /* FIXME -- we should be doing smash_to_XXX types here. */
1883
1884 struct type *domain = read_type (pp, objfile);
1885 struct type *memtype;
1886
1887 if (**pp != ',')
1888 /* Invalid member type data format. */
1889 return error_type (pp, objfile);
1890 ++*pp;
1891
1892 memtype = read_type (pp, objfile);
1893 type = dbx_alloc_type (typenums, objfile);
1894 smash_to_memberptr_type (type, domain, memtype);
1895 }
1896 else
1897 /* type attribute */
1898 {
1899 const char *attr = *pp;
1900
1901 /* Skip to the semicolon. */
1902 while (**pp != ';' && **pp != '\0')
1903 ++(*pp);
1904 if (**pp == '\0')
1905 return error_type (pp, objfile);
1906 else
1907 ++ * pp; /* Skip the semicolon. */
1908
1909 switch (*attr)
1910 {
1911 case 's': /* Size attribute */
1912 type_size = atoi (attr + 1);
1913 if (type_size <= 0)
1914 type_size = -1;
1915 break;
1916
1917 case 'S': /* String attribute */
1918 /* FIXME: check to see if following type is array? */
1919 is_string = 1;
1920 break;
1921
1922 case 'V': /* Vector attribute */
1923 /* FIXME: check to see if following type is array? */
1924 is_vector = 1;
1925 break;
1926
1927 default:
1928 /* Ignore unrecognized type attributes, so future compilers
1929 can invent new ones. */
1930 break;
1931 }
1932 ++*pp;
1933 goto again;
1934 }
1935 break;
1936
1937 case '#': /* Method (class & fn) type */
1938 if ((*pp)[0] == '#')
1939 {
1940 /* We'll get the parameter types from the name. */
1941 struct type *return_type;
1942
1943 (*pp)++;
1944 return_type = read_type (pp, objfile);
1945 if (*(*pp)++ != ';')
1946 complaint (_("invalid (minimal) member type "
1947 "data format at symtab pos %d."),
1948 symnum);
1949 type = allocate_stub_method (return_type);
1950 if (typenums[0] != -1)
1951 *dbx_lookup_type (typenums, objfile) = type;
1952 }
1953 else
1954 {
1955 struct type *domain = read_type (pp, objfile);
1956 struct type *return_type;
1957 struct field *args;
1958 int nargs, varargs;
1959
1960 if (**pp != ',')
1961 /* Invalid member type data format. */
1962 return error_type (pp, objfile);
1963 else
1964 ++(*pp);
1965
1966 return_type = read_type (pp, objfile);
1967 args = read_args (pp, ';', objfile, &nargs, &varargs);
1968 if (args == NULL)
1969 return error_type (pp, objfile);
1970 type = dbx_alloc_type (typenums, objfile);
1971 smash_to_method_type (type, domain, return_type, args,
1972 nargs, varargs);
1973 }
1974 break;
1975
1976 case 'r': /* Range type */
1977 type = read_range_type (pp, typenums, type_size, objfile);
1978 if (typenums[0] != -1)
1979 *dbx_lookup_type (typenums, objfile) = type;
1980 break;
1981
1982 case 'b':
1983 {
1984 /* Sun ACC builtin int type */
1985 type = read_sun_builtin_type (pp, typenums, objfile);
1986 if (typenums[0] != -1)
1987 *dbx_lookup_type (typenums, objfile) = type;
1988 }
1989 break;
1990
1991 case 'R': /* Sun ACC builtin float type */
1992 type = read_sun_floating_type (pp, typenums, objfile);
1993 if (typenums[0] != -1)
1994 *dbx_lookup_type (typenums, objfile) = type;
1995 break;
1996
1997 case 'e': /* Enumeration type */
1998 type = dbx_alloc_type (typenums, objfile);
1999 type = read_enum_type (pp, type, objfile);
2000 if (typenums[0] != -1)
2001 *dbx_lookup_type (typenums, objfile) = type;
2002 break;
2003
2004 case 's': /* Struct type */
2005 case 'u': /* Union type */
2006 {
2007 enum type_code type_code = TYPE_CODE_UNDEF;
2008 type = dbx_alloc_type (typenums, objfile);
2009 switch (type_descriptor)
2010 {
2011 case 's':
2012 type_code = TYPE_CODE_STRUCT;
2013 break;
2014 case 'u':
2015 type_code = TYPE_CODE_UNION;
2016 break;
2017 }
2018 type = read_struct_type (pp, type, type_code, objfile);
2019 break;
2020 }
2021
2022 case 'a': /* Array type */
2023 if (**pp != 'r')
2024 return error_type (pp, objfile);
2025 ++*pp;
2026
2027 type = dbx_alloc_type (typenums, objfile);
2028 type = read_array_type (pp, type, objfile);
2029 if (is_string)
2030 TYPE_CODE (type) = TYPE_CODE_STRING;
2031 if (is_vector)
2032 make_vector_type (type);
2033 break;
2034
2035 case 'S': /* Set type */
2036 type1 = read_type (pp, objfile);
2037 type = create_set_type (NULL, type1);
2038 if (typenums[0] != -1)
2039 *dbx_lookup_type (typenums, objfile) = type;
2040 break;
2041
2042 default:
2043 --*pp; /* Go back to the symbol in error. */
2044 /* Particularly important if it was \0! */
2045 return error_type (pp, objfile);
2046 }
2047
2048 if (type == 0)
2049 {
2050 warning (_("GDB internal error, type is NULL in stabsread.c."));
2051 return error_type (pp, objfile);
2052 }
2053
2054 /* Size specified in a type attribute overrides any other size. */
2055 if (type_size != -1)
2056 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2057
2058 return type;
2059 }
2060 \f
2061 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2062 Return the proper type node for a given builtin type number. */
2063
2064 static const struct objfile_key<struct type *,
2065 gdb::noop_deleter<struct type *>>
2066 rs6000_builtin_type_data;
2067
2068 static struct type *
2069 rs6000_builtin_type (int typenum, struct objfile *objfile)
2070 {
2071 struct type **negative_types = rs6000_builtin_type_data.get (objfile);
2072
2073 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2074 #define NUMBER_RECOGNIZED 34
2075 struct type *rettype = NULL;
2076
2077 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2078 {
2079 complaint (_("Unknown builtin type %d"), typenum);
2080 return objfile_type (objfile)->builtin_error;
2081 }
2082
2083 if (!negative_types)
2084 {
2085 /* This includes an empty slot for type number -0. */
2086 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2087 NUMBER_RECOGNIZED + 1, struct type *);
2088 rs6000_builtin_type_data.set (objfile, negative_types);
2089 }
2090
2091 if (negative_types[-typenum] != NULL)
2092 return negative_types[-typenum];
2093
2094 #if TARGET_CHAR_BIT != 8
2095 #error This code wrong for TARGET_CHAR_BIT not 8
2096 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2097 that if that ever becomes not true, the correct fix will be to
2098 make the size in the struct type to be in bits, not in units of
2099 TARGET_CHAR_BIT. */
2100 #endif
2101
2102 switch (-typenum)
2103 {
2104 case 1:
2105 /* The size of this and all the other types are fixed, defined
2106 by the debugging format. If there is a type called "int" which
2107 is other than 32 bits, then it should use a new negative type
2108 number (or avoid negative type numbers for that case).
2109 See stabs.texinfo. */
2110 rettype = init_integer_type (objfile, 32, 0, "int");
2111 break;
2112 case 2:
2113 rettype = init_integer_type (objfile, 8, 0, "char");
2114 TYPE_NOSIGN (rettype) = 1;
2115 break;
2116 case 3:
2117 rettype = init_integer_type (objfile, 16, 0, "short");
2118 break;
2119 case 4:
2120 rettype = init_integer_type (objfile, 32, 0, "long");
2121 break;
2122 case 5:
2123 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2124 break;
2125 case 6:
2126 rettype = init_integer_type (objfile, 8, 0, "signed char");
2127 break;
2128 case 7:
2129 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2130 break;
2131 case 8:
2132 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2133 break;
2134 case 9:
2135 rettype = init_integer_type (objfile, 32, 1, "unsigned");
2136 break;
2137 case 10:
2138 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2139 break;
2140 case 11:
2141 rettype = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
2142 break;
2143 case 12:
2144 /* IEEE single precision (32 bit). */
2145 rettype = init_float_type (objfile, 32, "float",
2146 floatformats_ieee_single);
2147 break;
2148 case 13:
2149 /* IEEE double precision (64 bit). */
2150 rettype = init_float_type (objfile, 64, "double",
2151 floatformats_ieee_double);
2152 break;
2153 case 14:
2154 /* This is an IEEE double on the RS/6000, and different machines with
2155 different sizes for "long double" should use different negative
2156 type numbers. See stabs.texinfo. */
2157 rettype = init_float_type (objfile, 64, "long double",
2158 floatformats_ieee_double);
2159 break;
2160 case 15:
2161 rettype = init_integer_type (objfile, 32, 0, "integer");
2162 break;
2163 case 16:
2164 rettype = init_boolean_type (objfile, 32, 1, "boolean");
2165 break;
2166 case 17:
2167 rettype = init_float_type (objfile, 32, "short real",
2168 floatformats_ieee_single);
2169 break;
2170 case 18:
2171 rettype = init_float_type (objfile, 64, "real",
2172 floatformats_ieee_double);
2173 break;
2174 case 19:
2175 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2176 break;
2177 case 20:
2178 rettype = init_character_type (objfile, 8, 1, "character");
2179 break;
2180 case 21:
2181 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2182 break;
2183 case 22:
2184 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2185 break;
2186 case 23:
2187 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2188 break;
2189 case 24:
2190 rettype = init_boolean_type (objfile, 32, 1, "logical");
2191 break;
2192 case 25:
2193 /* Complex type consisting of two IEEE single precision values. */
2194 rettype = init_complex_type (objfile, "complex",
2195 rs6000_builtin_type (12, objfile));
2196 break;
2197 case 26:
2198 /* Complex type consisting of two IEEE double precision values. */
2199 rettype = init_complex_type (objfile, "double complex",
2200 rs6000_builtin_type (13, objfile));
2201 break;
2202 case 27:
2203 rettype = init_integer_type (objfile, 8, 0, "integer*1");
2204 break;
2205 case 28:
2206 rettype = init_integer_type (objfile, 16, 0, "integer*2");
2207 break;
2208 case 29:
2209 rettype = init_integer_type (objfile, 32, 0, "integer*4");
2210 break;
2211 case 30:
2212 rettype = init_character_type (objfile, 16, 0, "wchar");
2213 break;
2214 case 31:
2215 rettype = init_integer_type (objfile, 64, 0, "long long");
2216 break;
2217 case 32:
2218 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2219 break;
2220 case 33:
2221 rettype = init_integer_type (objfile, 64, 1, "logical*8");
2222 break;
2223 case 34:
2224 rettype = init_integer_type (objfile, 64, 0, "integer*8");
2225 break;
2226 }
2227 negative_types[-typenum] = rettype;
2228 return rettype;
2229 }
2230 \f
2231 /* This page contains subroutines of read_type. */
2232
2233 /* Wrapper around method_name_from_physname to flag a complaint
2234 if there is an error. */
2235
2236 static char *
2237 stabs_method_name_from_physname (const char *physname)
2238 {
2239 char *method_name;
2240
2241 method_name = method_name_from_physname (physname);
2242
2243 if (method_name == NULL)
2244 {
2245 complaint (_("Method has bad physname %s\n"), physname);
2246 return NULL;
2247 }
2248
2249 return method_name;
2250 }
2251
2252 /* Read member function stabs info for C++ classes. The form of each member
2253 function data is:
2254
2255 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2256
2257 An example with two member functions is:
2258
2259 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2260
2261 For the case of overloaded operators, the format is op$::*.funcs, where
2262 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2263 name (such as `+=') and `.' marks the end of the operator name.
2264
2265 Returns 1 for success, 0 for failure. */
2266
2267 static int
2268 read_member_functions (struct stab_field_info *fip, const char **pp,
2269 struct type *type, struct objfile *objfile)
2270 {
2271 int nfn_fields = 0;
2272 int length = 0;
2273 int i;
2274 struct next_fnfield
2275 {
2276 struct next_fnfield *next;
2277 struct fn_field fn_field;
2278 }
2279 *sublist;
2280 struct type *look_ahead_type;
2281 struct next_fnfieldlist *new_fnlist;
2282 struct next_fnfield *new_sublist;
2283 char *main_fn_name;
2284 const char *p;
2285
2286 /* Process each list until we find something that is not a member function
2287 or find the end of the functions. */
2288
2289 while (**pp != ';')
2290 {
2291 /* We should be positioned at the start of the function name.
2292 Scan forward to find the first ':' and if it is not the
2293 first of a "::" delimiter, then this is not a member function. */
2294 p = *pp;
2295 while (*p != ':')
2296 {
2297 p++;
2298 }
2299 if (p[1] != ':')
2300 {
2301 break;
2302 }
2303
2304 sublist = NULL;
2305 look_ahead_type = NULL;
2306 length = 0;
2307
2308 new_fnlist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfieldlist);
2309
2310 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2311 {
2312 /* This is a completely wierd case. In order to stuff in the
2313 names that might contain colons (the usual name delimiter),
2314 Mike Tiemann defined a different name format which is
2315 signalled if the identifier is "op$". In that case, the
2316 format is "op$::XXXX." where XXXX is the name. This is
2317 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2318 /* This lets the user type "break operator+".
2319 We could just put in "+" as the name, but that wouldn't
2320 work for "*". */
2321 static char opname[32] = "op$";
2322 char *o = opname + 3;
2323
2324 /* Skip past '::'. */
2325 *pp = p + 2;
2326
2327 STABS_CONTINUE (pp, objfile);
2328 p = *pp;
2329 while (*p != '.')
2330 {
2331 *o++ = *p++;
2332 }
2333 main_fn_name = savestring (opname, o - opname);
2334 /* Skip past '.' */
2335 *pp = p + 1;
2336 }
2337 else
2338 {
2339 main_fn_name = savestring (*pp, p - *pp);
2340 /* Skip past '::'. */
2341 *pp = p + 2;
2342 }
2343 new_fnlist->fn_fieldlist.name = main_fn_name;
2344
2345 do
2346 {
2347 new_sublist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfield);
2348
2349 /* Check for and handle cretinous dbx symbol name continuation! */
2350 if (look_ahead_type == NULL)
2351 {
2352 /* Normal case. */
2353 STABS_CONTINUE (pp, objfile);
2354
2355 new_sublist->fn_field.type = read_type (pp, objfile);
2356 if (**pp != ':')
2357 {
2358 /* Invalid symtab info for member function. */
2359 return 0;
2360 }
2361 }
2362 else
2363 {
2364 /* g++ version 1 kludge */
2365 new_sublist->fn_field.type = look_ahead_type;
2366 look_ahead_type = NULL;
2367 }
2368
2369 (*pp)++;
2370 p = *pp;
2371 while (*p != ';')
2372 {
2373 p++;
2374 }
2375
2376 /* These are methods, not functions. */
2377 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2378 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2379 else
2380 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2381 == TYPE_CODE_METHOD);
2382
2383 /* If this is just a stub, then we don't have the real name here. */
2384 if (TYPE_STUB (new_sublist->fn_field.type))
2385 {
2386 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2387 set_type_self_type (new_sublist->fn_field.type, type);
2388 new_sublist->fn_field.is_stub = 1;
2389 }
2390
2391 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2392 *pp = p + 1;
2393
2394 /* Set this member function's visibility fields. */
2395 switch (*(*pp)++)
2396 {
2397 case VISIBILITY_PRIVATE:
2398 new_sublist->fn_field.is_private = 1;
2399 break;
2400 case VISIBILITY_PROTECTED:
2401 new_sublist->fn_field.is_protected = 1;
2402 break;
2403 }
2404
2405 STABS_CONTINUE (pp, objfile);
2406 switch (**pp)
2407 {
2408 case 'A': /* Normal functions. */
2409 new_sublist->fn_field.is_const = 0;
2410 new_sublist->fn_field.is_volatile = 0;
2411 (*pp)++;
2412 break;
2413 case 'B': /* `const' member functions. */
2414 new_sublist->fn_field.is_const = 1;
2415 new_sublist->fn_field.is_volatile = 0;
2416 (*pp)++;
2417 break;
2418 case 'C': /* `volatile' member function. */
2419 new_sublist->fn_field.is_const = 0;
2420 new_sublist->fn_field.is_volatile = 1;
2421 (*pp)++;
2422 break;
2423 case 'D': /* `const volatile' member function. */
2424 new_sublist->fn_field.is_const = 1;
2425 new_sublist->fn_field.is_volatile = 1;
2426 (*pp)++;
2427 break;
2428 case '*': /* File compiled with g++ version 1 --
2429 no info. */
2430 case '?':
2431 case '.':
2432 break;
2433 default:
2434 complaint (_("const/volatile indicator missing, got '%c'"),
2435 **pp);
2436 break;
2437 }
2438
2439 switch (*(*pp)++)
2440 {
2441 case '*':
2442 {
2443 int nbits;
2444 /* virtual member function, followed by index.
2445 The sign bit is set to distinguish pointers-to-methods
2446 from virtual function indicies. Since the array is
2447 in words, the quantity must be shifted left by 1
2448 on 16 bit machine, and by 2 on 32 bit machine, forcing
2449 the sign bit out, and usable as a valid index into
2450 the array. Remove the sign bit here. */
2451 new_sublist->fn_field.voffset =
2452 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2453 if (nbits != 0)
2454 return 0;
2455
2456 STABS_CONTINUE (pp, objfile);
2457 if (**pp == ';' || **pp == '\0')
2458 {
2459 /* Must be g++ version 1. */
2460 new_sublist->fn_field.fcontext = 0;
2461 }
2462 else
2463 {
2464 /* Figure out from whence this virtual function came.
2465 It may belong to virtual function table of
2466 one of its baseclasses. */
2467 look_ahead_type = read_type (pp, objfile);
2468 if (**pp == ':')
2469 {
2470 /* g++ version 1 overloaded methods. */
2471 }
2472 else
2473 {
2474 new_sublist->fn_field.fcontext = look_ahead_type;
2475 if (**pp != ';')
2476 {
2477 return 0;
2478 }
2479 else
2480 {
2481 ++*pp;
2482 }
2483 look_ahead_type = NULL;
2484 }
2485 }
2486 break;
2487 }
2488 case '?':
2489 /* static member function. */
2490 {
2491 int slen = strlen (main_fn_name);
2492
2493 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2494
2495 /* For static member functions, we can't tell if they
2496 are stubbed, as they are put out as functions, and not as
2497 methods.
2498 GCC v2 emits the fully mangled name if
2499 dbxout.c:flag_minimal_debug is not set, so we have to
2500 detect a fully mangled physname here and set is_stub
2501 accordingly. Fully mangled physnames in v2 start with
2502 the member function name, followed by two underscores.
2503 GCC v3 currently always emits stubbed member functions,
2504 but with fully mangled physnames, which start with _Z. */
2505 if (!(strncmp (new_sublist->fn_field.physname,
2506 main_fn_name, slen) == 0
2507 && new_sublist->fn_field.physname[slen] == '_'
2508 && new_sublist->fn_field.physname[slen + 1] == '_'))
2509 {
2510 new_sublist->fn_field.is_stub = 1;
2511 }
2512 break;
2513 }
2514
2515 default:
2516 /* error */
2517 complaint (_("member function type missing, got '%c'"),
2518 (*pp)[-1]);
2519 /* Normal member function. */
2520 /* Fall through. */
2521
2522 case '.':
2523 /* normal member function. */
2524 new_sublist->fn_field.voffset = 0;
2525 new_sublist->fn_field.fcontext = 0;
2526 break;
2527 }
2528
2529 new_sublist->next = sublist;
2530 sublist = new_sublist;
2531 length++;
2532 STABS_CONTINUE (pp, objfile);
2533 }
2534 while (**pp != ';' && **pp != '\0');
2535
2536 (*pp)++;
2537 STABS_CONTINUE (pp, objfile);
2538
2539 /* Skip GCC 3.X member functions which are duplicates of the callable
2540 constructor/destructor. */
2541 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2542 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2543 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2544 {
2545 xfree (main_fn_name);
2546 }
2547 else
2548 {
2549 int has_destructor = 0, has_other = 0;
2550 int is_v3 = 0;
2551 struct next_fnfield *tmp_sublist;
2552
2553 /* Various versions of GCC emit various mostly-useless
2554 strings in the name field for special member functions.
2555
2556 For stub methods, we need to defer correcting the name
2557 until we are ready to unstub the method, because the current
2558 name string is used by gdb_mangle_name. The only stub methods
2559 of concern here are GNU v2 operators; other methods have their
2560 names correct (see caveat below).
2561
2562 For non-stub methods, in GNU v3, we have a complete physname.
2563 Therefore we can safely correct the name now. This primarily
2564 affects constructors and destructors, whose name will be
2565 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2566 operators will also have incorrect names; for instance,
2567 "operator int" will be named "operator i" (i.e. the type is
2568 mangled).
2569
2570 For non-stub methods in GNU v2, we have no easy way to
2571 know if we have a complete physname or not. For most
2572 methods the result depends on the platform (if CPLUS_MARKER
2573 can be `$' or `.', it will use minimal debug information, or
2574 otherwise the full physname will be included).
2575
2576 Rather than dealing with this, we take a different approach.
2577 For v3 mangled names, we can use the full physname; for v2,
2578 we use cplus_demangle_opname (which is actually v2 specific),
2579 because the only interesting names are all operators - once again
2580 barring the caveat below. Skip this process if any method in the
2581 group is a stub, to prevent our fouling up the workings of
2582 gdb_mangle_name.
2583
2584 The caveat: GCC 2.95.x (and earlier?) put constructors and
2585 destructors in the same method group. We need to split this
2586 into two groups, because they should have different names.
2587 So for each method group we check whether it contains both
2588 routines whose physname appears to be a destructor (the physnames
2589 for and destructors are always provided, due to quirks in v2
2590 mangling) and routines whose physname does not appear to be a
2591 destructor. If so then we break up the list into two halves.
2592 Even if the constructors and destructors aren't in the same group
2593 the destructor will still lack the leading tilde, so that also
2594 needs to be fixed.
2595
2596 So, to summarize what we expect and handle here:
2597
2598 Given Given Real Real Action
2599 method name physname physname method name
2600
2601 __opi [none] __opi__3Foo operator int opname
2602 [now or later]
2603 Foo _._3Foo _._3Foo ~Foo separate and
2604 rename
2605 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2606 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2607 */
2608
2609 tmp_sublist = sublist;
2610 while (tmp_sublist != NULL)
2611 {
2612 if (tmp_sublist->fn_field.physname[0] == '_'
2613 && tmp_sublist->fn_field.physname[1] == 'Z')
2614 is_v3 = 1;
2615
2616 if (is_destructor_name (tmp_sublist->fn_field.physname))
2617 has_destructor++;
2618 else
2619 has_other++;
2620
2621 tmp_sublist = tmp_sublist->next;
2622 }
2623
2624 if (has_destructor && has_other)
2625 {
2626 struct next_fnfieldlist *destr_fnlist;
2627 struct next_fnfield *last_sublist;
2628
2629 /* Create a new fn_fieldlist for the destructors. */
2630
2631 destr_fnlist = OBSTACK_ZALLOC (&fip->obstack,
2632 struct next_fnfieldlist);
2633
2634 destr_fnlist->fn_fieldlist.name
2635 = obconcat (&objfile->objfile_obstack, "~",
2636 new_fnlist->fn_fieldlist.name, (char *) NULL);
2637
2638 destr_fnlist->fn_fieldlist.fn_fields =
2639 XOBNEWVEC (&objfile->objfile_obstack,
2640 struct fn_field, has_destructor);
2641 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2642 sizeof (struct fn_field) * has_destructor);
2643 tmp_sublist = sublist;
2644 last_sublist = NULL;
2645 i = 0;
2646 while (tmp_sublist != NULL)
2647 {
2648 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2649 {
2650 tmp_sublist = tmp_sublist->next;
2651 continue;
2652 }
2653
2654 destr_fnlist->fn_fieldlist.fn_fields[i++]
2655 = tmp_sublist->fn_field;
2656 if (last_sublist)
2657 last_sublist->next = tmp_sublist->next;
2658 else
2659 sublist = tmp_sublist->next;
2660 last_sublist = tmp_sublist;
2661 tmp_sublist = tmp_sublist->next;
2662 }
2663
2664 destr_fnlist->fn_fieldlist.length = has_destructor;
2665 destr_fnlist->next = fip->fnlist;
2666 fip->fnlist = destr_fnlist;
2667 nfn_fields++;
2668 length -= has_destructor;
2669 }
2670 else if (is_v3)
2671 {
2672 /* v3 mangling prevents the use of abbreviated physnames,
2673 so we can do this here. There are stubbed methods in v3
2674 only:
2675 - in -gstabs instead of -gstabs+
2676 - or for static methods, which are output as a function type
2677 instead of a method type. */
2678 char *new_method_name =
2679 stabs_method_name_from_physname (sublist->fn_field.physname);
2680
2681 if (new_method_name != NULL
2682 && strcmp (new_method_name,
2683 new_fnlist->fn_fieldlist.name) != 0)
2684 {
2685 new_fnlist->fn_fieldlist.name = new_method_name;
2686 xfree (main_fn_name);
2687 }
2688 else
2689 xfree (new_method_name);
2690 }
2691 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2692 {
2693 new_fnlist->fn_fieldlist.name =
2694 obconcat (&objfile->objfile_obstack,
2695 "~", main_fn_name, (char *)NULL);
2696 xfree (main_fn_name);
2697 }
2698
2699 new_fnlist->fn_fieldlist.fn_fields
2700 = OBSTACK_CALLOC (&objfile->objfile_obstack, length, fn_field);
2701 for (i = length; (i--, sublist); sublist = sublist->next)
2702 {
2703 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2704 }
2705
2706 new_fnlist->fn_fieldlist.length = length;
2707 new_fnlist->next = fip->fnlist;
2708 fip->fnlist = new_fnlist;
2709 nfn_fields++;
2710 }
2711 }
2712
2713 if (nfn_fields)
2714 {
2715 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2716 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2717 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2718 memset (TYPE_FN_FIELDLISTS (type), 0,
2719 sizeof (struct fn_fieldlist) * nfn_fields);
2720 TYPE_NFN_FIELDS (type) = nfn_fields;
2721 }
2722
2723 return 1;
2724 }
2725
2726 /* Special GNU C++ name.
2727
2728 Returns 1 for success, 0 for failure. "failure" means that we can't
2729 keep parsing and it's time for error_type(). */
2730
2731 static int
2732 read_cpp_abbrev (struct stab_field_info *fip, const char **pp,
2733 struct type *type, struct objfile *objfile)
2734 {
2735 const char *p;
2736 const char *name;
2737 char cpp_abbrev;
2738 struct type *context;
2739
2740 p = *pp;
2741 if (*++p == 'v')
2742 {
2743 name = NULL;
2744 cpp_abbrev = *++p;
2745
2746 *pp = p + 1;
2747
2748 /* At this point, *pp points to something like "22:23=*22...",
2749 where the type number before the ':' is the "context" and
2750 everything after is a regular type definition. Lookup the
2751 type, find it's name, and construct the field name. */
2752
2753 context = read_type (pp, objfile);
2754
2755 switch (cpp_abbrev)
2756 {
2757 case 'f': /* $vf -- a virtual function table pointer */
2758 name = TYPE_NAME (context);
2759 if (name == NULL)
2760 {
2761 name = "";
2762 }
2763 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2764 vptr_name, name, (char *) NULL);
2765 break;
2766
2767 case 'b': /* $vb -- a virtual bsomethingorother */
2768 name = TYPE_NAME (context);
2769 if (name == NULL)
2770 {
2771 complaint (_("C++ abbreviated type name "
2772 "unknown at symtab pos %d"),
2773 symnum);
2774 name = "FOO";
2775 }
2776 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2777 name, (char *) NULL);
2778 break;
2779
2780 default:
2781 invalid_cpp_abbrev_complaint (*pp);
2782 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2783 "INVALID_CPLUSPLUS_ABBREV",
2784 (char *) NULL);
2785 break;
2786 }
2787
2788 /* At this point, *pp points to the ':'. Skip it and read the
2789 field type. */
2790
2791 p = ++(*pp);
2792 if (p[-1] != ':')
2793 {
2794 invalid_cpp_abbrev_complaint (*pp);
2795 return 0;
2796 }
2797 fip->list->field.type = read_type (pp, objfile);
2798 if (**pp == ',')
2799 (*pp)++; /* Skip the comma. */
2800 else
2801 return 0;
2802
2803 {
2804 int nbits;
2805
2806 SET_FIELD_BITPOS (fip->list->field,
2807 read_huge_number (pp, ';', &nbits, 0));
2808 if (nbits != 0)
2809 return 0;
2810 }
2811 /* This field is unpacked. */
2812 FIELD_BITSIZE (fip->list->field) = 0;
2813 fip->list->visibility = VISIBILITY_PRIVATE;
2814 }
2815 else
2816 {
2817 invalid_cpp_abbrev_complaint (*pp);
2818 /* We have no idea what syntax an unrecognized abbrev would have, so
2819 better return 0. If we returned 1, we would need to at least advance
2820 *pp to avoid an infinite loop. */
2821 return 0;
2822 }
2823 return 1;
2824 }
2825
2826 static void
2827 read_one_struct_field (struct stab_field_info *fip, const char **pp,
2828 const char *p, struct type *type,
2829 struct objfile *objfile)
2830 {
2831 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2832
2833 fip->list->field.name
2834 = obstack_strndup (&objfile->objfile_obstack, *pp, p - *pp);
2835 *pp = p + 1;
2836
2837 /* This means we have a visibility for a field coming. */
2838 if (**pp == '/')
2839 {
2840 (*pp)++;
2841 fip->list->visibility = *(*pp)++;
2842 }
2843 else
2844 {
2845 /* normal dbx-style format, no explicit visibility */
2846 fip->list->visibility = VISIBILITY_PUBLIC;
2847 }
2848
2849 fip->list->field.type = read_type (pp, objfile);
2850 if (**pp == ':')
2851 {
2852 p = ++(*pp);
2853 #if 0
2854 /* Possible future hook for nested types. */
2855 if (**pp == '!')
2856 {
2857 fip->list->field.bitpos = (long) -2; /* nested type */
2858 p = ++(*pp);
2859 }
2860 else
2861 ...;
2862 #endif
2863 while (*p != ';')
2864 {
2865 p++;
2866 }
2867 /* Static class member. */
2868 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2869 *pp = p + 1;
2870 return;
2871 }
2872 else if (**pp != ',')
2873 {
2874 /* Bad structure-type format. */
2875 stabs_general_complaint ("bad structure-type format");
2876 return;
2877 }
2878
2879 (*pp)++; /* Skip the comma. */
2880
2881 {
2882 int nbits;
2883
2884 SET_FIELD_BITPOS (fip->list->field,
2885 read_huge_number (pp, ',', &nbits, 0));
2886 if (nbits != 0)
2887 {
2888 stabs_general_complaint ("bad structure-type format");
2889 return;
2890 }
2891 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2892 if (nbits != 0)
2893 {
2894 stabs_general_complaint ("bad structure-type format");
2895 return;
2896 }
2897 }
2898
2899 if (FIELD_BITPOS (fip->list->field) == 0
2900 && FIELD_BITSIZE (fip->list->field) == 0)
2901 {
2902 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2903 it is a field which has been optimized out. The correct stab for
2904 this case is to use VISIBILITY_IGNORE, but that is a recent
2905 invention. (2) It is a 0-size array. For example
2906 union { int num; char str[0]; } foo. Printing _("<no value>" for
2907 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2908 will continue to work, and a 0-size array as a whole doesn't
2909 have any contents to print.
2910
2911 I suspect this probably could also happen with gcc -gstabs (not
2912 -gstabs+) for static fields, and perhaps other C++ extensions.
2913 Hopefully few people use -gstabs with gdb, since it is intended
2914 for dbx compatibility. */
2915
2916 /* Ignore this field. */
2917 fip->list->visibility = VISIBILITY_IGNORE;
2918 }
2919 else
2920 {
2921 /* Detect an unpacked field and mark it as such.
2922 dbx gives a bit size for all fields.
2923 Note that forward refs cannot be packed,
2924 and treat enums as if they had the width of ints. */
2925
2926 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2927
2928 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2929 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2930 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2931 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2932 {
2933 FIELD_BITSIZE (fip->list->field) = 0;
2934 }
2935 if ((FIELD_BITSIZE (fip->list->field)
2936 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2937 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2938 && FIELD_BITSIZE (fip->list->field)
2939 == gdbarch_int_bit (gdbarch))
2940 )
2941 &&
2942 FIELD_BITPOS (fip->list->field) % 8 == 0)
2943 {
2944 FIELD_BITSIZE (fip->list->field) = 0;
2945 }
2946 }
2947 }
2948
2949
2950 /* Read struct or class data fields. They have the form:
2951
2952 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2953
2954 At the end, we see a semicolon instead of a field.
2955
2956 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2957 a static field.
2958
2959 The optional VISIBILITY is one of:
2960
2961 '/0' (VISIBILITY_PRIVATE)
2962 '/1' (VISIBILITY_PROTECTED)
2963 '/2' (VISIBILITY_PUBLIC)
2964 '/9' (VISIBILITY_IGNORE)
2965
2966 or nothing, for C style fields with public visibility.
2967
2968 Returns 1 for success, 0 for failure. */
2969
2970 static int
2971 read_struct_fields (struct stab_field_info *fip, const char **pp,
2972 struct type *type, struct objfile *objfile)
2973 {
2974 const char *p;
2975 struct nextfield *newobj;
2976
2977 /* We better set p right now, in case there are no fields at all... */
2978
2979 p = *pp;
2980
2981 /* Read each data member type until we find the terminating ';' at the end of
2982 the data member list, or break for some other reason such as finding the
2983 start of the member function list. */
2984 /* Stab string for structure/union does not end with two ';' in
2985 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2986
2987 while (**pp != ';' && **pp != '\0')
2988 {
2989 STABS_CONTINUE (pp, objfile);
2990 /* Get space to record the next field's data. */
2991 newobj = OBSTACK_ZALLOC (&fip->obstack, struct nextfield);
2992
2993 newobj->next = fip->list;
2994 fip->list = newobj;
2995
2996 /* Get the field name. */
2997 p = *pp;
2998
2999 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3000 unless the CPLUS_MARKER is followed by an underscore, in
3001 which case it is just the name of an anonymous type, which we
3002 should handle like any other type name. */
3003
3004 if (is_cplus_marker (p[0]) && p[1] != '_')
3005 {
3006 if (!read_cpp_abbrev (fip, pp, type, objfile))
3007 return 0;
3008 continue;
3009 }
3010
3011 /* Look for the ':' that separates the field name from the field
3012 values. Data members are delimited by a single ':', while member
3013 functions are delimited by a pair of ':'s. When we hit the member
3014 functions (if any), terminate scan loop and return. */
3015
3016 while (*p != ':' && *p != '\0')
3017 {
3018 p++;
3019 }
3020 if (*p == '\0')
3021 return 0;
3022
3023 /* Check to see if we have hit the member functions yet. */
3024 if (p[1] == ':')
3025 {
3026 break;
3027 }
3028 read_one_struct_field (fip, pp, p, type, objfile);
3029 }
3030 if (p[0] == ':' && p[1] == ':')
3031 {
3032 /* (the deleted) chill the list of fields: the last entry (at
3033 the head) is a partially constructed entry which we now
3034 scrub. */
3035 fip->list = fip->list->next;
3036 }
3037 return 1;
3038 }
3039 /* *INDENT-OFF* */
3040 /* The stabs for C++ derived classes contain baseclass information which
3041 is marked by a '!' character after the total size. This function is
3042 called when we encounter the baseclass marker, and slurps up all the
3043 baseclass information.
3044
3045 Immediately following the '!' marker is the number of base classes that
3046 the class is derived from, followed by information for each base class.
3047 For each base class, there are two visibility specifiers, a bit offset
3048 to the base class information within the derived class, a reference to
3049 the type for the base class, and a terminating semicolon.
3050
3051 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3052 ^^ ^ ^ ^ ^ ^ ^
3053 Baseclass information marker __________________|| | | | | | |
3054 Number of baseclasses __________________________| | | | | | |
3055 Visibility specifiers (2) ________________________| | | | | |
3056 Offset in bits from start of class _________________| | | | |
3057 Type number for base class ___________________________| | | |
3058 Visibility specifiers (2) _______________________________| | |
3059 Offset in bits from start of class ________________________| |
3060 Type number of base class ____________________________________|
3061
3062 Return 1 for success, 0 for (error-type-inducing) failure. */
3063 /* *INDENT-ON* */
3064
3065
3066
3067 static int
3068 read_baseclasses (struct stab_field_info *fip, const char **pp,
3069 struct type *type, struct objfile *objfile)
3070 {
3071 int i;
3072 struct nextfield *newobj;
3073
3074 if (**pp != '!')
3075 {
3076 return 1;
3077 }
3078 else
3079 {
3080 /* Skip the '!' baseclass information marker. */
3081 (*pp)++;
3082 }
3083
3084 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3085 {
3086 int nbits;
3087
3088 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3089 if (nbits != 0)
3090 return 0;
3091 }
3092
3093 #if 0
3094 /* Some stupid compilers have trouble with the following, so break
3095 it up into simpler expressions. */
3096 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3097 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3098 #else
3099 {
3100 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3101 char *pointer;
3102
3103 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3104 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3105 }
3106 #endif /* 0 */
3107
3108 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3109
3110 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3111 {
3112 newobj = OBSTACK_ZALLOC (&fip->obstack, struct nextfield);
3113
3114 newobj->next = fip->list;
3115 fip->list = newobj;
3116 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3117 field! */
3118
3119 STABS_CONTINUE (pp, objfile);
3120 switch (**pp)
3121 {
3122 case '0':
3123 /* Nothing to do. */
3124 break;
3125 case '1':
3126 SET_TYPE_FIELD_VIRTUAL (type, i);
3127 break;
3128 default:
3129 /* Unknown character. Complain and treat it as non-virtual. */
3130 {
3131 complaint (_("Unknown virtual character `%c' for baseclass"),
3132 **pp);
3133 }
3134 }
3135 ++(*pp);
3136
3137 newobj->visibility = *(*pp)++;
3138 switch (newobj->visibility)
3139 {
3140 case VISIBILITY_PRIVATE:
3141 case VISIBILITY_PROTECTED:
3142 case VISIBILITY_PUBLIC:
3143 break;
3144 default:
3145 /* Bad visibility format. Complain and treat it as
3146 public. */
3147 {
3148 complaint (_("Unknown visibility `%c' for baseclass"),
3149 newobj->visibility);
3150 newobj->visibility = VISIBILITY_PUBLIC;
3151 }
3152 }
3153
3154 {
3155 int nbits;
3156
3157 /* The remaining value is the bit offset of the portion of the object
3158 corresponding to this baseclass. Always zero in the absence of
3159 multiple inheritance. */
3160
3161 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
3162 if (nbits != 0)
3163 return 0;
3164 }
3165
3166 /* The last piece of baseclass information is the type of the
3167 base class. Read it, and remember it's type name as this
3168 field's name. */
3169
3170 newobj->field.type = read_type (pp, objfile);
3171 newobj->field.name = TYPE_NAME (newobj->field.type);
3172
3173 /* Skip trailing ';' and bump count of number of fields seen. */
3174 if (**pp == ';')
3175 (*pp)++;
3176 else
3177 return 0;
3178 }
3179 return 1;
3180 }
3181
3182 /* The tail end of stabs for C++ classes that contain a virtual function
3183 pointer contains a tilde, a %, and a type number.
3184 The type number refers to the base class (possibly this class itself) which
3185 contains the vtable pointer for the current class.
3186
3187 This function is called when we have parsed all the method declarations,
3188 so we can look for the vptr base class info. */
3189
3190 static int
3191 read_tilde_fields (struct stab_field_info *fip, const char **pp,
3192 struct type *type, struct objfile *objfile)
3193 {
3194 const char *p;
3195
3196 STABS_CONTINUE (pp, objfile);
3197
3198 /* If we are positioned at a ';', then skip it. */
3199 if (**pp == ';')
3200 {
3201 (*pp)++;
3202 }
3203
3204 if (**pp == '~')
3205 {
3206 (*pp)++;
3207
3208 if (**pp == '=' || **pp == '+' || **pp == '-')
3209 {
3210 /* Obsolete flags that used to indicate the presence
3211 of constructors and/or destructors. */
3212 (*pp)++;
3213 }
3214
3215 /* Read either a '%' or the final ';'. */
3216 if (*(*pp)++ == '%')
3217 {
3218 /* The next number is the type number of the base class
3219 (possibly our own class) which supplies the vtable for
3220 this class. Parse it out, and search that class to find
3221 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3222 and TYPE_VPTR_FIELDNO. */
3223
3224 struct type *t;
3225 int i;
3226
3227 t = read_type (pp, objfile);
3228 p = (*pp)++;
3229 while (*p != '\0' && *p != ';')
3230 {
3231 p++;
3232 }
3233 if (*p == '\0')
3234 {
3235 /* Premature end of symbol. */
3236 return 0;
3237 }
3238
3239 set_type_vptr_basetype (type, t);
3240 if (type == t) /* Our own class provides vtbl ptr. */
3241 {
3242 for (i = TYPE_NFIELDS (t) - 1;
3243 i >= TYPE_N_BASECLASSES (t);
3244 --i)
3245 {
3246 const char *name = TYPE_FIELD_NAME (t, i);
3247
3248 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3249 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3250 {
3251 set_type_vptr_fieldno (type, i);
3252 goto gotit;
3253 }
3254 }
3255 /* Virtual function table field not found. */
3256 complaint (_("virtual function table pointer "
3257 "not found when defining class `%s'"),
3258 TYPE_NAME (type));
3259 return 0;
3260 }
3261 else
3262 {
3263 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3264 }
3265
3266 gotit:
3267 *pp = p + 1;
3268 }
3269 }
3270 return 1;
3271 }
3272
3273 static int
3274 attach_fn_fields_to_type (struct stab_field_info *fip, struct type *type)
3275 {
3276 int n;
3277
3278 for (n = TYPE_NFN_FIELDS (type);
3279 fip->fnlist != NULL;
3280 fip->fnlist = fip->fnlist->next)
3281 {
3282 --n; /* Circumvent Sun3 compiler bug. */
3283 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3284 }
3285 return 1;
3286 }
3287
3288 /* Create the vector of fields, and record how big it is.
3289 We need this info to record proper virtual function table information
3290 for this class's virtual functions. */
3291
3292 static int
3293 attach_fields_to_type (struct stab_field_info *fip, struct type *type,
3294 struct objfile *objfile)
3295 {
3296 int nfields = 0;
3297 int non_public_fields = 0;
3298 struct nextfield *scan;
3299
3300 /* Count up the number of fields that we have, as well as taking note of
3301 whether or not there are any non-public fields, which requires us to
3302 allocate and build the private_field_bits and protected_field_bits
3303 bitfields. */
3304
3305 for (scan = fip->list; scan != NULL; scan = scan->next)
3306 {
3307 nfields++;
3308 if (scan->visibility != VISIBILITY_PUBLIC)
3309 {
3310 non_public_fields++;
3311 }
3312 }
3313
3314 /* Now we know how many fields there are, and whether or not there are any
3315 non-public fields. Record the field count, allocate space for the
3316 array of fields, and create blank visibility bitfields if necessary. */
3317
3318 TYPE_NFIELDS (type) = nfields;
3319 TYPE_FIELDS (type) = (struct field *)
3320 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3321 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3322
3323 if (non_public_fields)
3324 {
3325 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3326
3327 TYPE_FIELD_PRIVATE_BITS (type) =
3328 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3329 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3330
3331 TYPE_FIELD_PROTECTED_BITS (type) =
3332 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3333 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3334
3335 TYPE_FIELD_IGNORE_BITS (type) =
3336 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3337 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3338 }
3339
3340 /* Copy the saved-up fields into the field vector. Start from the
3341 head of the list, adding to the tail of the field array, so that
3342 they end up in the same order in the array in which they were
3343 added to the list. */
3344
3345 while (nfields-- > 0)
3346 {
3347 TYPE_FIELD (type, nfields) = fip->list->field;
3348 switch (fip->list->visibility)
3349 {
3350 case VISIBILITY_PRIVATE:
3351 SET_TYPE_FIELD_PRIVATE (type, nfields);
3352 break;
3353
3354 case VISIBILITY_PROTECTED:
3355 SET_TYPE_FIELD_PROTECTED (type, nfields);
3356 break;
3357
3358 case VISIBILITY_IGNORE:
3359 SET_TYPE_FIELD_IGNORE (type, nfields);
3360 break;
3361
3362 case VISIBILITY_PUBLIC:
3363 break;
3364
3365 default:
3366 /* Unknown visibility. Complain and treat it as public. */
3367 {
3368 complaint (_("Unknown visibility `%c' for field"),
3369 fip->list->visibility);
3370 }
3371 break;
3372 }
3373 fip->list = fip->list->next;
3374 }
3375 return 1;
3376 }
3377
3378
3379 /* Complain that the compiler has emitted more than one definition for the
3380 structure type TYPE. */
3381 static void
3382 complain_about_struct_wipeout (struct type *type)
3383 {
3384 const char *name = "";
3385 const char *kind = "";
3386
3387 if (TYPE_NAME (type))
3388 {
3389 name = TYPE_NAME (type);
3390 switch (TYPE_CODE (type))
3391 {
3392 case TYPE_CODE_STRUCT: kind = "struct "; break;
3393 case TYPE_CODE_UNION: kind = "union "; break;
3394 case TYPE_CODE_ENUM: kind = "enum "; break;
3395 default: kind = "";
3396 }
3397 }
3398 else
3399 {
3400 name = "<unknown>";
3401 kind = "";
3402 }
3403
3404 complaint (_("struct/union type gets multiply defined: %s%s"), kind, name);
3405 }
3406
3407 /* Set the length for all variants of a same main_type, which are
3408 connected in the closed chain.
3409
3410 This is something that needs to be done when a type is defined *after*
3411 some cross references to this type have already been read. Consider
3412 for instance the following scenario where we have the following two
3413 stabs entries:
3414
3415 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3416 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3417
3418 A stubbed version of type dummy is created while processing the first
3419 stabs entry. The length of that type is initially set to zero, since
3420 it is unknown at this point. Also, a "constant" variation of type
3421 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3422 the stabs line).
3423
3424 The second stabs entry allows us to replace the stubbed definition
3425 with the real definition. However, we still need to adjust the length
3426 of the "constant" variation of that type, as its length was left
3427 untouched during the main type replacement... */
3428
3429 static void
3430 set_length_in_type_chain (struct type *type)
3431 {
3432 struct type *ntype = TYPE_CHAIN (type);
3433
3434 while (ntype != type)
3435 {
3436 if (TYPE_LENGTH(ntype) == 0)
3437 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3438 else
3439 complain_about_struct_wipeout (ntype);
3440 ntype = TYPE_CHAIN (ntype);
3441 }
3442 }
3443
3444 /* Read the description of a structure (or union type) and return an object
3445 describing the type.
3446
3447 PP points to a character pointer that points to the next unconsumed token
3448 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3449 *PP will point to "4a:1,0,32;;".
3450
3451 TYPE points to an incomplete type that needs to be filled in.
3452
3453 OBJFILE points to the current objfile from which the stabs information is
3454 being read. (Note that it is redundant in that TYPE also contains a pointer
3455 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3456 */
3457
3458 static struct type *
3459 read_struct_type (const char **pp, struct type *type, enum type_code type_code,
3460 struct objfile *objfile)
3461 {
3462 struct stab_field_info fi;
3463
3464 /* When describing struct/union/class types in stabs, G++ always drops
3465 all qualifications from the name. So if you've got:
3466 struct A { ... struct B { ... }; ... };
3467 then G++ will emit stabs for `struct A::B' that call it simply
3468 `struct B'. Obviously, if you've got a real top-level definition for
3469 `struct B', or other nested definitions, this is going to cause
3470 problems.
3471
3472 Obviously, GDB can't fix this by itself, but it can at least avoid
3473 scribbling on existing structure type objects when new definitions
3474 appear. */
3475 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3476 || TYPE_STUB (type)))
3477 {
3478 complain_about_struct_wipeout (type);
3479
3480 /* It's probably best to return the type unchanged. */
3481 return type;
3482 }
3483
3484 INIT_CPLUS_SPECIFIC (type);
3485 TYPE_CODE (type) = type_code;
3486 TYPE_STUB (type) = 0;
3487
3488 /* First comes the total size in bytes. */
3489
3490 {
3491 int nbits;
3492
3493 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3494 if (nbits != 0)
3495 return error_type (pp, objfile);
3496 set_length_in_type_chain (type);
3497 }
3498
3499 /* Now read the baseclasses, if any, read the regular C struct or C++
3500 class member fields, attach the fields to the type, read the C++
3501 member functions, attach them to the type, and then read any tilde
3502 field (baseclass specifier for the class holding the main vtable). */
3503
3504 if (!read_baseclasses (&fi, pp, type, objfile)
3505 || !read_struct_fields (&fi, pp, type, objfile)
3506 || !attach_fields_to_type (&fi, type, objfile)
3507 || !read_member_functions (&fi, pp, type, objfile)
3508 || !attach_fn_fields_to_type (&fi, type)
3509 || !read_tilde_fields (&fi, pp, type, objfile))
3510 {
3511 type = error_type (pp, objfile);
3512 }
3513
3514 return (type);
3515 }
3516
3517 /* Read a definition of an array type,
3518 and create and return a suitable type object.
3519 Also creates a range type which represents the bounds of that
3520 array. */
3521
3522 static struct type *
3523 read_array_type (const char **pp, struct type *type,
3524 struct objfile *objfile)
3525 {
3526 struct type *index_type, *element_type, *range_type;
3527 int lower, upper;
3528 int adjustable = 0;
3529 int nbits;
3530
3531 /* Format of an array type:
3532 "ar<index type>;lower;upper;<array_contents_type>".
3533 OS9000: "arlower,upper;<array_contents_type>".
3534
3535 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3536 for these, produce a type like float[][]. */
3537
3538 {
3539 index_type = read_type (pp, objfile);
3540 if (**pp != ';')
3541 /* Improper format of array type decl. */
3542 return error_type (pp, objfile);
3543 ++*pp;
3544 }
3545
3546 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3547 {
3548 (*pp)++;
3549 adjustable = 1;
3550 }
3551 lower = read_huge_number (pp, ';', &nbits, 0);
3552
3553 if (nbits != 0)
3554 return error_type (pp, objfile);
3555
3556 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3557 {
3558 (*pp)++;
3559 adjustable = 1;
3560 }
3561 upper = read_huge_number (pp, ';', &nbits, 0);
3562 if (nbits != 0)
3563 return error_type (pp, objfile);
3564
3565 element_type = read_type (pp, objfile);
3566
3567 if (adjustable)
3568 {
3569 lower = 0;
3570 upper = -1;
3571 }
3572
3573 range_type =
3574 create_static_range_type (NULL, index_type, lower, upper);
3575 type = create_array_type (type, element_type, range_type);
3576
3577 return type;
3578 }
3579
3580
3581 /* Read a definition of an enumeration type,
3582 and create and return a suitable type object.
3583 Also defines the symbols that represent the values of the type. */
3584
3585 static struct type *
3586 read_enum_type (const char **pp, struct type *type,
3587 struct objfile *objfile)
3588 {
3589 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3590 const char *p;
3591 char *name;
3592 long n;
3593 struct symbol *sym;
3594 int nsyms = 0;
3595 struct pending **symlist;
3596 struct pending *osyms, *syms;
3597 int o_nsyms;
3598 int nbits;
3599 int unsigned_enum = 1;
3600
3601 #if 0
3602 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3603 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3604 to do? For now, force all enum values to file scope. */
3605 if (within_function)
3606 symlist = get_local_symbols ();
3607 else
3608 #endif
3609 symlist = get_file_symbols ();
3610 osyms = *symlist;
3611 o_nsyms = osyms ? osyms->nsyms : 0;
3612
3613 /* The aix4 compiler emits an extra field before the enum members;
3614 my guess is it's a type of some sort. Just ignore it. */
3615 if (**pp == '-')
3616 {
3617 /* Skip over the type. */
3618 while (**pp != ':')
3619 (*pp)++;
3620
3621 /* Skip over the colon. */
3622 (*pp)++;
3623 }
3624
3625 /* Read the value-names and their values.
3626 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3627 A semicolon or comma instead of a NAME means the end. */
3628 while (**pp && **pp != ';' && **pp != ',')
3629 {
3630 STABS_CONTINUE (pp, objfile);
3631 p = *pp;
3632 while (*p != ':')
3633 p++;
3634 name = obstack_strndup (&objfile->objfile_obstack, *pp, p - *pp);
3635 *pp = p + 1;
3636 n = read_huge_number (pp, ',', &nbits, 0);
3637 if (nbits != 0)
3638 return error_type (pp, objfile);
3639
3640 sym = allocate_symbol (objfile);
3641 SYMBOL_SET_LINKAGE_NAME (sym, name);
3642 SYMBOL_SET_LANGUAGE (sym, get_current_subfile ()->language,
3643 &objfile->objfile_obstack);
3644 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3645 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3646 SYMBOL_VALUE (sym) = n;
3647 if (n < 0)
3648 unsigned_enum = 0;
3649 add_symbol_to_list (sym, symlist);
3650 nsyms++;
3651 }
3652
3653 if (**pp == ';')
3654 (*pp)++; /* Skip the semicolon. */
3655
3656 /* Now fill in the fields of the type-structure. */
3657
3658 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3659 set_length_in_type_chain (type);
3660 TYPE_CODE (type) = TYPE_CODE_ENUM;
3661 TYPE_STUB (type) = 0;
3662 if (unsigned_enum)
3663 TYPE_UNSIGNED (type) = 1;
3664 TYPE_NFIELDS (type) = nsyms;
3665 TYPE_FIELDS (type) = (struct field *)
3666 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3667 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3668
3669 /* Find the symbols for the values and put them into the type.
3670 The symbols can be found in the symlist that we put them on
3671 to cause them to be defined. osyms contains the old value
3672 of that symlist; everything up to there was defined by us. */
3673 /* Note that we preserve the order of the enum constants, so
3674 that in something like "enum {FOO, LAST_THING=FOO}" we print
3675 FOO, not LAST_THING. */
3676
3677 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3678 {
3679 int last = syms == osyms ? o_nsyms : 0;
3680 int j = syms->nsyms;
3681
3682 for (; --j >= last; --n)
3683 {
3684 struct symbol *xsym = syms->symbol[j];
3685
3686 SYMBOL_TYPE (xsym) = type;
3687 TYPE_FIELD_NAME (type, n) = xsym->linkage_name ();
3688 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3689 TYPE_FIELD_BITSIZE (type, n) = 0;
3690 }
3691 if (syms == osyms)
3692 break;
3693 }
3694
3695 return type;
3696 }
3697
3698 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3699 typedefs in every file (for int, long, etc):
3700
3701 type = b <signed> <width> <format type>; <offset>; <nbits>
3702 signed = u or s.
3703 optional format type = c or b for char or boolean.
3704 offset = offset from high order bit to start bit of type.
3705 width is # bytes in object of this type, nbits is # bits in type.
3706
3707 The width/offset stuff appears to be for small objects stored in
3708 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3709 FIXME. */
3710
3711 static struct type *
3712 read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
3713 {
3714 int type_bits;
3715 int nbits;
3716 int unsigned_type;
3717 int boolean_type = 0;
3718
3719 switch (**pp)
3720 {
3721 case 's':
3722 unsigned_type = 0;
3723 break;
3724 case 'u':
3725 unsigned_type = 1;
3726 break;
3727 default:
3728 return error_type (pp, objfile);
3729 }
3730 (*pp)++;
3731
3732 /* For some odd reason, all forms of char put a c here. This is strange
3733 because no other type has this honor. We can safely ignore this because
3734 we actually determine 'char'acterness by the number of bits specified in
3735 the descriptor.
3736 Boolean forms, e.g Fortran logical*X, put a b here. */
3737
3738 if (**pp == 'c')
3739 (*pp)++;
3740 else if (**pp == 'b')
3741 {
3742 boolean_type = 1;
3743 (*pp)++;
3744 }
3745
3746 /* The first number appears to be the number of bytes occupied
3747 by this type, except that unsigned short is 4 instead of 2.
3748 Since this information is redundant with the third number,
3749 we will ignore it. */
3750 read_huge_number (pp, ';', &nbits, 0);
3751 if (nbits != 0)
3752 return error_type (pp, objfile);
3753
3754 /* The second number is always 0, so ignore it too. */
3755 read_huge_number (pp, ';', &nbits, 0);
3756 if (nbits != 0)
3757 return error_type (pp, objfile);
3758
3759 /* The third number is the number of bits for this type. */
3760 type_bits = read_huge_number (pp, 0, &nbits, 0);
3761 if (nbits != 0)
3762 return error_type (pp, objfile);
3763 /* The type *should* end with a semicolon. If it are embedded
3764 in a larger type the semicolon may be the only way to know where
3765 the type ends. If this type is at the end of the stabstring we
3766 can deal with the omitted semicolon (but we don't have to like
3767 it). Don't bother to complain(), Sun's compiler omits the semicolon
3768 for "void". */
3769 if (**pp == ';')
3770 ++(*pp);
3771
3772 if (type_bits == 0)
3773 {
3774 struct type *type = init_type (objfile, TYPE_CODE_VOID,
3775 TARGET_CHAR_BIT, NULL);
3776 if (unsigned_type)
3777 TYPE_UNSIGNED (type) = 1;
3778 return type;
3779 }
3780
3781 if (boolean_type)
3782 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3783 else
3784 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3785 }
3786
3787 static struct type *
3788 read_sun_floating_type (const char **pp, int typenums[2],
3789 struct objfile *objfile)
3790 {
3791 int nbits;
3792 int details;
3793 int nbytes;
3794 struct type *rettype;
3795
3796 /* The first number has more details about the type, for example
3797 FN_COMPLEX. */
3798 details = read_huge_number (pp, ';', &nbits, 0);
3799 if (nbits != 0)
3800 return error_type (pp, objfile);
3801
3802 /* The second number is the number of bytes occupied by this type. */
3803 nbytes = read_huge_number (pp, ';', &nbits, 0);
3804 if (nbits != 0)
3805 return error_type (pp, objfile);
3806
3807 nbits = nbytes * TARGET_CHAR_BIT;
3808
3809 if (details == NF_COMPLEX || details == NF_COMPLEX16
3810 || details == NF_COMPLEX32)
3811 {
3812 rettype = dbx_init_float_type (objfile, nbits / 2);
3813 return init_complex_type (objfile, NULL, rettype);
3814 }
3815
3816 return dbx_init_float_type (objfile, nbits);
3817 }
3818
3819 /* Read a number from the string pointed to by *PP.
3820 The value of *PP is advanced over the number.
3821 If END is nonzero, the character that ends the
3822 number must match END, or an error happens;
3823 and that character is skipped if it does match.
3824 If END is zero, *PP is left pointing to that character.
3825
3826 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3827 the number is represented in an octal representation, assume that
3828 it is represented in a 2's complement representation with a size of
3829 TWOS_COMPLEMENT_BITS.
3830
3831 If the number fits in a long, set *BITS to 0 and return the value.
3832 If not, set *BITS to be the number of bits in the number and return 0.
3833
3834 If encounter garbage, set *BITS to -1 and return 0. */
3835
3836 static long
3837 read_huge_number (const char **pp, int end, int *bits,
3838 int twos_complement_bits)
3839 {
3840 const char *p = *pp;
3841 int sign = 1;
3842 int sign_bit = 0;
3843 long n = 0;
3844 int radix = 10;
3845 char overflow = 0;
3846 int nbits = 0;
3847 int c;
3848 long upper_limit;
3849 int twos_complement_representation = 0;
3850
3851 if (*p == '-')
3852 {
3853 sign = -1;
3854 p++;
3855 }
3856
3857 /* Leading zero means octal. GCC uses this to output values larger
3858 than an int (because that would be hard in decimal). */
3859 if (*p == '0')
3860 {
3861 radix = 8;
3862 p++;
3863 }
3864
3865 /* Skip extra zeros. */
3866 while (*p == '0')
3867 p++;
3868
3869 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3870 {
3871 /* Octal, possibly signed. Check if we have enough chars for a
3872 negative number. */
3873
3874 size_t len;
3875 const char *p1 = p;
3876
3877 while ((c = *p1) >= '0' && c < '8')
3878 p1++;
3879
3880 len = p1 - p;
3881 if (len > twos_complement_bits / 3
3882 || (twos_complement_bits % 3 == 0
3883 && len == twos_complement_bits / 3))
3884 {
3885 /* Ok, we have enough characters for a signed value, check
3886 for signedness by testing if the sign bit is set. */
3887 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3888 c = *p - '0';
3889 if (c & (1 << sign_bit))
3890 {
3891 /* Definitely signed. */
3892 twos_complement_representation = 1;
3893 sign = -1;
3894 }
3895 }
3896 }
3897
3898 upper_limit = LONG_MAX / radix;
3899
3900 while ((c = *p++) >= '0' && c < ('0' + radix))
3901 {
3902 if (n <= upper_limit)
3903 {
3904 if (twos_complement_representation)
3905 {
3906 /* Octal, signed, twos complement representation. In
3907 this case, n is the corresponding absolute value. */
3908 if (n == 0)
3909 {
3910 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3911
3912 n = -sn;
3913 }
3914 else
3915 {
3916 n *= radix;
3917 n -= c - '0';
3918 }
3919 }
3920 else
3921 {
3922 /* unsigned representation */
3923 n *= radix;
3924 n += c - '0'; /* FIXME this overflows anyway. */
3925 }
3926 }
3927 else
3928 overflow = 1;
3929
3930 /* This depends on large values being output in octal, which is
3931 what GCC does. */
3932 if (radix == 8)
3933 {
3934 if (nbits == 0)
3935 {
3936 if (c == '0')
3937 /* Ignore leading zeroes. */
3938 ;
3939 else if (c == '1')
3940 nbits = 1;
3941 else if (c == '2' || c == '3')
3942 nbits = 2;
3943 else
3944 nbits = 3;
3945 }
3946 else
3947 nbits += 3;
3948 }
3949 }
3950 if (end)
3951 {
3952 if (c && c != end)
3953 {
3954 if (bits != NULL)
3955 *bits = -1;
3956 return 0;
3957 }
3958 }
3959 else
3960 --p;
3961
3962 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3963 {
3964 /* We were supposed to parse a number with maximum
3965 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3966 if (bits != NULL)
3967 *bits = -1;
3968 return 0;
3969 }
3970
3971 *pp = p;
3972 if (overflow)
3973 {
3974 if (nbits == 0)
3975 {
3976 /* Large decimal constants are an error (because it is hard to
3977 count how many bits are in them). */
3978 if (bits != NULL)
3979 *bits = -1;
3980 return 0;
3981 }
3982
3983 /* -0x7f is the same as 0x80. So deal with it by adding one to
3984 the number of bits. Two's complement represention octals
3985 can't have a '-' in front. */
3986 if (sign == -1 && !twos_complement_representation)
3987 ++nbits;
3988 if (bits)
3989 *bits = nbits;
3990 }
3991 else
3992 {
3993 if (bits)
3994 *bits = 0;
3995 return n * sign;
3996 }
3997 /* It's *BITS which has the interesting information. */
3998 return 0;
3999 }
4000
4001 static struct type *
4002 read_range_type (const char **pp, int typenums[2], int type_size,
4003 struct objfile *objfile)
4004 {
4005 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4006 const char *orig_pp = *pp;
4007 int rangenums[2];
4008 long n2, n3;
4009 int n2bits, n3bits;
4010 int self_subrange;
4011 struct type *result_type;
4012 struct type *index_type = NULL;
4013
4014 /* First comes a type we are a subrange of.
4015 In C it is usually 0, 1 or the type being defined. */
4016 if (read_type_number (pp, rangenums) != 0)
4017 return error_type (pp, objfile);
4018 self_subrange = (rangenums[0] == typenums[0] &&
4019 rangenums[1] == typenums[1]);
4020
4021 if (**pp == '=')
4022 {
4023 *pp = orig_pp;
4024 index_type = read_type (pp, objfile);
4025 }
4026
4027 /* A semicolon should now follow; skip it. */
4028 if (**pp == ';')
4029 (*pp)++;
4030
4031 /* The remaining two operands are usually lower and upper bounds
4032 of the range. But in some special cases they mean something else. */
4033 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4034 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4035
4036 if (n2bits == -1 || n3bits == -1)
4037 return error_type (pp, objfile);
4038
4039 if (index_type)
4040 goto handle_true_range;
4041
4042 /* If limits are huge, must be large integral type. */
4043 if (n2bits != 0 || n3bits != 0)
4044 {
4045 char got_signed = 0;
4046 char got_unsigned = 0;
4047 /* Number of bits in the type. */
4048 int nbits = 0;
4049
4050 /* If a type size attribute has been specified, the bounds of
4051 the range should fit in this size. If the lower bounds needs
4052 more bits than the upper bound, then the type is signed. */
4053 if (n2bits <= type_size && n3bits <= type_size)
4054 {
4055 if (n2bits == type_size && n2bits > n3bits)
4056 got_signed = 1;
4057 else
4058 got_unsigned = 1;
4059 nbits = type_size;
4060 }
4061 /* Range from 0 to <large number> is an unsigned large integral type. */
4062 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4063 {
4064 got_unsigned = 1;
4065 nbits = n3bits;
4066 }
4067 /* Range from <large number> to <large number>-1 is a large signed
4068 integral type. Take care of the case where <large number> doesn't
4069 fit in a long but <large number>-1 does. */
4070 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4071 || (n2bits != 0 && n3bits == 0
4072 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4073 && n3 == LONG_MAX))
4074 {
4075 got_signed = 1;
4076 nbits = n2bits;
4077 }
4078
4079 if (got_signed || got_unsigned)
4080 return init_integer_type (objfile, nbits, got_unsigned, NULL);
4081 else
4082 return error_type (pp, objfile);
4083 }
4084
4085 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4086 if (self_subrange && n2 == 0 && n3 == 0)
4087 return init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
4088
4089 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4090 is the width in bytes.
4091
4092 Fortran programs appear to use this for complex types also. To
4093 distinguish between floats and complex, g77 (and others?) seem
4094 to use self-subranges for the complexes, and subranges of int for
4095 the floats.
4096
4097 Also note that for complexes, g77 sets n2 to the size of one of
4098 the member floats, not the whole complex beast. My guess is that
4099 this was to work well with pre-COMPLEX versions of gdb. */
4100
4101 if (n3 == 0 && n2 > 0)
4102 {
4103 struct type *float_type
4104 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
4105
4106 if (self_subrange)
4107 return init_complex_type (objfile, NULL, float_type);
4108 else
4109 return float_type;
4110 }
4111
4112 /* If the upper bound is -1, it must really be an unsigned integral. */
4113
4114 else if (n2 == 0 && n3 == -1)
4115 {
4116 int bits = type_size;
4117
4118 if (bits <= 0)
4119 {
4120 /* We don't know its size. It is unsigned int or unsigned
4121 long. GCC 2.3.3 uses this for long long too, but that is
4122 just a GDB 3.5 compatibility hack. */
4123 bits = gdbarch_int_bit (gdbarch);
4124 }
4125
4126 return init_integer_type (objfile, bits, 1, NULL);
4127 }
4128
4129 /* Special case: char is defined (Who knows why) as a subrange of
4130 itself with range 0-127. */
4131 else if (self_subrange && n2 == 0 && n3 == 127)
4132 {
4133 struct type *type = init_integer_type (objfile, TARGET_CHAR_BIT,
4134 0, NULL);
4135 TYPE_NOSIGN (type) = 1;
4136 return type;
4137 }
4138 /* We used to do this only for subrange of self or subrange of int. */
4139 else if (n2 == 0)
4140 {
4141 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4142 "unsigned long", and we already checked for that,
4143 so don't need to test for it here. */
4144
4145 if (n3 < 0)
4146 /* n3 actually gives the size. */
4147 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4148
4149 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4150 unsigned n-byte integer. But do require n to be a power of
4151 two; we don't want 3- and 5-byte integers flying around. */
4152 {
4153 int bytes;
4154 unsigned long bits;
4155
4156 bits = n3;
4157 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4158 bits >>= 8;
4159 if (bits == 0
4160 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4161 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4162 }
4163 }
4164 /* I think this is for Convex "long long". Since I don't know whether
4165 Convex sets self_subrange, I also accept that particular size regardless
4166 of self_subrange. */
4167 else if (n3 == 0 && n2 < 0
4168 && (self_subrange
4169 || n2 == -gdbarch_long_long_bit
4170 (gdbarch) / TARGET_CHAR_BIT))
4171 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4172 else if (n2 == -n3 - 1)
4173 {
4174 if (n3 == 0x7f)
4175 return init_integer_type (objfile, 8, 0, NULL);
4176 if (n3 == 0x7fff)
4177 return init_integer_type (objfile, 16, 0, NULL);
4178 if (n3 == 0x7fffffff)
4179 return init_integer_type (objfile, 32, 0, NULL);
4180 }
4181
4182 /* We have a real range type on our hands. Allocate space and
4183 return a real pointer. */
4184 handle_true_range:
4185
4186 if (self_subrange)
4187 index_type = objfile_type (objfile)->builtin_int;
4188 else
4189 index_type = *dbx_lookup_type (rangenums, objfile);
4190 if (index_type == NULL)
4191 {
4192 /* Does this actually ever happen? Is that why we are worrying
4193 about dealing with it rather than just calling error_type? */
4194
4195 complaint (_("base type %d of range type is not defined"), rangenums[1]);
4196
4197 index_type = objfile_type (objfile)->builtin_int;
4198 }
4199
4200 result_type
4201 = create_static_range_type (NULL, index_type, n2, n3);
4202 return (result_type);
4203 }
4204
4205 /* Read in an argument list. This is a list of types, separated by commas
4206 and terminated with END. Return the list of types read in, or NULL
4207 if there is an error. */
4208
4209 static struct field *
4210 read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
4211 int *varargsp)
4212 {
4213 /* FIXME! Remove this arbitrary limit! */
4214 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4215 int n = 0, i;
4216 struct field *rval;
4217
4218 while (**pp != end)
4219 {
4220 if (**pp != ',')
4221 /* Invalid argument list: no ','. */
4222 return NULL;
4223 (*pp)++;
4224 STABS_CONTINUE (pp, objfile);
4225 types[n++] = read_type (pp, objfile);
4226 }
4227 (*pp)++; /* get past `end' (the ':' character). */
4228
4229 if (n == 0)
4230 {
4231 /* We should read at least the THIS parameter here. Some broken stabs
4232 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4233 have been present ";-16,(0,43)" reference instead. This way the
4234 excessive ";" marker prematurely stops the parameters parsing. */
4235
4236 complaint (_("Invalid (empty) method arguments"));
4237 *varargsp = 0;
4238 }
4239 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4240 *varargsp = 1;
4241 else
4242 {
4243 n--;
4244 *varargsp = 0;
4245 }
4246
4247 rval = XCNEWVEC (struct field, n);
4248 for (i = 0; i < n; i++)
4249 rval[i].type = types[i];
4250 *nargsp = n;
4251 return rval;
4252 }
4253 \f
4254 /* Common block handling. */
4255
4256 /* List of symbols declared since the last BCOMM. This list is a tail
4257 of local_symbols. When ECOMM is seen, the symbols on the list
4258 are noted so their proper addresses can be filled in later,
4259 using the common block base address gotten from the assembler
4260 stabs. */
4261
4262 static struct pending *common_block;
4263 static int common_block_i;
4264
4265 /* Name of the current common block. We get it from the BCOMM instead of the
4266 ECOMM to match IBM documentation (even though IBM puts the name both places
4267 like everyone else). */
4268 static char *common_block_name;
4269
4270 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4271 to remain after this function returns. */
4272
4273 void
4274 common_block_start (const char *name, struct objfile *objfile)
4275 {
4276 if (common_block_name != NULL)
4277 {
4278 complaint (_("Invalid symbol data: common block within common block"));
4279 }
4280 common_block = *get_local_symbols ();
4281 common_block_i = common_block ? common_block->nsyms : 0;
4282 common_block_name = obstack_strdup (&objfile->objfile_obstack, name);
4283 }
4284
4285 /* Process a N_ECOMM symbol. */
4286
4287 void
4288 common_block_end (struct objfile *objfile)
4289 {
4290 /* Symbols declared since the BCOMM are to have the common block
4291 start address added in when we know it. common_block and
4292 common_block_i point to the first symbol after the BCOMM in
4293 the local_symbols list; copy the list and hang it off the
4294 symbol for the common block name for later fixup. */
4295 int i;
4296 struct symbol *sym;
4297 struct pending *newobj = 0;
4298 struct pending *next;
4299 int j;
4300
4301 if (common_block_name == NULL)
4302 {
4303 complaint (_("ECOMM symbol unmatched by BCOMM"));
4304 return;
4305 }
4306
4307 sym = allocate_symbol (objfile);
4308 /* Note: common_block_name already saved on objfile_obstack. */
4309 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4310 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4311
4312 /* Now we copy all the symbols which have been defined since the BCOMM. */
4313
4314 /* Copy all the struct pendings before common_block. */
4315 for (next = *get_local_symbols ();
4316 next != NULL && next != common_block;
4317 next = next->next)
4318 {
4319 for (j = 0; j < next->nsyms; j++)
4320 add_symbol_to_list (next->symbol[j], &newobj);
4321 }
4322
4323 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4324 NULL, it means copy all the local symbols (which we already did
4325 above). */
4326
4327 if (common_block != NULL)
4328 for (j = common_block_i; j < common_block->nsyms; j++)
4329 add_symbol_to_list (common_block->symbol[j], &newobj);
4330
4331 SYMBOL_TYPE (sym) = (struct type *) newobj;
4332
4333 /* Should we be putting local_symbols back to what it was?
4334 Does it matter? */
4335
4336 i = hashname (sym->linkage_name ());
4337 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4338 global_sym_chain[i] = sym;
4339 common_block_name = NULL;
4340 }
4341
4342 /* Add a common block's start address to the offset of each symbol
4343 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4344 the common block name). */
4345
4346 static void
4347 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4348 {
4349 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4350
4351 for (; next; next = next->next)
4352 {
4353 int j;
4354
4355 for (j = next->nsyms - 1; j >= 0; j--)
4356 SET_SYMBOL_VALUE_ADDRESS (next->symbol[j],
4357 SYMBOL_VALUE_ADDRESS (next->symbol[j])
4358 + valu);
4359 }
4360 }
4361 \f
4362
4363
4364 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4365 See add_undefined_type for more details. */
4366
4367 static void
4368 add_undefined_type_noname (struct type *type, int typenums[2])
4369 {
4370 struct nat nat;
4371
4372 nat.typenums[0] = typenums [0];
4373 nat.typenums[1] = typenums [1];
4374 nat.type = type;
4375
4376 if (noname_undefs_length == noname_undefs_allocated)
4377 {
4378 noname_undefs_allocated *= 2;
4379 noname_undefs = (struct nat *)
4380 xrealloc ((char *) noname_undefs,
4381 noname_undefs_allocated * sizeof (struct nat));
4382 }
4383 noname_undefs[noname_undefs_length++] = nat;
4384 }
4385
4386 /* Add TYPE to the UNDEF_TYPES vector.
4387 See add_undefined_type for more details. */
4388
4389 static void
4390 add_undefined_type_1 (struct type *type)
4391 {
4392 if (undef_types_length == undef_types_allocated)
4393 {
4394 undef_types_allocated *= 2;
4395 undef_types = (struct type **)
4396 xrealloc ((char *) undef_types,
4397 undef_types_allocated * sizeof (struct type *));
4398 }
4399 undef_types[undef_types_length++] = type;
4400 }
4401
4402 /* What about types defined as forward references inside of a small lexical
4403 scope? */
4404 /* Add a type to the list of undefined types to be checked through
4405 once this file has been read in.
4406
4407 In practice, we actually maintain two such lists: The first list
4408 (UNDEF_TYPES) is used for types whose name has been provided, and
4409 concerns forward references (eg 'xs' or 'xu' forward references);
4410 the second list (NONAME_UNDEFS) is used for types whose name is
4411 unknown at creation time, because they were referenced through
4412 their type number before the actual type was declared.
4413 This function actually adds the given type to the proper list. */
4414
4415 static void
4416 add_undefined_type (struct type *type, int typenums[2])
4417 {
4418 if (TYPE_NAME (type) == NULL)
4419 add_undefined_type_noname (type, typenums);
4420 else
4421 add_undefined_type_1 (type);
4422 }
4423
4424 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4425
4426 static void
4427 cleanup_undefined_types_noname (struct objfile *objfile)
4428 {
4429 int i;
4430
4431 for (i = 0; i < noname_undefs_length; i++)
4432 {
4433 struct nat nat = noname_undefs[i];
4434 struct type **type;
4435
4436 type = dbx_lookup_type (nat.typenums, objfile);
4437 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4438 {
4439 /* The instance flags of the undefined type are still unset,
4440 and needs to be copied over from the reference type.
4441 Since replace_type expects them to be identical, we need
4442 to set these flags manually before hand. */
4443 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4444 replace_type (nat.type, *type);
4445 }
4446 }
4447
4448 noname_undefs_length = 0;
4449 }
4450
4451 /* Go through each undefined type, see if it's still undefined, and fix it
4452 up if possible. We have two kinds of undefined types:
4453
4454 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4455 Fix: update array length using the element bounds
4456 and the target type's length.
4457 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4458 yet defined at the time a pointer to it was made.
4459 Fix: Do a full lookup on the struct/union tag. */
4460
4461 static void
4462 cleanup_undefined_types_1 (void)
4463 {
4464 struct type **type;
4465
4466 /* Iterate over every undefined type, and look for a symbol whose type
4467 matches our undefined type. The symbol matches if:
4468 1. It is a typedef in the STRUCT domain;
4469 2. It has the same name, and same type code;
4470 3. The instance flags are identical.
4471
4472 It is important to check the instance flags, because we have seen
4473 examples where the debug info contained definitions such as:
4474
4475 "foo_t:t30=B31=xefoo_t:"
4476
4477 In this case, we have created an undefined type named "foo_t" whose
4478 instance flags is null (when processing "xefoo_t"), and then created
4479 another type with the same name, but with different instance flags
4480 ('B' means volatile). I think that the definition above is wrong,
4481 since the same type cannot be volatile and non-volatile at the same
4482 time, but we need to be able to cope with it when it happens. The
4483 approach taken here is to treat these two types as different. */
4484
4485 for (type = undef_types; type < undef_types + undef_types_length; type++)
4486 {
4487 switch (TYPE_CODE (*type))
4488 {
4489
4490 case TYPE_CODE_STRUCT:
4491 case TYPE_CODE_UNION:
4492 case TYPE_CODE_ENUM:
4493 {
4494 /* Check if it has been defined since. Need to do this here
4495 as well as in check_typedef to deal with the (legitimate in
4496 C though not C++) case of several types with the same name
4497 in different source files. */
4498 if (TYPE_STUB (*type))
4499 {
4500 struct pending *ppt;
4501 int i;
4502 /* Name of the type, without "struct" or "union". */
4503 const char *type_name = TYPE_NAME (*type);
4504
4505 if (type_name == NULL)
4506 {
4507 complaint (_("need a type name"));
4508 break;
4509 }
4510 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
4511 {
4512 for (i = 0; i < ppt->nsyms; i++)
4513 {
4514 struct symbol *sym = ppt->symbol[i];
4515
4516 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4517 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4518 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4519 TYPE_CODE (*type))
4520 && (TYPE_INSTANCE_FLAGS (*type) ==
4521 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4522 && strcmp (sym->linkage_name (), type_name) == 0)
4523 replace_type (*type, SYMBOL_TYPE (sym));
4524 }
4525 }
4526 }
4527 }
4528 break;
4529
4530 default:
4531 {
4532 complaint (_("forward-referenced types left unresolved, "
4533 "type code %d."),
4534 TYPE_CODE (*type));
4535 }
4536 break;
4537 }
4538 }
4539
4540 undef_types_length = 0;
4541 }
4542
4543 /* Try to fix all the undefined types we encountered while processing
4544 this unit. */
4545
4546 void
4547 cleanup_undefined_stabs_types (struct objfile *objfile)
4548 {
4549 cleanup_undefined_types_1 ();
4550 cleanup_undefined_types_noname (objfile);
4551 }
4552
4553 /* See stabsread.h. */
4554
4555 void
4556 scan_file_globals (struct objfile *objfile)
4557 {
4558 int hash;
4559 struct symbol *sym, *prev;
4560 struct objfile *resolve_objfile;
4561
4562 /* SVR4 based linkers copy referenced global symbols from shared
4563 libraries to the main executable.
4564 If we are scanning the symbols for a shared library, try to resolve
4565 them from the minimal symbols of the main executable first. */
4566
4567 if (symfile_objfile && objfile != symfile_objfile)
4568 resolve_objfile = symfile_objfile;
4569 else
4570 resolve_objfile = objfile;
4571
4572 while (1)
4573 {
4574 /* Avoid expensive loop through all minimal symbols if there are
4575 no unresolved symbols. */
4576 for (hash = 0; hash < HASHSIZE; hash++)
4577 {
4578 if (global_sym_chain[hash])
4579 break;
4580 }
4581 if (hash >= HASHSIZE)
4582 return;
4583
4584 for (minimal_symbol *msymbol : resolve_objfile->msymbols ())
4585 {
4586 QUIT;
4587
4588 /* Skip static symbols. */
4589 switch (MSYMBOL_TYPE (msymbol))
4590 {
4591 case mst_file_text:
4592 case mst_file_data:
4593 case mst_file_bss:
4594 continue;
4595 default:
4596 break;
4597 }
4598
4599 prev = NULL;
4600
4601 /* Get the hash index and check all the symbols
4602 under that hash index. */
4603
4604 hash = hashname (msymbol->linkage_name ());
4605
4606 for (sym = global_sym_chain[hash]; sym;)
4607 {
4608 if (strcmp (msymbol->linkage_name (), sym->linkage_name ()) == 0)
4609 {
4610 /* Splice this symbol out of the hash chain and
4611 assign the value we have to it. */
4612 if (prev)
4613 {
4614 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4615 }
4616 else
4617 {
4618 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4619 }
4620
4621 /* Check to see whether we need to fix up a common block. */
4622 /* Note: this code might be executed several times for
4623 the same symbol if there are multiple references. */
4624 if (sym)
4625 {
4626 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4627 {
4628 fix_common_block (sym,
4629 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4630 msymbol));
4631 }
4632 else
4633 {
4634 SET_SYMBOL_VALUE_ADDRESS
4635 (sym, MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4636 msymbol));
4637 }
4638 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4639 }
4640
4641 if (prev)
4642 {
4643 sym = SYMBOL_VALUE_CHAIN (prev);
4644 }
4645 else
4646 {
4647 sym = global_sym_chain[hash];
4648 }
4649 }
4650 else
4651 {
4652 prev = sym;
4653 sym = SYMBOL_VALUE_CHAIN (sym);
4654 }
4655 }
4656 }
4657 if (resolve_objfile == objfile)
4658 break;
4659 resolve_objfile = objfile;
4660 }
4661
4662 /* Change the storage class of any remaining unresolved globals to
4663 LOC_UNRESOLVED and remove them from the chain. */
4664 for (hash = 0; hash < HASHSIZE; hash++)
4665 {
4666 sym = global_sym_chain[hash];
4667 while (sym)
4668 {
4669 prev = sym;
4670 sym = SYMBOL_VALUE_CHAIN (sym);
4671
4672 /* Change the symbol address from the misleading chain value
4673 to address zero. */
4674 SET_SYMBOL_VALUE_ADDRESS (prev, 0);
4675
4676 /* Complain about unresolved common block symbols. */
4677 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4678 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4679 else
4680 complaint (_("%s: common block `%s' from "
4681 "global_sym_chain unresolved"),
4682 objfile_name (objfile), prev->print_name ());
4683 }
4684 }
4685 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4686 }
4687
4688 /* Initialize anything that needs initializing when starting to read
4689 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4690 to a psymtab. */
4691
4692 void
4693 stabsread_init (void)
4694 {
4695 }
4696
4697 /* Initialize anything that needs initializing when a completely new
4698 symbol file is specified (not just adding some symbols from another
4699 file, e.g. a shared library). */
4700
4701 void
4702 stabsread_new_init (void)
4703 {
4704 /* Empty the hash table of global syms looking for values. */
4705 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4706 }
4707
4708 /* Initialize anything that needs initializing at the same time as
4709 start_symtab() is called. */
4710
4711 void
4712 start_stabs (void)
4713 {
4714 global_stabs = NULL; /* AIX COFF */
4715 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4716 n_this_object_header_files = 1;
4717 type_vector_length = 0;
4718 type_vector = (struct type **) 0;
4719 within_function = 0;
4720
4721 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4722 common_block_name = NULL;
4723 }
4724
4725 /* Call after end_symtab(). */
4726
4727 void
4728 end_stabs (void)
4729 {
4730 if (type_vector)
4731 {
4732 xfree (type_vector);
4733 }
4734 type_vector = 0;
4735 type_vector_length = 0;
4736 previous_stab_code = 0;
4737 }
4738
4739 void
4740 finish_global_stabs (struct objfile *objfile)
4741 {
4742 if (global_stabs)
4743 {
4744 patch_block_stabs (*get_global_symbols (), global_stabs, objfile);
4745 xfree (global_stabs);
4746 global_stabs = NULL;
4747 }
4748 }
4749
4750 /* Find the end of the name, delimited by a ':', but don't match
4751 ObjC symbols which look like -[Foo bar::]:bla. */
4752 static const char *
4753 find_name_end (const char *name)
4754 {
4755 const char *s = name;
4756
4757 if (s[0] == '-' || *s == '+')
4758 {
4759 /* Must be an ObjC method symbol. */
4760 if (s[1] != '[')
4761 {
4762 error (_("invalid symbol name \"%s\""), name);
4763 }
4764 s = strchr (s, ']');
4765 if (s == NULL)
4766 {
4767 error (_("invalid symbol name \"%s\""), name);
4768 }
4769 return strchr (s, ':');
4770 }
4771 else
4772 {
4773 return strchr (s, ':');
4774 }
4775 }
4776
4777 /* See stabsread.h. */
4778
4779 int
4780 hashname (const char *name)
4781 {
4782 return hash (name, strlen (name)) % HASHSIZE;
4783 }
4784
4785 /* Initializer for this module. */
4786
4787 void
4788 _initialize_stabsread (void)
4789 {
4790 undef_types_allocated = 20;
4791 undef_types_length = 0;
4792 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4793
4794 noname_undefs_allocated = 20;
4795 noname_undefs_length = 0;
4796 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4797
4798 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4799 &stab_register_funcs);
4800 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4801 &stab_register_funcs);
4802 }
This page took 0.177101 seconds and 4 git commands to generate.