Use obstack_strdup more
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
25 this file. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "gdb_obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "expression.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym-legacy.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "language.h"
44 #include "target-float.h"
45 #include "cp-abi.h"
46 #include "cp-support.h"
47 #include <ctype.h>
48
49 #include "stabsread.h"
50
51 /* See stabsread.h for these globals. */
52 unsigned int symnum;
53 const char *(*next_symbol_text_func) (struct objfile *);
54 unsigned char processing_gcc_compilation;
55 int within_function;
56 struct symbol *global_sym_chain[HASHSIZE];
57 struct pending_stabs *global_stabs;
58 int previous_stab_code;
59 int *this_object_header_files;
60 int n_this_object_header_files;
61 int n_allocated_this_object_header_files;
62
63 struct nextfield
64 {
65 struct nextfield *next;
66
67 /* This is the raw visibility from the stab. It is not checked
68 for being one of the visibilities we recognize, so code which
69 examines this field better be able to deal. */
70 int visibility;
71
72 struct field field;
73 };
74
75 struct next_fnfieldlist
76 {
77 struct next_fnfieldlist *next;
78 struct fn_fieldlist fn_fieldlist;
79 };
80
81 /* The routines that read and process a complete stabs for a C struct or
82 C++ class pass lists of data member fields and lists of member function
83 fields in an instance of a field_info structure, as defined below.
84 This is part of some reorganization of low level C++ support and is
85 expected to eventually go away... (FIXME) */
86
87 struct stab_field_info
88 {
89 struct nextfield *list = nullptr;
90 struct next_fnfieldlist *fnlist = nullptr;
91
92 auto_obstack obstack;
93 };
94
95 static void
96 read_one_struct_field (struct stab_field_info *, const char **, const char *,
97 struct type *, struct objfile *);
98
99 static struct type *dbx_alloc_type (int[2], struct objfile *);
100
101 static long read_huge_number (const char **, int, int *, int);
102
103 static struct type *error_type (const char **, struct objfile *);
104
105 static void
106 patch_block_stabs (struct pending *, struct pending_stabs *,
107 struct objfile *);
108
109 static void fix_common_block (struct symbol *, CORE_ADDR);
110
111 static int read_type_number (const char **, int *);
112
113 static struct type *read_type (const char **, struct objfile *);
114
115 static struct type *read_range_type (const char **, int[2],
116 int, struct objfile *);
117
118 static struct type *read_sun_builtin_type (const char **,
119 int[2], struct objfile *);
120
121 static struct type *read_sun_floating_type (const char **, int[2],
122 struct objfile *);
123
124 static struct type *read_enum_type (const char **, struct type *, struct objfile *);
125
126 static struct type *rs6000_builtin_type (int, struct objfile *);
127
128 static int
129 read_member_functions (struct stab_field_info *, const char **, struct type *,
130 struct objfile *);
131
132 static int
133 read_struct_fields (struct stab_field_info *, const char **, struct type *,
134 struct objfile *);
135
136 static int
137 read_baseclasses (struct stab_field_info *, const char **, struct type *,
138 struct objfile *);
139
140 static int
141 read_tilde_fields (struct stab_field_info *, const char **, struct type *,
142 struct objfile *);
143
144 static int attach_fn_fields_to_type (struct stab_field_info *, struct type *);
145
146 static int attach_fields_to_type (struct stab_field_info *, struct type *,
147 struct objfile *);
148
149 static struct type *read_struct_type (const char **, struct type *,
150 enum type_code,
151 struct objfile *);
152
153 static struct type *read_array_type (const char **, struct type *,
154 struct objfile *);
155
156 static struct field *read_args (const char **, int, struct objfile *,
157 int *, int *);
158
159 static void add_undefined_type (struct type *, int[2]);
160
161 static int
162 read_cpp_abbrev (struct stab_field_info *, const char **, struct type *,
163 struct objfile *);
164
165 static const char *find_name_end (const char *name);
166
167 static int process_reference (const char **string);
168
169 void stabsread_clear_cache (void);
170
171 static const char vptr_name[] = "_vptr$";
172 static const char vb_name[] = "_vb$";
173
174 static void
175 invalid_cpp_abbrev_complaint (const char *arg1)
176 {
177 complaint (_("invalid C++ abbreviation `%s'"), arg1);
178 }
179
180 static void
181 reg_value_complaint (int regnum, int num_regs, const char *sym)
182 {
183 complaint (_("bad register number %d (max %d) in symbol %s"),
184 regnum, num_regs - 1, sym);
185 }
186
187 static void
188 stabs_general_complaint (const char *arg1)
189 {
190 complaint ("%s", arg1);
191 }
192
193 /* Make a list of forward references which haven't been defined. */
194
195 static struct type **undef_types;
196 static int undef_types_allocated;
197 static int undef_types_length;
198 static struct symbol *current_symbol = NULL;
199
200 /* Make a list of nameless types that are undefined.
201 This happens when another type is referenced by its number
202 before this type is actually defined. For instance "t(0,1)=k(0,2)"
203 and type (0,2) is defined only later. */
204
205 struct nat
206 {
207 int typenums[2];
208 struct type *type;
209 };
210 static struct nat *noname_undefs;
211 static int noname_undefs_allocated;
212 static int noname_undefs_length;
213
214 /* Check for and handle cretinous stabs symbol name continuation! */
215 #define STABS_CONTINUE(pp,objfile) \
216 do { \
217 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
218 *(pp) = next_symbol_text (objfile); \
219 } while (0)
220
221 /* Vector of types defined so far, indexed by their type numbers.
222 (In newer sun systems, dbx uses a pair of numbers in parens,
223 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
224 Then these numbers must be translated through the type_translations
225 hash table to get the index into the type vector.) */
226
227 static struct type **type_vector;
228
229 /* Number of elements allocated for type_vector currently. */
230
231 static int type_vector_length;
232
233 /* Initial size of type vector. Is realloc'd larger if needed, and
234 realloc'd down to the size actually used, when completed. */
235
236 #define INITIAL_TYPE_VECTOR_LENGTH 160
237 \f
238
239 /* Look up a dbx type-number pair. Return the address of the slot
240 where the type for that number-pair is stored.
241 The number-pair is in TYPENUMS.
242
243 This can be used for finding the type associated with that pair
244 or for associating a new type with the pair. */
245
246 static struct type **
247 dbx_lookup_type (int typenums[2], struct objfile *objfile)
248 {
249 int filenum = typenums[0];
250 int index = typenums[1];
251 unsigned old_len;
252 int real_filenum;
253 struct header_file *f;
254 int f_orig_length;
255
256 if (filenum == -1) /* -1,-1 is for temporary types. */
257 return 0;
258
259 if (filenum < 0 || filenum >= n_this_object_header_files)
260 {
261 complaint (_("Invalid symbol data: type number "
262 "(%d,%d) out of range at symtab pos %d."),
263 filenum, index, symnum);
264 goto error_return;
265 }
266
267 if (filenum == 0)
268 {
269 if (index < 0)
270 {
271 /* Caller wants address of address of type. We think
272 that negative (rs6k builtin) types will never appear as
273 "lvalues", (nor should they), so we stuff the real type
274 pointer into a temp, and return its address. If referenced,
275 this will do the right thing. */
276 static struct type *temp_type;
277
278 temp_type = rs6000_builtin_type (index, objfile);
279 return &temp_type;
280 }
281
282 /* Type is defined outside of header files.
283 Find it in this object file's type vector. */
284 if (index >= type_vector_length)
285 {
286 old_len = type_vector_length;
287 if (old_len == 0)
288 {
289 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
290 type_vector = XNEWVEC (struct type *, type_vector_length);
291 }
292 while (index >= type_vector_length)
293 {
294 type_vector_length *= 2;
295 }
296 type_vector = (struct type **)
297 xrealloc ((char *) type_vector,
298 (type_vector_length * sizeof (struct type *)));
299 memset (&type_vector[old_len], 0,
300 (type_vector_length - old_len) * sizeof (struct type *));
301 }
302 return (&type_vector[index]);
303 }
304 else
305 {
306 real_filenum = this_object_header_files[filenum];
307
308 if (real_filenum >= N_HEADER_FILES (objfile))
309 {
310 static struct type *temp_type;
311
312 warning (_("GDB internal error: bad real_filenum"));
313
314 error_return:
315 temp_type = objfile_type (objfile)->builtin_error;
316 return &temp_type;
317 }
318
319 f = HEADER_FILES (objfile) + real_filenum;
320
321 f_orig_length = f->length;
322 if (index >= f_orig_length)
323 {
324 while (index >= f->length)
325 {
326 f->length *= 2;
327 }
328 f->vector = (struct type **)
329 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
330 memset (&f->vector[f_orig_length], 0,
331 (f->length - f_orig_length) * sizeof (struct type *));
332 }
333 return (&f->vector[index]);
334 }
335 }
336
337 /* Make sure there is a type allocated for type numbers TYPENUMS
338 and return the type object.
339 This can create an empty (zeroed) type object.
340 TYPENUMS may be (-1, -1) to return a new type object that is not
341 put into the type vector, and so may not be referred to by number. */
342
343 static struct type *
344 dbx_alloc_type (int typenums[2], struct objfile *objfile)
345 {
346 struct type **type_addr;
347
348 if (typenums[0] == -1)
349 {
350 return (alloc_type (objfile));
351 }
352
353 type_addr = dbx_lookup_type (typenums, objfile);
354
355 /* If we are referring to a type not known at all yet,
356 allocate an empty type for it.
357 We will fill it in later if we find out how. */
358 if (*type_addr == 0)
359 {
360 *type_addr = alloc_type (objfile);
361 }
362
363 return (*type_addr);
364 }
365
366 /* Allocate a floating-point type of size BITS. */
367
368 static struct type *
369 dbx_init_float_type (struct objfile *objfile, int bits)
370 {
371 struct gdbarch *gdbarch = get_objfile_arch (objfile);
372 const struct floatformat **format;
373 struct type *type;
374
375 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
376 if (format)
377 type = init_float_type (objfile, bits, NULL, format);
378 else
379 type = init_type (objfile, TYPE_CODE_ERROR, bits, NULL);
380
381 return type;
382 }
383
384 /* for all the stabs in a given stab vector, build appropriate types
385 and fix their symbols in given symbol vector. */
386
387 static void
388 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
389 struct objfile *objfile)
390 {
391 int ii;
392 char *name;
393 const char *pp;
394 struct symbol *sym;
395
396 if (stabs)
397 {
398 /* for all the stab entries, find their corresponding symbols and
399 patch their types! */
400
401 for (ii = 0; ii < stabs->count; ++ii)
402 {
403 name = stabs->stab[ii];
404 pp = (char *) strchr (name, ':');
405 gdb_assert (pp); /* Must find a ':' or game's over. */
406 while (pp[1] == ':')
407 {
408 pp += 2;
409 pp = (char *) strchr (pp, ':');
410 }
411 sym = find_symbol_in_list (symbols, name, pp - name);
412 if (!sym)
413 {
414 /* FIXME-maybe: it would be nice if we noticed whether
415 the variable was defined *anywhere*, not just whether
416 it is defined in this compilation unit. But neither
417 xlc or GCC seem to need such a definition, and until
418 we do psymtabs (so that the minimal symbols from all
419 compilation units are available now), I'm not sure
420 how to get the information. */
421
422 /* On xcoff, if a global is defined and never referenced,
423 ld will remove it from the executable. There is then
424 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
425 sym = allocate_symbol (objfile);
426 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
427 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
428 SYMBOL_SET_LINKAGE_NAME
429 (sym, (char *) obstack_copy0 (&objfile->objfile_obstack,
430 name, pp - name));
431 pp += 2;
432 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
433 {
434 /* I don't think the linker does this with functions,
435 so as far as I know this is never executed.
436 But it doesn't hurt to check. */
437 SYMBOL_TYPE (sym) =
438 lookup_function_type (read_type (&pp, objfile));
439 }
440 else
441 {
442 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
443 }
444 add_symbol_to_list (sym, get_global_symbols ());
445 }
446 else
447 {
448 pp += 2;
449 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
450 {
451 SYMBOL_TYPE (sym) =
452 lookup_function_type (read_type (&pp, objfile));
453 }
454 else
455 {
456 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
457 }
458 }
459 }
460 }
461 }
462 \f
463
464 /* Read a number by which a type is referred to in dbx data,
465 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
466 Just a single number N is equivalent to (0,N).
467 Return the two numbers by storing them in the vector TYPENUMS.
468 TYPENUMS will then be used as an argument to dbx_lookup_type.
469
470 Returns 0 for success, -1 for error. */
471
472 static int
473 read_type_number (const char **pp, int *typenums)
474 {
475 int nbits;
476
477 if (**pp == '(')
478 {
479 (*pp)++;
480 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
481 if (nbits != 0)
482 return -1;
483 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
484 if (nbits != 0)
485 return -1;
486 }
487 else
488 {
489 typenums[0] = 0;
490 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
491 if (nbits != 0)
492 return -1;
493 }
494 return 0;
495 }
496 \f
497
498 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
499 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
500 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
501 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
502
503 /* Structure for storing pointers to reference definitions for fast lookup
504 during "process_later". */
505
506 struct ref_map
507 {
508 const char *stabs;
509 CORE_ADDR value;
510 struct symbol *sym;
511 };
512
513 #define MAX_CHUNK_REFS 100
514 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
515 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
516
517 static struct ref_map *ref_map;
518
519 /* Ptr to free cell in chunk's linked list. */
520 static int ref_count = 0;
521
522 /* Number of chunks malloced. */
523 static int ref_chunk = 0;
524
525 /* This file maintains a cache of stabs aliases found in the symbol
526 table. If the symbol table changes, this cache must be cleared
527 or we are left holding onto data in invalid obstacks. */
528 void
529 stabsread_clear_cache (void)
530 {
531 ref_count = 0;
532 ref_chunk = 0;
533 }
534
535 /* Create array of pointers mapping refids to symbols and stab strings.
536 Add pointers to reference definition symbols and/or their values as we
537 find them, using their reference numbers as our index.
538 These will be used later when we resolve references. */
539 void
540 ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
541 {
542 if (ref_count == 0)
543 ref_chunk = 0;
544 if (refnum >= ref_count)
545 ref_count = refnum + 1;
546 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
547 {
548 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
549 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
550
551 ref_map = (struct ref_map *)
552 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
553 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
554 new_chunks * REF_CHUNK_SIZE);
555 ref_chunk += new_chunks;
556 }
557 ref_map[refnum].stabs = stabs;
558 ref_map[refnum].sym = sym;
559 ref_map[refnum].value = value;
560 }
561
562 /* Return defined sym for the reference REFNUM. */
563 struct symbol *
564 ref_search (int refnum)
565 {
566 if (refnum < 0 || refnum > ref_count)
567 return 0;
568 return ref_map[refnum].sym;
569 }
570
571 /* Parse a reference id in STRING and return the resulting
572 reference number. Move STRING beyond the reference id. */
573
574 static int
575 process_reference (const char **string)
576 {
577 const char *p;
578 int refnum = 0;
579
580 if (**string != '#')
581 return 0;
582
583 /* Advance beyond the initial '#'. */
584 p = *string + 1;
585
586 /* Read number as reference id. */
587 while (*p && isdigit (*p))
588 {
589 refnum = refnum * 10 + *p - '0';
590 p++;
591 }
592 *string = p;
593 return refnum;
594 }
595
596 /* If STRING defines a reference, store away a pointer to the reference
597 definition for later use. Return the reference number. */
598
599 int
600 symbol_reference_defined (const char **string)
601 {
602 const char *p = *string;
603 int refnum = 0;
604
605 refnum = process_reference (&p);
606
607 /* Defining symbols end in '='. */
608 if (*p == '=')
609 {
610 /* Symbol is being defined here. */
611 *string = p + 1;
612 return refnum;
613 }
614 else
615 {
616 /* Must be a reference. Either the symbol has already been defined,
617 or this is a forward reference to it. */
618 *string = p;
619 return -1;
620 }
621 }
622
623 static int
624 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
625 {
626 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
627
628 if (regno < 0 || regno >= gdbarch_num_cooked_regs (gdbarch))
629 {
630 reg_value_complaint (regno, gdbarch_num_cooked_regs (gdbarch),
631 SYMBOL_PRINT_NAME (sym));
632
633 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
634 }
635
636 return regno;
637 }
638
639 static const struct symbol_register_ops stab_register_funcs = {
640 stab_reg_to_regnum
641 };
642
643 /* The "aclass" indices for computed symbols. */
644
645 static int stab_register_index;
646 static int stab_regparm_index;
647
648 struct symbol *
649 define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
650 struct objfile *objfile)
651 {
652 struct gdbarch *gdbarch = get_objfile_arch (objfile);
653 struct symbol *sym;
654 const char *p = find_name_end (string);
655 int deftype;
656 int synonym = 0;
657 int i;
658
659 /* We would like to eliminate nameless symbols, but keep their types.
660 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
661 to type 2, but, should not create a symbol to address that type. Since
662 the symbol will be nameless, there is no way any user can refer to it. */
663
664 int nameless;
665
666 /* Ignore syms with empty names. */
667 if (string[0] == 0)
668 return 0;
669
670 /* Ignore old-style symbols from cc -go. */
671 if (p == 0)
672 return 0;
673
674 while (p[1] == ':')
675 {
676 p += 2;
677 p = strchr (p, ':');
678 if (p == NULL)
679 {
680 complaint (
681 _("Bad stabs string '%s'"), string);
682 return NULL;
683 }
684 }
685
686 /* If a nameless stab entry, all we need is the type, not the symbol.
687 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
688 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
689
690 current_symbol = sym = allocate_symbol (objfile);
691
692 if (processing_gcc_compilation)
693 {
694 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
695 number of bytes occupied by a type or object, which we ignore. */
696 SYMBOL_LINE (sym) = desc;
697 }
698 else
699 {
700 SYMBOL_LINE (sym) = 0; /* unknown */
701 }
702
703 SYMBOL_SET_LANGUAGE (sym, get_current_subfile ()->language,
704 &objfile->objfile_obstack);
705
706 if (is_cplus_marker (string[0]))
707 {
708 /* Special GNU C++ names. */
709 switch (string[1])
710 {
711 case 't':
712 SYMBOL_SET_LINKAGE_NAME (sym, "this");
713 break;
714
715 case 'v': /* $vtbl_ptr_type */
716 goto normal;
717
718 case 'e':
719 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
720 break;
721
722 case '_':
723 /* This was an anonymous type that was never fixed up. */
724 goto normal;
725
726 case 'X':
727 /* SunPRO (3.0 at least) static variable encoding. */
728 if (gdbarch_static_transform_name_p (gdbarch))
729 goto normal;
730 /* fall through */
731
732 default:
733 complaint (_("Unknown C++ symbol name `%s'"),
734 string);
735 goto normal; /* Do *something* with it. */
736 }
737 }
738 else
739 {
740 normal:
741 std::string new_name;
742
743 if (SYMBOL_LANGUAGE (sym) == language_cplus)
744 {
745 char *name = (char *) alloca (p - string + 1);
746
747 memcpy (name, string, p - string);
748 name[p - string] = '\0';
749 new_name = cp_canonicalize_string (name);
750 }
751 if (!new_name.empty ())
752 {
753 SYMBOL_SET_NAMES (sym,
754 new_name.c_str (), new_name.length (),
755 1, objfile);
756 }
757 else
758 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
759
760 if (SYMBOL_LANGUAGE (sym) == language_cplus)
761 cp_scan_for_anonymous_namespaces (get_buildsym_compunit (), sym,
762 objfile);
763
764 }
765 p++;
766
767 /* Determine the type of name being defined. */
768 #if 0
769 /* Getting GDB to correctly skip the symbol on an undefined symbol
770 descriptor and not ever dump core is a very dodgy proposition if
771 we do things this way. I say the acorn RISC machine can just
772 fix their compiler. */
773 /* The Acorn RISC machine's compiler can put out locals that don't
774 start with "234=" or "(3,4)=", so assume anything other than the
775 deftypes we know how to handle is a local. */
776 if (!strchr ("cfFGpPrStTvVXCR", *p))
777 #else
778 if (isdigit (*p) || *p == '(' || *p == '-')
779 #endif
780 deftype = 'l';
781 else
782 deftype = *p++;
783
784 switch (deftype)
785 {
786 case 'c':
787 /* c is a special case, not followed by a type-number.
788 SYMBOL:c=iVALUE for an integer constant symbol.
789 SYMBOL:c=rVALUE for a floating constant symbol.
790 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
791 e.g. "b:c=e6,0" for "const b = blob1"
792 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
793 if (*p != '=')
794 {
795 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
796 SYMBOL_TYPE (sym) = error_type (&p, objfile);
797 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
798 add_symbol_to_list (sym, get_file_symbols ());
799 return sym;
800 }
801 ++p;
802 switch (*p++)
803 {
804 case 'r':
805 {
806 gdb_byte *dbl_valu;
807 struct type *dbl_type;
808
809 dbl_type = objfile_type (objfile)->builtin_double;
810 dbl_valu
811 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
812 TYPE_LENGTH (dbl_type));
813
814 target_float_from_string (dbl_valu, dbl_type, std::string (p));
815
816 SYMBOL_TYPE (sym) = dbl_type;
817 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
818 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
819 }
820 break;
821 case 'i':
822 {
823 /* Defining integer constants this way is kind of silly,
824 since 'e' constants allows the compiler to give not
825 only the value, but the type as well. C has at least
826 int, long, unsigned int, and long long as constant
827 types; other languages probably should have at least
828 unsigned as well as signed constants. */
829
830 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
831 SYMBOL_VALUE (sym) = atoi (p);
832 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
833 }
834 break;
835
836 case 'c':
837 {
838 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
839 SYMBOL_VALUE (sym) = atoi (p);
840 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
841 }
842 break;
843
844 case 's':
845 {
846 struct type *range_type;
847 int ind = 0;
848 char quote = *p++;
849 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
850 gdb_byte *string_value;
851
852 if (quote != '\'' && quote != '"')
853 {
854 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
855 SYMBOL_TYPE (sym) = error_type (&p, objfile);
856 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
857 add_symbol_to_list (sym, get_file_symbols ());
858 return sym;
859 }
860
861 /* Find matching quote, rejecting escaped quotes. */
862 while (*p && *p != quote)
863 {
864 if (*p == '\\' && p[1] == quote)
865 {
866 string_local[ind] = (gdb_byte) quote;
867 ind++;
868 p += 2;
869 }
870 else if (*p)
871 {
872 string_local[ind] = (gdb_byte) (*p);
873 ind++;
874 p++;
875 }
876 }
877 if (*p != quote)
878 {
879 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
880 SYMBOL_TYPE (sym) = error_type (&p, objfile);
881 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
882 add_symbol_to_list (sym, get_file_symbols ());
883 return sym;
884 }
885
886 /* NULL terminate the string. */
887 string_local[ind] = 0;
888 range_type
889 = create_static_range_type (NULL,
890 objfile_type (objfile)->builtin_int,
891 0, ind);
892 SYMBOL_TYPE (sym) = create_array_type (NULL,
893 objfile_type (objfile)->builtin_char,
894 range_type);
895 string_value
896 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
897 memcpy (string_value, string_local, ind + 1);
898 p++;
899
900 SYMBOL_VALUE_BYTES (sym) = string_value;
901 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
902 }
903 break;
904
905 case 'e':
906 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
907 can be represented as integral.
908 e.g. "b:c=e6,0" for "const b = blob1"
909 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
910 {
911 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
912 SYMBOL_TYPE (sym) = read_type (&p, objfile);
913
914 if (*p != ',')
915 {
916 SYMBOL_TYPE (sym) = error_type (&p, objfile);
917 break;
918 }
919 ++p;
920
921 /* If the value is too big to fit in an int (perhaps because
922 it is unsigned), or something like that, we silently get
923 a bogus value. The type and everything else about it is
924 correct. Ideally, we should be using whatever we have
925 available for parsing unsigned and long long values,
926 however. */
927 SYMBOL_VALUE (sym) = atoi (p);
928 }
929 break;
930 default:
931 {
932 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
933 SYMBOL_TYPE (sym) = error_type (&p, objfile);
934 }
935 }
936 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
937 add_symbol_to_list (sym, get_file_symbols ());
938 return sym;
939
940 case 'C':
941 /* The name of a caught exception. */
942 SYMBOL_TYPE (sym) = read_type (&p, objfile);
943 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
944 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
945 SYMBOL_VALUE_ADDRESS (sym) = valu;
946 add_symbol_to_list (sym, get_local_symbols ());
947 break;
948
949 case 'f':
950 /* A static function definition. */
951 SYMBOL_TYPE (sym) = read_type (&p, objfile);
952 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
953 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
954 add_symbol_to_list (sym, get_file_symbols ());
955 /* fall into process_function_types. */
956
957 process_function_types:
958 /* Function result types are described as the result type in stabs.
959 We need to convert this to the function-returning-type-X type
960 in GDB. E.g. "int" is converted to "function returning int". */
961 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
962 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
963
964 /* All functions in C++ have prototypes. Stabs does not offer an
965 explicit way to identify prototyped or unprototyped functions,
966 but both GCC and Sun CC emit stabs for the "call-as" type rather
967 than the "declared-as" type for unprototyped functions, so
968 we treat all functions as if they were prototyped. This is used
969 primarily for promotion when calling the function from GDB. */
970 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
971
972 /* fall into process_prototype_types. */
973
974 process_prototype_types:
975 /* Sun acc puts declared types of arguments here. */
976 if (*p == ';')
977 {
978 struct type *ftype = SYMBOL_TYPE (sym);
979 int nsemi = 0;
980 int nparams = 0;
981 const char *p1 = p;
982
983 /* Obtain a worst case guess for the number of arguments
984 by counting the semicolons. */
985 while (*p1)
986 {
987 if (*p1++ == ';')
988 nsemi++;
989 }
990
991 /* Allocate parameter information fields and fill them in. */
992 TYPE_FIELDS (ftype) = (struct field *)
993 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
994 while (*p++ == ';')
995 {
996 struct type *ptype;
997
998 /* A type number of zero indicates the start of varargs.
999 FIXME: GDB currently ignores vararg functions. */
1000 if (p[0] == '0' && p[1] == '\0')
1001 break;
1002 ptype = read_type (&p, objfile);
1003
1004 /* The Sun compilers mark integer arguments, which should
1005 be promoted to the width of the calling conventions, with
1006 a type which references itself. This type is turned into
1007 a TYPE_CODE_VOID type by read_type, and we have to turn
1008 it back into builtin_int here.
1009 FIXME: Do we need a new builtin_promoted_int_arg ? */
1010 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
1011 ptype = objfile_type (objfile)->builtin_int;
1012 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1013 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1014 }
1015 TYPE_NFIELDS (ftype) = nparams;
1016 TYPE_PROTOTYPED (ftype) = 1;
1017 }
1018 break;
1019
1020 case 'F':
1021 /* A global function definition. */
1022 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1023 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1024 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1025 add_symbol_to_list (sym, get_global_symbols ());
1026 goto process_function_types;
1027
1028 case 'G':
1029 /* For a class G (global) symbol, it appears that the
1030 value is not correct. It is necessary to search for the
1031 corresponding linker definition to find the value.
1032 These definitions appear at the end of the namelist. */
1033 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1034 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1035 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1036 /* Don't add symbol references to global_sym_chain.
1037 Symbol references don't have valid names and wont't match up with
1038 minimal symbols when the global_sym_chain is relocated.
1039 We'll fixup symbol references when we fixup the defining symbol. */
1040 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1041 {
1042 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1043 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1044 global_sym_chain[i] = sym;
1045 }
1046 add_symbol_to_list (sym, get_global_symbols ());
1047 break;
1048
1049 /* This case is faked by a conditional above,
1050 when there is no code letter in the dbx data.
1051 Dbx data never actually contains 'l'. */
1052 case 's':
1053 case 'l':
1054 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1055 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1056 SYMBOL_VALUE (sym) = valu;
1057 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1058 add_symbol_to_list (sym, get_local_symbols ());
1059 break;
1060
1061 case 'p':
1062 if (*p == 'F')
1063 /* pF is a two-letter code that means a function parameter in Fortran.
1064 The type-number specifies the type of the return value.
1065 Translate it into a pointer-to-function type. */
1066 {
1067 p++;
1068 SYMBOL_TYPE (sym)
1069 = lookup_pointer_type
1070 (lookup_function_type (read_type (&p, objfile)));
1071 }
1072 else
1073 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1074
1075 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1076 SYMBOL_VALUE (sym) = valu;
1077 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1078 SYMBOL_IS_ARGUMENT (sym) = 1;
1079 add_symbol_to_list (sym, get_local_symbols ());
1080
1081 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1082 {
1083 /* On little-endian machines, this crud is never necessary,
1084 and, if the extra bytes contain garbage, is harmful. */
1085 break;
1086 }
1087
1088 /* If it's gcc-compiled, if it says `short', believe it. */
1089 if (processing_gcc_compilation
1090 || gdbarch_believe_pcc_promotion (gdbarch))
1091 break;
1092
1093 if (!gdbarch_believe_pcc_promotion (gdbarch))
1094 {
1095 /* If PCC says a parameter is a short or a char, it is
1096 really an int. */
1097 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1098 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1099 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1100 {
1101 SYMBOL_TYPE (sym) =
1102 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1103 ? objfile_type (objfile)->builtin_unsigned_int
1104 : objfile_type (objfile)->builtin_int;
1105 }
1106 break;
1107 }
1108 /* Fall through. */
1109
1110 case 'P':
1111 /* acc seems to use P to declare the prototypes of functions that
1112 are referenced by this file. gdb is not prepared to deal
1113 with this extra information. FIXME, it ought to. */
1114 if (type == N_FUN)
1115 {
1116 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1117 goto process_prototype_types;
1118 }
1119 /*FALLTHROUGH */
1120
1121 case 'R':
1122 /* Parameter which is in a register. */
1123 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1124 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1125 SYMBOL_IS_ARGUMENT (sym) = 1;
1126 SYMBOL_VALUE (sym) = valu;
1127 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1128 add_symbol_to_list (sym, get_local_symbols ());
1129 break;
1130
1131 case 'r':
1132 /* Register variable (either global or local). */
1133 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1134 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1135 SYMBOL_VALUE (sym) = valu;
1136 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1137 if (within_function)
1138 {
1139 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1140 the same name to represent an argument passed in a
1141 register. GCC uses 'P' for the same case. So if we find
1142 such a symbol pair we combine it into one 'P' symbol.
1143 For Sun cc we need to do this regardless of
1144 stabs_argument_has_addr, because the compiler puts out
1145 the 'p' symbol even if it never saves the argument onto
1146 the stack.
1147
1148 On most machines, we want to preserve both symbols, so
1149 that we can still get information about what is going on
1150 with the stack (VAX for computing args_printed, using
1151 stack slots instead of saved registers in backtraces,
1152 etc.).
1153
1154 Note that this code illegally combines
1155 main(argc) struct foo argc; { register struct foo argc; }
1156 but this case is considered pathological and causes a warning
1157 from a decent compiler. */
1158
1159 struct pending *local_symbols = *get_local_symbols ();
1160 if (local_symbols
1161 && local_symbols->nsyms > 0
1162 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1163 {
1164 struct symbol *prev_sym;
1165
1166 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1167 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1168 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1169 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1170 SYMBOL_LINKAGE_NAME (sym)) == 0)
1171 {
1172 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1173 /* Use the type from the LOC_REGISTER; that is the type
1174 that is actually in that register. */
1175 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1176 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1177 sym = prev_sym;
1178 break;
1179 }
1180 }
1181 add_symbol_to_list (sym, get_local_symbols ());
1182 }
1183 else
1184 add_symbol_to_list (sym, get_file_symbols ());
1185 break;
1186
1187 case 'S':
1188 /* Static symbol at top level of file. */
1189 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1190 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1191 SYMBOL_VALUE_ADDRESS (sym) = valu;
1192 if (gdbarch_static_transform_name_p (gdbarch)
1193 && gdbarch_static_transform_name (gdbarch,
1194 SYMBOL_LINKAGE_NAME (sym))
1195 != SYMBOL_LINKAGE_NAME (sym))
1196 {
1197 struct bound_minimal_symbol msym;
1198
1199 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1200 NULL, objfile);
1201 if (msym.minsym != NULL)
1202 {
1203 const char *new_name = gdbarch_static_transform_name
1204 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1205
1206 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1207 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1208 }
1209 }
1210 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1211 add_symbol_to_list (sym, get_file_symbols ());
1212 break;
1213
1214 case 't':
1215 /* In Ada, there is no distinction between typedef and non-typedef;
1216 any type declaration implicitly has the equivalent of a typedef,
1217 and thus 't' is in fact equivalent to 'Tt'.
1218
1219 Therefore, for Ada units, we check the character immediately
1220 before the 't', and if we do not find a 'T', then make sure to
1221 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1222 will be stored in the VAR_DOMAIN). If the symbol was indeed
1223 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1224 elsewhere, so we don't need to take care of that.
1225
1226 This is important to do, because of forward references:
1227 The cleanup of undefined types stored in undef_types only uses
1228 STRUCT_DOMAIN symbols to perform the replacement. */
1229 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1230
1231 /* Typedef */
1232 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1233
1234 /* For a nameless type, we don't want a create a symbol, thus we
1235 did not use `sym'. Return without further processing. */
1236 if (nameless)
1237 return NULL;
1238
1239 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1240 SYMBOL_VALUE (sym) = valu;
1241 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1242 /* C++ vagaries: we may have a type which is derived from
1243 a base type which did not have its name defined when the
1244 derived class was output. We fill in the derived class's
1245 base part member's name here in that case. */
1246 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1247 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1248 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1249 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1250 {
1251 int j;
1252
1253 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1254 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1255 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1256 TYPE_NAME (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1257 }
1258
1259 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1260 {
1261 /* gcc-2.6 or later (when using -fvtable-thunks)
1262 emits a unique named type for a vtable entry.
1263 Some gdb code depends on that specific name. */
1264 extern const char vtbl_ptr_name[];
1265
1266 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1267 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1268 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1269 {
1270 /* If we are giving a name to a type such as "pointer to
1271 foo" or "function returning foo", we better not set
1272 the TYPE_NAME. If the program contains "typedef char
1273 *caddr_t;", we don't want all variables of type char
1274 * to print as caddr_t. This is not just a
1275 consequence of GDB's type management; PCC and GCC (at
1276 least through version 2.4) both output variables of
1277 either type char * or caddr_t with the type number
1278 defined in the 't' symbol for caddr_t. If a future
1279 compiler cleans this up it GDB is not ready for it
1280 yet, but if it becomes ready we somehow need to
1281 disable this check (without breaking the PCC/GCC2.4
1282 case).
1283
1284 Sigh.
1285
1286 Fortunately, this check seems not to be necessary
1287 for anything except pointers or functions. */
1288 /* ezannoni: 2000-10-26. This seems to apply for
1289 versions of gcc older than 2.8. This was the original
1290 problem: with the following code gdb would tell that
1291 the type for name1 is caddr_t, and func is char().
1292
1293 typedef char *caddr_t;
1294 char *name2;
1295 struct x
1296 {
1297 char *name1;
1298 } xx;
1299 char *func()
1300 {
1301 }
1302 main () {}
1303 */
1304
1305 /* Pascal accepts names for pointer types. */
1306 if (get_current_subfile ()->language == language_pascal)
1307 {
1308 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1309 }
1310 }
1311 else
1312 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1313 }
1314
1315 add_symbol_to_list (sym, get_file_symbols ());
1316
1317 if (synonym)
1318 {
1319 /* Create the STRUCT_DOMAIN clone. */
1320 struct symbol *struct_sym = allocate_symbol (objfile);
1321
1322 *struct_sym = *sym;
1323 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1324 SYMBOL_VALUE (struct_sym) = valu;
1325 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1326 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1327 TYPE_NAME (SYMBOL_TYPE (sym))
1328 = obconcat (&objfile->objfile_obstack,
1329 SYMBOL_LINKAGE_NAME (sym),
1330 (char *) NULL);
1331 add_symbol_to_list (struct_sym, get_file_symbols ());
1332 }
1333
1334 break;
1335
1336 case 'T':
1337 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1338 by 't' which means we are typedef'ing it as well. */
1339 synonym = *p == 't';
1340
1341 if (synonym)
1342 p++;
1343
1344 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1345
1346 /* For a nameless type, we don't want a create a symbol, thus we
1347 did not use `sym'. Return without further processing. */
1348 if (nameless)
1349 return NULL;
1350
1351 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1352 SYMBOL_VALUE (sym) = valu;
1353 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1354 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1355 TYPE_NAME (SYMBOL_TYPE (sym))
1356 = obconcat (&objfile->objfile_obstack,
1357 SYMBOL_LINKAGE_NAME (sym),
1358 (char *) NULL);
1359 add_symbol_to_list (sym, get_file_symbols ());
1360
1361 if (synonym)
1362 {
1363 /* Clone the sym and then modify it. */
1364 struct symbol *typedef_sym = allocate_symbol (objfile);
1365
1366 *typedef_sym = *sym;
1367 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1368 SYMBOL_VALUE (typedef_sym) = valu;
1369 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1370 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1371 TYPE_NAME (SYMBOL_TYPE (sym))
1372 = obconcat (&objfile->objfile_obstack,
1373 SYMBOL_LINKAGE_NAME (sym),
1374 (char *) NULL);
1375 add_symbol_to_list (typedef_sym, get_file_symbols ());
1376 }
1377 break;
1378
1379 case 'V':
1380 /* Static symbol of local scope. */
1381 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1382 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1383 SYMBOL_VALUE_ADDRESS (sym) = valu;
1384 if (gdbarch_static_transform_name_p (gdbarch)
1385 && gdbarch_static_transform_name (gdbarch,
1386 SYMBOL_LINKAGE_NAME (sym))
1387 != SYMBOL_LINKAGE_NAME (sym))
1388 {
1389 struct bound_minimal_symbol msym;
1390
1391 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1392 NULL, objfile);
1393 if (msym.minsym != NULL)
1394 {
1395 const char *new_name = gdbarch_static_transform_name
1396 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1397
1398 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1399 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1400 }
1401 }
1402 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1403 add_symbol_to_list (sym, get_local_symbols ());
1404 break;
1405
1406 case 'v':
1407 /* Reference parameter */
1408 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1409 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1410 SYMBOL_IS_ARGUMENT (sym) = 1;
1411 SYMBOL_VALUE (sym) = valu;
1412 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1413 add_symbol_to_list (sym, get_local_symbols ());
1414 break;
1415
1416 case 'a':
1417 /* Reference parameter which is in a register. */
1418 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1419 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1420 SYMBOL_IS_ARGUMENT (sym) = 1;
1421 SYMBOL_VALUE (sym) = valu;
1422 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1423 add_symbol_to_list (sym, get_local_symbols ());
1424 break;
1425
1426 case 'X':
1427 /* This is used by Sun FORTRAN for "function result value".
1428 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1429 that Pascal uses it too, but when I tried it Pascal used
1430 "x:3" (local symbol) instead. */
1431 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1432 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1433 SYMBOL_VALUE (sym) = valu;
1434 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1435 add_symbol_to_list (sym, get_local_symbols ());
1436 break;
1437
1438 default:
1439 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1440 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1441 SYMBOL_VALUE (sym) = 0;
1442 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1443 add_symbol_to_list (sym, get_file_symbols ());
1444 break;
1445 }
1446
1447 /* Some systems pass variables of certain types by reference instead
1448 of by value, i.e. they will pass the address of a structure (in a
1449 register or on the stack) instead of the structure itself. */
1450
1451 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1452 && SYMBOL_IS_ARGUMENT (sym))
1453 {
1454 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1455 variables passed in a register). */
1456 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1457 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1458 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1459 and subsequent arguments on SPARC, for example). */
1460 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1461 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1462 }
1463
1464 return sym;
1465 }
1466
1467 /* Skip rest of this symbol and return an error type.
1468
1469 General notes on error recovery: error_type always skips to the
1470 end of the symbol (modulo cretinous dbx symbol name continuation).
1471 Thus code like this:
1472
1473 if (*(*pp)++ != ';')
1474 return error_type (pp, objfile);
1475
1476 is wrong because if *pp starts out pointing at '\0' (typically as the
1477 result of an earlier error), it will be incremented to point to the
1478 start of the next symbol, which might produce strange results, at least
1479 if you run off the end of the string table. Instead use
1480
1481 if (**pp != ';')
1482 return error_type (pp, objfile);
1483 ++*pp;
1484
1485 or
1486
1487 if (**pp != ';')
1488 foo = error_type (pp, objfile);
1489 else
1490 ++*pp;
1491
1492 And in case it isn't obvious, the point of all this hair is so the compiler
1493 can define new types and new syntaxes, and old versions of the
1494 debugger will be able to read the new symbol tables. */
1495
1496 static struct type *
1497 error_type (const char **pp, struct objfile *objfile)
1498 {
1499 complaint (_("couldn't parse type; debugger out of date?"));
1500 while (1)
1501 {
1502 /* Skip to end of symbol. */
1503 while (**pp != '\0')
1504 {
1505 (*pp)++;
1506 }
1507
1508 /* Check for and handle cretinous dbx symbol name continuation! */
1509 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1510 {
1511 *pp = next_symbol_text (objfile);
1512 }
1513 else
1514 {
1515 break;
1516 }
1517 }
1518 return objfile_type (objfile)->builtin_error;
1519 }
1520 \f
1521
1522 /* Read type information or a type definition; return the type. Even
1523 though this routine accepts either type information or a type
1524 definition, the distinction is relevant--some parts of stabsread.c
1525 assume that type information starts with a digit, '-', or '(' in
1526 deciding whether to call read_type. */
1527
1528 static struct type *
1529 read_type (const char **pp, struct objfile *objfile)
1530 {
1531 struct type *type = 0;
1532 struct type *type1;
1533 int typenums[2];
1534 char type_descriptor;
1535
1536 /* Size in bits of type if specified by a type attribute, or -1 if
1537 there is no size attribute. */
1538 int type_size = -1;
1539
1540 /* Used to distinguish string and bitstring from char-array and set. */
1541 int is_string = 0;
1542
1543 /* Used to distinguish vector from array. */
1544 int is_vector = 0;
1545
1546 /* Read type number if present. The type number may be omitted.
1547 for instance in a two-dimensional array declared with type
1548 "ar1;1;10;ar1;1;10;4". */
1549 if ((**pp >= '0' && **pp <= '9')
1550 || **pp == '('
1551 || **pp == '-')
1552 {
1553 if (read_type_number (pp, typenums) != 0)
1554 return error_type (pp, objfile);
1555
1556 if (**pp != '=')
1557 {
1558 /* Type is not being defined here. Either it already
1559 exists, or this is a forward reference to it.
1560 dbx_alloc_type handles both cases. */
1561 type = dbx_alloc_type (typenums, objfile);
1562
1563 /* If this is a forward reference, arrange to complain if it
1564 doesn't get patched up by the time we're done
1565 reading. */
1566 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1567 add_undefined_type (type, typenums);
1568
1569 return type;
1570 }
1571
1572 /* Type is being defined here. */
1573 /* Skip the '='.
1574 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1575 (*pp) += 2;
1576 }
1577 else
1578 {
1579 /* 'typenums=' not present, type is anonymous. Read and return
1580 the definition, but don't put it in the type vector. */
1581 typenums[0] = typenums[1] = -1;
1582 (*pp)++;
1583 }
1584
1585 again:
1586 type_descriptor = (*pp)[-1];
1587 switch (type_descriptor)
1588 {
1589 case 'x':
1590 {
1591 enum type_code code;
1592
1593 /* Used to index through file_symbols. */
1594 struct pending *ppt;
1595 int i;
1596
1597 /* Name including "struct", etc. */
1598 char *type_name;
1599
1600 {
1601 const char *from, *p, *q1, *q2;
1602
1603 /* Set the type code according to the following letter. */
1604 switch ((*pp)[0])
1605 {
1606 case 's':
1607 code = TYPE_CODE_STRUCT;
1608 break;
1609 case 'u':
1610 code = TYPE_CODE_UNION;
1611 break;
1612 case 'e':
1613 code = TYPE_CODE_ENUM;
1614 break;
1615 default:
1616 {
1617 /* Complain and keep going, so compilers can invent new
1618 cross-reference types. */
1619 complaint (_("Unrecognized cross-reference type `%c'"),
1620 (*pp)[0]);
1621 code = TYPE_CODE_STRUCT;
1622 break;
1623 }
1624 }
1625
1626 q1 = strchr (*pp, '<');
1627 p = strchr (*pp, ':');
1628 if (p == NULL)
1629 return error_type (pp, objfile);
1630 if (q1 && p > q1 && p[1] == ':')
1631 {
1632 int nesting_level = 0;
1633
1634 for (q2 = q1; *q2; q2++)
1635 {
1636 if (*q2 == '<')
1637 nesting_level++;
1638 else if (*q2 == '>')
1639 nesting_level--;
1640 else if (*q2 == ':' && nesting_level == 0)
1641 break;
1642 }
1643 p = q2;
1644 if (*p != ':')
1645 return error_type (pp, objfile);
1646 }
1647 type_name = NULL;
1648 if (get_current_subfile ()->language == language_cplus)
1649 {
1650 char *name = (char *) alloca (p - *pp + 1);
1651
1652 memcpy (name, *pp, p - *pp);
1653 name[p - *pp] = '\0';
1654
1655 std::string new_name = cp_canonicalize_string (name);
1656 if (!new_name.empty ())
1657 {
1658 type_name
1659 = (char *) obstack_copy0 (&objfile->objfile_obstack,
1660 new_name.c_str (),
1661 new_name.length ());
1662 }
1663 }
1664 if (type_name == NULL)
1665 {
1666 char *to = type_name = (char *)
1667 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1668
1669 /* Copy the name. */
1670 from = *pp + 1;
1671 while (from < p)
1672 *to++ = *from++;
1673 *to = '\0';
1674 }
1675
1676 /* Set the pointer ahead of the name which we just read, and
1677 the colon. */
1678 *pp = p + 1;
1679 }
1680
1681 /* If this type has already been declared, then reuse the same
1682 type, rather than allocating a new one. This saves some
1683 memory. */
1684
1685 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
1686 for (i = 0; i < ppt->nsyms; i++)
1687 {
1688 struct symbol *sym = ppt->symbol[i];
1689
1690 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1691 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1692 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1693 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1694 {
1695 obstack_free (&objfile->objfile_obstack, type_name);
1696 type = SYMBOL_TYPE (sym);
1697 if (typenums[0] != -1)
1698 *dbx_lookup_type (typenums, objfile) = type;
1699 return type;
1700 }
1701 }
1702
1703 /* Didn't find the type to which this refers, so we must
1704 be dealing with a forward reference. Allocate a type
1705 structure for it, and keep track of it so we can
1706 fill in the rest of the fields when we get the full
1707 type. */
1708 type = dbx_alloc_type (typenums, objfile);
1709 TYPE_CODE (type) = code;
1710 TYPE_NAME (type) = type_name;
1711 INIT_CPLUS_SPECIFIC (type);
1712 TYPE_STUB (type) = 1;
1713
1714 add_undefined_type (type, typenums);
1715 return type;
1716 }
1717
1718 case '-': /* RS/6000 built-in type */
1719 case '0':
1720 case '1':
1721 case '2':
1722 case '3':
1723 case '4':
1724 case '5':
1725 case '6':
1726 case '7':
1727 case '8':
1728 case '9':
1729 case '(':
1730 (*pp)--;
1731
1732 /* We deal with something like t(1,2)=(3,4)=... which
1733 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1734
1735 /* Allocate and enter the typedef type first.
1736 This handles recursive types. */
1737 type = dbx_alloc_type (typenums, objfile);
1738 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1739 {
1740 struct type *xtype = read_type (pp, objfile);
1741
1742 if (type == xtype)
1743 {
1744 /* It's being defined as itself. That means it is "void". */
1745 TYPE_CODE (type) = TYPE_CODE_VOID;
1746 TYPE_LENGTH (type) = 1;
1747 }
1748 else if (type_size >= 0 || is_string)
1749 {
1750 /* This is the absolute wrong way to construct types. Every
1751 other debug format has found a way around this problem and
1752 the related problems with unnecessarily stubbed types;
1753 someone motivated should attempt to clean up the issue
1754 here as well. Once a type pointed to has been created it
1755 should not be modified.
1756
1757 Well, it's not *absolutely* wrong. Constructing recursive
1758 types (trees, linked lists) necessarily entails modifying
1759 types after creating them. Constructing any loop structure
1760 entails side effects. The Dwarf 2 reader does handle this
1761 more gracefully (it never constructs more than once
1762 instance of a type object, so it doesn't have to copy type
1763 objects wholesale), but it still mutates type objects after
1764 other folks have references to them.
1765
1766 Keep in mind that this circularity/mutation issue shows up
1767 at the source language level, too: C's "incomplete types",
1768 for example. So the proper cleanup, I think, would be to
1769 limit GDB's type smashing to match exactly those required
1770 by the source language. So GDB could have a
1771 "complete_this_type" function, but never create unnecessary
1772 copies of a type otherwise. */
1773 replace_type (type, xtype);
1774 TYPE_NAME (type) = NULL;
1775 }
1776 else
1777 {
1778 TYPE_TARGET_STUB (type) = 1;
1779 TYPE_TARGET_TYPE (type) = xtype;
1780 }
1781 }
1782 break;
1783
1784 /* In the following types, we must be sure to overwrite any existing
1785 type that the typenums refer to, rather than allocating a new one
1786 and making the typenums point to the new one. This is because there
1787 may already be pointers to the existing type (if it had been
1788 forward-referenced), and we must change it to a pointer, function,
1789 reference, or whatever, *in-place*. */
1790
1791 case '*': /* Pointer to another type */
1792 type1 = read_type (pp, objfile);
1793 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1794 break;
1795
1796 case '&': /* Reference to another type */
1797 type1 = read_type (pp, objfile);
1798 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
1799 TYPE_CODE_REF);
1800 break;
1801
1802 case 'f': /* Function returning another type */
1803 type1 = read_type (pp, objfile);
1804 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1805 break;
1806
1807 case 'g': /* Prototyped function. (Sun) */
1808 {
1809 /* Unresolved questions:
1810
1811 - According to Sun's ``STABS Interface Manual'', for 'f'
1812 and 'F' symbol descriptors, a `0' in the argument type list
1813 indicates a varargs function. But it doesn't say how 'g'
1814 type descriptors represent that info. Someone with access
1815 to Sun's toolchain should try it out.
1816
1817 - According to the comment in define_symbol (search for
1818 `process_prototype_types:'), Sun emits integer arguments as
1819 types which ref themselves --- like `void' types. Do we
1820 have to deal with that here, too? Again, someone with
1821 access to Sun's toolchain should try it out and let us
1822 know. */
1823
1824 const char *type_start = (*pp) - 1;
1825 struct type *return_type = read_type (pp, objfile);
1826 struct type *func_type
1827 = make_function_type (return_type,
1828 dbx_lookup_type (typenums, objfile));
1829 struct type_list {
1830 struct type *type;
1831 struct type_list *next;
1832 } *arg_types = 0;
1833 int num_args = 0;
1834
1835 while (**pp && **pp != '#')
1836 {
1837 struct type *arg_type = read_type (pp, objfile);
1838 struct type_list *newobj = XALLOCA (struct type_list);
1839 newobj->type = arg_type;
1840 newobj->next = arg_types;
1841 arg_types = newobj;
1842 num_args++;
1843 }
1844 if (**pp == '#')
1845 ++*pp;
1846 else
1847 {
1848 complaint (_("Prototyped function type didn't "
1849 "end arguments with `#':\n%s"),
1850 type_start);
1851 }
1852
1853 /* If there is just one argument whose type is `void', then
1854 that's just an empty argument list. */
1855 if (arg_types
1856 && ! arg_types->next
1857 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1858 num_args = 0;
1859
1860 TYPE_FIELDS (func_type)
1861 = (struct field *) TYPE_ALLOC (func_type,
1862 num_args * sizeof (struct field));
1863 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1864 {
1865 int i;
1866 struct type_list *t;
1867
1868 /* We stuck each argument type onto the front of the list
1869 when we read it, so the list is reversed. Build the
1870 fields array right-to-left. */
1871 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1872 TYPE_FIELD_TYPE (func_type, i) = t->type;
1873 }
1874 TYPE_NFIELDS (func_type) = num_args;
1875 TYPE_PROTOTYPED (func_type) = 1;
1876
1877 type = func_type;
1878 break;
1879 }
1880
1881 case 'k': /* Const qualifier on some type (Sun) */
1882 type = read_type (pp, objfile);
1883 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1884 dbx_lookup_type (typenums, objfile));
1885 break;
1886
1887 case 'B': /* Volatile qual on some type (Sun) */
1888 type = read_type (pp, objfile);
1889 type = make_cv_type (TYPE_CONST (type), 1, type,
1890 dbx_lookup_type (typenums, objfile));
1891 break;
1892
1893 case '@':
1894 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1895 { /* Member (class & variable) type */
1896 /* FIXME -- we should be doing smash_to_XXX types here. */
1897
1898 struct type *domain = read_type (pp, objfile);
1899 struct type *memtype;
1900
1901 if (**pp != ',')
1902 /* Invalid member type data format. */
1903 return error_type (pp, objfile);
1904 ++*pp;
1905
1906 memtype = read_type (pp, objfile);
1907 type = dbx_alloc_type (typenums, objfile);
1908 smash_to_memberptr_type (type, domain, memtype);
1909 }
1910 else
1911 /* type attribute */
1912 {
1913 const char *attr = *pp;
1914
1915 /* Skip to the semicolon. */
1916 while (**pp != ';' && **pp != '\0')
1917 ++(*pp);
1918 if (**pp == '\0')
1919 return error_type (pp, objfile);
1920 else
1921 ++ * pp; /* Skip the semicolon. */
1922
1923 switch (*attr)
1924 {
1925 case 's': /* Size attribute */
1926 type_size = atoi (attr + 1);
1927 if (type_size <= 0)
1928 type_size = -1;
1929 break;
1930
1931 case 'S': /* String attribute */
1932 /* FIXME: check to see if following type is array? */
1933 is_string = 1;
1934 break;
1935
1936 case 'V': /* Vector attribute */
1937 /* FIXME: check to see if following type is array? */
1938 is_vector = 1;
1939 break;
1940
1941 default:
1942 /* Ignore unrecognized type attributes, so future compilers
1943 can invent new ones. */
1944 break;
1945 }
1946 ++*pp;
1947 goto again;
1948 }
1949 break;
1950
1951 case '#': /* Method (class & fn) type */
1952 if ((*pp)[0] == '#')
1953 {
1954 /* We'll get the parameter types from the name. */
1955 struct type *return_type;
1956
1957 (*pp)++;
1958 return_type = read_type (pp, objfile);
1959 if (*(*pp)++ != ';')
1960 complaint (_("invalid (minimal) member type "
1961 "data format at symtab pos %d."),
1962 symnum);
1963 type = allocate_stub_method (return_type);
1964 if (typenums[0] != -1)
1965 *dbx_lookup_type (typenums, objfile) = type;
1966 }
1967 else
1968 {
1969 struct type *domain = read_type (pp, objfile);
1970 struct type *return_type;
1971 struct field *args;
1972 int nargs, varargs;
1973
1974 if (**pp != ',')
1975 /* Invalid member type data format. */
1976 return error_type (pp, objfile);
1977 else
1978 ++(*pp);
1979
1980 return_type = read_type (pp, objfile);
1981 args = read_args (pp, ';', objfile, &nargs, &varargs);
1982 if (args == NULL)
1983 return error_type (pp, objfile);
1984 type = dbx_alloc_type (typenums, objfile);
1985 smash_to_method_type (type, domain, return_type, args,
1986 nargs, varargs);
1987 }
1988 break;
1989
1990 case 'r': /* Range type */
1991 type = read_range_type (pp, typenums, type_size, objfile);
1992 if (typenums[0] != -1)
1993 *dbx_lookup_type (typenums, objfile) = type;
1994 break;
1995
1996 case 'b':
1997 {
1998 /* Sun ACC builtin int type */
1999 type = read_sun_builtin_type (pp, typenums, objfile);
2000 if (typenums[0] != -1)
2001 *dbx_lookup_type (typenums, objfile) = type;
2002 }
2003 break;
2004
2005 case 'R': /* Sun ACC builtin float type */
2006 type = read_sun_floating_type (pp, typenums, objfile);
2007 if (typenums[0] != -1)
2008 *dbx_lookup_type (typenums, objfile) = type;
2009 break;
2010
2011 case 'e': /* Enumeration type */
2012 type = dbx_alloc_type (typenums, objfile);
2013 type = read_enum_type (pp, type, objfile);
2014 if (typenums[0] != -1)
2015 *dbx_lookup_type (typenums, objfile) = type;
2016 break;
2017
2018 case 's': /* Struct type */
2019 case 'u': /* Union type */
2020 {
2021 enum type_code type_code = TYPE_CODE_UNDEF;
2022 type = dbx_alloc_type (typenums, objfile);
2023 switch (type_descriptor)
2024 {
2025 case 's':
2026 type_code = TYPE_CODE_STRUCT;
2027 break;
2028 case 'u':
2029 type_code = TYPE_CODE_UNION;
2030 break;
2031 }
2032 type = read_struct_type (pp, type, type_code, objfile);
2033 break;
2034 }
2035
2036 case 'a': /* Array type */
2037 if (**pp != 'r')
2038 return error_type (pp, objfile);
2039 ++*pp;
2040
2041 type = dbx_alloc_type (typenums, objfile);
2042 type = read_array_type (pp, type, objfile);
2043 if (is_string)
2044 TYPE_CODE (type) = TYPE_CODE_STRING;
2045 if (is_vector)
2046 make_vector_type (type);
2047 break;
2048
2049 case 'S': /* Set type */
2050 type1 = read_type (pp, objfile);
2051 type = create_set_type (NULL, type1);
2052 if (typenums[0] != -1)
2053 *dbx_lookup_type (typenums, objfile) = type;
2054 break;
2055
2056 default:
2057 --*pp; /* Go back to the symbol in error. */
2058 /* Particularly important if it was \0! */
2059 return error_type (pp, objfile);
2060 }
2061
2062 if (type == 0)
2063 {
2064 warning (_("GDB internal error, type is NULL in stabsread.c."));
2065 return error_type (pp, objfile);
2066 }
2067
2068 /* Size specified in a type attribute overrides any other size. */
2069 if (type_size != -1)
2070 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2071
2072 return type;
2073 }
2074 \f
2075 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2076 Return the proper type node for a given builtin type number. */
2077
2078 static const struct objfile_key<struct type *,
2079 gdb::noop_deleter<struct type *>>
2080 rs6000_builtin_type_data;
2081
2082 static struct type *
2083 rs6000_builtin_type (int typenum, struct objfile *objfile)
2084 {
2085 struct type **negative_types = rs6000_builtin_type_data.get (objfile);
2086
2087 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2088 #define NUMBER_RECOGNIZED 34
2089 struct type *rettype = NULL;
2090
2091 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2092 {
2093 complaint (_("Unknown builtin type %d"), typenum);
2094 return objfile_type (objfile)->builtin_error;
2095 }
2096
2097 if (!negative_types)
2098 {
2099 /* This includes an empty slot for type number -0. */
2100 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2101 NUMBER_RECOGNIZED + 1, struct type *);
2102 rs6000_builtin_type_data.set (objfile, negative_types);
2103 }
2104
2105 if (negative_types[-typenum] != NULL)
2106 return negative_types[-typenum];
2107
2108 #if TARGET_CHAR_BIT != 8
2109 #error This code wrong for TARGET_CHAR_BIT not 8
2110 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2111 that if that ever becomes not true, the correct fix will be to
2112 make the size in the struct type to be in bits, not in units of
2113 TARGET_CHAR_BIT. */
2114 #endif
2115
2116 switch (-typenum)
2117 {
2118 case 1:
2119 /* The size of this and all the other types are fixed, defined
2120 by the debugging format. If there is a type called "int" which
2121 is other than 32 bits, then it should use a new negative type
2122 number (or avoid negative type numbers for that case).
2123 See stabs.texinfo. */
2124 rettype = init_integer_type (objfile, 32, 0, "int");
2125 break;
2126 case 2:
2127 rettype = init_integer_type (objfile, 8, 0, "char");
2128 TYPE_NOSIGN (rettype) = 1;
2129 break;
2130 case 3:
2131 rettype = init_integer_type (objfile, 16, 0, "short");
2132 break;
2133 case 4:
2134 rettype = init_integer_type (objfile, 32, 0, "long");
2135 break;
2136 case 5:
2137 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2138 break;
2139 case 6:
2140 rettype = init_integer_type (objfile, 8, 0, "signed char");
2141 break;
2142 case 7:
2143 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2144 break;
2145 case 8:
2146 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2147 break;
2148 case 9:
2149 rettype = init_integer_type (objfile, 32, 1, "unsigned");
2150 break;
2151 case 10:
2152 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2153 break;
2154 case 11:
2155 rettype = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
2156 break;
2157 case 12:
2158 /* IEEE single precision (32 bit). */
2159 rettype = init_float_type (objfile, 32, "float",
2160 floatformats_ieee_single);
2161 break;
2162 case 13:
2163 /* IEEE double precision (64 bit). */
2164 rettype = init_float_type (objfile, 64, "double",
2165 floatformats_ieee_double);
2166 break;
2167 case 14:
2168 /* This is an IEEE double on the RS/6000, and different machines with
2169 different sizes for "long double" should use different negative
2170 type numbers. See stabs.texinfo. */
2171 rettype = init_float_type (objfile, 64, "long double",
2172 floatformats_ieee_double);
2173 break;
2174 case 15:
2175 rettype = init_integer_type (objfile, 32, 0, "integer");
2176 break;
2177 case 16:
2178 rettype = init_boolean_type (objfile, 32, 1, "boolean");
2179 break;
2180 case 17:
2181 rettype = init_float_type (objfile, 32, "short real",
2182 floatformats_ieee_single);
2183 break;
2184 case 18:
2185 rettype = init_float_type (objfile, 64, "real",
2186 floatformats_ieee_double);
2187 break;
2188 case 19:
2189 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2190 break;
2191 case 20:
2192 rettype = init_character_type (objfile, 8, 1, "character");
2193 break;
2194 case 21:
2195 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2196 break;
2197 case 22:
2198 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2199 break;
2200 case 23:
2201 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2202 break;
2203 case 24:
2204 rettype = init_boolean_type (objfile, 32, 1, "logical");
2205 break;
2206 case 25:
2207 /* Complex type consisting of two IEEE single precision values. */
2208 rettype = init_complex_type (objfile, "complex",
2209 rs6000_builtin_type (12, objfile));
2210 break;
2211 case 26:
2212 /* Complex type consisting of two IEEE double precision values. */
2213 rettype = init_complex_type (objfile, "double complex",
2214 rs6000_builtin_type (13, objfile));
2215 break;
2216 case 27:
2217 rettype = init_integer_type (objfile, 8, 0, "integer*1");
2218 break;
2219 case 28:
2220 rettype = init_integer_type (objfile, 16, 0, "integer*2");
2221 break;
2222 case 29:
2223 rettype = init_integer_type (objfile, 32, 0, "integer*4");
2224 break;
2225 case 30:
2226 rettype = init_character_type (objfile, 16, 0, "wchar");
2227 break;
2228 case 31:
2229 rettype = init_integer_type (objfile, 64, 0, "long long");
2230 break;
2231 case 32:
2232 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2233 break;
2234 case 33:
2235 rettype = init_integer_type (objfile, 64, 1, "logical*8");
2236 break;
2237 case 34:
2238 rettype = init_integer_type (objfile, 64, 0, "integer*8");
2239 break;
2240 }
2241 negative_types[-typenum] = rettype;
2242 return rettype;
2243 }
2244 \f
2245 /* This page contains subroutines of read_type. */
2246
2247 /* Wrapper around method_name_from_physname to flag a complaint
2248 if there is an error. */
2249
2250 static char *
2251 stabs_method_name_from_physname (const char *physname)
2252 {
2253 char *method_name;
2254
2255 method_name = method_name_from_physname (physname);
2256
2257 if (method_name == NULL)
2258 {
2259 complaint (_("Method has bad physname %s\n"), physname);
2260 return NULL;
2261 }
2262
2263 return method_name;
2264 }
2265
2266 /* Read member function stabs info for C++ classes. The form of each member
2267 function data is:
2268
2269 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2270
2271 An example with two member functions is:
2272
2273 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2274
2275 For the case of overloaded operators, the format is op$::*.funcs, where
2276 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2277 name (such as `+=') and `.' marks the end of the operator name.
2278
2279 Returns 1 for success, 0 for failure. */
2280
2281 static int
2282 read_member_functions (struct stab_field_info *fip, const char **pp,
2283 struct type *type, struct objfile *objfile)
2284 {
2285 int nfn_fields = 0;
2286 int length = 0;
2287 int i;
2288 struct next_fnfield
2289 {
2290 struct next_fnfield *next;
2291 struct fn_field fn_field;
2292 }
2293 *sublist;
2294 struct type *look_ahead_type;
2295 struct next_fnfieldlist *new_fnlist;
2296 struct next_fnfield *new_sublist;
2297 char *main_fn_name;
2298 const char *p;
2299
2300 /* Process each list until we find something that is not a member function
2301 or find the end of the functions. */
2302
2303 while (**pp != ';')
2304 {
2305 /* We should be positioned at the start of the function name.
2306 Scan forward to find the first ':' and if it is not the
2307 first of a "::" delimiter, then this is not a member function. */
2308 p = *pp;
2309 while (*p != ':')
2310 {
2311 p++;
2312 }
2313 if (p[1] != ':')
2314 {
2315 break;
2316 }
2317
2318 sublist = NULL;
2319 look_ahead_type = NULL;
2320 length = 0;
2321
2322 new_fnlist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfieldlist);
2323
2324 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2325 {
2326 /* This is a completely wierd case. In order to stuff in the
2327 names that might contain colons (the usual name delimiter),
2328 Mike Tiemann defined a different name format which is
2329 signalled if the identifier is "op$". In that case, the
2330 format is "op$::XXXX." where XXXX is the name. This is
2331 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2332 /* This lets the user type "break operator+".
2333 We could just put in "+" as the name, but that wouldn't
2334 work for "*". */
2335 static char opname[32] = "op$";
2336 char *o = opname + 3;
2337
2338 /* Skip past '::'. */
2339 *pp = p + 2;
2340
2341 STABS_CONTINUE (pp, objfile);
2342 p = *pp;
2343 while (*p != '.')
2344 {
2345 *o++ = *p++;
2346 }
2347 main_fn_name = savestring (opname, o - opname);
2348 /* Skip past '.' */
2349 *pp = p + 1;
2350 }
2351 else
2352 {
2353 main_fn_name = savestring (*pp, p - *pp);
2354 /* Skip past '::'. */
2355 *pp = p + 2;
2356 }
2357 new_fnlist->fn_fieldlist.name = main_fn_name;
2358
2359 do
2360 {
2361 new_sublist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfield);
2362
2363 /* Check for and handle cretinous dbx symbol name continuation! */
2364 if (look_ahead_type == NULL)
2365 {
2366 /* Normal case. */
2367 STABS_CONTINUE (pp, objfile);
2368
2369 new_sublist->fn_field.type = read_type (pp, objfile);
2370 if (**pp != ':')
2371 {
2372 /* Invalid symtab info for member function. */
2373 return 0;
2374 }
2375 }
2376 else
2377 {
2378 /* g++ version 1 kludge */
2379 new_sublist->fn_field.type = look_ahead_type;
2380 look_ahead_type = NULL;
2381 }
2382
2383 (*pp)++;
2384 p = *pp;
2385 while (*p != ';')
2386 {
2387 p++;
2388 }
2389
2390 /* These are methods, not functions. */
2391 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2392 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2393 else
2394 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2395 == TYPE_CODE_METHOD);
2396
2397 /* If this is just a stub, then we don't have the real name here. */
2398 if (TYPE_STUB (new_sublist->fn_field.type))
2399 {
2400 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2401 set_type_self_type (new_sublist->fn_field.type, type);
2402 new_sublist->fn_field.is_stub = 1;
2403 }
2404
2405 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2406 *pp = p + 1;
2407
2408 /* Set this member function's visibility fields. */
2409 switch (*(*pp)++)
2410 {
2411 case VISIBILITY_PRIVATE:
2412 new_sublist->fn_field.is_private = 1;
2413 break;
2414 case VISIBILITY_PROTECTED:
2415 new_sublist->fn_field.is_protected = 1;
2416 break;
2417 }
2418
2419 STABS_CONTINUE (pp, objfile);
2420 switch (**pp)
2421 {
2422 case 'A': /* Normal functions. */
2423 new_sublist->fn_field.is_const = 0;
2424 new_sublist->fn_field.is_volatile = 0;
2425 (*pp)++;
2426 break;
2427 case 'B': /* `const' member functions. */
2428 new_sublist->fn_field.is_const = 1;
2429 new_sublist->fn_field.is_volatile = 0;
2430 (*pp)++;
2431 break;
2432 case 'C': /* `volatile' member function. */
2433 new_sublist->fn_field.is_const = 0;
2434 new_sublist->fn_field.is_volatile = 1;
2435 (*pp)++;
2436 break;
2437 case 'D': /* `const volatile' member function. */
2438 new_sublist->fn_field.is_const = 1;
2439 new_sublist->fn_field.is_volatile = 1;
2440 (*pp)++;
2441 break;
2442 case '*': /* File compiled with g++ version 1 --
2443 no info. */
2444 case '?':
2445 case '.':
2446 break;
2447 default:
2448 complaint (_("const/volatile indicator missing, got '%c'"),
2449 **pp);
2450 break;
2451 }
2452
2453 switch (*(*pp)++)
2454 {
2455 case '*':
2456 {
2457 int nbits;
2458 /* virtual member function, followed by index.
2459 The sign bit is set to distinguish pointers-to-methods
2460 from virtual function indicies. Since the array is
2461 in words, the quantity must be shifted left by 1
2462 on 16 bit machine, and by 2 on 32 bit machine, forcing
2463 the sign bit out, and usable as a valid index into
2464 the array. Remove the sign bit here. */
2465 new_sublist->fn_field.voffset =
2466 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2467 if (nbits != 0)
2468 return 0;
2469
2470 STABS_CONTINUE (pp, objfile);
2471 if (**pp == ';' || **pp == '\0')
2472 {
2473 /* Must be g++ version 1. */
2474 new_sublist->fn_field.fcontext = 0;
2475 }
2476 else
2477 {
2478 /* Figure out from whence this virtual function came.
2479 It may belong to virtual function table of
2480 one of its baseclasses. */
2481 look_ahead_type = read_type (pp, objfile);
2482 if (**pp == ':')
2483 {
2484 /* g++ version 1 overloaded methods. */
2485 }
2486 else
2487 {
2488 new_sublist->fn_field.fcontext = look_ahead_type;
2489 if (**pp != ';')
2490 {
2491 return 0;
2492 }
2493 else
2494 {
2495 ++*pp;
2496 }
2497 look_ahead_type = NULL;
2498 }
2499 }
2500 break;
2501 }
2502 case '?':
2503 /* static member function. */
2504 {
2505 int slen = strlen (main_fn_name);
2506
2507 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2508
2509 /* For static member functions, we can't tell if they
2510 are stubbed, as they are put out as functions, and not as
2511 methods.
2512 GCC v2 emits the fully mangled name if
2513 dbxout.c:flag_minimal_debug is not set, so we have to
2514 detect a fully mangled physname here and set is_stub
2515 accordingly. Fully mangled physnames in v2 start with
2516 the member function name, followed by two underscores.
2517 GCC v3 currently always emits stubbed member functions,
2518 but with fully mangled physnames, which start with _Z. */
2519 if (!(strncmp (new_sublist->fn_field.physname,
2520 main_fn_name, slen) == 0
2521 && new_sublist->fn_field.physname[slen] == '_'
2522 && new_sublist->fn_field.physname[slen + 1] == '_'))
2523 {
2524 new_sublist->fn_field.is_stub = 1;
2525 }
2526 break;
2527 }
2528
2529 default:
2530 /* error */
2531 complaint (_("member function type missing, got '%c'"),
2532 (*pp)[-1]);
2533 /* Normal member function. */
2534 /* Fall through. */
2535
2536 case '.':
2537 /* normal member function. */
2538 new_sublist->fn_field.voffset = 0;
2539 new_sublist->fn_field.fcontext = 0;
2540 break;
2541 }
2542
2543 new_sublist->next = sublist;
2544 sublist = new_sublist;
2545 length++;
2546 STABS_CONTINUE (pp, objfile);
2547 }
2548 while (**pp != ';' && **pp != '\0');
2549
2550 (*pp)++;
2551 STABS_CONTINUE (pp, objfile);
2552
2553 /* Skip GCC 3.X member functions which are duplicates of the callable
2554 constructor/destructor. */
2555 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2556 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2557 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2558 {
2559 xfree (main_fn_name);
2560 }
2561 else
2562 {
2563 int has_destructor = 0, has_other = 0;
2564 int is_v3 = 0;
2565 struct next_fnfield *tmp_sublist;
2566
2567 /* Various versions of GCC emit various mostly-useless
2568 strings in the name field for special member functions.
2569
2570 For stub methods, we need to defer correcting the name
2571 until we are ready to unstub the method, because the current
2572 name string is used by gdb_mangle_name. The only stub methods
2573 of concern here are GNU v2 operators; other methods have their
2574 names correct (see caveat below).
2575
2576 For non-stub methods, in GNU v3, we have a complete physname.
2577 Therefore we can safely correct the name now. This primarily
2578 affects constructors and destructors, whose name will be
2579 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2580 operators will also have incorrect names; for instance,
2581 "operator int" will be named "operator i" (i.e. the type is
2582 mangled).
2583
2584 For non-stub methods in GNU v2, we have no easy way to
2585 know if we have a complete physname or not. For most
2586 methods the result depends on the platform (if CPLUS_MARKER
2587 can be `$' or `.', it will use minimal debug information, or
2588 otherwise the full physname will be included).
2589
2590 Rather than dealing with this, we take a different approach.
2591 For v3 mangled names, we can use the full physname; for v2,
2592 we use cplus_demangle_opname (which is actually v2 specific),
2593 because the only interesting names are all operators - once again
2594 barring the caveat below. Skip this process if any method in the
2595 group is a stub, to prevent our fouling up the workings of
2596 gdb_mangle_name.
2597
2598 The caveat: GCC 2.95.x (and earlier?) put constructors and
2599 destructors in the same method group. We need to split this
2600 into two groups, because they should have different names.
2601 So for each method group we check whether it contains both
2602 routines whose physname appears to be a destructor (the physnames
2603 for and destructors are always provided, due to quirks in v2
2604 mangling) and routines whose physname does not appear to be a
2605 destructor. If so then we break up the list into two halves.
2606 Even if the constructors and destructors aren't in the same group
2607 the destructor will still lack the leading tilde, so that also
2608 needs to be fixed.
2609
2610 So, to summarize what we expect and handle here:
2611
2612 Given Given Real Real Action
2613 method name physname physname method name
2614
2615 __opi [none] __opi__3Foo operator int opname
2616 [now or later]
2617 Foo _._3Foo _._3Foo ~Foo separate and
2618 rename
2619 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2620 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2621 */
2622
2623 tmp_sublist = sublist;
2624 while (tmp_sublist != NULL)
2625 {
2626 if (tmp_sublist->fn_field.physname[0] == '_'
2627 && tmp_sublist->fn_field.physname[1] == 'Z')
2628 is_v3 = 1;
2629
2630 if (is_destructor_name (tmp_sublist->fn_field.physname))
2631 has_destructor++;
2632 else
2633 has_other++;
2634
2635 tmp_sublist = tmp_sublist->next;
2636 }
2637
2638 if (has_destructor && has_other)
2639 {
2640 struct next_fnfieldlist *destr_fnlist;
2641 struct next_fnfield *last_sublist;
2642
2643 /* Create a new fn_fieldlist for the destructors. */
2644
2645 destr_fnlist = OBSTACK_ZALLOC (&fip->obstack,
2646 struct next_fnfieldlist);
2647
2648 destr_fnlist->fn_fieldlist.name
2649 = obconcat (&objfile->objfile_obstack, "~",
2650 new_fnlist->fn_fieldlist.name, (char *) NULL);
2651
2652 destr_fnlist->fn_fieldlist.fn_fields =
2653 XOBNEWVEC (&objfile->objfile_obstack,
2654 struct fn_field, has_destructor);
2655 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2656 sizeof (struct fn_field) * has_destructor);
2657 tmp_sublist = sublist;
2658 last_sublist = NULL;
2659 i = 0;
2660 while (tmp_sublist != NULL)
2661 {
2662 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2663 {
2664 tmp_sublist = tmp_sublist->next;
2665 continue;
2666 }
2667
2668 destr_fnlist->fn_fieldlist.fn_fields[i++]
2669 = tmp_sublist->fn_field;
2670 if (last_sublist)
2671 last_sublist->next = tmp_sublist->next;
2672 else
2673 sublist = tmp_sublist->next;
2674 last_sublist = tmp_sublist;
2675 tmp_sublist = tmp_sublist->next;
2676 }
2677
2678 destr_fnlist->fn_fieldlist.length = has_destructor;
2679 destr_fnlist->next = fip->fnlist;
2680 fip->fnlist = destr_fnlist;
2681 nfn_fields++;
2682 length -= has_destructor;
2683 }
2684 else if (is_v3)
2685 {
2686 /* v3 mangling prevents the use of abbreviated physnames,
2687 so we can do this here. There are stubbed methods in v3
2688 only:
2689 - in -gstabs instead of -gstabs+
2690 - or for static methods, which are output as a function type
2691 instead of a method type. */
2692 char *new_method_name =
2693 stabs_method_name_from_physname (sublist->fn_field.physname);
2694
2695 if (new_method_name != NULL
2696 && strcmp (new_method_name,
2697 new_fnlist->fn_fieldlist.name) != 0)
2698 {
2699 new_fnlist->fn_fieldlist.name = new_method_name;
2700 xfree (main_fn_name);
2701 }
2702 else
2703 xfree (new_method_name);
2704 }
2705 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2706 {
2707 new_fnlist->fn_fieldlist.name =
2708 obconcat (&objfile->objfile_obstack,
2709 "~", main_fn_name, (char *)NULL);
2710 xfree (main_fn_name);
2711 }
2712
2713 new_fnlist->fn_fieldlist.fn_fields
2714 = OBSTACK_CALLOC (&objfile->objfile_obstack, length, fn_field);
2715 for (i = length; (i--, sublist); sublist = sublist->next)
2716 {
2717 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2718 }
2719
2720 new_fnlist->fn_fieldlist.length = length;
2721 new_fnlist->next = fip->fnlist;
2722 fip->fnlist = new_fnlist;
2723 nfn_fields++;
2724 }
2725 }
2726
2727 if (nfn_fields)
2728 {
2729 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2730 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2731 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2732 memset (TYPE_FN_FIELDLISTS (type), 0,
2733 sizeof (struct fn_fieldlist) * nfn_fields);
2734 TYPE_NFN_FIELDS (type) = nfn_fields;
2735 }
2736
2737 return 1;
2738 }
2739
2740 /* Special GNU C++ name.
2741
2742 Returns 1 for success, 0 for failure. "failure" means that we can't
2743 keep parsing and it's time for error_type(). */
2744
2745 static int
2746 read_cpp_abbrev (struct stab_field_info *fip, const char **pp,
2747 struct type *type, struct objfile *objfile)
2748 {
2749 const char *p;
2750 const char *name;
2751 char cpp_abbrev;
2752 struct type *context;
2753
2754 p = *pp;
2755 if (*++p == 'v')
2756 {
2757 name = NULL;
2758 cpp_abbrev = *++p;
2759
2760 *pp = p + 1;
2761
2762 /* At this point, *pp points to something like "22:23=*22...",
2763 where the type number before the ':' is the "context" and
2764 everything after is a regular type definition. Lookup the
2765 type, find it's name, and construct the field name. */
2766
2767 context = read_type (pp, objfile);
2768
2769 switch (cpp_abbrev)
2770 {
2771 case 'f': /* $vf -- a virtual function table pointer */
2772 name = TYPE_NAME (context);
2773 if (name == NULL)
2774 {
2775 name = "";
2776 }
2777 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2778 vptr_name, name, (char *) NULL);
2779 break;
2780
2781 case 'b': /* $vb -- a virtual bsomethingorother */
2782 name = TYPE_NAME (context);
2783 if (name == NULL)
2784 {
2785 complaint (_("C++ abbreviated type name "
2786 "unknown at symtab pos %d"),
2787 symnum);
2788 name = "FOO";
2789 }
2790 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2791 name, (char *) NULL);
2792 break;
2793
2794 default:
2795 invalid_cpp_abbrev_complaint (*pp);
2796 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2797 "INVALID_CPLUSPLUS_ABBREV",
2798 (char *) NULL);
2799 break;
2800 }
2801
2802 /* At this point, *pp points to the ':'. Skip it and read the
2803 field type. */
2804
2805 p = ++(*pp);
2806 if (p[-1] != ':')
2807 {
2808 invalid_cpp_abbrev_complaint (*pp);
2809 return 0;
2810 }
2811 fip->list->field.type = read_type (pp, objfile);
2812 if (**pp == ',')
2813 (*pp)++; /* Skip the comma. */
2814 else
2815 return 0;
2816
2817 {
2818 int nbits;
2819
2820 SET_FIELD_BITPOS (fip->list->field,
2821 read_huge_number (pp, ';', &nbits, 0));
2822 if (nbits != 0)
2823 return 0;
2824 }
2825 /* This field is unpacked. */
2826 FIELD_BITSIZE (fip->list->field) = 0;
2827 fip->list->visibility = VISIBILITY_PRIVATE;
2828 }
2829 else
2830 {
2831 invalid_cpp_abbrev_complaint (*pp);
2832 /* We have no idea what syntax an unrecognized abbrev would have, so
2833 better return 0. If we returned 1, we would need to at least advance
2834 *pp to avoid an infinite loop. */
2835 return 0;
2836 }
2837 return 1;
2838 }
2839
2840 static void
2841 read_one_struct_field (struct stab_field_info *fip, const char **pp,
2842 const char *p, struct type *type,
2843 struct objfile *objfile)
2844 {
2845 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2846
2847 fip->list->field.name
2848 = (const char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
2849 *pp = p + 1;
2850
2851 /* This means we have a visibility for a field coming. */
2852 if (**pp == '/')
2853 {
2854 (*pp)++;
2855 fip->list->visibility = *(*pp)++;
2856 }
2857 else
2858 {
2859 /* normal dbx-style format, no explicit visibility */
2860 fip->list->visibility = VISIBILITY_PUBLIC;
2861 }
2862
2863 fip->list->field.type = read_type (pp, objfile);
2864 if (**pp == ':')
2865 {
2866 p = ++(*pp);
2867 #if 0
2868 /* Possible future hook for nested types. */
2869 if (**pp == '!')
2870 {
2871 fip->list->field.bitpos = (long) -2; /* nested type */
2872 p = ++(*pp);
2873 }
2874 else
2875 ...;
2876 #endif
2877 while (*p != ';')
2878 {
2879 p++;
2880 }
2881 /* Static class member. */
2882 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2883 *pp = p + 1;
2884 return;
2885 }
2886 else if (**pp != ',')
2887 {
2888 /* Bad structure-type format. */
2889 stabs_general_complaint ("bad structure-type format");
2890 return;
2891 }
2892
2893 (*pp)++; /* Skip the comma. */
2894
2895 {
2896 int nbits;
2897
2898 SET_FIELD_BITPOS (fip->list->field,
2899 read_huge_number (pp, ',', &nbits, 0));
2900 if (nbits != 0)
2901 {
2902 stabs_general_complaint ("bad structure-type format");
2903 return;
2904 }
2905 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2906 if (nbits != 0)
2907 {
2908 stabs_general_complaint ("bad structure-type format");
2909 return;
2910 }
2911 }
2912
2913 if (FIELD_BITPOS (fip->list->field) == 0
2914 && FIELD_BITSIZE (fip->list->field) == 0)
2915 {
2916 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2917 it is a field which has been optimized out. The correct stab for
2918 this case is to use VISIBILITY_IGNORE, but that is a recent
2919 invention. (2) It is a 0-size array. For example
2920 union { int num; char str[0]; } foo. Printing _("<no value>" for
2921 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2922 will continue to work, and a 0-size array as a whole doesn't
2923 have any contents to print.
2924
2925 I suspect this probably could also happen with gcc -gstabs (not
2926 -gstabs+) for static fields, and perhaps other C++ extensions.
2927 Hopefully few people use -gstabs with gdb, since it is intended
2928 for dbx compatibility. */
2929
2930 /* Ignore this field. */
2931 fip->list->visibility = VISIBILITY_IGNORE;
2932 }
2933 else
2934 {
2935 /* Detect an unpacked field and mark it as such.
2936 dbx gives a bit size for all fields.
2937 Note that forward refs cannot be packed,
2938 and treat enums as if they had the width of ints. */
2939
2940 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2941
2942 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2943 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2944 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2945 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2946 {
2947 FIELD_BITSIZE (fip->list->field) = 0;
2948 }
2949 if ((FIELD_BITSIZE (fip->list->field)
2950 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2951 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2952 && FIELD_BITSIZE (fip->list->field)
2953 == gdbarch_int_bit (gdbarch))
2954 )
2955 &&
2956 FIELD_BITPOS (fip->list->field) % 8 == 0)
2957 {
2958 FIELD_BITSIZE (fip->list->field) = 0;
2959 }
2960 }
2961 }
2962
2963
2964 /* Read struct or class data fields. They have the form:
2965
2966 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2967
2968 At the end, we see a semicolon instead of a field.
2969
2970 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2971 a static field.
2972
2973 The optional VISIBILITY is one of:
2974
2975 '/0' (VISIBILITY_PRIVATE)
2976 '/1' (VISIBILITY_PROTECTED)
2977 '/2' (VISIBILITY_PUBLIC)
2978 '/9' (VISIBILITY_IGNORE)
2979
2980 or nothing, for C style fields with public visibility.
2981
2982 Returns 1 for success, 0 for failure. */
2983
2984 static int
2985 read_struct_fields (struct stab_field_info *fip, const char **pp,
2986 struct type *type, struct objfile *objfile)
2987 {
2988 const char *p;
2989 struct nextfield *newobj;
2990
2991 /* We better set p right now, in case there are no fields at all... */
2992
2993 p = *pp;
2994
2995 /* Read each data member type until we find the terminating ';' at the end of
2996 the data member list, or break for some other reason such as finding the
2997 start of the member function list. */
2998 /* Stab string for structure/union does not end with two ';' in
2999 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3000
3001 while (**pp != ';' && **pp != '\0')
3002 {
3003 STABS_CONTINUE (pp, objfile);
3004 /* Get space to record the next field's data. */
3005 newobj = OBSTACK_ZALLOC (&fip->obstack, struct nextfield);
3006
3007 newobj->next = fip->list;
3008 fip->list = newobj;
3009
3010 /* Get the field name. */
3011 p = *pp;
3012
3013 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3014 unless the CPLUS_MARKER is followed by an underscore, in
3015 which case it is just the name of an anonymous type, which we
3016 should handle like any other type name. */
3017
3018 if (is_cplus_marker (p[0]) && p[1] != '_')
3019 {
3020 if (!read_cpp_abbrev (fip, pp, type, objfile))
3021 return 0;
3022 continue;
3023 }
3024
3025 /* Look for the ':' that separates the field name from the field
3026 values. Data members are delimited by a single ':', while member
3027 functions are delimited by a pair of ':'s. When we hit the member
3028 functions (if any), terminate scan loop and return. */
3029
3030 while (*p != ':' && *p != '\0')
3031 {
3032 p++;
3033 }
3034 if (*p == '\0')
3035 return 0;
3036
3037 /* Check to see if we have hit the member functions yet. */
3038 if (p[1] == ':')
3039 {
3040 break;
3041 }
3042 read_one_struct_field (fip, pp, p, type, objfile);
3043 }
3044 if (p[0] == ':' && p[1] == ':')
3045 {
3046 /* (the deleted) chill the list of fields: the last entry (at
3047 the head) is a partially constructed entry which we now
3048 scrub. */
3049 fip->list = fip->list->next;
3050 }
3051 return 1;
3052 }
3053 /* *INDENT-OFF* */
3054 /* The stabs for C++ derived classes contain baseclass information which
3055 is marked by a '!' character after the total size. This function is
3056 called when we encounter the baseclass marker, and slurps up all the
3057 baseclass information.
3058
3059 Immediately following the '!' marker is the number of base classes that
3060 the class is derived from, followed by information for each base class.
3061 For each base class, there are two visibility specifiers, a bit offset
3062 to the base class information within the derived class, a reference to
3063 the type for the base class, and a terminating semicolon.
3064
3065 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3066 ^^ ^ ^ ^ ^ ^ ^
3067 Baseclass information marker __________________|| | | | | | |
3068 Number of baseclasses __________________________| | | | | | |
3069 Visibility specifiers (2) ________________________| | | | | |
3070 Offset in bits from start of class _________________| | | | |
3071 Type number for base class ___________________________| | | |
3072 Visibility specifiers (2) _______________________________| | |
3073 Offset in bits from start of class ________________________| |
3074 Type number of base class ____________________________________|
3075
3076 Return 1 for success, 0 for (error-type-inducing) failure. */
3077 /* *INDENT-ON* */
3078
3079
3080
3081 static int
3082 read_baseclasses (struct stab_field_info *fip, const char **pp,
3083 struct type *type, struct objfile *objfile)
3084 {
3085 int i;
3086 struct nextfield *newobj;
3087
3088 if (**pp != '!')
3089 {
3090 return 1;
3091 }
3092 else
3093 {
3094 /* Skip the '!' baseclass information marker. */
3095 (*pp)++;
3096 }
3097
3098 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3099 {
3100 int nbits;
3101
3102 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3103 if (nbits != 0)
3104 return 0;
3105 }
3106
3107 #if 0
3108 /* Some stupid compilers have trouble with the following, so break
3109 it up into simpler expressions. */
3110 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3111 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3112 #else
3113 {
3114 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3115 char *pointer;
3116
3117 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3118 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3119 }
3120 #endif /* 0 */
3121
3122 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3123
3124 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3125 {
3126 newobj = OBSTACK_ZALLOC (&fip->obstack, struct nextfield);
3127
3128 newobj->next = fip->list;
3129 fip->list = newobj;
3130 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3131 field! */
3132
3133 STABS_CONTINUE (pp, objfile);
3134 switch (**pp)
3135 {
3136 case '0':
3137 /* Nothing to do. */
3138 break;
3139 case '1':
3140 SET_TYPE_FIELD_VIRTUAL (type, i);
3141 break;
3142 default:
3143 /* Unknown character. Complain and treat it as non-virtual. */
3144 {
3145 complaint (_("Unknown virtual character `%c' for baseclass"),
3146 **pp);
3147 }
3148 }
3149 ++(*pp);
3150
3151 newobj->visibility = *(*pp)++;
3152 switch (newobj->visibility)
3153 {
3154 case VISIBILITY_PRIVATE:
3155 case VISIBILITY_PROTECTED:
3156 case VISIBILITY_PUBLIC:
3157 break;
3158 default:
3159 /* Bad visibility format. Complain and treat it as
3160 public. */
3161 {
3162 complaint (_("Unknown visibility `%c' for baseclass"),
3163 newobj->visibility);
3164 newobj->visibility = VISIBILITY_PUBLIC;
3165 }
3166 }
3167
3168 {
3169 int nbits;
3170
3171 /* The remaining value is the bit offset of the portion of the object
3172 corresponding to this baseclass. Always zero in the absence of
3173 multiple inheritance. */
3174
3175 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
3176 if (nbits != 0)
3177 return 0;
3178 }
3179
3180 /* The last piece of baseclass information is the type of the
3181 base class. Read it, and remember it's type name as this
3182 field's name. */
3183
3184 newobj->field.type = read_type (pp, objfile);
3185 newobj->field.name = TYPE_NAME (newobj->field.type);
3186
3187 /* Skip trailing ';' and bump count of number of fields seen. */
3188 if (**pp == ';')
3189 (*pp)++;
3190 else
3191 return 0;
3192 }
3193 return 1;
3194 }
3195
3196 /* The tail end of stabs for C++ classes that contain a virtual function
3197 pointer contains a tilde, a %, and a type number.
3198 The type number refers to the base class (possibly this class itself) which
3199 contains the vtable pointer for the current class.
3200
3201 This function is called when we have parsed all the method declarations,
3202 so we can look for the vptr base class info. */
3203
3204 static int
3205 read_tilde_fields (struct stab_field_info *fip, const char **pp,
3206 struct type *type, struct objfile *objfile)
3207 {
3208 const char *p;
3209
3210 STABS_CONTINUE (pp, objfile);
3211
3212 /* If we are positioned at a ';', then skip it. */
3213 if (**pp == ';')
3214 {
3215 (*pp)++;
3216 }
3217
3218 if (**pp == '~')
3219 {
3220 (*pp)++;
3221
3222 if (**pp == '=' || **pp == '+' || **pp == '-')
3223 {
3224 /* Obsolete flags that used to indicate the presence
3225 of constructors and/or destructors. */
3226 (*pp)++;
3227 }
3228
3229 /* Read either a '%' or the final ';'. */
3230 if (*(*pp)++ == '%')
3231 {
3232 /* The next number is the type number of the base class
3233 (possibly our own class) which supplies the vtable for
3234 this class. Parse it out, and search that class to find
3235 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3236 and TYPE_VPTR_FIELDNO. */
3237
3238 struct type *t;
3239 int i;
3240
3241 t = read_type (pp, objfile);
3242 p = (*pp)++;
3243 while (*p != '\0' && *p != ';')
3244 {
3245 p++;
3246 }
3247 if (*p == '\0')
3248 {
3249 /* Premature end of symbol. */
3250 return 0;
3251 }
3252
3253 set_type_vptr_basetype (type, t);
3254 if (type == t) /* Our own class provides vtbl ptr. */
3255 {
3256 for (i = TYPE_NFIELDS (t) - 1;
3257 i >= TYPE_N_BASECLASSES (t);
3258 --i)
3259 {
3260 const char *name = TYPE_FIELD_NAME (t, i);
3261
3262 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3263 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3264 {
3265 set_type_vptr_fieldno (type, i);
3266 goto gotit;
3267 }
3268 }
3269 /* Virtual function table field not found. */
3270 complaint (_("virtual function table pointer "
3271 "not found when defining class `%s'"),
3272 TYPE_NAME (type));
3273 return 0;
3274 }
3275 else
3276 {
3277 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3278 }
3279
3280 gotit:
3281 *pp = p + 1;
3282 }
3283 }
3284 return 1;
3285 }
3286
3287 static int
3288 attach_fn_fields_to_type (struct stab_field_info *fip, struct type *type)
3289 {
3290 int n;
3291
3292 for (n = TYPE_NFN_FIELDS (type);
3293 fip->fnlist != NULL;
3294 fip->fnlist = fip->fnlist->next)
3295 {
3296 --n; /* Circumvent Sun3 compiler bug. */
3297 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3298 }
3299 return 1;
3300 }
3301
3302 /* Create the vector of fields, and record how big it is.
3303 We need this info to record proper virtual function table information
3304 for this class's virtual functions. */
3305
3306 static int
3307 attach_fields_to_type (struct stab_field_info *fip, struct type *type,
3308 struct objfile *objfile)
3309 {
3310 int nfields = 0;
3311 int non_public_fields = 0;
3312 struct nextfield *scan;
3313
3314 /* Count up the number of fields that we have, as well as taking note of
3315 whether or not there are any non-public fields, which requires us to
3316 allocate and build the private_field_bits and protected_field_bits
3317 bitfields. */
3318
3319 for (scan = fip->list; scan != NULL; scan = scan->next)
3320 {
3321 nfields++;
3322 if (scan->visibility != VISIBILITY_PUBLIC)
3323 {
3324 non_public_fields++;
3325 }
3326 }
3327
3328 /* Now we know how many fields there are, and whether or not there are any
3329 non-public fields. Record the field count, allocate space for the
3330 array of fields, and create blank visibility bitfields if necessary. */
3331
3332 TYPE_NFIELDS (type) = nfields;
3333 TYPE_FIELDS (type) = (struct field *)
3334 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3335 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3336
3337 if (non_public_fields)
3338 {
3339 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3340
3341 TYPE_FIELD_PRIVATE_BITS (type) =
3342 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3343 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3344
3345 TYPE_FIELD_PROTECTED_BITS (type) =
3346 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3347 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3348
3349 TYPE_FIELD_IGNORE_BITS (type) =
3350 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3351 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3352 }
3353
3354 /* Copy the saved-up fields into the field vector. Start from the
3355 head of the list, adding to the tail of the field array, so that
3356 they end up in the same order in the array in which they were
3357 added to the list. */
3358
3359 while (nfields-- > 0)
3360 {
3361 TYPE_FIELD (type, nfields) = fip->list->field;
3362 switch (fip->list->visibility)
3363 {
3364 case VISIBILITY_PRIVATE:
3365 SET_TYPE_FIELD_PRIVATE (type, nfields);
3366 break;
3367
3368 case VISIBILITY_PROTECTED:
3369 SET_TYPE_FIELD_PROTECTED (type, nfields);
3370 break;
3371
3372 case VISIBILITY_IGNORE:
3373 SET_TYPE_FIELD_IGNORE (type, nfields);
3374 break;
3375
3376 case VISIBILITY_PUBLIC:
3377 break;
3378
3379 default:
3380 /* Unknown visibility. Complain and treat it as public. */
3381 {
3382 complaint (_("Unknown visibility `%c' for field"),
3383 fip->list->visibility);
3384 }
3385 break;
3386 }
3387 fip->list = fip->list->next;
3388 }
3389 return 1;
3390 }
3391
3392
3393 /* Complain that the compiler has emitted more than one definition for the
3394 structure type TYPE. */
3395 static void
3396 complain_about_struct_wipeout (struct type *type)
3397 {
3398 const char *name = "";
3399 const char *kind = "";
3400
3401 if (TYPE_NAME (type))
3402 {
3403 name = TYPE_NAME (type);
3404 switch (TYPE_CODE (type))
3405 {
3406 case TYPE_CODE_STRUCT: kind = "struct "; break;
3407 case TYPE_CODE_UNION: kind = "union "; break;
3408 case TYPE_CODE_ENUM: kind = "enum "; break;
3409 default: kind = "";
3410 }
3411 }
3412 else
3413 {
3414 name = "<unknown>";
3415 kind = "";
3416 }
3417
3418 complaint (_("struct/union type gets multiply defined: %s%s"), kind, name);
3419 }
3420
3421 /* Set the length for all variants of a same main_type, which are
3422 connected in the closed chain.
3423
3424 This is something that needs to be done when a type is defined *after*
3425 some cross references to this type have already been read. Consider
3426 for instance the following scenario where we have the following two
3427 stabs entries:
3428
3429 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3430 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3431
3432 A stubbed version of type dummy is created while processing the first
3433 stabs entry. The length of that type is initially set to zero, since
3434 it is unknown at this point. Also, a "constant" variation of type
3435 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3436 the stabs line).
3437
3438 The second stabs entry allows us to replace the stubbed definition
3439 with the real definition. However, we still need to adjust the length
3440 of the "constant" variation of that type, as its length was left
3441 untouched during the main type replacement... */
3442
3443 static void
3444 set_length_in_type_chain (struct type *type)
3445 {
3446 struct type *ntype = TYPE_CHAIN (type);
3447
3448 while (ntype != type)
3449 {
3450 if (TYPE_LENGTH(ntype) == 0)
3451 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3452 else
3453 complain_about_struct_wipeout (ntype);
3454 ntype = TYPE_CHAIN (ntype);
3455 }
3456 }
3457
3458 /* Read the description of a structure (or union type) and return an object
3459 describing the type.
3460
3461 PP points to a character pointer that points to the next unconsumed token
3462 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3463 *PP will point to "4a:1,0,32;;".
3464
3465 TYPE points to an incomplete type that needs to be filled in.
3466
3467 OBJFILE points to the current objfile from which the stabs information is
3468 being read. (Note that it is redundant in that TYPE also contains a pointer
3469 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3470 */
3471
3472 static struct type *
3473 read_struct_type (const char **pp, struct type *type, enum type_code type_code,
3474 struct objfile *objfile)
3475 {
3476 struct stab_field_info fi;
3477
3478 /* When describing struct/union/class types in stabs, G++ always drops
3479 all qualifications from the name. So if you've got:
3480 struct A { ... struct B { ... }; ... };
3481 then G++ will emit stabs for `struct A::B' that call it simply
3482 `struct B'. Obviously, if you've got a real top-level definition for
3483 `struct B', or other nested definitions, this is going to cause
3484 problems.
3485
3486 Obviously, GDB can't fix this by itself, but it can at least avoid
3487 scribbling on existing structure type objects when new definitions
3488 appear. */
3489 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3490 || TYPE_STUB (type)))
3491 {
3492 complain_about_struct_wipeout (type);
3493
3494 /* It's probably best to return the type unchanged. */
3495 return type;
3496 }
3497
3498 INIT_CPLUS_SPECIFIC (type);
3499 TYPE_CODE (type) = type_code;
3500 TYPE_STUB (type) = 0;
3501
3502 /* First comes the total size in bytes. */
3503
3504 {
3505 int nbits;
3506
3507 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3508 if (nbits != 0)
3509 return error_type (pp, objfile);
3510 set_length_in_type_chain (type);
3511 }
3512
3513 /* Now read the baseclasses, if any, read the regular C struct or C++
3514 class member fields, attach the fields to the type, read the C++
3515 member functions, attach them to the type, and then read any tilde
3516 field (baseclass specifier for the class holding the main vtable). */
3517
3518 if (!read_baseclasses (&fi, pp, type, objfile)
3519 || !read_struct_fields (&fi, pp, type, objfile)
3520 || !attach_fields_to_type (&fi, type, objfile)
3521 || !read_member_functions (&fi, pp, type, objfile)
3522 || !attach_fn_fields_to_type (&fi, type)
3523 || !read_tilde_fields (&fi, pp, type, objfile))
3524 {
3525 type = error_type (pp, objfile);
3526 }
3527
3528 return (type);
3529 }
3530
3531 /* Read a definition of an array type,
3532 and create and return a suitable type object.
3533 Also creates a range type which represents the bounds of that
3534 array. */
3535
3536 static struct type *
3537 read_array_type (const char **pp, struct type *type,
3538 struct objfile *objfile)
3539 {
3540 struct type *index_type, *element_type, *range_type;
3541 int lower, upper;
3542 int adjustable = 0;
3543 int nbits;
3544
3545 /* Format of an array type:
3546 "ar<index type>;lower;upper;<array_contents_type>".
3547 OS9000: "arlower,upper;<array_contents_type>".
3548
3549 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3550 for these, produce a type like float[][]. */
3551
3552 {
3553 index_type = read_type (pp, objfile);
3554 if (**pp != ';')
3555 /* Improper format of array type decl. */
3556 return error_type (pp, objfile);
3557 ++*pp;
3558 }
3559
3560 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3561 {
3562 (*pp)++;
3563 adjustable = 1;
3564 }
3565 lower = read_huge_number (pp, ';', &nbits, 0);
3566
3567 if (nbits != 0)
3568 return error_type (pp, objfile);
3569
3570 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3571 {
3572 (*pp)++;
3573 adjustable = 1;
3574 }
3575 upper = read_huge_number (pp, ';', &nbits, 0);
3576 if (nbits != 0)
3577 return error_type (pp, objfile);
3578
3579 element_type = read_type (pp, objfile);
3580
3581 if (adjustable)
3582 {
3583 lower = 0;
3584 upper = -1;
3585 }
3586
3587 range_type =
3588 create_static_range_type (NULL, index_type, lower, upper);
3589 type = create_array_type (type, element_type, range_type);
3590
3591 return type;
3592 }
3593
3594
3595 /* Read a definition of an enumeration type,
3596 and create and return a suitable type object.
3597 Also defines the symbols that represent the values of the type. */
3598
3599 static struct type *
3600 read_enum_type (const char **pp, struct type *type,
3601 struct objfile *objfile)
3602 {
3603 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3604 const char *p;
3605 char *name;
3606 long n;
3607 struct symbol *sym;
3608 int nsyms = 0;
3609 struct pending **symlist;
3610 struct pending *osyms, *syms;
3611 int o_nsyms;
3612 int nbits;
3613 int unsigned_enum = 1;
3614
3615 #if 0
3616 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3617 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3618 to do? For now, force all enum values to file scope. */
3619 if (within_function)
3620 symlist = get_local_symbols ();
3621 else
3622 #endif
3623 symlist = get_file_symbols ();
3624 osyms = *symlist;
3625 o_nsyms = osyms ? osyms->nsyms : 0;
3626
3627 /* The aix4 compiler emits an extra field before the enum members;
3628 my guess is it's a type of some sort. Just ignore it. */
3629 if (**pp == '-')
3630 {
3631 /* Skip over the type. */
3632 while (**pp != ':')
3633 (*pp)++;
3634
3635 /* Skip over the colon. */
3636 (*pp)++;
3637 }
3638
3639 /* Read the value-names and their values.
3640 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3641 A semicolon or comma instead of a NAME means the end. */
3642 while (**pp && **pp != ';' && **pp != ',')
3643 {
3644 STABS_CONTINUE (pp, objfile);
3645 p = *pp;
3646 while (*p != ':')
3647 p++;
3648 name = (char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
3649 *pp = p + 1;
3650 n = read_huge_number (pp, ',', &nbits, 0);
3651 if (nbits != 0)
3652 return error_type (pp, objfile);
3653
3654 sym = allocate_symbol (objfile);
3655 SYMBOL_SET_LINKAGE_NAME (sym, name);
3656 SYMBOL_SET_LANGUAGE (sym, get_current_subfile ()->language,
3657 &objfile->objfile_obstack);
3658 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3659 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3660 SYMBOL_VALUE (sym) = n;
3661 if (n < 0)
3662 unsigned_enum = 0;
3663 add_symbol_to_list (sym, symlist);
3664 nsyms++;
3665 }
3666
3667 if (**pp == ';')
3668 (*pp)++; /* Skip the semicolon. */
3669
3670 /* Now fill in the fields of the type-structure. */
3671
3672 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3673 set_length_in_type_chain (type);
3674 TYPE_CODE (type) = TYPE_CODE_ENUM;
3675 TYPE_STUB (type) = 0;
3676 if (unsigned_enum)
3677 TYPE_UNSIGNED (type) = 1;
3678 TYPE_NFIELDS (type) = nsyms;
3679 TYPE_FIELDS (type) = (struct field *)
3680 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3681 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3682
3683 /* Find the symbols for the values and put them into the type.
3684 The symbols can be found in the symlist that we put them on
3685 to cause them to be defined. osyms contains the old value
3686 of that symlist; everything up to there was defined by us. */
3687 /* Note that we preserve the order of the enum constants, so
3688 that in something like "enum {FOO, LAST_THING=FOO}" we print
3689 FOO, not LAST_THING. */
3690
3691 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3692 {
3693 int last = syms == osyms ? o_nsyms : 0;
3694 int j = syms->nsyms;
3695
3696 for (; --j >= last; --n)
3697 {
3698 struct symbol *xsym = syms->symbol[j];
3699
3700 SYMBOL_TYPE (xsym) = type;
3701 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3702 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3703 TYPE_FIELD_BITSIZE (type, n) = 0;
3704 }
3705 if (syms == osyms)
3706 break;
3707 }
3708
3709 return type;
3710 }
3711
3712 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3713 typedefs in every file (for int, long, etc):
3714
3715 type = b <signed> <width> <format type>; <offset>; <nbits>
3716 signed = u or s.
3717 optional format type = c or b for char or boolean.
3718 offset = offset from high order bit to start bit of type.
3719 width is # bytes in object of this type, nbits is # bits in type.
3720
3721 The width/offset stuff appears to be for small objects stored in
3722 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3723 FIXME. */
3724
3725 static struct type *
3726 read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
3727 {
3728 int type_bits;
3729 int nbits;
3730 int unsigned_type;
3731 int boolean_type = 0;
3732
3733 switch (**pp)
3734 {
3735 case 's':
3736 unsigned_type = 0;
3737 break;
3738 case 'u':
3739 unsigned_type = 1;
3740 break;
3741 default:
3742 return error_type (pp, objfile);
3743 }
3744 (*pp)++;
3745
3746 /* For some odd reason, all forms of char put a c here. This is strange
3747 because no other type has this honor. We can safely ignore this because
3748 we actually determine 'char'acterness by the number of bits specified in
3749 the descriptor.
3750 Boolean forms, e.g Fortran logical*X, put a b here. */
3751
3752 if (**pp == 'c')
3753 (*pp)++;
3754 else if (**pp == 'b')
3755 {
3756 boolean_type = 1;
3757 (*pp)++;
3758 }
3759
3760 /* The first number appears to be the number of bytes occupied
3761 by this type, except that unsigned short is 4 instead of 2.
3762 Since this information is redundant with the third number,
3763 we will ignore it. */
3764 read_huge_number (pp, ';', &nbits, 0);
3765 if (nbits != 0)
3766 return error_type (pp, objfile);
3767
3768 /* The second number is always 0, so ignore it too. */
3769 read_huge_number (pp, ';', &nbits, 0);
3770 if (nbits != 0)
3771 return error_type (pp, objfile);
3772
3773 /* The third number is the number of bits for this type. */
3774 type_bits = read_huge_number (pp, 0, &nbits, 0);
3775 if (nbits != 0)
3776 return error_type (pp, objfile);
3777 /* The type *should* end with a semicolon. If it are embedded
3778 in a larger type the semicolon may be the only way to know where
3779 the type ends. If this type is at the end of the stabstring we
3780 can deal with the omitted semicolon (but we don't have to like
3781 it). Don't bother to complain(), Sun's compiler omits the semicolon
3782 for "void". */
3783 if (**pp == ';')
3784 ++(*pp);
3785
3786 if (type_bits == 0)
3787 {
3788 struct type *type = init_type (objfile, TYPE_CODE_VOID,
3789 TARGET_CHAR_BIT, NULL);
3790 if (unsigned_type)
3791 TYPE_UNSIGNED (type) = 1;
3792 return type;
3793 }
3794
3795 if (boolean_type)
3796 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3797 else
3798 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3799 }
3800
3801 static struct type *
3802 read_sun_floating_type (const char **pp, int typenums[2],
3803 struct objfile *objfile)
3804 {
3805 int nbits;
3806 int details;
3807 int nbytes;
3808 struct type *rettype;
3809
3810 /* The first number has more details about the type, for example
3811 FN_COMPLEX. */
3812 details = read_huge_number (pp, ';', &nbits, 0);
3813 if (nbits != 0)
3814 return error_type (pp, objfile);
3815
3816 /* The second number is the number of bytes occupied by this type. */
3817 nbytes = read_huge_number (pp, ';', &nbits, 0);
3818 if (nbits != 0)
3819 return error_type (pp, objfile);
3820
3821 nbits = nbytes * TARGET_CHAR_BIT;
3822
3823 if (details == NF_COMPLEX || details == NF_COMPLEX16
3824 || details == NF_COMPLEX32)
3825 {
3826 rettype = dbx_init_float_type (objfile, nbits / 2);
3827 return init_complex_type (objfile, NULL, rettype);
3828 }
3829
3830 return dbx_init_float_type (objfile, nbits);
3831 }
3832
3833 /* Read a number from the string pointed to by *PP.
3834 The value of *PP is advanced over the number.
3835 If END is nonzero, the character that ends the
3836 number must match END, or an error happens;
3837 and that character is skipped if it does match.
3838 If END is zero, *PP is left pointing to that character.
3839
3840 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3841 the number is represented in an octal representation, assume that
3842 it is represented in a 2's complement representation with a size of
3843 TWOS_COMPLEMENT_BITS.
3844
3845 If the number fits in a long, set *BITS to 0 and return the value.
3846 If not, set *BITS to be the number of bits in the number and return 0.
3847
3848 If encounter garbage, set *BITS to -1 and return 0. */
3849
3850 static long
3851 read_huge_number (const char **pp, int end, int *bits,
3852 int twos_complement_bits)
3853 {
3854 const char *p = *pp;
3855 int sign = 1;
3856 int sign_bit = 0;
3857 long n = 0;
3858 int radix = 10;
3859 char overflow = 0;
3860 int nbits = 0;
3861 int c;
3862 long upper_limit;
3863 int twos_complement_representation = 0;
3864
3865 if (*p == '-')
3866 {
3867 sign = -1;
3868 p++;
3869 }
3870
3871 /* Leading zero means octal. GCC uses this to output values larger
3872 than an int (because that would be hard in decimal). */
3873 if (*p == '0')
3874 {
3875 radix = 8;
3876 p++;
3877 }
3878
3879 /* Skip extra zeros. */
3880 while (*p == '0')
3881 p++;
3882
3883 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3884 {
3885 /* Octal, possibly signed. Check if we have enough chars for a
3886 negative number. */
3887
3888 size_t len;
3889 const char *p1 = p;
3890
3891 while ((c = *p1) >= '0' && c < '8')
3892 p1++;
3893
3894 len = p1 - p;
3895 if (len > twos_complement_bits / 3
3896 || (twos_complement_bits % 3 == 0
3897 && len == twos_complement_bits / 3))
3898 {
3899 /* Ok, we have enough characters for a signed value, check
3900 for signness by testing if the sign bit is set. */
3901 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3902 c = *p - '0';
3903 if (c & (1 << sign_bit))
3904 {
3905 /* Definitely signed. */
3906 twos_complement_representation = 1;
3907 sign = -1;
3908 }
3909 }
3910 }
3911
3912 upper_limit = LONG_MAX / radix;
3913
3914 while ((c = *p++) >= '0' && c < ('0' + radix))
3915 {
3916 if (n <= upper_limit)
3917 {
3918 if (twos_complement_representation)
3919 {
3920 /* Octal, signed, twos complement representation. In
3921 this case, n is the corresponding absolute value. */
3922 if (n == 0)
3923 {
3924 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3925
3926 n = -sn;
3927 }
3928 else
3929 {
3930 n *= radix;
3931 n -= c - '0';
3932 }
3933 }
3934 else
3935 {
3936 /* unsigned representation */
3937 n *= radix;
3938 n += c - '0'; /* FIXME this overflows anyway. */
3939 }
3940 }
3941 else
3942 overflow = 1;
3943
3944 /* This depends on large values being output in octal, which is
3945 what GCC does. */
3946 if (radix == 8)
3947 {
3948 if (nbits == 0)
3949 {
3950 if (c == '0')
3951 /* Ignore leading zeroes. */
3952 ;
3953 else if (c == '1')
3954 nbits = 1;
3955 else if (c == '2' || c == '3')
3956 nbits = 2;
3957 else
3958 nbits = 3;
3959 }
3960 else
3961 nbits += 3;
3962 }
3963 }
3964 if (end)
3965 {
3966 if (c && c != end)
3967 {
3968 if (bits != NULL)
3969 *bits = -1;
3970 return 0;
3971 }
3972 }
3973 else
3974 --p;
3975
3976 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3977 {
3978 /* We were supposed to parse a number with maximum
3979 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3980 if (bits != NULL)
3981 *bits = -1;
3982 return 0;
3983 }
3984
3985 *pp = p;
3986 if (overflow)
3987 {
3988 if (nbits == 0)
3989 {
3990 /* Large decimal constants are an error (because it is hard to
3991 count how many bits are in them). */
3992 if (bits != NULL)
3993 *bits = -1;
3994 return 0;
3995 }
3996
3997 /* -0x7f is the same as 0x80. So deal with it by adding one to
3998 the number of bits. Two's complement represention octals
3999 can't have a '-' in front. */
4000 if (sign == -1 && !twos_complement_representation)
4001 ++nbits;
4002 if (bits)
4003 *bits = nbits;
4004 }
4005 else
4006 {
4007 if (bits)
4008 *bits = 0;
4009 return n * sign;
4010 }
4011 /* It's *BITS which has the interesting information. */
4012 return 0;
4013 }
4014
4015 static struct type *
4016 read_range_type (const char **pp, int typenums[2], int type_size,
4017 struct objfile *objfile)
4018 {
4019 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4020 const char *orig_pp = *pp;
4021 int rangenums[2];
4022 long n2, n3;
4023 int n2bits, n3bits;
4024 int self_subrange;
4025 struct type *result_type;
4026 struct type *index_type = NULL;
4027
4028 /* First comes a type we are a subrange of.
4029 In C it is usually 0, 1 or the type being defined. */
4030 if (read_type_number (pp, rangenums) != 0)
4031 return error_type (pp, objfile);
4032 self_subrange = (rangenums[0] == typenums[0] &&
4033 rangenums[1] == typenums[1]);
4034
4035 if (**pp == '=')
4036 {
4037 *pp = orig_pp;
4038 index_type = read_type (pp, objfile);
4039 }
4040
4041 /* A semicolon should now follow; skip it. */
4042 if (**pp == ';')
4043 (*pp)++;
4044
4045 /* The remaining two operands are usually lower and upper bounds
4046 of the range. But in some special cases they mean something else. */
4047 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4048 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4049
4050 if (n2bits == -1 || n3bits == -1)
4051 return error_type (pp, objfile);
4052
4053 if (index_type)
4054 goto handle_true_range;
4055
4056 /* If limits are huge, must be large integral type. */
4057 if (n2bits != 0 || n3bits != 0)
4058 {
4059 char got_signed = 0;
4060 char got_unsigned = 0;
4061 /* Number of bits in the type. */
4062 int nbits = 0;
4063
4064 /* If a type size attribute has been specified, the bounds of
4065 the range should fit in this size. If the lower bounds needs
4066 more bits than the upper bound, then the type is signed. */
4067 if (n2bits <= type_size && n3bits <= type_size)
4068 {
4069 if (n2bits == type_size && n2bits > n3bits)
4070 got_signed = 1;
4071 else
4072 got_unsigned = 1;
4073 nbits = type_size;
4074 }
4075 /* Range from 0 to <large number> is an unsigned large integral type. */
4076 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4077 {
4078 got_unsigned = 1;
4079 nbits = n3bits;
4080 }
4081 /* Range from <large number> to <large number>-1 is a large signed
4082 integral type. Take care of the case where <large number> doesn't
4083 fit in a long but <large number>-1 does. */
4084 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4085 || (n2bits != 0 && n3bits == 0
4086 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4087 && n3 == LONG_MAX))
4088 {
4089 got_signed = 1;
4090 nbits = n2bits;
4091 }
4092
4093 if (got_signed || got_unsigned)
4094 return init_integer_type (objfile, nbits, got_unsigned, NULL);
4095 else
4096 return error_type (pp, objfile);
4097 }
4098
4099 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4100 if (self_subrange && n2 == 0 && n3 == 0)
4101 return init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
4102
4103 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4104 is the width in bytes.
4105
4106 Fortran programs appear to use this for complex types also. To
4107 distinguish between floats and complex, g77 (and others?) seem
4108 to use self-subranges for the complexes, and subranges of int for
4109 the floats.
4110
4111 Also note that for complexes, g77 sets n2 to the size of one of
4112 the member floats, not the whole complex beast. My guess is that
4113 this was to work well with pre-COMPLEX versions of gdb. */
4114
4115 if (n3 == 0 && n2 > 0)
4116 {
4117 struct type *float_type
4118 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
4119
4120 if (self_subrange)
4121 return init_complex_type (objfile, NULL, float_type);
4122 else
4123 return float_type;
4124 }
4125
4126 /* If the upper bound is -1, it must really be an unsigned integral. */
4127
4128 else if (n2 == 0 && n3 == -1)
4129 {
4130 int bits = type_size;
4131
4132 if (bits <= 0)
4133 {
4134 /* We don't know its size. It is unsigned int or unsigned
4135 long. GCC 2.3.3 uses this for long long too, but that is
4136 just a GDB 3.5 compatibility hack. */
4137 bits = gdbarch_int_bit (gdbarch);
4138 }
4139
4140 return init_integer_type (objfile, bits, 1, NULL);
4141 }
4142
4143 /* Special case: char is defined (Who knows why) as a subrange of
4144 itself with range 0-127. */
4145 else if (self_subrange && n2 == 0 && n3 == 127)
4146 {
4147 struct type *type = init_integer_type (objfile, TARGET_CHAR_BIT,
4148 0, NULL);
4149 TYPE_NOSIGN (type) = 1;
4150 return type;
4151 }
4152 /* We used to do this only for subrange of self or subrange of int. */
4153 else if (n2 == 0)
4154 {
4155 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4156 "unsigned long", and we already checked for that,
4157 so don't need to test for it here. */
4158
4159 if (n3 < 0)
4160 /* n3 actually gives the size. */
4161 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4162
4163 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4164 unsigned n-byte integer. But do require n to be a power of
4165 two; we don't want 3- and 5-byte integers flying around. */
4166 {
4167 int bytes;
4168 unsigned long bits;
4169
4170 bits = n3;
4171 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4172 bits >>= 8;
4173 if (bits == 0
4174 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4175 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4176 }
4177 }
4178 /* I think this is for Convex "long long". Since I don't know whether
4179 Convex sets self_subrange, I also accept that particular size regardless
4180 of self_subrange. */
4181 else if (n3 == 0 && n2 < 0
4182 && (self_subrange
4183 || n2 == -gdbarch_long_long_bit
4184 (gdbarch) / TARGET_CHAR_BIT))
4185 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4186 else if (n2 == -n3 - 1)
4187 {
4188 if (n3 == 0x7f)
4189 return init_integer_type (objfile, 8, 0, NULL);
4190 if (n3 == 0x7fff)
4191 return init_integer_type (objfile, 16, 0, NULL);
4192 if (n3 == 0x7fffffff)
4193 return init_integer_type (objfile, 32, 0, NULL);
4194 }
4195
4196 /* We have a real range type on our hands. Allocate space and
4197 return a real pointer. */
4198 handle_true_range:
4199
4200 if (self_subrange)
4201 index_type = objfile_type (objfile)->builtin_int;
4202 else
4203 index_type = *dbx_lookup_type (rangenums, objfile);
4204 if (index_type == NULL)
4205 {
4206 /* Does this actually ever happen? Is that why we are worrying
4207 about dealing with it rather than just calling error_type? */
4208
4209 complaint (_("base type %d of range type is not defined"), rangenums[1]);
4210
4211 index_type = objfile_type (objfile)->builtin_int;
4212 }
4213
4214 result_type
4215 = create_static_range_type (NULL, index_type, n2, n3);
4216 return (result_type);
4217 }
4218
4219 /* Read in an argument list. This is a list of types, separated by commas
4220 and terminated with END. Return the list of types read in, or NULL
4221 if there is an error. */
4222
4223 static struct field *
4224 read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
4225 int *varargsp)
4226 {
4227 /* FIXME! Remove this arbitrary limit! */
4228 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4229 int n = 0, i;
4230 struct field *rval;
4231
4232 while (**pp != end)
4233 {
4234 if (**pp != ',')
4235 /* Invalid argument list: no ','. */
4236 return NULL;
4237 (*pp)++;
4238 STABS_CONTINUE (pp, objfile);
4239 types[n++] = read_type (pp, objfile);
4240 }
4241 (*pp)++; /* get past `end' (the ':' character). */
4242
4243 if (n == 0)
4244 {
4245 /* We should read at least the THIS parameter here. Some broken stabs
4246 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4247 have been present ";-16,(0,43)" reference instead. This way the
4248 excessive ";" marker prematurely stops the parameters parsing. */
4249
4250 complaint (_("Invalid (empty) method arguments"));
4251 *varargsp = 0;
4252 }
4253 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4254 *varargsp = 1;
4255 else
4256 {
4257 n--;
4258 *varargsp = 0;
4259 }
4260
4261 rval = XCNEWVEC (struct field, n);
4262 for (i = 0; i < n; i++)
4263 rval[i].type = types[i];
4264 *nargsp = n;
4265 return rval;
4266 }
4267 \f
4268 /* Common block handling. */
4269
4270 /* List of symbols declared since the last BCOMM. This list is a tail
4271 of local_symbols. When ECOMM is seen, the symbols on the list
4272 are noted so their proper addresses can be filled in later,
4273 using the common block base address gotten from the assembler
4274 stabs. */
4275
4276 static struct pending *common_block;
4277 static int common_block_i;
4278
4279 /* Name of the current common block. We get it from the BCOMM instead of the
4280 ECOMM to match IBM documentation (even though IBM puts the name both places
4281 like everyone else). */
4282 static char *common_block_name;
4283
4284 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4285 to remain after this function returns. */
4286
4287 void
4288 common_block_start (const char *name, struct objfile *objfile)
4289 {
4290 if (common_block_name != NULL)
4291 {
4292 complaint (_("Invalid symbol data: common block within common block"));
4293 }
4294 common_block = *get_local_symbols ();
4295 common_block_i = common_block ? common_block->nsyms : 0;
4296 common_block_name = obstack_strdup (&objfile->objfile_obstack, name);
4297 }
4298
4299 /* Process a N_ECOMM symbol. */
4300
4301 void
4302 common_block_end (struct objfile *objfile)
4303 {
4304 /* Symbols declared since the BCOMM are to have the common block
4305 start address added in when we know it. common_block and
4306 common_block_i point to the first symbol after the BCOMM in
4307 the local_symbols list; copy the list and hang it off the
4308 symbol for the common block name for later fixup. */
4309 int i;
4310 struct symbol *sym;
4311 struct pending *newobj = 0;
4312 struct pending *next;
4313 int j;
4314
4315 if (common_block_name == NULL)
4316 {
4317 complaint (_("ECOMM symbol unmatched by BCOMM"));
4318 return;
4319 }
4320
4321 sym = allocate_symbol (objfile);
4322 /* Note: common_block_name already saved on objfile_obstack. */
4323 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4324 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4325
4326 /* Now we copy all the symbols which have been defined since the BCOMM. */
4327
4328 /* Copy all the struct pendings before common_block. */
4329 for (next = *get_local_symbols ();
4330 next != NULL && next != common_block;
4331 next = next->next)
4332 {
4333 for (j = 0; j < next->nsyms; j++)
4334 add_symbol_to_list (next->symbol[j], &newobj);
4335 }
4336
4337 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4338 NULL, it means copy all the local symbols (which we already did
4339 above). */
4340
4341 if (common_block != NULL)
4342 for (j = common_block_i; j < common_block->nsyms; j++)
4343 add_symbol_to_list (common_block->symbol[j], &newobj);
4344
4345 SYMBOL_TYPE (sym) = (struct type *) newobj;
4346
4347 /* Should we be putting local_symbols back to what it was?
4348 Does it matter? */
4349
4350 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4351 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4352 global_sym_chain[i] = sym;
4353 common_block_name = NULL;
4354 }
4355
4356 /* Add a common block's start address to the offset of each symbol
4357 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4358 the common block name). */
4359
4360 static void
4361 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4362 {
4363 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4364
4365 for (; next; next = next->next)
4366 {
4367 int j;
4368
4369 for (j = next->nsyms - 1; j >= 0; j--)
4370 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4371 }
4372 }
4373 \f
4374
4375
4376 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4377 See add_undefined_type for more details. */
4378
4379 static void
4380 add_undefined_type_noname (struct type *type, int typenums[2])
4381 {
4382 struct nat nat;
4383
4384 nat.typenums[0] = typenums [0];
4385 nat.typenums[1] = typenums [1];
4386 nat.type = type;
4387
4388 if (noname_undefs_length == noname_undefs_allocated)
4389 {
4390 noname_undefs_allocated *= 2;
4391 noname_undefs = (struct nat *)
4392 xrealloc ((char *) noname_undefs,
4393 noname_undefs_allocated * sizeof (struct nat));
4394 }
4395 noname_undefs[noname_undefs_length++] = nat;
4396 }
4397
4398 /* Add TYPE to the UNDEF_TYPES vector.
4399 See add_undefined_type for more details. */
4400
4401 static void
4402 add_undefined_type_1 (struct type *type)
4403 {
4404 if (undef_types_length == undef_types_allocated)
4405 {
4406 undef_types_allocated *= 2;
4407 undef_types = (struct type **)
4408 xrealloc ((char *) undef_types,
4409 undef_types_allocated * sizeof (struct type *));
4410 }
4411 undef_types[undef_types_length++] = type;
4412 }
4413
4414 /* What about types defined as forward references inside of a small lexical
4415 scope? */
4416 /* Add a type to the list of undefined types to be checked through
4417 once this file has been read in.
4418
4419 In practice, we actually maintain two such lists: The first list
4420 (UNDEF_TYPES) is used for types whose name has been provided, and
4421 concerns forward references (eg 'xs' or 'xu' forward references);
4422 the second list (NONAME_UNDEFS) is used for types whose name is
4423 unknown at creation time, because they were referenced through
4424 their type number before the actual type was declared.
4425 This function actually adds the given type to the proper list. */
4426
4427 static void
4428 add_undefined_type (struct type *type, int typenums[2])
4429 {
4430 if (TYPE_NAME (type) == NULL)
4431 add_undefined_type_noname (type, typenums);
4432 else
4433 add_undefined_type_1 (type);
4434 }
4435
4436 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4437
4438 static void
4439 cleanup_undefined_types_noname (struct objfile *objfile)
4440 {
4441 int i;
4442
4443 for (i = 0; i < noname_undefs_length; i++)
4444 {
4445 struct nat nat = noname_undefs[i];
4446 struct type **type;
4447
4448 type = dbx_lookup_type (nat.typenums, objfile);
4449 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4450 {
4451 /* The instance flags of the undefined type are still unset,
4452 and needs to be copied over from the reference type.
4453 Since replace_type expects them to be identical, we need
4454 to set these flags manually before hand. */
4455 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4456 replace_type (nat.type, *type);
4457 }
4458 }
4459
4460 noname_undefs_length = 0;
4461 }
4462
4463 /* Go through each undefined type, see if it's still undefined, and fix it
4464 up if possible. We have two kinds of undefined types:
4465
4466 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4467 Fix: update array length using the element bounds
4468 and the target type's length.
4469 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4470 yet defined at the time a pointer to it was made.
4471 Fix: Do a full lookup on the struct/union tag. */
4472
4473 static void
4474 cleanup_undefined_types_1 (void)
4475 {
4476 struct type **type;
4477
4478 /* Iterate over every undefined type, and look for a symbol whose type
4479 matches our undefined type. The symbol matches if:
4480 1. It is a typedef in the STRUCT domain;
4481 2. It has the same name, and same type code;
4482 3. The instance flags are identical.
4483
4484 It is important to check the instance flags, because we have seen
4485 examples where the debug info contained definitions such as:
4486
4487 "foo_t:t30=B31=xefoo_t:"
4488
4489 In this case, we have created an undefined type named "foo_t" whose
4490 instance flags is null (when processing "xefoo_t"), and then created
4491 another type with the same name, but with different instance flags
4492 ('B' means volatile). I think that the definition above is wrong,
4493 since the same type cannot be volatile and non-volatile at the same
4494 time, but we need to be able to cope with it when it happens. The
4495 approach taken here is to treat these two types as different. */
4496
4497 for (type = undef_types; type < undef_types + undef_types_length; type++)
4498 {
4499 switch (TYPE_CODE (*type))
4500 {
4501
4502 case TYPE_CODE_STRUCT:
4503 case TYPE_CODE_UNION:
4504 case TYPE_CODE_ENUM:
4505 {
4506 /* Check if it has been defined since. Need to do this here
4507 as well as in check_typedef to deal with the (legitimate in
4508 C though not C++) case of several types with the same name
4509 in different source files. */
4510 if (TYPE_STUB (*type))
4511 {
4512 struct pending *ppt;
4513 int i;
4514 /* Name of the type, without "struct" or "union". */
4515 const char *type_name = TYPE_NAME (*type);
4516
4517 if (type_name == NULL)
4518 {
4519 complaint (_("need a type name"));
4520 break;
4521 }
4522 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
4523 {
4524 for (i = 0; i < ppt->nsyms; i++)
4525 {
4526 struct symbol *sym = ppt->symbol[i];
4527
4528 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4529 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4530 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4531 TYPE_CODE (*type))
4532 && (TYPE_INSTANCE_FLAGS (*type) ==
4533 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4534 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4535 type_name) == 0)
4536 replace_type (*type, SYMBOL_TYPE (sym));
4537 }
4538 }
4539 }
4540 }
4541 break;
4542
4543 default:
4544 {
4545 complaint (_("forward-referenced types left unresolved, "
4546 "type code %d."),
4547 TYPE_CODE (*type));
4548 }
4549 break;
4550 }
4551 }
4552
4553 undef_types_length = 0;
4554 }
4555
4556 /* Try to fix all the undefined types we ecountered while processing
4557 this unit. */
4558
4559 void
4560 cleanup_undefined_stabs_types (struct objfile *objfile)
4561 {
4562 cleanup_undefined_types_1 ();
4563 cleanup_undefined_types_noname (objfile);
4564 }
4565
4566 /* See stabsread.h. */
4567
4568 void
4569 scan_file_globals (struct objfile *objfile)
4570 {
4571 int hash;
4572 struct symbol *sym, *prev;
4573 struct objfile *resolve_objfile;
4574
4575 /* SVR4 based linkers copy referenced global symbols from shared
4576 libraries to the main executable.
4577 If we are scanning the symbols for a shared library, try to resolve
4578 them from the minimal symbols of the main executable first. */
4579
4580 if (symfile_objfile && objfile != symfile_objfile)
4581 resolve_objfile = symfile_objfile;
4582 else
4583 resolve_objfile = objfile;
4584
4585 while (1)
4586 {
4587 /* Avoid expensive loop through all minimal symbols if there are
4588 no unresolved symbols. */
4589 for (hash = 0; hash < HASHSIZE; hash++)
4590 {
4591 if (global_sym_chain[hash])
4592 break;
4593 }
4594 if (hash >= HASHSIZE)
4595 return;
4596
4597 for (minimal_symbol *msymbol : resolve_objfile->msymbols ())
4598 {
4599 QUIT;
4600
4601 /* Skip static symbols. */
4602 switch (MSYMBOL_TYPE (msymbol))
4603 {
4604 case mst_file_text:
4605 case mst_file_data:
4606 case mst_file_bss:
4607 continue;
4608 default:
4609 break;
4610 }
4611
4612 prev = NULL;
4613
4614 /* Get the hash index and check all the symbols
4615 under that hash index. */
4616
4617 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
4618
4619 for (sym = global_sym_chain[hash]; sym;)
4620 {
4621 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
4622 SYMBOL_LINKAGE_NAME (sym)) == 0)
4623 {
4624 /* Splice this symbol out of the hash chain and
4625 assign the value we have to it. */
4626 if (prev)
4627 {
4628 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4629 }
4630 else
4631 {
4632 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4633 }
4634
4635 /* Check to see whether we need to fix up a common block. */
4636 /* Note: this code might be executed several times for
4637 the same symbol if there are multiple references. */
4638 if (sym)
4639 {
4640 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4641 {
4642 fix_common_block (sym,
4643 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4644 msymbol));
4645 }
4646 else
4647 {
4648 SYMBOL_VALUE_ADDRESS (sym)
4649 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
4650 }
4651 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4652 }
4653
4654 if (prev)
4655 {
4656 sym = SYMBOL_VALUE_CHAIN (prev);
4657 }
4658 else
4659 {
4660 sym = global_sym_chain[hash];
4661 }
4662 }
4663 else
4664 {
4665 prev = sym;
4666 sym = SYMBOL_VALUE_CHAIN (sym);
4667 }
4668 }
4669 }
4670 if (resolve_objfile == objfile)
4671 break;
4672 resolve_objfile = objfile;
4673 }
4674
4675 /* Change the storage class of any remaining unresolved globals to
4676 LOC_UNRESOLVED and remove them from the chain. */
4677 for (hash = 0; hash < HASHSIZE; hash++)
4678 {
4679 sym = global_sym_chain[hash];
4680 while (sym)
4681 {
4682 prev = sym;
4683 sym = SYMBOL_VALUE_CHAIN (sym);
4684
4685 /* Change the symbol address from the misleading chain value
4686 to address zero. */
4687 SYMBOL_VALUE_ADDRESS (prev) = 0;
4688
4689 /* Complain about unresolved common block symbols. */
4690 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4691 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4692 else
4693 complaint (_("%s: common block `%s' from "
4694 "global_sym_chain unresolved"),
4695 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
4696 }
4697 }
4698 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4699 }
4700
4701 /* Initialize anything that needs initializing when starting to read
4702 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4703 to a psymtab. */
4704
4705 void
4706 stabsread_init (void)
4707 {
4708 }
4709
4710 /* Initialize anything that needs initializing when a completely new
4711 symbol file is specified (not just adding some symbols from another
4712 file, e.g. a shared library). */
4713
4714 void
4715 stabsread_new_init (void)
4716 {
4717 /* Empty the hash table of global syms looking for values. */
4718 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4719 }
4720
4721 /* Initialize anything that needs initializing at the same time as
4722 start_symtab() is called. */
4723
4724 void
4725 start_stabs (void)
4726 {
4727 global_stabs = NULL; /* AIX COFF */
4728 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4729 n_this_object_header_files = 1;
4730 type_vector_length = 0;
4731 type_vector = (struct type **) 0;
4732 within_function = 0;
4733
4734 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4735 common_block_name = NULL;
4736 }
4737
4738 /* Call after end_symtab(). */
4739
4740 void
4741 end_stabs (void)
4742 {
4743 if (type_vector)
4744 {
4745 xfree (type_vector);
4746 }
4747 type_vector = 0;
4748 type_vector_length = 0;
4749 previous_stab_code = 0;
4750 }
4751
4752 void
4753 finish_global_stabs (struct objfile *objfile)
4754 {
4755 if (global_stabs)
4756 {
4757 patch_block_stabs (*get_global_symbols (), global_stabs, objfile);
4758 xfree (global_stabs);
4759 global_stabs = NULL;
4760 }
4761 }
4762
4763 /* Find the end of the name, delimited by a ':', but don't match
4764 ObjC symbols which look like -[Foo bar::]:bla. */
4765 static const char *
4766 find_name_end (const char *name)
4767 {
4768 const char *s = name;
4769
4770 if (s[0] == '-' || *s == '+')
4771 {
4772 /* Must be an ObjC method symbol. */
4773 if (s[1] != '[')
4774 {
4775 error (_("invalid symbol name \"%s\""), name);
4776 }
4777 s = strchr (s, ']');
4778 if (s == NULL)
4779 {
4780 error (_("invalid symbol name \"%s\""), name);
4781 }
4782 return strchr (s, ':');
4783 }
4784 else
4785 {
4786 return strchr (s, ':');
4787 }
4788 }
4789
4790 /* See stabsread.h. */
4791
4792 int
4793 hashname (const char *name)
4794 {
4795 return hash (name, strlen (name)) % HASHSIZE;
4796 }
4797
4798 /* Initializer for this module. */
4799
4800 void
4801 _initialize_stabsread (void)
4802 {
4803 undef_types_allocated = 20;
4804 undef_types_length = 0;
4805 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4806
4807 noname_undefs_allocated = 20;
4808 noname_undefs_length = 0;
4809 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4810
4811 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4812 &stab_register_funcs);
4813 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4814 &stab_register_funcs);
4815 }
This page took 0.135573 seconds and 4 git commands to generate.