libctf, binutils: support CTF archives like objdump
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
25 this file. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "gdb_obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "expression.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym-legacy.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "language.h"
44 #include "target-float.h"
45 #include "c-lang.h"
46 #include "cp-abi.h"
47 #include "cp-support.h"
48 #include <ctype.h>
49
50 #include "stabsread.h"
51
52 /* See stabsread.h for these globals. */
53 unsigned int symnum;
54 const char *(*next_symbol_text_func) (struct objfile *);
55 unsigned char processing_gcc_compilation;
56 int within_function;
57 struct symbol *global_sym_chain[HASHSIZE];
58 struct pending_stabs *global_stabs;
59 int previous_stab_code;
60 int *this_object_header_files;
61 int n_this_object_header_files;
62 int n_allocated_this_object_header_files;
63
64 struct nextfield
65 {
66 struct nextfield *next;
67
68 /* This is the raw visibility from the stab. It is not checked
69 for being one of the visibilities we recognize, so code which
70 examines this field better be able to deal. */
71 int visibility;
72
73 struct field field;
74 };
75
76 struct next_fnfieldlist
77 {
78 struct next_fnfieldlist *next;
79 struct fn_fieldlist fn_fieldlist;
80 };
81
82 /* The routines that read and process a complete stabs for a C struct or
83 C++ class pass lists of data member fields and lists of member function
84 fields in an instance of a field_info structure, as defined below.
85 This is part of some reorganization of low level C++ support and is
86 expected to eventually go away... (FIXME) */
87
88 struct stab_field_info
89 {
90 struct nextfield *list = nullptr;
91 struct next_fnfieldlist *fnlist = nullptr;
92
93 auto_obstack obstack;
94 };
95
96 static void
97 read_one_struct_field (struct stab_field_info *, const char **, const char *,
98 struct type *, struct objfile *);
99
100 static struct type *dbx_alloc_type (int[2], struct objfile *);
101
102 static long read_huge_number (const char **, int, int *, int);
103
104 static struct type *error_type (const char **, struct objfile *);
105
106 static void
107 patch_block_stabs (struct pending *, struct pending_stabs *,
108 struct objfile *);
109
110 static void fix_common_block (struct symbol *, CORE_ADDR);
111
112 static int read_type_number (const char **, int *);
113
114 static struct type *read_type (const char **, struct objfile *);
115
116 static struct type *read_range_type (const char **, int[2],
117 int, struct objfile *);
118
119 static struct type *read_sun_builtin_type (const char **,
120 int[2], struct objfile *);
121
122 static struct type *read_sun_floating_type (const char **, int[2],
123 struct objfile *);
124
125 static struct type *read_enum_type (const char **, struct type *, struct objfile *);
126
127 static struct type *rs6000_builtin_type (int, struct objfile *);
128
129 static int
130 read_member_functions (struct stab_field_info *, const char **, struct type *,
131 struct objfile *);
132
133 static int
134 read_struct_fields (struct stab_field_info *, const char **, struct type *,
135 struct objfile *);
136
137 static int
138 read_baseclasses (struct stab_field_info *, const char **, struct type *,
139 struct objfile *);
140
141 static int
142 read_tilde_fields (struct stab_field_info *, const char **, struct type *,
143 struct objfile *);
144
145 static int attach_fn_fields_to_type (struct stab_field_info *, struct type *);
146
147 static int attach_fields_to_type (struct stab_field_info *, struct type *,
148 struct objfile *);
149
150 static struct type *read_struct_type (const char **, struct type *,
151 enum type_code,
152 struct objfile *);
153
154 static struct type *read_array_type (const char **, struct type *,
155 struct objfile *);
156
157 static struct field *read_args (const char **, int, struct objfile *,
158 int *, int *);
159
160 static void add_undefined_type (struct type *, int[2]);
161
162 static int
163 read_cpp_abbrev (struct stab_field_info *, const char **, struct type *,
164 struct objfile *);
165
166 static const char *find_name_end (const char *name);
167
168 static int process_reference (const char **string);
169
170 void stabsread_clear_cache (void);
171
172 static const char vptr_name[] = "_vptr$";
173 static const char vb_name[] = "_vb$";
174
175 static void
176 invalid_cpp_abbrev_complaint (const char *arg1)
177 {
178 complaint (_("invalid C++ abbreviation `%s'"), arg1);
179 }
180
181 static void
182 reg_value_complaint (int regnum, int num_regs, const char *sym)
183 {
184 complaint (_("bad register number %d (max %d) in symbol %s"),
185 regnum, num_regs - 1, sym);
186 }
187
188 static void
189 stabs_general_complaint (const char *arg1)
190 {
191 complaint ("%s", arg1);
192 }
193
194 /* Make a list of forward references which haven't been defined. */
195
196 static struct type **undef_types;
197 static int undef_types_allocated;
198 static int undef_types_length;
199 static struct symbol *current_symbol = NULL;
200
201 /* Make a list of nameless types that are undefined.
202 This happens when another type is referenced by its number
203 before this type is actually defined. For instance "t(0,1)=k(0,2)"
204 and type (0,2) is defined only later. */
205
206 struct nat
207 {
208 int typenums[2];
209 struct type *type;
210 };
211 static struct nat *noname_undefs;
212 static int noname_undefs_allocated;
213 static int noname_undefs_length;
214
215 /* Check for and handle cretinous stabs symbol name continuation! */
216 #define STABS_CONTINUE(pp,objfile) \
217 do { \
218 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
219 *(pp) = next_symbol_text (objfile); \
220 } while (0)
221
222 /* Vector of types defined so far, indexed by their type numbers.
223 (In newer sun systems, dbx uses a pair of numbers in parens,
224 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
225 Then these numbers must be translated through the type_translations
226 hash table to get the index into the type vector.) */
227
228 static struct type **type_vector;
229
230 /* Number of elements allocated for type_vector currently. */
231
232 static int type_vector_length;
233
234 /* Initial size of type vector. Is realloc'd larger if needed, and
235 realloc'd down to the size actually used, when completed. */
236
237 #define INITIAL_TYPE_VECTOR_LENGTH 160
238 \f
239
240 /* Look up a dbx type-number pair. Return the address of the slot
241 where the type for that number-pair is stored.
242 The number-pair is in TYPENUMS.
243
244 This can be used for finding the type associated with that pair
245 or for associating a new type with the pair. */
246
247 static struct type **
248 dbx_lookup_type (int typenums[2], struct objfile *objfile)
249 {
250 int filenum = typenums[0];
251 int index = typenums[1];
252 unsigned old_len;
253 int real_filenum;
254 struct header_file *f;
255 int f_orig_length;
256
257 if (filenum == -1) /* -1,-1 is for temporary types. */
258 return 0;
259
260 if (filenum < 0 || filenum >= n_this_object_header_files)
261 {
262 complaint (_("Invalid symbol data: type number "
263 "(%d,%d) out of range at symtab pos %d."),
264 filenum, index, symnum);
265 goto error_return;
266 }
267
268 if (filenum == 0)
269 {
270 if (index < 0)
271 {
272 /* Caller wants address of address of type. We think
273 that negative (rs6k builtin) types will never appear as
274 "lvalues", (nor should they), so we stuff the real type
275 pointer into a temp, and return its address. If referenced,
276 this will do the right thing. */
277 static struct type *temp_type;
278
279 temp_type = rs6000_builtin_type (index, objfile);
280 return &temp_type;
281 }
282
283 /* Type is defined outside of header files.
284 Find it in this object file's type vector. */
285 if (index >= type_vector_length)
286 {
287 old_len = type_vector_length;
288 if (old_len == 0)
289 {
290 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
291 type_vector = XNEWVEC (struct type *, type_vector_length);
292 }
293 while (index >= type_vector_length)
294 {
295 type_vector_length *= 2;
296 }
297 type_vector = (struct type **)
298 xrealloc ((char *) type_vector,
299 (type_vector_length * sizeof (struct type *)));
300 memset (&type_vector[old_len], 0,
301 (type_vector_length - old_len) * sizeof (struct type *));
302 }
303 return (&type_vector[index]);
304 }
305 else
306 {
307 real_filenum = this_object_header_files[filenum];
308
309 if (real_filenum >= N_HEADER_FILES (objfile))
310 {
311 static struct type *temp_type;
312
313 warning (_("GDB internal error: bad real_filenum"));
314
315 error_return:
316 temp_type = objfile_type (objfile)->builtin_error;
317 return &temp_type;
318 }
319
320 f = HEADER_FILES (objfile) + real_filenum;
321
322 f_orig_length = f->length;
323 if (index >= f_orig_length)
324 {
325 while (index >= f->length)
326 {
327 f->length *= 2;
328 }
329 f->vector = (struct type **)
330 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
331 memset (&f->vector[f_orig_length], 0,
332 (f->length - f_orig_length) * sizeof (struct type *));
333 }
334 return (&f->vector[index]);
335 }
336 }
337
338 /* Make sure there is a type allocated for type numbers TYPENUMS
339 and return the type object.
340 This can create an empty (zeroed) type object.
341 TYPENUMS may be (-1, -1) to return a new type object that is not
342 put into the type vector, and so may not be referred to by number. */
343
344 static struct type *
345 dbx_alloc_type (int typenums[2], struct objfile *objfile)
346 {
347 struct type **type_addr;
348
349 if (typenums[0] == -1)
350 {
351 return (alloc_type (objfile));
352 }
353
354 type_addr = dbx_lookup_type (typenums, objfile);
355
356 /* If we are referring to a type not known at all yet,
357 allocate an empty type for it.
358 We will fill it in later if we find out how. */
359 if (*type_addr == 0)
360 {
361 *type_addr = alloc_type (objfile);
362 }
363
364 return (*type_addr);
365 }
366
367 /* Allocate a floating-point type of size BITS. */
368
369 static struct type *
370 dbx_init_float_type (struct objfile *objfile, int bits)
371 {
372 struct gdbarch *gdbarch = objfile->arch ();
373 const struct floatformat **format;
374 struct type *type;
375
376 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
377 if (format)
378 type = init_float_type (objfile, bits, NULL, format);
379 else
380 type = init_type (objfile, TYPE_CODE_ERROR, bits, NULL);
381
382 return type;
383 }
384
385 /* for all the stabs in a given stab vector, build appropriate types
386 and fix their symbols in given symbol vector. */
387
388 static void
389 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
390 struct objfile *objfile)
391 {
392 int ii;
393 char *name;
394 const char *pp;
395 struct symbol *sym;
396
397 if (stabs)
398 {
399 /* for all the stab entries, find their corresponding symbols and
400 patch their types! */
401
402 for (ii = 0; ii < stabs->count; ++ii)
403 {
404 name = stabs->stab[ii];
405 pp = (char *) strchr (name, ':');
406 gdb_assert (pp); /* Must find a ':' or game's over. */
407 while (pp[1] == ':')
408 {
409 pp += 2;
410 pp = (char *) strchr (pp, ':');
411 }
412 sym = find_symbol_in_list (symbols, name, pp - name);
413 if (!sym)
414 {
415 /* FIXME-maybe: it would be nice if we noticed whether
416 the variable was defined *anywhere*, not just whether
417 it is defined in this compilation unit. But neither
418 xlc or GCC seem to need such a definition, and until
419 we do psymtabs (so that the minimal symbols from all
420 compilation units are available now), I'm not sure
421 how to get the information. */
422
423 /* On xcoff, if a global is defined and never referenced,
424 ld will remove it from the executable. There is then
425 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
426 sym = new (&objfile->objfile_obstack) symbol;
427 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
428 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
429 sym->set_linkage_name
430 (obstack_strndup (&objfile->objfile_obstack, name, pp - name));
431 pp += 2;
432 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
433 {
434 /* I don't think the linker does this with functions,
435 so as far as I know this is never executed.
436 But it doesn't hurt to check. */
437 SYMBOL_TYPE (sym) =
438 lookup_function_type (read_type (&pp, objfile));
439 }
440 else
441 {
442 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
443 }
444 add_symbol_to_list (sym, get_global_symbols ());
445 }
446 else
447 {
448 pp += 2;
449 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
450 {
451 SYMBOL_TYPE (sym) =
452 lookup_function_type (read_type (&pp, objfile));
453 }
454 else
455 {
456 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
457 }
458 }
459 }
460 }
461 }
462 \f
463
464 /* Read a number by which a type is referred to in dbx data,
465 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
466 Just a single number N is equivalent to (0,N).
467 Return the two numbers by storing them in the vector TYPENUMS.
468 TYPENUMS will then be used as an argument to dbx_lookup_type.
469
470 Returns 0 for success, -1 for error. */
471
472 static int
473 read_type_number (const char **pp, int *typenums)
474 {
475 int nbits;
476
477 if (**pp == '(')
478 {
479 (*pp)++;
480 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
481 if (nbits != 0)
482 return -1;
483 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
484 if (nbits != 0)
485 return -1;
486 }
487 else
488 {
489 typenums[0] = 0;
490 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
491 if (nbits != 0)
492 return -1;
493 }
494 return 0;
495 }
496 \f
497
498 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
499 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
500 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
501 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
502
503 /* Structure for storing pointers to reference definitions for fast lookup
504 during "process_later". */
505
506 struct ref_map
507 {
508 const char *stabs;
509 CORE_ADDR value;
510 struct symbol *sym;
511 };
512
513 #define MAX_CHUNK_REFS 100
514 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
515 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
516
517 static struct ref_map *ref_map;
518
519 /* Ptr to free cell in chunk's linked list. */
520 static int ref_count = 0;
521
522 /* Number of chunks malloced. */
523 static int ref_chunk = 0;
524
525 /* This file maintains a cache of stabs aliases found in the symbol
526 table. If the symbol table changes, this cache must be cleared
527 or we are left holding onto data in invalid obstacks. */
528 void
529 stabsread_clear_cache (void)
530 {
531 ref_count = 0;
532 ref_chunk = 0;
533 }
534
535 /* Create array of pointers mapping refids to symbols and stab strings.
536 Add pointers to reference definition symbols and/or their values as we
537 find them, using their reference numbers as our index.
538 These will be used later when we resolve references. */
539 void
540 ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
541 {
542 if (ref_count == 0)
543 ref_chunk = 0;
544 if (refnum >= ref_count)
545 ref_count = refnum + 1;
546 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
547 {
548 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
549 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
550
551 ref_map = (struct ref_map *)
552 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
553 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
554 new_chunks * REF_CHUNK_SIZE);
555 ref_chunk += new_chunks;
556 }
557 ref_map[refnum].stabs = stabs;
558 ref_map[refnum].sym = sym;
559 ref_map[refnum].value = value;
560 }
561
562 /* Return defined sym for the reference REFNUM. */
563 struct symbol *
564 ref_search (int refnum)
565 {
566 if (refnum < 0 || refnum > ref_count)
567 return 0;
568 return ref_map[refnum].sym;
569 }
570
571 /* Parse a reference id in STRING and return the resulting
572 reference number. Move STRING beyond the reference id. */
573
574 static int
575 process_reference (const char **string)
576 {
577 const char *p;
578 int refnum = 0;
579
580 if (**string != '#')
581 return 0;
582
583 /* Advance beyond the initial '#'. */
584 p = *string + 1;
585
586 /* Read number as reference id. */
587 while (*p && isdigit (*p))
588 {
589 refnum = refnum * 10 + *p - '0';
590 p++;
591 }
592 *string = p;
593 return refnum;
594 }
595
596 /* If STRING defines a reference, store away a pointer to the reference
597 definition for later use. Return the reference number. */
598
599 int
600 symbol_reference_defined (const char **string)
601 {
602 const char *p = *string;
603 int refnum = 0;
604
605 refnum = process_reference (&p);
606
607 /* Defining symbols end in '='. */
608 if (*p == '=')
609 {
610 /* Symbol is being defined here. */
611 *string = p + 1;
612 return refnum;
613 }
614 else
615 {
616 /* Must be a reference. Either the symbol has already been defined,
617 or this is a forward reference to it. */
618 *string = p;
619 return -1;
620 }
621 }
622
623 static int
624 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
625 {
626 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
627
628 if (regno < 0 || regno >= gdbarch_num_cooked_regs (gdbarch))
629 {
630 reg_value_complaint (regno, gdbarch_num_cooked_regs (gdbarch),
631 sym->print_name ());
632
633 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
634 }
635
636 return regno;
637 }
638
639 static const struct symbol_register_ops stab_register_funcs = {
640 stab_reg_to_regnum
641 };
642
643 /* The "aclass" indices for computed symbols. */
644
645 static int stab_register_index;
646 static int stab_regparm_index;
647
648 struct symbol *
649 define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
650 struct objfile *objfile)
651 {
652 struct gdbarch *gdbarch = objfile->arch ();
653 struct symbol *sym;
654 const char *p = find_name_end (string);
655 int deftype;
656 int synonym = 0;
657 int i;
658
659 /* We would like to eliminate nameless symbols, but keep their types.
660 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
661 to type 2, but, should not create a symbol to address that type. Since
662 the symbol will be nameless, there is no way any user can refer to it. */
663
664 int nameless;
665
666 /* Ignore syms with empty names. */
667 if (string[0] == 0)
668 return 0;
669
670 /* Ignore old-style symbols from cc -go. */
671 if (p == 0)
672 return 0;
673
674 while (p[1] == ':')
675 {
676 p += 2;
677 p = strchr (p, ':');
678 if (p == NULL)
679 {
680 complaint (
681 _("Bad stabs string '%s'"), string);
682 return NULL;
683 }
684 }
685
686 /* If a nameless stab entry, all we need is the type, not the symbol.
687 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
688 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
689
690 current_symbol = sym = new (&objfile->objfile_obstack) symbol;
691
692 if (processing_gcc_compilation)
693 {
694 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
695 number of bytes occupied by a type or object, which we ignore. */
696 SYMBOL_LINE (sym) = desc;
697 }
698 else
699 {
700 SYMBOL_LINE (sym) = 0; /* unknown */
701 }
702
703 sym->set_language (get_current_subfile ()->language,
704 &objfile->objfile_obstack);
705
706 if (is_cplus_marker (string[0]))
707 {
708 /* Special GNU C++ names. */
709 switch (string[1])
710 {
711 case 't':
712 sym->set_linkage_name ("this");
713 break;
714
715 case 'v': /* $vtbl_ptr_type */
716 goto normal;
717
718 case 'e':
719 sym->set_linkage_name ("eh_throw");
720 break;
721
722 case '_':
723 /* This was an anonymous type that was never fixed up. */
724 goto normal;
725
726 default:
727 complaint (_("Unknown C++ symbol name `%s'"),
728 string);
729 goto normal; /* Do *something* with it. */
730 }
731 }
732 else
733 {
734 normal:
735 gdb::unique_xmalloc_ptr<char> new_name;
736
737 if (sym->language () == language_cplus)
738 {
739 char *name = (char *) alloca (p - string + 1);
740
741 memcpy (name, string, p - string);
742 name[p - string] = '\0';
743 new_name = cp_canonicalize_string (name);
744 }
745 if (new_name != nullptr)
746 sym->compute_and_set_names (new_name.get (), true, objfile->per_bfd);
747 else
748 sym->compute_and_set_names (gdb::string_view (string, p - string), true,
749 objfile->per_bfd);
750
751 if (sym->language () == language_cplus)
752 cp_scan_for_anonymous_namespaces (get_buildsym_compunit (), sym,
753 objfile);
754
755 }
756 p++;
757
758 /* Determine the type of name being defined. */
759 #if 0
760 /* Getting GDB to correctly skip the symbol on an undefined symbol
761 descriptor and not ever dump core is a very dodgy proposition if
762 we do things this way. I say the acorn RISC machine can just
763 fix their compiler. */
764 /* The Acorn RISC machine's compiler can put out locals that don't
765 start with "234=" or "(3,4)=", so assume anything other than the
766 deftypes we know how to handle is a local. */
767 if (!strchr ("cfFGpPrStTvVXCR", *p))
768 #else
769 if (isdigit (*p) || *p == '(' || *p == '-')
770 #endif
771 deftype = 'l';
772 else
773 deftype = *p++;
774
775 switch (deftype)
776 {
777 case 'c':
778 /* c is a special case, not followed by a type-number.
779 SYMBOL:c=iVALUE for an integer constant symbol.
780 SYMBOL:c=rVALUE for a floating constant symbol.
781 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
782 e.g. "b:c=e6,0" for "const b = blob1"
783 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
784 if (*p != '=')
785 {
786 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
787 SYMBOL_TYPE (sym) = error_type (&p, objfile);
788 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
789 add_symbol_to_list (sym, get_file_symbols ());
790 return sym;
791 }
792 ++p;
793 switch (*p++)
794 {
795 case 'r':
796 {
797 gdb_byte *dbl_valu;
798 struct type *dbl_type;
799
800 dbl_type = objfile_type (objfile)->builtin_double;
801 dbl_valu
802 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
803 TYPE_LENGTH (dbl_type));
804
805 target_float_from_string (dbl_valu, dbl_type, std::string (p));
806
807 SYMBOL_TYPE (sym) = dbl_type;
808 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
809 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
810 }
811 break;
812 case 'i':
813 {
814 /* Defining integer constants this way is kind of silly,
815 since 'e' constants allows the compiler to give not
816 only the value, but the type as well. C has at least
817 int, long, unsigned int, and long long as constant
818 types; other languages probably should have at least
819 unsigned as well as signed constants. */
820
821 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
822 SYMBOL_VALUE (sym) = atoi (p);
823 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
824 }
825 break;
826
827 case 'c':
828 {
829 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
830 SYMBOL_VALUE (sym) = atoi (p);
831 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
832 }
833 break;
834
835 case 's':
836 {
837 struct type *range_type;
838 int ind = 0;
839 char quote = *p++;
840 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
841 gdb_byte *string_value;
842
843 if (quote != '\'' && quote != '"')
844 {
845 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
846 SYMBOL_TYPE (sym) = error_type (&p, objfile);
847 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
848 add_symbol_to_list (sym, get_file_symbols ());
849 return sym;
850 }
851
852 /* Find matching quote, rejecting escaped quotes. */
853 while (*p && *p != quote)
854 {
855 if (*p == '\\' && p[1] == quote)
856 {
857 string_local[ind] = (gdb_byte) quote;
858 ind++;
859 p += 2;
860 }
861 else if (*p)
862 {
863 string_local[ind] = (gdb_byte) (*p);
864 ind++;
865 p++;
866 }
867 }
868 if (*p != quote)
869 {
870 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
871 SYMBOL_TYPE (sym) = error_type (&p, objfile);
872 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
873 add_symbol_to_list (sym, get_file_symbols ());
874 return sym;
875 }
876
877 /* NULL terminate the string. */
878 string_local[ind] = 0;
879 range_type
880 = create_static_range_type (NULL,
881 objfile_type (objfile)->builtin_int,
882 0, ind);
883 SYMBOL_TYPE (sym) = create_array_type (NULL,
884 objfile_type (objfile)->builtin_char,
885 range_type);
886 string_value
887 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
888 memcpy (string_value, string_local, ind + 1);
889 p++;
890
891 SYMBOL_VALUE_BYTES (sym) = string_value;
892 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
893 }
894 break;
895
896 case 'e':
897 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
898 can be represented as integral.
899 e.g. "b:c=e6,0" for "const b = blob1"
900 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
901 {
902 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
903 SYMBOL_TYPE (sym) = read_type (&p, objfile);
904
905 if (*p != ',')
906 {
907 SYMBOL_TYPE (sym) = error_type (&p, objfile);
908 break;
909 }
910 ++p;
911
912 /* If the value is too big to fit in an int (perhaps because
913 it is unsigned), or something like that, we silently get
914 a bogus value. The type and everything else about it is
915 correct. Ideally, we should be using whatever we have
916 available for parsing unsigned and long long values,
917 however. */
918 SYMBOL_VALUE (sym) = atoi (p);
919 }
920 break;
921 default:
922 {
923 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
924 SYMBOL_TYPE (sym) = error_type (&p, objfile);
925 }
926 }
927 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
928 add_symbol_to_list (sym, get_file_symbols ());
929 return sym;
930
931 case 'C':
932 /* The name of a caught exception. */
933 SYMBOL_TYPE (sym) = read_type (&p, objfile);
934 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
935 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
936 SET_SYMBOL_VALUE_ADDRESS (sym, valu);
937 add_symbol_to_list (sym, get_local_symbols ());
938 break;
939
940 case 'f':
941 /* A static function definition. */
942 SYMBOL_TYPE (sym) = read_type (&p, objfile);
943 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
944 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
945 add_symbol_to_list (sym, get_file_symbols ());
946 /* fall into process_function_types. */
947
948 process_function_types:
949 /* Function result types are described as the result type in stabs.
950 We need to convert this to the function-returning-type-X type
951 in GDB. E.g. "int" is converted to "function returning int". */
952 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_FUNC)
953 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
954
955 /* All functions in C++ have prototypes. Stabs does not offer an
956 explicit way to identify prototyped or unprototyped functions,
957 but both GCC and Sun CC emit stabs for the "call-as" type rather
958 than the "declared-as" type for unprototyped functions, so
959 we treat all functions as if they were prototyped. This is used
960 primarily for promotion when calling the function from GDB. */
961 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
962
963 /* fall into process_prototype_types. */
964
965 process_prototype_types:
966 /* Sun acc puts declared types of arguments here. */
967 if (*p == ';')
968 {
969 struct type *ftype = SYMBOL_TYPE (sym);
970 int nsemi = 0;
971 int nparams = 0;
972 const char *p1 = p;
973
974 /* Obtain a worst case guess for the number of arguments
975 by counting the semicolons. */
976 while (*p1)
977 {
978 if (*p1++ == ';')
979 nsemi++;
980 }
981
982 /* Allocate parameter information fields and fill them in. */
983 ftype->set_fields
984 ((struct field *)
985 TYPE_ALLOC (ftype, nsemi * sizeof (struct field)));
986 while (*p++ == ';')
987 {
988 struct type *ptype;
989
990 /* A type number of zero indicates the start of varargs.
991 FIXME: GDB currently ignores vararg functions. */
992 if (p[0] == '0' && p[1] == '\0')
993 break;
994 ptype = read_type (&p, objfile);
995
996 /* The Sun compilers mark integer arguments, which should
997 be promoted to the width of the calling conventions, with
998 a type which references itself. This type is turned into
999 a TYPE_CODE_VOID type by read_type, and we have to turn
1000 it back into builtin_int here.
1001 FIXME: Do we need a new builtin_promoted_int_arg ? */
1002 if (ptype->code () == TYPE_CODE_VOID)
1003 ptype = objfile_type (objfile)->builtin_int;
1004 ftype->field (nparams).set_type (ptype);
1005 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1006 }
1007 ftype->set_num_fields (nparams);
1008 TYPE_PROTOTYPED (ftype) = 1;
1009 }
1010 break;
1011
1012 case 'F':
1013 /* A global function definition. */
1014 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1015 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1016 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1017 add_symbol_to_list (sym, get_global_symbols ());
1018 goto process_function_types;
1019
1020 case 'G':
1021 /* For a class G (global) symbol, it appears that the
1022 value is not correct. It is necessary to search for the
1023 corresponding linker definition to find the value.
1024 These definitions appear at the end of the namelist. */
1025 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1026 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1027 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1028 /* Don't add symbol references to global_sym_chain.
1029 Symbol references don't have valid names and wont't match up with
1030 minimal symbols when the global_sym_chain is relocated.
1031 We'll fixup symbol references when we fixup the defining symbol. */
1032 if (sym->linkage_name () && sym->linkage_name ()[0] != '#')
1033 {
1034 i = hashname (sym->linkage_name ());
1035 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1036 global_sym_chain[i] = sym;
1037 }
1038 add_symbol_to_list (sym, get_global_symbols ());
1039 break;
1040
1041 /* This case is faked by a conditional above,
1042 when there is no code letter in the dbx data.
1043 Dbx data never actually contains 'l'. */
1044 case 's':
1045 case 'l':
1046 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1047 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1048 SYMBOL_VALUE (sym) = valu;
1049 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1050 add_symbol_to_list (sym, get_local_symbols ());
1051 break;
1052
1053 case 'p':
1054 if (*p == 'F')
1055 /* pF is a two-letter code that means a function parameter in Fortran.
1056 The type-number specifies the type of the return value.
1057 Translate it into a pointer-to-function type. */
1058 {
1059 p++;
1060 SYMBOL_TYPE (sym)
1061 = lookup_pointer_type
1062 (lookup_function_type (read_type (&p, objfile)));
1063 }
1064 else
1065 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1066
1067 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1068 SYMBOL_VALUE (sym) = valu;
1069 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1070 SYMBOL_IS_ARGUMENT (sym) = 1;
1071 add_symbol_to_list (sym, get_local_symbols ());
1072
1073 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1074 {
1075 /* On little-endian machines, this crud is never necessary,
1076 and, if the extra bytes contain garbage, is harmful. */
1077 break;
1078 }
1079
1080 /* If it's gcc-compiled, if it says `short', believe it. */
1081 if (processing_gcc_compilation
1082 || gdbarch_believe_pcc_promotion (gdbarch))
1083 break;
1084
1085 if (!gdbarch_believe_pcc_promotion (gdbarch))
1086 {
1087 /* If PCC says a parameter is a short or a char, it is
1088 really an int. */
1089 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1090 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1091 && SYMBOL_TYPE (sym)->code () == TYPE_CODE_INT)
1092 {
1093 SYMBOL_TYPE (sym) =
1094 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1095 ? objfile_type (objfile)->builtin_unsigned_int
1096 : objfile_type (objfile)->builtin_int;
1097 }
1098 break;
1099 }
1100 /* Fall through. */
1101
1102 case 'P':
1103 /* acc seems to use P to declare the prototypes of functions that
1104 are referenced by this file. gdb is not prepared to deal
1105 with this extra information. FIXME, it ought to. */
1106 if (type == N_FUN)
1107 {
1108 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1109 goto process_prototype_types;
1110 }
1111 /*FALLTHROUGH */
1112
1113 case 'R':
1114 /* Parameter which is in a register. */
1115 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1116 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1117 SYMBOL_IS_ARGUMENT (sym) = 1;
1118 SYMBOL_VALUE (sym) = valu;
1119 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1120 add_symbol_to_list (sym, get_local_symbols ());
1121 break;
1122
1123 case 'r':
1124 /* Register variable (either global or local). */
1125 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1126 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1127 SYMBOL_VALUE (sym) = valu;
1128 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1129 if (within_function)
1130 {
1131 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1132 the same name to represent an argument passed in a
1133 register. GCC uses 'P' for the same case. So if we find
1134 such a symbol pair we combine it into one 'P' symbol.
1135 For Sun cc we need to do this regardless of stabs_argument_has_addr, because the compiler puts out
1136 the 'p' symbol even if it never saves the argument onto
1137 the stack.
1138
1139 On most machines, we want to preserve both symbols, so
1140 that we can still get information about what is going on
1141 with the stack (VAX for computing args_printed, using
1142 stack slots instead of saved registers in backtraces,
1143 etc.).
1144
1145 Note that this code illegally combines
1146 main(argc) struct foo argc; { register struct foo argc; }
1147 but this case is considered pathological and causes a warning
1148 from a decent compiler. */
1149
1150 struct pending *local_symbols = *get_local_symbols ();
1151 if (local_symbols
1152 && local_symbols->nsyms > 0
1153 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1154 {
1155 struct symbol *prev_sym;
1156
1157 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1158 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1159 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1160 && strcmp (prev_sym->linkage_name (),
1161 sym->linkage_name ()) == 0)
1162 {
1163 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1164 /* Use the type from the LOC_REGISTER; that is the type
1165 that is actually in that register. */
1166 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1167 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1168 sym = prev_sym;
1169 break;
1170 }
1171 }
1172 add_symbol_to_list (sym, get_local_symbols ());
1173 }
1174 else
1175 add_symbol_to_list (sym, get_file_symbols ());
1176 break;
1177
1178 case 'S':
1179 /* Static symbol at top level of file. */
1180 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1181 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1182 SET_SYMBOL_VALUE_ADDRESS (sym, valu);
1183 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1184 add_symbol_to_list (sym, get_file_symbols ());
1185 break;
1186
1187 case 't':
1188 /* In Ada, there is no distinction between typedef and non-typedef;
1189 any type declaration implicitly has the equivalent of a typedef,
1190 and thus 't' is in fact equivalent to 'Tt'.
1191
1192 Therefore, for Ada units, we check the character immediately
1193 before the 't', and if we do not find a 'T', then make sure to
1194 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1195 will be stored in the VAR_DOMAIN). If the symbol was indeed
1196 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1197 elsewhere, so we don't need to take care of that.
1198
1199 This is important to do, because of forward references:
1200 The cleanup of undefined types stored in undef_types only uses
1201 STRUCT_DOMAIN symbols to perform the replacement. */
1202 synonym = (sym->language () == language_ada && p[-2] != 'T');
1203
1204 /* Typedef */
1205 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1206
1207 /* For a nameless type, we don't want a create a symbol, thus we
1208 did not use `sym'. Return without further processing. */
1209 if (nameless)
1210 return NULL;
1211
1212 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1213 SYMBOL_VALUE (sym) = valu;
1214 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1215 /* C++ vagaries: we may have a type which is derived from
1216 a base type which did not have its name defined when the
1217 derived class was output. We fill in the derived class's
1218 base part member's name here in that case. */
1219 if (SYMBOL_TYPE (sym)->name () != NULL)
1220 if ((SYMBOL_TYPE (sym)->code () == TYPE_CODE_STRUCT
1221 || SYMBOL_TYPE (sym)->code () == TYPE_CODE_UNION)
1222 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1223 {
1224 int j;
1225
1226 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1227 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1228 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1229 TYPE_BASECLASS (SYMBOL_TYPE (sym), j)->name ();
1230 }
1231
1232 if (SYMBOL_TYPE (sym)->name () == NULL)
1233 {
1234 if ((SYMBOL_TYPE (sym)->code () == TYPE_CODE_PTR
1235 && strcmp (sym->linkage_name (), vtbl_ptr_name))
1236 || SYMBOL_TYPE (sym)->code () == TYPE_CODE_FUNC)
1237 {
1238 /* If we are giving a name to a type such as "pointer to
1239 foo" or "function returning foo", we better not set
1240 the TYPE_NAME. If the program contains "typedef char
1241 *caddr_t;", we don't want all variables of type char
1242 * to print as caddr_t. This is not just a
1243 consequence of GDB's type management; PCC and GCC (at
1244 least through version 2.4) both output variables of
1245 either type char * or caddr_t with the type number
1246 defined in the 't' symbol for caddr_t. If a future
1247 compiler cleans this up it GDB is not ready for it
1248 yet, but if it becomes ready we somehow need to
1249 disable this check (without breaking the PCC/GCC2.4
1250 case).
1251
1252 Sigh.
1253
1254 Fortunately, this check seems not to be necessary
1255 for anything except pointers or functions. */
1256 /* ezannoni: 2000-10-26. This seems to apply for
1257 versions of gcc older than 2.8. This was the original
1258 problem: with the following code gdb would tell that
1259 the type for name1 is caddr_t, and func is char().
1260
1261 typedef char *caddr_t;
1262 char *name2;
1263 struct x
1264 {
1265 char *name1;
1266 } xx;
1267 char *func()
1268 {
1269 }
1270 main () {}
1271 */
1272
1273 /* Pascal accepts names for pointer types. */
1274 if (get_current_subfile ()->language == language_pascal)
1275 SYMBOL_TYPE (sym)->set_name (sym->linkage_name ());
1276 }
1277 else
1278 SYMBOL_TYPE (sym)->set_name (sym->linkage_name ());
1279 }
1280
1281 add_symbol_to_list (sym, get_file_symbols ());
1282
1283 if (synonym)
1284 {
1285 /* Create the STRUCT_DOMAIN clone. */
1286 struct symbol *struct_sym = new (&objfile->objfile_obstack) symbol;
1287
1288 *struct_sym = *sym;
1289 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1290 SYMBOL_VALUE (struct_sym) = valu;
1291 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1292 if (SYMBOL_TYPE (sym)->name () == 0)
1293 SYMBOL_TYPE (sym)->set_name
1294 (obconcat (&objfile->objfile_obstack, sym->linkage_name (),
1295 (char *) NULL));
1296 add_symbol_to_list (struct_sym, get_file_symbols ());
1297 }
1298
1299 break;
1300
1301 case 'T':
1302 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1303 by 't' which means we are typedef'ing it as well. */
1304 synonym = *p == 't';
1305
1306 if (synonym)
1307 p++;
1308
1309 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1310
1311 /* For a nameless type, we don't want a create a symbol, thus we
1312 did not use `sym'. Return without further processing. */
1313 if (nameless)
1314 return NULL;
1315
1316 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1317 SYMBOL_VALUE (sym) = valu;
1318 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1319 if (SYMBOL_TYPE (sym)->name () == 0)
1320 SYMBOL_TYPE (sym)->set_name
1321 (obconcat (&objfile->objfile_obstack, sym->linkage_name (),
1322 (char *) NULL));
1323 add_symbol_to_list (sym, get_file_symbols ());
1324
1325 if (synonym)
1326 {
1327 /* Clone the sym and then modify it. */
1328 struct symbol *typedef_sym = new (&objfile->objfile_obstack) symbol;
1329
1330 *typedef_sym = *sym;
1331 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1332 SYMBOL_VALUE (typedef_sym) = valu;
1333 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1334 if (SYMBOL_TYPE (sym)->name () == 0)
1335 SYMBOL_TYPE (sym)->set_name
1336 (obconcat (&objfile->objfile_obstack, sym->linkage_name (),
1337 (char *) NULL));
1338 add_symbol_to_list (typedef_sym, get_file_symbols ());
1339 }
1340 break;
1341
1342 case 'V':
1343 /* Static symbol of local scope. */
1344 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1345 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1346 SET_SYMBOL_VALUE_ADDRESS (sym, valu);
1347 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1348 add_symbol_to_list (sym, get_local_symbols ());
1349 break;
1350
1351 case 'v':
1352 /* Reference parameter */
1353 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1354 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1355 SYMBOL_IS_ARGUMENT (sym) = 1;
1356 SYMBOL_VALUE (sym) = valu;
1357 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1358 add_symbol_to_list (sym, get_local_symbols ());
1359 break;
1360
1361 case 'a':
1362 /* Reference parameter which is in a register. */
1363 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1364 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1365 SYMBOL_IS_ARGUMENT (sym) = 1;
1366 SYMBOL_VALUE (sym) = valu;
1367 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1368 add_symbol_to_list (sym, get_local_symbols ());
1369 break;
1370
1371 case 'X':
1372 /* This is used by Sun FORTRAN for "function result value".
1373 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1374 that Pascal uses it too, but when I tried it Pascal used
1375 "x:3" (local symbol) instead. */
1376 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1377 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1378 SYMBOL_VALUE (sym) = valu;
1379 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1380 add_symbol_to_list (sym, get_local_symbols ());
1381 break;
1382
1383 default:
1384 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1385 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1386 SYMBOL_VALUE (sym) = 0;
1387 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1388 add_symbol_to_list (sym, get_file_symbols ());
1389 break;
1390 }
1391
1392 /* Some systems pass variables of certain types by reference instead
1393 of by value, i.e. they will pass the address of a structure (in a
1394 register or on the stack) instead of the structure itself. */
1395
1396 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1397 && SYMBOL_IS_ARGUMENT (sym))
1398 {
1399 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1400 variables passed in a register). */
1401 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1402 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1403 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1404 and subsequent arguments on SPARC, for example). */
1405 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1406 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1407 }
1408
1409 return sym;
1410 }
1411
1412 /* Skip rest of this symbol and return an error type.
1413
1414 General notes on error recovery: error_type always skips to the
1415 end of the symbol (modulo cretinous dbx symbol name continuation).
1416 Thus code like this:
1417
1418 if (*(*pp)++ != ';')
1419 return error_type (pp, objfile);
1420
1421 is wrong because if *pp starts out pointing at '\0' (typically as the
1422 result of an earlier error), it will be incremented to point to the
1423 start of the next symbol, which might produce strange results, at least
1424 if you run off the end of the string table. Instead use
1425
1426 if (**pp != ';')
1427 return error_type (pp, objfile);
1428 ++*pp;
1429
1430 or
1431
1432 if (**pp != ';')
1433 foo = error_type (pp, objfile);
1434 else
1435 ++*pp;
1436
1437 And in case it isn't obvious, the point of all this hair is so the compiler
1438 can define new types and new syntaxes, and old versions of the
1439 debugger will be able to read the new symbol tables. */
1440
1441 static struct type *
1442 error_type (const char **pp, struct objfile *objfile)
1443 {
1444 complaint (_("couldn't parse type; debugger out of date?"));
1445 while (1)
1446 {
1447 /* Skip to end of symbol. */
1448 while (**pp != '\0')
1449 {
1450 (*pp)++;
1451 }
1452
1453 /* Check for and handle cretinous dbx symbol name continuation! */
1454 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1455 {
1456 *pp = next_symbol_text (objfile);
1457 }
1458 else
1459 {
1460 break;
1461 }
1462 }
1463 return objfile_type (objfile)->builtin_error;
1464 }
1465 \f
1466
1467 /* Read type information or a type definition; return the type. Even
1468 though this routine accepts either type information or a type
1469 definition, the distinction is relevant--some parts of stabsread.c
1470 assume that type information starts with a digit, '-', or '(' in
1471 deciding whether to call read_type. */
1472
1473 static struct type *
1474 read_type (const char **pp, struct objfile *objfile)
1475 {
1476 struct type *type = 0;
1477 struct type *type1;
1478 int typenums[2];
1479 char type_descriptor;
1480
1481 /* Size in bits of type if specified by a type attribute, or -1 if
1482 there is no size attribute. */
1483 int type_size = -1;
1484
1485 /* Used to distinguish string and bitstring from char-array and set. */
1486 int is_string = 0;
1487
1488 /* Used to distinguish vector from array. */
1489 int is_vector = 0;
1490
1491 /* Read type number if present. The type number may be omitted.
1492 for instance in a two-dimensional array declared with type
1493 "ar1;1;10;ar1;1;10;4". */
1494 if ((**pp >= '0' && **pp <= '9')
1495 || **pp == '('
1496 || **pp == '-')
1497 {
1498 if (read_type_number (pp, typenums) != 0)
1499 return error_type (pp, objfile);
1500
1501 if (**pp != '=')
1502 {
1503 /* Type is not being defined here. Either it already
1504 exists, or this is a forward reference to it.
1505 dbx_alloc_type handles both cases. */
1506 type = dbx_alloc_type (typenums, objfile);
1507
1508 /* If this is a forward reference, arrange to complain if it
1509 doesn't get patched up by the time we're done
1510 reading. */
1511 if (type->code () == TYPE_CODE_UNDEF)
1512 add_undefined_type (type, typenums);
1513
1514 return type;
1515 }
1516
1517 /* Type is being defined here. */
1518 /* Skip the '='.
1519 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1520 (*pp) += 2;
1521 }
1522 else
1523 {
1524 /* 'typenums=' not present, type is anonymous. Read and return
1525 the definition, but don't put it in the type vector. */
1526 typenums[0] = typenums[1] = -1;
1527 (*pp)++;
1528 }
1529
1530 again:
1531 type_descriptor = (*pp)[-1];
1532 switch (type_descriptor)
1533 {
1534 case 'x':
1535 {
1536 enum type_code code;
1537
1538 /* Used to index through file_symbols. */
1539 struct pending *ppt;
1540 int i;
1541
1542 /* Name including "struct", etc. */
1543 char *type_name;
1544
1545 {
1546 const char *from, *p, *q1, *q2;
1547
1548 /* Set the type code according to the following letter. */
1549 switch ((*pp)[0])
1550 {
1551 case 's':
1552 code = TYPE_CODE_STRUCT;
1553 break;
1554 case 'u':
1555 code = TYPE_CODE_UNION;
1556 break;
1557 case 'e':
1558 code = TYPE_CODE_ENUM;
1559 break;
1560 default:
1561 {
1562 /* Complain and keep going, so compilers can invent new
1563 cross-reference types. */
1564 complaint (_("Unrecognized cross-reference type `%c'"),
1565 (*pp)[0]);
1566 code = TYPE_CODE_STRUCT;
1567 break;
1568 }
1569 }
1570
1571 q1 = strchr (*pp, '<');
1572 p = strchr (*pp, ':');
1573 if (p == NULL)
1574 return error_type (pp, objfile);
1575 if (q1 && p > q1 && p[1] == ':')
1576 {
1577 int nesting_level = 0;
1578
1579 for (q2 = q1; *q2; q2++)
1580 {
1581 if (*q2 == '<')
1582 nesting_level++;
1583 else if (*q2 == '>')
1584 nesting_level--;
1585 else if (*q2 == ':' && nesting_level == 0)
1586 break;
1587 }
1588 p = q2;
1589 if (*p != ':')
1590 return error_type (pp, objfile);
1591 }
1592 type_name = NULL;
1593 if (get_current_subfile ()->language == language_cplus)
1594 {
1595 char *name = (char *) alloca (p - *pp + 1);
1596
1597 memcpy (name, *pp, p - *pp);
1598 name[p - *pp] = '\0';
1599
1600 gdb::unique_xmalloc_ptr<char> new_name = cp_canonicalize_string (name);
1601 if (new_name != nullptr)
1602 type_name = obstack_strdup (&objfile->objfile_obstack,
1603 new_name.get ());
1604 }
1605 if (type_name == NULL)
1606 {
1607 char *to = type_name = (char *)
1608 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1609
1610 /* Copy the name. */
1611 from = *pp + 1;
1612 while (from < p)
1613 *to++ = *from++;
1614 *to = '\0';
1615 }
1616
1617 /* Set the pointer ahead of the name which we just read, and
1618 the colon. */
1619 *pp = p + 1;
1620 }
1621
1622 /* If this type has already been declared, then reuse the same
1623 type, rather than allocating a new one. This saves some
1624 memory. */
1625
1626 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
1627 for (i = 0; i < ppt->nsyms; i++)
1628 {
1629 struct symbol *sym = ppt->symbol[i];
1630
1631 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1632 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1633 && (SYMBOL_TYPE (sym)->code () == code)
1634 && strcmp (sym->linkage_name (), type_name) == 0)
1635 {
1636 obstack_free (&objfile->objfile_obstack, type_name);
1637 type = SYMBOL_TYPE (sym);
1638 if (typenums[0] != -1)
1639 *dbx_lookup_type (typenums, objfile) = type;
1640 return type;
1641 }
1642 }
1643
1644 /* Didn't find the type to which this refers, so we must
1645 be dealing with a forward reference. Allocate a type
1646 structure for it, and keep track of it so we can
1647 fill in the rest of the fields when we get the full
1648 type. */
1649 type = dbx_alloc_type (typenums, objfile);
1650 type->set_code (code);
1651 type->set_name (type_name);
1652 INIT_CPLUS_SPECIFIC (type);
1653 TYPE_STUB (type) = 1;
1654
1655 add_undefined_type (type, typenums);
1656 return type;
1657 }
1658
1659 case '-': /* RS/6000 built-in type */
1660 case '0':
1661 case '1':
1662 case '2':
1663 case '3':
1664 case '4':
1665 case '5':
1666 case '6':
1667 case '7':
1668 case '8':
1669 case '9':
1670 case '(':
1671 (*pp)--;
1672
1673 /* We deal with something like t(1,2)=(3,4)=... which
1674 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1675
1676 /* Allocate and enter the typedef type first.
1677 This handles recursive types. */
1678 type = dbx_alloc_type (typenums, objfile);
1679 type->set_code (TYPE_CODE_TYPEDEF);
1680 {
1681 struct type *xtype = read_type (pp, objfile);
1682
1683 if (type == xtype)
1684 {
1685 /* It's being defined as itself. That means it is "void". */
1686 type->set_code (TYPE_CODE_VOID);
1687 TYPE_LENGTH (type) = 1;
1688 }
1689 else if (type_size >= 0 || is_string)
1690 {
1691 /* This is the absolute wrong way to construct types. Every
1692 other debug format has found a way around this problem and
1693 the related problems with unnecessarily stubbed types;
1694 someone motivated should attempt to clean up the issue
1695 here as well. Once a type pointed to has been created it
1696 should not be modified.
1697
1698 Well, it's not *absolutely* wrong. Constructing recursive
1699 types (trees, linked lists) necessarily entails modifying
1700 types after creating them. Constructing any loop structure
1701 entails side effects. The Dwarf 2 reader does handle this
1702 more gracefully (it never constructs more than once
1703 instance of a type object, so it doesn't have to copy type
1704 objects wholesale), but it still mutates type objects after
1705 other folks have references to them.
1706
1707 Keep in mind that this circularity/mutation issue shows up
1708 at the source language level, too: C's "incomplete types",
1709 for example. So the proper cleanup, I think, would be to
1710 limit GDB's type smashing to match exactly those required
1711 by the source language. So GDB could have a
1712 "complete_this_type" function, but never create unnecessary
1713 copies of a type otherwise. */
1714 replace_type (type, xtype);
1715 type->set_name (NULL);
1716 }
1717 else
1718 {
1719 TYPE_TARGET_STUB (type) = 1;
1720 TYPE_TARGET_TYPE (type) = xtype;
1721 }
1722 }
1723 break;
1724
1725 /* In the following types, we must be sure to overwrite any existing
1726 type that the typenums refer to, rather than allocating a new one
1727 and making the typenums point to the new one. This is because there
1728 may already be pointers to the existing type (if it had been
1729 forward-referenced), and we must change it to a pointer, function,
1730 reference, or whatever, *in-place*. */
1731
1732 case '*': /* Pointer to another type */
1733 type1 = read_type (pp, objfile);
1734 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1735 break;
1736
1737 case '&': /* Reference to another type */
1738 type1 = read_type (pp, objfile);
1739 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
1740 TYPE_CODE_REF);
1741 break;
1742
1743 case 'f': /* Function returning another type */
1744 type1 = read_type (pp, objfile);
1745 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1746 break;
1747
1748 case 'g': /* Prototyped function. (Sun) */
1749 {
1750 /* Unresolved questions:
1751
1752 - According to Sun's ``STABS Interface Manual'', for 'f'
1753 and 'F' symbol descriptors, a `0' in the argument type list
1754 indicates a varargs function. But it doesn't say how 'g'
1755 type descriptors represent that info. Someone with access
1756 to Sun's toolchain should try it out.
1757
1758 - According to the comment in define_symbol (search for
1759 `process_prototype_types:'), Sun emits integer arguments as
1760 types which ref themselves --- like `void' types. Do we
1761 have to deal with that here, too? Again, someone with
1762 access to Sun's toolchain should try it out and let us
1763 know. */
1764
1765 const char *type_start = (*pp) - 1;
1766 struct type *return_type = read_type (pp, objfile);
1767 struct type *func_type
1768 = make_function_type (return_type,
1769 dbx_lookup_type (typenums, objfile));
1770 struct type_list {
1771 struct type *type;
1772 struct type_list *next;
1773 } *arg_types = 0;
1774 int num_args = 0;
1775
1776 while (**pp && **pp != '#')
1777 {
1778 struct type *arg_type = read_type (pp, objfile);
1779 struct type_list *newobj = XALLOCA (struct type_list);
1780 newobj->type = arg_type;
1781 newobj->next = arg_types;
1782 arg_types = newobj;
1783 num_args++;
1784 }
1785 if (**pp == '#')
1786 ++*pp;
1787 else
1788 {
1789 complaint (_("Prototyped function type didn't "
1790 "end arguments with `#':\n%s"),
1791 type_start);
1792 }
1793
1794 /* If there is just one argument whose type is `void', then
1795 that's just an empty argument list. */
1796 if (arg_types
1797 && ! arg_types->next
1798 && arg_types->type->code () == TYPE_CODE_VOID)
1799 num_args = 0;
1800
1801 func_type->set_fields
1802 ((struct field *) TYPE_ALLOC (func_type,
1803 num_args * sizeof (struct field)));
1804 memset (func_type->fields (), 0, num_args * sizeof (struct field));
1805 {
1806 int i;
1807 struct type_list *t;
1808
1809 /* We stuck each argument type onto the front of the list
1810 when we read it, so the list is reversed. Build the
1811 fields array right-to-left. */
1812 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1813 func_type->field (i).set_type (t->type);
1814 }
1815 func_type->set_num_fields (num_args);
1816 TYPE_PROTOTYPED (func_type) = 1;
1817
1818 type = func_type;
1819 break;
1820 }
1821
1822 case 'k': /* Const qualifier on some type (Sun) */
1823 type = read_type (pp, objfile);
1824 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1825 dbx_lookup_type (typenums, objfile));
1826 break;
1827
1828 case 'B': /* Volatile qual on some type (Sun) */
1829 type = read_type (pp, objfile);
1830 type = make_cv_type (TYPE_CONST (type), 1, type,
1831 dbx_lookup_type (typenums, objfile));
1832 break;
1833
1834 case '@':
1835 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1836 { /* Member (class & variable) type */
1837 /* FIXME -- we should be doing smash_to_XXX types here. */
1838
1839 struct type *domain = read_type (pp, objfile);
1840 struct type *memtype;
1841
1842 if (**pp != ',')
1843 /* Invalid member type data format. */
1844 return error_type (pp, objfile);
1845 ++*pp;
1846
1847 memtype = read_type (pp, objfile);
1848 type = dbx_alloc_type (typenums, objfile);
1849 smash_to_memberptr_type (type, domain, memtype);
1850 }
1851 else
1852 /* type attribute */
1853 {
1854 const char *attr = *pp;
1855
1856 /* Skip to the semicolon. */
1857 while (**pp != ';' && **pp != '\0')
1858 ++(*pp);
1859 if (**pp == '\0')
1860 return error_type (pp, objfile);
1861 else
1862 ++ * pp; /* Skip the semicolon. */
1863
1864 switch (*attr)
1865 {
1866 case 's': /* Size attribute */
1867 type_size = atoi (attr + 1);
1868 if (type_size <= 0)
1869 type_size = -1;
1870 break;
1871
1872 case 'S': /* String attribute */
1873 /* FIXME: check to see if following type is array? */
1874 is_string = 1;
1875 break;
1876
1877 case 'V': /* Vector attribute */
1878 /* FIXME: check to see if following type is array? */
1879 is_vector = 1;
1880 break;
1881
1882 default:
1883 /* Ignore unrecognized type attributes, so future compilers
1884 can invent new ones. */
1885 break;
1886 }
1887 ++*pp;
1888 goto again;
1889 }
1890 break;
1891
1892 case '#': /* Method (class & fn) type */
1893 if ((*pp)[0] == '#')
1894 {
1895 /* We'll get the parameter types from the name. */
1896 struct type *return_type;
1897
1898 (*pp)++;
1899 return_type = read_type (pp, objfile);
1900 if (*(*pp)++ != ';')
1901 complaint (_("invalid (minimal) member type "
1902 "data format at symtab pos %d."),
1903 symnum);
1904 type = allocate_stub_method (return_type);
1905 if (typenums[0] != -1)
1906 *dbx_lookup_type (typenums, objfile) = type;
1907 }
1908 else
1909 {
1910 struct type *domain = read_type (pp, objfile);
1911 struct type *return_type;
1912 struct field *args;
1913 int nargs, varargs;
1914
1915 if (**pp != ',')
1916 /* Invalid member type data format. */
1917 return error_type (pp, objfile);
1918 else
1919 ++(*pp);
1920
1921 return_type = read_type (pp, objfile);
1922 args = read_args (pp, ';', objfile, &nargs, &varargs);
1923 if (args == NULL)
1924 return error_type (pp, objfile);
1925 type = dbx_alloc_type (typenums, objfile);
1926 smash_to_method_type (type, domain, return_type, args,
1927 nargs, varargs);
1928 }
1929 break;
1930
1931 case 'r': /* Range type */
1932 type = read_range_type (pp, typenums, type_size, objfile);
1933 if (typenums[0] != -1)
1934 *dbx_lookup_type (typenums, objfile) = type;
1935 break;
1936
1937 case 'b':
1938 {
1939 /* Sun ACC builtin int type */
1940 type = read_sun_builtin_type (pp, typenums, objfile);
1941 if (typenums[0] != -1)
1942 *dbx_lookup_type (typenums, objfile) = type;
1943 }
1944 break;
1945
1946 case 'R': /* Sun ACC builtin float type */
1947 type = read_sun_floating_type (pp, typenums, objfile);
1948 if (typenums[0] != -1)
1949 *dbx_lookup_type (typenums, objfile) = type;
1950 break;
1951
1952 case 'e': /* Enumeration type */
1953 type = dbx_alloc_type (typenums, objfile);
1954 type = read_enum_type (pp, type, objfile);
1955 if (typenums[0] != -1)
1956 *dbx_lookup_type (typenums, objfile) = type;
1957 break;
1958
1959 case 's': /* Struct type */
1960 case 'u': /* Union type */
1961 {
1962 enum type_code type_code = TYPE_CODE_UNDEF;
1963 type = dbx_alloc_type (typenums, objfile);
1964 switch (type_descriptor)
1965 {
1966 case 's':
1967 type_code = TYPE_CODE_STRUCT;
1968 break;
1969 case 'u':
1970 type_code = TYPE_CODE_UNION;
1971 break;
1972 }
1973 type = read_struct_type (pp, type, type_code, objfile);
1974 break;
1975 }
1976
1977 case 'a': /* Array type */
1978 if (**pp != 'r')
1979 return error_type (pp, objfile);
1980 ++*pp;
1981
1982 type = dbx_alloc_type (typenums, objfile);
1983 type = read_array_type (pp, type, objfile);
1984 if (is_string)
1985 type->set_code (TYPE_CODE_STRING);
1986 if (is_vector)
1987 make_vector_type (type);
1988 break;
1989
1990 case 'S': /* Set type */
1991 type1 = read_type (pp, objfile);
1992 type = create_set_type (NULL, type1);
1993 if (typenums[0] != -1)
1994 *dbx_lookup_type (typenums, objfile) = type;
1995 break;
1996
1997 default:
1998 --*pp; /* Go back to the symbol in error. */
1999 /* Particularly important if it was \0! */
2000 return error_type (pp, objfile);
2001 }
2002
2003 if (type == 0)
2004 {
2005 warning (_("GDB internal error, type is NULL in stabsread.c."));
2006 return error_type (pp, objfile);
2007 }
2008
2009 /* Size specified in a type attribute overrides any other size. */
2010 if (type_size != -1)
2011 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2012
2013 return type;
2014 }
2015 \f
2016 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2017 Return the proper type node for a given builtin type number. */
2018
2019 static const struct objfile_key<struct type *,
2020 gdb::noop_deleter<struct type *>>
2021 rs6000_builtin_type_data;
2022
2023 static struct type *
2024 rs6000_builtin_type (int typenum, struct objfile *objfile)
2025 {
2026 struct type **negative_types = rs6000_builtin_type_data.get (objfile);
2027
2028 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2029 #define NUMBER_RECOGNIZED 34
2030 struct type *rettype = NULL;
2031
2032 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2033 {
2034 complaint (_("Unknown builtin type %d"), typenum);
2035 return objfile_type (objfile)->builtin_error;
2036 }
2037
2038 if (!negative_types)
2039 {
2040 /* This includes an empty slot for type number -0. */
2041 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2042 NUMBER_RECOGNIZED + 1, struct type *);
2043 rs6000_builtin_type_data.set (objfile, negative_types);
2044 }
2045
2046 if (negative_types[-typenum] != NULL)
2047 return negative_types[-typenum];
2048
2049 #if TARGET_CHAR_BIT != 8
2050 #error This code wrong for TARGET_CHAR_BIT not 8
2051 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2052 that if that ever becomes not true, the correct fix will be to
2053 make the size in the struct type to be in bits, not in units of
2054 TARGET_CHAR_BIT. */
2055 #endif
2056
2057 switch (-typenum)
2058 {
2059 case 1:
2060 /* The size of this and all the other types are fixed, defined
2061 by the debugging format. If there is a type called "int" which
2062 is other than 32 bits, then it should use a new negative type
2063 number (or avoid negative type numbers for that case).
2064 See stabs.texinfo. */
2065 rettype = init_integer_type (objfile, 32, 0, "int");
2066 break;
2067 case 2:
2068 rettype = init_integer_type (objfile, 8, 0, "char");
2069 TYPE_NOSIGN (rettype) = 1;
2070 break;
2071 case 3:
2072 rettype = init_integer_type (objfile, 16, 0, "short");
2073 break;
2074 case 4:
2075 rettype = init_integer_type (objfile, 32, 0, "long");
2076 break;
2077 case 5:
2078 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2079 break;
2080 case 6:
2081 rettype = init_integer_type (objfile, 8, 0, "signed char");
2082 break;
2083 case 7:
2084 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2085 break;
2086 case 8:
2087 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2088 break;
2089 case 9:
2090 rettype = init_integer_type (objfile, 32, 1, "unsigned");
2091 break;
2092 case 10:
2093 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2094 break;
2095 case 11:
2096 rettype = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
2097 break;
2098 case 12:
2099 /* IEEE single precision (32 bit). */
2100 rettype = init_float_type (objfile, 32, "float",
2101 floatformats_ieee_single);
2102 break;
2103 case 13:
2104 /* IEEE double precision (64 bit). */
2105 rettype = init_float_type (objfile, 64, "double",
2106 floatformats_ieee_double);
2107 break;
2108 case 14:
2109 /* This is an IEEE double on the RS/6000, and different machines with
2110 different sizes for "long double" should use different negative
2111 type numbers. See stabs.texinfo. */
2112 rettype = init_float_type (objfile, 64, "long double",
2113 floatformats_ieee_double);
2114 break;
2115 case 15:
2116 rettype = init_integer_type (objfile, 32, 0, "integer");
2117 break;
2118 case 16:
2119 rettype = init_boolean_type (objfile, 32, 1, "boolean");
2120 break;
2121 case 17:
2122 rettype = init_float_type (objfile, 32, "short real",
2123 floatformats_ieee_single);
2124 break;
2125 case 18:
2126 rettype = init_float_type (objfile, 64, "real",
2127 floatformats_ieee_double);
2128 break;
2129 case 19:
2130 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2131 break;
2132 case 20:
2133 rettype = init_character_type (objfile, 8, 1, "character");
2134 break;
2135 case 21:
2136 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2137 break;
2138 case 22:
2139 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2140 break;
2141 case 23:
2142 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2143 break;
2144 case 24:
2145 rettype = init_boolean_type (objfile, 32, 1, "logical");
2146 break;
2147 case 25:
2148 /* Complex type consisting of two IEEE single precision values. */
2149 rettype = init_complex_type ("complex",
2150 rs6000_builtin_type (12, objfile));
2151 break;
2152 case 26:
2153 /* Complex type consisting of two IEEE double precision values. */
2154 rettype = init_complex_type ("double complex",
2155 rs6000_builtin_type (13, objfile));
2156 break;
2157 case 27:
2158 rettype = init_integer_type (objfile, 8, 0, "integer*1");
2159 break;
2160 case 28:
2161 rettype = init_integer_type (objfile, 16, 0, "integer*2");
2162 break;
2163 case 29:
2164 rettype = init_integer_type (objfile, 32, 0, "integer*4");
2165 break;
2166 case 30:
2167 rettype = init_character_type (objfile, 16, 0, "wchar");
2168 break;
2169 case 31:
2170 rettype = init_integer_type (objfile, 64, 0, "long long");
2171 break;
2172 case 32:
2173 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2174 break;
2175 case 33:
2176 rettype = init_integer_type (objfile, 64, 1, "logical*8");
2177 break;
2178 case 34:
2179 rettype = init_integer_type (objfile, 64, 0, "integer*8");
2180 break;
2181 }
2182 negative_types[-typenum] = rettype;
2183 return rettype;
2184 }
2185 \f
2186 /* This page contains subroutines of read_type. */
2187
2188 /* Wrapper around method_name_from_physname to flag a complaint
2189 if there is an error. */
2190
2191 static char *
2192 stabs_method_name_from_physname (const char *physname)
2193 {
2194 char *method_name;
2195
2196 method_name = method_name_from_physname (physname);
2197
2198 if (method_name == NULL)
2199 {
2200 complaint (_("Method has bad physname %s\n"), physname);
2201 return NULL;
2202 }
2203
2204 return method_name;
2205 }
2206
2207 /* Read member function stabs info for C++ classes. The form of each member
2208 function data is:
2209
2210 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2211
2212 An example with two member functions is:
2213
2214 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2215
2216 For the case of overloaded operators, the format is op$::*.funcs, where
2217 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2218 name (such as `+=') and `.' marks the end of the operator name.
2219
2220 Returns 1 for success, 0 for failure. */
2221
2222 static int
2223 read_member_functions (struct stab_field_info *fip, const char **pp,
2224 struct type *type, struct objfile *objfile)
2225 {
2226 int nfn_fields = 0;
2227 int length = 0;
2228 int i;
2229 struct next_fnfield
2230 {
2231 struct next_fnfield *next;
2232 struct fn_field fn_field;
2233 }
2234 *sublist;
2235 struct type *look_ahead_type;
2236 struct next_fnfieldlist *new_fnlist;
2237 struct next_fnfield *new_sublist;
2238 char *main_fn_name;
2239 const char *p;
2240
2241 /* Process each list until we find something that is not a member function
2242 or find the end of the functions. */
2243
2244 while (**pp != ';')
2245 {
2246 /* We should be positioned at the start of the function name.
2247 Scan forward to find the first ':' and if it is not the
2248 first of a "::" delimiter, then this is not a member function. */
2249 p = *pp;
2250 while (*p != ':')
2251 {
2252 p++;
2253 }
2254 if (p[1] != ':')
2255 {
2256 break;
2257 }
2258
2259 sublist = NULL;
2260 look_ahead_type = NULL;
2261 length = 0;
2262
2263 new_fnlist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfieldlist);
2264
2265 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2266 {
2267 /* This is a completely wierd case. In order to stuff in the
2268 names that might contain colons (the usual name delimiter),
2269 Mike Tiemann defined a different name format which is
2270 signalled if the identifier is "op$". In that case, the
2271 format is "op$::XXXX." where XXXX is the name. This is
2272 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2273 /* This lets the user type "break operator+".
2274 We could just put in "+" as the name, but that wouldn't
2275 work for "*". */
2276 static char opname[32] = "op$";
2277 char *o = opname + 3;
2278
2279 /* Skip past '::'. */
2280 *pp = p + 2;
2281
2282 STABS_CONTINUE (pp, objfile);
2283 p = *pp;
2284 while (*p != '.')
2285 {
2286 *o++ = *p++;
2287 }
2288 main_fn_name = savestring (opname, o - opname);
2289 /* Skip past '.' */
2290 *pp = p + 1;
2291 }
2292 else
2293 {
2294 main_fn_name = savestring (*pp, p - *pp);
2295 /* Skip past '::'. */
2296 *pp = p + 2;
2297 }
2298 new_fnlist->fn_fieldlist.name = main_fn_name;
2299
2300 do
2301 {
2302 new_sublist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfield);
2303
2304 /* Check for and handle cretinous dbx symbol name continuation! */
2305 if (look_ahead_type == NULL)
2306 {
2307 /* Normal case. */
2308 STABS_CONTINUE (pp, objfile);
2309
2310 new_sublist->fn_field.type = read_type (pp, objfile);
2311 if (**pp != ':')
2312 {
2313 /* Invalid symtab info for member function. */
2314 return 0;
2315 }
2316 }
2317 else
2318 {
2319 /* g++ version 1 kludge */
2320 new_sublist->fn_field.type = look_ahead_type;
2321 look_ahead_type = NULL;
2322 }
2323
2324 (*pp)++;
2325 p = *pp;
2326 while (*p != ';')
2327 {
2328 p++;
2329 }
2330
2331 /* These are methods, not functions. */
2332 if (new_sublist->fn_field.type->code () == TYPE_CODE_FUNC)
2333 new_sublist->fn_field.type->set_code (TYPE_CODE_METHOD);
2334 else
2335 gdb_assert (new_sublist->fn_field.type->code ()
2336 == TYPE_CODE_METHOD);
2337
2338 /* If this is just a stub, then we don't have the real name here. */
2339 if (TYPE_STUB (new_sublist->fn_field.type))
2340 {
2341 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2342 set_type_self_type (new_sublist->fn_field.type, type);
2343 new_sublist->fn_field.is_stub = 1;
2344 }
2345
2346 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2347 *pp = p + 1;
2348
2349 /* Set this member function's visibility fields. */
2350 switch (*(*pp)++)
2351 {
2352 case VISIBILITY_PRIVATE:
2353 new_sublist->fn_field.is_private = 1;
2354 break;
2355 case VISIBILITY_PROTECTED:
2356 new_sublist->fn_field.is_protected = 1;
2357 break;
2358 }
2359
2360 STABS_CONTINUE (pp, objfile);
2361 switch (**pp)
2362 {
2363 case 'A': /* Normal functions. */
2364 new_sublist->fn_field.is_const = 0;
2365 new_sublist->fn_field.is_volatile = 0;
2366 (*pp)++;
2367 break;
2368 case 'B': /* `const' member functions. */
2369 new_sublist->fn_field.is_const = 1;
2370 new_sublist->fn_field.is_volatile = 0;
2371 (*pp)++;
2372 break;
2373 case 'C': /* `volatile' member function. */
2374 new_sublist->fn_field.is_const = 0;
2375 new_sublist->fn_field.is_volatile = 1;
2376 (*pp)++;
2377 break;
2378 case 'D': /* `const volatile' member function. */
2379 new_sublist->fn_field.is_const = 1;
2380 new_sublist->fn_field.is_volatile = 1;
2381 (*pp)++;
2382 break;
2383 case '*': /* File compiled with g++ version 1 --
2384 no info. */
2385 case '?':
2386 case '.':
2387 break;
2388 default:
2389 complaint (_("const/volatile indicator missing, got '%c'"),
2390 **pp);
2391 break;
2392 }
2393
2394 switch (*(*pp)++)
2395 {
2396 case '*':
2397 {
2398 int nbits;
2399 /* virtual member function, followed by index.
2400 The sign bit is set to distinguish pointers-to-methods
2401 from virtual function indicies. Since the array is
2402 in words, the quantity must be shifted left by 1
2403 on 16 bit machine, and by 2 on 32 bit machine, forcing
2404 the sign bit out, and usable as a valid index into
2405 the array. Remove the sign bit here. */
2406 new_sublist->fn_field.voffset =
2407 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2408 if (nbits != 0)
2409 return 0;
2410
2411 STABS_CONTINUE (pp, objfile);
2412 if (**pp == ';' || **pp == '\0')
2413 {
2414 /* Must be g++ version 1. */
2415 new_sublist->fn_field.fcontext = 0;
2416 }
2417 else
2418 {
2419 /* Figure out from whence this virtual function came.
2420 It may belong to virtual function table of
2421 one of its baseclasses. */
2422 look_ahead_type = read_type (pp, objfile);
2423 if (**pp == ':')
2424 {
2425 /* g++ version 1 overloaded methods. */
2426 }
2427 else
2428 {
2429 new_sublist->fn_field.fcontext = look_ahead_type;
2430 if (**pp != ';')
2431 {
2432 return 0;
2433 }
2434 else
2435 {
2436 ++*pp;
2437 }
2438 look_ahead_type = NULL;
2439 }
2440 }
2441 break;
2442 }
2443 case '?':
2444 /* static member function. */
2445 {
2446 int slen = strlen (main_fn_name);
2447
2448 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2449
2450 /* For static member functions, we can't tell if they
2451 are stubbed, as they are put out as functions, and not as
2452 methods.
2453 GCC v2 emits the fully mangled name if
2454 dbxout.c:flag_minimal_debug is not set, so we have to
2455 detect a fully mangled physname here and set is_stub
2456 accordingly. Fully mangled physnames in v2 start with
2457 the member function name, followed by two underscores.
2458 GCC v3 currently always emits stubbed member functions,
2459 but with fully mangled physnames, which start with _Z. */
2460 if (!(strncmp (new_sublist->fn_field.physname,
2461 main_fn_name, slen) == 0
2462 && new_sublist->fn_field.physname[slen] == '_'
2463 && new_sublist->fn_field.physname[slen + 1] == '_'))
2464 {
2465 new_sublist->fn_field.is_stub = 1;
2466 }
2467 break;
2468 }
2469
2470 default:
2471 /* error */
2472 complaint (_("member function type missing, got '%c'"),
2473 (*pp)[-1]);
2474 /* Normal member function. */
2475 /* Fall through. */
2476
2477 case '.':
2478 /* normal member function. */
2479 new_sublist->fn_field.voffset = 0;
2480 new_sublist->fn_field.fcontext = 0;
2481 break;
2482 }
2483
2484 new_sublist->next = sublist;
2485 sublist = new_sublist;
2486 length++;
2487 STABS_CONTINUE (pp, objfile);
2488 }
2489 while (**pp != ';' && **pp != '\0');
2490
2491 (*pp)++;
2492 STABS_CONTINUE (pp, objfile);
2493
2494 /* Skip GCC 3.X member functions which are duplicates of the callable
2495 constructor/destructor. */
2496 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2497 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2498 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2499 {
2500 xfree (main_fn_name);
2501 }
2502 else
2503 {
2504 int has_destructor = 0, has_other = 0;
2505 int is_v3 = 0;
2506 struct next_fnfield *tmp_sublist;
2507
2508 /* Various versions of GCC emit various mostly-useless
2509 strings in the name field for special member functions.
2510
2511 For stub methods, we need to defer correcting the name
2512 until we are ready to unstub the method, because the current
2513 name string is used by gdb_mangle_name. The only stub methods
2514 of concern here are GNU v2 operators; other methods have their
2515 names correct (see caveat below).
2516
2517 For non-stub methods, in GNU v3, we have a complete physname.
2518 Therefore we can safely correct the name now. This primarily
2519 affects constructors and destructors, whose name will be
2520 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2521 operators will also have incorrect names; for instance,
2522 "operator int" will be named "operator i" (i.e. the type is
2523 mangled).
2524
2525 For non-stub methods in GNU v2, we have no easy way to
2526 know if we have a complete physname or not. For most
2527 methods the result depends on the platform (if CPLUS_MARKER
2528 can be `$' or `.', it will use minimal debug information, or
2529 otherwise the full physname will be included).
2530
2531 Rather than dealing with this, we take a different approach.
2532 For v3 mangled names, we can use the full physname; for v2,
2533 we use cplus_demangle_opname (which is actually v2 specific),
2534 because the only interesting names are all operators - once again
2535 barring the caveat below. Skip this process if any method in the
2536 group is a stub, to prevent our fouling up the workings of
2537 gdb_mangle_name.
2538
2539 The caveat: GCC 2.95.x (and earlier?) put constructors and
2540 destructors in the same method group. We need to split this
2541 into two groups, because they should have different names.
2542 So for each method group we check whether it contains both
2543 routines whose physname appears to be a destructor (the physnames
2544 for and destructors are always provided, due to quirks in v2
2545 mangling) and routines whose physname does not appear to be a
2546 destructor. If so then we break up the list into two halves.
2547 Even if the constructors and destructors aren't in the same group
2548 the destructor will still lack the leading tilde, so that also
2549 needs to be fixed.
2550
2551 So, to summarize what we expect and handle here:
2552
2553 Given Given Real Real Action
2554 method name physname physname method name
2555
2556 __opi [none] __opi__3Foo operator int opname
2557 [now or later]
2558 Foo _._3Foo _._3Foo ~Foo separate and
2559 rename
2560 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2561 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2562 */
2563
2564 tmp_sublist = sublist;
2565 while (tmp_sublist != NULL)
2566 {
2567 if (tmp_sublist->fn_field.physname[0] == '_'
2568 && tmp_sublist->fn_field.physname[1] == 'Z')
2569 is_v3 = 1;
2570
2571 if (is_destructor_name (tmp_sublist->fn_field.physname))
2572 has_destructor++;
2573 else
2574 has_other++;
2575
2576 tmp_sublist = tmp_sublist->next;
2577 }
2578
2579 if (has_destructor && has_other)
2580 {
2581 struct next_fnfieldlist *destr_fnlist;
2582 struct next_fnfield *last_sublist;
2583
2584 /* Create a new fn_fieldlist for the destructors. */
2585
2586 destr_fnlist = OBSTACK_ZALLOC (&fip->obstack,
2587 struct next_fnfieldlist);
2588
2589 destr_fnlist->fn_fieldlist.name
2590 = obconcat (&objfile->objfile_obstack, "~",
2591 new_fnlist->fn_fieldlist.name, (char *) NULL);
2592
2593 destr_fnlist->fn_fieldlist.fn_fields =
2594 XOBNEWVEC (&objfile->objfile_obstack,
2595 struct fn_field, has_destructor);
2596 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2597 sizeof (struct fn_field) * has_destructor);
2598 tmp_sublist = sublist;
2599 last_sublist = NULL;
2600 i = 0;
2601 while (tmp_sublist != NULL)
2602 {
2603 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2604 {
2605 tmp_sublist = tmp_sublist->next;
2606 continue;
2607 }
2608
2609 destr_fnlist->fn_fieldlist.fn_fields[i++]
2610 = tmp_sublist->fn_field;
2611 if (last_sublist)
2612 last_sublist->next = tmp_sublist->next;
2613 else
2614 sublist = tmp_sublist->next;
2615 last_sublist = tmp_sublist;
2616 tmp_sublist = tmp_sublist->next;
2617 }
2618
2619 destr_fnlist->fn_fieldlist.length = has_destructor;
2620 destr_fnlist->next = fip->fnlist;
2621 fip->fnlist = destr_fnlist;
2622 nfn_fields++;
2623 length -= has_destructor;
2624 }
2625 else if (is_v3)
2626 {
2627 /* v3 mangling prevents the use of abbreviated physnames,
2628 so we can do this here. There are stubbed methods in v3
2629 only:
2630 - in -gstabs instead of -gstabs+
2631 - or for static methods, which are output as a function type
2632 instead of a method type. */
2633 char *new_method_name =
2634 stabs_method_name_from_physname (sublist->fn_field.physname);
2635
2636 if (new_method_name != NULL
2637 && strcmp (new_method_name,
2638 new_fnlist->fn_fieldlist.name) != 0)
2639 {
2640 new_fnlist->fn_fieldlist.name = new_method_name;
2641 xfree (main_fn_name);
2642 }
2643 else
2644 xfree (new_method_name);
2645 }
2646 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2647 {
2648 new_fnlist->fn_fieldlist.name =
2649 obconcat (&objfile->objfile_obstack,
2650 "~", main_fn_name, (char *)NULL);
2651 xfree (main_fn_name);
2652 }
2653
2654 new_fnlist->fn_fieldlist.fn_fields
2655 = OBSTACK_CALLOC (&objfile->objfile_obstack, length, fn_field);
2656 for (i = length; (i--, sublist); sublist = sublist->next)
2657 {
2658 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2659 }
2660
2661 new_fnlist->fn_fieldlist.length = length;
2662 new_fnlist->next = fip->fnlist;
2663 fip->fnlist = new_fnlist;
2664 nfn_fields++;
2665 }
2666 }
2667
2668 if (nfn_fields)
2669 {
2670 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2671 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2672 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2673 memset (TYPE_FN_FIELDLISTS (type), 0,
2674 sizeof (struct fn_fieldlist) * nfn_fields);
2675 TYPE_NFN_FIELDS (type) = nfn_fields;
2676 }
2677
2678 return 1;
2679 }
2680
2681 /* Special GNU C++ name.
2682
2683 Returns 1 for success, 0 for failure. "failure" means that we can't
2684 keep parsing and it's time for error_type(). */
2685
2686 static int
2687 read_cpp_abbrev (struct stab_field_info *fip, const char **pp,
2688 struct type *type, struct objfile *objfile)
2689 {
2690 const char *p;
2691 const char *name;
2692 char cpp_abbrev;
2693 struct type *context;
2694
2695 p = *pp;
2696 if (*++p == 'v')
2697 {
2698 name = NULL;
2699 cpp_abbrev = *++p;
2700
2701 *pp = p + 1;
2702
2703 /* At this point, *pp points to something like "22:23=*22...",
2704 where the type number before the ':' is the "context" and
2705 everything after is a regular type definition. Lookup the
2706 type, find it's name, and construct the field name. */
2707
2708 context = read_type (pp, objfile);
2709
2710 switch (cpp_abbrev)
2711 {
2712 case 'f': /* $vf -- a virtual function table pointer */
2713 name = context->name ();
2714 if (name == NULL)
2715 {
2716 name = "";
2717 }
2718 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2719 vptr_name, name, (char *) NULL);
2720 break;
2721
2722 case 'b': /* $vb -- a virtual bsomethingorother */
2723 name = context->name ();
2724 if (name == NULL)
2725 {
2726 complaint (_("C++ abbreviated type name "
2727 "unknown at symtab pos %d"),
2728 symnum);
2729 name = "FOO";
2730 }
2731 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2732 name, (char *) NULL);
2733 break;
2734
2735 default:
2736 invalid_cpp_abbrev_complaint (*pp);
2737 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2738 "INVALID_CPLUSPLUS_ABBREV",
2739 (char *) NULL);
2740 break;
2741 }
2742
2743 /* At this point, *pp points to the ':'. Skip it and read the
2744 field type. */
2745
2746 p = ++(*pp);
2747 if (p[-1] != ':')
2748 {
2749 invalid_cpp_abbrev_complaint (*pp);
2750 return 0;
2751 }
2752 fip->list->field.set_type (read_type (pp, objfile));
2753 if (**pp == ',')
2754 (*pp)++; /* Skip the comma. */
2755 else
2756 return 0;
2757
2758 {
2759 int nbits;
2760
2761 SET_FIELD_BITPOS (fip->list->field,
2762 read_huge_number (pp, ';', &nbits, 0));
2763 if (nbits != 0)
2764 return 0;
2765 }
2766 /* This field is unpacked. */
2767 FIELD_BITSIZE (fip->list->field) = 0;
2768 fip->list->visibility = VISIBILITY_PRIVATE;
2769 }
2770 else
2771 {
2772 invalid_cpp_abbrev_complaint (*pp);
2773 /* We have no idea what syntax an unrecognized abbrev would have, so
2774 better return 0. If we returned 1, we would need to at least advance
2775 *pp to avoid an infinite loop. */
2776 return 0;
2777 }
2778 return 1;
2779 }
2780
2781 static void
2782 read_one_struct_field (struct stab_field_info *fip, const char **pp,
2783 const char *p, struct type *type,
2784 struct objfile *objfile)
2785 {
2786 struct gdbarch *gdbarch = objfile->arch ();
2787
2788 fip->list->field.name
2789 = obstack_strndup (&objfile->objfile_obstack, *pp, p - *pp);
2790 *pp = p + 1;
2791
2792 /* This means we have a visibility for a field coming. */
2793 if (**pp == '/')
2794 {
2795 (*pp)++;
2796 fip->list->visibility = *(*pp)++;
2797 }
2798 else
2799 {
2800 /* normal dbx-style format, no explicit visibility */
2801 fip->list->visibility = VISIBILITY_PUBLIC;
2802 }
2803
2804 fip->list->field.set_type (read_type (pp, objfile));
2805 if (**pp == ':')
2806 {
2807 p = ++(*pp);
2808 #if 0
2809 /* Possible future hook for nested types. */
2810 if (**pp == '!')
2811 {
2812 fip->list->field.bitpos = (long) -2; /* nested type */
2813 p = ++(*pp);
2814 }
2815 else
2816 ...;
2817 #endif
2818 while (*p != ';')
2819 {
2820 p++;
2821 }
2822 /* Static class member. */
2823 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2824 *pp = p + 1;
2825 return;
2826 }
2827 else if (**pp != ',')
2828 {
2829 /* Bad structure-type format. */
2830 stabs_general_complaint ("bad structure-type format");
2831 return;
2832 }
2833
2834 (*pp)++; /* Skip the comma. */
2835
2836 {
2837 int nbits;
2838
2839 SET_FIELD_BITPOS (fip->list->field,
2840 read_huge_number (pp, ',', &nbits, 0));
2841 if (nbits != 0)
2842 {
2843 stabs_general_complaint ("bad structure-type format");
2844 return;
2845 }
2846 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2847 if (nbits != 0)
2848 {
2849 stabs_general_complaint ("bad structure-type format");
2850 return;
2851 }
2852 }
2853
2854 if (FIELD_BITPOS (fip->list->field) == 0
2855 && FIELD_BITSIZE (fip->list->field) == 0)
2856 {
2857 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2858 it is a field which has been optimized out. The correct stab for
2859 this case is to use VISIBILITY_IGNORE, but that is a recent
2860 invention. (2) It is a 0-size array. For example
2861 union { int num; char str[0]; } foo. Printing _("<no value>" for
2862 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2863 will continue to work, and a 0-size array as a whole doesn't
2864 have any contents to print.
2865
2866 I suspect this probably could also happen with gcc -gstabs (not
2867 -gstabs+) for static fields, and perhaps other C++ extensions.
2868 Hopefully few people use -gstabs with gdb, since it is intended
2869 for dbx compatibility. */
2870
2871 /* Ignore this field. */
2872 fip->list->visibility = VISIBILITY_IGNORE;
2873 }
2874 else
2875 {
2876 /* Detect an unpacked field and mark it as such.
2877 dbx gives a bit size for all fields.
2878 Note that forward refs cannot be packed,
2879 and treat enums as if they had the width of ints. */
2880
2881 struct type *field_type = check_typedef (fip->list->field.type ());
2882
2883 if (field_type->code () != TYPE_CODE_INT
2884 && field_type->code () != TYPE_CODE_RANGE
2885 && field_type->code () != TYPE_CODE_BOOL
2886 && field_type->code () != TYPE_CODE_ENUM)
2887 {
2888 FIELD_BITSIZE (fip->list->field) = 0;
2889 }
2890 if ((FIELD_BITSIZE (fip->list->field)
2891 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2892 || (field_type->code () == TYPE_CODE_ENUM
2893 && FIELD_BITSIZE (fip->list->field)
2894 == gdbarch_int_bit (gdbarch))
2895 )
2896 &&
2897 FIELD_BITPOS (fip->list->field) % 8 == 0)
2898 {
2899 FIELD_BITSIZE (fip->list->field) = 0;
2900 }
2901 }
2902 }
2903
2904
2905 /* Read struct or class data fields. They have the form:
2906
2907 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2908
2909 At the end, we see a semicolon instead of a field.
2910
2911 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2912 a static field.
2913
2914 The optional VISIBILITY is one of:
2915
2916 '/0' (VISIBILITY_PRIVATE)
2917 '/1' (VISIBILITY_PROTECTED)
2918 '/2' (VISIBILITY_PUBLIC)
2919 '/9' (VISIBILITY_IGNORE)
2920
2921 or nothing, for C style fields with public visibility.
2922
2923 Returns 1 for success, 0 for failure. */
2924
2925 static int
2926 read_struct_fields (struct stab_field_info *fip, const char **pp,
2927 struct type *type, struct objfile *objfile)
2928 {
2929 const char *p;
2930 struct nextfield *newobj;
2931
2932 /* We better set p right now, in case there are no fields at all... */
2933
2934 p = *pp;
2935
2936 /* Read each data member type until we find the terminating ';' at the end of
2937 the data member list, or break for some other reason such as finding the
2938 start of the member function list. */
2939 /* Stab string for structure/union does not end with two ';' in
2940 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2941
2942 while (**pp != ';' && **pp != '\0')
2943 {
2944 STABS_CONTINUE (pp, objfile);
2945 /* Get space to record the next field's data. */
2946 newobj = OBSTACK_ZALLOC (&fip->obstack, struct nextfield);
2947
2948 newobj->next = fip->list;
2949 fip->list = newobj;
2950
2951 /* Get the field name. */
2952 p = *pp;
2953
2954 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2955 unless the CPLUS_MARKER is followed by an underscore, in
2956 which case it is just the name of an anonymous type, which we
2957 should handle like any other type name. */
2958
2959 if (is_cplus_marker (p[0]) && p[1] != '_')
2960 {
2961 if (!read_cpp_abbrev (fip, pp, type, objfile))
2962 return 0;
2963 continue;
2964 }
2965
2966 /* Look for the ':' that separates the field name from the field
2967 values. Data members are delimited by a single ':', while member
2968 functions are delimited by a pair of ':'s. When we hit the member
2969 functions (if any), terminate scan loop and return. */
2970
2971 while (*p != ':' && *p != '\0')
2972 {
2973 p++;
2974 }
2975 if (*p == '\0')
2976 return 0;
2977
2978 /* Check to see if we have hit the member functions yet. */
2979 if (p[1] == ':')
2980 {
2981 break;
2982 }
2983 read_one_struct_field (fip, pp, p, type, objfile);
2984 }
2985 if (p[0] == ':' && p[1] == ':')
2986 {
2987 /* (the deleted) chill the list of fields: the last entry (at
2988 the head) is a partially constructed entry which we now
2989 scrub. */
2990 fip->list = fip->list->next;
2991 }
2992 return 1;
2993 }
2994 /* *INDENT-OFF* */
2995 /* The stabs for C++ derived classes contain baseclass information which
2996 is marked by a '!' character after the total size. This function is
2997 called when we encounter the baseclass marker, and slurps up all the
2998 baseclass information.
2999
3000 Immediately following the '!' marker is the number of base classes that
3001 the class is derived from, followed by information for each base class.
3002 For each base class, there are two visibility specifiers, a bit offset
3003 to the base class information within the derived class, a reference to
3004 the type for the base class, and a terminating semicolon.
3005
3006 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3007 ^^ ^ ^ ^ ^ ^ ^
3008 Baseclass information marker __________________|| | | | | | |
3009 Number of baseclasses __________________________| | | | | | |
3010 Visibility specifiers (2) ________________________| | | | | |
3011 Offset in bits from start of class _________________| | | | |
3012 Type number for base class ___________________________| | | |
3013 Visibility specifiers (2) _______________________________| | |
3014 Offset in bits from start of class ________________________| |
3015 Type number of base class ____________________________________|
3016
3017 Return 1 for success, 0 for (error-type-inducing) failure. */
3018 /* *INDENT-ON* */
3019
3020
3021
3022 static int
3023 read_baseclasses (struct stab_field_info *fip, const char **pp,
3024 struct type *type, struct objfile *objfile)
3025 {
3026 int i;
3027 struct nextfield *newobj;
3028
3029 if (**pp != '!')
3030 {
3031 return 1;
3032 }
3033 else
3034 {
3035 /* Skip the '!' baseclass information marker. */
3036 (*pp)++;
3037 }
3038
3039 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3040 {
3041 int nbits;
3042
3043 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3044 if (nbits != 0)
3045 return 0;
3046 }
3047
3048 #if 0
3049 /* Some stupid compilers have trouble with the following, so break
3050 it up into simpler expressions. */
3051 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3052 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3053 #else
3054 {
3055 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3056 char *pointer;
3057
3058 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3059 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3060 }
3061 #endif /* 0 */
3062
3063 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3064
3065 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3066 {
3067 newobj = OBSTACK_ZALLOC (&fip->obstack, struct nextfield);
3068
3069 newobj->next = fip->list;
3070 fip->list = newobj;
3071 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3072 field! */
3073
3074 STABS_CONTINUE (pp, objfile);
3075 switch (**pp)
3076 {
3077 case '0':
3078 /* Nothing to do. */
3079 break;
3080 case '1':
3081 SET_TYPE_FIELD_VIRTUAL (type, i);
3082 break;
3083 default:
3084 /* Unknown character. Complain and treat it as non-virtual. */
3085 {
3086 complaint (_("Unknown virtual character `%c' for baseclass"),
3087 **pp);
3088 }
3089 }
3090 ++(*pp);
3091
3092 newobj->visibility = *(*pp)++;
3093 switch (newobj->visibility)
3094 {
3095 case VISIBILITY_PRIVATE:
3096 case VISIBILITY_PROTECTED:
3097 case VISIBILITY_PUBLIC:
3098 break;
3099 default:
3100 /* Bad visibility format. Complain and treat it as
3101 public. */
3102 {
3103 complaint (_("Unknown visibility `%c' for baseclass"),
3104 newobj->visibility);
3105 newobj->visibility = VISIBILITY_PUBLIC;
3106 }
3107 }
3108
3109 {
3110 int nbits;
3111
3112 /* The remaining value is the bit offset of the portion of the object
3113 corresponding to this baseclass. Always zero in the absence of
3114 multiple inheritance. */
3115
3116 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
3117 if (nbits != 0)
3118 return 0;
3119 }
3120
3121 /* The last piece of baseclass information is the type of the
3122 base class. Read it, and remember it's type name as this
3123 field's name. */
3124
3125 newobj->field.set_type (read_type (pp, objfile));
3126 newobj->field.name = newobj->field.type ()->name ();
3127
3128 /* Skip trailing ';' and bump count of number of fields seen. */
3129 if (**pp == ';')
3130 (*pp)++;
3131 else
3132 return 0;
3133 }
3134 return 1;
3135 }
3136
3137 /* The tail end of stabs for C++ classes that contain a virtual function
3138 pointer contains a tilde, a %, and a type number.
3139 The type number refers to the base class (possibly this class itself) which
3140 contains the vtable pointer for the current class.
3141
3142 This function is called when we have parsed all the method declarations,
3143 so we can look for the vptr base class info. */
3144
3145 static int
3146 read_tilde_fields (struct stab_field_info *fip, const char **pp,
3147 struct type *type, struct objfile *objfile)
3148 {
3149 const char *p;
3150
3151 STABS_CONTINUE (pp, objfile);
3152
3153 /* If we are positioned at a ';', then skip it. */
3154 if (**pp == ';')
3155 {
3156 (*pp)++;
3157 }
3158
3159 if (**pp == '~')
3160 {
3161 (*pp)++;
3162
3163 if (**pp == '=' || **pp == '+' || **pp == '-')
3164 {
3165 /* Obsolete flags that used to indicate the presence
3166 of constructors and/or destructors. */
3167 (*pp)++;
3168 }
3169
3170 /* Read either a '%' or the final ';'. */
3171 if (*(*pp)++ == '%')
3172 {
3173 /* The next number is the type number of the base class
3174 (possibly our own class) which supplies the vtable for
3175 this class. Parse it out, and search that class to find
3176 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3177 and TYPE_VPTR_FIELDNO. */
3178
3179 struct type *t;
3180 int i;
3181
3182 t = read_type (pp, objfile);
3183 p = (*pp)++;
3184 while (*p != '\0' && *p != ';')
3185 {
3186 p++;
3187 }
3188 if (*p == '\0')
3189 {
3190 /* Premature end of symbol. */
3191 return 0;
3192 }
3193
3194 set_type_vptr_basetype (type, t);
3195 if (type == t) /* Our own class provides vtbl ptr. */
3196 {
3197 for (i = t->num_fields () - 1;
3198 i >= TYPE_N_BASECLASSES (t);
3199 --i)
3200 {
3201 const char *name = TYPE_FIELD_NAME (t, i);
3202
3203 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3204 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3205 {
3206 set_type_vptr_fieldno (type, i);
3207 goto gotit;
3208 }
3209 }
3210 /* Virtual function table field not found. */
3211 complaint (_("virtual function table pointer "
3212 "not found when defining class `%s'"),
3213 type->name ());
3214 return 0;
3215 }
3216 else
3217 {
3218 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3219 }
3220
3221 gotit:
3222 *pp = p + 1;
3223 }
3224 }
3225 return 1;
3226 }
3227
3228 static int
3229 attach_fn_fields_to_type (struct stab_field_info *fip, struct type *type)
3230 {
3231 int n;
3232
3233 for (n = TYPE_NFN_FIELDS (type);
3234 fip->fnlist != NULL;
3235 fip->fnlist = fip->fnlist->next)
3236 {
3237 --n; /* Circumvent Sun3 compiler bug. */
3238 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3239 }
3240 return 1;
3241 }
3242
3243 /* Create the vector of fields, and record how big it is.
3244 We need this info to record proper virtual function table information
3245 for this class's virtual functions. */
3246
3247 static int
3248 attach_fields_to_type (struct stab_field_info *fip, struct type *type,
3249 struct objfile *objfile)
3250 {
3251 int nfields = 0;
3252 int non_public_fields = 0;
3253 struct nextfield *scan;
3254
3255 /* Count up the number of fields that we have, as well as taking note of
3256 whether or not there are any non-public fields, which requires us to
3257 allocate and build the private_field_bits and protected_field_bits
3258 bitfields. */
3259
3260 for (scan = fip->list; scan != NULL; scan = scan->next)
3261 {
3262 nfields++;
3263 if (scan->visibility != VISIBILITY_PUBLIC)
3264 {
3265 non_public_fields++;
3266 }
3267 }
3268
3269 /* Now we know how many fields there are, and whether or not there are any
3270 non-public fields. Record the field count, allocate space for the
3271 array of fields, and create blank visibility bitfields if necessary. */
3272
3273 type->set_num_fields (nfields);
3274 type->set_fields
3275 ((struct field *)
3276 TYPE_ALLOC (type, sizeof (struct field) * nfields));
3277 memset (type->fields (), 0, sizeof (struct field) * nfields);
3278
3279 if (non_public_fields)
3280 {
3281 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3282
3283 TYPE_FIELD_PRIVATE_BITS (type) =
3284 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3285 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3286
3287 TYPE_FIELD_PROTECTED_BITS (type) =
3288 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3289 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3290
3291 TYPE_FIELD_IGNORE_BITS (type) =
3292 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3293 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3294 }
3295
3296 /* Copy the saved-up fields into the field vector. Start from the
3297 head of the list, adding to the tail of the field array, so that
3298 they end up in the same order in the array in which they were
3299 added to the list. */
3300
3301 while (nfields-- > 0)
3302 {
3303 type->field (nfields) = fip->list->field;
3304 switch (fip->list->visibility)
3305 {
3306 case VISIBILITY_PRIVATE:
3307 SET_TYPE_FIELD_PRIVATE (type, nfields);
3308 break;
3309
3310 case VISIBILITY_PROTECTED:
3311 SET_TYPE_FIELD_PROTECTED (type, nfields);
3312 break;
3313
3314 case VISIBILITY_IGNORE:
3315 SET_TYPE_FIELD_IGNORE (type, nfields);
3316 break;
3317
3318 case VISIBILITY_PUBLIC:
3319 break;
3320
3321 default:
3322 /* Unknown visibility. Complain and treat it as public. */
3323 {
3324 complaint (_("Unknown visibility `%c' for field"),
3325 fip->list->visibility);
3326 }
3327 break;
3328 }
3329 fip->list = fip->list->next;
3330 }
3331 return 1;
3332 }
3333
3334
3335 /* Complain that the compiler has emitted more than one definition for the
3336 structure type TYPE. */
3337 static void
3338 complain_about_struct_wipeout (struct type *type)
3339 {
3340 const char *name = "";
3341 const char *kind = "";
3342
3343 if (type->name ())
3344 {
3345 name = type->name ();
3346 switch (type->code ())
3347 {
3348 case TYPE_CODE_STRUCT: kind = "struct "; break;
3349 case TYPE_CODE_UNION: kind = "union "; break;
3350 case TYPE_CODE_ENUM: kind = "enum "; break;
3351 default: kind = "";
3352 }
3353 }
3354 else
3355 {
3356 name = "<unknown>";
3357 kind = "";
3358 }
3359
3360 complaint (_("struct/union type gets multiply defined: %s%s"), kind, name);
3361 }
3362
3363 /* Set the length for all variants of a same main_type, which are
3364 connected in the closed chain.
3365
3366 This is something that needs to be done when a type is defined *after*
3367 some cross references to this type have already been read. Consider
3368 for instance the following scenario where we have the following two
3369 stabs entries:
3370
3371 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3372 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3373
3374 A stubbed version of type dummy is created while processing the first
3375 stabs entry. The length of that type is initially set to zero, since
3376 it is unknown at this point. Also, a "constant" variation of type
3377 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3378 the stabs line).
3379
3380 The second stabs entry allows us to replace the stubbed definition
3381 with the real definition. However, we still need to adjust the length
3382 of the "constant" variation of that type, as its length was left
3383 untouched during the main type replacement... */
3384
3385 static void
3386 set_length_in_type_chain (struct type *type)
3387 {
3388 struct type *ntype = TYPE_CHAIN (type);
3389
3390 while (ntype != type)
3391 {
3392 if (TYPE_LENGTH(ntype) == 0)
3393 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3394 else
3395 complain_about_struct_wipeout (ntype);
3396 ntype = TYPE_CHAIN (ntype);
3397 }
3398 }
3399
3400 /* Read the description of a structure (or union type) and return an object
3401 describing the type.
3402
3403 PP points to a character pointer that points to the next unconsumed token
3404 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3405 *PP will point to "4a:1,0,32;;".
3406
3407 TYPE points to an incomplete type that needs to be filled in.
3408
3409 OBJFILE points to the current objfile from which the stabs information is
3410 being read. (Note that it is redundant in that TYPE also contains a pointer
3411 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3412 */
3413
3414 static struct type *
3415 read_struct_type (const char **pp, struct type *type, enum type_code type_code,
3416 struct objfile *objfile)
3417 {
3418 struct stab_field_info fi;
3419
3420 /* When describing struct/union/class types in stabs, G++ always drops
3421 all qualifications from the name. So if you've got:
3422 struct A { ... struct B { ... }; ... };
3423 then G++ will emit stabs for `struct A::B' that call it simply
3424 `struct B'. Obviously, if you've got a real top-level definition for
3425 `struct B', or other nested definitions, this is going to cause
3426 problems.
3427
3428 Obviously, GDB can't fix this by itself, but it can at least avoid
3429 scribbling on existing structure type objects when new definitions
3430 appear. */
3431 if (! (type->code () == TYPE_CODE_UNDEF
3432 || TYPE_STUB (type)))
3433 {
3434 complain_about_struct_wipeout (type);
3435
3436 /* It's probably best to return the type unchanged. */
3437 return type;
3438 }
3439
3440 INIT_CPLUS_SPECIFIC (type);
3441 type->set_code (type_code);
3442 TYPE_STUB (type) = 0;
3443
3444 /* First comes the total size in bytes. */
3445
3446 {
3447 int nbits;
3448
3449 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3450 if (nbits != 0)
3451 return error_type (pp, objfile);
3452 set_length_in_type_chain (type);
3453 }
3454
3455 /* Now read the baseclasses, if any, read the regular C struct or C++
3456 class member fields, attach the fields to the type, read the C++
3457 member functions, attach them to the type, and then read any tilde
3458 field (baseclass specifier for the class holding the main vtable). */
3459
3460 if (!read_baseclasses (&fi, pp, type, objfile)
3461 || !read_struct_fields (&fi, pp, type, objfile)
3462 || !attach_fields_to_type (&fi, type, objfile)
3463 || !read_member_functions (&fi, pp, type, objfile)
3464 || !attach_fn_fields_to_type (&fi, type)
3465 || !read_tilde_fields (&fi, pp, type, objfile))
3466 {
3467 type = error_type (pp, objfile);
3468 }
3469
3470 return (type);
3471 }
3472
3473 /* Read a definition of an array type,
3474 and create and return a suitable type object.
3475 Also creates a range type which represents the bounds of that
3476 array. */
3477
3478 static struct type *
3479 read_array_type (const char **pp, struct type *type,
3480 struct objfile *objfile)
3481 {
3482 struct type *index_type, *element_type, *range_type;
3483 int lower, upper;
3484 int adjustable = 0;
3485 int nbits;
3486
3487 /* Format of an array type:
3488 "ar<index type>;lower;upper;<array_contents_type>".
3489 OS9000: "arlower,upper;<array_contents_type>".
3490
3491 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3492 for these, produce a type like float[][]. */
3493
3494 {
3495 index_type = read_type (pp, objfile);
3496 if (**pp != ';')
3497 /* Improper format of array type decl. */
3498 return error_type (pp, objfile);
3499 ++*pp;
3500 }
3501
3502 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3503 {
3504 (*pp)++;
3505 adjustable = 1;
3506 }
3507 lower = read_huge_number (pp, ';', &nbits, 0);
3508
3509 if (nbits != 0)
3510 return error_type (pp, objfile);
3511
3512 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3513 {
3514 (*pp)++;
3515 adjustable = 1;
3516 }
3517 upper = read_huge_number (pp, ';', &nbits, 0);
3518 if (nbits != 0)
3519 return error_type (pp, objfile);
3520
3521 element_type = read_type (pp, objfile);
3522
3523 if (adjustable)
3524 {
3525 lower = 0;
3526 upper = -1;
3527 }
3528
3529 range_type =
3530 create_static_range_type (NULL, index_type, lower, upper);
3531 type = create_array_type (type, element_type, range_type);
3532
3533 return type;
3534 }
3535
3536
3537 /* Read a definition of an enumeration type,
3538 and create and return a suitable type object.
3539 Also defines the symbols that represent the values of the type. */
3540
3541 static struct type *
3542 read_enum_type (const char **pp, struct type *type,
3543 struct objfile *objfile)
3544 {
3545 struct gdbarch *gdbarch = objfile->arch ();
3546 const char *p;
3547 char *name;
3548 long n;
3549 struct symbol *sym;
3550 int nsyms = 0;
3551 struct pending **symlist;
3552 struct pending *osyms, *syms;
3553 int o_nsyms;
3554 int nbits;
3555 int unsigned_enum = 1;
3556
3557 #if 0
3558 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3559 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3560 to do? For now, force all enum values to file scope. */
3561 if (within_function)
3562 symlist = get_local_symbols ();
3563 else
3564 #endif
3565 symlist = get_file_symbols ();
3566 osyms = *symlist;
3567 o_nsyms = osyms ? osyms->nsyms : 0;
3568
3569 /* The aix4 compiler emits an extra field before the enum members;
3570 my guess is it's a type of some sort. Just ignore it. */
3571 if (**pp == '-')
3572 {
3573 /* Skip over the type. */
3574 while (**pp != ':')
3575 (*pp)++;
3576
3577 /* Skip over the colon. */
3578 (*pp)++;
3579 }
3580
3581 /* Read the value-names and their values.
3582 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3583 A semicolon or comma instead of a NAME means the end. */
3584 while (**pp && **pp != ';' && **pp != ',')
3585 {
3586 STABS_CONTINUE (pp, objfile);
3587 p = *pp;
3588 while (*p != ':')
3589 p++;
3590 name = obstack_strndup (&objfile->objfile_obstack, *pp, p - *pp);
3591 *pp = p + 1;
3592 n = read_huge_number (pp, ',', &nbits, 0);
3593 if (nbits != 0)
3594 return error_type (pp, objfile);
3595
3596 sym = new (&objfile->objfile_obstack) symbol;
3597 sym->set_linkage_name (name);
3598 sym->set_language (get_current_subfile ()->language,
3599 &objfile->objfile_obstack);
3600 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3601 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3602 SYMBOL_VALUE (sym) = n;
3603 if (n < 0)
3604 unsigned_enum = 0;
3605 add_symbol_to_list (sym, symlist);
3606 nsyms++;
3607 }
3608
3609 if (**pp == ';')
3610 (*pp)++; /* Skip the semicolon. */
3611
3612 /* Now fill in the fields of the type-structure. */
3613
3614 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3615 set_length_in_type_chain (type);
3616 type->set_code (TYPE_CODE_ENUM);
3617 TYPE_STUB (type) = 0;
3618 if (unsigned_enum)
3619 TYPE_UNSIGNED (type) = 1;
3620 type->set_num_fields (nsyms);
3621 type->set_fields
3622 ((struct field *)
3623 TYPE_ALLOC (type, sizeof (struct field) * nsyms));
3624 memset (type->fields (), 0, sizeof (struct field) * nsyms);
3625
3626 /* Find the symbols for the values and put them into the type.
3627 The symbols can be found in the symlist that we put them on
3628 to cause them to be defined. osyms contains the old value
3629 of that symlist; everything up to there was defined by us. */
3630 /* Note that we preserve the order of the enum constants, so
3631 that in something like "enum {FOO, LAST_THING=FOO}" we print
3632 FOO, not LAST_THING. */
3633
3634 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3635 {
3636 int last = syms == osyms ? o_nsyms : 0;
3637 int j = syms->nsyms;
3638
3639 for (; --j >= last; --n)
3640 {
3641 struct symbol *xsym = syms->symbol[j];
3642
3643 SYMBOL_TYPE (xsym) = type;
3644 TYPE_FIELD_NAME (type, n) = xsym->linkage_name ();
3645 SET_FIELD_ENUMVAL (type->field (n), SYMBOL_VALUE (xsym));
3646 TYPE_FIELD_BITSIZE (type, n) = 0;
3647 }
3648 if (syms == osyms)
3649 break;
3650 }
3651
3652 return type;
3653 }
3654
3655 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3656 typedefs in every file (for int, long, etc):
3657
3658 type = b <signed> <width> <format type>; <offset>; <nbits>
3659 signed = u or s.
3660 optional format type = c or b for char or boolean.
3661 offset = offset from high order bit to start bit of type.
3662 width is # bytes in object of this type, nbits is # bits in type.
3663
3664 The width/offset stuff appears to be for small objects stored in
3665 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3666 FIXME. */
3667
3668 static struct type *
3669 read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
3670 {
3671 int type_bits;
3672 int nbits;
3673 int unsigned_type;
3674 int boolean_type = 0;
3675
3676 switch (**pp)
3677 {
3678 case 's':
3679 unsigned_type = 0;
3680 break;
3681 case 'u':
3682 unsigned_type = 1;
3683 break;
3684 default:
3685 return error_type (pp, objfile);
3686 }
3687 (*pp)++;
3688
3689 /* For some odd reason, all forms of char put a c here. This is strange
3690 because no other type has this honor. We can safely ignore this because
3691 we actually determine 'char'acterness by the number of bits specified in
3692 the descriptor.
3693 Boolean forms, e.g Fortran logical*X, put a b here. */
3694
3695 if (**pp == 'c')
3696 (*pp)++;
3697 else if (**pp == 'b')
3698 {
3699 boolean_type = 1;
3700 (*pp)++;
3701 }
3702
3703 /* The first number appears to be the number of bytes occupied
3704 by this type, except that unsigned short is 4 instead of 2.
3705 Since this information is redundant with the third number,
3706 we will ignore it. */
3707 read_huge_number (pp, ';', &nbits, 0);
3708 if (nbits != 0)
3709 return error_type (pp, objfile);
3710
3711 /* The second number is always 0, so ignore it too. */
3712 read_huge_number (pp, ';', &nbits, 0);
3713 if (nbits != 0)
3714 return error_type (pp, objfile);
3715
3716 /* The third number is the number of bits for this type. */
3717 type_bits = read_huge_number (pp, 0, &nbits, 0);
3718 if (nbits != 0)
3719 return error_type (pp, objfile);
3720 /* The type *should* end with a semicolon. If it are embedded
3721 in a larger type the semicolon may be the only way to know where
3722 the type ends. If this type is at the end of the stabstring we
3723 can deal with the omitted semicolon (but we don't have to like
3724 it). Don't bother to complain(), Sun's compiler omits the semicolon
3725 for "void". */
3726 if (**pp == ';')
3727 ++(*pp);
3728
3729 if (type_bits == 0)
3730 {
3731 struct type *type = init_type (objfile, TYPE_CODE_VOID,
3732 TARGET_CHAR_BIT, NULL);
3733 if (unsigned_type)
3734 TYPE_UNSIGNED (type) = 1;
3735 return type;
3736 }
3737
3738 if (boolean_type)
3739 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3740 else
3741 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3742 }
3743
3744 static struct type *
3745 read_sun_floating_type (const char **pp, int typenums[2],
3746 struct objfile *objfile)
3747 {
3748 int nbits;
3749 int details;
3750 int nbytes;
3751 struct type *rettype;
3752
3753 /* The first number has more details about the type, for example
3754 FN_COMPLEX. */
3755 details = read_huge_number (pp, ';', &nbits, 0);
3756 if (nbits != 0)
3757 return error_type (pp, objfile);
3758
3759 /* The second number is the number of bytes occupied by this type. */
3760 nbytes = read_huge_number (pp, ';', &nbits, 0);
3761 if (nbits != 0)
3762 return error_type (pp, objfile);
3763
3764 nbits = nbytes * TARGET_CHAR_BIT;
3765
3766 if (details == NF_COMPLEX || details == NF_COMPLEX16
3767 || details == NF_COMPLEX32)
3768 {
3769 rettype = dbx_init_float_type (objfile, nbits / 2);
3770 return init_complex_type (NULL, rettype);
3771 }
3772
3773 return dbx_init_float_type (objfile, nbits);
3774 }
3775
3776 /* Read a number from the string pointed to by *PP.
3777 The value of *PP is advanced over the number.
3778 If END is nonzero, the character that ends the
3779 number must match END, or an error happens;
3780 and that character is skipped if it does match.
3781 If END is zero, *PP is left pointing to that character.
3782
3783 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3784 the number is represented in an octal representation, assume that
3785 it is represented in a 2's complement representation with a size of
3786 TWOS_COMPLEMENT_BITS.
3787
3788 If the number fits in a long, set *BITS to 0 and return the value.
3789 If not, set *BITS to be the number of bits in the number and return 0.
3790
3791 If encounter garbage, set *BITS to -1 and return 0. */
3792
3793 static long
3794 read_huge_number (const char **pp, int end, int *bits,
3795 int twos_complement_bits)
3796 {
3797 const char *p = *pp;
3798 int sign = 1;
3799 int sign_bit = 0;
3800 long n = 0;
3801 int radix = 10;
3802 char overflow = 0;
3803 int nbits = 0;
3804 int c;
3805 long upper_limit;
3806 int twos_complement_representation = 0;
3807
3808 if (*p == '-')
3809 {
3810 sign = -1;
3811 p++;
3812 }
3813
3814 /* Leading zero means octal. GCC uses this to output values larger
3815 than an int (because that would be hard in decimal). */
3816 if (*p == '0')
3817 {
3818 radix = 8;
3819 p++;
3820 }
3821
3822 /* Skip extra zeros. */
3823 while (*p == '0')
3824 p++;
3825
3826 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3827 {
3828 /* Octal, possibly signed. Check if we have enough chars for a
3829 negative number. */
3830
3831 size_t len;
3832 const char *p1 = p;
3833
3834 while ((c = *p1) >= '0' && c < '8')
3835 p1++;
3836
3837 len = p1 - p;
3838 if (len > twos_complement_bits / 3
3839 || (twos_complement_bits % 3 == 0
3840 && len == twos_complement_bits / 3))
3841 {
3842 /* Ok, we have enough characters for a signed value, check
3843 for signedness by testing if the sign bit is set. */
3844 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3845 c = *p - '0';
3846 if (c & (1 << sign_bit))
3847 {
3848 /* Definitely signed. */
3849 twos_complement_representation = 1;
3850 sign = -1;
3851 }
3852 }
3853 }
3854
3855 upper_limit = LONG_MAX / radix;
3856
3857 while ((c = *p++) >= '0' && c < ('0' + radix))
3858 {
3859 if (n <= upper_limit)
3860 {
3861 if (twos_complement_representation)
3862 {
3863 /* Octal, signed, twos complement representation. In
3864 this case, n is the corresponding absolute value. */
3865 if (n == 0)
3866 {
3867 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3868
3869 n = -sn;
3870 }
3871 else
3872 {
3873 n *= radix;
3874 n -= c - '0';
3875 }
3876 }
3877 else
3878 {
3879 /* unsigned representation */
3880 n *= radix;
3881 n += c - '0'; /* FIXME this overflows anyway. */
3882 }
3883 }
3884 else
3885 overflow = 1;
3886
3887 /* This depends on large values being output in octal, which is
3888 what GCC does. */
3889 if (radix == 8)
3890 {
3891 if (nbits == 0)
3892 {
3893 if (c == '0')
3894 /* Ignore leading zeroes. */
3895 ;
3896 else if (c == '1')
3897 nbits = 1;
3898 else if (c == '2' || c == '3')
3899 nbits = 2;
3900 else
3901 nbits = 3;
3902 }
3903 else
3904 nbits += 3;
3905 }
3906 }
3907 if (end)
3908 {
3909 if (c && c != end)
3910 {
3911 if (bits != NULL)
3912 *bits = -1;
3913 return 0;
3914 }
3915 }
3916 else
3917 --p;
3918
3919 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3920 {
3921 /* We were supposed to parse a number with maximum
3922 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3923 if (bits != NULL)
3924 *bits = -1;
3925 return 0;
3926 }
3927
3928 *pp = p;
3929 if (overflow)
3930 {
3931 if (nbits == 0)
3932 {
3933 /* Large decimal constants are an error (because it is hard to
3934 count how many bits are in them). */
3935 if (bits != NULL)
3936 *bits = -1;
3937 return 0;
3938 }
3939
3940 /* -0x7f is the same as 0x80. So deal with it by adding one to
3941 the number of bits. Two's complement represention octals
3942 can't have a '-' in front. */
3943 if (sign == -1 && !twos_complement_representation)
3944 ++nbits;
3945 if (bits)
3946 *bits = nbits;
3947 }
3948 else
3949 {
3950 if (bits)
3951 *bits = 0;
3952 return n * sign;
3953 }
3954 /* It's *BITS which has the interesting information. */
3955 return 0;
3956 }
3957
3958 static struct type *
3959 read_range_type (const char **pp, int typenums[2], int type_size,
3960 struct objfile *objfile)
3961 {
3962 struct gdbarch *gdbarch = objfile->arch ();
3963 const char *orig_pp = *pp;
3964 int rangenums[2];
3965 long n2, n3;
3966 int n2bits, n3bits;
3967 int self_subrange;
3968 struct type *result_type;
3969 struct type *index_type = NULL;
3970
3971 /* First comes a type we are a subrange of.
3972 In C it is usually 0, 1 or the type being defined. */
3973 if (read_type_number (pp, rangenums) != 0)
3974 return error_type (pp, objfile);
3975 self_subrange = (rangenums[0] == typenums[0] &&
3976 rangenums[1] == typenums[1]);
3977
3978 if (**pp == '=')
3979 {
3980 *pp = orig_pp;
3981 index_type = read_type (pp, objfile);
3982 }
3983
3984 /* A semicolon should now follow; skip it. */
3985 if (**pp == ';')
3986 (*pp)++;
3987
3988 /* The remaining two operands are usually lower and upper bounds
3989 of the range. But in some special cases they mean something else. */
3990 n2 = read_huge_number (pp, ';', &n2bits, type_size);
3991 n3 = read_huge_number (pp, ';', &n3bits, type_size);
3992
3993 if (n2bits == -1 || n3bits == -1)
3994 return error_type (pp, objfile);
3995
3996 if (index_type)
3997 goto handle_true_range;
3998
3999 /* If limits are huge, must be large integral type. */
4000 if (n2bits != 0 || n3bits != 0)
4001 {
4002 char got_signed = 0;
4003 char got_unsigned = 0;
4004 /* Number of bits in the type. */
4005 int nbits = 0;
4006
4007 /* If a type size attribute has been specified, the bounds of
4008 the range should fit in this size. If the lower bounds needs
4009 more bits than the upper bound, then the type is signed. */
4010 if (n2bits <= type_size && n3bits <= type_size)
4011 {
4012 if (n2bits == type_size && n2bits > n3bits)
4013 got_signed = 1;
4014 else
4015 got_unsigned = 1;
4016 nbits = type_size;
4017 }
4018 /* Range from 0 to <large number> is an unsigned large integral type. */
4019 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4020 {
4021 got_unsigned = 1;
4022 nbits = n3bits;
4023 }
4024 /* Range from <large number> to <large number>-1 is a large signed
4025 integral type. Take care of the case where <large number> doesn't
4026 fit in a long but <large number>-1 does. */
4027 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4028 || (n2bits != 0 && n3bits == 0
4029 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4030 && n3 == LONG_MAX))
4031 {
4032 got_signed = 1;
4033 nbits = n2bits;
4034 }
4035
4036 if (got_signed || got_unsigned)
4037 return init_integer_type (objfile, nbits, got_unsigned, NULL);
4038 else
4039 return error_type (pp, objfile);
4040 }
4041
4042 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4043 if (self_subrange && n2 == 0 && n3 == 0)
4044 return init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
4045
4046 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4047 is the width in bytes.
4048
4049 Fortran programs appear to use this for complex types also. To
4050 distinguish between floats and complex, g77 (and others?) seem
4051 to use self-subranges for the complexes, and subranges of int for
4052 the floats.
4053
4054 Also note that for complexes, g77 sets n2 to the size of one of
4055 the member floats, not the whole complex beast. My guess is that
4056 this was to work well with pre-COMPLEX versions of gdb. */
4057
4058 if (n3 == 0 && n2 > 0)
4059 {
4060 struct type *float_type
4061 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
4062
4063 if (self_subrange)
4064 return init_complex_type (NULL, float_type);
4065 else
4066 return float_type;
4067 }
4068
4069 /* If the upper bound is -1, it must really be an unsigned integral. */
4070
4071 else if (n2 == 0 && n3 == -1)
4072 {
4073 int bits = type_size;
4074
4075 if (bits <= 0)
4076 {
4077 /* We don't know its size. It is unsigned int or unsigned
4078 long. GCC 2.3.3 uses this for long long too, but that is
4079 just a GDB 3.5 compatibility hack. */
4080 bits = gdbarch_int_bit (gdbarch);
4081 }
4082
4083 return init_integer_type (objfile, bits, 1, NULL);
4084 }
4085
4086 /* Special case: char is defined (Who knows why) as a subrange of
4087 itself with range 0-127. */
4088 else if (self_subrange && n2 == 0 && n3 == 127)
4089 {
4090 struct type *type = init_integer_type (objfile, TARGET_CHAR_BIT,
4091 0, NULL);
4092 TYPE_NOSIGN (type) = 1;
4093 return type;
4094 }
4095 /* We used to do this only for subrange of self or subrange of int. */
4096 else if (n2 == 0)
4097 {
4098 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4099 "unsigned long", and we already checked for that,
4100 so don't need to test for it here. */
4101
4102 if (n3 < 0)
4103 /* n3 actually gives the size. */
4104 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4105
4106 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4107 unsigned n-byte integer. But do require n to be a power of
4108 two; we don't want 3- and 5-byte integers flying around. */
4109 {
4110 int bytes;
4111 unsigned long bits;
4112
4113 bits = n3;
4114 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4115 bits >>= 8;
4116 if (bits == 0
4117 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4118 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4119 }
4120 }
4121 /* I think this is for Convex "long long". Since I don't know whether
4122 Convex sets self_subrange, I also accept that particular size regardless
4123 of self_subrange. */
4124 else if (n3 == 0 && n2 < 0
4125 && (self_subrange
4126 || n2 == -gdbarch_long_long_bit
4127 (gdbarch) / TARGET_CHAR_BIT))
4128 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4129 else if (n2 == -n3 - 1)
4130 {
4131 if (n3 == 0x7f)
4132 return init_integer_type (objfile, 8, 0, NULL);
4133 if (n3 == 0x7fff)
4134 return init_integer_type (objfile, 16, 0, NULL);
4135 if (n3 == 0x7fffffff)
4136 return init_integer_type (objfile, 32, 0, NULL);
4137 }
4138
4139 /* We have a real range type on our hands. Allocate space and
4140 return a real pointer. */
4141 handle_true_range:
4142
4143 if (self_subrange)
4144 index_type = objfile_type (objfile)->builtin_int;
4145 else
4146 index_type = *dbx_lookup_type (rangenums, objfile);
4147 if (index_type == NULL)
4148 {
4149 /* Does this actually ever happen? Is that why we are worrying
4150 about dealing with it rather than just calling error_type? */
4151
4152 complaint (_("base type %d of range type is not defined"), rangenums[1]);
4153
4154 index_type = objfile_type (objfile)->builtin_int;
4155 }
4156
4157 result_type
4158 = create_static_range_type (NULL, index_type, n2, n3);
4159 return (result_type);
4160 }
4161
4162 /* Read in an argument list. This is a list of types, separated by commas
4163 and terminated with END. Return the list of types read in, or NULL
4164 if there is an error. */
4165
4166 static struct field *
4167 read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
4168 int *varargsp)
4169 {
4170 /* FIXME! Remove this arbitrary limit! */
4171 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4172 int n = 0, i;
4173 struct field *rval;
4174
4175 while (**pp != end)
4176 {
4177 if (**pp != ',')
4178 /* Invalid argument list: no ','. */
4179 return NULL;
4180 (*pp)++;
4181 STABS_CONTINUE (pp, objfile);
4182 types[n++] = read_type (pp, objfile);
4183 }
4184 (*pp)++; /* get past `end' (the ':' character). */
4185
4186 if (n == 0)
4187 {
4188 /* We should read at least the THIS parameter here. Some broken stabs
4189 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4190 have been present ";-16,(0,43)" reference instead. This way the
4191 excessive ";" marker prematurely stops the parameters parsing. */
4192
4193 complaint (_("Invalid (empty) method arguments"));
4194 *varargsp = 0;
4195 }
4196 else if (types[n - 1]->code () != TYPE_CODE_VOID)
4197 *varargsp = 1;
4198 else
4199 {
4200 n--;
4201 *varargsp = 0;
4202 }
4203
4204 rval = XCNEWVEC (struct field, n);
4205 for (i = 0; i < n; i++)
4206 rval[i].set_type (types[i]);
4207 *nargsp = n;
4208 return rval;
4209 }
4210 \f
4211 /* Common block handling. */
4212
4213 /* List of symbols declared since the last BCOMM. This list is a tail
4214 of local_symbols. When ECOMM is seen, the symbols on the list
4215 are noted so their proper addresses can be filled in later,
4216 using the common block base address gotten from the assembler
4217 stabs. */
4218
4219 static struct pending *common_block;
4220 static int common_block_i;
4221
4222 /* Name of the current common block. We get it from the BCOMM instead of the
4223 ECOMM to match IBM documentation (even though IBM puts the name both places
4224 like everyone else). */
4225 static char *common_block_name;
4226
4227 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4228 to remain after this function returns. */
4229
4230 void
4231 common_block_start (const char *name, struct objfile *objfile)
4232 {
4233 if (common_block_name != NULL)
4234 {
4235 complaint (_("Invalid symbol data: common block within common block"));
4236 }
4237 common_block = *get_local_symbols ();
4238 common_block_i = common_block ? common_block->nsyms : 0;
4239 common_block_name = obstack_strdup (&objfile->objfile_obstack, name);
4240 }
4241
4242 /* Process a N_ECOMM symbol. */
4243
4244 void
4245 common_block_end (struct objfile *objfile)
4246 {
4247 /* Symbols declared since the BCOMM are to have the common block
4248 start address added in when we know it. common_block and
4249 common_block_i point to the first symbol after the BCOMM in
4250 the local_symbols list; copy the list and hang it off the
4251 symbol for the common block name for later fixup. */
4252 int i;
4253 struct symbol *sym;
4254 struct pending *newobj = 0;
4255 struct pending *next;
4256 int j;
4257
4258 if (common_block_name == NULL)
4259 {
4260 complaint (_("ECOMM symbol unmatched by BCOMM"));
4261 return;
4262 }
4263
4264 sym = new (&objfile->objfile_obstack) symbol;
4265 /* Note: common_block_name already saved on objfile_obstack. */
4266 sym->set_linkage_name (common_block_name);
4267 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4268
4269 /* Now we copy all the symbols which have been defined since the BCOMM. */
4270
4271 /* Copy all the struct pendings before common_block. */
4272 for (next = *get_local_symbols ();
4273 next != NULL && next != common_block;
4274 next = next->next)
4275 {
4276 for (j = 0; j < next->nsyms; j++)
4277 add_symbol_to_list (next->symbol[j], &newobj);
4278 }
4279
4280 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4281 NULL, it means copy all the local symbols (which we already did
4282 above). */
4283
4284 if (common_block != NULL)
4285 for (j = common_block_i; j < common_block->nsyms; j++)
4286 add_symbol_to_list (common_block->symbol[j], &newobj);
4287
4288 SYMBOL_TYPE (sym) = (struct type *) newobj;
4289
4290 /* Should we be putting local_symbols back to what it was?
4291 Does it matter? */
4292
4293 i = hashname (sym->linkage_name ());
4294 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4295 global_sym_chain[i] = sym;
4296 common_block_name = NULL;
4297 }
4298
4299 /* Add a common block's start address to the offset of each symbol
4300 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4301 the common block name). */
4302
4303 static void
4304 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4305 {
4306 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4307
4308 for (; next; next = next->next)
4309 {
4310 int j;
4311
4312 for (j = next->nsyms - 1; j >= 0; j--)
4313 SET_SYMBOL_VALUE_ADDRESS (next->symbol[j],
4314 SYMBOL_VALUE_ADDRESS (next->symbol[j])
4315 + valu);
4316 }
4317 }
4318 \f
4319
4320
4321 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4322 See add_undefined_type for more details. */
4323
4324 static void
4325 add_undefined_type_noname (struct type *type, int typenums[2])
4326 {
4327 struct nat nat;
4328
4329 nat.typenums[0] = typenums [0];
4330 nat.typenums[1] = typenums [1];
4331 nat.type = type;
4332
4333 if (noname_undefs_length == noname_undefs_allocated)
4334 {
4335 noname_undefs_allocated *= 2;
4336 noname_undefs = (struct nat *)
4337 xrealloc ((char *) noname_undefs,
4338 noname_undefs_allocated * sizeof (struct nat));
4339 }
4340 noname_undefs[noname_undefs_length++] = nat;
4341 }
4342
4343 /* Add TYPE to the UNDEF_TYPES vector.
4344 See add_undefined_type for more details. */
4345
4346 static void
4347 add_undefined_type_1 (struct type *type)
4348 {
4349 if (undef_types_length == undef_types_allocated)
4350 {
4351 undef_types_allocated *= 2;
4352 undef_types = (struct type **)
4353 xrealloc ((char *) undef_types,
4354 undef_types_allocated * sizeof (struct type *));
4355 }
4356 undef_types[undef_types_length++] = type;
4357 }
4358
4359 /* What about types defined as forward references inside of a small lexical
4360 scope? */
4361 /* Add a type to the list of undefined types to be checked through
4362 once this file has been read in.
4363
4364 In practice, we actually maintain two such lists: The first list
4365 (UNDEF_TYPES) is used for types whose name has been provided, and
4366 concerns forward references (eg 'xs' or 'xu' forward references);
4367 the second list (NONAME_UNDEFS) is used for types whose name is
4368 unknown at creation time, because they were referenced through
4369 their type number before the actual type was declared.
4370 This function actually adds the given type to the proper list. */
4371
4372 static void
4373 add_undefined_type (struct type *type, int typenums[2])
4374 {
4375 if (type->name () == NULL)
4376 add_undefined_type_noname (type, typenums);
4377 else
4378 add_undefined_type_1 (type);
4379 }
4380
4381 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4382
4383 static void
4384 cleanup_undefined_types_noname (struct objfile *objfile)
4385 {
4386 int i;
4387
4388 for (i = 0; i < noname_undefs_length; i++)
4389 {
4390 struct nat nat = noname_undefs[i];
4391 struct type **type;
4392
4393 type = dbx_lookup_type (nat.typenums, objfile);
4394 if (nat.type != *type && (*type)->code () != TYPE_CODE_UNDEF)
4395 {
4396 /* The instance flags of the undefined type are still unset,
4397 and needs to be copied over from the reference type.
4398 Since replace_type expects them to be identical, we need
4399 to set these flags manually before hand. */
4400 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4401 replace_type (nat.type, *type);
4402 }
4403 }
4404
4405 noname_undefs_length = 0;
4406 }
4407
4408 /* Go through each undefined type, see if it's still undefined, and fix it
4409 up if possible. We have two kinds of undefined types:
4410
4411 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4412 Fix: update array length using the element bounds
4413 and the target type's length.
4414 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4415 yet defined at the time a pointer to it was made.
4416 Fix: Do a full lookup on the struct/union tag. */
4417
4418 static void
4419 cleanup_undefined_types_1 (void)
4420 {
4421 struct type **type;
4422
4423 /* Iterate over every undefined type, and look for a symbol whose type
4424 matches our undefined type. The symbol matches if:
4425 1. It is a typedef in the STRUCT domain;
4426 2. It has the same name, and same type code;
4427 3. The instance flags are identical.
4428
4429 It is important to check the instance flags, because we have seen
4430 examples where the debug info contained definitions such as:
4431
4432 "foo_t:t30=B31=xefoo_t:"
4433
4434 In this case, we have created an undefined type named "foo_t" whose
4435 instance flags is null (when processing "xefoo_t"), and then created
4436 another type with the same name, but with different instance flags
4437 ('B' means volatile). I think that the definition above is wrong,
4438 since the same type cannot be volatile and non-volatile at the same
4439 time, but we need to be able to cope with it when it happens. The
4440 approach taken here is to treat these two types as different. */
4441
4442 for (type = undef_types; type < undef_types + undef_types_length; type++)
4443 {
4444 switch ((*type)->code ())
4445 {
4446
4447 case TYPE_CODE_STRUCT:
4448 case TYPE_CODE_UNION:
4449 case TYPE_CODE_ENUM:
4450 {
4451 /* Check if it has been defined since. Need to do this here
4452 as well as in check_typedef to deal with the (legitimate in
4453 C though not C++) case of several types with the same name
4454 in different source files. */
4455 if (TYPE_STUB (*type))
4456 {
4457 struct pending *ppt;
4458 int i;
4459 /* Name of the type, without "struct" or "union". */
4460 const char *type_name = (*type)->name ();
4461
4462 if (type_name == NULL)
4463 {
4464 complaint (_("need a type name"));
4465 break;
4466 }
4467 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
4468 {
4469 for (i = 0; i < ppt->nsyms; i++)
4470 {
4471 struct symbol *sym = ppt->symbol[i];
4472
4473 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4474 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4475 && (SYMBOL_TYPE (sym)->code () ==
4476 (*type)->code ())
4477 && (TYPE_INSTANCE_FLAGS (*type) ==
4478 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4479 && strcmp (sym->linkage_name (), type_name) == 0)
4480 replace_type (*type, SYMBOL_TYPE (sym));
4481 }
4482 }
4483 }
4484 }
4485 break;
4486
4487 default:
4488 {
4489 complaint (_("forward-referenced types left unresolved, "
4490 "type code %d."),
4491 (*type)->code ());
4492 }
4493 break;
4494 }
4495 }
4496
4497 undef_types_length = 0;
4498 }
4499
4500 /* Try to fix all the undefined types we encountered while processing
4501 this unit. */
4502
4503 void
4504 cleanup_undefined_stabs_types (struct objfile *objfile)
4505 {
4506 cleanup_undefined_types_1 ();
4507 cleanup_undefined_types_noname (objfile);
4508 }
4509
4510 /* See stabsread.h. */
4511
4512 void
4513 scan_file_globals (struct objfile *objfile)
4514 {
4515 int hash;
4516 struct symbol *sym, *prev;
4517 struct objfile *resolve_objfile;
4518
4519 /* SVR4 based linkers copy referenced global symbols from shared
4520 libraries to the main executable.
4521 If we are scanning the symbols for a shared library, try to resolve
4522 them from the minimal symbols of the main executable first. */
4523
4524 if (symfile_objfile && objfile != symfile_objfile)
4525 resolve_objfile = symfile_objfile;
4526 else
4527 resolve_objfile = objfile;
4528
4529 while (1)
4530 {
4531 /* Avoid expensive loop through all minimal symbols if there are
4532 no unresolved symbols. */
4533 for (hash = 0; hash < HASHSIZE; hash++)
4534 {
4535 if (global_sym_chain[hash])
4536 break;
4537 }
4538 if (hash >= HASHSIZE)
4539 return;
4540
4541 for (minimal_symbol *msymbol : resolve_objfile->msymbols ())
4542 {
4543 QUIT;
4544
4545 /* Skip static symbols. */
4546 switch (MSYMBOL_TYPE (msymbol))
4547 {
4548 case mst_file_text:
4549 case mst_file_data:
4550 case mst_file_bss:
4551 continue;
4552 default:
4553 break;
4554 }
4555
4556 prev = NULL;
4557
4558 /* Get the hash index and check all the symbols
4559 under that hash index. */
4560
4561 hash = hashname (msymbol->linkage_name ());
4562
4563 for (sym = global_sym_chain[hash]; sym;)
4564 {
4565 if (strcmp (msymbol->linkage_name (), sym->linkage_name ()) == 0)
4566 {
4567 /* Splice this symbol out of the hash chain and
4568 assign the value we have to it. */
4569 if (prev)
4570 {
4571 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4572 }
4573 else
4574 {
4575 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4576 }
4577
4578 /* Check to see whether we need to fix up a common block. */
4579 /* Note: this code might be executed several times for
4580 the same symbol if there are multiple references. */
4581 if (sym)
4582 {
4583 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4584 {
4585 fix_common_block (sym,
4586 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4587 msymbol));
4588 }
4589 else
4590 {
4591 SET_SYMBOL_VALUE_ADDRESS
4592 (sym, MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4593 msymbol));
4594 }
4595 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4596 }
4597
4598 if (prev)
4599 {
4600 sym = SYMBOL_VALUE_CHAIN (prev);
4601 }
4602 else
4603 {
4604 sym = global_sym_chain[hash];
4605 }
4606 }
4607 else
4608 {
4609 prev = sym;
4610 sym = SYMBOL_VALUE_CHAIN (sym);
4611 }
4612 }
4613 }
4614 if (resolve_objfile == objfile)
4615 break;
4616 resolve_objfile = objfile;
4617 }
4618
4619 /* Change the storage class of any remaining unresolved globals to
4620 LOC_UNRESOLVED and remove them from the chain. */
4621 for (hash = 0; hash < HASHSIZE; hash++)
4622 {
4623 sym = global_sym_chain[hash];
4624 while (sym)
4625 {
4626 prev = sym;
4627 sym = SYMBOL_VALUE_CHAIN (sym);
4628
4629 /* Change the symbol address from the misleading chain value
4630 to address zero. */
4631 SET_SYMBOL_VALUE_ADDRESS (prev, 0);
4632
4633 /* Complain about unresolved common block symbols. */
4634 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4635 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4636 else
4637 complaint (_("%s: common block `%s' from "
4638 "global_sym_chain unresolved"),
4639 objfile_name (objfile), prev->print_name ());
4640 }
4641 }
4642 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4643 }
4644
4645 /* Initialize anything that needs initializing when starting to read
4646 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4647 to a psymtab. */
4648
4649 void
4650 stabsread_init (void)
4651 {
4652 }
4653
4654 /* Initialize anything that needs initializing when a completely new
4655 symbol file is specified (not just adding some symbols from another
4656 file, e.g. a shared library). */
4657
4658 void
4659 stabsread_new_init (void)
4660 {
4661 /* Empty the hash table of global syms looking for values. */
4662 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4663 }
4664
4665 /* Initialize anything that needs initializing at the same time as
4666 start_symtab() is called. */
4667
4668 void
4669 start_stabs (void)
4670 {
4671 global_stabs = NULL; /* AIX COFF */
4672 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4673 n_this_object_header_files = 1;
4674 type_vector_length = 0;
4675 type_vector = (struct type **) 0;
4676 within_function = 0;
4677
4678 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4679 common_block_name = NULL;
4680 }
4681
4682 /* Call after end_symtab(). */
4683
4684 void
4685 end_stabs (void)
4686 {
4687 if (type_vector)
4688 {
4689 xfree (type_vector);
4690 }
4691 type_vector = 0;
4692 type_vector_length = 0;
4693 previous_stab_code = 0;
4694 }
4695
4696 void
4697 finish_global_stabs (struct objfile *objfile)
4698 {
4699 if (global_stabs)
4700 {
4701 patch_block_stabs (*get_global_symbols (), global_stabs, objfile);
4702 xfree (global_stabs);
4703 global_stabs = NULL;
4704 }
4705 }
4706
4707 /* Find the end of the name, delimited by a ':', but don't match
4708 ObjC symbols which look like -[Foo bar::]:bla. */
4709 static const char *
4710 find_name_end (const char *name)
4711 {
4712 const char *s = name;
4713
4714 if (s[0] == '-' || *s == '+')
4715 {
4716 /* Must be an ObjC method symbol. */
4717 if (s[1] != '[')
4718 {
4719 error (_("invalid symbol name \"%s\""), name);
4720 }
4721 s = strchr (s, ']');
4722 if (s == NULL)
4723 {
4724 error (_("invalid symbol name \"%s\""), name);
4725 }
4726 return strchr (s, ':');
4727 }
4728 else
4729 {
4730 return strchr (s, ':');
4731 }
4732 }
4733
4734 /* See stabsread.h. */
4735
4736 int
4737 hashname (const char *name)
4738 {
4739 return fast_hash (name, strlen (name)) % HASHSIZE;
4740 }
4741
4742 /* Initializer for this module. */
4743
4744 void _initialize_stabsread ();
4745 void
4746 _initialize_stabsread ()
4747 {
4748 undef_types_allocated = 20;
4749 undef_types_length = 0;
4750 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4751
4752 noname_undefs_allocated = 20;
4753 noname_undefs_length = 0;
4754 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4755
4756 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4757 &stab_register_funcs);
4758 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4759 &stab_register_funcs);
4760 }
This page took 0.128294 seconds and 4 git commands to generate.