Introduce buildsym-legacy.h
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
25 this file. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "gdb_obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "expression.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym-legacy.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "language.h"
44 #include "target-float.h"
45 #include "cp-abi.h"
46 #include "cp-support.h"
47 #include "bcache.h"
48 #include <ctype.h>
49
50 /* Ask stabsread.h to define the vars it normally declares `extern'. */
51 #define EXTERN
52 /**/
53 #include "stabsread.h" /* Our own declarations */
54 #undef EXTERN
55
56 struct nextfield
57 {
58 struct nextfield *next;
59
60 /* This is the raw visibility from the stab. It is not checked
61 for being one of the visibilities we recognize, so code which
62 examines this field better be able to deal. */
63 int visibility;
64
65 struct field field;
66 };
67
68 struct next_fnfieldlist
69 {
70 struct next_fnfieldlist *next;
71 struct fn_fieldlist fn_fieldlist;
72 };
73
74 /* The routines that read and process a complete stabs for a C struct or
75 C++ class pass lists of data member fields and lists of member function
76 fields in an instance of a field_info structure, as defined below.
77 This is part of some reorganization of low level C++ support and is
78 expected to eventually go away... (FIXME) */
79
80 struct field_info
81 {
82 struct nextfield *list;
83 struct next_fnfieldlist *fnlist;
84 };
85
86 static void
87 read_one_struct_field (struct field_info *, const char **, const char *,
88 struct type *, struct objfile *);
89
90 static struct type *dbx_alloc_type (int[2], struct objfile *);
91
92 static long read_huge_number (const char **, int, int *, int);
93
94 static struct type *error_type (const char **, struct objfile *);
95
96 static void
97 patch_block_stabs (struct pending *, struct pending_stabs *,
98 struct objfile *);
99
100 static void fix_common_block (struct symbol *, CORE_ADDR);
101
102 static int read_type_number (const char **, int *);
103
104 static struct type *read_type (const char **, struct objfile *);
105
106 static struct type *read_range_type (const char **, int[2],
107 int, struct objfile *);
108
109 static struct type *read_sun_builtin_type (const char **,
110 int[2], struct objfile *);
111
112 static struct type *read_sun_floating_type (const char **, int[2],
113 struct objfile *);
114
115 static struct type *read_enum_type (const char **, struct type *, struct objfile *);
116
117 static struct type *rs6000_builtin_type (int, struct objfile *);
118
119 static int
120 read_member_functions (struct field_info *, const char **, struct type *,
121 struct objfile *);
122
123 static int
124 read_struct_fields (struct field_info *, const char **, struct type *,
125 struct objfile *);
126
127 static int
128 read_baseclasses (struct field_info *, const char **, struct type *,
129 struct objfile *);
130
131 static int
132 read_tilde_fields (struct field_info *, const char **, struct type *,
133 struct objfile *);
134
135 static int attach_fn_fields_to_type (struct field_info *, struct type *);
136
137 static int attach_fields_to_type (struct field_info *, struct type *,
138 struct objfile *);
139
140 static struct type *read_struct_type (const char **, struct type *,
141 enum type_code,
142 struct objfile *);
143
144 static struct type *read_array_type (const char **, struct type *,
145 struct objfile *);
146
147 static struct field *read_args (const char **, int, struct objfile *,
148 int *, int *);
149
150 static void add_undefined_type (struct type *, int[2]);
151
152 static int
153 read_cpp_abbrev (struct field_info *, const char **, struct type *,
154 struct objfile *);
155
156 static const char *find_name_end (const char *name);
157
158 static int process_reference (const char **string);
159
160 void stabsread_clear_cache (void);
161
162 static const char vptr_name[] = "_vptr$";
163 static const char vb_name[] = "_vb$";
164
165 static void
166 invalid_cpp_abbrev_complaint (const char *arg1)
167 {
168 complaint (_("invalid C++ abbreviation `%s'"), arg1);
169 }
170
171 static void
172 reg_value_complaint (int regnum, int num_regs, const char *sym)
173 {
174 complaint (_("bad register number %d (max %d) in symbol %s"),
175 regnum, num_regs - 1, sym);
176 }
177
178 static void
179 stabs_general_complaint (const char *arg1)
180 {
181 complaint ("%s", arg1);
182 }
183
184 /* Make a list of forward references which haven't been defined. */
185
186 static struct type **undef_types;
187 static int undef_types_allocated;
188 static int undef_types_length;
189 static struct symbol *current_symbol = NULL;
190
191 /* Make a list of nameless types that are undefined.
192 This happens when another type is referenced by its number
193 before this type is actually defined. For instance "t(0,1)=k(0,2)"
194 and type (0,2) is defined only later. */
195
196 struct nat
197 {
198 int typenums[2];
199 struct type *type;
200 };
201 static struct nat *noname_undefs;
202 static int noname_undefs_allocated;
203 static int noname_undefs_length;
204
205 /* Check for and handle cretinous stabs symbol name continuation! */
206 #define STABS_CONTINUE(pp,objfile) \
207 do { \
208 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
209 *(pp) = next_symbol_text (objfile); \
210 } while (0)
211
212 /* Vector of types defined so far, indexed by their type numbers.
213 (In newer sun systems, dbx uses a pair of numbers in parens,
214 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
215 Then these numbers must be translated through the type_translations
216 hash table to get the index into the type vector.) */
217
218 static struct type **type_vector;
219
220 /* Number of elements allocated for type_vector currently. */
221
222 static int type_vector_length;
223
224 /* Initial size of type vector. Is realloc'd larger if needed, and
225 realloc'd down to the size actually used, when completed. */
226
227 #define INITIAL_TYPE_VECTOR_LENGTH 160
228 \f
229
230 /* Look up a dbx type-number pair. Return the address of the slot
231 where the type for that number-pair is stored.
232 The number-pair is in TYPENUMS.
233
234 This can be used for finding the type associated with that pair
235 or for associating a new type with the pair. */
236
237 static struct type **
238 dbx_lookup_type (int typenums[2], struct objfile *objfile)
239 {
240 int filenum = typenums[0];
241 int index = typenums[1];
242 unsigned old_len;
243 int real_filenum;
244 struct header_file *f;
245 int f_orig_length;
246
247 if (filenum == -1) /* -1,-1 is for temporary types. */
248 return 0;
249
250 if (filenum < 0 || filenum >= n_this_object_header_files)
251 {
252 complaint (_("Invalid symbol data: type number "
253 "(%d,%d) out of range at symtab pos %d."),
254 filenum, index, symnum);
255 goto error_return;
256 }
257
258 if (filenum == 0)
259 {
260 if (index < 0)
261 {
262 /* Caller wants address of address of type. We think
263 that negative (rs6k builtin) types will never appear as
264 "lvalues", (nor should they), so we stuff the real type
265 pointer into a temp, and return its address. If referenced,
266 this will do the right thing. */
267 static struct type *temp_type;
268
269 temp_type = rs6000_builtin_type (index, objfile);
270 return &temp_type;
271 }
272
273 /* Type is defined outside of header files.
274 Find it in this object file's type vector. */
275 if (index >= type_vector_length)
276 {
277 old_len = type_vector_length;
278 if (old_len == 0)
279 {
280 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
281 type_vector = XNEWVEC (struct type *, type_vector_length);
282 }
283 while (index >= type_vector_length)
284 {
285 type_vector_length *= 2;
286 }
287 type_vector = (struct type **)
288 xrealloc ((char *) type_vector,
289 (type_vector_length * sizeof (struct type *)));
290 memset (&type_vector[old_len], 0,
291 (type_vector_length - old_len) * sizeof (struct type *));
292 }
293 return (&type_vector[index]);
294 }
295 else
296 {
297 real_filenum = this_object_header_files[filenum];
298
299 if (real_filenum >= N_HEADER_FILES (objfile))
300 {
301 static struct type *temp_type;
302
303 warning (_("GDB internal error: bad real_filenum"));
304
305 error_return:
306 temp_type = objfile_type (objfile)->builtin_error;
307 return &temp_type;
308 }
309
310 f = HEADER_FILES (objfile) + real_filenum;
311
312 f_orig_length = f->length;
313 if (index >= f_orig_length)
314 {
315 while (index >= f->length)
316 {
317 f->length *= 2;
318 }
319 f->vector = (struct type **)
320 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
321 memset (&f->vector[f_orig_length], 0,
322 (f->length - f_orig_length) * sizeof (struct type *));
323 }
324 return (&f->vector[index]);
325 }
326 }
327
328 /* Make sure there is a type allocated for type numbers TYPENUMS
329 and return the type object.
330 This can create an empty (zeroed) type object.
331 TYPENUMS may be (-1, -1) to return a new type object that is not
332 put into the type vector, and so may not be referred to by number. */
333
334 static struct type *
335 dbx_alloc_type (int typenums[2], struct objfile *objfile)
336 {
337 struct type **type_addr;
338
339 if (typenums[0] == -1)
340 {
341 return (alloc_type (objfile));
342 }
343
344 type_addr = dbx_lookup_type (typenums, objfile);
345
346 /* If we are referring to a type not known at all yet,
347 allocate an empty type for it.
348 We will fill it in later if we find out how. */
349 if (*type_addr == 0)
350 {
351 *type_addr = alloc_type (objfile);
352 }
353
354 return (*type_addr);
355 }
356
357 /* Allocate a floating-point type of size BITS. */
358
359 static struct type *
360 dbx_init_float_type (struct objfile *objfile, int bits)
361 {
362 struct gdbarch *gdbarch = get_objfile_arch (objfile);
363 const struct floatformat **format;
364 struct type *type;
365
366 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
367 if (format)
368 type = init_float_type (objfile, bits, NULL, format);
369 else
370 type = init_type (objfile, TYPE_CODE_ERROR, bits, NULL);
371
372 return type;
373 }
374
375 /* for all the stabs in a given stab vector, build appropriate types
376 and fix their symbols in given symbol vector. */
377
378 static void
379 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
380 struct objfile *objfile)
381 {
382 int ii;
383 char *name;
384 const char *pp;
385 struct symbol *sym;
386
387 if (stabs)
388 {
389 /* for all the stab entries, find their corresponding symbols and
390 patch their types! */
391
392 for (ii = 0; ii < stabs->count; ++ii)
393 {
394 name = stabs->stab[ii];
395 pp = (char *) strchr (name, ':');
396 gdb_assert (pp); /* Must find a ':' or game's over. */
397 while (pp[1] == ':')
398 {
399 pp += 2;
400 pp = (char *) strchr (pp, ':');
401 }
402 sym = find_symbol_in_list (symbols, name, pp - name);
403 if (!sym)
404 {
405 /* FIXME-maybe: it would be nice if we noticed whether
406 the variable was defined *anywhere*, not just whether
407 it is defined in this compilation unit. But neither
408 xlc or GCC seem to need such a definition, and until
409 we do psymtabs (so that the minimal symbols from all
410 compilation units are available now), I'm not sure
411 how to get the information. */
412
413 /* On xcoff, if a global is defined and never referenced,
414 ld will remove it from the executable. There is then
415 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
416 sym = allocate_symbol (objfile);
417 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
418 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
419 SYMBOL_SET_LINKAGE_NAME
420 (sym, (char *) obstack_copy0 (&objfile->objfile_obstack,
421 name, pp - name));
422 pp += 2;
423 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
424 {
425 /* I don't think the linker does this with functions,
426 so as far as I know this is never executed.
427 But it doesn't hurt to check. */
428 SYMBOL_TYPE (sym) =
429 lookup_function_type (read_type (&pp, objfile));
430 }
431 else
432 {
433 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
434 }
435 add_symbol_to_list (sym, get_global_symbols ());
436 }
437 else
438 {
439 pp += 2;
440 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
441 {
442 SYMBOL_TYPE (sym) =
443 lookup_function_type (read_type (&pp, objfile));
444 }
445 else
446 {
447 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
448 }
449 }
450 }
451 }
452 }
453 \f
454
455 /* Read a number by which a type is referred to in dbx data,
456 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
457 Just a single number N is equivalent to (0,N).
458 Return the two numbers by storing them in the vector TYPENUMS.
459 TYPENUMS will then be used as an argument to dbx_lookup_type.
460
461 Returns 0 for success, -1 for error. */
462
463 static int
464 read_type_number (const char **pp, int *typenums)
465 {
466 int nbits;
467
468 if (**pp == '(')
469 {
470 (*pp)++;
471 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
472 if (nbits != 0)
473 return -1;
474 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
475 if (nbits != 0)
476 return -1;
477 }
478 else
479 {
480 typenums[0] = 0;
481 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
482 if (nbits != 0)
483 return -1;
484 }
485 return 0;
486 }
487 \f
488
489 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
490 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
491 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
492 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
493
494 /* Structure for storing pointers to reference definitions for fast lookup
495 during "process_later". */
496
497 struct ref_map
498 {
499 const char *stabs;
500 CORE_ADDR value;
501 struct symbol *sym;
502 };
503
504 #define MAX_CHUNK_REFS 100
505 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
506 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
507
508 static struct ref_map *ref_map;
509
510 /* Ptr to free cell in chunk's linked list. */
511 static int ref_count = 0;
512
513 /* Number of chunks malloced. */
514 static int ref_chunk = 0;
515
516 /* This file maintains a cache of stabs aliases found in the symbol
517 table. If the symbol table changes, this cache must be cleared
518 or we are left holding onto data in invalid obstacks. */
519 void
520 stabsread_clear_cache (void)
521 {
522 ref_count = 0;
523 ref_chunk = 0;
524 }
525
526 /* Create array of pointers mapping refids to symbols and stab strings.
527 Add pointers to reference definition symbols and/or their values as we
528 find them, using their reference numbers as our index.
529 These will be used later when we resolve references. */
530 void
531 ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
532 {
533 if (ref_count == 0)
534 ref_chunk = 0;
535 if (refnum >= ref_count)
536 ref_count = refnum + 1;
537 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
538 {
539 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
540 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
541
542 ref_map = (struct ref_map *)
543 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
544 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
545 new_chunks * REF_CHUNK_SIZE);
546 ref_chunk += new_chunks;
547 }
548 ref_map[refnum].stabs = stabs;
549 ref_map[refnum].sym = sym;
550 ref_map[refnum].value = value;
551 }
552
553 /* Return defined sym for the reference REFNUM. */
554 struct symbol *
555 ref_search (int refnum)
556 {
557 if (refnum < 0 || refnum > ref_count)
558 return 0;
559 return ref_map[refnum].sym;
560 }
561
562 /* Parse a reference id in STRING and return the resulting
563 reference number. Move STRING beyond the reference id. */
564
565 static int
566 process_reference (const char **string)
567 {
568 const char *p;
569 int refnum = 0;
570
571 if (**string != '#')
572 return 0;
573
574 /* Advance beyond the initial '#'. */
575 p = *string + 1;
576
577 /* Read number as reference id. */
578 while (*p && isdigit (*p))
579 {
580 refnum = refnum * 10 + *p - '0';
581 p++;
582 }
583 *string = p;
584 return refnum;
585 }
586
587 /* If STRING defines a reference, store away a pointer to the reference
588 definition for later use. Return the reference number. */
589
590 int
591 symbol_reference_defined (const char **string)
592 {
593 const char *p = *string;
594 int refnum = 0;
595
596 refnum = process_reference (&p);
597
598 /* Defining symbols end in '='. */
599 if (*p == '=')
600 {
601 /* Symbol is being defined here. */
602 *string = p + 1;
603 return refnum;
604 }
605 else
606 {
607 /* Must be a reference. Either the symbol has already been defined,
608 or this is a forward reference to it. */
609 *string = p;
610 return -1;
611 }
612 }
613
614 static int
615 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
616 {
617 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
618
619 if (regno < 0
620 || regno >= (gdbarch_num_regs (gdbarch)
621 + gdbarch_num_pseudo_regs (gdbarch)))
622 {
623 reg_value_complaint (regno,
624 gdbarch_num_regs (gdbarch)
625 + gdbarch_num_pseudo_regs (gdbarch),
626 SYMBOL_PRINT_NAME (sym));
627
628 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
629 }
630
631 return regno;
632 }
633
634 static const struct symbol_register_ops stab_register_funcs = {
635 stab_reg_to_regnum
636 };
637
638 /* The "aclass" indices for computed symbols. */
639
640 static int stab_register_index;
641 static int stab_regparm_index;
642
643 struct symbol *
644 define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
645 struct objfile *objfile)
646 {
647 struct gdbarch *gdbarch = get_objfile_arch (objfile);
648 struct symbol *sym;
649 const char *p = find_name_end (string);
650 int deftype;
651 int synonym = 0;
652 int i;
653
654 /* We would like to eliminate nameless symbols, but keep their types.
655 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
656 to type 2, but, should not create a symbol to address that type. Since
657 the symbol will be nameless, there is no way any user can refer to it. */
658
659 int nameless;
660
661 /* Ignore syms with empty names. */
662 if (string[0] == 0)
663 return 0;
664
665 /* Ignore old-style symbols from cc -go. */
666 if (p == 0)
667 return 0;
668
669 while (p[1] == ':')
670 {
671 p += 2;
672 p = strchr (p, ':');
673 if (p == NULL)
674 {
675 complaint (
676 _("Bad stabs string '%s'"), string);
677 return NULL;
678 }
679 }
680
681 /* If a nameless stab entry, all we need is the type, not the symbol.
682 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
683 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
684
685 current_symbol = sym = allocate_symbol (objfile);
686
687 if (processing_gcc_compilation)
688 {
689 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
690 number of bytes occupied by a type or object, which we ignore. */
691 SYMBOL_LINE (sym) = desc;
692 }
693 else
694 {
695 SYMBOL_LINE (sym) = 0; /* unknown */
696 }
697
698 SYMBOL_SET_LANGUAGE (sym, get_current_subfile ()->language,
699 &objfile->objfile_obstack);
700
701 if (is_cplus_marker (string[0]))
702 {
703 /* Special GNU C++ names. */
704 switch (string[1])
705 {
706 case 't':
707 SYMBOL_SET_LINKAGE_NAME (sym, "this");
708 break;
709
710 case 'v': /* $vtbl_ptr_type */
711 goto normal;
712
713 case 'e':
714 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
715 break;
716
717 case '_':
718 /* This was an anonymous type that was never fixed up. */
719 goto normal;
720
721 case 'X':
722 /* SunPRO (3.0 at least) static variable encoding. */
723 if (gdbarch_static_transform_name_p (gdbarch))
724 goto normal;
725 /* fall through */
726
727 default:
728 complaint (_("Unknown C++ symbol name `%s'"),
729 string);
730 goto normal; /* Do *something* with it. */
731 }
732 }
733 else
734 {
735 normal:
736 std::string new_name;
737
738 if (SYMBOL_LANGUAGE (sym) == language_cplus)
739 {
740 char *name = (char *) alloca (p - string + 1);
741
742 memcpy (name, string, p - string);
743 name[p - string] = '\0';
744 new_name = cp_canonicalize_string (name);
745 }
746 if (!new_name.empty ())
747 {
748 SYMBOL_SET_NAMES (sym,
749 new_name.c_str (), new_name.length (),
750 1, objfile);
751 }
752 else
753 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
754
755 if (SYMBOL_LANGUAGE (sym) == language_cplus)
756 cp_scan_for_anonymous_namespaces (sym, objfile);
757
758 }
759 p++;
760
761 /* Determine the type of name being defined. */
762 #if 0
763 /* Getting GDB to correctly skip the symbol on an undefined symbol
764 descriptor and not ever dump core is a very dodgy proposition if
765 we do things this way. I say the acorn RISC machine can just
766 fix their compiler. */
767 /* The Acorn RISC machine's compiler can put out locals that don't
768 start with "234=" or "(3,4)=", so assume anything other than the
769 deftypes we know how to handle is a local. */
770 if (!strchr ("cfFGpPrStTvVXCR", *p))
771 #else
772 if (isdigit (*p) || *p == '(' || *p == '-')
773 #endif
774 deftype = 'l';
775 else
776 deftype = *p++;
777
778 switch (deftype)
779 {
780 case 'c':
781 /* c is a special case, not followed by a type-number.
782 SYMBOL:c=iVALUE for an integer constant symbol.
783 SYMBOL:c=rVALUE for a floating constant symbol.
784 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
785 e.g. "b:c=e6,0" for "const b = blob1"
786 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
787 if (*p != '=')
788 {
789 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
790 SYMBOL_TYPE (sym) = error_type (&p, objfile);
791 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
792 add_symbol_to_list (sym, get_file_symbols ());
793 return sym;
794 }
795 ++p;
796 switch (*p++)
797 {
798 case 'r':
799 {
800 gdb_byte *dbl_valu;
801 struct type *dbl_type;
802
803 dbl_type = objfile_type (objfile)->builtin_double;
804 dbl_valu
805 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
806 TYPE_LENGTH (dbl_type));
807
808 target_float_from_string (dbl_valu, dbl_type, std::string (p));
809
810 SYMBOL_TYPE (sym) = dbl_type;
811 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
812 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
813 }
814 break;
815 case 'i':
816 {
817 /* Defining integer constants this way is kind of silly,
818 since 'e' constants allows the compiler to give not
819 only the value, but the type as well. C has at least
820 int, long, unsigned int, and long long as constant
821 types; other languages probably should have at least
822 unsigned as well as signed constants. */
823
824 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
825 SYMBOL_VALUE (sym) = atoi (p);
826 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
827 }
828 break;
829
830 case 'c':
831 {
832 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
833 SYMBOL_VALUE (sym) = atoi (p);
834 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
835 }
836 break;
837
838 case 's':
839 {
840 struct type *range_type;
841 int ind = 0;
842 char quote = *p++;
843 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
844 gdb_byte *string_value;
845
846 if (quote != '\'' && quote != '"')
847 {
848 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
849 SYMBOL_TYPE (sym) = error_type (&p, objfile);
850 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
851 add_symbol_to_list (sym, get_file_symbols ());
852 return sym;
853 }
854
855 /* Find matching quote, rejecting escaped quotes. */
856 while (*p && *p != quote)
857 {
858 if (*p == '\\' && p[1] == quote)
859 {
860 string_local[ind] = (gdb_byte) quote;
861 ind++;
862 p += 2;
863 }
864 else if (*p)
865 {
866 string_local[ind] = (gdb_byte) (*p);
867 ind++;
868 p++;
869 }
870 }
871 if (*p != quote)
872 {
873 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
874 SYMBOL_TYPE (sym) = error_type (&p, objfile);
875 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
876 add_symbol_to_list (sym, get_file_symbols ());
877 return sym;
878 }
879
880 /* NULL terminate the string. */
881 string_local[ind] = 0;
882 range_type
883 = create_static_range_type (NULL,
884 objfile_type (objfile)->builtin_int,
885 0, ind);
886 SYMBOL_TYPE (sym) = create_array_type (NULL,
887 objfile_type (objfile)->builtin_char,
888 range_type);
889 string_value
890 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
891 memcpy (string_value, string_local, ind + 1);
892 p++;
893
894 SYMBOL_VALUE_BYTES (sym) = string_value;
895 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
896 }
897 break;
898
899 case 'e':
900 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
901 can be represented as integral.
902 e.g. "b:c=e6,0" for "const b = blob1"
903 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
904 {
905 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
906 SYMBOL_TYPE (sym) = read_type (&p, objfile);
907
908 if (*p != ',')
909 {
910 SYMBOL_TYPE (sym) = error_type (&p, objfile);
911 break;
912 }
913 ++p;
914
915 /* If the value is too big to fit in an int (perhaps because
916 it is unsigned), or something like that, we silently get
917 a bogus value. The type and everything else about it is
918 correct. Ideally, we should be using whatever we have
919 available for parsing unsigned and long long values,
920 however. */
921 SYMBOL_VALUE (sym) = atoi (p);
922 }
923 break;
924 default:
925 {
926 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
927 SYMBOL_TYPE (sym) = error_type (&p, objfile);
928 }
929 }
930 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
931 add_symbol_to_list (sym, get_file_symbols ());
932 return sym;
933
934 case 'C':
935 /* The name of a caught exception. */
936 SYMBOL_TYPE (sym) = read_type (&p, objfile);
937 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
938 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
939 SYMBOL_VALUE_ADDRESS (sym) = valu;
940 add_symbol_to_list (sym, get_local_symbols ());
941 break;
942
943 case 'f':
944 /* A static function definition. */
945 SYMBOL_TYPE (sym) = read_type (&p, objfile);
946 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
947 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
948 add_symbol_to_list (sym, get_file_symbols ());
949 /* fall into process_function_types. */
950
951 process_function_types:
952 /* Function result types are described as the result type in stabs.
953 We need to convert this to the function-returning-type-X type
954 in GDB. E.g. "int" is converted to "function returning int". */
955 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
956 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
957
958 /* All functions in C++ have prototypes. Stabs does not offer an
959 explicit way to identify prototyped or unprototyped functions,
960 but both GCC and Sun CC emit stabs for the "call-as" type rather
961 than the "declared-as" type for unprototyped functions, so
962 we treat all functions as if they were prototyped. This is used
963 primarily for promotion when calling the function from GDB. */
964 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
965
966 /* fall into process_prototype_types. */
967
968 process_prototype_types:
969 /* Sun acc puts declared types of arguments here. */
970 if (*p == ';')
971 {
972 struct type *ftype = SYMBOL_TYPE (sym);
973 int nsemi = 0;
974 int nparams = 0;
975 const char *p1 = p;
976
977 /* Obtain a worst case guess for the number of arguments
978 by counting the semicolons. */
979 while (*p1)
980 {
981 if (*p1++ == ';')
982 nsemi++;
983 }
984
985 /* Allocate parameter information fields and fill them in. */
986 TYPE_FIELDS (ftype) = (struct field *)
987 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
988 while (*p++ == ';')
989 {
990 struct type *ptype;
991
992 /* A type number of zero indicates the start of varargs.
993 FIXME: GDB currently ignores vararg functions. */
994 if (p[0] == '0' && p[1] == '\0')
995 break;
996 ptype = read_type (&p, objfile);
997
998 /* The Sun compilers mark integer arguments, which should
999 be promoted to the width of the calling conventions, with
1000 a type which references itself. This type is turned into
1001 a TYPE_CODE_VOID type by read_type, and we have to turn
1002 it back into builtin_int here.
1003 FIXME: Do we need a new builtin_promoted_int_arg ? */
1004 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
1005 ptype = objfile_type (objfile)->builtin_int;
1006 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1007 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1008 }
1009 TYPE_NFIELDS (ftype) = nparams;
1010 TYPE_PROTOTYPED (ftype) = 1;
1011 }
1012 break;
1013
1014 case 'F':
1015 /* A global function definition. */
1016 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1017 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1018 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1019 add_symbol_to_list (sym, get_global_symbols ());
1020 goto process_function_types;
1021
1022 case 'G':
1023 /* For a class G (global) symbol, it appears that the
1024 value is not correct. It is necessary to search for the
1025 corresponding linker definition to find the value.
1026 These definitions appear at the end of the namelist. */
1027 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1028 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1029 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1030 /* Don't add symbol references to global_sym_chain.
1031 Symbol references don't have valid names and wont't match up with
1032 minimal symbols when the global_sym_chain is relocated.
1033 We'll fixup symbol references when we fixup the defining symbol. */
1034 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1035 {
1036 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1037 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1038 global_sym_chain[i] = sym;
1039 }
1040 add_symbol_to_list (sym, get_global_symbols ());
1041 break;
1042
1043 /* This case is faked by a conditional above,
1044 when there is no code letter in the dbx data.
1045 Dbx data never actually contains 'l'. */
1046 case 's':
1047 case 'l':
1048 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1049 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1050 SYMBOL_VALUE (sym) = valu;
1051 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1052 add_symbol_to_list (sym, get_local_symbols ());
1053 break;
1054
1055 case 'p':
1056 if (*p == 'F')
1057 /* pF is a two-letter code that means a function parameter in Fortran.
1058 The type-number specifies the type of the return value.
1059 Translate it into a pointer-to-function type. */
1060 {
1061 p++;
1062 SYMBOL_TYPE (sym)
1063 = lookup_pointer_type
1064 (lookup_function_type (read_type (&p, objfile)));
1065 }
1066 else
1067 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1068
1069 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1070 SYMBOL_VALUE (sym) = valu;
1071 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1072 SYMBOL_IS_ARGUMENT (sym) = 1;
1073 add_symbol_to_list (sym, get_local_symbols ());
1074
1075 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1076 {
1077 /* On little-endian machines, this crud is never necessary,
1078 and, if the extra bytes contain garbage, is harmful. */
1079 break;
1080 }
1081
1082 /* If it's gcc-compiled, if it says `short', believe it. */
1083 if (processing_gcc_compilation
1084 || gdbarch_believe_pcc_promotion (gdbarch))
1085 break;
1086
1087 if (!gdbarch_believe_pcc_promotion (gdbarch))
1088 {
1089 /* If PCC says a parameter is a short or a char, it is
1090 really an int. */
1091 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1092 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1093 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1094 {
1095 SYMBOL_TYPE (sym) =
1096 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1097 ? objfile_type (objfile)->builtin_unsigned_int
1098 : objfile_type (objfile)->builtin_int;
1099 }
1100 break;
1101 }
1102 /* Fall through. */
1103
1104 case 'P':
1105 /* acc seems to use P to declare the prototypes of functions that
1106 are referenced by this file. gdb is not prepared to deal
1107 with this extra information. FIXME, it ought to. */
1108 if (type == N_FUN)
1109 {
1110 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1111 goto process_prototype_types;
1112 }
1113 /*FALLTHROUGH */
1114
1115 case 'R':
1116 /* Parameter which is in a register. */
1117 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1118 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1119 SYMBOL_IS_ARGUMENT (sym) = 1;
1120 SYMBOL_VALUE (sym) = valu;
1121 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1122 add_symbol_to_list (sym, get_local_symbols ());
1123 break;
1124
1125 case 'r':
1126 /* Register variable (either global or local). */
1127 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1128 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1129 SYMBOL_VALUE (sym) = valu;
1130 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1131 if (within_function)
1132 {
1133 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1134 the same name to represent an argument passed in a
1135 register. GCC uses 'P' for the same case. So if we find
1136 such a symbol pair we combine it into one 'P' symbol.
1137 For Sun cc we need to do this regardless of
1138 stabs_argument_has_addr, because the compiler puts out
1139 the 'p' symbol even if it never saves the argument onto
1140 the stack.
1141
1142 On most machines, we want to preserve both symbols, so
1143 that we can still get information about what is going on
1144 with the stack (VAX for computing args_printed, using
1145 stack slots instead of saved registers in backtraces,
1146 etc.).
1147
1148 Note that this code illegally combines
1149 main(argc) struct foo argc; { register struct foo argc; }
1150 but this case is considered pathological and causes a warning
1151 from a decent compiler. */
1152
1153 struct pending *local_symbols = *get_local_symbols ();
1154 if (local_symbols
1155 && local_symbols->nsyms > 0
1156 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1157 {
1158 struct symbol *prev_sym;
1159
1160 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1161 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1162 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1163 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1164 SYMBOL_LINKAGE_NAME (sym)) == 0)
1165 {
1166 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1167 /* Use the type from the LOC_REGISTER; that is the type
1168 that is actually in that register. */
1169 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1170 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1171 sym = prev_sym;
1172 break;
1173 }
1174 }
1175 add_symbol_to_list (sym, get_local_symbols ());
1176 }
1177 else
1178 add_symbol_to_list (sym, get_file_symbols ());
1179 break;
1180
1181 case 'S':
1182 /* Static symbol at top level of file. */
1183 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1184 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1185 SYMBOL_VALUE_ADDRESS (sym) = valu;
1186 if (gdbarch_static_transform_name_p (gdbarch)
1187 && gdbarch_static_transform_name (gdbarch,
1188 SYMBOL_LINKAGE_NAME (sym))
1189 != SYMBOL_LINKAGE_NAME (sym))
1190 {
1191 struct bound_minimal_symbol msym;
1192
1193 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1194 NULL, objfile);
1195 if (msym.minsym != NULL)
1196 {
1197 const char *new_name = gdbarch_static_transform_name
1198 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1199
1200 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1201 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1202 }
1203 }
1204 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1205 add_symbol_to_list (sym, get_file_symbols ());
1206 break;
1207
1208 case 't':
1209 /* In Ada, there is no distinction between typedef and non-typedef;
1210 any type declaration implicitly has the equivalent of a typedef,
1211 and thus 't' is in fact equivalent to 'Tt'.
1212
1213 Therefore, for Ada units, we check the character immediately
1214 before the 't', and if we do not find a 'T', then make sure to
1215 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1216 will be stored in the VAR_DOMAIN). If the symbol was indeed
1217 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1218 elsewhere, so we don't need to take care of that.
1219
1220 This is important to do, because of forward references:
1221 The cleanup of undefined types stored in undef_types only uses
1222 STRUCT_DOMAIN symbols to perform the replacement. */
1223 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1224
1225 /* Typedef */
1226 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1227
1228 /* For a nameless type, we don't want a create a symbol, thus we
1229 did not use `sym'. Return without further processing. */
1230 if (nameless)
1231 return NULL;
1232
1233 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1234 SYMBOL_VALUE (sym) = valu;
1235 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1236 /* C++ vagaries: we may have a type which is derived from
1237 a base type which did not have its name defined when the
1238 derived class was output. We fill in the derived class's
1239 base part member's name here in that case. */
1240 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1241 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1242 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1243 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1244 {
1245 int j;
1246
1247 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1248 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1249 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1250 TYPE_NAME (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1251 }
1252
1253 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1254 {
1255 /* gcc-2.6 or later (when using -fvtable-thunks)
1256 emits a unique named type for a vtable entry.
1257 Some gdb code depends on that specific name. */
1258 extern const char vtbl_ptr_name[];
1259
1260 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1261 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1262 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1263 {
1264 /* If we are giving a name to a type such as "pointer to
1265 foo" or "function returning foo", we better not set
1266 the TYPE_NAME. If the program contains "typedef char
1267 *caddr_t;", we don't want all variables of type char
1268 * to print as caddr_t. This is not just a
1269 consequence of GDB's type management; PCC and GCC (at
1270 least through version 2.4) both output variables of
1271 either type char * or caddr_t with the type number
1272 defined in the 't' symbol for caddr_t. If a future
1273 compiler cleans this up it GDB is not ready for it
1274 yet, but if it becomes ready we somehow need to
1275 disable this check (without breaking the PCC/GCC2.4
1276 case).
1277
1278 Sigh.
1279
1280 Fortunately, this check seems not to be necessary
1281 for anything except pointers or functions. */
1282 /* ezannoni: 2000-10-26. This seems to apply for
1283 versions of gcc older than 2.8. This was the original
1284 problem: with the following code gdb would tell that
1285 the type for name1 is caddr_t, and func is char().
1286
1287 typedef char *caddr_t;
1288 char *name2;
1289 struct x
1290 {
1291 char *name1;
1292 } xx;
1293 char *func()
1294 {
1295 }
1296 main () {}
1297 */
1298
1299 /* Pascal accepts names for pointer types. */
1300 if (get_current_subfile ()->language == language_pascal)
1301 {
1302 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1303 }
1304 }
1305 else
1306 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1307 }
1308
1309 add_symbol_to_list (sym, get_file_symbols ());
1310
1311 if (synonym)
1312 {
1313 /* Create the STRUCT_DOMAIN clone. */
1314 struct symbol *struct_sym = allocate_symbol (objfile);
1315
1316 *struct_sym = *sym;
1317 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1318 SYMBOL_VALUE (struct_sym) = valu;
1319 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1320 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1321 TYPE_NAME (SYMBOL_TYPE (sym))
1322 = obconcat (&objfile->objfile_obstack,
1323 SYMBOL_LINKAGE_NAME (sym),
1324 (char *) NULL);
1325 add_symbol_to_list (struct_sym, get_file_symbols ());
1326 }
1327
1328 break;
1329
1330 case 'T':
1331 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1332 by 't' which means we are typedef'ing it as well. */
1333 synonym = *p == 't';
1334
1335 if (synonym)
1336 p++;
1337
1338 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1339
1340 /* For a nameless type, we don't want a create a symbol, thus we
1341 did not use `sym'. Return without further processing. */
1342 if (nameless)
1343 return NULL;
1344
1345 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1346 SYMBOL_VALUE (sym) = valu;
1347 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1348 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1349 TYPE_NAME (SYMBOL_TYPE (sym))
1350 = obconcat (&objfile->objfile_obstack,
1351 SYMBOL_LINKAGE_NAME (sym),
1352 (char *) NULL);
1353 add_symbol_to_list (sym, get_file_symbols ());
1354
1355 if (synonym)
1356 {
1357 /* Clone the sym and then modify it. */
1358 struct symbol *typedef_sym = allocate_symbol (objfile);
1359
1360 *typedef_sym = *sym;
1361 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1362 SYMBOL_VALUE (typedef_sym) = valu;
1363 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1364 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1365 TYPE_NAME (SYMBOL_TYPE (sym))
1366 = obconcat (&objfile->objfile_obstack,
1367 SYMBOL_LINKAGE_NAME (sym),
1368 (char *) NULL);
1369 add_symbol_to_list (typedef_sym, get_file_symbols ());
1370 }
1371 break;
1372
1373 case 'V':
1374 /* Static symbol of local scope. */
1375 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1376 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1377 SYMBOL_VALUE_ADDRESS (sym) = valu;
1378 if (gdbarch_static_transform_name_p (gdbarch)
1379 && gdbarch_static_transform_name (gdbarch,
1380 SYMBOL_LINKAGE_NAME (sym))
1381 != SYMBOL_LINKAGE_NAME (sym))
1382 {
1383 struct bound_minimal_symbol msym;
1384
1385 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1386 NULL, objfile);
1387 if (msym.minsym != NULL)
1388 {
1389 const char *new_name = gdbarch_static_transform_name
1390 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1391
1392 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1393 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1394 }
1395 }
1396 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1397 add_symbol_to_list (sym, get_local_symbols ());
1398 break;
1399
1400 case 'v':
1401 /* Reference parameter */
1402 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1403 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1404 SYMBOL_IS_ARGUMENT (sym) = 1;
1405 SYMBOL_VALUE (sym) = valu;
1406 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1407 add_symbol_to_list (sym, get_local_symbols ());
1408 break;
1409
1410 case 'a':
1411 /* Reference parameter which is in a register. */
1412 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1413 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1414 SYMBOL_IS_ARGUMENT (sym) = 1;
1415 SYMBOL_VALUE (sym) = valu;
1416 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1417 add_symbol_to_list (sym, get_local_symbols ());
1418 break;
1419
1420 case 'X':
1421 /* This is used by Sun FORTRAN for "function result value".
1422 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1423 that Pascal uses it too, but when I tried it Pascal used
1424 "x:3" (local symbol) instead. */
1425 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1426 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1427 SYMBOL_VALUE (sym) = valu;
1428 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1429 add_symbol_to_list (sym, get_local_symbols ());
1430 break;
1431
1432 default:
1433 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1434 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1435 SYMBOL_VALUE (sym) = 0;
1436 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1437 add_symbol_to_list (sym, get_file_symbols ());
1438 break;
1439 }
1440
1441 /* Some systems pass variables of certain types by reference instead
1442 of by value, i.e. they will pass the address of a structure (in a
1443 register or on the stack) instead of the structure itself. */
1444
1445 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1446 && SYMBOL_IS_ARGUMENT (sym))
1447 {
1448 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1449 variables passed in a register). */
1450 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1451 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1452 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1453 and subsequent arguments on SPARC, for example). */
1454 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1455 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1456 }
1457
1458 return sym;
1459 }
1460
1461 /* Skip rest of this symbol and return an error type.
1462
1463 General notes on error recovery: error_type always skips to the
1464 end of the symbol (modulo cretinous dbx symbol name continuation).
1465 Thus code like this:
1466
1467 if (*(*pp)++ != ';')
1468 return error_type (pp, objfile);
1469
1470 is wrong because if *pp starts out pointing at '\0' (typically as the
1471 result of an earlier error), it will be incremented to point to the
1472 start of the next symbol, which might produce strange results, at least
1473 if you run off the end of the string table. Instead use
1474
1475 if (**pp != ';')
1476 return error_type (pp, objfile);
1477 ++*pp;
1478
1479 or
1480
1481 if (**pp != ';')
1482 foo = error_type (pp, objfile);
1483 else
1484 ++*pp;
1485
1486 And in case it isn't obvious, the point of all this hair is so the compiler
1487 can define new types and new syntaxes, and old versions of the
1488 debugger will be able to read the new symbol tables. */
1489
1490 static struct type *
1491 error_type (const char **pp, struct objfile *objfile)
1492 {
1493 complaint (_("couldn't parse type; debugger out of date?"));
1494 while (1)
1495 {
1496 /* Skip to end of symbol. */
1497 while (**pp != '\0')
1498 {
1499 (*pp)++;
1500 }
1501
1502 /* Check for and handle cretinous dbx symbol name continuation! */
1503 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1504 {
1505 *pp = next_symbol_text (objfile);
1506 }
1507 else
1508 {
1509 break;
1510 }
1511 }
1512 return objfile_type (objfile)->builtin_error;
1513 }
1514 \f
1515
1516 /* Read type information or a type definition; return the type. Even
1517 though this routine accepts either type information or a type
1518 definition, the distinction is relevant--some parts of stabsread.c
1519 assume that type information starts with a digit, '-', or '(' in
1520 deciding whether to call read_type. */
1521
1522 static struct type *
1523 read_type (const char **pp, struct objfile *objfile)
1524 {
1525 struct type *type = 0;
1526 struct type *type1;
1527 int typenums[2];
1528 char type_descriptor;
1529
1530 /* Size in bits of type if specified by a type attribute, or -1 if
1531 there is no size attribute. */
1532 int type_size = -1;
1533
1534 /* Used to distinguish string and bitstring from char-array and set. */
1535 int is_string = 0;
1536
1537 /* Used to distinguish vector from array. */
1538 int is_vector = 0;
1539
1540 /* Read type number if present. The type number may be omitted.
1541 for instance in a two-dimensional array declared with type
1542 "ar1;1;10;ar1;1;10;4". */
1543 if ((**pp >= '0' && **pp <= '9')
1544 || **pp == '('
1545 || **pp == '-')
1546 {
1547 if (read_type_number (pp, typenums) != 0)
1548 return error_type (pp, objfile);
1549
1550 if (**pp != '=')
1551 {
1552 /* Type is not being defined here. Either it already
1553 exists, or this is a forward reference to it.
1554 dbx_alloc_type handles both cases. */
1555 type = dbx_alloc_type (typenums, objfile);
1556
1557 /* If this is a forward reference, arrange to complain if it
1558 doesn't get patched up by the time we're done
1559 reading. */
1560 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1561 add_undefined_type (type, typenums);
1562
1563 return type;
1564 }
1565
1566 /* Type is being defined here. */
1567 /* Skip the '='.
1568 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1569 (*pp) += 2;
1570 }
1571 else
1572 {
1573 /* 'typenums=' not present, type is anonymous. Read and return
1574 the definition, but don't put it in the type vector. */
1575 typenums[0] = typenums[1] = -1;
1576 (*pp)++;
1577 }
1578
1579 again:
1580 type_descriptor = (*pp)[-1];
1581 switch (type_descriptor)
1582 {
1583 case 'x':
1584 {
1585 enum type_code code;
1586
1587 /* Used to index through file_symbols. */
1588 struct pending *ppt;
1589 int i;
1590
1591 /* Name including "struct", etc. */
1592 char *type_name;
1593
1594 {
1595 const char *from, *p, *q1, *q2;
1596
1597 /* Set the type code according to the following letter. */
1598 switch ((*pp)[0])
1599 {
1600 case 's':
1601 code = TYPE_CODE_STRUCT;
1602 break;
1603 case 'u':
1604 code = TYPE_CODE_UNION;
1605 break;
1606 case 'e':
1607 code = TYPE_CODE_ENUM;
1608 break;
1609 default:
1610 {
1611 /* Complain and keep going, so compilers can invent new
1612 cross-reference types. */
1613 complaint (_("Unrecognized cross-reference type `%c'"),
1614 (*pp)[0]);
1615 code = TYPE_CODE_STRUCT;
1616 break;
1617 }
1618 }
1619
1620 q1 = strchr (*pp, '<');
1621 p = strchr (*pp, ':');
1622 if (p == NULL)
1623 return error_type (pp, objfile);
1624 if (q1 && p > q1 && p[1] == ':')
1625 {
1626 int nesting_level = 0;
1627
1628 for (q2 = q1; *q2; q2++)
1629 {
1630 if (*q2 == '<')
1631 nesting_level++;
1632 else if (*q2 == '>')
1633 nesting_level--;
1634 else if (*q2 == ':' && nesting_level == 0)
1635 break;
1636 }
1637 p = q2;
1638 if (*p != ':')
1639 return error_type (pp, objfile);
1640 }
1641 type_name = NULL;
1642 if (get_current_subfile ()->language == language_cplus)
1643 {
1644 char *name = (char *) alloca (p - *pp + 1);
1645
1646 memcpy (name, *pp, p - *pp);
1647 name[p - *pp] = '\0';
1648
1649 std::string new_name = cp_canonicalize_string (name);
1650 if (!new_name.empty ())
1651 {
1652 type_name
1653 = (char *) obstack_copy0 (&objfile->objfile_obstack,
1654 new_name.c_str (),
1655 new_name.length ());
1656 }
1657 }
1658 if (type_name == NULL)
1659 {
1660 char *to = type_name = (char *)
1661 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1662
1663 /* Copy the name. */
1664 from = *pp + 1;
1665 while (from < p)
1666 *to++ = *from++;
1667 *to = '\0';
1668 }
1669
1670 /* Set the pointer ahead of the name which we just read, and
1671 the colon. */
1672 *pp = p + 1;
1673 }
1674
1675 /* If this type has already been declared, then reuse the same
1676 type, rather than allocating a new one. This saves some
1677 memory. */
1678
1679 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
1680 for (i = 0; i < ppt->nsyms; i++)
1681 {
1682 struct symbol *sym = ppt->symbol[i];
1683
1684 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1685 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1686 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1687 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1688 {
1689 obstack_free (&objfile->objfile_obstack, type_name);
1690 type = SYMBOL_TYPE (sym);
1691 if (typenums[0] != -1)
1692 *dbx_lookup_type (typenums, objfile) = type;
1693 return type;
1694 }
1695 }
1696
1697 /* Didn't find the type to which this refers, so we must
1698 be dealing with a forward reference. Allocate a type
1699 structure for it, and keep track of it so we can
1700 fill in the rest of the fields when we get the full
1701 type. */
1702 type = dbx_alloc_type (typenums, objfile);
1703 TYPE_CODE (type) = code;
1704 TYPE_NAME (type) = type_name;
1705 INIT_CPLUS_SPECIFIC (type);
1706 TYPE_STUB (type) = 1;
1707
1708 add_undefined_type (type, typenums);
1709 return type;
1710 }
1711
1712 case '-': /* RS/6000 built-in type */
1713 case '0':
1714 case '1':
1715 case '2':
1716 case '3':
1717 case '4':
1718 case '5':
1719 case '6':
1720 case '7':
1721 case '8':
1722 case '9':
1723 case '(':
1724 (*pp)--;
1725
1726 /* We deal with something like t(1,2)=(3,4)=... which
1727 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1728
1729 /* Allocate and enter the typedef type first.
1730 This handles recursive types. */
1731 type = dbx_alloc_type (typenums, objfile);
1732 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1733 {
1734 struct type *xtype = read_type (pp, objfile);
1735
1736 if (type == xtype)
1737 {
1738 /* It's being defined as itself. That means it is "void". */
1739 TYPE_CODE (type) = TYPE_CODE_VOID;
1740 TYPE_LENGTH (type) = 1;
1741 }
1742 else if (type_size >= 0 || is_string)
1743 {
1744 /* This is the absolute wrong way to construct types. Every
1745 other debug format has found a way around this problem and
1746 the related problems with unnecessarily stubbed types;
1747 someone motivated should attempt to clean up the issue
1748 here as well. Once a type pointed to has been created it
1749 should not be modified.
1750
1751 Well, it's not *absolutely* wrong. Constructing recursive
1752 types (trees, linked lists) necessarily entails modifying
1753 types after creating them. Constructing any loop structure
1754 entails side effects. The Dwarf 2 reader does handle this
1755 more gracefully (it never constructs more than once
1756 instance of a type object, so it doesn't have to copy type
1757 objects wholesale), but it still mutates type objects after
1758 other folks have references to them.
1759
1760 Keep in mind that this circularity/mutation issue shows up
1761 at the source language level, too: C's "incomplete types",
1762 for example. So the proper cleanup, I think, would be to
1763 limit GDB's type smashing to match exactly those required
1764 by the source language. So GDB could have a
1765 "complete_this_type" function, but never create unnecessary
1766 copies of a type otherwise. */
1767 replace_type (type, xtype);
1768 TYPE_NAME (type) = NULL;
1769 }
1770 else
1771 {
1772 TYPE_TARGET_STUB (type) = 1;
1773 TYPE_TARGET_TYPE (type) = xtype;
1774 }
1775 }
1776 break;
1777
1778 /* In the following types, we must be sure to overwrite any existing
1779 type that the typenums refer to, rather than allocating a new one
1780 and making the typenums point to the new one. This is because there
1781 may already be pointers to the existing type (if it had been
1782 forward-referenced), and we must change it to a pointer, function,
1783 reference, or whatever, *in-place*. */
1784
1785 case '*': /* Pointer to another type */
1786 type1 = read_type (pp, objfile);
1787 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1788 break;
1789
1790 case '&': /* Reference to another type */
1791 type1 = read_type (pp, objfile);
1792 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
1793 TYPE_CODE_REF);
1794 break;
1795
1796 case 'f': /* Function returning another type */
1797 type1 = read_type (pp, objfile);
1798 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1799 break;
1800
1801 case 'g': /* Prototyped function. (Sun) */
1802 {
1803 /* Unresolved questions:
1804
1805 - According to Sun's ``STABS Interface Manual'', for 'f'
1806 and 'F' symbol descriptors, a `0' in the argument type list
1807 indicates a varargs function. But it doesn't say how 'g'
1808 type descriptors represent that info. Someone with access
1809 to Sun's toolchain should try it out.
1810
1811 - According to the comment in define_symbol (search for
1812 `process_prototype_types:'), Sun emits integer arguments as
1813 types which ref themselves --- like `void' types. Do we
1814 have to deal with that here, too? Again, someone with
1815 access to Sun's toolchain should try it out and let us
1816 know. */
1817
1818 const char *type_start = (*pp) - 1;
1819 struct type *return_type = read_type (pp, objfile);
1820 struct type *func_type
1821 = make_function_type (return_type,
1822 dbx_lookup_type (typenums, objfile));
1823 struct type_list {
1824 struct type *type;
1825 struct type_list *next;
1826 } *arg_types = 0;
1827 int num_args = 0;
1828
1829 while (**pp && **pp != '#')
1830 {
1831 struct type *arg_type = read_type (pp, objfile);
1832 struct type_list *newobj = XALLOCA (struct type_list);
1833 newobj->type = arg_type;
1834 newobj->next = arg_types;
1835 arg_types = newobj;
1836 num_args++;
1837 }
1838 if (**pp == '#')
1839 ++*pp;
1840 else
1841 {
1842 complaint (_("Prototyped function type didn't "
1843 "end arguments with `#':\n%s"),
1844 type_start);
1845 }
1846
1847 /* If there is just one argument whose type is `void', then
1848 that's just an empty argument list. */
1849 if (arg_types
1850 && ! arg_types->next
1851 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1852 num_args = 0;
1853
1854 TYPE_FIELDS (func_type)
1855 = (struct field *) TYPE_ALLOC (func_type,
1856 num_args * sizeof (struct field));
1857 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1858 {
1859 int i;
1860 struct type_list *t;
1861
1862 /* We stuck each argument type onto the front of the list
1863 when we read it, so the list is reversed. Build the
1864 fields array right-to-left. */
1865 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1866 TYPE_FIELD_TYPE (func_type, i) = t->type;
1867 }
1868 TYPE_NFIELDS (func_type) = num_args;
1869 TYPE_PROTOTYPED (func_type) = 1;
1870
1871 type = func_type;
1872 break;
1873 }
1874
1875 case 'k': /* Const qualifier on some type (Sun) */
1876 type = read_type (pp, objfile);
1877 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1878 dbx_lookup_type (typenums, objfile));
1879 break;
1880
1881 case 'B': /* Volatile qual on some type (Sun) */
1882 type = read_type (pp, objfile);
1883 type = make_cv_type (TYPE_CONST (type), 1, type,
1884 dbx_lookup_type (typenums, objfile));
1885 break;
1886
1887 case '@':
1888 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1889 { /* Member (class & variable) type */
1890 /* FIXME -- we should be doing smash_to_XXX types here. */
1891
1892 struct type *domain = read_type (pp, objfile);
1893 struct type *memtype;
1894
1895 if (**pp != ',')
1896 /* Invalid member type data format. */
1897 return error_type (pp, objfile);
1898 ++*pp;
1899
1900 memtype = read_type (pp, objfile);
1901 type = dbx_alloc_type (typenums, objfile);
1902 smash_to_memberptr_type (type, domain, memtype);
1903 }
1904 else
1905 /* type attribute */
1906 {
1907 const char *attr = *pp;
1908
1909 /* Skip to the semicolon. */
1910 while (**pp != ';' && **pp != '\0')
1911 ++(*pp);
1912 if (**pp == '\0')
1913 return error_type (pp, objfile);
1914 else
1915 ++ * pp; /* Skip the semicolon. */
1916
1917 switch (*attr)
1918 {
1919 case 's': /* Size attribute */
1920 type_size = atoi (attr + 1);
1921 if (type_size <= 0)
1922 type_size = -1;
1923 break;
1924
1925 case 'S': /* String attribute */
1926 /* FIXME: check to see if following type is array? */
1927 is_string = 1;
1928 break;
1929
1930 case 'V': /* Vector attribute */
1931 /* FIXME: check to see if following type is array? */
1932 is_vector = 1;
1933 break;
1934
1935 default:
1936 /* Ignore unrecognized type attributes, so future compilers
1937 can invent new ones. */
1938 break;
1939 }
1940 ++*pp;
1941 goto again;
1942 }
1943 break;
1944
1945 case '#': /* Method (class & fn) type */
1946 if ((*pp)[0] == '#')
1947 {
1948 /* We'll get the parameter types from the name. */
1949 struct type *return_type;
1950
1951 (*pp)++;
1952 return_type = read_type (pp, objfile);
1953 if (*(*pp)++ != ';')
1954 complaint (_("invalid (minimal) member type "
1955 "data format at symtab pos %d."),
1956 symnum);
1957 type = allocate_stub_method (return_type);
1958 if (typenums[0] != -1)
1959 *dbx_lookup_type (typenums, objfile) = type;
1960 }
1961 else
1962 {
1963 struct type *domain = read_type (pp, objfile);
1964 struct type *return_type;
1965 struct field *args;
1966 int nargs, varargs;
1967
1968 if (**pp != ',')
1969 /* Invalid member type data format. */
1970 return error_type (pp, objfile);
1971 else
1972 ++(*pp);
1973
1974 return_type = read_type (pp, objfile);
1975 args = read_args (pp, ';', objfile, &nargs, &varargs);
1976 if (args == NULL)
1977 return error_type (pp, objfile);
1978 type = dbx_alloc_type (typenums, objfile);
1979 smash_to_method_type (type, domain, return_type, args,
1980 nargs, varargs);
1981 }
1982 break;
1983
1984 case 'r': /* Range type */
1985 type = read_range_type (pp, typenums, type_size, objfile);
1986 if (typenums[0] != -1)
1987 *dbx_lookup_type (typenums, objfile) = type;
1988 break;
1989
1990 case 'b':
1991 {
1992 /* Sun ACC builtin int type */
1993 type = read_sun_builtin_type (pp, typenums, objfile);
1994 if (typenums[0] != -1)
1995 *dbx_lookup_type (typenums, objfile) = type;
1996 }
1997 break;
1998
1999 case 'R': /* Sun ACC builtin float type */
2000 type = read_sun_floating_type (pp, typenums, objfile);
2001 if (typenums[0] != -1)
2002 *dbx_lookup_type (typenums, objfile) = type;
2003 break;
2004
2005 case 'e': /* Enumeration type */
2006 type = dbx_alloc_type (typenums, objfile);
2007 type = read_enum_type (pp, type, objfile);
2008 if (typenums[0] != -1)
2009 *dbx_lookup_type (typenums, objfile) = type;
2010 break;
2011
2012 case 's': /* Struct type */
2013 case 'u': /* Union type */
2014 {
2015 enum type_code type_code = TYPE_CODE_UNDEF;
2016 type = dbx_alloc_type (typenums, objfile);
2017 switch (type_descriptor)
2018 {
2019 case 's':
2020 type_code = TYPE_CODE_STRUCT;
2021 break;
2022 case 'u':
2023 type_code = TYPE_CODE_UNION;
2024 break;
2025 }
2026 type = read_struct_type (pp, type, type_code, objfile);
2027 break;
2028 }
2029
2030 case 'a': /* Array type */
2031 if (**pp != 'r')
2032 return error_type (pp, objfile);
2033 ++*pp;
2034
2035 type = dbx_alloc_type (typenums, objfile);
2036 type = read_array_type (pp, type, objfile);
2037 if (is_string)
2038 TYPE_CODE (type) = TYPE_CODE_STRING;
2039 if (is_vector)
2040 make_vector_type (type);
2041 break;
2042
2043 case 'S': /* Set type */
2044 type1 = read_type (pp, objfile);
2045 type = create_set_type ((struct type *) NULL, type1);
2046 if (typenums[0] != -1)
2047 *dbx_lookup_type (typenums, objfile) = type;
2048 break;
2049
2050 default:
2051 --*pp; /* Go back to the symbol in error. */
2052 /* Particularly important if it was \0! */
2053 return error_type (pp, objfile);
2054 }
2055
2056 if (type == 0)
2057 {
2058 warning (_("GDB internal error, type is NULL in stabsread.c."));
2059 return error_type (pp, objfile);
2060 }
2061
2062 /* Size specified in a type attribute overrides any other size. */
2063 if (type_size != -1)
2064 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2065
2066 return type;
2067 }
2068 \f
2069 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2070 Return the proper type node for a given builtin type number. */
2071
2072 static const struct objfile_data *rs6000_builtin_type_data;
2073
2074 static struct type *
2075 rs6000_builtin_type (int typenum, struct objfile *objfile)
2076 {
2077 struct type **negative_types
2078 = (struct type **) objfile_data (objfile, rs6000_builtin_type_data);
2079
2080 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2081 #define NUMBER_RECOGNIZED 34
2082 struct type *rettype = NULL;
2083
2084 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2085 {
2086 complaint (_("Unknown builtin type %d"), typenum);
2087 return objfile_type (objfile)->builtin_error;
2088 }
2089
2090 if (!negative_types)
2091 {
2092 /* This includes an empty slot for type number -0. */
2093 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2094 NUMBER_RECOGNIZED + 1, struct type *);
2095 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2096 }
2097
2098 if (negative_types[-typenum] != NULL)
2099 return negative_types[-typenum];
2100
2101 #if TARGET_CHAR_BIT != 8
2102 #error This code wrong for TARGET_CHAR_BIT not 8
2103 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2104 that if that ever becomes not true, the correct fix will be to
2105 make the size in the struct type to be in bits, not in units of
2106 TARGET_CHAR_BIT. */
2107 #endif
2108
2109 switch (-typenum)
2110 {
2111 case 1:
2112 /* The size of this and all the other types are fixed, defined
2113 by the debugging format. If there is a type called "int" which
2114 is other than 32 bits, then it should use a new negative type
2115 number (or avoid negative type numbers for that case).
2116 See stabs.texinfo. */
2117 rettype = init_integer_type (objfile, 32, 0, "int");
2118 break;
2119 case 2:
2120 rettype = init_integer_type (objfile, 8, 0, "char");
2121 TYPE_NOSIGN (rettype) = 1;
2122 break;
2123 case 3:
2124 rettype = init_integer_type (objfile, 16, 0, "short");
2125 break;
2126 case 4:
2127 rettype = init_integer_type (objfile, 32, 0, "long");
2128 break;
2129 case 5:
2130 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2131 break;
2132 case 6:
2133 rettype = init_integer_type (objfile, 8, 0, "signed char");
2134 break;
2135 case 7:
2136 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2137 break;
2138 case 8:
2139 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2140 break;
2141 case 9:
2142 rettype = init_integer_type (objfile, 32, 1, "unsigned");
2143 break;
2144 case 10:
2145 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2146 break;
2147 case 11:
2148 rettype = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
2149 break;
2150 case 12:
2151 /* IEEE single precision (32 bit). */
2152 rettype = init_float_type (objfile, 32, "float",
2153 floatformats_ieee_single);
2154 break;
2155 case 13:
2156 /* IEEE double precision (64 bit). */
2157 rettype = init_float_type (objfile, 64, "double",
2158 floatformats_ieee_double);
2159 break;
2160 case 14:
2161 /* This is an IEEE double on the RS/6000, and different machines with
2162 different sizes for "long double" should use different negative
2163 type numbers. See stabs.texinfo. */
2164 rettype = init_float_type (objfile, 64, "long double",
2165 floatformats_ieee_double);
2166 break;
2167 case 15:
2168 rettype = init_integer_type (objfile, 32, 0, "integer");
2169 break;
2170 case 16:
2171 rettype = init_boolean_type (objfile, 32, 1, "boolean");
2172 break;
2173 case 17:
2174 rettype = init_float_type (objfile, 32, "short real",
2175 floatformats_ieee_single);
2176 break;
2177 case 18:
2178 rettype = init_float_type (objfile, 64, "real",
2179 floatformats_ieee_double);
2180 break;
2181 case 19:
2182 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2183 break;
2184 case 20:
2185 rettype = init_character_type (objfile, 8, 1, "character");
2186 break;
2187 case 21:
2188 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2189 break;
2190 case 22:
2191 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2192 break;
2193 case 23:
2194 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2195 break;
2196 case 24:
2197 rettype = init_boolean_type (objfile, 32, 1, "logical");
2198 break;
2199 case 25:
2200 /* Complex type consisting of two IEEE single precision values. */
2201 rettype = init_complex_type (objfile, "complex",
2202 rs6000_builtin_type (12, objfile));
2203 break;
2204 case 26:
2205 /* Complex type consisting of two IEEE double precision values. */
2206 rettype = init_complex_type (objfile, "double complex",
2207 rs6000_builtin_type (13, objfile));
2208 break;
2209 case 27:
2210 rettype = init_integer_type (objfile, 8, 0, "integer*1");
2211 break;
2212 case 28:
2213 rettype = init_integer_type (objfile, 16, 0, "integer*2");
2214 break;
2215 case 29:
2216 rettype = init_integer_type (objfile, 32, 0, "integer*4");
2217 break;
2218 case 30:
2219 rettype = init_character_type (objfile, 16, 0, "wchar");
2220 break;
2221 case 31:
2222 rettype = init_integer_type (objfile, 64, 0, "long long");
2223 break;
2224 case 32:
2225 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2226 break;
2227 case 33:
2228 rettype = init_integer_type (objfile, 64, 1, "logical*8");
2229 break;
2230 case 34:
2231 rettype = init_integer_type (objfile, 64, 0, "integer*8");
2232 break;
2233 }
2234 negative_types[-typenum] = rettype;
2235 return rettype;
2236 }
2237 \f
2238 /* This page contains subroutines of read_type. */
2239
2240 /* Wrapper around method_name_from_physname to flag a complaint
2241 if there is an error. */
2242
2243 static char *
2244 stabs_method_name_from_physname (const char *physname)
2245 {
2246 char *method_name;
2247
2248 method_name = method_name_from_physname (physname);
2249
2250 if (method_name == NULL)
2251 {
2252 complaint (_("Method has bad physname %s\n"), physname);
2253 return NULL;
2254 }
2255
2256 return method_name;
2257 }
2258
2259 /* Read member function stabs info for C++ classes. The form of each member
2260 function data is:
2261
2262 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2263
2264 An example with two member functions is:
2265
2266 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2267
2268 For the case of overloaded operators, the format is op$::*.funcs, where
2269 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2270 name (such as `+=') and `.' marks the end of the operator name.
2271
2272 Returns 1 for success, 0 for failure. */
2273
2274 static int
2275 read_member_functions (struct field_info *fip, const char **pp,
2276 struct type *type, struct objfile *objfile)
2277 {
2278 int nfn_fields = 0;
2279 int length = 0;
2280 int i;
2281 struct next_fnfield
2282 {
2283 struct next_fnfield *next;
2284 struct fn_field fn_field;
2285 }
2286 *sublist;
2287 struct type *look_ahead_type;
2288 struct next_fnfieldlist *new_fnlist;
2289 struct next_fnfield *new_sublist;
2290 char *main_fn_name;
2291 const char *p;
2292
2293 /* Process each list until we find something that is not a member function
2294 or find the end of the functions. */
2295
2296 while (**pp != ';')
2297 {
2298 /* We should be positioned at the start of the function name.
2299 Scan forward to find the first ':' and if it is not the
2300 first of a "::" delimiter, then this is not a member function. */
2301 p = *pp;
2302 while (*p != ':')
2303 {
2304 p++;
2305 }
2306 if (p[1] != ':')
2307 {
2308 break;
2309 }
2310
2311 sublist = NULL;
2312 look_ahead_type = NULL;
2313 length = 0;
2314
2315 new_fnlist = XCNEW (struct next_fnfieldlist);
2316 make_cleanup (xfree, new_fnlist);
2317
2318 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2319 {
2320 /* This is a completely wierd case. In order to stuff in the
2321 names that might contain colons (the usual name delimiter),
2322 Mike Tiemann defined a different name format which is
2323 signalled if the identifier is "op$". In that case, the
2324 format is "op$::XXXX." where XXXX is the name. This is
2325 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2326 /* This lets the user type "break operator+".
2327 We could just put in "+" as the name, but that wouldn't
2328 work for "*". */
2329 static char opname[32] = "op$";
2330 char *o = opname + 3;
2331
2332 /* Skip past '::'. */
2333 *pp = p + 2;
2334
2335 STABS_CONTINUE (pp, objfile);
2336 p = *pp;
2337 while (*p != '.')
2338 {
2339 *o++ = *p++;
2340 }
2341 main_fn_name = savestring (opname, o - opname);
2342 /* Skip past '.' */
2343 *pp = p + 1;
2344 }
2345 else
2346 {
2347 main_fn_name = savestring (*pp, p - *pp);
2348 /* Skip past '::'. */
2349 *pp = p + 2;
2350 }
2351 new_fnlist->fn_fieldlist.name = main_fn_name;
2352
2353 do
2354 {
2355 new_sublist = XCNEW (struct next_fnfield);
2356 make_cleanup (xfree, new_sublist);
2357
2358 /* Check for and handle cretinous dbx symbol name continuation! */
2359 if (look_ahead_type == NULL)
2360 {
2361 /* Normal case. */
2362 STABS_CONTINUE (pp, objfile);
2363
2364 new_sublist->fn_field.type = read_type (pp, objfile);
2365 if (**pp != ':')
2366 {
2367 /* Invalid symtab info for member function. */
2368 return 0;
2369 }
2370 }
2371 else
2372 {
2373 /* g++ version 1 kludge */
2374 new_sublist->fn_field.type = look_ahead_type;
2375 look_ahead_type = NULL;
2376 }
2377
2378 (*pp)++;
2379 p = *pp;
2380 while (*p != ';')
2381 {
2382 p++;
2383 }
2384
2385 /* These are methods, not functions. */
2386 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2387 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2388 else
2389 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2390 == TYPE_CODE_METHOD);
2391
2392 /* If this is just a stub, then we don't have the real name here. */
2393 if (TYPE_STUB (new_sublist->fn_field.type))
2394 {
2395 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2396 set_type_self_type (new_sublist->fn_field.type, type);
2397 new_sublist->fn_field.is_stub = 1;
2398 }
2399
2400 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2401 *pp = p + 1;
2402
2403 /* Set this member function's visibility fields. */
2404 switch (*(*pp)++)
2405 {
2406 case VISIBILITY_PRIVATE:
2407 new_sublist->fn_field.is_private = 1;
2408 break;
2409 case VISIBILITY_PROTECTED:
2410 new_sublist->fn_field.is_protected = 1;
2411 break;
2412 }
2413
2414 STABS_CONTINUE (pp, objfile);
2415 switch (**pp)
2416 {
2417 case 'A': /* Normal functions. */
2418 new_sublist->fn_field.is_const = 0;
2419 new_sublist->fn_field.is_volatile = 0;
2420 (*pp)++;
2421 break;
2422 case 'B': /* `const' member functions. */
2423 new_sublist->fn_field.is_const = 1;
2424 new_sublist->fn_field.is_volatile = 0;
2425 (*pp)++;
2426 break;
2427 case 'C': /* `volatile' member function. */
2428 new_sublist->fn_field.is_const = 0;
2429 new_sublist->fn_field.is_volatile = 1;
2430 (*pp)++;
2431 break;
2432 case 'D': /* `const volatile' member function. */
2433 new_sublist->fn_field.is_const = 1;
2434 new_sublist->fn_field.is_volatile = 1;
2435 (*pp)++;
2436 break;
2437 case '*': /* File compiled with g++ version 1 --
2438 no info. */
2439 case '?':
2440 case '.':
2441 break;
2442 default:
2443 complaint (_("const/volatile indicator missing, got '%c'"),
2444 **pp);
2445 break;
2446 }
2447
2448 switch (*(*pp)++)
2449 {
2450 case '*':
2451 {
2452 int nbits;
2453 /* virtual member function, followed by index.
2454 The sign bit is set to distinguish pointers-to-methods
2455 from virtual function indicies. Since the array is
2456 in words, the quantity must be shifted left by 1
2457 on 16 bit machine, and by 2 on 32 bit machine, forcing
2458 the sign bit out, and usable as a valid index into
2459 the array. Remove the sign bit here. */
2460 new_sublist->fn_field.voffset =
2461 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2462 if (nbits != 0)
2463 return 0;
2464
2465 STABS_CONTINUE (pp, objfile);
2466 if (**pp == ';' || **pp == '\0')
2467 {
2468 /* Must be g++ version 1. */
2469 new_sublist->fn_field.fcontext = 0;
2470 }
2471 else
2472 {
2473 /* Figure out from whence this virtual function came.
2474 It may belong to virtual function table of
2475 one of its baseclasses. */
2476 look_ahead_type = read_type (pp, objfile);
2477 if (**pp == ':')
2478 {
2479 /* g++ version 1 overloaded methods. */
2480 }
2481 else
2482 {
2483 new_sublist->fn_field.fcontext = look_ahead_type;
2484 if (**pp != ';')
2485 {
2486 return 0;
2487 }
2488 else
2489 {
2490 ++*pp;
2491 }
2492 look_ahead_type = NULL;
2493 }
2494 }
2495 break;
2496 }
2497 case '?':
2498 /* static member function. */
2499 {
2500 int slen = strlen (main_fn_name);
2501
2502 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2503
2504 /* For static member functions, we can't tell if they
2505 are stubbed, as they are put out as functions, and not as
2506 methods.
2507 GCC v2 emits the fully mangled name if
2508 dbxout.c:flag_minimal_debug is not set, so we have to
2509 detect a fully mangled physname here and set is_stub
2510 accordingly. Fully mangled physnames in v2 start with
2511 the member function name, followed by two underscores.
2512 GCC v3 currently always emits stubbed member functions,
2513 but with fully mangled physnames, which start with _Z. */
2514 if (!(strncmp (new_sublist->fn_field.physname,
2515 main_fn_name, slen) == 0
2516 && new_sublist->fn_field.physname[slen] == '_'
2517 && new_sublist->fn_field.physname[slen + 1] == '_'))
2518 {
2519 new_sublist->fn_field.is_stub = 1;
2520 }
2521 break;
2522 }
2523
2524 default:
2525 /* error */
2526 complaint (_("member function type missing, got '%c'"),
2527 (*pp)[-1]);
2528 /* Normal member function. */
2529 /* Fall through. */
2530
2531 case '.':
2532 /* normal member function. */
2533 new_sublist->fn_field.voffset = 0;
2534 new_sublist->fn_field.fcontext = 0;
2535 break;
2536 }
2537
2538 new_sublist->next = sublist;
2539 sublist = new_sublist;
2540 length++;
2541 STABS_CONTINUE (pp, objfile);
2542 }
2543 while (**pp != ';' && **pp != '\0');
2544
2545 (*pp)++;
2546 STABS_CONTINUE (pp, objfile);
2547
2548 /* Skip GCC 3.X member functions which are duplicates of the callable
2549 constructor/destructor. */
2550 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2551 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2552 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2553 {
2554 xfree (main_fn_name);
2555 }
2556 else
2557 {
2558 int has_stub = 0;
2559 int has_destructor = 0, has_other = 0;
2560 int is_v3 = 0;
2561 struct next_fnfield *tmp_sublist;
2562
2563 /* Various versions of GCC emit various mostly-useless
2564 strings in the name field for special member functions.
2565
2566 For stub methods, we need to defer correcting the name
2567 until we are ready to unstub the method, because the current
2568 name string is used by gdb_mangle_name. The only stub methods
2569 of concern here are GNU v2 operators; other methods have their
2570 names correct (see caveat below).
2571
2572 For non-stub methods, in GNU v3, we have a complete physname.
2573 Therefore we can safely correct the name now. This primarily
2574 affects constructors and destructors, whose name will be
2575 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2576 operators will also have incorrect names; for instance,
2577 "operator int" will be named "operator i" (i.e. the type is
2578 mangled).
2579
2580 For non-stub methods in GNU v2, we have no easy way to
2581 know if we have a complete physname or not. For most
2582 methods the result depends on the platform (if CPLUS_MARKER
2583 can be `$' or `.', it will use minimal debug information, or
2584 otherwise the full physname will be included).
2585
2586 Rather than dealing with this, we take a different approach.
2587 For v3 mangled names, we can use the full physname; for v2,
2588 we use cplus_demangle_opname (which is actually v2 specific),
2589 because the only interesting names are all operators - once again
2590 barring the caveat below. Skip this process if any method in the
2591 group is a stub, to prevent our fouling up the workings of
2592 gdb_mangle_name.
2593
2594 The caveat: GCC 2.95.x (and earlier?) put constructors and
2595 destructors in the same method group. We need to split this
2596 into two groups, because they should have different names.
2597 So for each method group we check whether it contains both
2598 routines whose physname appears to be a destructor (the physnames
2599 for and destructors are always provided, due to quirks in v2
2600 mangling) and routines whose physname does not appear to be a
2601 destructor. If so then we break up the list into two halves.
2602 Even if the constructors and destructors aren't in the same group
2603 the destructor will still lack the leading tilde, so that also
2604 needs to be fixed.
2605
2606 So, to summarize what we expect and handle here:
2607
2608 Given Given Real Real Action
2609 method name physname physname method name
2610
2611 __opi [none] __opi__3Foo operator int opname
2612 [now or later]
2613 Foo _._3Foo _._3Foo ~Foo separate and
2614 rename
2615 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2616 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2617 */
2618
2619 tmp_sublist = sublist;
2620 while (tmp_sublist != NULL)
2621 {
2622 if (tmp_sublist->fn_field.is_stub)
2623 has_stub = 1;
2624 if (tmp_sublist->fn_field.physname[0] == '_'
2625 && tmp_sublist->fn_field.physname[1] == 'Z')
2626 is_v3 = 1;
2627
2628 if (is_destructor_name (tmp_sublist->fn_field.physname))
2629 has_destructor++;
2630 else
2631 has_other++;
2632
2633 tmp_sublist = tmp_sublist->next;
2634 }
2635
2636 if (has_destructor && has_other)
2637 {
2638 struct next_fnfieldlist *destr_fnlist;
2639 struct next_fnfield *last_sublist;
2640
2641 /* Create a new fn_fieldlist for the destructors. */
2642
2643 destr_fnlist = XCNEW (struct next_fnfieldlist);
2644 make_cleanup (xfree, destr_fnlist);
2645
2646 destr_fnlist->fn_fieldlist.name
2647 = obconcat (&objfile->objfile_obstack, "~",
2648 new_fnlist->fn_fieldlist.name, (char *) NULL);
2649
2650 destr_fnlist->fn_fieldlist.fn_fields =
2651 XOBNEWVEC (&objfile->objfile_obstack,
2652 struct fn_field, has_destructor);
2653 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2654 sizeof (struct fn_field) * has_destructor);
2655 tmp_sublist = sublist;
2656 last_sublist = NULL;
2657 i = 0;
2658 while (tmp_sublist != NULL)
2659 {
2660 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2661 {
2662 tmp_sublist = tmp_sublist->next;
2663 continue;
2664 }
2665
2666 destr_fnlist->fn_fieldlist.fn_fields[i++]
2667 = tmp_sublist->fn_field;
2668 if (last_sublist)
2669 last_sublist->next = tmp_sublist->next;
2670 else
2671 sublist = tmp_sublist->next;
2672 last_sublist = tmp_sublist;
2673 tmp_sublist = tmp_sublist->next;
2674 }
2675
2676 destr_fnlist->fn_fieldlist.length = has_destructor;
2677 destr_fnlist->next = fip->fnlist;
2678 fip->fnlist = destr_fnlist;
2679 nfn_fields++;
2680 length -= has_destructor;
2681 }
2682 else if (is_v3)
2683 {
2684 /* v3 mangling prevents the use of abbreviated physnames,
2685 so we can do this here. There are stubbed methods in v3
2686 only:
2687 - in -gstabs instead of -gstabs+
2688 - or for static methods, which are output as a function type
2689 instead of a method type. */
2690 char *new_method_name =
2691 stabs_method_name_from_physname (sublist->fn_field.physname);
2692
2693 if (new_method_name != NULL
2694 && strcmp (new_method_name,
2695 new_fnlist->fn_fieldlist.name) != 0)
2696 {
2697 new_fnlist->fn_fieldlist.name = new_method_name;
2698 xfree (main_fn_name);
2699 }
2700 else
2701 xfree (new_method_name);
2702 }
2703 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2704 {
2705 new_fnlist->fn_fieldlist.name =
2706 obconcat (&objfile->objfile_obstack,
2707 "~", main_fn_name, (char *)NULL);
2708 xfree (main_fn_name);
2709 }
2710 else if (!has_stub)
2711 {
2712 char dem_opname[256];
2713 int ret;
2714
2715 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2716 dem_opname, DMGL_ANSI);
2717 if (!ret)
2718 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2719 dem_opname, 0);
2720 if (ret)
2721 new_fnlist->fn_fieldlist.name
2722 = ((const char *)
2723 obstack_copy0 (&objfile->objfile_obstack, dem_opname,
2724 strlen (dem_opname)));
2725 xfree (main_fn_name);
2726 }
2727
2728 new_fnlist->fn_fieldlist.fn_fields
2729 = OBSTACK_CALLOC (&objfile->objfile_obstack, length, fn_field);
2730 for (i = length; (i--, sublist); sublist = sublist->next)
2731 {
2732 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2733 }
2734
2735 new_fnlist->fn_fieldlist.length = length;
2736 new_fnlist->next = fip->fnlist;
2737 fip->fnlist = new_fnlist;
2738 nfn_fields++;
2739 }
2740 }
2741
2742 if (nfn_fields)
2743 {
2744 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2745 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2746 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2747 memset (TYPE_FN_FIELDLISTS (type), 0,
2748 sizeof (struct fn_fieldlist) * nfn_fields);
2749 TYPE_NFN_FIELDS (type) = nfn_fields;
2750 }
2751
2752 return 1;
2753 }
2754
2755 /* Special GNU C++ name.
2756
2757 Returns 1 for success, 0 for failure. "failure" means that we can't
2758 keep parsing and it's time for error_type(). */
2759
2760 static int
2761 read_cpp_abbrev (struct field_info *fip, const char **pp, struct type *type,
2762 struct objfile *objfile)
2763 {
2764 const char *p;
2765 const char *name;
2766 char cpp_abbrev;
2767 struct type *context;
2768
2769 p = *pp;
2770 if (*++p == 'v')
2771 {
2772 name = NULL;
2773 cpp_abbrev = *++p;
2774
2775 *pp = p + 1;
2776
2777 /* At this point, *pp points to something like "22:23=*22...",
2778 where the type number before the ':' is the "context" and
2779 everything after is a regular type definition. Lookup the
2780 type, find it's name, and construct the field name. */
2781
2782 context = read_type (pp, objfile);
2783
2784 switch (cpp_abbrev)
2785 {
2786 case 'f': /* $vf -- a virtual function table pointer */
2787 name = TYPE_NAME (context);
2788 if (name == NULL)
2789 {
2790 name = "";
2791 }
2792 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2793 vptr_name, name, (char *) NULL);
2794 break;
2795
2796 case 'b': /* $vb -- a virtual bsomethingorother */
2797 name = TYPE_NAME (context);
2798 if (name == NULL)
2799 {
2800 complaint (_("C++ abbreviated type name "
2801 "unknown at symtab pos %d"),
2802 symnum);
2803 name = "FOO";
2804 }
2805 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2806 name, (char *) NULL);
2807 break;
2808
2809 default:
2810 invalid_cpp_abbrev_complaint (*pp);
2811 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2812 "INVALID_CPLUSPLUS_ABBREV",
2813 (char *) NULL);
2814 break;
2815 }
2816
2817 /* At this point, *pp points to the ':'. Skip it and read the
2818 field type. */
2819
2820 p = ++(*pp);
2821 if (p[-1] != ':')
2822 {
2823 invalid_cpp_abbrev_complaint (*pp);
2824 return 0;
2825 }
2826 fip->list->field.type = read_type (pp, objfile);
2827 if (**pp == ',')
2828 (*pp)++; /* Skip the comma. */
2829 else
2830 return 0;
2831
2832 {
2833 int nbits;
2834
2835 SET_FIELD_BITPOS (fip->list->field,
2836 read_huge_number (pp, ';', &nbits, 0));
2837 if (nbits != 0)
2838 return 0;
2839 }
2840 /* This field is unpacked. */
2841 FIELD_BITSIZE (fip->list->field) = 0;
2842 fip->list->visibility = VISIBILITY_PRIVATE;
2843 }
2844 else
2845 {
2846 invalid_cpp_abbrev_complaint (*pp);
2847 /* We have no idea what syntax an unrecognized abbrev would have, so
2848 better return 0. If we returned 1, we would need to at least advance
2849 *pp to avoid an infinite loop. */
2850 return 0;
2851 }
2852 return 1;
2853 }
2854
2855 static void
2856 read_one_struct_field (struct field_info *fip, const char **pp, const char *p,
2857 struct type *type, struct objfile *objfile)
2858 {
2859 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2860
2861 fip->list->field.name
2862 = (const char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
2863 *pp = p + 1;
2864
2865 /* This means we have a visibility for a field coming. */
2866 if (**pp == '/')
2867 {
2868 (*pp)++;
2869 fip->list->visibility = *(*pp)++;
2870 }
2871 else
2872 {
2873 /* normal dbx-style format, no explicit visibility */
2874 fip->list->visibility = VISIBILITY_PUBLIC;
2875 }
2876
2877 fip->list->field.type = read_type (pp, objfile);
2878 if (**pp == ':')
2879 {
2880 p = ++(*pp);
2881 #if 0
2882 /* Possible future hook for nested types. */
2883 if (**pp == '!')
2884 {
2885 fip->list->field.bitpos = (long) -2; /* nested type */
2886 p = ++(*pp);
2887 }
2888 else
2889 ...;
2890 #endif
2891 while (*p != ';')
2892 {
2893 p++;
2894 }
2895 /* Static class member. */
2896 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2897 *pp = p + 1;
2898 return;
2899 }
2900 else if (**pp != ',')
2901 {
2902 /* Bad structure-type format. */
2903 stabs_general_complaint ("bad structure-type format");
2904 return;
2905 }
2906
2907 (*pp)++; /* Skip the comma. */
2908
2909 {
2910 int nbits;
2911
2912 SET_FIELD_BITPOS (fip->list->field,
2913 read_huge_number (pp, ',', &nbits, 0));
2914 if (nbits != 0)
2915 {
2916 stabs_general_complaint ("bad structure-type format");
2917 return;
2918 }
2919 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2920 if (nbits != 0)
2921 {
2922 stabs_general_complaint ("bad structure-type format");
2923 return;
2924 }
2925 }
2926
2927 if (FIELD_BITPOS (fip->list->field) == 0
2928 && FIELD_BITSIZE (fip->list->field) == 0)
2929 {
2930 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2931 it is a field which has been optimized out. The correct stab for
2932 this case is to use VISIBILITY_IGNORE, but that is a recent
2933 invention. (2) It is a 0-size array. For example
2934 union { int num; char str[0]; } foo. Printing _("<no value>" for
2935 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2936 will continue to work, and a 0-size array as a whole doesn't
2937 have any contents to print.
2938
2939 I suspect this probably could also happen with gcc -gstabs (not
2940 -gstabs+) for static fields, and perhaps other C++ extensions.
2941 Hopefully few people use -gstabs with gdb, since it is intended
2942 for dbx compatibility. */
2943
2944 /* Ignore this field. */
2945 fip->list->visibility = VISIBILITY_IGNORE;
2946 }
2947 else
2948 {
2949 /* Detect an unpacked field and mark it as such.
2950 dbx gives a bit size for all fields.
2951 Note that forward refs cannot be packed,
2952 and treat enums as if they had the width of ints. */
2953
2954 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2955
2956 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2957 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2958 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2959 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2960 {
2961 FIELD_BITSIZE (fip->list->field) = 0;
2962 }
2963 if ((FIELD_BITSIZE (fip->list->field)
2964 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2965 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2966 && FIELD_BITSIZE (fip->list->field)
2967 == gdbarch_int_bit (gdbarch))
2968 )
2969 &&
2970 FIELD_BITPOS (fip->list->field) % 8 == 0)
2971 {
2972 FIELD_BITSIZE (fip->list->field) = 0;
2973 }
2974 }
2975 }
2976
2977
2978 /* Read struct or class data fields. They have the form:
2979
2980 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2981
2982 At the end, we see a semicolon instead of a field.
2983
2984 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2985 a static field.
2986
2987 The optional VISIBILITY is one of:
2988
2989 '/0' (VISIBILITY_PRIVATE)
2990 '/1' (VISIBILITY_PROTECTED)
2991 '/2' (VISIBILITY_PUBLIC)
2992 '/9' (VISIBILITY_IGNORE)
2993
2994 or nothing, for C style fields with public visibility.
2995
2996 Returns 1 for success, 0 for failure. */
2997
2998 static int
2999 read_struct_fields (struct field_info *fip, const char **pp, struct type *type,
3000 struct objfile *objfile)
3001 {
3002 const char *p;
3003 struct nextfield *newobj;
3004
3005 /* We better set p right now, in case there are no fields at all... */
3006
3007 p = *pp;
3008
3009 /* Read each data member type until we find the terminating ';' at the end of
3010 the data member list, or break for some other reason such as finding the
3011 start of the member function list. */
3012 /* Stab string for structure/union does not end with two ';' in
3013 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3014
3015 while (**pp != ';' && **pp != '\0')
3016 {
3017 STABS_CONTINUE (pp, objfile);
3018 /* Get space to record the next field's data. */
3019 newobj = XCNEW (struct nextfield);
3020 make_cleanup (xfree, newobj);
3021
3022 newobj->next = fip->list;
3023 fip->list = newobj;
3024
3025 /* Get the field name. */
3026 p = *pp;
3027
3028 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3029 unless the CPLUS_MARKER is followed by an underscore, in
3030 which case it is just the name of an anonymous type, which we
3031 should handle like any other type name. */
3032
3033 if (is_cplus_marker (p[0]) && p[1] != '_')
3034 {
3035 if (!read_cpp_abbrev (fip, pp, type, objfile))
3036 return 0;
3037 continue;
3038 }
3039
3040 /* Look for the ':' that separates the field name from the field
3041 values. Data members are delimited by a single ':', while member
3042 functions are delimited by a pair of ':'s. When we hit the member
3043 functions (if any), terminate scan loop and return. */
3044
3045 while (*p != ':' && *p != '\0')
3046 {
3047 p++;
3048 }
3049 if (*p == '\0')
3050 return 0;
3051
3052 /* Check to see if we have hit the member functions yet. */
3053 if (p[1] == ':')
3054 {
3055 break;
3056 }
3057 read_one_struct_field (fip, pp, p, type, objfile);
3058 }
3059 if (p[0] == ':' && p[1] == ':')
3060 {
3061 /* (the deleted) chill the list of fields: the last entry (at
3062 the head) is a partially constructed entry which we now
3063 scrub. */
3064 fip->list = fip->list->next;
3065 }
3066 return 1;
3067 }
3068 /* *INDENT-OFF* */
3069 /* The stabs for C++ derived classes contain baseclass information which
3070 is marked by a '!' character after the total size. This function is
3071 called when we encounter the baseclass marker, and slurps up all the
3072 baseclass information.
3073
3074 Immediately following the '!' marker is the number of base classes that
3075 the class is derived from, followed by information for each base class.
3076 For each base class, there are two visibility specifiers, a bit offset
3077 to the base class information within the derived class, a reference to
3078 the type for the base class, and a terminating semicolon.
3079
3080 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3081 ^^ ^ ^ ^ ^ ^ ^
3082 Baseclass information marker __________________|| | | | | | |
3083 Number of baseclasses __________________________| | | | | | |
3084 Visibility specifiers (2) ________________________| | | | | |
3085 Offset in bits from start of class _________________| | | | |
3086 Type number for base class ___________________________| | | |
3087 Visibility specifiers (2) _______________________________| | |
3088 Offset in bits from start of class ________________________| |
3089 Type number of base class ____________________________________|
3090
3091 Return 1 for success, 0 for (error-type-inducing) failure. */
3092 /* *INDENT-ON* */
3093
3094
3095
3096 static int
3097 read_baseclasses (struct field_info *fip, const char **pp, struct type *type,
3098 struct objfile *objfile)
3099 {
3100 int i;
3101 struct nextfield *newobj;
3102
3103 if (**pp != '!')
3104 {
3105 return 1;
3106 }
3107 else
3108 {
3109 /* Skip the '!' baseclass information marker. */
3110 (*pp)++;
3111 }
3112
3113 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3114 {
3115 int nbits;
3116
3117 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3118 if (nbits != 0)
3119 return 0;
3120 }
3121
3122 #if 0
3123 /* Some stupid compilers have trouble with the following, so break
3124 it up into simpler expressions. */
3125 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3126 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3127 #else
3128 {
3129 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3130 char *pointer;
3131
3132 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3133 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3134 }
3135 #endif /* 0 */
3136
3137 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3138
3139 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3140 {
3141 newobj = XCNEW (struct nextfield);
3142 make_cleanup (xfree, newobj);
3143
3144 newobj->next = fip->list;
3145 fip->list = newobj;
3146 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3147 field! */
3148
3149 STABS_CONTINUE (pp, objfile);
3150 switch (**pp)
3151 {
3152 case '0':
3153 /* Nothing to do. */
3154 break;
3155 case '1':
3156 SET_TYPE_FIELD_VIRTUAL (type, i);
3157 break;
3158 default:
3159 /* Unknown character. Complain and treat it as non-virtual. */
3160 {
3161 complaint (_("Unknown virtual character `%c' for baseclass"),
3162 **pp);
3163 }
3164 }
3165 ++(*pp);
3166
3167 newobj->visibility = *(*pp)++;
3168 switch (newobj->visibility)
3169 {
3170 case VISIBILITY_PRIVATE:
3171 case VISIBILITY_PROTECTED:
3172 case VISIBILITY_PUBLIC:
3173 break;
3174 default:
3175 /* Bad visibility format. Complain and treat it as
3176 public. */
3177 {
3178 complaint (_("Unknown visibility `%c' for baseclass"),
3179 newobj->visibility);
3180 newobj->visibility = VISIBILITY_PUBLIC;
3181 }
3182 }
3183
3184 {
3185 int nbits;
3186
3187 /* The remaining value is the bit offset of the portion of the object
3188 corresponding to this baseclass. Always zero in the absence of
3189 multiple inheritance. */
3190
3191 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
3192 if (nbits != 0)
3193 return 0;
3194 }
3195
3196 /* The last piece of baseclass information is the type of the
3197 base class. Read it, and remember it's type name as this
3198 field's name. */
3199
3200 newobj->field.type = read_type (pp, objfile);
3201 newobj->field.name = TYPE_NAME (newobj->field.type);
3202
3203 /* Skip trailing ';' and bump count of number of fields seen. */
3204 if (**pp == ';')
3205 (*pp)++;
3206 else
3207 return 0;
3208 }
3209 return 1;
3210 }
3211
3212 /* The tail end of stabs for C++ classes that contain a virtual function
3213 pointer contains a tilde, a %, and a type number.
3214 The type number refers to the base class (possibly this class itself) which
3215 contains the vtable pointer for the current class.
3216
3217 This function is called when we have parsed all the method declarations,
3218 so we can look for the vptr base class info. */
3219
3220 static int
3221 read_tilde_fields (struct field_info *fip, const char **pp, struct type *type,
3222 struct objfile *objfile)
3223 {
3224 const char *p;
3225
3226 STABS_CONTINUE (pp, objfile);
3227
3228 /* If we are positioned at a ';', then skip it. */
3229 if (**pp == ';')
3230 {
3231 (*pp)++;
3232 }
3233
3234 if (**pp == '~')
3235 {
3236 (*pp)++;
3237
3238 if (**pp == '=' || **pp == '+' || **pp == '-')
3239 {
3240 /* Obsolete flags that used to indicate the presence
3241 of constructors and/or destructors. */
3242 (*pp)++;
3243 }
3244
3245 /* Read either a '%' or the final ';'. */
3246 if (*(*pp)++ == '%')
3247 {
3248 /* The next number is the type number of the base class
3249 (possibly our own class) which supplies the vtable for
3250 this class. Parse it out, and search that class to find
3251 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3252 and TYPE_VPTR_FIELDNO. */
3253
3254 struct type *t;
3255 int i;
3256
3257 t = read_type (pp, objfile);
3258 p = (*pp)++;
3259 while (*p != '\0' && *p != ';')
3260 {
3261 p++;
3262 }
3263 if (*p == '\0')
3264 {
3265 /* Premature end of symbol. */
3266 return 0;
3267 }
3268
3269 set_type_vptr_basetype (type, t);
3270 if (type == t) /* Our own class provides vtbl ptr. */
3271 {
3272 for (i = TYPE_NFIELDS (t) - 1;
3273 i >= TYPE_N_BASECLASSES (t);
3274 --i)
3275 {
3276 const char *name = TYPE_FIELD_NAME (t, i);
3277
3278 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3279 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3280 {
3281 set_type_vptr_fieldno (type, i);
3282 goto gotit;
3283 }
3284 }
3285 /* Virtual function table field not found. */
3286 complaint (_("virtual function table pointer "
3287 "not found when defining class `%s'"),
3288 TYPE_NAME (type));
3289 return 0;
3290 }
3291 else
3292 {
3293 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3294 }
3295
3296 gotit:
3297 *pp = p + 1;
3298 }
3299 }
3300 return 1;
3301 }
3302
3303 static int
3304 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3305 {
3306 int n;
3307
3308 for (n = TYPE_NFN_FIELDS (type);
3309 fip->fnlist != NULL;
3310 fip->fnlist = fip->fnlist->next)
3311 {
3312 --n; /* Circumvent Sun3 compiler bug. */
3313 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3314 }
3315 return 1;
3316 }
3317
3318 /* Create the vector of fields, and record how big it is.
3319 We need this info to record proper virtual function table information
3320 for this class's virtual functions. */
3321
3322 static int
3323 attach_fields_to_type (struct field_info *fip, struct type *type,
3324 struct objfile *objfile)
3325 {
3326 int nfields = 0;
3327 int non_public_fields = 0;
3328 struct nextfield *scan;
3329
3330 /* Count up the number of fields that we have, as well as taking note of
3331 whether or not there are any non-public fields, which requires us to
3332 allocate and build the private_field_bits and protected_field_bits
3333 bitfields. */
3334
3335 for (scan = fip->list; scan != NULL; scan = scan->next)
3336 {
3337 nfields++;
3338 if (scan->visibility != VISIBILITY_PUBLIC)
3339 {
3340 non_public_fields++;
3341 }
3342 }
3343
3344 /* Now we know how many fields there are, and whether or not there are any
3345 non-public fields. Record the field count, allocate space for the
3346 array of fields, and create blank visibility bitfields if necessary. */
3347
3348 TYPE_NFIELDS (type) = nfields;
3349 TYPE_FIELDS (type) = (struct field *)
3350 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3351 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3352
3353 if (non_public_fields)
3354 {
3355 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3356
3357 TYPE_FIELD_PRIVATE_BITS (type) =
3358 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3359 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3360
3361 TYPE_FIELD_PROTECTED_BITS (type) =
3362 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3363 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3364
3365 TYPE_FIELD_IGNORE_BITS (type) =
3366 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3367 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3368 }
3369
3370 /* Copy the saved-up fields into the field vector. Start from the
3371 head of the list, adding to the tail of the field array, so that
3372 they end up in the same order in the array in which they were
3373 added to the list. */
3374
3375 while (nfields-- > 0)
3376 {
3377 TYPE_FIELD (type, nfields) = fip->list->field;
3378 switch (fip->list->visibility)
3379 {
3380 case VISIBILITY_PRIVATE:
3381 SET_TYPE_FIELD_PRIVATE (type, nfields);
3382 break;
3383
3384 case VISIBILITY_PROTECTED:
3385 SET_TYPE_FIELD_PROTECTED (type, nfields);
3386 break;
3387
3388 case VISIBILITY_IGNORE:
3389 SET_TYPE_FIELD_IGNORE (type, nfields);
3390 break;
3391
3392 case VISIBILITY_PUBLIC:
3393 break;
3394
3395 default:
3396 /* Unknown visibility. Complain and treat it as public. */
3397 {
3398 complaint (_("Unknown visibility `%c' for field"),
3399 fip->list->visibility);
3400 }
3401 break;
3402 }
3403 fip->list = fip->list->next;
3404 }
3405 return 1;
3406 }
3407
3408
3409 /* Complain that the compiler has emitted more than one definition for the
3410 structure type TYPE. */
3411 static void
3412 complain_about_struct_wipeout (struct type *type)
3413 {
3414 const char *name = "";
3415 const char *kind = "";
3416
3417 if (TYPE_NAME (type))
3418 {
3419 name = TYPE_NAME (type);
3420 switch (TYPE_CODE (type))
3421 {
3422 case TYPE_CODE_STRUCT: kind = "struct "; break;
3423 case TYPE_CODE_UNION: kind = "union "; break;
3424 case TYPE_CODE_ENUM: kind = "enum "; break;
3425 default: kind = "";
3426 }
3427 }
3428 else
3429 {
3430 name = "<unknown>";
3431 kind = "";
3432 }
3433
3434 complaint (_("struct/union type gets multiply defined: %s%s"), kind, name);
3435 }
3436
3437 /* Set the length for all variants of a same main_type, which are
3438 connected in the closed chain.
3439
3440 This is something that needs to be done when a type is defined *after*
3441 some cross references to this type have already been read. Consider
3442 for instance the following scenario where we have the following two
3443 stabs entries:
3444
3445 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3446 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3447
3448 A stubbed version of type dummy is created while processing the first
3449 stabs entry. The length of that type is initially set to zero, since
3450 it is unknown at this point. Also, a "constant" variation of type
3451 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3452 the stabs line).
3453
3454 The second stabs entry allows us to replace the stubbed definition
3455 with the real definition. However, we still need to adjust the length
3456 of the "constant" variation of that type, as its length was left
3457 untouched during the main type replacement... */
3458
3459 static void
3460 set_length_in_type_chain (struct type *type)
3461 {
3462 struct type *ntype = TYPE_CHAIN (type);
3463
3464 while (ntype != type)
3465 {
3466 if (TYPE_LENGTH(ntype) == 0)
3467 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3468 else
3469 complain_about_struct_wipeout (ntype);
3470 ntype = TYPE_CHAIN (ntype);
3471 }
3472 }
3473
3474 /* Read the description of a structure (or union type) and return an object
3475 describing the type.
3476
3477 PP points to a character pointer that points to the next unconsumed token
3478 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3479 *PP will point to "4a:1,0,32;;".
3480
3481 TYPE points to an incomplete type that needs to be filled in.
3482
3483 OBJFILE points to the current objfile from which the stabs information is
3484 being read. (Note that it is redundant in that TYPE also contains a pointer
3485 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3486 */
3487
3488 static struct type *
3489 read_struct_type (const char **pp, struct type *type, enum type_code type_code,
3490 struct objfile *objfile)
3491 {
3492 struct cleanup *back_to;
3493 struct field_info fi;
3494
3495 fi.list = NULL;
3496 fi.fnlist = NULL;
3497
3498 /* When describing struct/union/class types in stabs, G++ always drops
3499 all qualifications from the name. So if you've got:
3500 struct A { ... struct B { ... }; ... };
3501 then G++ will emit stabs for `struct A::B' that call it simply
3502 `struct B'. Obviously, if you've got a real top-level definition for
3503 `struct B', or other nested definitions, this is going to cause
3504 problems.
3505
3506 Obviously, GDB can't fix this by itself, but it can at least avoid
3507 scribbling on existing structure type objects when new definitions
3508 appear. */
3509 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3510 || TYPE_STUB (type)))
3511 {
3512 complain_about_struct_wipeout (type);
3513
3514 /* It's probably best to return the type unchanged. */
3515 return type;
3516 }
3517
3518 back_to = make_cleanup (null_cleanup, 0);
3519
3520 INIT_CPLUS_SPECIFIC (type);
3521 TYPE_CODE (type) = type_code;
3522 TYPE_STUB (type) = 0;
3523
3524 /* First comes the total size in bytes. */
3525
3526 {
3527 int nbits;
3528
3529 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3530 if (nbits != 0)
3531 {
3532 do_cleanups (back_to);
3533 return error_type (pp, objfile);
3534 }
3535 set_length_in_type_chain (type);
3536 }
3537
3538 /* Now read the baseclasses, if any, read the regular C struct or C++
3539 class member fields, attach the fields to the type, read the C++
3540 member functions, attach them to the type, and then read any tilde
3541 field (baseclass specifier for the class holding the main vtable). */
3542
3543 if (!read_baseclasses (&fi, pp, type, objfile)
3544 || !read_struct_fields (&fi, pp, type, objfile)
3545 || !attach_fields_to_type (&fi, type, objfile)
3546 || !read_member_functions (&fi, pp, type, objfile)
3547 || !attach_fn_fields_to_type (&fi, type)
3548 || !read_tilde_fields (&fi, pp, type, objfile))
3549 {
3550 type = error_type (pp, objfile);
3551 }
3552
3553 do_cleanups (back_to);
3554 return (type);
3555 }
3556
3557 /* Read a definition of an array type,
3558 and create and return a suitable type object.
3559 Also creates a range type which represents the bounds of that
3560 array. */
3561
3562 static struct type *
3563 read_array_type (const char **pp, struct type *type,
3564 struct objfile *objfile)
3565 {
3566 struct type *index_type, *element_type, *range_type;
3567 int lower, upper;
3568 int adjustable = 0;
3569 int nbits;
3570
3571 /* Format of an array type:
3572 "ar<index type>;lower;upper;<array_contents_type>".
3573 OS9000: "arlower,upper;<array_contents_type>".
3574
3575 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3576 for these, produce a type like float[][]. */
3577
3578 {
3579 index_type = read_type (pp, objfile);
3580 if (**pp != ';')
3581 /* Improper format of array type decl. */
3582 return error_type (pp, objfile);
3583 ++*pp;
3584 }
3585
3586 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3587 {
3588 (*pp)++;
3589 adjustable = 1;
3590 }
3591 lower = read_huge_number (pp, ';', &nbits, 0);
3592
3593 if (nbits != 0)
3594 return error_type (pp, objfile);
3595
3596 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3597 {
3598 (*pp)++;
3599 adjustable = 1;
3600 }
3601 upper = read_huge_number (pp, ';', &nbits, 0);
3602 if (nbits != 0)
3603 return error_type (pp, objfile);
3604
3605 element_type = read_type (pp, objfile);
3606
3607 if (adjustable)
3608 {
3609 lower = 0;
3610 upper = -1;
3611 }
3612
3613 range_type =
3614 create_static_range_type ((struct type *) NULL, index_type, lower, upper);
3615 type = create_array_type (type, element_type, range_type);
3616
3617 return type;
3618 }
3619
3620
3621 /* Read a definition of an enumeration type,
3622 and create and return a suitable type object.
3623 Also defines the symbols that represent the values of the type. */
3624
3625 static struct type *
3626 read_enum_type (const char **pp, struct type *type,
3627 struct objfile *objfile)
3628 {
3629 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3630 const char *p;
3631 char *name;
3632 long n;
3633 struct symbol *sym;
3634 int nsyms = 0;
3635 struct pending **symlist;
3636 struct pending *osyms, *syms;
3637 int o_nsyms;
3638 int nbits;
3639 int unsigned_enum = 1;
3640
3641 #if 0
3642 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3643 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3644 to do? For now, force all enum values to file scope. */
3645 if (within_function)
3646 symlist = get_local_symbols ();
3647 else
3648 #endif
3649 symlist = get_file_symbols ();
3650 osyms = *symlist;
3651 o_nsyms = osyms ? osyms->nsyms : 0;
3652
3653 /* The aix4 compiler emits an extra field before the enum members;
3654 my guess is it's a type of some sort. Just ignore it. */
3655 if (**pp == '-')
3656 {
3657 /* Skip over the type. */
3658 while (**pp != ':')
3659 (*pp)++;
3660
3661 /* Skip over the colon. */
3662 (*pp)++;
3663 }
3664
3665 /* Read the value-names and their values.
3666 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3667 A semicolon or comma instead of a NAME means the end. */
3668 while (**pp && **pp != ';' && **pp != ',')
3669 {
3670 STABS_CONTINUE (pp, objfile);
3671 p = *pp;
3672 while (*p != ':')
3673 p++;
3674 name = (char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
3675 *pp = p + 1;
3676 n = read_huge_number (pp, ',', &nbits, 0);
3677 if (nbits != 0)
3678 return error_type (pp, objfile);
3679
3680 sym = allocate_symbol (objfile);
3681 SYMBOL_SET_LINKAGE_NAME (sym, name);
3682 SYMBOL_SET_LANGUAGE (sym, get_current_subfile ()->language,
3683 &objfile->objfile_obstack);
3684 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3685 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3686 SYMBOL_VALUE (sym) = n;
3687 if (n < 0)
3688 unsigned_enum = 0;
3689 add_symbol_to_list (sym, symlist);
3690 nsyms++;
3691 }
3692
3693 if (**pp == ';')
3694 (*pp)++; /* Skip the semicolon. */
3695
3696 /* Now fill in the fields of the type-structure. */
3697
3698 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3699 set_length_in_type_chain (type);
3700 TYPE_CODE (type) = TYPE_CODE_ENUM;
3701 TYPE_STUB (type) = 0;
3702 if (unsigned_enum)
3703 TYPE_UNSIGNED (type) = 1;
3704 TYPE_NFIELDS (type) = nsyms;
3705 TYPE_FIELDS (type) = (struct field *)
3706 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3707 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3708
3709 /* Find the symbols for the values and put them into the type.
3710 The symbols can be found in the symlist that we put them on
3711 to cause them to be defined. osyms contains the old value
3712 of that symlist; everything up to there was defined by us. */
3713 /* Note that we preserve the order of the enum constants, so
3714 that in something like "enum {FOO, LAST_THING=FOO}" we print
3715 FOO, not LAST_THING. */
3716
3717 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3718 {
3719 int last = syms == osyms ? o_nsyms : 0;
3720 int j = syms->nsyms;
3721
3722 for (; --j >= last; --n)
3723 {
3724 struct symbol *xsym = syms->symbol[j];
3725
3726 SYMBOL_TYPE (xsym) = type;
3727 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3728 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3729 TYPE_FIELD_BITSIZE (type, n) = 0;
3730 }
3731 if (syms == osyms)
3732 break;
3733 }
3734
3735 return type;
3736 }
3737
3738 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3739 typedefs in every file (for int, long, etc):
3740
3741 type = b <signed> <width> <format type>; <offset>; <nbits>
3742 signed = u or s.
3743 optional format type = c or b for char or boolean.
3744 offset = offset from high order bit to start bit of type.
3745 width is # bytes in object of this type, nbits is # bits in type.
3746
3747 The width/offset stuff appears to be for small objects stored in
3748 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3749 FIXME. */
3750
3751 static struct type *
3752 read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
3753 {
3754 int type_bits;
3755 int nbits;
3756 int unsigned_type;
3757 int boolean_type = 0;
3758
3759 switch (**pp)
3760 {
3761 case 's':
3762 unsigned_type = 0;
3763 break;
3764 case 'u':
3765 unsigned_type = 1;
3766 break;
3767 default:
3768 return error_type (pp, objfile);
3769 }
3770 (*pp)++;
3771
3772 /* For some odd reason, all forms of char put a c here. This is strange
3773 because no other type has this honor. We can safely ignore this because
3774 we actually determine 'char'acterness by the number of bits specified in
3775 the descriptor.
3776 Boolean forms, e.g Fortran logical*X, put a b here. */
3777
3778 if (**pp == 'c')
3779 (*pp)++;
3780 else if (**pp == 'b')
3781 {
3782 boolean_type = 1;
3783 (*pp)++;
3784 }
3785
3786 /* The first number appears to be the number of bytes occupied
3787 by this type, except that unsigned short is 4 instead of 2.
3788 Since this information is redundant with the third number,
3789 we will ignore it. */
3790 read_huge_number (pp, ';', &nbits, 0);
3791 if (nbits != 0)
3792 return error_type (pp, objfile);
3793
3794 /* The second number is always 0, so ignore it too. */
3795 read_huge_number (pp, ';', &nbits, 0);
3796 if (nbits != 0)
3797 return error_type (pp, objfile);
3798
3799 /* The third number is the number of bits for this type. */
3800 type_bits = read_huge_number (pp, 0, &nbits, 0);
3801 if (nbits != 0)
3802 return error_type (pp, objfile);
3803 /* The type *should* end with a semicolon. If it are embedded
3804 in a larger type the semicolon may be the only way to know where
3805 the type ends. If this type is at the end of the stabstring we
3806 can deal with the omitted semicolon (but we don't have to like
3807 it). Don't bother to complain(), Sun's compiler omits the semicolon
3808 for "void". */
3809 if (**pp == ';')
3810 ++(*pp);
3811
3812 if (type_bits == 0)
3813 {
3814 struct type *type = init_type (objfile, TYPE_CODE_VOID,
3815 TARGET_CHAR_BIT, NULL);
3816 if (unsigned_type)
3817 TYPE_UNSIGNED (type) = 1;
3818 return type;
3819 }
3820
3821 if (boolean_type)
3822 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3823 else
3824 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3825 }
3826
3827 static struct type *
3828 read_sun_floating_type (const char **pp, int typenums[2],
3829 struct objfile *objfile)
3830 {
3831 int nbits;
3832 int details;
3833 int nbytes;
3834 struct type *rettype;
3835
3836 /* The first number has more details about the type, for example
3837 FN_COMPLEX. */
3838 details = read_huge_number (pp, ';', &nbits, 0);
3839 if (nbits != 0)
3840 return error_type (pp, objfile);
3841
3842 /* The second number is the number of bytes occupied by this type. */
3843 nbytes = read_huge_number (pp, ';', &nbits, 0);
3844 if (nbits != 0)
3845 return error_type (pp, objfile);
3846
3847 nbits = nbytes * TARGET_CHAR_BIT;
3848
3849 if (details == NF_COMPLEX || details == NF_COMPLEX16
3850 || details == NF_COMPLEX32)
3851 {
3852 rettype = dbx_init_float_type (objfile, nbits / 2);
3853 return init_complex_type (objfile, NULL, rettype);
3854 }
3855
3856 return dbx_init_float_type (objfile, nbits);
3857 }
3858
3859 /* Read a number from the string pointed to by *PP.
3860 The value of *PP is advanced over the number.
3861 If END is nonzero, the character that ends the
3862 number must match END, or an error happens;
3863 and that character is skipped if it does match.
3864 If END is zero, *PP is left pointing to that character.
3865
3866 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3867 the number is represented in an octal representation, assume that
3868 it is represented in a 2's complement representation with a size of
3869 TWOS_COMPLEMENT_BITS.
3870
3871 If the number fits in a long, set *BITS to 0 and return the value.
3872 If not, set *BITS to be the number of bits in the number and return 0.
3873
3874 If encounter garbage, set *BITS to -1 and return 0. */
3875
3876 static long
3877 read_huge_number (const char **pp, int end, int *bits,
3878 int twos_complement_bits)
3879 {
3880 const char *p = *pp;
3881 int sign = 1;
3882 int sign_bit = 0;
3883 long n = 0;
3884 int radix = 10;
3885 char overflow = 0;
3886 int nbits = 0;
3887 int c;
3888 long upper_limit;
3889 int twos_complement_representation = 0;
3890
3891 if (*p == '-')
3892 {
3893 sign = -1;
3894 p++;
3895 }
3896
3897 /* Leading zero means octal. GCC uses this to output values larger
3898 than an int (because that would be hard in decimal). */
3899 if (*p == '0')
3900 {
3901 radix = 8;
3902 p++;
3903 }
3904
3905 /* Skip extra zeros. */
3906 while (*p == '0')
3907 p++;
3908
3909 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3910 {
3911 /* Octal, possibly signed. Check if we have enough chars for a
3912 negative number. */
3913
3914 size_t len;
3915 const char *p1 = p;
3916
3917 while ((c = *p1) >= '0' && c < '8')
3918 p1++;
3919
3920 len = p1 - p;
3921 if (len > twos_complement_bits / 3
3922 || (twos_complement_bits % 3 == 0
3923 && len == twos_complement_bits / 3))
3924 {
3925 /* Ok, we have enough characters for a signed value, check
3926 for signness by testing if the sign bit is set. */
3927 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3928 c = *p - '0';
3929 if (c & (1 << sign_bit))
3930 {
3931 /* Definitely signed. */
3932 twos_complement_representation = 1;
3933 sign = -1;
3934 }
3935 }
3936 }
3937
3938 upper_limit = LONG_MAX / radix;
3939
3940 while ((c = *p++) >= '0' && c < ('0' + radix))
3941 {
3942 if (n <= upper_limit)
3943 {
3944 if (twos_complement_representation)
3945 {
3946 /* Octal, signed, twos complement representation. In
3947 this case, n is the corresponding absolute value. */
3948 if (n == 0)
3949 {
3950 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3951
3952 n = -sn;
3953 }
3954 else
3955 {
3956 n *= radix;
3957 n -= c - '0';
3958 }
3959 }
3960 else
3961 {
3962 /* unsigned representation */
3963 n *= radix;
3964 n += c - '0'; /* FIXME this overflows anyway. */
3965 }
3966 }
3967 else
3968 overflow = 1;
3969
3970 /* This depends on large values being output in octal, which is
3971 what GCC does. */
3972 if (radix == 8)
3973 {
3974 if (nbits == 0)
3975 {
3976 if (c == '0')
3977 /* Ignore leading zeroes. */
3978 ;
3979 else if (c == '1')
3980 nbits = 1;
3981 else if (c == '2' || c == '3')
3982 nbits = 2;
3983 else
3984 nbits = 3;
3985 }
3986 else
3987 nbits += 3;
3988 }
3989 }
3990 if (end)
3991 {
3992 if (c && c != end)
3993 {
3994 if (bits != NULL)
3995 *bits = -1;
3996 return 0;
3997 }
3998 }
3999 else
4000 --p;
4001
4002 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
4003 {
4004 /* We were supposed to parse a number with maximum
4005 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4006 if (bits != NULL)
4007 *bits = -1;
4008 return 0;
4009 }
4010
4011 *pp = p;
4012 if (overflow)
4013 {
4014 if (nbits == 0)
4015 {
4016 /* Large decimal constants are an error (because it is hard to
4017 count how many bits are in them). */
4018 if (bits != NULL)
4019 *bits = -1;
4020 return 0;
4021 }
4022
4023 /* -0x7f is the same as 0x80. So deal with it by adding one to
4024 the number of bits. Two's complement represention octals
4025 can't have a '-' in front. */
4026 if (sign == -1 && !twos_complement_representation)
4027 ++nbits;
4028 if (bits)
4029 *bits = nbits;
4030 }
4031 else
4032 {
4033 if (bits)
4034 *bits = 0;
4035 return n * sign;
4036 }
4037 /* It's *BITS which has the interesting information. */
4038 return 0;
4039 }
4040
4041 static struct type *
4042 read_range_type (const char **pp, int typenums[2], int type_size,
4043 struct objfile *objfile)
4044 {
4045 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4046 const char *orig_pp = *pp;
4047 int rangenums[2];
4048 long n2, n3;
4049 int n2bits, n3bits;
4050 int self_subrange;
4051 struct type *result_type;
4052 struct type *index_type = NULL;
4053
4054 /* First comes a type we are a subrange of.
4055 In C it is usually 0, 1 or the type being defined. */
4056 if (read_type_number (pp, rangenums) != 0)
4057 return error_type (pp, objfile);
4058 self_subrange = (rangenums[0] == typenums[0] &&
4059 rangenums[1] == typenums[1]);
4060
4061 if (**pp == '=')
4062 {
4063 *pp = orig_pp;
4064 index_type = read_type (pp, objfile);
4065 }
4066
4067 /* A semicolon should now follow; skip it. */
4068 if (**pp == ';')
4069 (*pp)++;
4070
4071 /* The remaining two operands are usually lower and upper bounds
4072 of the range. But in some special cases they mean something else. */
4073 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4074 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4075
4076 if (n2bits == -1 || n3bits == -1)
4077 return error_type (pp, objfile);
4078
4079 if (index_type)
4080 goto handle_true_range;
4081
4082 /* If limits are huge, must be large integral type. */
4083 if (n2bits != 0 || n3bits != 0)
4084 {
4085 char got_signed = 0;
4086 char got_unsigned = 0;
4087 /* Number of bits in the type. */
4088 int nbits = 0;
4089
4090 /* If a type size attribute has been specified, the bounds of
4091 the range should fit in this size. If the lower bounds needs
4092 more bits than the upper bound, then the type is signed. */
4093 if (n2bits <= type_size && n3bits <= type_size)
4094 {
4095 if (n2bits == type_size && n2bits > n3bits)
4096 got_signed = 1;
4097 else
4098 got_unsigned = 1;
4099 nbits = type_size;
4100 }
4101 /* Range from 0 to <large number> is an unsigned large integral type. */
4102 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4103 {
4104 got_unsigned = 1;
4105 nbits = n3bits;
4106 }
4107 /* Range from <large number> to <large number>-1 is a large signed
4108 integral type. Take care of the case where <large number> doesn't
4109 fit in a long but <large number>-1 does. */
4110 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4111 || (n2bits != 0 && n3bits == 0
4112 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4113 && n3 == LONG_MAX))
4114 {
4115 got_signed = 1;
4116 nbits = n2bits;
4117 }
4118
4119 if (got_signed || got_unsigned)
4120 return init_integer_type (objfile, nbits, got_unsigned, NULL);
4121 else
4122 return error_type (pp, objfile);
4123 }
4124
4125 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4126 if (self_subrange && n2 == 0 && n3 == 0)
4127 return init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
4128
4129 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4130 is the width in bytes.
4131
4132 Fortran programs appear to use this for complex types also. To
4133 distinguish between floats and complex, g77 (and others?) seem
4134 to use self-subranges for the complexes, and subranges of int for
4135 the floats.
4136
4137 Also note that for complexes, g77 sets n2 to the size of one of
4138 the member floats, not the whole complex beast. My guess is that
4139 this was to work well with pre-COMPLEX versions of gdb. */
4140
4141 if (n3 == 0 && n2 > 0)
4142 {
4143 struct type *float_type
4144 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
4145
4146 if (self_subrange)
4147 return init_complex_type (objfile, NULL, float_type);
4148 else
4149 return float_type;
4150 }
4151
4152 /* If the upper bound is -1, it must really be an unsigned integral. */
4153
4154 else if (n2 == 0 && n3 == -1)
4155 {
4156 int bits = type_size;
4157
4158 if (bits <= 0)
4159 {
4160 /* We don't know its size. It is unsigned int or unsigned
4161 long. GCC 2.3.3 uses this for long long too, but that is
4162 just a GDB 3.5 compatibility hack. */
4163 bits = gdbarch_int_bit (gdbarch);
4164 }
4165
4166 return init_integer_type (objfile, bits, 1, NULL);
4167 }
4168
4169 /* Special case: char is defined (Who knows why) as a subrange of
4170 itself with range 0-127. */
4171 else if (self_subrange && n2 == 0 && n3 == 127)
4172 {
4173 struct type *type = init_integer_type (objfile, TARGET_CHAR_BIT,
4174 0, NULL);
4175 TYPE_NOSIGN (type) = 1;
4176 return type;
4177 }
4178 /* We used to do this only for subrange of self or subrange of int. */
4179 else if (n2 == 0)
4180 {
4181 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4182 "unsigned long", and we already checked for that,
4183 so don't need to test for it here. */
4184
4185 if (n3 < 0)
4186 /* n3 actually gives the size. */
4187 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4188
4189 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4190 unsigned n-byte integer. But do require n to be a power of
4191 two; we don't want 3- and 5-byte integers flying around. */
4192 {
4193 int bytes;
4194 unsigned long bits;
4195
4196 bits = n3;
4197 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4198 bits >>= 8;
4199 if (bits == 0
4200 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4201 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4202 }
4203 }
4204 /* I think this is for Convex "long long". Since I don't know whether
4205 Convex sets self_subrange, I also accept that particular size regardless
4206 of self_subrange. */
4207 else if (n3 == 0 && n2 < 0
4208 && (self_subrange
4209 || n2 == -gdbarch_long_long_bit
4210 (gdbarch) / TARGET_CHAR_BIT))
4211 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4212 else if (n2 == -n3 - 1)
4213 {
4214 if (n3 == 0x7f)
4215 return init_integer_type (objfile, 8, 0, NULL);
4216 if (n3 == 0x7fff)
4217 return init_integer_type (objfile, 16, 0, NULL);
4218 if (n3 == 0x7fffffff)
4219 return init_integer_type (objfile, 32, 0, NULL);
4220 }
4221
4222 /* We have a real range type on our hands. Allocate space and
4223 return a real pointer. */
4224 handle_true_range:
4225
4226 if (self_subrange)
4227 index_type = objfile_type (objfile)->builtin_int;
4228 else
4229 index_type = *dbx_lookup_type (rangenums, objfile);
4230 if (index_type == NULL)
4231 {
4232 /* Does this actually ever happen? Is that why we are worrying
4233 about dealing with it rather than just calling error_type? */
4234
4235 complaint (_("base type %d of range type is not defined"), rangenums[1]);
4236
4237 index_type = objfile_type (objfile)->builtin_int;
4238 }
4239
4240 result_type
4241 = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
4242 return (result_type);
4243 }
4244
4245 /* Read in an argument list. This is a list of types, separated by commas
4246 and terminated with END. Return the list of types read in, or NULL
4247 if there is an error. */
4248
4249 static struct field *
4250 read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
4251 int *varargsp)
4252 {
4253 /* FIXME! Remove this arbitrary limit! */
4254 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4255 int n = 0, i;
4256 struct field *rval;
4257
4258 while (**pp != end)
4259 {
4260 if (**pp != ',')
4261 /* Invalid argument list: no ','. */
4262 return NULL;
4263 (*pp)++;
4264 STABS_CONTINUE (pp, objfile);
4265 types[n++] = read_type (pp, objfile);
4266 }
4267 (*pp)++; /* get past `end' (the ':' character). */
4268
4269 if (n == 0)
4270 {
4271 /* We should read at least the THIS parameter here. Some broken stabs
4272 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4273 have been present ";-16,(0,43)" reference instead. This way the
4274 excessive ";" marker prematurely stops the parameters parsing. */
4275
4276 complaint (_("Invalid (empty) method arguments"));
4277 *varargsp = 0;
4278 }
4279 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4280 *varargsp = 1;
4281 else
4282 {
4283 n--;
4284 *varargsp = 0;
4285 }
4286
4287 rval = XCNEWVEC (struct field, n);
4288 for (i = 0; i < n; i++)
4289 rval[i].type = types[i];
4290 *nargsp = n;
4291 return rval;
4292 }
4293 \f
4294 /* Common block handling. */
4295
4296 /* List of symbols declared since the last BCOMM. This list is a tail
4297 of local_symbols. When ECOMM is seen, the symbols on the list
4298 are noted so their proper addresses can be filled in later,
4299 using the common block base address gotten from the assembler
4300 stabs. */
4301
4302 static struct pending *common_block;
4303 static int common_block_i;
4304
4305 /* Name of the current common block. We get it from the BCOMM instead of the
4306 ECOMM to match IBM documentation (even though IBM puts the name both places
4307 like everyone else). */
4308 static char *common_block_name;
4309
4310 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4311 to remain after this function returns. */
4312
4313 void
4314 common_block_start (const char *name, struct objfile *objfile)
4315 {
4316 if (common_block_name != NULL)
4317 {
4318 complaint (_("Invalid symbol data: common block within common block"));
4319 }
4320 common_block = *get_local_symbols ();
4321 common_block_i = common_block ? common_block->nsyms : 0;
4322 common_block_name = (char *) obstack_copy0 (&objfile->objfile_obstack, name,
4323 strlen (name));
4324 }
4325
4326 /* Process a N_ECOMM symbol. */
4327
4328 void
4329 common_block_end (struct objfile *objfile)
4330 {
4331 /* Symbols declared since the BCOMM are to have the common block
4332 start address added in when we know it. common_block and
4333 common_block_i point to the first symbol after the BCOMM in
4334 the local_symbols list; copy the list and hang it off the
4335 symbol for the common block name for later fixup. */
4336 int i;
4337 struct symbol *sym;
4338 struct pending *newobj = 0;
4339 struct pending *next;
4340 int j;
4341
4342 if (common_block_name == NULL)
4343 {
4344 complaint (_("ECOMM symbol unmatched by BCOMM"));
4345 return;
4346 }
4347
4348 sym = allocate_symbol (objfile);
4349 /* Note: common_block_name already saved on objfile_obstack. */
4350 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4351 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4352
4353 /* Now we copy all the symbols which have been defined since the BCOMM. */
4354
4355 /* Copy all the struct pendings before common_block. */
4356 for (next = *get_local_symbols ();
4357 next != NULL && next != common_block;
4358 next = next->next)
4359 {
4360 for (j = 0; j < next->nsyms; j++)
4361 add_symbol_to_list (next->symbol[j], &newobj);
4362 }
4363
4364 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4365 NULL, it means copy all the local symbols (which we already did
4366 above). */
4367
4368 if (common_block != NULL)
4369 for (j = common_block_i; j < common_block->nsyms; j++)
4370 add_symbol_to_list (common_block->symbol[j], &newobj);
4371
4372 SYMBOL_TYPE (sym) = (struct type *) newobj;
4373
4374 /* Should we be putting local_symbols back to what it was?
4375 Does it matter? */
4376
4377 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4378 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4379 global_sym_chain[i] = sym;
4380 common_block_name = NULL;
4381 }
4382
4383 /* Add a common block's start address to the offset of each symbol
4384 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4385 the common block name). */
4386
4387 static void
4388 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4389 {
4390 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4391
4392 for (; next; next = next->next)
4393 {
4394 int j;
4395
4396 for (j = next->nsyms - 1; j >= 0; j--)
4397 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4398 }
4399 }
4400 \f
4401
4402
4403 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4404 See add_undefined_type for more details. */
4405
4406 static void
4407 add_undefined_type_noname (struct type *type, int typenums[2])
4408 {
4409 struct nat nat;
4410
4411 nat.typenums[0] = typenums [0];
4412 nat.typenums[1] = typenums [1];
4413 nat.type = type;
4414
4415 if (noname_undefs_length == noname_undefs_allocated)
4416 {
4417 noname_undefs_allocated *= 2;
4418 noname_undefs = (struct nat *)
4419 xrealloc ((char *) noname_undefs,
4420 noname_undefs_allocated * sizeof (struct nat));
4421 }
4422 noname_undefs[noname_undefs_length++] = nat;
4423 }
4424
4425 /* Add TYPE to the UNDEF_TYPES vector.
4426 See add_undefined_type for more details. */
4427
4428 static void
4429 add_undefined_type_1 (struct type *type)
4430 {
4431 if (undef_types_length == undef_types_allocated)
4432 {
4433 undef_types_allocated *= 2;
4434 undef_types = (struct type **)
4435 xrealloc ((char *) undef_types,
4436 undef_types_allocated * sizeof (struct type *));
4437 }
4438 undef_types[undef_types_length++] = type;
4439 }
4440
4441 /* What about types defined as forward references inside of a small lexical
4442 scope? */
4443 /* Add a type to the list of undefined types to be checked through
4444 once this file has been read in.
4445
4446 In practice, we actually maintain two such lists: The first list
4447 (UNDEF_TYPES) is used for types whose name has been provided, and
4448 concerns forward references (eg 'xs' or 'xu' forward references);
4449 the second list (NONAME_UNDEFS) is used for types whose name is
4450 unknown at creation time, because they were referenced through
4451 their type number before the actual type was declared.
4452 This function actually adds the given type to the proper list. */
4453
4454 static void
4455 add_undefined_type (struct type *type, int typenums[2])
4456 {
4457 if (TYPE_NAME (type) == NULL)
4458 add_undefined_type_noname (type, typenums);
4459 else
4460 add_undefined_type_1 (type);
4461 }
4462
4463 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4464
4465 static void
4466 cleanup_undefined_types_noname (struct objfile *objfile)
4467 {
4468 int i;
4469
4470 for (i = 0; i < noname_undefs_length; i++)
4471 {
4472 struct nat nat = noname_undefs[i];
4473 struct type **type;
4474
4475 type = dbx_lookup_type (nat.typenums, objfile);
4476 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4477 {
4478 /* The instance flags of the undefined type are still unset,
4479 and needs to be copied over from the reference type.
4480 Since replace_type expects them to be identical, we need
4481 to set these flags manually before hand. */
4482 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4483 replace_type (nat.type, *type);
4484 }
4485 }
4486
4487 noname_undefs_length = 0;
4488 }
4489
4490 /* Go through each undefined type, see if it's still undefined, and fix it
4491 up if possible. We have two kinds of undefined types:
4492
4493 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4494 Fix: update array length using the element bounds
4495 and the target type's length.
4496 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4497 yet defined at the time a pointer to it was made.
4498 Fix: Do a full lookup on the struct/union tag. */
4499
4500 static void
4501 cleanup_undefined_types_1 (void)
4502 {
4503 struct type **type;
4504
4505 /* Iterate over every undefined type, and look for a symbol whose type
4506 matches our undefined type. The symbol matches if:
4507 1. It is a typedef in the STRUCT domain;
4508 2. It has the same name, and same type code;
4509 3. The instance flags are identical.
4510
4511 It is important to check the instance flags, because we have seen
4512 examples where the debug info contained definitions such as:
4513
4514 "foo_t:t30=B31=xefoo_t:"
4515
4516 In this case, we have created an undefined type named "foo_t" whose
4517 instance flags is null (when processing "xefoo_t"), and then created
4518 another type with the same name, but with different instance flags
4519 ('B' means volatile). I think that the definition above is wrong,
4520 since the same type cannot be volatile and non-volatile at the same
4521 time, but we need to be able to cope with it when it happens. The
4522 approach taken here is to treat these two types as different. */
4523
4524 for (type = undef_types; type < undef_types + undef_types_length; type++)
4525 {
4526 switch (TYPE_CODE (*type))
4527 {
4528
4529 case TYPE_CODE_STRUCT:
4530 case TYPE_CODE_UNION:
4531 case TYPE_CODE_ENUM:
4532 {
4533 /* Check if it has been defined since. Need to do this here
4534 as well as in check_typedef to deal with the (legitimate in
4535 C though not C++) case of several types with the same name
4536 in different source files. */
4537 if (TYPE_STUB (*type))
4538 {
4539 struct pending *ppt;
4540 int i;
4541 /* Name of the type, without "struct" or "union". */
4542 const char *type_name = TYPE_NAME (*type);
4543
4544 if (type_name == NULL)
4545 {
4546 complaint (_("need a type name"));
4547 break;
4548 }
4549 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
4550 {
4551 for (i = 0; i < ppt->nsyms; i++)
4552 {
4553 struct symbol *sym = ppt->symbol[i];
4554
4555 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4556 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4557 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4558 TYPE_CODE (*type))
4559 && (TYPE_INSTANCE_FLAGS (*type) ==
4560 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4561 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4562 type_name) == 0)
4563 replace_type (*type, SYMBOL_TYPE (sym));
4564 }
4565 }
4566 }
4567 }
4568 break;
4569
4570 default:
4571 {
4572 complaint (_("forward-referenced types left unresolved, "
4573 "type code %d."),
4574 TYPE_CODE (*type));
4575 }
4576 break;
4577 }
4578 }
4579
4580 undef_types_length = 0;
4581 }
4582
4583 /* Try to fix all the undefined types we ecountered while processing
4584 this unit. */
4585
4586 void
4587 cleanup_undefined_stabs_types (struct objfile *objfile)
4588 {
4589 cleanup_undefined_types_1 ();
4590 cleanup_undefined_types_noname (objfile);
4591 }
4592
4593 /* See stabsread.h. */
4594
4595 void
4596 scan_file_globals (struct objfile *objfile)
4597 {
4598 int hash;
4599 struct minimal_symbol *msymbol;
4600 struct symbol *sym, *prev;
4601 struct objfile *resolve_objfile;
4602
4603 /* SVR4 based linkers copy referenced global symbols from shared
4604 libraries to the main executable.
4605 If we are scanning the symbols for a shared library, try to resolve
4606 them from the minimal symbols of the main executable first. */
4607
4608 if (symfile_objfile && objfile != symfile_objfile)
4609 resolve_objfile = symfile_objfile;
4610 else
4611 resolve_objfile = objfile;
4612
4613 while (1)
4614 {
4615 /* Avoid expensive loop through all minimal symbols if there are
4616 no unresolved symbols. */
4617 for (hash = 0; hash < HASHSIZE; hash++)
4618 {
4619 if (global_sym_chain[hash])
4620 break;
4621 }
4622 if (hash >= HASHSIZE)
4623 return;
4624
4625 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4626 {
4627 QUIT;
4628
4629 /* Skip static symbols. */
4630 switch (MSYMBOL_TYPE (msymbol))
4631 {
4632 case mst_file_text:
4633 case mst_file_data:
4634 case mst_file_bss:
4635 continue;
4636 default:
4637 break;
4638 }
4639
4640 prev = NULL;
4641
4642 /* Get the hash index and check all the symbols
4643 under that hash index. */
4644
4645 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
4646
4647 for (sym = global_sym_chain[hash]; sym;)
4648 {
4649 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
4650 SYMBOL_LINKAGE_NAME (sym)) == 0)
4651 {
4652 /* Splice this symbol out of the hash chain and
4653 assign the value we have to it. */
4654 if (prev)
4655 {
4656 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4657 }
4658 else
4659 {
4660 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4661 }
4662
4663 /* Check to see whether we need to fix up a common block. */
4664 /* Note: this code might be executed several times for
4665 the same symbol if there are multiple references. */
4666 if (sym)
4667 {
4668 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4669 {
4670 fix_common_block (sym,
4671 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4672 msymbol));
4673 }
4674 else
4675 {
4676 SYMBOL_VALUE_ADDRESS (sym)
4677 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
4678 }
4679 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4680 }
4681
4682 if (prev)
4683 {
4684 sym = SYMBOL_VALUE_CHAIN (prev);
4685 }
4686 else
4687 {
4688 sym = global_sym_chain[hash];
4689 }
4690 }
4691 else
4692 {
4693 prev = sym;
4694 sym = SYMBOL_VALUE_CHAIN (sym);
4695 }
4696 }
4697 }
4698 if (resolve_objfile == objfile)
4699 break;
4700 resolve_objfile = objfile;
4701 }
4702
4703 /* Change the storage class of any remaining unresolved globals to
4704 LOC_UNRESOLVED and remove them from the chain. */
4705 for (hash = 0; hash < HASHSIZE; hash++)
4706 {
4707 sym = global_sym_chain[hash];
4708 while (sym)
4709 {
4710 prev = sym;
4711 sym = SYMBOL_VALUE_CHAIN (sym);
4712
4713 /* Change the symbol address from the misleading chain value
4714 to address zero. */
4715 SYMBOL_VALUE_ADDRESS (prev) = 0;
4716
4717 /* Complain about unresolved common block symbols. */
4718 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4719 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4720 else
4721 complaint (_("%s: common block `%s' from "
4722 "global_sym_chain unresolved"),
4723 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
4724 }
4725 }
4726 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4727 }
4728
4729 /* Initialize anything that needs initializing when starting to read
4730 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4731 to a psymtab. */
4732
4733 void
4734 stabsread_init (void)
4735 {
4736 }
4737
4738 /* Initialize anything that needs initializing when a completely new
4739 symbol file is specified (not just adding some symbols from another
4740 file, e.g. a shared library). */
4741
4742 void
4743 stabsread_new_init (void)
4744 {
4745 /* Empty the hash table of global syms looking for values. */
4746 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4747 }
4748
4749 /* Initialize anything that needs initializing at the same time as
4750 start_symtab() is called. */
4751
4752 void
4753 start_stabs (void)
4754 {
4755 global_stabs = NULL; /* AIX COFF */
4756 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4757 n_this_object_header_files = 1;
4758 type_vector_length = 0;
4759 type_vector = (struct type **) 0;
4760 within_function = 0;
4761
4762 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4763 common_block_name = NULL;
4764 }
4765
4766 /* Call after end_symtab(). */
4767
4768 void
4769 end_stabs (void)
4770 {
4771 if (type_vector)
4772 {
4773 xfree (type_vector);
4774 }
4775 type_vector = 0;
4776 type_vector_length = 0;
4777 previous_stab_code = 0;
4778 }
4779
4780 void
4781 finish_global_stabs (struct objfile *objfile)
4782 {
4783 if (global_stabs)
4784 {
4785 patch_block_stabs (*get_global_symbols (), global_stabs, objfile);
4786 xfree (global_stabs);
4787 global_stabs = NULL;
4788 }
4789 }
4790
4791 /* Find the end of the name, delimited by a ':', but don't match
4792 ObjC symbols which look like -[Foo bar::]:bla. */
4793 static const char *
4794 find_name_end (const char *name)
4795 {
4796 const char *s = name;
4797
4798 if (s[0] == '-' || *s == '+')
4799 {
4800 /* Must be an ObjC method symbol. */
4801 if (s[1] != '[')
4802 {
4803 error (_("invalid symbol name \"%s\""), name);
4804 }
4805 s = strchr (s, ']');
4806 if (s == NULL)
4807 {
4808 error (_("invalid symbol name \"%s\""), name);
4809 }
4810 return strchr (s, ':');
4811 }
4812 else
4813 {
4814 return strchr (s, ':');
4815 }
4816 }
4817
4818 /* See stabsread.h. */
4819
4820 int
4821 hashname (const char *name)
4822 {
4823 return hash (name, strlen (name)) % HASHSIZE;
4824 }
4825
4826 /* Initializer for this module. */
4827
4828 void
4829 _initialize_stabsread (void)
4830 {
4831 rs6000_builtin_type_data = register_objfile_data ();
4832
4833 undef_types_allocated = 20;
4834 undef_types_length = 0;
4835 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4836
4837 noname_undefs_allocated = 20;
4838 noname_undefs_length = 0;
4839 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4840
4841 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4842 &stab_register_funcs);
4843 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4844 &stab_register_funcs);
4845 }
This page took 0.128731 seconds and 5 git commands to generate.