* gdbtypes.h (struct main_type): Change type of name,tag_name,
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used with many systems that use
22 the a.out object file format, as well as some systems that use
23 COFF or ELF where the stabs data is placed in a special section.
24 Avoid placing any object file format specific code in this file. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include "bfd.h"
29 #include "gdb_obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "expression.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "language.h"
44 #include "doublest.h"
45 #include "cp-abi.h"
46 #include "cp-support.h"
47 #include "gdb_assert.h"
48
49 #include <ctype.h>
50
51 /* Ask stabsread.h to define the vars it normally declares `extern'. */
52 #define EXTERN
53 /**/
54 #include "stabsread.h" /* Our own declarations */
55 #undef EXTERN
56
57 extern void _initialize_stabsread (void);
58
59 /* The routines that read and process a complete stabs for a C struct or
60 C++ class pass lists of data member fields and lists of member function
61 fields in an instance of a field_info structure, as defined below.
62 This is part of some reorganization of low level C++ support and is
63 expected to eventually go away... (FIXME) */
64
65 struct field_info
66 {
67 struct nextfield
68 {
69 struct nextfield *next;
70
71 /* This is the raw visibility from the stab. It is not checked
72 for being one of the visibilities we recognize, so code which
73 examines this field better be able to deal. */
74 int visibility;
75
76 struct field field;
77 }
78 *list;
79 struct next_fnfieldlist
80 {
81 struct next_fnfieldlist *next;
82 struct fn_fieldlist fn_fieldlist;
83 }
84 *fnlist;
85 };
86
87 static void
88 read_one_struct_field (struct field_info *, char **, char *,
89 struct type *, struct objfile *);
90
91 static struct type *dbx_alloc_type (int[2], struct objfile *);
92
93 static long read_huge_number (char **, int, int *, int);
94
95 static struct type *error_type (char **, struct objfile *);
96
97 static void
98 patch_block_stabs (struct pending *, struct pending_stabs *,
99 struct objfile *);
100
101 static void fix_common_block (struct symbol *, int);
102
103 static int read_type_number (char **, int *);
104
105 static struct type *read_type (char **, struct objfile *);
106
107 static struct type *read_range_type (char **, int[2], int, struct objfile *);
108
109 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
110
111 static struct type *read_sun_floating_type (char **, int[2],
112 struct objfile *);
113
114 static struct type *read_enum_type (char **, struct type *, struct objfile *);
115
116 static struct type *rs6000_builtin_type (int, struct objfile *);
117
118 static int
119 read_member_functions (struct field_info *, char **, struct type *,
120 struct objfile *);
121
122 static int
123 read_struct_fields (struct field_info *, char **, struct type *,
124 struct objfile *);
125
126 static int
127 read_baseclasses (struct field_info *, char **, struct type *,
128 struct objfile *);
129
130 static int
131 read_tilde_fields (struct field_info *, char **, struct type *,
132 struct objfile *);
133
134 static int attach_fn_fields_to_type (struct field_info *, struct type *);
135
136 static int attach_fields_to_type (struct field_info *, struct type *,
137 struct objfile *);
138
139 static struct type *read_struct_type (char **, struct type *,
140 enum type_code,
141 struct objfile *);
142
143 static struct type *read_array_type (char **, struct type *,
144 struct objfile *);
145
146 static struct field *read_args (char **, int, struct objfile *, int *, int *);
147
148 static void add_undefined_type (struct type *, int[2]);
149
150 static int
151 read_cpp_abbrev (struct field_info *, char **, struct type *,
152 struct objfile *);
153
154 static char *find_name_end (char *name);
155
156 static int process_reference (char **string);
157
158 void stabsread_clear_cache (void);
159
160 static const char vptr_name[] = "_vptr$";
161 static const char vb_name[] = "_vb$";
162
163 static void
164 invalid_cpp_abbrev_complaint (const char *arg1)
165 {
166 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
167 }
168
169 static void
170 reg_value_complaint (int regnum, int num_regs, const char *sym)
171 {
172 complaint (&symfile_complaints,
173 _("register number %d too large (max %d) in symbol %s"),
174 regnum, num_regs - 1, sym);
175 }
176
177 static void
178 stabs_general_complaint (const char *arg1)
179 {
180 complaint (&symfile_complaints, "%s", arg1);
181 }
182
183 /* Make a list of forward references which haven't been defined. */
184
185 static struct type **undef_types;
186 static int undef_types_allocated;
187 static int undef_types_length;
188 static struct symbol *current_symbol = NULL;
189
190 /* Make a list of nameless types that are undefined.
191 This happens when another type is referenced by its number
192 before this type is actually defined. For instance "t(0,1)=k(0,2)"
193 and type (0,2) is defined only later. */
194
195 struct nat
196 {
197 int typenums[2];
198 struct type *type;
199 };
200 static struct nat *noname_undefs;
201 static int noname_undefs_allocated;
202 static int noname_undefs_length;
203
204 /* Check for and handle cretinous stabs symbol name continuation! */
205 #define STABS_CONTINUE(pp,objfile) \
206 do { \
207 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
208 *(pp) = next_symbol_text (objfile); \
209 } while (0)
210 \f
211
212 /* Look up a dbx type-number pair. Return the address of the slot
213 where the type for that number-pair is stored.
214 The number-pair is in TYPENUMS.
215
216 This can be used for finding the type associated with that pair
217 or for associating a new type with the pair. */
218
219 static struct type **
220 dbx_lookup_type (int typenums[2], struct objfile *objfile)
221 {
222 int filenum = typenums[0];
223 int index = typenums[1];
224 unsigned old_len;
225 int real_filenum;
226 struct header_file *f;
227 int f_orig_length;
228
229 if (filenum == -1) /* -1,-1 is for temporary types. */
230 return 0;
231
232 if (filenum < 0 || filenum >= n_this_object_header_files)
233 {
234 complaint (&symfile_complaints,
235 _("Invalid symbol data: type number "
236 "(%d,%d) out of range at symtab pos %d."),
237 filenum, index, symnum);
238 goto error_return;
239 }
240
241 if (filenum == 0)
242 {
243 if (index < 0)
244 {
245 /* Caller wants address of address of type. We think
246 that negative (rs6k builtin) types will never appear as
247 "lvalues", (nor should they), so we stuff the real type
248 pointer into a temp, and return its address. If referenced,
249 this will do the right thing. */
250 static struct type *temp_type;
251
252 temp_type = rs6000_builtin_type (index, objfile);
253 return &temp_type;
254 }
255
256 /* Type is defined outside of header files.
257 Find it in this object file's type vector. */
258 if (index >= type_vector_length)
259 {
260 old_len = type_vector_length;
261 if (old_len == 0)
262 {
263 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
264 type_vector = (struct type **)
265 xmalloc (type_vector_length * sizeof (struct type *));
266 }
267 while (index >= type_vector_length)
268 {
269 type_vector_length *= 2;
270 }
271 type_vector = (struct type **)
272 xrealloc ((char *) type_vector,
273 (type_vector_length * sizeof (struct type *)));
274 memset (&type_vector[old_len], 0,
275 (type_vector_length - old_len) * sizeof (struct type *));
276 }
277 return (&type_vector[index]);
278 }
279 else
280 {
281 real_filenum = this_object_header_files[filenum];
282
283 if (real_filenum >= N_HEADER_FILES (objfile))
284 {
285 static struct type *temp_type;
286
287 warning (_("GDB internal error: bad real_filenum"));
288
289 error_return:
290 temp_type = objfile_type (objfile)->builtin_error;
291 return &temp_type;
292 }
293
294 f = HEADER_FILES (objfile) + real_filenum;
295
296 f_orig_length = f->length;
297 if (index >= f_orig_length)
298 {
299 while (index >= f->length)
300 {
301 f->length *= 2;
302 }
303 f->vector = (struct type **)
304 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
305 memset (&f->vector[f_orig_length], 0,
306 (f->length - f_orig_length) * sizeof (struct type *));
307 }
308 return (&f->vector[index]);
309 }
310 }
311
312 /* Make sure there is a type allocated for type numbers TYPENUMS
313 and return the type object.
314 This can create an empty (zeroed) type object.
315 TYPENUMS may be (-1, -1) to return a new type object that is not
316 put into the type vector, and so may not be referred to by number. */
317
318 static struct type *
319 dbx_alloc_type (int typenums[2], struct objfile *objfile)
320 {
321 struct type **type_addr;
322
323 if (typenums[0] == -1)
324 {
325 return (alloc_type (objfile));
326 }
327
328 type_addr = dbx_lookup_type (typenums, objfile);
329
330 /* If we are referring to a type not known at all yet,
331 allocate an empty type for it.
332 We will fill it in later if we find out how. */
333 if (*type_addr == 0)
334 {
335 *type_addr = alloc_type (objfile);
336 }
337
338 return (*type_addr);
339 }
340
341 /* for all the stabs in a given stab vector, build appropriate types
342 and fix their symbols in given symbol vector. */
343
344 static void
345 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
346 struct objfile *objfile)
347 {
348 int ii;
349 char *name;
350 char *pp;
351 struct symbol *sym;
352
353 if (stabs)
354 {
355 /* for all the stab entries, find their corresponding symbols and
356 patch their types! */
357
358 for (ii = 0; ii < stabs->count; ++ii)
359 {
360 name = stabs->stab[ii];
361 pp = (char *) strchr (name, ':');
362 gdb_assert (pp); /* Must find a ':' or game's over. */
363 while (pp[1] == ':')
364 {
365 pp += 2;
366 pp = (char *) strchr (pp, ':');
367 }
368 sym = find_symbol_in_list (symbols, name, pp - name);
369 if (!sym)
370 {
371 /* FIXME-maybe: it would be nice if we noticed whether
372 the variable was defined *anywhere*, not just whether
373 it is defined in this compilation unit. But neither
374 xlc or GCC seem to need such a definition, and until
375 we do psymtabs (so that the minimal symbols from all
376 compilation units are available now), I'm not sure
377 how to get the information. */
378
379 /* On xcoff, if a global is defined and never referenced,
380 ld will remove it from the executable. There is then
381 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
382 sym = (struct symbol *)
383 obstack_alloc (&objfile->objfile_obstack,
384 sizeof (struct symbol));
385
386 memset (sym, 0, sizeof (struct symbol));
387 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
388 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
389 SYMBOL_SET_LINKAGE_NAME
390 (sym, obsavestring (name, pp - name,
391 &objfile->objfile_obstack));
392 pp += 2;
393 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
394 {
395 /* I don't think the linker does this with functions,
396 so as far as I know this is never executed.
397 But it doesn't hurt to check. */
398 SYMBOL_TYPE (sym) =
399 lookup_function_type (read_type (&pp, objfile));
400 }
401 else
402 {
403 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
404 }
405 add_symbol_to_list (sym, &global_symbols);
406 }
407 else
408 {
409 pp += 2;
410 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
411 {
412 SYMBOL_TYPE (sym) =
413 lookup_function_type (read_type (&pp, objfile));
414 }
415 else
416 {
417 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
418 }
419 }
420 }
421 }
422 }
423 \f
424
425 /* Read a number by which a type is referred to in dbx data,
426 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
427 Just a single number N is equivalent to (0,N).
428 Return the two numbers by storing them in the vector TYPENUMS.
429 TYPENUMS will then be used as an argument to dbx_lookup_type.
430
431 Returns 0 for success, -1 for error. */
432
433 static int
434 read_type_number (char **pp, int *typenums)
435 {
436 int nbits;
437
438 if (**pp == '(')
439 {
440 (*pp)++;
441 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
442 if (nbits != 0)
443 return -1;
444 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
445 if (nbits != 0)
446 return -1;
447 }
448 else
449 {
450 typenums[0] = 0;
451 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
452 if (nbits != 0)
453 return -1;
454 }
455 return 0;
456 }
457 \f
458
459 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
460 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
461 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
462 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
463
464 /* Structure for storing pointers to reference definitions for fast lookup
465 during "process_later". */
466
467 struct ref_map
468 {
469 char *stabs;
470 CORE_ADDR value;
471 struct symbol *sym;
472 };
473
474 #define MAX_CHUNK_REFS 100
475 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
476 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
477
478 static struct ref_map *ref_map;
479
480 /* Ptr to free cell in chunk's linked list. */
481 static int ref_count = 0;
482
483 /* Number of chunks malloced. */
484 static int ref_chunk = 0;
485
486 /* This file maintains a cache of stabs aliases found in the symbol
487 table. If the symbol table changes, this cache must be cleared
488 or we are left holding onto data in invalid obstacks. */
489 void
490 stabsread_clear_cache (void)
491 {
492 ref_count = 0;
493 ref_chunk = 0;
494 }
495
496 /* Create array of pointers mapping refids to symbols and stab strings.
497 Add pointers to reference definition symbols and/or their values as we
498 find them, using their reference numbers as our index.
499 These will be used later when we resolve references. */
500 void
501 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
502 {
503 if (ref_count == 0)
504 ref_chunk = 0;
505 if (refnum >= ref_count)
506 ref_count = refnum + 1;
507 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
508 {
509 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
510 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
511
512 ref_map = (struct ref_map *)
513 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
514 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
515 new_chunks * REF_CHUNK_SIZE);
516 ref_chunk += new_chunks;
517 }
518 ref_map[refnum].stabs = stabs;
519 ref_map[refnum].sym = sym;
520 ref_map[refnum].value = value;
521 }
522
523 /* Return defined sym for the reference REFNUM. */
524 struct symbol *
525 ref_search (int refnum)
526 {
527 if (refnum < 0 || refnum > ref_count)
528 return 0;
529 return ref_map[refnum].sym;
530 }
531
532 /* Parse a reference id in STRING and return the resulting
533 reference number. Move STRING beyond the reference id. */
534
535 static int
536 process_reference (char **string)
537 {
538 char *p;
539 int refnum = 0;
540
541 if (**string != '#')
542 return 0;
543
544 /* Advance beyond the initial '#'. */
545 p = *string + 1;
546
547 /* Read number as reference id. */
548 while (*p && isdigit (*p))
549 {
550 refnum = refnum * 10 + *p - '0';
551 p++;
552 }
553 *string = p;
554 return refnum;
555 }
556
557 /* If STRING defines a reference, store away a pointer to the reference
558 definition for later use. Return the reference number. */
559
560 int
561 symbol_reference_defined (char **string)
562 {
563 char *p = *string;
564 int refnum = 0;
565
566 refnum = process_reference (&p);
567
568 /* Defining symbols end in '='. */
569 if (*p == '=')
570 {
571 /* Symbol is being defined here. */
572 *string = p + 1;
573 return refnum;
574 }
575 else
576 {
577 /* Must be a reference. Either the symbol has already been defined,
578 or this is a forward reference to it. */
579 *string = p;
580 return -1;
581 }
582 }
583
584 static int
585 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
586 {
587 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
588
589 if (regno >= gdbarch_num_regs (gdbarch)
590 + gdbarch_num_pseudo_regs (gdbarch))
591 {
592 reg_value_complaint (regno,
593 gdbarch_num_regs (gdbarch)
594 + gdbarch_num_pseudo_regs (gdbarch),
595 SYMBOL_PRINT_NAME (sym));
596
597 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
598 }
599
600 return regno;
601 }
602
603 static const struct symbol_register_ops stab_register_funcs = {
604 stab_reg_to_regnum
605 };
606
607 struct symbol *
608 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
609 struct objfile *objfile)
610 {
611 struct gdbarch *gdbarch = get_objfile_arch (objfile);
612 struct symbol *sym;
613 char *p = (char *) find_name_end (string);
614 int deftype;
615 int synonym = 0;
616 int i;
617 char *new_name = NULL;
618
619 /* We would like to eliminate nameless symbols, but keep their types.
620 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
621 to type 2, but, should not create a symbol to address that type. Since
622 the symbol will be nameless, there is no way any user can refer to it. */
623
624 int nameless;
625
626 /* Ignore syms with empty names. */
627 if (string[0] == 0)
628 return 0;
629
630 /* Ignore old-style symbols from cc -go. */
631 if (p == 0)
632 return 0;
633
634 while (p[1] == ':')
635 {
636 p += 2;
637 p = strchr (p, ':');
638 if (p == NULL)
639 {
640 complaint (&symfile_complaints,
641 _("Bad stabs string '%s'"), string);
642 return NULL;
643 }
644 }
645
646 /* If a nameless stab entry, all we need is the type, not the symbol.
647 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
648 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
649
650 current_symbol = sym = (struct symbol *)
651 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
652 memset (sym, 0, sizeof (struct symbol));
653
654 switch (type & N_TYPE)
655 {
656 case N_TEXT:
657 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
658 break;
659 case N_DATA:
660 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
661 break;
662 case N_BSS:
663 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
664 break;
665 }
666
667 if (processing_gcc_compilation)
668 {
669 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
670 number of bytes occupied by a type or object, which we ignore. */
671 SYMBOL_LINE (sym) = desc;
672 }
673 else
674 {
675 SYMBOL_LINE (sym) = 0; /* unknown */
676 }
677
678 if (is_cplus_marker (string[0]))
679 {
680 /* Special GNU C++ names. */
681 switch (string[1])
682 {
683 case 't':
684 SYMBOL_SET_LINKAGE_NAME (sym, "this");
685 break;
686
687 case 'v': /* $vtbl_ptr_type */
688 goto normal;
689
690 case 'e':
691 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
692 break;
693
694 case '_':
695 /* This was an anonymous type that was never fixed up. */
696 goto normal;
697
698 case 'X':
699 /* SunPRO (3.0 at least) static variable encoding. */
700 if (gdbarch_static_transform_name_p (gdbarch))
701 goto normal;
702 /* ... fall through ... */
703
704 default:
705 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
706 string);
707 goto normal; /* Do *something* with it. */
708 }
709 }
710 else
711 {
712 normal:
713 SYMBOL_SET_LANGUAGE (sym, current_subfile->language);
714 if (SYMBOL_LANGUAGE (sym) == language_cplus)
715 {
716 char *name = alloca (p - string + 1);
717
718 memcpy (name, string, p - string);
719 name[p - string] = '\0';
720 new_name = cp_canonicalize_string (name);
721 }
722 if (new_name != NULL)
723 {
724 SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), 1, objfile);
725 xfree (new_name);
726 }
727 else
728 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
729
730 if (SYMBOL_LANGUAGE (sym) == language_cplus)
731 cp_scan_for_anonymous_namespaces (sym, objfile);
732
733 }
734 p++;
735
736 /* Determine the type of name being defined. */
737 #if 0
738 /* Getting GDB to correctly skip the symbol on an undefined symbol
739 descriptor and not ever dump core is a very dodgy proposition if
740 we do things this way. I say the acorn RISC machine can just
741 fix their compiler. */
742 /* The Acorn RISC machine's compiler can put out locals that don't
743 start with "234=" or "(3,4)=", so assume anything other than the
744 deftypes we know how to handle is a local. */
745 if (!strchr ("cfFGpPrStTvVXCR", *p))
746 #else
747 if (isdigit (*p) || *p == '(' || *p == '-')
748 #endif
749 deftype = 'l';
750 else
751 deftype = *p++;
752
753 switch (deftype)
754 {
755 case 'c':
756 /* c is a special case, not followed by a type-number.
757 SYMBOL:c=iVALUE for an integer constant symbol.
758 SYMBOL:c=rVALUE for a floating constant symbol.
759 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
760 e.g. "b:c=e6,0" for "const b = blob1"
761 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
762 if (*p != '=')
763 {
764 SYMBOL_CLASS (sym) = LOC_CONST;
765 SYMBOL_TYPE (sym) = error_type (&p, objfile);
766 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
767 add_symbol_to_list (sym, &file_symbols);
768 return sym;
769 }
770 ++p;
771 switch (*p++)
772 {
773 case 'r':
774 {
775 double d = atof (p);
776 gdb_byte *dbl_valu;
777 struct type *dbl_type;
778
779 /* FIXME-if-picky-about-floating-accuracy: Should be using
780 target arithmetic to get the value. real.c in GCC
781 probably has the necessary code. */
782
783 dbl_type = objfile_type (objfile)->builtin_double;
784 dbl_valu =
785 obstack_alloc (&objfile->objfile_obstack,
786 TYPE_LENGTH (dbl_type));
787 store_typed_floating (dbl_valu, dbl_type, d);
788
789 SYMBOL_TYPE (sym) = dbl_type;
790 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
791 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
792 }
793 break;
794 case 'i':
795 {
796 /* Defining integer constants this way is kind of silly,
797 since 'e' constants allows the compiler to give not
798 only the value, but the type as well. C has at least
799 int, long, unsigned int, and long long as constant
800 types; other languages probably should have at least
801 unsigned as well as signed constants. */
802
803 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
804 SYMBOL_VALUE (sym) = atoi (p);
805 SYMBOL_CLASS (sym) = LOC_CONST;
806 }
807 break;
808
809 case 'c':
810 {
811 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
812 SYMBOL_VALUE (sym) = atoi (p);
813 SYMBOL_CLASS (sym) = LOC_CONST;
814 }
815 break;
816
817 case 's':
818 {
819 struct type *range_type;
820 int ind = 0;
821 char quote = *p++;
822 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
823 gdb_byte *string_value;
824
825 if (quote != '\'' && quote != '"')
826 {
827 SYMBOL_CLASS (sym) = LOC_CONST;
828 SYMBOL_TYPE (sym) = error_type (&p, objfile);
829 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
830 add_symbol_to_list (sym, &file_symbols);
831 return sym;
832 }
833
834 /* Find matching quote, rejecting escaped quotes. */
835 while (*p && *p != quote)
836 {
837 if (*p == '\\' && p[1] == quote)
838 {
839 string_local[ind] = (gdb_byte) quote;
840 ind++;
841 p += 2;
842 }
843 else if (*p)
844 {
845 string_local[ind] = (gdb_byte) (*p);
846 ind++;
847 p++;
848 }
849 }
850 if (*p != quote)
851 {
852 SYMBOL_CLASS (sym) = LOC_CONST;
853 SYMBOL_TYPE (sym) = error_type (&p, objfile);
854 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
855 add_symbol_to_list (sym, &file_symbols);
856 return sym;
857 }
858
859 /* NULL terminate the string. */
860 string_local[ind] = 0;
861 range_type
862 = create_range_type (NULL,
863 objfile_type (objfile)->builtin_int,
864 0, ind);
865 SYMBOL_TYPE (sym) = create_array_type (NULL,
866 objfile_type (objfile)->builtin_char,
867 range_type);
868 string_value = obstack_alloc (&objfile->objfile_obstack, ind + 1);
869 memcpy (string_value, string_local, ind + 1);
870 p++;
871
872 SYMBOL_VALUE_BYTES (sym) = string_value;
873 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
874 }
875 break;
876
877 case 'e':
878 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
879 can be represented as integral.
880 e.g. "b:c=e6,0" for "const b = blob1"
881 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
882 {
883 SYMBOL_CLASS (sym) = LOC_CONST;
884 SYMBOL_TYPE (sym) = read_type (&p, objfile);
885
886 if (*p != ',')
887 {
888 SYMBOL_TYPE (sym) = error_type (&p, objfile);
889 break;
890 }
891 ++p;
892
893 /* If the value is too big to fit in an int (perhaps because
894 it is unsigned), or something like that, we silently get
895 a bogus value. The type and everything else about it is
896 correct. Ideally, we should be using whatever we have
897 available for parsing unsigned and long long values,
898 however. */
899 SYMBOL_VALUE (sym) = atoi (p);
900 }
901 break;
902 default:
903 {
904 SYMBOL_CLASS (sym) = LOC_CONST;
905 SYMBOL_TYPE (sym) = error_type (&p, objfile);
906 }
907 }
908 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
909 add_symbol_to_list (sym, &file_symbols);
910 return sym;
911
912 case 'C':
913 /* The name of a caught exception. */
914 SYMBOL_TYPE (sym) = read_type (&p, objfile);
915 SYMBOL_CLASS (sym) = LOC_LABEL;
916 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
917 SYMBOL_VALUE_ADDRESS (sym) = valu;
918 add_symbol_to_list (sym, &local_symbols);
919 break;
920
921 case 'f':
922 /* A static function definition. */
923 SYMBOL_TYPE (sym) = read_type (&p, objfile);
924 SYMBOL_CLASS (sym) = LOC_BLOCK;
925 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
926 add_symbol_to_list (sym, &file_symbols);
927 /* fall into process_function_types. */
928
929 process_function_types:
930 /* Function result types are described as the result type in stabs.
931 We need to convert this to the function-returning-type-X type
932 in GDB. E.g. "int" is converted to "function returning int". */
933 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
934 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
935
936 /* All functions in C++ have prototypes. Stabs does not offer an
937 explicit way to identify prototyped or unprototyped functions,
938 but both GCC and Sun CC emit stabs for the "call-as" type rather
939 than the "declared-as" type for unprototyped functions, so
940 we treat all functions as if they were prototyped. This is used
941 primarily for promotion when calling the function from GDB. */
942 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
943
944 /* fall into process_prototype_types. */
945
946 process_prototype_types:
947 /* Sun acc puts declared types of arguments here. */
948 if (*p == ';')
949 {
950 struct type *ftype = SYMBOL_TYPE (sym);
951 int nsemi = 0;
952 int nparams = 0;
953 char *p1 = p;
954
955 /* Obtain a worst case guess for the number of arguments
956 by counting the semicolons. */
957 while (*p1)
958 {
959 if (*p1++ == ';')
960 nsemi++;
961 }
962
963 /* Allocate parameter information fields and fill them in. */
964 TYPE_FIELDS (ftype) = (struct field *)
965 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
966 while (*p++ == ';')
967 {
968 struct type *ptype;
969
970 /* A type number of zero indicates the start of varargs.
971 FIXME: GDB currently ignores vararg functions. */
972 if (p[0] == '0' && p[1] == '\0')
973 break;
974 ptype = read_type (&p, objfile);
975
976 /* The Sun compilers mark integer arguments, which should
977 be promoted to the width of the calling conventions, with
978 a type which references itself. This type is turned into
979 a TYPE_CODE_VOID type by read_type, and we have to turn
980 it back into builtin_int here.
981 FIXME: Do we need a new builtin_promoted_int_arg ? */
982 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
983 ptype = objfile_type (objfile)->builtin_int;
984 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
985 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
986 }
987 TYPE_NFIELDS (ftype) = nparams;
988 TYPE_PROTOTYPED (ftype) = 1;
989 }
990 break;
991
992 case 'F':
993 /* A global function definition. */
994 SYMBOL_TYPE (sym) = read_type (&p, objfile);
995 SYMBOL_CLASS (sym) = LOC_BLOCK;
996 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
997 add_symbol_to_list (sym, &global_symbols);
998 goto process_function_types;
999
1000 case 'G':
1001 /* For a class G (global) symbol, it appears that the
1002 value is not correct. It is necessary to search for the
1003 corresponding linker definition to find the value.
1004 These definitions appear at the end of the namelist. */
1005 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1006 SYMBOL_CLASS (sym) = LOC_STATIC;
1007 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1008 /* Don't add symbol references to global_sym_chain.
1009 Symbol references don't have valid names and wont't match up with
1010 minimal symbols when the global_sym_chain is relocated.
1011 We'll fixup symbol references when we fixup the defining symbol. */
1012 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1013 {
1014 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1015 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1016 global_sym_chain[i] = sym;
1017 }
1018 add_symbol_to_list (sym, &global_symbols);
1019 break;
1020
1021 /* This case is faked by a conditional above,
1022 when there is no code letter in the dbx data.
1023 Dbx data never actually contains 'l'. */
1024 case 's':
1025 case 'l':
1026 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1027 SYMBOL_CLASS (sym) = LOC_LOCAL;
1028 SYMBOL_VALUE (sym) = valu;
1029 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1030 add_symbol_to_list (sym, &local_symbols);
1031 break;
1032
1033 case 'p':
1034 if (*p == 'F')
1035 /* pF is a two-letter code that means a function parameter in Fortran.
1036 The type-number specifies the type of the return value.
1037 Translate it into a pointer-to-function type. */
1038 {
1039 p++;
1040 SYMBOL_TYPE (sym)
1041 = lookup_pointer_type
1042 (lookup_function_type (read_type (&p, objfile)));
1043 }
1044 else
1045 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1046
1047 SYMBOL_CLASS (sym) = LOC_ARG;
1048 SYMBOL_VALUE (sym) = valu;
1049 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1050 SYMBOL_IS_ARGUMENT (sym) = 1;
1051 add_symbol_to_list (sym, &local_symbols);
1052
1053 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1054 {
1055 /* On little-endian machines, this crud is never necessary,
1056 and, if the extra bytes contain garbage, is harmful. */
1057 break;
1058 }
1059
1060 /* If it's gcc-compiled, if it says `short', believe it. */
1061 if (processing_gcc_compilation
1062 || gdbarch_believe_pcc_promotion (gdbarch))
1063 break;
1064
1065 if (!gdbarch_believe_pcc_promotion (gdbarch))
1066 {
1067 /* If PCC says a parameter is a short or a char, it is
1068 really an int. */
1069 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1070 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1071 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1072 {
1073 SYMBOL_TYPE (sym) =
1074 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1075 ? objfile_type (objfile)->builtin_unsigned_int
1076 : objfile_type (objfile)->builtin_int;
1077 }
1078 break;
1079 }
1080
1081 case 'P':
1082 /* acc seems to use P to declare the prototypes of functions that
1083 are referenced by this file. gdb is not prepared to deal
1084 with this extra information. FIXME, it ought to. */
1085 if (type == N_FUN)
1086 {
1087 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1088 goto process_prototype_types;
1089 }
1090 /*FALLTHROUGH */
1091
1092 case 'R':
1093 /* Parameter which is in a register. */
1094 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1095 SYMBOL_CLASS (sym) = LOC_REGISTER;
1096 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1097 SYMBOL_IS_ARGUMENT (sym) = 1;
1098 SYMBOL_VALUE (sym) = valu;
1099 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1100 add_symbol_to_list (sym, &local_symbols);
1101 break;
1102
1103 case 'r':
1104 /* Register variable (either global or local). */
1105 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1106 SYMBOL_CLASS (sym) = LOC_REGISTER;
1107 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1108 SYMBOL_VALUE (sym) = valu;
1109 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1110 if (within_function)
1111 {
1112 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1113 the same name to represent an argument passed in a
1114 register. GCC uses 'P' for the same case. So if we find
1115 such a symbol pair we combine it into one 'P' symbol.
1116 For Sun cc we need to do this regardless of
1117 stabs_argument_has_addr, because the compiler puts out
1118 the 'p' symbol even if it never saves the argument onto
1119 the stack.
1120
1121 On most machines, we want to preserve both symbols, so
1122 that we can still get information about what is going on
1123 with the stack (VAX for computing args_printed, using
1124 stack slots instead of saved registers in backtraces,
1125 etc.).
1126
1127 Note that this code illegally combines
1128 main(argc) struct foo argc; { register struct foo argc; }
1129 but this case is considered pathological and causes a warning
1130 from a decent compiler. */
1131
1132 if (local_symbols
1133 && local_symbols->nsyms > 0
1134 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1135 {
1136 struct symbol *prev_sym;
1137
1138 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1139 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1140 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1141 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1142 SYMBOL_LINKAGE_NAME (sym)) == 0)
1143 {
1144 SYMBOL_CLASS (prev_sym) = LOC_REGISTER;
1145 SYMBOL_REGISTER_OPS (prev_sym) = &stab_register_funcs;
1146 /* Use the type from the LOC_REGISTER; that is the type
1147 that is actually in that register. */
1148 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1149 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1150 sym = prev_sym;
1151 break;
1152 }
1153 }
1154 add_symbol_to_list (sym, &local_symbols);
1155 }
1156 else
1157 add_symbol_to_list (sym, &file_symbols);
1158 break;
1159
1160 case 'S':
1161 /* Static symbol at top level of file. */
1162 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1163 SYMBOL_CLASS (sym) = LOC_STATIC;
1164 SYMBOL_VALUE_ADDRESS (sym) = valu;
1165 if (gdbarch_static_transform_name_p (gdbarch)
1166 && gdbarch_static_transform_name (gdbarch,
1167 SYMBOL_LINKAGE_NAME (sym))
1168 != SYMBOL_LINKAGE_NAME (sym))
1169 {
1170 struct minimal_symbol *msym;
1171
1172 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1173 NULL, objfile);
1174 if (msym != NULL)
1175 {
1176 const char *new_name = gdbarch_static_transform_name
1177 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1178
1179 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1180 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1181 }
1182 }
1183 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1184 add_symbol_to_list (sym, &file_symbols);
1185 break;
1186
1187 case 't':
1188 /* In Ada, there is no distinction between typedef and non-typedef;
1189 any type declaration implicitly has the equivalent of a typedef,
1190 and thus 't' is in fact equivalent to 'Tt'.
1191
1192 Therefore, for Ada units, we check the character immediately
1193 before the 't', and if we do not find a 'T', then make sure to
1194 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1195 will be stored in the VAR_DOMAIN). If the symbol was indeed
1196 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1197 elsewhere, so we don't need to take care of that.
1198
1199 This is important to do, because of forward references:
1200 The cleanup of undefined types stored in undef_types only uses
1201 STRUCT_DOMAIN symbols to perform the replacement. */
1202 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1203
1204 /* Typedef */
1205 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1206
1207 /* For a nameless type, we don't want a create a symbol, thus we
1208 did not use `sym'. Return without further processing. */
1209 if (nameless)
1210 return NULL;
1211
1212 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1213 SYMBOL_VALUE (sym) = valu;
1214 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1215 /* C++ vagaries: we may have a type which is derived from
1216 a base type which did not have its name defined when the
1217 derived class was output. We fill in the derived class's
1218 base part member's name here in that case. */
1219 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1220 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1221 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1222 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1223 {
1224 int j;
1225
1226 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1227 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1228 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1229 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1230 }
1231
1232 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1233 {
1234 /* gcc-2.6 or later (when using -fvtable-thunks)
1235 emits a unique named type for a vtable entry.
1236 Some gdb code depends on that specific name. */
1237 extern const char vtbl_ptr_name[];
1238
1239 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1240 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1241 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1242 {
1243 /* If we are giving a name to a type such as "pointer to
1244 foo" or "function returning foo", we better not set
1245 the TYPE_NAME. If the program contains "typedef char
1246 *caddr_t;", we don't want all variables of type char
1247 * to print as caddr_t. This is not just a
1248 consequence of GDB's type management; PCC and GCC (at
1249 least through version 2.4) both output variables of
1250 either type char * or caddr_t with the type number
1251 defined in the 't' symbol for caddr_t. If a future
1252 compiler cleans this up it GDB is not ready for it
1253 yet, but if it becomes ready we somehow need to
1254 disable this check (without breaking the PCC/GCC2.4
1255 case).
1256
1257 Sigh.
1258
1259 Fortunately, this check seems not to be necessary
1260 for anything except pointers or functions. */
1261 /* ezannoni: 2000-10-26. This seems to apply for
1262 versions of gcc older than 2.8. This was the original
1263 problem: with the following code gdb would tell that
1264 the type for name1 is caddr_t, and func is char().
1265
1266 typedef char *caddr_t;
1267 char *name2;
1268 struct x
1269 {
1270 char *name1;
1271 } xx;
1272 char *func()
1273 {
1274 }
1275 main () {}
1276 */
1277
1278 /* Pascal accepts names for pointer types. */
1279 if (current_subfile->language == language_pascal)
1280 {
1281 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1282 }
1283 }
1284 else
1285 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1286 }
1287
1288 add_symbol_to_list (sym, &file_symbols);
1289
1290 if (synonym)
1291 {
1292 /* Create the STRUCT_DOMAIN clone. */
1293 struct symbol *struct_sym = (struct symbol *)
1294 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1295
1296 *struct_sym = *sym;
1297 SYMBOL_CLASS (struct_sym) = LOC_TYPEDEF;
1298 SYMBOL_VALUE (struct_sym) = valu;
1299 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1300 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1301 TYPE_NAME (SYMBOL_TYPE (sym))
1302 = obconcat (&objfile->objfile_obstack,
1303 SYMBOL_LINKAGE_NAME (sym),
1304 (char *) NULL);
1305 add_symbol_to_list (struct_sym, &file_symbols);
1306 }
1307
1308 break;
1309
1310 case 'T':
1311 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1312 by 't' which means we are typedef'ing it as well. */
1313 synonym = *p == 't';
1314
1315 if (synonym)
1316 p++;
1317
1318 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1319
1320 /* For a nameless type, we don't want a create a symbol, thus we
1321 did not use `sym'. Return without further processing. */
1322 if (nameless)
1323 return NULL;
1324
1325 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1326 SYMBOL_VALUE (sym) = valu;
1327 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1328 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1329 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1330 = obconcat (&objfile->objfile_obstack,
1331 SYMBOL_LINKAGE_NAME (sym),
1332 (char *) NULL);
1333 add_symbol_to_list (sym, &file_symbols);
1334
1335 if (synonym)
1336 {
1337 /* Clone the sym and then modify it. */
1338 struct symbol *typedef_sym = (struct symbol *)
1339 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1340
1341 *typedef_sym = *sym;
1342 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1343 SYMBOL_VALUE (typedef_sym) = valu;
1344 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1345 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1346 TYPE_NAME (SYMBOL_TYPE (sym))
1347 = obconcat (&objfile->objfile_obstack,
1348 SYMBOL_LINKAGE_NAME (sym),
1349 (char *) NULL);
1350 add_symbol_to_list (typedef_sym, &file_symbols);
1351 }
1352 break;
1353
1354 case 'V':
1355 /* Static symbol of local scope. */
1356 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1357 SYMBOL_CLASS (sym) = LOC_STATIC;
1358 SYMBOL_VALUE_ADDRESS (sym) = valu;
1359 if (gdbarch_static_transform_name_p (gdbarch)
1360 && gdbarch_static_transform_name (gdbarch,
1361 SYMBOL_LINKAGE_NAME (sym))
1362 != SYMBOL_LINKAGE_NAME (sym))
1363 {
1364 struct minimal_symbol *msym;
1365
1366 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1367 NULL, objfile);
1368 if (msym != NULL)
1369 {
1370 const char *new_name = gdbarch_static_transform_name
1371 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1372
1373 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1374 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1375 }
1376 }
1377 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1378 add_symbol_to_list (sym, &local_symbols);
1379 break;
1380
1381 case 'v':
1382 /* Reference parameter */
1383 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1384 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1385 SYMBOL_IS_ARGUMENT (sym) = 1;
1386 SYMBOL_VALUE (sym) = valu;
1387 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1388 add_symbol_to_list (sym, &local_symbols);
1389 break;
1390
1391 case 'a':
1392 /* Reference parameter which is in a register. */
1393 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1394 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1395 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1396 SYMBOL_IS_ARGUMENT (sym) = 1;
1397 SYMBOL_VALUE (sym) = valu;
1398 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1399 add_symbol_to_list (sym, &local_symbols);
1400 break;
1401
1402 case 'X':
1403 /* This is used by Sun FORTRAN for "function result value".
1404 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1405 that Pascal uses it too, but when I tried it Pascal used
1406 "x:3" (local symbol) instead. */
1407 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1408 SYMBOL_CLASS (sym) = LOC_LOCAL;
1409 SYMBOL_VALUE (sym) = valu;
1410 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1411 add_symbol_to_list (sym, &local_symbols);
1412 break;
1413
1414 default:
1415 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1416 SYMBOL_CLASS (sym) = LOC_CONST;
1417 SYMBOL_VALUE (sym) = 0;
1418 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1419 add_symbol_to_list (sym, &file_symbols);
1420 break;
1421 }
1422
1423 /* Some systems pass variables of certain types by reference instead
1424 of by value, i.e. they will pass the address of a structure (in a
1425 register or on the stack) instead of the structure itself. */
1426
1427 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1428 && SYMBOL_IS_ARGUMENT (sym))
1429 {
1430 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1431 variables passed in a register). */
1432 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1433 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1434 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1435 and subsequent arguments on SPARC, for example). */
1436 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1437 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1438 }
1439
1440 return sym;
1441 }
1442
1443 /* Skip rest of this symbol and return an error type.
1444
1445 General notes on error recovery: error_type always skips to the
1446 end of the symbol (modulo cretinous dbx symbol name continuation).
1447 Thus code like this:
1448
1449 if (*(*pp)++ != ';')
1450 return error_type (pp, objfile);
1451
1452 is wrong because if *pp starts out pointing at '\0' (typically as the
1453 result of an earlier error), it will be incremented to point to the
1454 start of the next symbol, which might produce strange results, at least
1455 if you run off the end of the string table. Instead use
1456
1457 if (**pp != ';')
1458 return error_type (pp, objfile);
1459 ++*pp;
1460
1461 or
1462
1463 if (**pp != ';')
1464 foo = error_type (pp, objfile);
1465 else
1466 ++*pp;
1467
1468 And in case it isn't obvious, the point of all this hair is so the compiler
1469 can define new types and new syntaxes, and old versions of the
1470 debugger will be able to read the new symbol tables. */
1471
1472 static struct type *
1473 error_type (char **pp, struct objfile *objfile)
1474 {
1475 complaint (&symfile_complaints,
1476 _("couldn't parse type; debugger out of date?"));
1477 while (1)
1478 {
1479 /* Skip to end of symbol. */
1480 while (**pp != '\0')
1481 {
1482 (*pp)++;
1483 }
1484
1485 /* Check for and handle cretinous dbx symbol name continuation! */
1486 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1487 {
1488 *pp = next_symbol_text (objfile);
1489 }
1490 else
1491 {
1492 break;
1493 }
1494 }
1495 return objfile_type (objfile)->builtin_error;
1496 }
1497 \f
1498
1499 /* Read type information or a type definition; return the type. Even
1500 though this routine accepts either type information or a type
1501 definition, the distinction is relevant--some parts of stabsread.c
1502 assume that type information starts with a digit, '-', or '(' in
1503 deciding whether to call read_type. */
1504
1505 static struct type *
1506 read_type (char **pp, struct objfile *objfile)
1507 {
1508 struct type *type = 0;
1509 struct type *type1;
1510 int typenums[2];
1511 char type_descriptor;
1512
1513 /* Size in bits of type if specified by a type attribute, or -1 if
1514 there is no size attribute. */
1515 int type_size = -1;
1516
1517 /* Used to distinguish string and bitstring from char-array and set. */
1518 int is_string = 0;
1519
1520 /* Used to distinguish vector from array. */
1521 int is_vector = 0;
1522
1523 /* Read type number if present. The type number may be omitted.
1524 for instance in a two-dimensional array declared with type
1525 "ar1;1;10;ar1;1;10;4". */
1526 if ((**pp >= '0' && **pp <= '9')
1527 || **pp == '('
1528 || **pp == '-')
1529 {
1530 if (read_type_number (pp, typenums) != 0)
1531 return error_type (pp, objfile);
1532
1533 if (**pp != '=')
1534 {
1535 /* Type is not being defined here. Either it already
1536 exists, or this is a forward reference to it.
1537 dbx_alloc_type handles both cases. */
1538 type = dbx_alloc_type (typenums, objfile);
1539
1540 /* If this is a forward reference, arrange to complain if it
1541 doesn't get patched up by the time we're done
1542 reading. */
1543 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1544 add_undefined_type (type, typenums);
1545
1546 return type;
1547 }
1548
1549 /* Type is being defined here. */
1550 /* Skip the '='.
1551 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1552 (*pp) += 2;
1553 }
1554 else
1555 {
1556 /* 'typenums=' not present, type is anonymous. Read and return
1557 the definition, but don't put it in the type vector. */
1558 typenums[0] = typenums[1] = -1;
1559 (*pp)++;
1560 }
1561
1562 again:
1563 type_descriptor = (*pp)[-1];
1564 switch (type_descriptor)
1565 {
1566 case 'x':
1567 {
1568 enum type_code code;
1569
1570 /* Used to index through file_symbols. */
1571 struct pending *ppt;
1572 int i;
1573
1574 /* Name including "struct", etc. */
1575 char *type_name;
1576
1577 {
1578 char *from, *to, *p, *q1, *q2;
1579
1580 /* Set the type code according to the following letter. */
1581 switch ((*pp)[0])
1582 {
1583 case 's':
1584 code = TYPE_CODE_STRUCT;
1585 break;
1586 case 'u':
1587 code = TYPE_CODE_UNION;
1588 break;
1589 case 'e':
1590 code = TYPE_CODE_ENUM;
1591 break;
1592 default:
1593 {
1594 /* Complain and keep going, so compilers can invent new
1595 cross-reference types. */
1596 complaint (&symfile_complaints,
1597 _("Unrecognized cross-reference type `%c'"),
1598 (*pp)[0]);
1599 code = TYPE_CODE_STRUCT;
1600 break;
1601 }
1602 }
1603
1604 q1 = strchr (*pp, '<');
1605 p = strchr (*pp, ':');
1606 if (p == NULL)
1607 return error_type (pp, objfile);
1608 if (q1 && p > q1 && p[1] == ':')
1609 {
1610 int nesting_level = 0;
1611
1612 for (q2 = q1; *q2; q2++)
1613 {
1614 if (*q2 == '<')
1615 nesting_level++;
1616 else if (*q2 == '>')
1617 nesting_level--;
1618 else if (*q2 == ':' && nesting_level == 0)
1619 break;
1620 }
1621 p = q2;
1622 if (*p != ':')
1623 return error_type (pp, objfile);
1624 }
1625 type_name = NULL;
1626 if (current_subfile->language == language_cplus)
1627 {
1628 char *new_name, *name = alloca (p - *pp + 1);
1629
1630 memcpy (name, *pp, p - *pp);
1631 name[p - *pp] = '\0';
1632 new_name = cp_canonicalize_string (name);
1633 if (new_name != NULL)
1634 {
1635 type_name = obsavestring (new_name, strlen (new_name),
1636 &objfile->objfile_obstack);
1637 xfree (new_name);
1638 }
1639 }
1640 if (type_name == NULL)
1641 {
1642 to = type_name = (char *)
1643 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1644
1645 /* Copy the name. */
1646 from = *pp + 1;
1647 while (from < p)
1648 *to++ = *from++;
1649 *to = '\0';
1650 }
1651
1652 /* Set the pointer ahead of the name which we just read, and
1653 the colon. */
1654 *pp = p + 1;
1655 }
1656
1657 /* If this type has already been declared, then reuse the same
1658 type, rather than allocating a new one. This saves some
1659 memory. */
1660
1661 for (ppt = file_symbols; ppt; ppt = ppt->next)
1662 for (i = 0; i < ppt->nsyms; i++)
1663 {
1664 struct symbol *sym = ppt->symbol[i];
1665
1666 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1667 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1668 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1669 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1670 {
1671 obstack_free (&objfile->objfile_obstack, type_name);
1672 type = SYMBOL_TYPE (sym);
1673 if (typenums[0] != -1)
1674 *dbx_lookup_type (typenums, objfile) = type;
1675 return type;
1676 }
1677 }
1678
1679 /* Didn't find the type to which this refers, so we must
1680 be dealing with a forward reference. Allocate a type
1681 structure for it, and keep track of it so we can
1682 fill in the rest of the fields when we get the full
1683 type. */
1684 type = dbx_alloc_type (typenums, objfile);
1685 TYPE_CODE (type) = code;
1686 TYPE_TAG_NAME (type) = type_name;
1687 INIT_CPLUS_SPECIFIC (type);
1688 TYPE_STUB (type) = 1;
1689
1690 add_undefined_type (type, typenums);
1691 return type;
1692 }
1693
1694 case '-': /* RS/6000 built-in type */
1695 case '0':
1696 case '1':
1697 case '2':
1698 case '3':
1699 case '4':
1700 case '5':
1701 case '6':
1702 case '7':
1703 case '8':
1704 case '9':
1705 case '(':
1706 (*pp)--;
1707
1708 /* We deal with something like t(1,2)=(3,4)=... which
1709 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1710
1711 /* Allocate and enter the typedef type first.
1712 This handles recursive types. */
1713 type = dbx_alloc_type (typenums, objfile);
1714 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1715 {
1716 struct type *xtype = read_type (pp, objfile);
1717
1718 if (type == xtype)
1719 {
1720 /* It's being defined as itself. That means it is "void". */
1721 TYPE_CODE (type) = TYPE_CODE_VOID;
1722 TYPE_LENGTH (type) = 1;
1723 }
1724 else if (type_size >= 0 || is_string)
1725 {
1726 /* This is the absolute wrong way to construct types. Every
1727 other debug format has found a way around this problem and
1728 the related problems with unnecessarily stubbed types;
1729 someone motivated should attempt to clean up the issue
1730 here as well. Once a type pointed to has been created it
1731 should not be modified.
1732
1733 Well, it's not *absolutely* wrong. Constructing recursive
1734 types (trees, linked lists) necessarily entails modifying
1735 types after creating them. Constructing any loop structure
1736 entails side effects. The Dwarf 2 reader does handle this
1737 more gracefully (it never constructs more than once
1738 instance of a type object, so it doesn't have to copy type
1739 objects wholesale), but it still mutates type objects after
1740 other folks have references to them.
1741
1742 Keep in mind that this circularity/mutation issue shows up
1743 at the source language level, too: C's "incomplete types",
1744 for example. So the proper cleanup, I think, would be to
1745 limit GDB's type smashing to match exactly those required
1746 by the source language. So GDB could have a
1747 "complete_this_type" function, but never create unnecessary
1748 copies of a type otherwise. */
1749 replace_type (type, xtype);
1750 TYPE_NAME (type) = NULL;
1751 TYPE_TAG_NAME (type) = NULL;
1752 }
1753 else
1754 {
1755 TYPE_TARGET_STUB (type) = 1;
1756 TYPE_TARGET_TYPE (type) = xtype;
1757 }
1758 }
1759 break;
1760
1761 /* In the following types, we must be sure to overwrite any existing
1762 type that the typenums refer to, rather than allocating a new one
1763 and making the typenums point to the new one. This is because there
1764 may already be pointers to the existing type (if it had been
1765 forward-referenced), and we must change it to a pointer, function,
1766 reference, or whatever, *in-place*. */
1767
1768 case '*': /* Pointer to another type */
1769 type1 = read_type (pp, objfile);
1770 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1771 break;
1772
1773 case '&': /* Reference to another type */
1774 type1 = read_type (pp, objfile);
1775 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
1776 break;
1777
1778 case 'f': /* Function returning another type */
1779 type1 = read_type (pp, objfile);
1780 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1781 break;
1782
1783 case 'g': /* Prototyped function. (Sun) */
1784 {
1785 /* Unresolved questions:
1786
1787 - According to Sun's ``STABS Interface Manual'', for 'f'
1788 and 'F' symbol descriptors, a `0' in the argument type list
1789 indicates a varargs function. But it doesn't say how 'g'
1790 type descriptors represent that info. Someone with access
1791 to Sun's toolchain should try it out.
1792
1793 - According to the comment in define_symbol (search for
1794 `process_prototype_types:'), Sun emits integer arguments as
1795 types which ref themselves --- like `void' types. Do we
1796 have to deal with that here, too? Again, someone with
1797 access to Sun's toolchain should try it out and let us
1798 know. */
1799
1800 const char *type_start = (*pp) - 1;
1801 struct type *return_type = read_type (pp, objfile);
1802 struct type *func_type
1803 = make_function_type (return_type,
1804 dbx_lookup_type (typenums, objfile));
1805 struct type_list {
1806 struct type *type;
1807 struct type_list *next;
1808 } *arg_types = 0;
1809 int num_args = 0;
1810
1811 while (**pp && **pp != '#')
1812 {
1813 struct type *arg_type = read_type (pp, objfile);
1814 struct type_list *new = alloca (sizeof (*new));
1815 new->type = arg_type;
1816 new->next = arg_types;
1817 arg_types = new;
1818 num_args++;
1819 }
1820 if (**pp == '#')
1821 ++*pp;
1822 else
1823 {
1824 complaint (&symfile_complaints,
1825 _("Prototyped function type didn't "
1826 "end arguments with `#':\n%s"),
1827 type_start);
1828 }
1829
1830 /* If there is just one argument whose type is `void', then
1831 that's just an empty argument list. */
1832 if (arg_types
1833 && ! arg_types->next
1834 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1835 num_args = 0;
1836
1837 TYPE_FIELDS (func_type)
1838 = (struct field *) TYPE_ALLOC (func_type,
1839 num_args * sizeof (struct field));
1840 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1841 {
1842 int i;
1843 struct type_list *t;
1844
1845 /* We stuck each argument type onto the front of the list
1846 when we read it, so the list is reversed. Build the
1847 fields array right-to-left. */
1848 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1849 TYPE_FIELD_TYPE (func_type, i) = t->type;
1850 }
1851 TYPE_NFIELDS (func_type) = num_args;
1852 TYPE_PROTOTYPED (func_type) = 1;
1853
1854 type = func_type;
1855 break;
1856 }
1857
1858 case 'k': /* Const qualifier on some type (Sun) */
1859 type = read_type (pp, objfile);
1860 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1861 dbx_lookup_type (typenums, objfile));
1862 break;
1863
1864 case 'B': /* Volatile qual on some type (Sun) */
1865 type = read_type (pp, objfile);
1866 type = make_cv_type (TYPE_CONST (type), 1, type,
1867 dbx_lookup_type (typenums, objfile));
1868 break;
1869
1870 case '@':
1871 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1872 { /* Member (class & variable) type */
1873 /* FIXME -- we should be doing smash_to_XXX types here. */
1874
1875 struct type *domain = read_type (pp, objfile);
1876 struct type *memtype;
1877
1878 if (**pp != ',')
1879 /* Invalid member type data format. */
1880 return error_type (pp, objfile);
1881 ++*pp;
1882
1883 memtype = read_type (pp, objfile);
1884 type = dbx_alloc_type (typenums, objfile);
1885 smash_to_memberptr_type (type, domain, memtype);
1886 }
1887 else
1888 /* type attribute */
1889 {
1890 char *attr = *pp;
1891
1892 /* Skip to the semicolon. */
1893 while (**pp != ';' && **pp != '\0')
1894 ++(*pp);
1895 if (**pp == '\0')
1896 return error_type (pp, objfile);
1897 else
1898 ++ * pp; /* Skip the semicolon. */
1899
1900 switch (*attr)
1901 {
1902 case 's': /* Size attribute */
1903 type_size = atoi (attr + 1);
1904 if (type_size <= 0)
1905 type_size = -1;
1906 break;
1907
1908 case 'S': /* String attribute */
1909 /* FIXME: check to see if following type is array? */
1910 is_string = 1;
1911 break;
1912
1913 case 'V': /* Vector attribute */
1914 /* FIXME: check to see if following type is array? */
1915 is_vector = 1;
1916 break;
1917
1918 default:
1919 /* Ignore unrecognized type attributes, so future compilers
1920 can invent new ones. */
1921 break;
1922 }
1923 ++*pp;
1924 goto again;
1925 }
1926 break;
1927
1928 case '#': /* Method (class & fn) type */
1929 if ((*pp)[0] == '#')
1930 {
1931 /* We'll get the parameter types from the name. */
1932 struct type *return_type;
1933
1934 (*pp)++;
1935 return_type = read_type (pp, objfile);
1936 if (*(*pp)++ != ';')
1937 complaint (&symfile_complaints,
1938 _("invalid (minimal) member type "
1939 "data format at symtab pos %d."),
1940 symnum);
1941 type = allocate_stub_method (return_type);
1942 if (typenums[0] != -1)
1943 *dbx_lookup_type (typenums, objfile) = type;
1944 }
1945 else
1946 {
1947 struct type *domain = read_type (pp, objfile);
1948 struct type *return_type;
1949 struct field *args;
1950 int nargs, varargs;
1951
1952 if (**pp != ',')
1953 /* Invalid member type data format. */
1954 return error_type (pp, objfile);
1955 else
1956 ++(*pp);
1957
1958 return_type = read_type (pp, objfile);
1959 args = read_args (pp, ';', objfile, &nargs, &varargs);
1960 if (args == NULL)
1961 return error_type (pp, objfile);
1962 type = dbx_alloc_type (typenums, objfile);
1963 smash_to_method_type (type, domain, return_type, args,
1964 nargs, varargs);
1965 }
1966 break;
1967
1968 case 'r': /* Range type */
1969 type = read_range_type (pp, typenums, type_size, objfile);
1970 if (typenums[0] != -1)
1971 *dbx_lookup_type (typenums, objfile) = type;
1972 break;
1973
1974 case 'b':
1975 {
1976 /* Sun ACC builtin int type */
1977 type = read_sun_builtin_type (pp, typenums, objfile);
1978 if (typenums[0] != -1)
1979 *dbx_lookup_type (typenums, objfile) = type;
1980 }
1981 break;
1982
1983 case 'R': /* Sun ACC builtin float type */
1984 type = read_sun_floating_type (pp, typenums, objfile);
1985 if (typenums[0] != -1)
1986 *dbx_lookup_type (typenums, objfile) = type;
1987 break;
1988
1989 case 'e': /* Enumeration type */
1990 type = dbx_alloc_type (typenums, objfile);
1991 type = read_enum_type (pp, type, objfile);
1992 if (typenums[0] != -1)
1993 *dbx_lookup_type (typenums, objfile) = type;
1994 break;
1995
1996 case 's': /* Struct type */
1997 case 'u': /* Union type */
1998 {
1999 enum type_code type_code = TYPE_CODE_UNDEF;
2000 type = dbx_alloc_type (typenums, objfile);
2001 switch (type_descriptor)
2002 {
2003 case 's':
2004 type_code = TYPE_CODE_STRUCT;
2005 break;
2006 case 'u':
2007 type_code = TYPE_CODE_UNION;
2008 break;
2009 }
2010 type = read_struct_type (pp, type, type_code, objfile);
2011 break;
2012 }
2013
2014 case 'a': /* Array type */
2015 if (**pp != 'r')
2016 return error_type (pp, objfile);
2017 ++*pp;
2018
2019 type = dbx_alloc_type (typenums, objfile);
2020 type = read_array_type (pp, type, objfile);
2021 if (is_string)
2022 TYPE_CODE (type) = TYPE_CODE_STRING;
2023 if (is_vector)
2024 make_vector_type (type);
2025 break;
2026
2027 case 'S': /* Set or bitstring type */
2028 type1 = read_type (pp, objfile);
2029 type = create_set_type ((struct type *) NULL, type1);
2030 if (is_string)
2031 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
2032 if (typenums[0] != -1)
2033 *dbx_lookup_type (typenums, objfile) = type;
2034 break;
2035
2036 default:
2037 --*pp; /* Go back to the symbol in error. */
2038 /* Particularly important if it was \0! */
2039 return error_type (pp, objfile);
2040 }
2041
2042 if (type == 0)
2043 {
2044 warning (_("GDB internal error, type is NULL in stabsread.c."));
2045 return error_type (pp, objfile);
2046 }
2047
2048 /* Size specified in a type attribute overrides any other size. */
2049 if (type_size != -1)
2050 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2051
2052 return type;
2053 }
2054 \f
2055 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2056 Return the proper type node for a given builtin type number. */
2057
2058 static const struct objfile_data *rs6000_builtin_type_data;
2059
2060 static struct type *
2061 rs6000_builtin_type (int typenum, struct objfile *objfile)
2062 {
2063 struct type **negative_types = objfile_data (objfile,
2064 rs6000_builtin_type_data);
2065
2066 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2067 #define NUMBER_RECOGNIZED 34
2068 struct type *rettype = NULL;
2069
2070 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2071 {
2072 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
2073 return objfile_type (objfile)->builtin_error;
2074 }
2075
2076 if (!negative_types)
2077 {
2078 /* This includes an empty slot for type number -0. */
2079 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2080 NUMBER_RECOGNIZED + 1, struct type *);
2081 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2082 }
2083
2084 if (negative_types[-typenum] != NULL)
2085 return negative_types[-typenum];
2086
2087 #if TARGET_CHAR_BIT != 8
2088 #error This code wrong for TARGET_CHAR_BIT not 8
2089 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2090 that if that ever becomes not true, the correct fix will be to
2091 make the size in the struct type to be in bits, not in units of
2092 TARGET_CHAR_BIT. */
2093 #endif
2094
2095 switch (-typenum)
2096 {
2097 case 1:
2098 /* The size of this and all the other types are fixed, defined
2099 by the debugging format. If there is a type called "int" which
2100 is other than 32 bits, then it should use a new negative type
2101 number (or avoid negative type numbers for that case).
2102 See stabs.texinfo. */
2103 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", objfile);
2104 break;
2105 case 2:
2106 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", objfile);
2107 break;
2108 case 3:
2109 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", objfile);
2110 break;
2111 case 4:
2112 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", objfile);
2113 break;
2114 case 5:
2115 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2116 "unsigned char", objfile);
2117 break;
2118 case 6:
2119 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", objfile);
2120 break;
2121 case 7:
2122 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2123 "unsigned short", objfile);
2124 break;
2125 case 8:
2126 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2127 "unsigned int", objfile);
2128 break;
2129 case 9:
2130 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2131 "unsigned", objfile);
2132 break;
2133 case 10:
2134 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2135 "unsigned long", objfile);
2136 break;
2137 case 11:
2138 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", objfile);
2139 break;
2140 case 12:
2141 /* IEEE single precision (32 bit). */
2142 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", objfile);
2143 break;
2144 case 13:
2145 /* IEEE double precision (64 bit). */
2146 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", objfile);
2147 break;
2148 case 14:
2149 /* This is an IEEE double on the RS/6000, and different machines with
2150 different sizes for "long double" should use different negative
2151 type numbers. See stabs.texinfo. */
2152 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", objfile);
2153 break;
2154 case 15:
2155 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", objfile);
2156 break;
2157 case 16:
2158 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2159 "boolean", objfile);
2160 break;
2161 case 17:
2162 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", objfile);
2163 break;
2164 case 18:
2165 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", objfile);
2166 break;
2167 case 19:
2168 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", objfile);
2169 break;
2170 case 20:
2171 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2172 "character", objfile);
2173 break;
2174 case 21:
2175 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2176 "logical*1", objfile);
2177 break;
2178 case 22:
2179 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2180 "logical*2", objfile);
2181 break;
2182 case 23:
2183 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2184 "logical*4", objfile);
2185 break;
2186 case 24:
2187 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2188 "logical", objfile);
2189 break;
2190 case 25:
2191 /* Complex type consisting of two IEEE single precision values. */
2192 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", objfile);
2193 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2194 objfile);
2195 break;
2196 case 26:
2197 /* Complex type consisting of two IEEE double precision values. */
2198 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2199 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2200 objfile);
2201 break;
2202 case 27:
2203 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", objfile);
2204 break;
2205 case 28:
2206 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", objfile);
2207 break;
2208 case 29:
2209 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", objfile);
2210 break;
2211 case 30:
2212 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", objfile);
2213 break;
2214 case 31:
2215 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", objfile);
2216 break;
2217 case 32:
2218 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2219 "unsigned long long", objfile);
2220 break;
2221 case 33:
2222 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2223 "logical*8", objfile);
2224 break;
2225 case 34:
2226 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", objfile);
2227 break;
2228 }
2229 negative_types[-typenum] = rettype;
2230 return rettype;
2231 }
2232 \f
2233 /* This page contains subroutines of read_type. */
2234
2235 /* Wrapper around method_name_from_physname to flag a complaint
2236 if there is an error. */
2237
2238 static char *
2239 stabs_method_name_from_physname (const char *physname)
2240 {
2241 char *method_name;
2242
2243 method_name = method_name_from_physname (physname);
2244
2245 if (method_name == NULL)
2246 {
2247 complaint (&symfile_complaints,
2248 _("Method has bad physname %s\n"), physname);
2249 return NULL;
2250 }
2251
2252 return method_name;
2253 }
2254
2255 /* Read member function stabs info for C++ classes. The form of each member
2256 function data is:
2257
2258 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2259
2260 An example with two member functions is:
2261
2262 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2263
2264 For the case of overloaded operators, the format is op$::*.funcs, where
2265 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2266 name (such as `+=') and `.' marks the end of the operator name.
2267
2268 Returns 1 for success, 0 for failure. */
2269
2270 static int
2271 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2272 struct objfile *objfile)
2273 {
2274 int nfn_fields = 0;
2275 int length = 0;
2276 int i;
2277 struct next_fnfield
2278 {
2279 struct next_fnfield *next;
2280 struct fn_field fn_field;
2281 }
2282 *sublist;
2283 struct type *look_ahead_type;
2284 struct next_fnfieldlist *new_fnlist;
2285 struct next_fnfield *new_sublist;
2286 char *main_fn_name;
2287 char *p;
2288
2289 /* Process each list until we find something that is not a member function
2290 or find the end of the functions. */
2291
2292 while (**pp != ';')
2293 {
2294 /* We should be positioned at the start of the function name.
2295 Scan forward to find the first ':' and if it is not the
2296 first of a "::" delimiter, then this is not a member function. */
2297 p = *pp;
2298 while (*p != ':')
2299 {
2300 p++;
2301 }
2302 if (p[1] != ':')
2303 {
2304 break;
2305 }
2306
2307 sublist = NULL;
2308 look_ahead_type = NULL;
2309 length = 0;
2310
2311 new_fnlist = (struct next_fnfieldlist *)
2312 xmalloc (sizeof (struct next_fnfieldlist));
2313 make_cleanup (xfree, new_fnlist);
2314 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2315
2316 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2317 {
2318 /* This is a completely wierd case. In order to stuff in the
2319 names that might contain colons (the usual name delimiter),
2320 Mike Tiemann defined a different name format which is
2321 signalled if the identifier is "op$". In that case, the
2322 format is "op$::XXXX." where XXXX is the name. This is
2323 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2324 /* This lets the user type "break operator+".
2325 We could just put in "+" as the name, but that wouldn't
2326 work for "*". */
2327 static char opname[32] = "op$";
2328 char *o = opname + 3;
2329
2330 /* Skip past '::'. */
2331 *pp = p + 2;
2332
2333 STABS_CONTINUE (pp, objfile);
2334 p = *pp;
2335 while (*p != '.')
2336 {
2337 *o++ = *p++;
2338 }
2339 main_fn_name = savestring (opname, o - opname);
2340 /* Skip past '.' */
2341 *pp = p + 1;
2342 }
2343 else
2344 {
2345 main_fn_name = savestring (*pp, p - *pp);
2346 /* Skip past '::'. */
2347 *pp = p + 2;
2348 }
2349 new_fnlist->fn_fieldlist.name = main_fn_name;
2350
2351 do
2352 {
2353 new_sublist =
2354 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2355 make_cleanup (xfree, new_sublist);
2356 memset (new_sublist, 0, sizeof (struct next_fnfield));
2357
2358 /* Check for and handle cretinous dbx symbol name continuation! */
2359 if (look_ahead_type == NULL)
2360 {
2361 /* Normal case. */
2362 STABS_CONTINUE (pp, objfile);
2363
2364 new_sublist->fn_field.type = read_type (pp, objfile);
2365 if (**pp != ':')
2366 {
2367 /* Invalid symtab info for member function. */
2368 return 0;
2369 }
2370 }
2371 else
2372 {
2373 /* g++ version 1 kludge */
2374 new_sublist->fn_field.type = look_ahead_type;
2375 look_ahead_type = NULL;
2376 }
2377
2378 (*pp)++;
2379 p = *pp;
2380 while (*p != ';')
2381 {
2382 p++;
2383 }
2384
2385 /* If this is just a stub, then we don't have the real name here. */
2386
2387 if (TYPE_STUB (new_sublist->fn_field.type))
2388 {
2389 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2390 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2391 new_sublist->fn_field.is_stub = 1;
2392 }
2393 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2394 *pp = p + 1;
2395
2396 /* Set this member function's visibility fields. */
2397 switch (*(*pp)++)
2398 {
2399 case VISIBILITY_PRIVATE:
2400 new_sublist->fn_field.is_private = 1;
2401 break;
2402 case VISIBILITY_PROTECTED:
2403 new_sublist->fn_field.is_protected = 1;
2404 break;
2405 }
2406
2407 STABS_CONTINUE (pp, objfile);
2408 switch (**pp)
2409 {
2410 case 'A': /* Normal functions. */
2411 new_sublist->fn_field.is_const = 0;
2412 new_sublist->fn_field.is_volatile = 0;
2413 (*pp)++;
2414 break;
2415 case 'B': /* `const' member functions. */
2416 new_sublist->fn_field.is_const = 1;
2417 new_sublist->fn_field.is_volatile = 0;
2418 (*pp)++;
2419 break;
2420 case 'C': /* `volatile' member function. */
2421 new_sublist->fn_field.is_const = 0;
2422 new_sublist->fn_field.is_volatile = 1;
2423 (*pp)++;
2424 break;
2425 case 'D': /* `const volatile' member function. */
2426 new_sublist->fn_field.is_const = 1;
2427 new_sublist->fn_field.is_volatile = 1;
2428 (*pp)++;
2429 break;
2430 case '*': /* File compiled with g++ version 1 --
2431 no info. */
2432 case '?':
2433 case '.':
2434 break;
2435 default:
2436 complaint (&symfile_complaints,
2437 _("const/volatile indicator missing, got '%c'"),
2438 **pp);
2439 break;
2440 }
2441
2442 switch (*(*pp)++)
2443 {
2444 case '*':
2445 {
2446 int nbits;
2447 /* virtual member function, followed by index.
2448 The sign bit is set to distinguish pointers-to-methods
2449 from virtual function indicies. Since the array is
2450 in words, the quantity must be shifted left by 1
2451 on 16 bit machine, and by 2 on 32 bit machine, forcing
2452 the sign bit out, and usable as a valid index into
2453 the array. Remove the sign bit here. */
2454 new_sublist->fn_field.voffset =
2455 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2456 if (nbits != 0)
2457 return 0;
2458
2459 STABS_CONTINUE (pp, objfile);
2460 if (**pp == ';' || **pp == '\0')
2461 {
2462 /* Must be g++ version 1. */
2463 new_sublist->fn_field.fcontext = 0;
2464 }
2465 else
2466 {
2467 /* Figure out from whence this virtual function came.
2468 It may belong to virtual function table of
2469 one of its baseclasses. */
2470 look_ahead_type = read_type (pp, objfile);
2471 if (**pp == ':')
2472 {
2473 /* g++ version 1 overloaded methods. */
2474 }
2475 else
2476 {
2477 new_sublist->fn_field.fcontext = look_ahead_type;
2478 if (**pp != ';')
2479 {
2480 return 0;
2481 }
2482 else
2483 {
2484 ++*pp;
2485 }
2486 look_ahead_type = NULL;
2487 }
2488 }
2489 break;
2490 }
2491 case '?':
2492 /* static member function. */
2493 {
2494 int slen = strlen (main_fn_name);
2495
2496 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2497
2498 /* For static member functions, we can't tell if they
2499 are stubbed, as they are put out as functions, and not as
2500 methods.
2501 GCC v2 emits the fully mangled name if
2502 dbxout.c:flag_minimal_debug is not set, so we have to
2503 detect a fully mangled physname here and set is_stub
2504 accordingly. Fully mangled physnames in v2 start with
2505 the member function name, followed by two underscores.
2506 GCC v3 currently always emits stubbed member functions,
2507 but with fully mangled physnames, which start with _Z. */
2508 if (!(strncmp (new_sublist->fn_field.physname,
2509 main_fn_name, slen) == 0
2510 && new_sublist->fn_field.physname[slen] == '_'
2511 && new_sublist->fn_field.physname[slen + 1] == '_'))
2512 {
2513 new_sublist->fn_field.is_stub = 1;
2514 }
2515 break;
2516 }
2517
2518 default:
2519 /* error */
2520 complaint (&symfile_complaints,
2521 _("member function type missing, got '%c'"),
2522 (*pp)[-1]);
2523 /* Fall through into normal member function. */
2524
2525 case '.':
2526 /* normal member function. */
2527 new_sublist->fn_field.voffset = 0;
2528 new_sublist->fn_field.fcontext = 0;
2529 break;
2530 }
2531
2532 new_sublist->next = sublist;
2533 sublist = new_sublist;
2534 length++;
2535 STABS_CONTINUE (pp, objfile);
2536 }
2537 while (**pp != ';' && **pp != '\0');
2538
2539 (*pp)++;
2540 STABS_CONTINUE (pp, objfile);
2541
2542 /* Skip GCC 3.X member functions which are duplicates of the callable
2543 constructor/destructor. */
2544 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2545 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2546 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2547 {
2548 xfree (main_fn_name);
2549 }
2550 else
2551 {
2552 int has_stub = 0;
2553 int has_destructor = 0, has_other = 0;
2554 int is_v3 = 0;
2555 struct next_fnfield *tmp_sublist;
2556
2557 /* Various versions of GCC emit various mostly-useless
2558 strings in the name field for special member functions.
2559
2560 For stub methods, we need to defer correcting the name
2561 until we are ready to unstub the method, because the current
2562 name string is used by gdb_mangle_name. The only stub methods
2563 of concern here are GNU v2 operators; other methods have their
2564 names correct (see caveat below).
2565
2566 For non-stub methods, in GNU v3, we have a complete physname.
2567 Therefore we can safely correct the name now. This primarily
2568 affects constructors and destructors, whose name will be
2569 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2570 operators will also have incorrect names; for instance,
2571 "operator int" will be named "operator i" (i.e. the type is
2572 mangled).
2573
2574 For non-stub methods in GNU v2, we have no easy way to
2575 know if we have a complete physname or not. For most
2576 methods the result depends on the platform (if CPLUS_MARKER
2577 can be `$' or `.', it will use minimal debug information, or
2578 otherwise the full physname will be included).
2579
2580 Rather than dealing with this, we take a different approach.
2581 For v3 mangled names, we can use the full physname; for v2,
2582 we use cplus_demangle_opname (which is actually v2 specific),
2583 because the only interesting names are all operators - once again
2584 barring the caveat below. Skip this process if any method in the
2585 group is a stub, to prevent our fouling up the workings of
2586 gdb_mangle_name.
2587
2588 The caveat: GCC 2.95.x (and earlier?) put constructors and
2589 destructors in the same method group. We need to split this
2590 into two groups, because they should have different names.
2591 So for each method group we check whether it contains both
2592 routines whose physname appears to be a destructor (the physnames
2593 for and destructors are always provided, due to quirks in v2
2594 mangling) and routines whose physname does not appear to be a
2595 destructor. If so then we break up the list into two halves.
2596 Even if the constructors and destructors aren't in the same group
2597 the destructor will still lack the leading tilde, so that also
2598 needs to be fixed.
2599
2600 So, to summarize what we expect and handle here:
2601
2602 Given Given Real Real Action
2603 method name physname physname method name
2604
2605 __opi [none] __opi__3Foo operator int opname
2606 [now or later]
2607 Foo _._3Foo _._3Foo ~Foo separate and
2608 rename
2609 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2610 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2611 */
2612
2613 tmp_sublist = sublist;
2614 while (tmp_sublist != NULL)
2615 {
2616 if (tmp_sublist->fn_field.is_stub)
2617 has_stub = 1;
2618 if (tmp_sublist->fn_field.physname[0] == '_'
2619 && tmp_sublist->fn_field.physname[1] == 'Z')
2620 is_v3 = 1;
2621
2622 if (is_destructor_name (tmp_sublist->fn_field.physname))
2623 has_destructor++;
2624 else
2625 has_other++;
2626
2627 tmp_sublist = tmp_sublist->next;
2628 }
2629
2630 if (has_destructor && has_other)
2631 {
2632 struct next_fnfieldlist *destr_fnlist;
2633 struct next_fnfield *last_sublist;
2634
2635 /* Create a new fn_fieldlist for the destructors. */
2636
2637 destr_fnlist = (struct next_fnfieldlist *)
2638 xmalloc (sizeof (struct next_fnfieldlist));
2639 make_cleanup (xfree, destr_fnlist);
2640 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2641 destr_fnlist->fn_fieldlist.name
2642 = obconcat (&objfile->objfile_obstack, "~",
2643 new_fnlist->fn_fieldlist.name, (char *) NULL);
2644
2645 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2646 obstack_alloc (&objfile->objfile_obstack,
2647 sizeof (struct fn_field) * has_destructor);
2648 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2649 sizeof (struct fn_field) * has_destructor);
2650 tmp_sublist = sublist;
2651 last_sublist = NULL;
2652 i = 0;
2653 while (tmp_sublist != NULL)
2654 {
2655 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2656 {
2657 tmp_sublist = tmp_sublist->next;
2658 continue;
2659 }
2660
2661 destr_fnlist->fn_fieldlist.fn_fields[i++]
2662 = tmp_sublist->fn_field;
2663 if (last_sublist)
2664 last_sublist->next = tmp_sublist->next;
2665 else
2666 sublist = tmp_sublist->next;
2667 last_sublist = tmp_sublist;
2668 tmp_sublist = tmp_sublist->next;
2669 }
2670
2671 destr_fnlist->fn_fieldlist.length = has_destructor;
2672 destr_fnlist->next = fip->fnlist;
2673 fip->fnlist = destr_fnlist;
2674 nfn_fields++;
2675 length -= has_destructor;
2676 }
2677 else if (is_v3)
2678 {
2679 /* v3 mangling prevents the use of abbreviated physnames,
2680 so we can do this here. There are stubbed methods in v3
2681 only:
2682 - in -gstabs instead of -gstabs+
2683 - or for static methods, which are output as a function type
2684 instead of a method type. */
2685 char *new_method_name =
2686 stabs_method_name_from_physname (sublist->fn_field.physname);
2687
2688 if (new_method_name != NULL
2689 && strcmp (new_method_name,
2690 new_fnlist->fn_fieldlist.name) != 0)
2691 {
2692 new_fnlist->fn_fieldlist.name = new_method_name;
2693 xfree (main_fn_name);
2694 }
2695 else
2696 xfree (new_method_name);
2697 }
2698 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2699 {
2700 new_fnlist->fn_fieldlist.name =
2701 obconcat (&objfile->objfile_obstack,
2702 "~", main_fn_name, (char *)NULL);
2703 xfree (main_fn_name);
2704 }
2705 else if (!has_stub)
2706 {
2707 char dem_opname[256];
2708 int ret;
2709
2710 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2711 dem_opname, DMGL_ANSI);
2712 if (!ret)
2713 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2714 dem_opname, 0);
2715 if (ret)
2716 new_fnlist->fn_fieldlist.name
2717 = obsavestring (dem_opname, strlen (dem_opname),
2718 &objfile->objfile_obstack);
2719 xfree (main_fn_name);
2720 }
2721
2722 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2723 obstack_alloc (&objfile->objfile_obstack,
2724 sizeof (struct fn_field) * length);
2725 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2726 sizeof (struct fn_field) * length);
2727 for (i = length; (i--, sublist); sublist = sublist->next)
2728 {
2729 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2730 }
2731
2732 new_fnlist->fn_fieldlist.length = length;
2733 new_fnlist->next = fip->fnlist;
2734 fip->fnlist = new_fnlist;
2735 nfn_fields++;
2736 }
2737 }
2738
2739 if (nfn_fields)
2740 {
2741 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2742 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2743 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2744 memset (TYPE_FN_FIELDLISTS (type), 0,
2745 sizeof (struct fn_fieldlist) * nfn_fields);
2746 TYPE_NFN_FIELDS (type) = nfn_fields;
2747 }
2748
2749 return 1;
2750 }
2751
2752 /* Special GNU C++ name.
2753
2754 Returns 1 for success, 0 for failure. "failure" means that we can't
2755 keep parsing and it's time for error_type(). */
2756
2757 static int
2758 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2759 struct objfile *objfile)
2760 {
2761 char *p;
2762 const char *name;
2763 char cpp_abbrev;
2764 struct type *context;
2765
2766 p = *pp;
2767 if (*++p == 'v')
2768 {
2769 name = NULL;
2770 cpp_abbrev = *++p;
2771
2772 *pp = p + 1;
2773
2774 /* At this point, *pp points to something like "22:23=*22...",
2775 where the type number before the ':' is the "context" and
2776 everything after is a regular type definition. Lookup the
2777 type, find it's name, and construct the field name. */
2778
2779 context = read_type (pp, objfile);
2780
2781 switch (cpp_abbrev)
2782 {
2783 case 'f': /* $vf -- a virtual function table pointer */
2784 name = type_name_no_tag (context);
2785 if (name == NULL)
2786 {
2787 name = "";
2788 }
2789 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2790 vptr_name, name, (char *) NULL);
2791 break;
2792
2793 case 'b': /* $vb -- a virtual bsomethingorother */
2794 name = type_name_no_tag (context);
2795 if (name == NULL)
2796 {
2797 complaint (&symfile_complaints,
2798 _("C++ abbreviated type name "
2799 "unknown at symtab pos %d"),
2800 symnum);
2801 name = "FOO";
2802 }
2803 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2804 name, (char *) NULL);
2805 break;
2806
2807 default:
2808 invalid_cpp_abbrev_complaint (*pp);
2809 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2810 "INVALID_CPLUSPLUS_ABBREV",
2811 (char *) NULL);
2812 break;
2813 }
2814
2815 /* At this point, *pp points to the ':'. Skip it and read the
2816 field type. */
2817
2818 p = ++(*pp);
2819 if (p[-1] != ':')
2820 {
2821 invalid_cpp_abbrev_complaint (*pp);
2822 return 0;
2823 }
2824 fip->list->field.type = read_type (pp, objfile);
2825 if (**pp == ',')
2826 (*pp)++; /* Skip the comma. */
2827 else
2828 return 0;
2829
2830 {
2831 int nbits;
2832
2833 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits,
2834 0);
2835 if (nbits != 0)
2836 return 0;
2837 }
2838 /* This field is unpacked. */
2839 FIELD_BITSIZE (fip->list->field) = 0;
2840 fip->list->visibility = VISIBILITY_PRIVATE;
2841 }
2842 else
2843 {
2844 invalid_cpp_abbrev_complaint (*pp);
2845 /* We have no idea what syntax an unrecognized abbrev would have, so
2846 better return 0. If we returned 1, we would need to at least advance
2847 *pp to avoid an infinite loop. */
2848 return 0;
2849 }
2850 return 1;
2851 }
2852
2853 static void
2854 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2855 struct type *type, struct objfile *objfile)
2856 {
2857 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2858
2859 fip->list->field.name =
2860 obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
2861 *pp = p + 1;
2862
2863 /* This means we have a visibility for a field coming. */
2864 if (**pp == '/')
2865 {
2866 (*pp)++;
2867 fip->list->visibility = *(*pp)++;
2868 }
2869 else
2870 {
2871 /* normal dbx-style format, no explicit visibility */
2872 fip->list->visibility = VISIBILITY_PUBLIC;
2873 }
2874
2875 fip->list->field.type = read_type (pp, objfile);
2876 if (**pp == ':')
2877 {
2878 p = ++(*pp);
2879 #if 0
2880 /* Possible future hook for nested types. */
2881 if (**pp == '!')
2882 {
2883 fip->list->field.bitpos = (long) -2; /* nested type */
2884 p = ++(*pp);
2885 }
2886 else
2887 ...;
2888 #endif
2889 while (*p != ';')
2890 {
2891 p++;
2892 }
2893 /* Static class member. */
2894 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2895 *pp = p + 1;
2896 return;
2897 }
2898 else if (**pp != ',')
2899 {
2900 /* Bad structure-type format. */
2901 stabs_general_complaint ("bad structure-type format");
2902 return;
2903 }
2904
2905 (*pp)++; /* Skip the comma. */
2906
2907 {
2908 int nbits;
2909
2910 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits, 0);
2911 if (nbits != 0)
2912 {
2913 stabs_general_complaint ("bad structure-type format");
2914 return;
2915 }
2916 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2917 if (nbits != 0)
2918 {
2919 stabs_general_complaint ("bad structure-type format");
2920 return;
2921 }
2922 }
2923
2924 if (FIELD_BITPOS (fip->list->field) == 0
2925 && FIELD_BITSIZE (fip->list->field) == 0)
2926 {
2927 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2928 it is a field which has been optimized out. The correct stab for
2929 this case is to use VISIBILITY_IGNORE, but that is a recent
2930 invention. (2) It is a 0-size array. For example
2931 union { int num; char str[0]; } foo. Printing _("<no value>" for
2932 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2933 will continue to work, and a 0-size array as a whole doesn't
2934 have any contents to print.
2935
2936 I suspect this probably could also happen with gcc -gstabs (not
2937 -gstabs+) for static fields, and perhaps other C++ extensions.
2938 Hopefully few people use -gstabs with gdb, since it is intended
2939 for dbx compatibility. */
2940
2941 /* Ignore this field. */
2942 fip->list->visibility = VISIBILITY_IGNORE;
2943 }
2944 else
2945 {
2946 /* Detect an unpacked field and mark it as such.
2947 dbx gives a bit size for all fields.
2948 Note that forward refs cannot be packed,
2949 and treat enums as if they had the width of ints. */
2950
2951 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2952
2953 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2954 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2955 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2956 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2957 {
2958 FIELD_BITSIZE (fip->list->field) = 0;
2959 }
2960 if ((FIELD_BITSIZE (fip->list->field)
2961 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2962 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2963 && FIELD_BITSIZE (fip->list->field)
2964 == gdbarch_int_bit (gdbarch))
2965 )
2966 &&
2967 FIELD_BITPOS (fip->list->field) % 8 == 0)
2968 {
2969 FIELD_BITSIZE (fip->list->field) = 0;
2970 }
2971 }
2972 }
2973
2974
2975 /* Read struct or class data fields. They have the form:
2976
2977 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2978
2979 At the end, we see a semicolon instead of a field.
2980
2981 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2982 a static field.
2983
2984 The optional VISIBILITY is one of:
2985
2986 '/0' (VISIBILITY_PRIVATE)
2987 '/1' (VISIBILITY_PROTECTED)
2988 '/2' (VISIBILITY_PUBLIC)
2989 '/9' (VISIBILITY_IGNORE)
2990
2991 or nothing, for C style fields with public visibility.
2992
2993 Returns 1 for success, 0 for failure. */
2994
2995 static int
2996 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2997 struct objfile *objfile)
2998 {
2999 char *p;
3000 struct nextfield *new;
3001
3002 /* We better set p right now, in case there are no fields at all... */
3003
3004 p = *pp;
3005
3006 /* Read each data member type until we find the terminating ';' at the end of
3007 the data member list, or break for some other reason such as finding the
3008 start of the member function list. */
3009 /* Stab string for structure/union does not end with two ';' in
3010 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3011
3012 while (**pp != ';' && **pp != '\0')
3013 {
3014 STABS_CONTINUE (pp, objfile);
3015 /* Get space to record the next field's data. */
3016 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3017 make_cleanup (xfree, new);
3018 memset (new, 0, sizeof (struct nextfield));
3019 new->next = fip->list;
3020 fip->list = new;
3021
3022 /* Get the field name. */
3023 p = *pp;
3024
3025 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3026 unless the CPLUS_MARKER is followed by an underscore, in
3027 which case it is just the name of an anonymous type, which we
3028 should handle like any other type name. */
3029
3030 if (is_cplus_marker (p[0]) && p[1] != '_')
3031 {
3032 if (!read_cpp_abbrev (fip, pp, type, objfile))
3033 return 0;
3034 continue;
3035 }
3036
3037 /* Look for the ':' that separates the field name from the field
3038 values. Data members are delimited by a single ':', while member
3039 functions are delimited by a pair of ':'s. When we hit the member
3040 functions (if any), terminate scan loop and return. */
3041
3042 while (*p != ':' && *p != '\0')
3043 {
3044 p++;
3045 }
3046 if (*p == '\0')
3047 return 0;
3048
3049 /* Check to see if we have hit the member functions yet. */
3050 if (p[1] == ':')
3051 {
3052 break;
3053 }
3054 read_one_struct_field (fip, pp, p, type, objfile);
3055 }
3056 if (p[0] == ':' && p[1] == ':')
3057 {
3058 /* (the deleted) chill the list of fields: the last entry (at
3059 the head) is a partially constructed entry which we now
3060 scrub. */
3061 fip->list = fip->list->next;
3062 }
3063 return 1;
3064 }
3065 /* *INDENT-OFF* */
3066 /* The stabs for C++ derived classes contain baseclass information which
3067 is marked by a '!' character after the total size. This function is
3068 called when we encounter the baseclass marker, and slurps up all the
3069 baseclass information.
3070
3071 Immediately following the '!' marker is the number of base classes that
3072 the class is derived from, followed by information for each base class.
3073 For each base class, there are two visibility specifiers, a bit offset
3074 to the base class information within the derived class, a reference to
3075 the type for the base class, and a terminating semicolon.
3076
3077 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3078 ^^ ^ ^ ^ ^ ^ ^
3079 Baseclass information marker __________________|| | | | | | |
3080 Number of baseclasses __________________________| | | | | | |
3081 Visibility specifiers (2) ________________________| | | | | |
3082 Offset in bits from start of class _________________| | | | |
3083 Type number for base class ___________________________| | | |
3084 Visibility specifiers (2) _______________________________| | |
3085 Offset in bits from start of class ________________________| |
3086 Type number of base class ____________________________________|
3087
3088 Return 1 for success, 0 for (error-type-inducing) failure. */
3089 /* *INDENT-ON* */
3090
3091
3092
3093 static int
3094 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3095 struct objfile *objfile)
3096 {
3097 int i;
3098 struct nextfield *new;
3099
3100 if (**pp != '!')
3101 {
3102 return 1;
3103 }
3104 else
3105 {
3106 /* Skip the '!' baseclass information marker. */
3107 (*pp)++;
3108 }
3109
3110 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3111 {
3112 int nbits;
3113
3114 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3115 if (nbits != 0)
3116 return 0;
3117 }
3118
3119 #if 0
3120 /* Some stupid compilers have trouble with the following, so break
3121 it up into simpler expressions. */
3122 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3123 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3124 #else
3125 {
3126 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3127 char *pointer;
3128
3129 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3130 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3131 }
3132 #endif /* 0 */
3133
3134 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3135
3136 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3137 {
3138 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3139 make_cleanup (xfree, new);
3140 memset (new, 0, sizeof (struct nextfield));
3141 new->next = fip->list;
3142 fip->list = new;
3143 FIELD_BITSIZE (new->field) = 0; /* This should be an unpacked
3144 field! */
3145
3146 STABS_CONTINUE (pp, objfile);
3147 switch (**pp)
3148 {
3149 case '0':
3150 /* Nothing to do. */
3151 break;
3152 case '1':
3153 SET_TYPE_FIELD_VIRTUAL (type, i);
3154 break;
3155 default:
3156 /* Unknown character. Complain and treat it as non-virtual. */
3157 {
3158 complaint (&symfile_complaints,
3159 _("Unknown virtual character `%c' for baseclass"),
3160 **pp);
3161 }
3162 }
3163 ++(*pp);
3164
3165 new->visibility = *(*pp)++;
3166 switch (new->visibility)
3167 {
3168 case VISIBILITY_PRIVATE:
3169 case VISIBILITY_PROTECTED:
3170 case VISIBILITY_PUBLIC:
3171 break;
3172 default:
3173 /* Bad visibility format. Complain and treat it as
3174 public. */
3175 {
3176 complaint (&symfile_complaints,
3177 _("Unknown visibility `%c' for baseclass"),
3178 new->visibility);
3179 new->visibility = VISIBILITY_PUBLIC;
3180 }
3181 }
3182
3183 {
3184 int nbits;
3185
3186 /* The remaining value is the bit offset of the portion of the object
3187 corresponding to this baseclass. Always zero in the absence of
3188 multiple inheritance. */
3189
3190 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits, 0);
3191 if (nbits != 0)
3192 return 0;
3193 }
3194
3195 /* The last piece of baseclass information is the type of the
3196 base class. Read it, and remember it's type name as this
3197 field's name. */
3198
3199 new->field.type = read_type (pp, objfile);
3200 new->field.name = type_name_no_tag (new->field.type);
3201
3202 /* Skip trailing ';' and bump count of number of fields seen. */
3203 if (**pp == ';')
3204 (*pp)++;
3205 else
3206 return 0;
3207 }
3208 return 1;
3209 }
3210
3211 /* The tail end of stabs for C++ classes that contain a virtual function
3212 pointer contains a tilde, a %, and a type number.
3213 The type number refers to the base class (possibly this class itself) which
3214 contains the vtable pointer for the current class.
3215
3216 This function is called when we have parsed all the method declarations,
3217 so we can look for the vptr base class info. */
3218
3219 static int
3220 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3221 struct objfile *objfile)
3222 {
3223 char *p;
3224
3225 STABS_CONTINUE (pp, objfile);
3226
3227 /* If we are positioned at a ';', then skip it. */
3228 if (**pp == ';')
3229 {
3230 (*pp)++;
3231 }
3232
3233 if (**pp == '~')
3234 {
3235 (*pp)++;
3236
3237 if (**pp == '=' || **pp == '+' || **pp == '-')
3238 {
3239 /* Obsolete flags that used to indicate the presence
3240 of constructors and/or destructors. */
3241 (*pp)++;
3242 }
3243
3244 /* Read either a '%' or the final ';'. */
3245 if (*(*pp)++ == '%')
3246 {
3247 /* The next number is the type number of the base class
3248 (possibly our own class) which supplies the vtable for
3249 this class. Parse it out, and search that class to find
3250 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3251 and TYPE_VPTR_FIELDNO. */
3252
3253 struct type *t;
3254 int i;
3255
3256 t = read_type (pp, objfile);
3257 p = (*pp)++;
3258 while (*p != '\0' && *p != ';')
3259 {
3260 p++;
3261 }
3262 if (*p == '\0')
3263 {
3264 /* Premature end of symbol. */
3265 return 0;
3266 }
3267
3268 TYPE_VPTR_BASETYPE (type) = t;
3269 if (type == t) /* Our own class provides vtbl ptr. */
3270 {
3271 for (i = TYPE_NFIELDS (t) - 1;
3272 i >= TYPE_N_BASECLASSES (t);
3273 --i)
3274 {
3275 const char *name = TYPE_FIELD_NAME (t, i);
3276
3277 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3278 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3279 {
3280 TYPE_VPTR_FIELDNO (type) = i;
3281 goto gotit;
3282 }
3283 }
3284 /* Virtual function table field not found. */
3285 complaint (&symfile_complaints,
3286 _("virtual function table pointer "
3287 "not found when defining class `%s'"),
3288 TYPE_NAME (type));
3289 return 0;
3290 }
3291 else
3292 {
3293 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3294 }
3295
3296 gotit:
3297 *pp = p + 1;
3298 }
3299 }
3300 return 1;
3301 }
3302
3303 static int
3304 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3305 {
3306 int n;
3307
3308 for (n = TYPE_NFN_FIELDS (type);
3309 fip->fnlist != NULL;
3310 fip->fnlist = fip->fnlist->next)
3311 {
3312 --n; /* Circumvent Sun3 compiler bug. */
3313 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3314 }
3315 return 1;
3316 }
3317
3318 /* Create the vector of fields, and record how big it is.
3319 We need this info to record proper virtual function table information
3320 for this class's virtual functions. */
3321
3322 static int
3323 attach_fields_to_type (struct field_info *fip, struct type *type,
3324 struct objfile *objfile)
3325 {
3326 int nfields = 0;
3327 int non_public_fields = 0;
3328 struct nextfield *scan;
3329
3330 /* Count up the number of fields that we have, as well as taking note of
3331 whether or not there are any non-public fields, which requires us to
3332 allocate and build the private_field_bits and protected_field_bits
3333 bitfields. */
3334
3335 for (scan = fip->list; scan != NULL; scan = scan->next)
3336 {
3337 nfields++;
3338 if (scan->visibility != VISIBILITY_PUBLIC)
3339 {
3340 non_public_fields++;
3341 }
3342 }
3343
3344 /* Now we know how many fields there are, and whether or not there are any
3345 non-public fields. Record the field count, allocate space for the
3346 array of fields, and create blank visibility bitfields if necessary. */
3347
3348 TYPE_NFIELDS (type) = nfields;
3349 TYPE_FIELDS (type) = (struct field *)
3350 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3351 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3352
3353 if (non_public_fields)
3354 {
3355 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3356
3357 TYPE_FIELD_PRIVATE_BITS (type) =
3358 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3359 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3360
3361 TYPE_FIELD_PROTECTED_BITS (type) =
3362 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3363 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3364
3365 TYPE_FIELD_IGNORE_BITS (type) =
3366 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3367 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3368 }
3369
3370 /* Copy the saved-up fields into the field vector. Start from the
3371 head of the list, adding to the tail of the field array, so that
3372 they end up in the same order in the array in which they were
3373 added to the list. */
3374
3375 while (nfields-- > 0)
3376 {
3377 TYPE_FIELD (type, nfields) = fip->list->field;
3378 switch (fip->list->visibility)
3379 {
3380 case VISIBILITY_PRIVATE:
3381 SET_TYPE_FIELD_PRIVATE (type, nfields);
3382 break;
3383
3384 case VISIBILITY_PROTECTED:
3385 SET_TYPE_FIELD_PROTECTED (type, nfields);
3386 break;
3387
3388 case VISIBILITY_IGNORE:
3389 SET_TYPE_FIELD_IGNORE (type, nfields);
3390 break;
3391
3392 case VISIBILITY_PUBLIC:
3393 break;
3394
3395 default:
3396 /* Unknown visibility. Complain and treat it as public. */
3397 {
3398 complaint (&symfile_complaints,
3399 _("Unknown visibility `%c' for field"),
3400 fip->list->visibility);
3401 }
3402 break;
3403 }
3404 fip->list = fip->list->next;
3405 }
3406 return 1;
3407 }
3408
3409
3410 /* Complain that the compiler has emitted more than one definition for the
3411 structure type TYPE. */
3412 static void
3413 complain_about_struct_wipeout (struct type *type)
3414 {
3415 const char *name = "";
3416 const char *kind = "";
3417
3418 if (TYPE_TAG_NAME (type))
3419 {
3420 name = TYPE_TAG_NAME (type);
3421 switch (TYPE_CODE (type))
3422 {
3423 case TYPE_CODE_STRUCT: kind = "struct "; break;
3424 case TYPE_CODE_UNION: kind = "union "; break;
3425 case TYPE_CODE_ENUM: kind = "enum "; break;
3426 default: kind = "";
3427 }
3428 }
3429 else if (TYPE_NAME (type))
3430 {
3431 name = TYPE_NAME (type);
3432 kind = "";
3433 }
3434 else
3435 {
3436 name = "<unknown>";
3437 kind = "";
3438 }
3439
3440 complaint (&symfile_complaints,
3441 _("struct/union type gets multiply defined: %s%s"), kind, name);
3442 }
3443
3444 /* Set the length for all variants of a same main_type, which are
3445 connected in the closed chain.
3446
3447 This is something that needs to be done when a type is defined *after*
3448 some cross references to this type have already been read. Consider
3449 for instance the following scenario where we have the following two
3450 stabs entries:
3451
3452 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3453 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3454
3455 A stubbed version of type dummy is created while processing the first
3456 stabs entry. The length of that type is initially set to zero, since
3457 it is unknown at this point. Also, a "constant" variation of type
3458 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3459 the stabs line).
3460
3461 The second stabs entry allows us to replace the stubbed definition
3462 with the real definition. However, we still need to adjust the length
3463 of the "constant" variation of that type, as its length was left
3464 untouched during the main type replacement... */
3465
3466 static void
3467 set_length_in_type_chain (struct type *type)
3468 {
3469 struct type *ntype = TYPE_CHAIN (type);
3470
3471 while (ntype != type)
3472 {
3473 if (TYPE_LENGTH(ntype) == 0)
3474 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3475 else
3476 complain_about_struct_wipeout (ntype);
3477 ntype = TYPE_CHAIN (ntype);
3478 }
3479 }
3480
3481 /* Read the description of a structure (or union type) and return an object
3482 describing the type.
3483
3484 PP points to a character pointer that points to the next unconsumed token
3485 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3486 *PP will point to "4a:1,0,32;;".
3487
3488 TYPE points to an incomplete type that needs to be filled in.
3489
3490 OBJFILE points to the current objfile from which the stabs information is
3491 being read. (Note that it is redundant in that TYPE also contains a pointer
3492 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3493 */
3494
3495 static struct type *
3496 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3497 struct objfile *objfile)
3498 {
3499 struct cleanup *back_to;
3500 struct field_info fi;
3501
3502 fi.list = NULL;
3503 fi.fnlist = NULL;
3504
3505 /* When describing struct/union/class types in stabs, G++ always drops
3506 all qualifications from the name. So if you've got:
3507 struct A { ... struct B { ... }; ... };
3508 then G++ will emit stabs for `struct A::B' that call it simply
3509 `struct B'. Obviously, if you've got a real top-level definition for
3510 `struct B', or other nested definitions, this is going to cause
3511 problems.
3512
3513 Obviously, GDB can't fix this by itself, but it can at least avoid
3514 scribbling on existing structure type objects when new definitions
3515 appear. */
3516 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3517 || TYPE_STUB (type)))
3518 {
3519 complain_about_struct_wipeout (type);
3520
3521 /* It's probably best to return the type unchanged. */
3522 return type;
3523 }
3524
3525 back_to = make_cleanup (null_cleanup, 0);
3526
3527 INIT_CPLUS_SPECIFIC (type);
3528 TYPE_CODE (type) = type_code;
3529 TYPE_STUB (type) = 0;
3530
3531 /* First comes the total size in bytes. */
3532
3533 {
3534 int nbits;
3535
3536 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3537 if (nbits != 0)
3538 return error_type (pp, objfile);
3539 set_length_in_type_chain (type);
3540 }
3541
3542 /* Now read the baseclasses, if any, read the regular C struct or C++
3543 class member fields, attach the fields to the type, read the C++
3544 member functions, attach them to the type, and then read any tilde
3545 field (baseclass specifier for the class holding the main vtable). */
3546
3547 if (!read_baseclasses (&fi, pp, type, objfile)
3548 || !read_struct_fields (&fi, pp, type, objfile)
3549 || !attach_fields_to_type (&fi, type, objfile)
3550 || !read_member_functions (&fi, pp, type, objfile)
3551 || !attach_fn_fields_to_type (&fi, type)
3552 || !read_tilde_fields (&fi, pp, type, objfile))
3553 {
3554 type = error_type (pp, objfile);
3555 }
3556
3557 do_cleanups (back_to);
3558 return (type);
3559 }
3560
3561 /* Read a definition of an array type,
3562 and create and return a suitable type object.
3563 Also creates a range type which represents the bounds of that
3564 array. */
3565
3566 static struct type *
3567 read_array_type (char **pp, struct type *type,
3568 struct objfile *objfile)
3569 {
3570 struct type *index_type, *element_type, *range_type;
3571 int lower, upper;
3572 int adjustable = 0;
3573 int nbits;
3574
3575 /* Format of an array type:
3576 "ar<index type>;lower;upper;<array_contents_type>".
3577 OS9000: "arlower,upper;<array_contents_type>".
3578
3579 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3580 for these, produce a type like float[][]. */
3581
3582 {
3583 index_type = read_type (pp, objfile);
3584 if (**pp != ';')
3585 /* Improper format of array type decl. */
3586 return error_type (pp, objfile);
3587 ++*pp;
3588 }
3589
3590 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3591 {
3592 (*pp)++;
3593 adjustable = 1;
3594 }
3595 lower = read_huge_number (pp, ';', &nbits, 0);
3596
3597 if (nbits != 0)
3598 return error_type (pp, objfile);
3599
3600 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3601 {
3602 (*pp)++;
3603 adjustable = 1;
3604 }
3605 upper = read_huge_number (pp, ';', &nbits, 0);
3606 if (nbits != 0)
3607 return error_type (pp, objfile);
3608
3609 element_type = read_type (pp, objfile);
3610
3611 if (adjustable)
3612 {
3613 lower = 0;
3614 upper = -1;
3615 }
3616
3617 range_type =
3618 create_range_type ((struct type *) NULL, index_type, lower, upper);
3619 type = create_array_type (type, element_type, range_type);
3620
3621 return type;
3622 }
3623
3624
3625 /* Read a definition of an enumeration type,
3626 and create and return a suitable type object.
3627 Also defines the symbols that represent the values of the type. */
3628
3629 static struct type *
3630 read_enum_type (char **pp, struct type *type,
3631 struct objfile *objfile)
3632 {
3633 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3634 char *p;
3635 char *name;
3636 long n;
3637 struct symbol *sym;
3638 int nsyms = 0;
3639 struct pending **symlist;
3640 struct pending *osyms, *syms;
3641 int o_nsyms;
3642 int nbits;
3643 int unsigned_enum = 1;
3644
3645 #if 0
3646 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3647 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3648 to do? For now, force all enum values to file scope. */
3649 if (within_function)
3650 symlist = &local_symbols;
3651 else
3652 #endif
3653 symlist = &file_symbols;
3654 osyms = *symlist;
3655 o_nsyms = osyms ? osyms->nsyms : 0;
3656
3657 /* The aix4 compiler emits an extra field before the enum members;
3658 my guess is it's a type of some sort. Just ignore it. */
3659 if (**pp == '-')
3660 {
3661 /* Skip over the type. */
3662 while (**pp != ':')
3663 (*pp)++;
3664
3665 /* Skip over the colon. */
3666 (*pp)++;
3667 }
3668
3669 /* Read the value-names and their values.
3670 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3671 A semicolon or comma instead of a NAME means the end. */
3672 while (**pp && **pp != ';' && **pp != ',')
3673 {
3674 STABS_CONTINUE (pp, objfile);
3675 p = *pp;
3676 while (*p != ':')
3677 p++;
3678 name = obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
3679 *pp = p + 1;
3680 n = read_huge_number (pp, ',', &nbits, 0);
3681 if (nbits != 0)
3682 return error_type (pp, objfile);
3683
3684 sym = (struct symbol *)
3685 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3686 memset (sym, 0, sizeof (struct symbol));
3687 SYMBOL_SET_LINKAGE_NAME (sym, name);
3688 SYMBOL_SET_LANGUAGE (sym, current_subfile->language);
3689 SYMBOL_CLASS (sym) = LOC_CONST;
3690 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3691 SYMBOL_VALUE (sym) = n;
3692 if (n < 0)
3693 unsigned_enum = 0;
3694 add_symbol_to_list (sym, symlist);
3695 nsyms++;
3696 }
3697
3698 if (**pp == ';')
3699 (*pp)++; /* Skip the semicolon. */
3700
3701 /* Now fill in the fields of the type-structure. */
3702
3703 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3704 set_length_in_type_chain (type);
3705 TYPE_CODE (type) = TYPE_CODE_ENUM;
3706 TYPE_STUB (type) = 0;
3707 if (unsigned_enum)
3708 TYPE_UNSIGNED (type) = 1;
3709 TYPE_NFIELDS (type) = nsyms;
3710 TYPE_FIELDS (type) = (struct field *)
3711 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3712 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3713
3714 /* Find the symbols for the values and put them into the type.
3715 The symbols can be found in the symlist that we put them on
3716 to cause them to be defined. osyms contains the old value
3717 of that symlist; everything up to there was defined by us. */
3718 /* Note that we preserve the order of the enum constants, so
3719 that in something like "enum {FOO, LAST_THING=FOO}" we print
3720 FOO, not LAST_THING. */
3721
3722 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3723 {
3724 int last = syms == osyms ? o_nsyms : 0;
3725 int j = syms->nsyms;
3726
3727 for (; --j >= last; --n)
3728 {
3729 struct symbol *xsym = syms->symbol[j];
3730
3731 SYMBOL_TYPE (xsym) = type;
3732 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3733 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3734 TYPE_FIELD_BITSIZE (type, n) = 0;
3735 }
3736 if (syms == osyms)
3737 break;
3738 }
3739
3740 return type;
3741 }
3742
3743 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3744 typedefs in every file (for int, long, etc):
3745
3746 type = b <signed> <width> <format type>; <offset>; <nbits>
3747 signed = u or s.
3748 optional format type = c or b for char or boolean.
3749 offset = offset from high order bit to start bit of type.
3750 width is # bytes in object of this type, nbits is # bits in type.
3751
3752 The width/offset stuff appears to be for small objects stored in
3753 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3754 FIXME. */
3755
3756 static struct type *
3757 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3758 {
3759 int type_bits;
3760 int nbits;
3761 int signed_type;
3762 enum type_code code = TYPE_CODE_INT;
3763
3764 switch (**pp)
3765 {
3766 case 's':
3767 signed_type = 1;
3768 break;
3769 case 'u':
3770 signed_type = 0;
3771 break;
3772 default:
3773 return error_type (pp, objfile);
3774 }
3775 (*pp)++;
3776
3777 /* For some odd reason, all forms of char put a c here. This is strange
3778 because no other type has this honor. We can safely ignore this because
3779 we actually determine 'char'acterness by the number of bits specified in
3780 the descriptor.
3781 Boolean forms, e.g Fortran logical*X, put a b here. */
3782
3783 if (**pp == 'c')
3784 (*pp)++;
3785 else if (**pp == 'b')
3786 {
3787 code = TYPE_CODE_BOOL;
3788 (*pp)++;
3789 }
3790
3791 /* The first number appears to be the number of bytes occupied
3792 by this type, except that unsigned short is 4 instead of 2.
3793 Since this information is redundant with the third number,
3794 we will ignore it. */
3795 read_huge_number (pp, ';', &nbits, 0);
3796 if (nbits != 0)
3797 return error_type (pp, objfile);
3798
3799 /* The second number is always 0, so ignore it too. */
3800 read_huge_number (pp, ';', &nbits, 0);
3801 if (nbits != 0)
3802 return error_type (pp, objfile);
3803
3804 /* The third number is the number of bits for this type. */
3805 type_bits = read_huge_number (pp, 0, &nbits, 0);
3806 if (nbits != 0)
3807 return error_type (pp, objfile);
3808 /* The type *should* end with a semicolon. If it are embedded
3809 in a larger type the semicolon may be the only way to know where
3810 the type ends. If this type is at the end of the stabstring we
3811 can deal with the omitted semicolon (but we don't have to like
3812 it). Don't bother to complain(), Sun's compiler omits the semicolon
3813 for "void". */
3814 if (**pp == ';')
3815 ++(*pp);
3816
3817 if (type_bits == 0)
3818 return init_type (TYPE_CODE_VOID, 1,
3819 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3820 objfile);
3821 else
3822 return init_type (code,
3823 type_bits / TARGET_CHAR_BIT,
3824 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3825 objfile);
3826 }
3827
3828 static struct type *
3829 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3830 {
3831 int nbits;
3832 int details;
3833 int nbytes;
3834 struct type *rettype;
3835
3836 /* The first number has more details about the type, for example
3837 FN_COMPLEX. */
3838 details = read_huge_number (pp, ';', &nbits, 0);
3839 if (nbits != 0)
3840 return error_type (pp, objfile);
3841
3842 /* The second number is the number of bytes occupied by this type. */
3843 nbytes = read_huge_number (pp, ';', &nbits, 0);
3844 if (nbits != 0)
3845 return error_type (pp, objfile);
3846
3847 if (details == NF_COMPLEX || details == NF_COMPLEX16
3848 || details == NF_COMPLEX32)
3849 {
3850 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3851 TYPE_TARGET_TYPE (rettype)
3852 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3853 return rettype;
3854 }
3855
3856 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3857 }
3858
3859 /* Read a number from the string pointed to by *PP.
3860 The value of *PP is advanced over the number.
3861 If END is nonzero, the character that ends the
3862 number must match END, or an error happens;
3863 and that character is skipped if it does match.
3864 If END is zero, *PP is left pointing to that character.
3865
3866 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3867 the number is represented in an octal representation, assume that
3868 it is represented in a 2's complement representation with a size of
3869 TWOS_COMPLEMENT_BITS.
3870
3871 If the number fits in a long, set *BITS to 0 and return the value.
3872 If not, set *BITS to be the number of bits in the number and return 0.
3873
3874 If encounter garbage, set *BITS to -1 and return 0. */
3875
3876 static long
3877 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3878 {
3879 char *p = *pp;
3880 int sign = 1;
3881 int sign_bit = 0;
3882 long n = 0;
3883 int radix = 10;
3884 char overflow = 0;
3885 int nbits = 0;
3886 int c;
3887 long upper_limit;
3888 int twos_complement_representation = 0;
3889
3890 if (*p == '-')
3891 {
3892 sign = -1;
3893 p++;
3894 }
3895
3896 /* Leading zero means octal. GCC uses this to output values larger
3897 than an int (because that would be hard in decimal). */
3898 if (*p == '0')
3899 {
3900 radix = 8;
3901 p++;
3902 }
3903
3904 /* Skip extra zeros. */
3905 while (*p == '0')
3906 p++;
3907
3908 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3909 {
3910 /* Octal, possibly signed. Check if we have enough chars for a
3911 negative number. */
3912
3913 size_t len;
3914 char *p1 = p;
3915
3916 while ((c = *p1) >= '0' && c < '8')
3917 p1++;
3918
3919 len = p1 - p;
3920 if (len > twos_complement_bits / 3
3921 || (twos_complement_bits % 3 == 0
3922 && len == twos_complement_bits / 3))
3923 {
3924 /* Ok, we have enough characters for a signed value, check
3925 for signness by testing if the sign bit is set. */
3926 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3927 c = *p - '0';
3928 if (c & (1 << sign_bit))
3929 {
3930 /* Definitely signed. */
3931 twos_complement_representation = 1;
3932 sign = -1;
3933 }
3934 }
3935 }
3936
3937 upper_limit = LONG_MAX / radix;
3938
3939 while ((c = *p++) >= '0' && c < ('0' + radix))
3940 {
3941 if (n <= upper_limit)
3942 {
3943 if (twos_complement_representation)
3944 {
3945 /* Octal, signed, twos complement representation. In
3946 this case, n is the corresponding absolute value. */
3947 if (n == 0)
3948 {
3949 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3950
3951 n = -sn;
3952 }
3953 else
3954 {
3955 n *= radix;
3956 n -= c - '0';
3957 }
3958 }
3959 else
3960 {
3961 /* unsigned representation */
3962 n *= radix;
3963 n += c - '0'; /* FIXME this overflows anyway. */
3964 }
3965 }
3966 else
3967 overflow = 1;
3968
3969 /* This depends on large values being output in octal, which is
3970 what GCC does. */
3971 if (radix == 8)
3972 {
3973 if (nbits == 0)
3974 {
3975 if (c == '0')
3976 /* Ignore leading zeroes. */
3977 ;
3978 else if (c == '1')
3979 nbits = 1;
3980 else if (c == '2' || c == '3')
3981 nbits = 2;
3982 else
3983 nbits = 3;
3984 }
3985 else
3986 nbits += 3;
3987 }
3988 }
3989 if (end)
3990 {
3991 if (c && c != end)
3992 {
3993 if (bits != NULL)
3994 *bits = -1;
3995 return 0;
3996 }
3997 }
3998 else
3999 --p;
4000
4001 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
4002 {
4003 /* We were supposed to parse a number with maximum
4004 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4005 if (bits != NULL)
4006 *bits = -1;
4007 return 0;
4008 }
4009
4010 *pp = p;
4011 if (overflow)
4012 {
4013 if (nbits == 0)
4014 {
4015 /* Large decimal constants are an error (because it is hard to
4016 count how many bits are in them). */
4017 if (bits != NULL)
4018 *bits = -1;
4019 return 0;
4020 }
4021
4022 /* -0x7f is the same as 0x80. So deal with it by adding one to
4023 the number of bits. Two's complement represention octals
4024 can't have a '-' in front. */
4025 if (sign == -1 && !twos_complement_representation)
4026 ++nbits;
4027 if (bits)
4028 *bits = nbits;
4029 }
4030 else
4031 {
4032 if (bits)
4033 *bits = 0;
4034 return n * sign;
4035 }
4036 /* It's *BITS which has the interesting information. */
4037 return 0;
4038 }
4039
4040 static struct type *
4041 read_range_type (char **pp, int typenums[2], int type_size,
4042 struct objfile *objfile)
4043 {
4044 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4045 char *orig_pp = *pp;
4046 int rangenums[2];
4047 long n2, n3;
4048 int n2bits, n3bits;
4049 int self_subrange;
4050 struct type *result_type;
4051 struct type *index_type = NULL;
4052
4053 /* First comes a type we are a subrange of.
4054 In C it is usually 0, 1 or the type being defined. */
4055 if (read_type_number (pp, rangenums) != 0)
4056 return error_type (pp, objfile);
4057 self_subrange = (rangenums[0] == typenums[0] &&
4058 rangenums[1] == typenums[1]);
4059
4060 if (**pp == '=')
4061 {
4062 *pp = orig_pp;
4063 index_type = read_type (pp, objfile);
4064 }
4065
4066 /* A semicolon should now follow; skip it. */
4067 if (**pp == ';')
4068 (*pp)++;
4069
4070 /* The remaining two operands are usually lower and upper bounds
4071 of the range. But in some special cases they mean something else. */
4072 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4073 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4074
4075 if (n2bits == -1 || n3bits == -1)
4076 return error_type (pp, objfile);
4077
4078 if (index_type)
4079 goto handle_true_range;
4080
4081 /* If limits are huge, must be large integral type. */
4082 if (n2bits != 0 || n3bits != 0)
4083 {
4084 char got_signed = 0;
4085 char got_unsigned = 0;
4086 /* Number of bits in the type. */
4087 int nbits = 0;
4088
4089 /* If a type size attribute has been specified, the bounds of
4090 the range should fit in this size. If the lower bounds needs
4091 more bits than the upper bound, then the type is signed. */
4092 if (n2bits <= type_size && n3bits <= type_size)
4093 {
4094 if (n2bits == type_size && n2bits > n3bits)
4095 got_signed = 1;
4096 else
4097 got_unsigned = 1;
4098 nbits = type_size;
4099 }
4100 /* Range from 0 to <large number> is an unsigned large integral type. */
4101 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4102 {
4103 got_unsigned = 1;
4104 nbits = n3bits;
4105 }
4106 /* Range from <large number> to <large number>-1 is a large signed
4107 integral type. Take care of the case where <large number> doesn't
4108 fit in a long but <large number>-1 does. */
4109 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4110 || (n2bits != 0 && n3bits == 0
4111 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4112 && n3 == LONG_MAX))
4113 {
4114 got_signed = 1;
4115 nbits = n2bits;
4116 }
4117
4118 if (got_signed || got_unsigned)
4119 {
4120 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
4121 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
4122 objfile);
4123 }
4124 else
4125 return error_type (pp, objfile);
4126 }
4127
4128 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4129 if (self_subrange && n2 == 0 && n3 == 0)
4130 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4131
4132 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4133 is the width in bytes.
4134
4135 Fortran programs appear to use this for complex types also. To
4136 distinguish between floats and complex, g77 (and others?) seem
4137 to use self-subranges for the complexes, and subranges of int for
4138 the floats.
4139
4140 Also note that for complexes, g77 sets n2 to the size of one of
4141 the member floats, not the whole complex beast. My guess is that
4142 this was to work well with pre-COMPLEX versions of gdb. */
4143
4144 if (n3 == 0 && n2 > 0)
4145 {
4146 struct type *float_type
4147 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
4148
4149 if (self_subrange)
4150 {
4151 struct type *complex_type =
4152 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
4153
4154 TYPE_TARGET_TYPE (complex_type) = float_type;
4155 return complex_type;
4156 }
4157 else
4158 return float_type;
4159 }
4160
4161 /* If the upper bound is -1, it must really be an unsigned integral. */
4162
4163 else if (n2 == 0 && n3 == -1)
4164 {
4165 int bits = type_size;
4166
4167 if (bits <= 0)
4168 {
4169 /* We don't know its size. It is unsigned int or unsigned
4170 long. GCC 2.3.3 uses this for long long too, but that is
4171 just a GDB 3.5 compatibility hack. */
4172 bits = gdbarch_int_bit (gdbarch);
4173 }
4174
4175 return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
4176 TYPE_FLAG_UNSIGNED, NULL, objfile);
4177 }
4178
4179 /* Special case: char is defined (Who knows why) as a subrange of
4180 itself with range 0-127. */
4181 else if (self_subrange && n2 == 0 && n3 == 127)
4182 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
4183
4184 /* We used to do this only for subrange of self or subrange of int. */
4185 else if (n2 == 0)
4186 {
4187 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4188 "unsigned long", and we already checked for that,
4189 so don't need to test for it here. */
4190
4191 if (n3 < 0)
4192 /* n3 actually gives the size. */
4193 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
4194 NULL, objfile);
4195
4196 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4197 unsigned n-byte integer. But do require n to be a power of
4198 two; we don't want 3- and 5-byte integers flying around. */
4199 {
4200 int bytes;
4201 unsigned long bits;
4202
4203 bits = n3;
4204 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4205 bits >>= 8;
4206 if (bits == 0
4207 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4208 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4209 objfile);
4210 }
4211 }
4212 /* I think this is for Convex "long long". Since I don't know whether
4213 Convex sets self_subrange, I also accept that particular size regardless
4214 of self_subrange. */
4215 else if (n3 == 0 && n2 < 0
4216 && (self_subrange
4217 || n2 == -gdbarch_long_long_bit
4218 (gdbarch) / TARGET_CHAR_BIT))
4219 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4220 else if (n2 == -n3 - 1)
4221 {
4222 if (n3 == 0x7f)
4223 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4224 if (n3 == 0x7fff)
4225 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4226 if (n3 == 0x7fffffff)
4227 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4228 }
4229
4230 /* We have a real range type on our hands. Allocate space and
4231 return a real pointer. */
4232 handle_true_range:
4233
4234 if (self_subrange)
4235 index_type = objfile_type (objfile)->builtin_int;
4236 else
4237 index_type = *dbx_lookup_type (rangenums, objfile);
4238 if (index_type == NULL)
4239 {
4240 /* Does this actually ever happen? Is that why we are worrying
4241 about dealing with it rather than just calling error_type? */
4242
4243 complaint (&symfile_complaints,
4244 _("base type %d of range type is not defined"), rangenums[1]);
4245
4246 index_type = objfile_type (objfile)->builtin_int;
4247 }
4248
4249 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4250 return (result_type);
4251 }
4252
4253 /* Read in an argument list. This is a list of types, separated by commas
4254 and terminated with END. Return the list of types read in, or NULL
4255 if there is an error. */
4256
4257 static struct field *
4258 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4259 int *varargsp)
4260 {
4261 /* FIXME! Remove this arbitrary limit! */
4262 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4263 int n = 0, i;
4264 struct field *rval;
4265
4266 while (**pp != end)
4267 {
4268 if (**pp != ',')
4269 /* Invalid argument list: no ','. */
4270 return NULL;
4271 (*pp)++;
4272 STABS_CONTINUE (pp, objfile);
4273 types[n++] = read_type (pp, objfile);
4274 }
4275 (*pp)++; /* get past `end' (the ':' character). */
4276
4277 if (n == 0)
4278 {
4279 /* We should read at least the THIS parameter here. Some broken stabs
4280 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4281 have been present ";-16,(0,43)" reference instead. This way the
4282 excessive ";" marker prematurely stops the parameters parsing. */
4283
4284 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4285 *varargsp = 0;
4286 }
4287 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4288 *varargsp = 1;
4289 else
4290 {
4291 n--;
4292 *varargsp = 0;
4293 }
4294
4295 rval = (struct field *) xmalloc (n * sizeof (struct field));
4296 memset (rval, 0, n * sizeof (struct field));
4297 for (i = 0; i < n; i++)
4298 rval[i].type = types[i];
4299 *nargsp = n;
4300 return rval;
4301 }
4302 \f
4303 /* Common block handling. */
4304
4305 /* List of symbols declared since the last BCOMM. This list is a tail
4306 of local_symbols. When ECOMM is seen, the symbols on the list
4307 are noted so their proper addresses can be filled in later,
4308 using the common block base address gotten from the assembler
4309 stabs. */
4310
4311 static struct pending *common_block;
4312 static int common_block_i;
4313
4314 /* Name of the current common block. We get it from the BCOMM instead of the
4315 ECOMM to match IBM documentation (even though IBM puts the name both places
4316 like everyone else). */
4317 static char *common_block_name;
4318
4319 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4320 to remain after this function returns. */
4321
4322 void
4323 common_block_start (char *name, struct objfile *objfile)
4324 {
4325 if (common_block_name != NULL)
4326 {
4327 complaint (&symfile_complaints,
4328 _("Invalid symbol data: common block within common block"));
4329 }
4330 common_block = local_symbols;
4331 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4332 common_block_name = obsavestring (name, strlen (name),
4333 &objfile->objfile_obstack);
4334 }
4335
4336 /* Process a N_ECOMM symbol. */
4337
4338 void
4339 common_block_end (struct objfile *objfile)
4340 {
4341 /* Symbols declared since the BCOMM are to have the common block
4342 start address added in when we know it. common_block and
4343 common_block_i point to the first symbol after the BCOMM in
4344 the local_symbols list; copy the list and hang it off the
4345 symbol for the common block name for later fixup. */
4346 int i;
4347 struct symbol *sym;
4348 struct pending *new = 0;
4349 struct pending *next;
4350 int j;
4351
4352 if (common_block_name == NULL)
4353 {
4354 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4355 return;
4356 }
4357
4358 sym = (struct symbol *)
4359 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
4360 memset (sym, 0, sizeof (struct symbol));
4361 /* Note: common_block_name already saved on objfile_obstack. */
4362 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4363 SYMBOL_CLASS (sym) = LOC_BLOCK;
4364
4365 /* Now we copy all the symbols which have been defined since the BCOMM. */
4366
4367 /* Copy all the struct pendings before common_block. */
4368 for (next = local_symbols;
4369 next != NULL && next != common_block;
4370 next = next->next)
4371 {
4372 for (j = 0; j < next->nsyms; j++)
4373 add_symbol_to_list (next->symbol[j], &new);
4374 }
4375
4376 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4377 NULL, it means copy all the local symbols (which we already did
4378 above). */
4379
4380 if (common_block != NULL)
4381 for (j = common_block_i; j < common_block->nsyms; j++)
4382 add_symbol_to_list (common_block->symbol[j], &new);
4383
4384 SYMBOL_TYPE (sym) = (struct type *) new;
4385
4386 /* Should we be putting local_symbols back to what it was?
4387 Does it matter? */
4388
4389 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4390 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4391 global_sym_chain[i] = sym;
4392 common_block_name = NULL;
4393 }
4394
4395 /* Add a common block's start address to the offset of each symbol
4396 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4397 the common block name). */
4398
4399 static void
4400 fix_common_block (struct symbol *sym, int valu)
4401 {
4402 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4403
4404 for (; next; next = next->next)
4405 {
4406 int j;
4407
4408 for (j = next->nsyms - 1; j >= 0; j--)
4409 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4410 }
4411 }
4412 \f
4413
4414
4415 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4416 See add_undefined_type for more details. */
4417
4418 static void
4419 add_undefined_type_noname (struct type *type, int typenums[2])
4420 {
4421 struct nat nat;
4422
4423 nat.typenums[0] = typenums [0];
4424 nat.typenums[1] = typenums [1];
4425 nat.type = type;
4426
4427 if (noname_undefs_length == noname_undefs_allocated)
4428 {
4429 noname_undefs_allocated *= 2;
4430 noname_undefs = (struct nat *)
4431 xrealloc ((char *) noname_undefs,
4432 noname_undefs_allocated * sizeof (struct nat));
4433 }
4434 noname_undefs[noname_undefs_length++] = nat;
4435 }
4436
4437 /* Add TYPE to the UNDEF_TYPES vector.
4438 See add_undefined_type for more details. */
4439
4440 static void
4441 add_undefined_type_1 (struct type *type)
4442 {
4443 if (undef_types_length == undef_types_allocated)
4444 {
4445 undef_types_allocated *= 2;
4446 undef_types = (struct type **)
4447 xrealloc ((char *) undef_types,
4448 undef_types_allocated * sizeof (struct type *));
4449 }
4450 undef_types[undef_types_length++] = type;
4451 }
4452
4453 /* What about types defined as forward references inside of a small lexical
4454 scope? */
4455 /* Add a type to the list of undefined types to be checked through
4456 once this file has been read in.
4457
4458 In practice, we actually maintain two such lists: The first list
4459 (UNDEF_TYPES) is used for types whose name has been provided, and
4460 concerns forward references (eg 'xs' or 'xu' forward references);
4461 the second list (NONAME_UNDEFS) is used for types whose name is
4462 unknown at creation time, because they were referenced through
4463 their type number before the actual type was declared.
4464 This function actually adds the given type to the proper list. */
4465
4466 static void
4467 add_undefined_type (struct type *type, int typenums[2])
4468 {
4469 if (TYPE_TAG_NAME (type) == NULL)
4470 add_undefined_type_noname (type, typenums);
4471 else
4472 add_undefined_type_1 (type);
4473 }
4474
4475 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4476
4477 static void
4478 cleanup_undefined_types_noname (struct objfile *objfile)
4479 {
4480 int i;
4481
4482 for (i = 0; i < noname_undefs_length; i++)
4483 {
4484 struct nat nat = noname_undefs[i];
4485 struct type **type;
4486
4487 type = dbx_lookup_type (nat.typenums, objfile);
4488 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4489 {
4490 /* The instance flags of the undefined type are still unset,
4491 and needs to be copied over from the reference type.
4492 Since replace_type expects them to be identical, we need
4493 to set these flags manually before hand. */
4494 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4495 replace_type (nat.type, *type);
4496 }
4497 }
4498
4499 noname_undefs_length = 0;
4500 }
4501
4502 /* Go through each undefined type, see if it's still undefined, and fix it
4503 up if possible. We have two kinds of undefined types:
4504
4505 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4506 Fix: update array length using the element bounds
4507 and the target type's length.
4508 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4509 yet defined at the time a pointer to it was made.
4510 Fix: Do a full lookup on the struct/union tag. */
4511
4512 static void
4513 cleanup_undefined_types_1 (void)
4514 {
4515 struct type **type;
4516
4517 /* Iterate over every undefined type, and look for a symbol whose type
4518 matches our undefined type. The symbol matches if:
4519 1. It is a typedef in the STRUCT domain;
4520 2. It has the same name, and same type code;
4521 3. The instance flags are identical.
4522
4523 It is important to check the instance flags, because we have seen
4524 examples where the debug info contained definitions such as:
4525
4526 "foo_t:t30=B31=xefoo_t:"
4527
4528 In this case, we have created an undefined type named "foo_t" whose
4529 instance flags is null (when processing "xefoo_t"), and then created
4530 another type with the same name, but with different instance flags
4531 ('B' means volatile). I think that the definition above is wrong,
4532 since the same type cannot be volatile and non-volatile at the same
4533 time, but we need to be able to cope with it when it happens. The
4534 approach taken here is to treat these two types as different. */
4535
4536 for (type = undef_types; type < undef_types + undef_types_length; type++)
4537 {
4538 switch (TYPE_CODE (*type))
4539 {
4540
4541 case TYPE_CODE_STRUCT:
4542 case TYPE_CODE_UNION:
4543 case TYPE_CODE_ENUM:
4544 {
4545 /* Check if it has been defined since. Need to do this here
4546 as well as in check_typedef to deal with the (legitimate in
4547 C though not C++) case of several types with the same name
4548 in different source files. */
4549 if (TYPE_STUB (*type))
4550 {
4551 struct pending *ppt;
4552 int i;
4553 /* Name of the type, without "struct" or "union". */
4554 const char *typename = TYPE_TAG_NAME (*type);
4555
4556 if (typename == NULL)
4557 {
4558 complaint (&symfile_complaints, _("need a type name"));
4559 break;
4560 }
4561 for (ppt = file_symbols; ppt; ppt = ppt->next)
4562 {
4563 for (i = 0; i < ppt->nsyms; i++)
4564 {
4565 struct symbol *sym = ppt->symbol[i];
4566
4567 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4568 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4569 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4570 TYPE_CODE (*type))
4571 && (TYPE_INSTANCE_FLAGS (*type) ==
4572 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4573 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4574 typename) == 0)
4575 replace_type (*type, SYMBOL_TYPE (sym));
4576 }
4577 }
4578 }
4579 }
4580 break;
4581
4582 default:
4583 {
4584 complaint (&symfile_complaints,
4585 _("forward-referenced types left unresolved, "
4586 "type code %d."),
4587 TYPE_CODE (*type));
4588 }
4589 break;
4590 }
4591 }
4592
4593 undef_types_length = 0;
4594 }
4595
4596 /* Try to fix all the undefined types we ecountered while processing
4597 this unit. */
4598
4599 void
4600 cleanup_undefined_types (struct objfile *objfile)
4601 {
4602 cleanup_undefined_types_1 ();
4603 cleanup_undefined_types_noname (objfile);
4604 }
4605
4606 /* Scan through all of the global symbols defined in the object file,
4607 assigning values to the debugging symbols that need to be assigned
4608 to. Get these symbols from the minimal symbol table. */
4609
4610 void
4611 scan_file_globals (struct objfile *objfile)
4612 {
4613 int hash;
4614 struct minimal_symbol *msymbol;
4615 struct symbol *sym, *prev;
4616 struct objfile *resolve_objfile;
4617
4618 /* SVR4 based linkers copy referenced global symbols from shared
4619 libraries to the main executable.
4620 If we are scanning the symbols for a shared library, try to resolve
4621 them from the minimal symbols of the main executable first. */
4622
4623 if (symfile_objfile && objfile != symfile_objfile)
4624 resolve_objfile = symfile_objfile;
4625 else
4626 resolve_objfile = objfile;
4627
4628 while (1)
4629 {
4630 /* Avoid expensive loop through all minimal symbols if there are
4631 no unresolved symbols. */
4632 for (hash = 0; hash < HASHSIZE; hash++)
4633 {
4634 if (global_sym_chain[hash])
4635 break;
4636 }
4637 if (hash >= HASHSIZE)
4638 return;
4639
4640 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4641 {
4642 QUIT;
4643
4644 /* Skip static symbols. */
4645 switch (MSYMBOL_TYPE (msymbol))
4646 {
4647 case mst_file_text:
4648 case mst_file_data:
4649 case mst_file_bss:
4650 continue;
4651 default:
4652 break;
4653 }
4654
4655 prev = NULL;
4656
4657 /* Get the hash index and check all the symbols
4658 under that hash index. */
4659
4660 hash = hashname (SYMBOL_LINKAGE_NAME (msymbol));
4661
4662 for (sym = global_sym_chain[hash]; sym;)
4663 {
4664 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol),
4665 SYMBOL_LINKAGE_NAME (sym)) == 0)
4666 {
4667 /* Splice this symbol out of the hash chain and
4668 assign the value we have to it. */
4669 if (prev)
4670 {
4671 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4672 }
4673 else
4674 {
4675 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4676 }
4677
4678 /* Check to see whether we need to fix up a common block. */
4679 /* Note: this code might be executed several times for
4680 the same symbol if there are multiple references. */
4681 if (sym)
4682 {
4683 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4684 {
4685 fix_common_block (sym,
4686 SYMBOL_VALUE_ADDRESS (msymbol));
4687 }
4688 else
4689 {
4690 SYMBOL_VALUE_ADDRESS (sym)
4691 = SYMBOL_VALUE_ADDRESS (msymbol);
4692 }
4693 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4694 }
4695
4696 if (prev)
4697 {
4698 sym = SYMBOL_VALUE_CHAIN (prev);
4699 }
4700 else
4701 {
4702 sym = global_sym_chain[hash];
4703 }
4704 }
4705 else
4706 {
4707 prev = sym;
4708 sym = SYMBOL_VALUE_CHAIN (sym);
4709 }
4710 }
4711 }
4712 if (resolve_objfile == objfile)
4713 break;
4714 resolve_objfile = objfile;
4715 }
4716
4717 /* Change the storage class of any remaining unresolved globals to
4718 LOC_UNRESOLVED and remove them from the chain. */
4719 for (hash = 0; hash < HASHSIZE; hash++)
4720 {
4721 sym = global_sym_chain[hash];
4722 while (sym)
4723 {
4724 prev = sym;
4725 sym = SYMBOL_VALUE_CHAIN (sym);
4726
4727 /* Change the symbol address from the misleading chain value
4728 to address zero. */
4729 SYMBOL_VALUE_ADDRESS (prev) = 0;
4730
4731 /* Complain about unresolved common block symbols. */
4732 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4733 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
4734 else
4735 complaint (&symfile_complaints,
4736 _("%s: common block `%s' from "
4737 "global_sym_chain unresolved"),
4738 objfile->name, SYMBOL_PRINT_NAME (prev));
4739 }
4740 }
4741 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4742 }
4743
4744 /* Initialize anything that needs initializing when starting to read
4745 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4746 to a psymtab. */
4747
4748 void
4749 stabsread_init (void)
4750 {
4751 }
4752
4753 /* Initialize anything that needs initializing when a completely new
4754 symbol file is specified (not just adding some symbols from another
4755 file, e.g. a shared library). */
4756
4757 void
4758 stabsread_new_init (void)
4759 {
4760 /* Empty the hash table of global syms looking for values. */
4761 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4762 }
4763
4764 /* Initialize anything that needs initializing at the same time as
4765 start_symtab() is called. */
4766
4767 void
4768 start_stabs (void)
4769 {
4770 global_stabs = NULL; /* AIX COFF */
4771 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4772 n_this_object_header_files = 1;
4773 type_vector_length = 0;
4774 type_vector = (struct type **) 0;
4775
4776 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4777 common_block_name = NULL;
4778 }
4779
4780 /* Call after end_symtab(). */
4781
4782 void
4783 end_stabs (void)
4784 {
4785 if (type_vector)
4786 {
4787 xfree (type_vector);
4788 }
4789 type_vector = 0;
4790 type_vector_length = 0;
4791 previous_stab_code = 0;
4792 }
4793
4794 void
4795 finish_global_stabs (struct objfile *objfile)
4796 {
4797 if (global_stabs)
4798 {
4799 patch_block_stabs (global_symbols, global_stabs, objfile);
4800 xfree (global_stabs);
4801 global_stabs = NULL;
4802 }
4803 }
4804
4805 /* Find the end of the name, delimited by a ':', but don't match
4806 ObjC symbols which look like -[Foo bar::]:bla. */
4807 static char *
4808 find_name_end (char *name)
4809 {
4810 char *s = name;
4811
4812 if (s[0] == '-' || *s == '+')
4813 {
4814 /* Must be an ObjC method symbol. */
4815 if (s[1] != '[')
4816 {
4817 error (_("invalid symbol name \"%s\""), name);
4818 }
4819 s = strchr (s, ']');
4820 if (s == NULL)
4821 {
4822 error (_("invalid symbol name \"%s\""), name);
4823 }
4824 return strchr (s, ':');
4825 }
4826 else
4827 {
4828 return strchr (s, ':');
4829 }
4830 }
4831
4832 /* Initializer for this module. */
4833
4834 void
4835 _initialize_stabsread (void)
4836 {
4837 rs6000_builtin_type_data = register_objfile_data ();
4838
4839 undef_types_allocated = 20;
4840 undef_types_length = 0;
4841 undef_types = (struct type **)
4842 xmalloc (undef_types_allocated * sizeof (struct type *));
4843
4844 noname_undefs_allocated = 20;
4845 noname_undefs_length = 0;
4846 noname_undefs = (struct nat *)
4847 xmalloc (noname_undefs_allocated * sizeof (struct nat));
4848 }
This page took 0.164811 seconds and 5 git commands to generate.